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ABSTRACT OF THE DISSERTATION

Optimizing Many-Threads-to-Many-Cores Mapping
in Parallel Electronic System Level Simulation

By

Guantao Liu

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2017

Professor Rainer Dömer, Chair

In hardware/software codesign, Discrete Event Simulation (DES) has been in use for decades

to verify and validate the functionality of Electronic System Level (ESL) models. Since the

parallel computing platforms are readily available today, many Parallel Discrete Event Sim-

ulation (PDES) approaches are proposed to improve the simulation performance. However,

as the thread parallelism increases in ESL designs and core count multiplies on multi-core

and many-core platforms, thread-to-core mapping becomes critical in PDES.

In this dissertation, we propose a computation- and communication-aware approach to op-

timize thread mapping for parallel ESL simulation, with the aims of load balancing and

communication minimization. As we identify that the order of dispatching parallel threads

has a significant influence on the total simulation time, and Longest Job First (LJF) shows

better performance than the Linux default thread dispatch policy, we first propose a segment-

aware LJF scheduler for PDES. Our segment-aware scheduler can accurately predict the run

time of the thread segments ahead, and thus make better dispatching decisions. Next,

we define the concept of core distance for multi-core and many-core architectures, which

quantifies core-to-core communication latency and characterizes processor hierarchies. For

many-core architectures using directory-based cache coherence protocols, we observe that

xiv



core-to-core transfers are not always significantly faster than main memory accesses, and

the core-to-core communication latency depends not only on the physical placement on the

chip, but also on the location of the distributed cache tag directory. Thus, using a ping-pong

memory benchmark, we quantify the core distance on a ring-network many-core platform

and propose an algorithm to optimize thread-to-core mapping in order to minimize on-chip

communication overhead. Altogether, based on a static analysis of communication patterns

and core distance and a dynamic profiling of computation load, our proposed framework

utilizes a heuristic graph partitioning algorithm and automatically generates an optimized

thread mapping, which minimizes inter-chip communication overhead. In our systematic

evaluation, our approach consistently shows a significant performance gain on top of the

order-of-magnitude speedup of PDES.

The contributions of this dissertation include a segment-aware multi-core scheduler, core

distance profiling, a communication-aware thread mapping framework, together with an

open-source software package for Out-of-Order PDES.
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Chapter 1

Introduction

Embedded and cyber-physical systems are pervasive and ubiquitous nowadays, covering au-

tomotive and avionic systems, medical devices, smart home appliances, mobile and consumer

electronics, and others. However, due to the increasing size, complexity and heterogeneity

of the embedded and cyber-physical systems, it is extremely difficult for system designers to

consider all the implementation details at the early stages of the design [72, 62]. Therefore,

Electronic System Level (ESL) [62] design methodology is proposed to cope with such de-

sign challenges. With this approach, designers can elevate the abstraction level of the design

and hide low-level implementation details, and thus focus on the functional specification

and algorithms in the design. Before the system level design is refined to a lower abstrac-

tion level, it must be verified to assure the correctness [28]. The most common approach

to verify the system level design is Simulation-based Validation, which is relatively fast yet

accurate [25]. As the parallel processing capabilities are readily available in today’s multi-

core and many-core hosts, parallel ESL simulation has recently attracted a lot of attention.

In this dissertation, we aim at optimizing the thread-to-core mapping in parallel Electronic

System Level simulation.

1



1.1 System Level Design and Simulation

The 2004 edition of the International Technology Roadmap for Semiconductors defines sys-

tem level as “a level above RTL including both hardware and software design” [41]. In order

to address the design challenges of radically increasing size and complexity of both embed-

ded hardware and software, system level design is proposed as a holistic approach to cover

the complete picture of the entire system. Figure 1.1 illustrates the complexities of different

levels of abstraction in system design. Clearly, while there are tens of millions of transistors

in a system, the number of components in the system level is reduced to less than ten, which

mainly consist of hardware platforms and software implementations. The trade-off here is

that the higher the abstraction level is, the less complexity and accuracy the model has. Due

to the design challenges of embedded systems nowadays, “a well-known solution for dealing

with complexity is to exploit hierarchy and to move to higher levels of abstraction” [24]. Thus,

system level modeling is a promising approach at the early stages of the design.
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Figure 1.1: Level of abstraction in system design [31].

In order to shorten the time-to-market design period, fast and accurate ESL simulation is

critical in system design and validation. Basically, there are three types of computer-based

simulation: discrete event, continuous and Monte Carlo [65]. As digital systems are naturally

discrete, most of the ESL simulation approaches use discrete event semantics. Next, we

discuss different Discrete Event Simulation (DES) scheduling algorithms.
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1.1.1 Discrete Event Simulation

In order to describe hardware and software components in system level designs, System-Level

Description Languages (SLDLs) are proposed to add supports of system level modeling,

such as behavioral and structural hierarchy, concurrency, communication, synchronization,

and timing constraints [25]. Two predominant examples of SLDLs are SystemC [33] and

SpecC [29]. While SpecC is a superset of ANSI-C and widely used in academia, SystemC is

a C++ library and the de-facto language for system level design in industry. Also, SystemC

is published as an IEEE standard for system design [37]. Thus, we use SystemC as the

example of SLDL in this dissertation.
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Figure 1.2: Traditional Discrete Event Simulation (DES) scheduler for SystemC [56].

Figure 1.2 depicts a traditional Discrete Event Simulation (DES) scheduling algorithm for

SystemC. In DES, we have the following definitions of data structures and operations [26]:

1. Definition of thread queues in DES:
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• QUEUES = {READY, RUN, WAIT, WAITTIME, COMPLETE}.

• READY = {th | th is ready to run}.

• RUN = {th | th is currently running}.

• WAIT = {th | th is waiting for an event}.

• WAITTIME = {th | th is waiting for time advance}.

• COMPLETE = {th | th has completed its execution}.

2. Simulation invariants in DES:

Let THREADS be the set of all threads created in DES. Then, at all times, the following

conditions hold:

• THREADS = READY ∪ RUN ∪ WAIT ∪ WAITTIME ∪ COMPLETE.

• ∀A,B ∈ QUEUES, A 6= B : A ∩ B = ∅.

3. Operations on threads and queues:

• Run(th): Dispatch thread th and th starts execution.

• th = Pick(READY): Pick a thread th from the READY queue.

• Remove(th, WAIT): Remove the thread th from the WAIT queue.

• Insert(th, READY): Add the thread th to the READY queue.

4. Initial state at the beginning of DES:

• THREADS = {throot}.

• RUN = {throot}.

• READY = WAIT = WAITTIME = COMPLETE = ∅.

• (t, δ) = (0, 0) where t represents the timed cycle, and δ represents the delta cycle.
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In DES, the timed cycle represents the acutal time advance, and the delta cycle interprets the

zero-delay semantics in digital systems. Specifically, the delta cycle lasts for an infinitesimal

amount of time and imposes a partial order of simulation actions [33]. Also, SystemC

standard allows to notify an event immediately within the same delta cycle [37]. Thus,

the scheduling algorithm in Figure 1.2 implies three causal loops resulting from immediate

notification, delta cycle and timed cycle.

In Figure 1.2, it is clear that there is a single thread running at all times. When one thread

finishes its current evaluation phase, it yields to another thread in the READY queue. When

all threads in the READY queue complete their current delta cycle, the root thread resumes

and performs the channel update and event notification. Then, a new delta cycle begins. If

no more threads are runnable after the update and notification, the scheduler advances the

simulation time and starts a new timed cycle. The earliest timed event is processed and the

associate thread is moved from the WAITTIME queue to the READY queue. The traditional

DES terminates when both the WAITTIME and READY queues are empty.

1.1.2 Synchronous Parallel Discrete Event Simulation

In comparison to DES, a Parallel Discrete Event Simulation (PDES) [27] scheduler dispatches

multiple threads from the READY queue concurrently. Figure 1.3 shows a synchronous PDES

scheduler for SystemC.

In the synchronous PDES scheduling algorithm, as long as the READY queue is not empty

and an idle core is available, one more thread is dispatched from the READY queue. When

a thread finishes earlier than other threads in the same delta cycle, a new ready thread is

assigned to the idle core, unless no more thread is available in the READY queue. In this case,

the processing core keeps idle until the next delta cycle or any event is immediately notified.

Then, after all threads finish their current delta cycle, the last running thread performs the
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Figure 1.3: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for Sys-
temC [56].

update and notification phases, and advances the timed cycle if the READY queue is still

empty. Note that the synchronous PDES implies an absolute barrier at the end of delta

and timed cycle. All threads are blocked at the barrier until any other threads finish their

current evaluation phase.

In order to avoid race conditions among accesses to internal scheduling resources, syn-

chronous PDES introduces a mutex lock to protect the SystemC kernel. Any thread needs

to acquire the mutex before modifying the state of the kernel. For safe communication, the

channel between modules is explicitly protected with a local lock. Also, note that while any

threading model (user-level or kernel-level threads) is acceptable for the traditional DES, the

underlying operating system needs to be aware of the parallel threads in PDES [25]. Thus,

only kernel-level threads (e.g., POSIX threads) are applicable in the synchronous PDES.

In the SystemC Language Reference Manual (LRM) [37], it clearly states that “process

instances execute without interruption”. This requirement is also known as cooperative (or co-
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routine) multitasking in the SystemC execution semantics. As detailed in [26], this particular

problem of parallel simulation is specifically addressed in the SystemC LRM:

“An implementation running on a machine that provides hardware support for

concurrent processes may permit two or more processes to run concurrently, pro-

vided that the behavior appears identical to the co-routine semantics defined [...].

In other words, the implementation would be obliged to analyze any dependencies

between processes and constrain their execution to match the co-routine seman-

tics.”

We will describe the required dependency analysis for parallel SystemC simulation in Sec-

tion 1.2, which is also needed for the Out-of-Order PDES.

1.1.3 Out-of-Order Parallel Discrete Event Simulation

In order to break the implicit barriers at the delta and timed cycle boundaries in the syn-

chronous PDES, [12, 11] propose an Out-of-Order Parallel Discrete Event Simulation (OoO

PDES) scheduling algorithm. Figure 1.4 depicts the OoO PDES scheduler for SystemC.

In OoO PDES, data structures and operations are refined as follows:

1. Each thread th is assigned a localized time stamp (tth, δth).

2. Each event is assigned a notification time stamp (te, δe).

3. Time stamps are ordered in the following way:

• (t1, δ1) = (t2, δ2) iff t1 = t2, δ1 = δ2.

• (t1, δ1) < (t2, δ2) iff t1 < t2, or t1 = t2, δ1 < δ2.
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Figure 1.4: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for
SystemC.

• (t1, δ1) > (t2, δ2) iff t1 > t2, or t1 = t2, δ1 > δ2.

4. Thread queues are separated to multiple sets with different time stamps:

• QUEUES = {READY, RUN, WAIT, WAITTIME, COMPLETE}.

• READY = ∪READYt,δ, READYt,δ = {th | th is ready to run at (t, δ)}.

• RUN = ∪RUNt,δ, RUNt,δ = {th | th is running at (t, δ)}.

• WAIT = ∪WAITt,δ, WAITt,δ = {th | th is waiting for an event (ide, te, δe) since (t,

δ), where (te, δe) ≥ (t, δ)}.

• WAITTIME = ∪WAITTIMEt,δ, WAITIMEt,δ = {th | th is waiting for time advance to

(t, δ)}.

• COMPLETE = ∪COMPELETEt,δ, COMPLETEt,δ = {th | th completed its execution

at (t, δ)}.

8



5. Initial state at the beginning of OoO PDES:

• THREADS = {throot}, where (troot, δroot) = (0, 0).

• RUN = RUN0,0 = {throot}.

• READY = READY0,0 = WAIT = WAIT0,0 = WAITTIME = WAITTIME0,0 = COMPLETE

= COMPLETE0,0 = ∅.

In OoO PDES, every thread th has its own localized time stamp (tth, δth), so that the global

in-order event and simulation time updates are relaxed, allowing more threads (at different

simulation cycles) to run in parallel and ahead of time [11, 56]. This results in a higher

degree of parallelism and thus higher simulation speed.

Compared to the synchronous PDES in Figure 1.3, there is no more classic delta and timed

cycles in Figure 1.4. Each thread performs the delta and timed cycles locally. Thus, due

to the out-of-order scheduling and the eliminated central scheduling point for delta cycles,

it is rather difficult to determine a safe point in OoO PDES scheduling when primitive

channel update requests can be served. However, it is always possible to safely fall back to

synchronous PDES (SYSC SYNC PAR SIM equals true in Figure 1.4) when primitive channel

updates are requested.

In Figure 1.4, the Out-of-Order PDES scheduling is aggressive. The scheduler moves threads

from the WAIT queue to the READY queue whenever the READY and RUN queues become

empty, and any threads in WAITTIME are moved to READY as soon as possible. Also, the

scheduler dispatches one more thread for execution as long as an idle core and a ready thread

without conflicts (NoConflicts(th) is true) are available.

Algorithm 1 lists the pseudocode of conflict detection in the OoO PDES scheduler. Here,

NoConflicts(th) checks for any potential conflicts between Thread th and any other con-

current threads in RUN, READY and WAIT with an earlier or equal time. For each pair of
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Algorithm 1 Conflict Detection in OoO PDES Scheduler

1: bool NoConflicts(Thread th) {
2: for all th2 ∈ RUN ∪ READY ∪ WAIT where (th2.t, th2.δ) ≤ (th.t, th.δ) do
3: if Conflict(th, th2) then
4: return false
5: end if
6: end for
7: return true
8: }
9:

10: bool Conflict(Thread th, Thread th2) {
11: if th has data conflict with th2 then
12: return true /* check data hazards */
13: end if
14: if th2 may enter another segment before th then
15: return true /* check time hazards */
16: end if
17: if th2 may wake up another thread to run before th then
18: return true /* check event hazards */
19: end if
20: return false
21: }

concurrent threads, Conflict(th, th2) checks for any data, timing and event hazards between

Threads th and th2
1. As we are using advanced static compile-time analysis and optionally

dynamic run-time analysis (Section 1.2) to identify all the potential conflicts, these checks

can be performed in constant time as simple table lookups.

1.2 Recoding Infrastructure for SystemC (RISC)

To realize the OoO PDES approach for the SystemC language, we propose the Recoding

Infrastructure for SystemC (RISC) and describe the overall RISC Compiler and Simulator

proof-of-concept prototype (Beta Release V0.3.0 as of 2016-09-30) in [56]. Currently, the

1Note that Algorithm 1 here is revised from Algorithm 2 in [11], in order to match the SystemC semantics.
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RISC software is available as an open source package and can be downloaded freely from the

following website [55]: http://www.cecs.uci.edu/~doemer/risc.html.
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Figure 1.5: RISC Compiler and Simulator for OoO PDES of SystemC.

In contrast to the traditional SystemC simulation where a regular SystemC-agnostic C++

compiler includes the SystemC headers and links the input model directly against the Sys-

temC library, we introduce a dedicated SystemC compiler to perform semantics-compliant

SystemC simulation with maximum parallelism. As shown in Figure 1.5, our RISC compiler

acts as a frontend that processes the input SystemC model and generates an intermedi-

ate model with special instrumentation for OoO PDES. The instrumented parallel model is

then linked against our extended RISC SystemC library by the target compiler (a regular

SystemC-agnostic C++ compiler) to produce the final executable model. OoO PDES is then

performed simply by running the generated executable model.

From the user perspective, we essentially replace the regular SystemC-agnostic C++ compiler

with the SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler).

Otherwise, the overall SystemC validation flow remains the same as before. It is just faster

due to the parallel simulation.

Internally, the RISC compiler performs three major tasks, namely Segment Graph construc-

tion, conflict analysis, and source code instrumentation. The simulator implements the
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semantics-compliant Out-of-Order PDES of SystemC, and falls back to synchronous PDES

when the update methods in primitive channels are requested.

1.2.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an Abstract

Syntax Tree (AST) and then create a SystemC structural representation from the AST which

reflects the SystemC module and channel hierarchy, connectivity, and other SystemC-specific

relations, similar to the SystemC-clang representation [48, 69]. On top of this, the RISC

compiler then builds a Segment Graph (SG) [12] data structure for the model.

In DES and PDES, threads switch back and forth between the states of running (threads

in the READY and RUN queues) and waiting (threads in the WAIT and WAITTIME queues).

A series of source code statements executed by a thread between two scheduling points can

be defined as a thread segment [11]. Then, for a SystemC model, it can be converted to a

corresponding Segment Graph (SG). The SG is a directed graph that represents the code

segments executed during the simulation. The nodes in the SG are code segments and the

edges indicate the transitions from one segment to another. The code segments always start

from a SystemC scheduling primitive, e.g., wait, SC METHOD, SC THREAD, and SC CTHREAD.

Figure 1.6 shows a SystemC thread with its segments and the corresponding SG. As shown,

every segment starts with a scheduling primitive (including thread creation and context

switches, e.g., the SC THREAD in line 23 or the wait statement in line 12) and ends before

another. The read and write functions in this example invoke a wait statement inside the

function calls, so they are all blocking and start new segments (segment 1 and 3 in the

read function and segment 4 in the write function). Also, as indicated in Figure 1.6a and

1.6b, one source code statement (e.g., the while statement in line 8) may belong to several
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Figure 1.6: SystemC thread and Segment Graph (SG) [57].

segments, depending on the execution paths. Here, the implementation of c blocking channel

is simplified for demonstration purpose.

[11] presents a formal description of the Segment Graph and its construction algorithm, and

[75] lists the detailed RISC Application Programming Interface (API).

1.2.2 Conflict Analysis

The segment graph data structure serves as the foundation for segment conflict analysis.

As outlined in Algorithm 1, the OoO PDES scheduler must ensure that every ready thread
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to be dispatched has no conflicts (e.g., data hazards, timing hazards and event hazards)

with any other threads currently in the READY, RUN and WAIT queues. Here, we utilize the

RISC compiler to detect any potential conflicts between these threads with static analysis

at compile time or dynamic analysis at run time.

• Static Analysis: Static analysis relies purely on the available information in the

SystemC source code of the design model at hand. In this case, the RISC compiler

performs very conservative identification of the potential hazards in the model, as

outlined in [11]. Identifying all possible hazards is a complex analysis task that requires

the full “understanding” of the module hierarchy. Here we statically extract the module

hierarchy and analyze the individual threads.

• Dynamic Analysis: However, in most cases not all of the needed information can be

gathered statically. For instance, design parameters may be passed via the command

line to define the number of modules, certain channel characteristics, or other con-

figuration information. In such SystemC models, the instantiated modules, channels,

and ports are typically created through loops in a dynamic fashion. Thus, these exact

parameters are only available at run time, so they cannot be statically analyzed. In

these cases, dynamic analysis is needed.

In dynamic analysis, the compilation flow is extended by a preprocessing step. The

input SystemC model is fed into the RISC elaborator which produces an executable

model that only performs the SystemC elaboration phase. At the end of the elaboration

phase, the executable model automatically traverses the created module hierarchy via

the SystemC introspection API and dumps this detailed structural design information

into an instance connectivity file. This file is in turn provided as an input to the

RISC compiler, so that the dynamically created design hierarchy and specific instance

connectivity can be used for precise conflict analysis. The instance connectivity data
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file includes the actual module hierarchy, the specific port mapping, and the actual

target variable mapping of references.

The dynamic analysis takes run-time information into account and augments the classic

static analysis. The combination of static and dynamic analysis in the RISC compiler is

called hybrid analysis [77].

1.2.3 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [77]), the RISC compiler

generates several conflict tables that describe all possible conflicts between threads in any

two segments. Using this conservative information, the simulator can then at run-time

quickly determine by a simple table lookup whether or not it is safe to dispatch any given

thread in parallel or ahead of time.

To pass information from the compiler to the simulator, we use automatic model instrumen-

tation. That is, the intermediate model generated by the compiler contains instrumented

(automatically generated) source code which the simulator can then rely on. At the same

time, the RISC compiler also instruments user-defined SystemC channels with automatic pro-

tection against race conditions among communicating threads, as discussed in Section 1.1.2.

Note that the source code instrumentation is performed automatically by the RISC compiler

and no user-interaction is necessary.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identified by a creator

instance ID and their current code location (segment ID). Both IDs are passed into

the simulator kernel as additional arguments to scheduling primitives, including wait

and thread creation.
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2. Data and event conflict tables: Segment concurrency hazards due to potential data

conflicts and event conflicts are provided to the simulator as two-dimensional tables

indexed by a pair of segment ID and instance ID.

3. Current and next time advance tables: Timing hazards between concurrent

threads are passed to the RISC simulator as one-dimensional tables indexed by segment

ID.

4. User-defined channel protection: SystemC allows users to define new channels

for customized inter-thread communication. To ensure such communication is also

safe in OoO PDES, the RISC compiler automatically protects user-defined channels

(e.g., those derived from sc channel and sc prim channel) by acquiring a channel

lock (mutex) at the entry of the channel methods and releasing the lock at the exit.

Thus, it is guaranteed that the execution of channel methods is mutually execlusive,

and avoids the potential race conditions when communicating threads exchange data.

1.2.4 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passes the generated

intermediate model to the underlying regular C++ compiler. That target compiler then

generates the final simulation executable by linking the instrumented code against the RISC

extended SystemC library.

1.2.5 Simulator

Same as the Accellera proof-of-concept implementation of SystemC DES [86], the RISC sim-

ulator is not an explicit tool, but a run-time library [52] that the generated executable model
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is linked against. Thus, the Out-of-Order PDES is performed by executing the generated

model from the target compiler.

By default, the RISC simulator follows the Out-of-Order PDES scheduling algorithm as

outlined in Section 1.1.3. However, as soon as SystemC primitive channels are used with

requests to the update methods, the simulator falls back to the synchronous PDES execution.

Thus, as discussed in Section 1.1.3, such models will execute in safe synchronous mode.

As OoO PDES allows a higher number of threads running in parallel or even ahead of

time, run-time scheduling optimization becomes critical for maximizing the simulation per-

formance. Thus, we focus on the thread-to-core mapping and scheduling in this dissertation,

and present details of various optimization algorithms in the following chapters.

1.3 Thread-to-Core Mapping

As discussed in Section 1.1.2 and 1.1.3, there are multiple threads running concurrently in

the synchronous PDES and Out-of-Order PDES. A key challenge here is to determine the

thread-to-core mapping for extracting maximum simulation performance [46, 17, 92]. Due

to the shared resource contention on processing units and memory hierarchy, the simulation

speed can be slowed down by more than 50% [92], and the scalable performance is not

always readily available on multi-core and many-core hosts [18]. Also, the heterogeneity of

the memory hierarchy may lead to varying communication latency, depending on whether

the communication happens through local or remote caches, or even main memory [21].

Due to the complexity of the applications’ behavior, the underlying resource topologies

and the cache coherency protocols, determining the thread-to-core mapping that ensures

the lowest contention and performance degradation [87, 81] has exponential complexity [19]

and the problem of optimal thread-to-core mapping is NP-complete [44]. As an inefficient
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thread-to-core mapping also results in inefficent resource usage on multi-core and many-

core hosts [45, 49], it is critical to efficiently optimize thread mapping in synchronous and

Out-of-Order PDES.

In general, there are two categories of thread mapping methods, i.e., static and dynamic. The

static methods usually leverage memory traces from binary instrumentation tools [71, 3, 23],

which characterize the communication and computation loads for an application through

profiling. Then, a static thread mapping is produced for the application to improve its

run-time performance. Static mapping methods [9, 71, 3, 23] are simple to apply, and do

not require to modify the source code of applications or support libraries. However, static

thread mappings are not responsive to the run-time behavior of mapped workloads [54]. In

comparison, dynamic thread mapping detects communication and tracks correlation between

threads at run time, and performs online thread migration to cope with workload phase

changes [21, 54]. It usually monitors page table accesses or page faults [22, 21, 88] to

characterize the communication patterns, and then formulates the mapping problem as graph

matching [22, 21] or 0-1 Integer Linear Programming (ILP) [46, 54]. In most cases, dynamic

mapping performs better than static mapping at run time, but needs to be implemented at

the OS kernel level [21, 22, 88].

In comparison to the general applications where any number of concurrent threads may

arrive, execute and terminate in an unpredictable way [19], all the ready-to-run threads in

SystemC PDES are available at the beginning of the delta cycle. Also, the behavioral and

structural hierarchy of the ESL design model is clearly specified in SLDL (e.g., SystemC

or SpecC) source code. Thus, the execution flow of PDES can be analyzed statically from

the source code, and the same execution pattern repeats periodically2. In addition, both

SLDL (SystemC and SpecC) implement their simulation libraries in the user level [86, 7] for

2In SystemC it is a common coding idiom to include an infinite loop within a SC THREAD or a SC CTHREAD,
and a SC METHOD executes its associate function from beginning to end whenever it is triggered [37]. SpecC
has similar characteristics [29].
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flexibility and portability, so dynamic mapping methods at the kernel level are not a good

fit here. On the other hand, static methods using memory traces or binary analysis usually

incur a high overhead [21]. Therefore, we propose a hybrid approach in this dissertation.
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Figure 1.7: Problem decription of thread-to-core mapping in SystemC PDES.

Figure 1.7 depicts the problem of thread-to-core mapping in the context of SystemC PDES,

together with our proposed approach. Here, we define our problem as follows:

With full source code of an ESL design model and no a priori knowledge of the

underlying host architecture, optimize the thread-to-core mapping in SystemC

Parallel Discrete Event Simulation. The goal here is to mitigate resource con-

tention and communication latency and thus improve simulation performance.

In order to solve this problem, we propose to utilize our RISC compiler outlined in Section 1.2,

and generate a communication pattern (presented in Section 4.4) to characterize the workload
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and communication in a design model. Then, as for the host architecture, we identify it with

a concept of core distance (defined in Section 3.2) through profiling. Next, with two graphs

(i.e., Communication Pattern and Core Distance Graph in Figure 1.7) available, a graph

theory solver is used to generate an optimized thread mapping at run time. Compared

to the previous thread mapping methods, our proposal is entirely implemented at the user

level, and specifically designed for SystemC PDES. It guarantees sufficient accuracy and

manageable overhead.

1.4 Related Work

Due to the inexpensive availability of parallel computing capabilities on multi-core and many-

core hosts, Parallel Discrete Event Simulation (PDES) has become increasingly popular [27,

8, 67] during the past few decades. Despite all the PDES approaches follow the Discrete

Event Simulation (DES) semantics and dispatch multiple threads concurrently, they differ in

three major aspects: synchronization paradigms, abstraction levels, and host architectures.

Currently, there exist two major synchronization paradigms in PDES approaches, namely

conservative and optimistic. Conservative PDES typically requires dependency analysis,

and only dispatches threads that are safe to run concurrently. Either the conservative

synchronous PDES scheduler [78] ensures in-order execution where the temporal barriers

prevents effective parallelism, or the asynchronous approach [11] requires advanced compile-

time conflict analysis (Section 1.2.2) to break the implicit barriers at the boundaries of delta

and timed cycles. In contrast, optimistic PDES [43] assumes that threads are always safe to

run and performs rollbacks if errors are detected.

Recalling Figure 1.1 which depicts the abstraction levels in system design, various PDES ap-

proaches also target different levels of abstraction. [34] compares different PDES approaches,
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including synchronous, asynchronous and cycle based simulation, at the Register Transfer

Level (RTL). In order to speed up simulation, Transaction Level Modeling (TLM) [6] elevates

the abstraction of communication and trade-offs timing accuracy against simulation speed.

Also, source-level [84] and host-compiled [30] simulation abstract computation on the target

platform to boost simulation speed. In addition, some approaches target mixed-abstraction

levels (e.g., RTL and TLM in [79]).

Other PDES approaches are customized for specific host architectures. While most PDES

approaches [78, 11, 63] target the common Symmetric Multiprocessing (SMP) machines, [80]

emulates SystemC descriptions on FPGA and [66] partitions computation model in SystemC

into concurrent threads on GPGPU. In [79], authors parallelize SystemC simulation across

CPUs and GPUs.

As various PDES approaches allow multiple threads running concurrently on parallel process-

ing units, it is critical to schedule these threads efficiently. In general, thread-to-core mapping

is optimized for mitigating resource contention and communication latency in parallel exe-

cution. Two distinguished categories of mapping methods exist, namely static and dynamic.

The static mapping methods [71, 3, 23] usualy use memory traces or binary analysis to char-

acterize the computation and communication behaviors of an application, and generate a

static thread mapping at compile time. In contrast, dynamic methods [54, 22, 21, 88, 46] pro-

file applications at run time, and perform thread migration in response to the dynamic work-

load variation. [21] monitors accesses to page table and detects shared pages between threads,

using this information as the communication pattern to dynamically migrate threads. In [19],

authors propose an approach to first characterize applications offline, and then dynamically

adjust the thread mapping at run time, based on the static application characteristics. [13]

presents a run-time strategy that incorporates the user behavior information. In addition,

thread mapping and data mapping are closely related. [22, 9, 46, 36] exploits thread mapping

and data mapping simultaneously.
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Different mapping methods are also customized for different host architectures. In [54] and

[5], authors propose dynamic thread mapping strategies for heterogeneous multiprocessor

systems. [51, 50] target General-Purpose Graphics Processing Units (GPGPU), and [88, 82]

study Distributed Shared Memory (DSM) systems. Also, thread mapping for Networks-on-

Chip (NoC) is a hot research topic [46, 13, 64, 9] in recent years. In [60, 15], authors take

the characteristics of Non-Uniform Memory Access (NUMA) systems into consideration, and

reduce the costly remote memory accesses via thread mapping. [35, 36] address the problem

of thread mapping on Chip Multiprocessors (CMP).

In comparison to the previous mapping methods for general applications, we propose a

PDES-specific approach in this dissertation. As outlined in Section 1.1, a number of threads

are ready to run at the beginning of the delta cycle, and the behavioral and hierarchical

structure of the design model is well presented in SLDL. Thus, we propose to first use our

RISC compiler (Section 1.2) to analyze the communication patttern of the design model,

and then optimize thread mapping at run time. Also, our approach requires no a priori

knowledge of the underlying platform. It automatically profiles the host architecture and

incorporates this information to the thread mapping optimization.

1.5 Goals and Overview

As outlined in Section 1.3, a good thread mapping for multiprocessor architectures (e.g.,

DSM, NUMA, and NoC) usually has the following requirements [88]:

1. Load Balancing: Load is uniformly distributed across different nodes (e.g., proces-

sors), and nodes’ computational capacities match threads’ computational needs.

2. Communication Minimization: The communication cost between threads located

on distinct nodes are minimized.
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Here, Load Balancing aims at mitigating the contention on shared resources, specifically

the processing elements, on the host platform. In order to efficiently utilize the available

computing units, none of them should be overloaded or underloaded. On the other hand,

Communication Minimization targets the costly communication latency between sepa-

rate nodes. To take advantage of the faster on-chip communication, it is necessary to map

threads that share a high communication volume to processing cores on the same node. Both

Load Balancing and Communication Minimization need to be taken into consideration

in thread-to-core mapping.
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Figure 1.8: Decomposition of execution time of ESL simulation.

When running an ESL simulation on Linux, its execution time consists of two parts, namely

system time and user time, when the simulation runs in kernel mode and user mode, re-

spectively. In particular, user time can be further decomposed into computation time and

communication time, according to the purpose of the execution. Figure 1.8 illustrates the

typical decomposition of the execution time. Here, in order to optimize thread-to-core map-

ping for parallel ESL simulation, we would like to target different parts of the complete

execution time.

First, the system time refers to the amount of time when the application executes in the

kernel mode. It is mainly contributed by thread context switching and system I/O, and

usually much shorter than user time. Note that it is difficult to accelerate the system

time purely by user-level thread mapping. The most effective approach is to optimize the
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underlying thread library. Our previous work [53] proposes a hybrid thread library to reduce

the overhead of thread creation/deletion and context switching.

Next, the computation time covers the amount of time on data crunching, mainly in the

Arithmetic-Logic Unit (ALU) and Floating-Point Unit (FPU). When the total workload is

determined by the specification and compiler, the total computation time varies significantly,

depending on the dispatch order and thread-to-processor partitioning. Load Balancing

improves computation time effectively.

Last, the communication time is composed of the communication latency between threads

and the memory access. Notably, the memory hierarchy presents different access speeds

on different levels, and the on-chip communication is always faster than the inter-chip one.

Thus, Communication Minimization is a promising approach to shorten communication

time.

Section 1.3 defines our problem of thread mapping. More specifically, our goals include:

1. Reducing the Computation Time in SystemC PDES: For those computation-

intensive applications and examples, we would like to optimize load balancing in PDES

through thread mapping, so as to reduce the computation time effectively.

2. Mitigating the Communication Time in SystemC PDES: For those communication-

intensive examples, it is critical to mitigate the costly on-chip and inter-chip commu-

nication, and map threads that share a high amount of communication to cores on the

same chip.

3. Decreasing the Total User Time in SystemC PDES: Finally, we target the

general-purpose application, in which both computation and communication are sig-

nificant. Here, we try to minimize the complete user time in SystemC PDES, by taking

both Load Balancing and Communication Minimization into consideration.
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In the following chapters, we present our approach to realize these goals. Specifically, Goal

1 is addressed in Chapter 2, and Goal 2 is achieved in Chapter 3 and 4. In Chapter 5, we

propose an integrated algorithm to meet Goal 3.

The rest of the dissertation is organized as follows:

In Chapter 2, we propose a dynamic load-profiling and segment-aware scheduling algorithm

with optimized thread dispatching to balance workloads on parallel processing units. Based

on a compile-time generated Segment Graph (SG), our scheduler [57] can accurately predict

the run time of the thread segments ahread and thus make better dispatching decisions.

In the evaluation, our segment-aware scheduler consistently shows a significant performance

gain compared to the previous scheduling policies.

In Chapter 3, we first define the concept of core distance for multi-core and many-core

architectures, and observe that for many-core architectures using directory-based cache co-

herence protocols, the core-to-core communication latency depends not only on the physical

placement on the chip, but also on the location of the distributed cache tag directory. Us-

ing a ping-pong memory benchmark, we quantify the core distance of a ring-network plat-

form, and propose an algorithm [58] to optimize the thread-to-core mapping in order to

minimize on-chip communication overhead. In our experiments, our algorithm speeds up

communication-intensive benchmarks by more than 25% on average over the Linux default

mapping strategy.

Based on the core distance concept from Chapter 3, we explore thread mapping for the

general multiprocessor architectures in Chapter 4. By analyzing the communication pattern

and profiling the processor architecture, our proposed framework formulates the problem of

thread mapping as graph partitioning and automatically generates an optimized thread-to-

core mapping for the target architecture. Our framework is not customized for a specific
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architecture, and reduces the costly inter-chip communication. In the comprehensive evalu-

ation, our approach shows a performance gain of up to 28% with negligible overhead.

In Chapter 5, we integrate our thread mapping techniques in Chapter 2 and 4 to reduce the

total user time for general design models, in which both computation and communication

are intensive. The experimental results show that our integration performs better than both

techniques from Chapter 2 and 4 for a real-world application, and achieves an additional

speedup of 10% compared to the previous two methods.

Finally, Chapter 6 concludes this dissertation with a summary of our contributions and the

future work.
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Chapter 2

Computation-Aware Thread Mapping

In this chapter, we first propose a dynamic load-profiling and segment-aware scheduling

algorithm with optimized thread dispatching to reduce the computation time in SystemC

PDES. Based on a static segment graph from our RISC compiler (Section 1.2), our segment-

aware scheduler [57] accurately predicts the run time of the thread segments ahead, and

makes better dispatching decisions for load balancing.

2.1 Introduction

Discrete Event Simulation (DES) has been in use for decades to validate the functionality

of Electronic System Level (ESL) designs. In order to improve the performance of DES,

Parallel Discrete Event Simulation (PDES) [27] was proposed to run threads in parallel.

With the popularity of multi-core hosts, parallel computing platforms are readily available

and provide great potential to achieve better performance.

Currently, the SystemC [37] System-Level Description Language (SLDL) is used for system

design as an IEEE standard. However, the reference simulation library of SystemC still relies
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on DES, running a single thread at any time, and cannot utilize the computing capabilities of

parallel platforms. In recent years, a lot of parallel SystemC simulation approaches [78, 34,

79, 63] have been proposed, which speed up simulation significantly due to parallel execution.

However, very few of these approaches [14] address the load balancing problem in their

parallel schedulers. In this chapter, we propose a segment-aware multi-core thread dispatch

algorithm [57], which can be applied to all work-sharing PDES (SystemC, SpecC, etc.)

schedulers. By parsing a design model to a graph of thread segments (a portion of source-

code statements between two scheduling points) using static compiler analysis and profiling

segment execution at runtime, our approach automatically optimizes the thread dispatch

order and consistently achieves a significant speedup over previous thread dispatchers.

The key contributions of this chapter are the following:

1. We identify Longest Job First (LJF) as a better than default thread dispatch policy,

when thread run time prediction is available.

2. We propose a novel technique to accurately predict thread run times based on a static

Segment Graph (SG) and the specific segments threads will execute.

3. We evaluate our proposed segment-aware approach in comprehensive experiments and

show that it consistently improves performance for both synthetic and real-world ex-

amples.

The rest of the chapter is organized as follows: Section 2.2 reviews background on par-

allel SystemC simulation and related work on load-balancing optimizations in PDES. In

Section 2.3, we introduce our parallel SystemC implementation, then discuss multi-core

scheduling, and propose our optimization algorithm in Section 2.4. In Section 2.5, we eval-

uate our segment-aware algorithm with both synthetic and real-world examples. Section 2.6

concludes the chapter.
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2.2 Background and Related Work

Parallel SystemC simulation has been a hot research topic in the past few years. In general,

these parallel approaches differ in the simulation strategies they apply, the abstraction levels

they target, and the host architectures they use. [78] proposes a conservative synchronous

parallel simulation approach in which a master thread performs the update and notification

phases and a pool of worker threads execute parallel SystemC processes. [34] compares

different parallel SystemC approaches, e.g., synchronous PDES, asynchronous PDES, and

cycle based simulation, at the Register Transfer Level (RTL). Both [78] and [34] target

shared-memory multi-core host architectures. In order to further boost the simulation speed,

[79] partitions mixed-abstraction RTL and Transaction Level Models (TLM) into processes

suitable for GPU and CPU execution. In [63], the author proposes an approach that explicitly

targets loosely timed systems, and runs parallel processes at different simulation cycles. In

comparison, [11] proposes a conservative asynchronous PDES approach that also perserves

cycle accuracy. The proposed approaches in [63] and [11] run on multi-core hosts.

In this chapter, we implement a synchronous PDES approach similar to [78], and propose

a segment-aware thread dispatcher inside the PDES scheduler. Our proposed dispatcher is

orthogonal to the above approaches, and can be applied to any work-sharing PDES schedulers

for shared-memory multi-core machines.

Compared with the many parallel SystemC simulation approaches, load-balancing optimiza-

tions on thread dispatching in the context of PDES have gained little attention. [73] presents

a dynamic load migration algorithm for reducing the total number of rollbacks in an opti-

mistic PDES environment. [14] proposes a novel parallel SystemC simulation approach with

hierarchical multithreading, and optimizes load balancing by using workload stealing. In

[91], authors improve dynamic load balancing of PDES by using the proposed Random,

Communication-based and Load-based (RCL) load migration policies. [38] evaluates dif-
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ferent process partition strategies (user defined, hash-based, round-robin, etc.) to improve

load balancing of parallel simulation. However, in the previous work, the model is divided

into distributed logical OS processes and they are allocated to different processors. To avoid

workload imbalance on different processors, all the previous work focuses on algorithms to

transfer workload among different processes, which is different from ours for work-sharing

simulators. To the best of our knowledge, this chapter proposes the first scheduler for work-

sharing SystemC PDES with thread dispatch order optimized based on the static analysis

of the model at hand.

2.3 Parallel SystemC Simulation

The SystemC reference simulator is based on DES. As outlined in Section 1.1.1, a single

thread is running at all times in the traditional DES scheduler. When all runnable threads

in the READY queue finish their current delta cycle, the root thread resumes and performs

the update and notification phases. Then the simulation proceeds to the next delta cycle.

If no more threads are runnable after the update and notification, the current time cycle

finishes. The simulator advances the time and processes the earliest timed event from the

WAITTIME queue. When the READY and WAITTIME queues are both empty, the simulation

ends.

In contrast to DES, a PDES scheduler (Section 1.1.2) dispatches multiple runnable threads

concurrently onto multiple available processor cores. In the evaluation phase of our parallel

implementation, one more thread (SC METHOD, SC THREAD or SC CTHREAD) is dispatched from

the READY queue and starts its execution, as long as an idle processor core is available.

When all threads finish their evaluation phase, the last running thread performs the update

and notification phases and advances the time if the READY queue is still empty.
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In order to avoid race conditions among accesses to internal shared states, we protect the

SystemC kernel with a mutex lock, as discussed in Section 1.1.2. Whenever a thread needs to

modify the state of the kernel, it first acquires the mutex before entering the critical section.

Similar to [78] and the synchronous approach in [34], our parallel SystemC implementation

here only executes threads from the same delta cycle in parallel and has a central READY

queue. For safe communication, our approach also automatically protects every channel with

a local lock [26] and fully supports the standard SystemC semantics, including immediate

notification. Differing from [78], our parallel kernel is symmetric and every thread can

perform the scheduling functions. Thus, our implementation does not need a special root

thread to perform the update and notification phases, which eliminates the frequent context

switches from worker threads to the root thread.

Also, a semantics-compliant SystemC implementation is “obliged to analyze any dependen-

cies between processes and constrain their execution to match the co-routine semantics” [37].

Here, we rely on the dedicated RISC compiler (Section 1.2) to identify potential data hazards

inside design models in order to avoid any race conditions on shared variables. As outlined in

Section 1.2, our SystemC compiler [56] performs three major tasks, namely conflict analysis,

segment-graph construction, and source-code instrumentation. For this chapter, we extend

and exploit the segment-graph analysis and the corresponding code instrumentation to accu-

rately predict the next thread run times, so that the dispatcher in the scheduler can quickly

make better decisions. We present more details of our SystemC compiler in Section 1.2,

which are also recapped in Section 2.4.3.

2.4 Multi-Core Scheduling

In each delta cycle of PDES, a number of threads are available in the READY queue, as

determined by the PDES scheduler. However, these threads typically have a diverse run
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time in the evaluation phase. We note that the order of dispatching these threads on a

multi-core host has a significant influence on the total execution time. As an illustrative

example, Figure 2.1 compares the execution time of two classic dispatch policies, namely

Shortest Job First (SJF) and Longest Job First (LJF), on a four-core machine. In the order

determined by their (predicted) run time, threads are assigned to the available CPU cores.

When employing LJF (Figure 2.1b), the current evaluation phase finishes much earlier than

when using SJF (Figure 2.1a).
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(b) Longest Job First (LJF).

Figure 2.1: Two multi-core thread dispatch policies.

In general, multi-core scheduling is a classic load balancing problem in algorithm design,

which decides the thread dispatch order and is orthogonal to the parallel DES approach.

Following this, we propose a segment-aware LJF-based thread dispatch optimization to im-

prove the performance of parallel SystemC simulation for the case that the number of parallel

threads in the model is greater than the number of cores on the host. Note that our key

contribution here is not LJF itself, but the accurate prediction of thread run times that LJF

depends on.
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2.4.1 Classic LJF Thread Dispatch Policy

Without loss of generality, we will assume Linux as the underlying OS on which the parallel

SystemC simulator is based. For Linux, the default scheduling policy since version 2.6.23 is

Completely Fair Scheduling (CFS). Even though CFS maintains fairness of execution time

among threads, it always picks first the thread which previously took the least processor

time. Thus, it favors interactive processes over batch processes (e.g., PDES simulation).

CFS is similar to the SJF policy, except in Linux each core has a separate READY queue. If

Linux detects an unbalanced load on different cores, thread migration is used for balancing.

The general multi-core scheduling problem is proven to be NP-complete in the literature

[68, 74]. Thus, in order to efficiently generate an optimized thread dispatch policy for

parallel SystemC simulation, the well-established LJF policy should perform better than the

default Linux dispatch policy, as illustrated in Figure 2.1. In each evaluation phase of the

parallel simulation, our kernel measures the run time of each thread by reading the CPU

cycle count registers, which has minimal overhead, and uses this profiling information as

the run time prediction for the next evaluation phase1. Then, the dispatcher sorts threads

in the READY queue in decreasing order based on their previous execution time. Thus, the

threads estimated to run the longest will run first on the available cores. Shorter threads

are dispatched then whenever a core becomes available. With m denoting the number of

available processor cores, this greedy scheduling algorithm has been proven to introduce a

slowdown of less than (4

3
− 1

3m
) compared with the optimal multi-core scheduling [32].

The classic LJF thread dispatch policy works well when threads show identical run time

every time they are issued. However, this typically is not the case in SystemC simulation.

1Even though the input data to the operations in a thread may vary in different runs, the thread run
time likely stays similar. Also, the LJF dispatcher only needs to know the relative order of any two threads’
workload, e.g. thread 1 runs longer than thread 2, rather than the absolute values. Therefore, we estimate
the next execution time of a thread to be the same as the previous one. Note that it is possible to apply
other methods to predict thread run times, but this is not the focus of this chapter.
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A SystemC thread performs an overall job, but such job usually consists of very different

tasks. Thus, the actual run time of a thread in the simulation depends on its specific next

task ahead (e.g. reading input data, processing frames, or sending output data). Taking this

observation into account, we distinguish between the segments of code that a given thread

executes, and propose our segment-aware dispatch algorithm.

2.4.2 Segment Graph (SG)

As discussed in Section 1.2.1, threads switch back and forth between the states of running

(threads in the READY and RUN queues) and waiting (threads in the WAIT and WAITTIME

queues) in PDES. A series of source code statements executed by a thread between two

scheduling points can be defined as a thread segment [11]. Then, for a SystemC model,

it can be converted to a corresponding Segment Graph (SG). The SG is a directed graph

that represents the code segments executed during the simulation. The nodes in the SG

are code segments and the edges indicate the transitions from one segment to another. The

code segments always start from a SystemC scheduling primitive, e.g., wait, SC METHOD,

SC THREAD, SC CTHREAD, etc.. Thus, our RISC compiler can instrument these scheduling

primitives with segment IDs in the source code. Then, when a thread resumes execution

from the waiting state, the dispatcher can identify the current segment (before actually

running it).

In general, every thread is composed of one or multiple segments. The adjacent segments per-

form different functions (e.g., in Figure 1.6a reading input data in segment 0 and processing

it in segment 1) and usually run for a different amount of execution time.
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2.4.3 Dedicated SystemC Compiler

In order to identify the segment structure of a SystemC model and analyze the interdepen-

dencies between threads, we adopted the RISC compiler for our parallel SystemC simulation

framework. The RISC compiler first parses an input SystemC model into ROSE [70] Abstract

Syntax Tree (AST) and constructs a Segment Graph (SG) on top of the AST, following the

Algorithm 3 in [11]. Here, we treat the SC METHOD, SC THREAD and SC CTHREAD in the Sys-

temC model as thread creation points (STMNT PAR in Algorithm 3 [11]). Then, according

to the SG, the compiler will append the segment ID as an extra argument to the AST nodes

of the segment boundary primitives (e.g., wait, SC METHOD, SC THREAD, and SC CTHREAD).

For those function calls that start new segments (e.g., the read function in Figure 1.6a),

our compiler modifies the function prototype of the called function, adding an integer vari-

able of the segment ID as a new argument. Next, in the function definition, the segment

boundary primitives will use the new argument to identify the next segment. Also, based

on the SG, the compiler automatically performs static conflict analysis between segments

and passes conflict tables to the parallel simulator. In addition, to ensure safe communica-

tion, the compiler protects user defined channels (e.g., those derived from sc channel and

sc prim channel) by acquiring a local channel lock at the entry of their public functions and

releasing the lock at the exit. The details of static conflict analysis and channel protection

can be found in Section 1.2.

2.4.4 Segment-Aware Dispatch Algorithm

Figure 2.2 depicts three typical segment structures inside a thread. In Figure 2.2a, the thread

contains a single segment in a loop2. For different iterations, the workload of the segment is

similar and typically varies only little due to the input data. Here, the base load in the figure

2The loop structure is default for SC METHOD and a common coding idiom for SC THREAD and SC CTHREAD

[37].
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denotes the average amount of execution time of the segment. Figure 2.2b shows a thread

that is composed of three consecutive segments in a loop, e.g., input, processing, and output.

The three segments have different workload and their execution time varies significantly.

Compared with the cyclic Figure 2.2a and 2.2b, the segment structure in Figure 2.2c is

more general. Threads may have different execution paths in different situations. While

the transition between their segments may be unpredictable, we find that a given segment

typically carries a similar workload every time it runs.
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(a) A single segment in a cyclic thread.
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(b) Consecutive segments in a cycle.
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(c) Multiple segments in a general thread.

Figure 2.2: Different segment structures in a thread.

The classic LJF thread dispatch policy with load prediction based on the previous run

only performs well for the simple segment structure in Figure 2.2a. However, for segment

structures 2.2b and 2.2c, LJF will rely on wrong predictions and thus perform badly. For
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(b) Longest Job First (LJF) thread dispatch order.
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(c) Segment-aware thread dispatch order.
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(d) Segment graphs of the six threads.

Figure 2.3: Thread execution timelines determined by different thread dispatch policies.

example, if a thread has the segment structure of Figure 2.2b, LJF will use the run time

of segment 0 to predict the execution time of segment 1. Since the classic LJF policy is

unaware of the segment structure, it treats the segments the same. However, the workload

of the segments is unrelated and varies. Thus, the predicted run time for the next thread

segment is inaccurate and LJF performs poorly.

Figure 2.3a, 2.3b and 2.3c compare the thread execution timelines determined by different

dispatch policies. Here Ti.Sj denotes Segment j in Thread i. Figure 2.3d depicts the

segment structures in all threads. The numbers next to the nodes in Figure 2.3d are the
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workloads of the segments. Here, we assume that the prediction in Cycle δ is precise in all

three cases, and the workload of a segment stays the same every time it runs. As shown,

whereas SJF performs poorly in all four cycles, LJF only performs well in Cycle δ and δ +2.

The performance degrades in Cycle δ + 1 and δ + 3 due to the wrong prediction based on

previous segments.
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(b) Source-code instrumentation of read and write func-
tions.

Figure 2.4: SystemC source-code instrumentation.

In order to accurately follow the segment structure, we utilize our dedicated SystemC com-

piler (Section 1.2) to generate the SG of the model and instrument the segment boundary

primitives with a segment ID as an extra argument. Figure 2.4 shows the source code instru-

mentation of the SystemC thread in Figure 1.6. Here, for example, line 12 in Figure 1.6a is

transformed to wait(1, SC MS, 2), where 2 is the segment ID. Then the scheduler is aware

of the current segment of the runnable threads and can accurately predict their execution

time based on the profiling information for the given segment.

Algorithm 2 lists the pseudocode of our segment-aware scheduling algorithm. The calling

thread first reads the CPU cycle count register and records the run time of the current

segment. Then, the segment ID of the current thread is updated to the next one. Next,

while any threads exist in the READY queue, our scheduler will dispatch them in order
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to any available cores, and resume their thread execution. If no core is available but the

READY queue has remaining threads, the current thread suspends itself. As the sequential

scheduler, when the READY queue becomes empty, our scheduler performs the update and

notification to start a new delta or timed cycle. Before the beginning of the new cycle, the

dispatcher sorts threads in the READY queue in descending order of their previous run time

in the same segment. For the very first evaluation phase of a segment, the algorithm can use

either static compiler analysis, user input, or random values as prediction. Then, in later

evaluation phases, the dispatcher predicts the thread execution time using the profiling time

of the same segment, instead of the previous run time of the same thread in the classic LJF

dispatcher.

Figure 2.5 depicts the software hierarchy of our parallel SystemC simulation framework with

the segment-aware scheduler and dispatcher. Note that the thread dispatcher is implemented

inside the PDES scheduler of the SystemC simulation library (user level), and we do not

modify the kernel-level OS scheduler. Compared with the case that the regular parallel Sys-

temC simulator dispatches all runnable threads and lets the Linux OS scheduler determine

the thread execution, our segment-aware dispatcher only dispatches a number of threads

equal to the number of available cores, and fixes their core affinity. Thus, our dispatcher is

in full control and the Linux OS scheduler will not modify the thread execution order in our

parallel simulation.

Using the segment-aware prediction, our scheduling algorithm can generate an optimized

thread dispatch order3. Figure 2.3c shows that this is much better than treating all segments

the same. Since the prediction is based on the correct segment (and we assume that the

dispatcher already collects the profiling information of all segments), our segment-aware

dispatcher achieves the best of the three thread dispatch policies in all four displayed cycles.

3In the case of a single segment per thread, as in Figure 2.2a, the segment-aware approach falls back to
the classic LJF.
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Algorithm 2 Segment-Aware Scheduling Algorithm

Input:
Current thread thcurr

Next segment SegIDnext

1: thcurr.Tend ← CurrentCycles()
2: RunTime[thcurr.SegID] ← thcurr.Tend − thcurr.Tstart

3: thcurr.SegID ← SegIDnext

4: while true do
5: while READY 6= ∅ do
6: if ∃c ∈ Cores where c is idle then
7: thnext ← pop(READY)
8: thnext.Tstart ← CurrentCycles()
9: dispatch(thnext, c)

10: else
11: suspend(thcurr)
12: end if
13: end while
14: Delta cycle δ ← δ + 1
15: process any requested updates in primitive channels
16: process any delta notifications
17: if READY = ∅ then
18: advance simulation time
19: process any timed notifications
20: if READY = ∅ then
21: terminate the simulation
22: end if
23: end if
24: sort threads ∀th ∈ READY in decreasing order of RunTime[th.SegID]
25: end while

Since the prediction is based on the correct segment, our segment-aware dispatcher will

achieve better performance than the classic LJF.

Note that the starvation problem for short threads cannot happen in our segment-aware

scheduling algorithm for PDES, since no other threads will be added to the READY queue

in between a delta cycle, unless an immediate notification occurs. However in the Accellera

sequential simulation library and our parallel implementation, even the immediate notified

threads will be made runnable only after all current threads in the READY queue are dis-

patched.
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Figure 2.5: Software hierarchy of our parallel SystemC simulator implementation.

2.5 Experimental Evaluation

We now evaluate our segment-aware optimization on parallel SystemC simulation with syn-

thetic benchmarks and real-world examples to demonstrate the performance gain. Table 2.1

lists the hardware specifications of the two multi-core workstations we used in our experi-

ments.

Table 2.1: Workstations used for experiments.

Host 8-Core 32-Core

Processor
Intel Xeon Intel Xeon
E3-1240 E5-2680

CPU frequency 3.4 GHz 2.7 GHz
Physical CPUs 1 2
Cores/CPU 4 8
Hyperthreads/core 2 2
Total HW threads 8 32
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Figure 2.6: Synthetic SystemC benchmark models.

2.5.1 Task Graph Benchmarks

Task Graphs For Free (TGFF) [20] is a popular tool to generate standardized random bench-

marks for scheduling and allocation research. For our evaluation, we extended TGFF to

output actual SystemC models of the generated task graphs. In particular, every task in

the task graph is converted to an SC MODULE which initiates an SC THREAD with a specific

amount of workload. Here, SC THREAD is used as a test case, but our approach is applicable

to SC METHOD and SC CTHREAD as well. Between the tasks, the SC MODULEs use sc fifo chan-

nels to communicate and synchronize. Figure 2.6 shows the block diagram of a generated

SystemC model and the code of a task (a block in Figure 2.6a). Next, we evaluate the three

categories of thread segment structures introduced in Figure 2.2 separately.

2.5.1.1 Single-Segment Threads

For the first experiment, we use the extended TGFF to generate SystemC models where

each thread has a single segment like Figure 2.2a with a base amount of workload. Each

segment performs data crunching in a for loop like lines 13 and 14 in Figure 2.6b, and the
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workload is determined by the for loop iterations. The base workloads of different segments

are generated by TGFF as attributes, randomly distributed in a wide range. Then, in each

while loop iteration the workload of a segment is adjusted by varying the base value with

a random factor, to simulate the variation of execution time due to data dependency. To

ensure fair comparison between different dispatchers, each thread defines its own reentrant

random number generator (rand r()) to generate the same sequence of random numbers in

different simulation runs.

In our experiments, we set the maximum variation of the workload in different iterations to

be 0, 20%, 40%, 60%, and 80%. A variation of 0 means the workload of the same segment

in different iterations stays the same, a maximum variation of 20% means that the workload

in any iteration is within the range of 80% to 120% of the base of the segment, and so on

and so forth. In addition, we generate two sets of task graphs that have a different number

of parallel threads at each stage (Figure 2.6a), except the first and last stages. The average

number of parallel threads per core is chosen in the range of 1 to 2, or 2 to 3. Each set of

task graphs contains 30 different benchmarks, and runs on the two workstations.

Table 2.2: Performance of different parallel SystemC schedulers for single-segment threads
(Figure 2.2a).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG
0 217s 513% +8.0% +8.0% 657s 1669% +20.2% +20.1%

1 to 2 20% 217s 501% +9.2% +9.2% 655s 1607% +17.0% +16.9%
threads 40% 217s 480% +8.8% +8.8% 654s 1507% +12.8% +12.8%
per core 60% 217s 456% +6.8% +6.8% 653s 1407% +9.3% +9.3%

80% 217s 433% +5.1% +5.1% 652s 1314% +6.5% +6.5%
0 260s 574% +1.6% +1.6% 924s 1999% +11.4% +11.4%

2 to 3 20% 260s 563% +4.4% +4.4% 923s 1937% +11.8% +11.8%
threads 40% 259s 545% +4.6% +4.6% 921s 1842% +7.9% +7.9%
per core 60% 258s 526% +2.5% +2.7% 920s 1749% +4.3% +4.3%

80% 258s 510% +1.0% +0.8% 918s 1673% +1.8% +1.8%
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Table 2.2 shows the average performance gain of different parallel schedulers over the 30

benchmarks compared with the sequential SystemC simulator from Accellera. The first

column Par in the table refers to the average number of parallel threads per core at each

stage and the second column Var refers to the maximum variation of the workload of the

same segment in different iterations. For different SystemC schedulers, SEQ refers to the

sequential SystemC from Accellera, PAR refers to our parallel implementation with the

Linux scheduling, LJF refers to the parallel version with classic LJF dispatching, and SEG

refers to our segment-aware optmization. The simulation times of LJF and SEG already

include the additional overhead of profiling and sorting. Their relative speedup is compared

with PAR.

Table 2.2 allows the following observations:

1. Parallel simulation is fast: Since the benchmarks have plenty of parallelism inside

the models, all parallel simulators achieve a good performance gain on the multi-core

hosts, up to 5x on the 8-core, and 20x on the 32-core machine. Also, a larger number

of parallel threads leads to higher speedup.

2. LJF and SEG are faster than PAR: When each thread contains a single segment,

the SEG scheduler with segment-aware optimization shows the same performance as

the classic LJF algorithm. But compared with the parallel simulation that relies on the

Linux dispatcher, our segment-aware optimization is clearly better. Also, the segment-

aware scheduler achieves greater speedup on the 32-core host than the 8-core host for

the same type of benchmarks, as a larger number of processing cores leads to greater

variability in thread dispatching.

3. Prediction needs to be accurate: In Table 2.2, it is clear that the smaller the

variation of the workload in different iterations, the higher the performance gain is.

In the case that the maximum variation of the workload is 80% (which is rare in
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real world), all the parallel schedulers have similar performance, as the prediction is

inaccurate in LJF and SEG. However, when the maximum variation of the workload

is 40%, the LJF and SEG schedulers still achieve an additional speedup of 8% on the

8-core and 13% on the 32-core host, in the case that the average number of parallel

threads per core is in the range of 1 to 2.

2.5.1.2 Multi-Segment Threads

Next, we evaluate our parallel schedulers with benchmarks where each thread has three

consecutive segments, like Figure 2.2b. Now in Figure 2.6a, each block in DUT still represents

an SC THREAD, and it contains three segments that are separated by wait statements. The

workload in adjacent segments is unrelated and varies independently. The experimental

results are shown in Table 2.3.

Table 2.3: Performance of different parallel SystemC schedulers for multi-segment threads
(Figure 2.2b).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG
0 220s 515% -3.3% +6.0% 772s 1634% +8.0% +21.6%

1 to 2 20% 219s 504% -1.6% +7.7% 770s 1587% +7.4% +16.8%
threads 40% 218s 482% +0.8% +8.5% 768s 1484% +6.9% +12.9%
per core 60% 217s 459% +2.4% +7.2% 767s 1380% +6.1% +9.7%

80% 216s 437% +3.2% +5.7% 765s 1290% +5.0% +6.6%
0 263s 564% -2.0% +3.2% 829s 1952% +0.8% +13.5%

2 to 3 20% 262s 555% -1.3% +5.8% 828s 1899% +0.6% +13.8%
threads 40% 261s 539% -0.7% +5.8% 826s 1818% +0.2% +9.7%
per core 60% 261s 522% -0.4% +3.6% 824s 1736% +0.6% +5.4%

80% 260s 507% -0.8% +1.8% 822s 1657% +1.0% +3.2%

In addition to the first three observations from Table 2.2, we make another observation in

Table 2.3:
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4. Segment-awareness matters: In contrast to Table 2.2, the performance gain of LJF

degrades because the prediction of segment run time is inaccurate. On the other hand,

the segment-aware scheduler achieves a significant speedup over the other two parallel

schedulers. For example, on the 32-core host, when the number of parallel threads per

core is within the range of 1 to 2 and the workload variation is 0, the three parallel

schedulers speed up by 16x to 19x. Compared with the parallel scheduler with Linux

dispatching, the segment-aware optimization achieves another 20% speedup (while the

relative improvement of LJF is less than 10%).

2.5.1.3 General Threads

Finally we evaluate our parallel schedulers with benchmarks in which each thread has multi-

ple segments in a general structure, as Figure 2.2c. Table 2.4 shows the experimental results

and allows another observation:

5. Segment-aware scheduler identifies the correct segments: In Table 2.4, even

though a thread may take different execution paths, our segment-aware scheduler still

identifies the next segment correctly and achieves a high speedup over the other two

parallel schedulers (more than 35% over PAR on the 32-core host, when the number

of parallel threads per core is 2 to 3 and the workload variation is 0).

However, the performance of the three parallel schedulers is similar on both hosts when the

parallelism is low (1 to 2 threads per core). This is due to the fact that each thread takes

different execution paths and has a different number of segments in total. Thus, at a certain

point in the simulation, most threads finish all their segments in the current iteration but

some threads have extra segments to execute in the following delta cycles. That reduces the

parallelism in the simulation (i.e. the number of parallel threads is smaller than the number
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Table 2.4: Performance of different parallel SystemC schedulers for general threads (Fig-
ure 2.2c).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG
0 183s 370% +2.4% +6.2% 402s 844% +4.1% +3.4%

1 to 2 20% 183s 362% +2.2% +6.9% 402s 807% +2.5% +2.9%
threads 40% 183s 345% +1.7% +6.7% 401s 750% +0.4% +3.6%
per core 60% 183s 326% +1.5% +6.1% 401s 692% +0.7% +2.3%

80% 183s 308% +1.3% +5.5% 401s 643% -1.4% +3.1%
0 218s 439% +6.8% +21.0% 572s 1201% +19.2% +37.0%

2 to 3 20% 218s 433% +6.5% +19.9% 572s 1183% +20.9% +35.2%
threads 40% 218s 418% +6.5% +18.2% 571s 1121% +18.6% +31.7%
per core 60% 218s 401% +6.0% +15.7% 571s 1056% +17.0% +28.8%

80% 217s 384% +5.2% +13.5% 570s 1008% +15.2% +23.7%

of cores), in which case the classic LJF dispatcher and our segment-aware optimization

perform the same as the Linux dispatcher. The performance of the segment-aware scheduler

improves a lot when the parallelism increases to 2 to 3 threads per core.

(a) 1 to 2 threads per core. (b) 2 to 3 threads per core.

Figure 2.7: Performance comparison for general threads (Figure 2.2c) on a 8-core host.

Figure 2.7 shows the performance of different parallel schedulers for each individual bench-

mark on the 8-core host. Again, each thread contains multiple segments in a general structure

and the maximum variation of the workload is 40%. The number of parallel threads per core
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for Figure 2.7a is within 1 to 2, and Figure 2.7b has 2 to 3 parallel threads per core. Here,

we make another observation:

6. Our segment-aware scheduler consistently shows the best performance: For

all 60 benchmarks, even though they have different segment graphs, our segment-aware

scheduler always achieves the highest speedup, significantly better than the other two

parallel schedulers.

2.5.2 Canny Edge Detector Example

For a first real-world experiment, we use a pipelined Canny edge detector to demonstrate

the performance gain of our segment-aware optimization. The Canny edge detector is a

popular image processing application to detect a wide range of edges in images. Figure 2.8

shows the block diagram of the Canny edge detector in SystemC. In this model, seven

functions (i.e. Prep, BlurX Par, BlurY Par, Derivative x y, Magnitude x y, Non Max Supp

and Apply Hysteresis) are applied to a sequence of input images in a pipelined fashion. In

BlurX Par and BlurY Par, multiple parallel threads work on different slices of the image.

The number of parallel threads in these two modules is configurable as an exponent of 2.

In Figure 2.8, all blocks are implemented as SC MODULE and communicate through sc fifo

channels. The parallel modules in the pipeline may be blocked by the sc fifo channels, and

have multiple segments in one thread. Thus, their segment structure is similar to that in

Figure 2.2c. The execution of some segments is optional, depending on whether the buffers

in the sc fifo channels are empty or not. As a result, the LJF algorithm degrades due

to inaccurate predictions, whereas our segment-aware optimization achieves a much better

performance.

Table 2.5 shows the performance of different parallel SystemC schedulers for the pipelined

Canny edge detector example on the 8-core host. Here, the relative speedup of LJF and
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Figure 2.8: Pipelined Canny edge detector example.

Table 2.5: Performance comparison for Canny edge detector on a 8-core host.

Benchmark
SEQ PAR LJF SEG
Time Speedup Speedup +Speedup Speedup +Speedup Overhead

canny v1 138.8s 298.1% 290.4% -2.6% 284.6% -4.5% 0.05%
canny v2 139.0s 305.7% 296.4% -3.1% 360.4% +17.9% 0.15%
canny v3 139.0s 255.9% 261.8% +2.3% 329.9% +28.9% 1.75%

SEG is compared with PAR, and canny v1, canny v2 and canny v3 have 1, 8 and 256 worker

threads in BlurX Par and BlurY Par respectively4. Clearly, the LJF scheduler has similar

or worse performance than the default Linux scheduler, but our segment-aware algorithm

achieves an additional speedup of up to 28%. Only when the number of parallel threads in

the model is lower than the number of cores on the host (e.g. canny v1 has up to 7 parallel

threads, made up of the seven pipelined stages in the model), LJF and SEG are slightly

worse due to the small profiling and scheduling overhead.

2.5.3 JPEG Encoder Example

Table 2.6: Performance comparison for JPEG encoder on a 8-core host.

Benchmark
SEQ PAR LJF SEG
Time Speedup Speedup +Speedup Speedup +Speedup Overhead

JPEG 176.1s 331.4% 324.7% -2.0% 400.6% +20.9% 0.87%

4As these three benchmarks process the same sequence of images, a larger number of parallel threads
means a smaller amount of workload in each worker thread.
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Figure 2.9: Pipelined JPEG encoder example.

Our second real-world experiment uses a JPEG image encoder (an extended version of [10]).

Its block diagram is shown in Figure 2.9. Here, the RGB2YCC module first performs color-

space transformation on an image from RGB to YCbCr. Then, the image is split into blocks

of 8×8 pixels and each color component (Y, Cb or Cr) of a block undergoes Discrete Cosine

Transform (DCT), quantization, and zigzag ordering separately. At the end, the resulting

data for all 8×8 blocks is further compressed with the lossless Huffman encoding algorithm.

Since encoding of the three color components (Y, Cb and Cr) is independent, the JPEG

model executes these three encoders in parallel. Also, to efficiently process a stream of

images, our JPEG encoder example is implemented in a pipelined fashion. Same as the

Canny edge detector, each block in Figure 2.9 is implemented as an SC MODULE and using

sc fifo for communication. Thus, each thread has multiple segments and owns a segment

structure like Figure 2.2c.

Table 2.6 compares the performance of different SystemC schedulers for the JPEG encoder

example on the 8-core host. Again, our segment-aware optimization shows the best perfor-

mance, achieving an additional 20% speedup over PAR. In comparison, the LJF scheduler

is slightly worse than the Linux scheduler (PAR) due to the inaccurate prediction based on

previous run times.
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Table 2.5 and 2.6 also show the profiling and sorting overhead of our segment-aware opti-

mization. Clearly, the overhead of our proposed algorithm takes less than 2% of the whole

simulation time, and sometimes much less (e.g. 0.05% and 0.15% in the cases of canny v1

and canny v2 ). In order to keep the per-segment execution time information, the extra stor-

age overhead is two unsigned long long values (start time stamp and previous run time)

per segment and one unsigned int value (current segment ID) per thread.

2.6 Conclusion

In this chapter, we proposed a segment-aware scheduling algorithm [57] with optimized

thread dispatching in the context of a parallel SystemC simulator. By taking the execution

time for a specific segment as a prediction of the next run time, our approach dispatches

threads in an optimized and efficient fashion. Evaluated with synthetic benchmarks and

real-world examples, the implemented parallel simulator shows a speedup of up to 20x over

the sequential simulator. More importantly, our segment-aware optimization works on top

of this and consistently achieves a high speedup over previous thread dispatch algorithms

for examples with complex segment structures. Based on these experimental results, we

conclude that accurate prediction of the next execution time based on segment information is

critical. Our segment-aware approach achieves significantly better performance than previous

schedulers.

51



Chapter 3

Core Distance

In addition to load-balancing optimization in Chapter 2, we investigate communication min-

imization in this chapter. We first define the concept of core distance [58] for multi-core and

many-core platforms, and then propose an algorithm to optimize thread-to-core mapping in

order to minimize on-chip communication overhead.

3.1 Introduction

Many-core processors have become popular in recent years to provide capable platforms for

those highly parallel applications which have extraordinary scaling and vector capabilities

that cannot be satisfied by conventional multi-core processors. Generally speaking, many-

core platforms refer to processors with dozens to hundreds and soon thousands of cores on

chip. Thus, in order to fully utilize many-core platforms, an application must scale well past

hundreds of threads and distribute equal workloads among those parallel threads.

One recent example of a many-core processor is the Xeon Phi coprocessor, a readily available

implementation of the Intel Many Integrated Core (MIC) architecture. Figure 3.1 depicts
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Figure 3.1: Intel Xeon Phi coprocessor architecture [39].

the conceptual structure of the Intel Xeon Phi architecture [39]. On the single die of the

coprocessor, up to 61 x86-based cores are integrated. These parallel processing cores commu-

nicate via a high performance bidirectional ring interconnect. Each core is fully functional

and fetches and decodes instructions in-order from four hardware thread contexts. Thus, in

total, there are 240 logical cores available on the Intel Xeon Phi 5110P coprocessor. For the

on-chip cache hierarchy, each core includes 32 KB L1 instruction and data cache, as well as a

private 512 KB L2 cache. In order to keep the L2 cache data globally consistent and reduce

hot-spot contention for data references, a distributed Tag Directory (TD) is coresident with

each core to cross-snoop L2 caches in all cores. Every physical memory address is uniquely

mapped to one of 64 distributed tag directories on the ring network , which is not necessarily

co-located with the core generating the cache miss. This mapping is accomplished through

a reversible hash function. Using the distributed TD infrastructure, the caches are kept con-

sistent without software intervention. In addition to the individual core and distributed tag

directory, the coprocessor includes up to eight memory controllers supporting two GDDR5

memory channels, and a PCI Express system I/O logic connecting the host Intel Xeon pro-

cessor. In general, the Xeon Phi coprocessor can be viewed as a symmetric multiprocessor

(SMP) with shared Uniform Memory Access (UMA) [40][42].
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3.1.1 Motivation

Increasing the number of cores provides potential to improve performance and scalability

for highly parallel programs, but also brings downsides. As the chip size is enlarged to

accomodate more processing units, core-to-core transfers are not always significantly better

than main memory access and optimization becomes crucial. For the Xeon Phi coprocessor

specifically, because of the opaque hashing method and the resulting ”random” distribution of

addresses around the ring, no previous software optimization has been found to improve core-

to-core transfers significantly [42]. In the remainder of this chapter, we propose our software

strategy to optimize thread-to-core mapping on many-core platforms with distributed tag

directories, and show that it minimizes core-to-core communication latency.

The rest of the chapter is organized as follows: Section 3.2 first defines the concept of core

distance on SMP architectures and shows measurements of core distance on Intel Xeon and

Intel Xeon Phi processors. In Section 3.3, based on our observations, we propose our ap-

proach to optimize thread-to-core mapping and speedup core-to-core transfers for many-core

platforms which use distributed directory-based cache coherence protocols. Next, Section 3.4

provides experimental results for two communication-intensive benchmarks to demonstrate

the performance improvement of our optimization approach. Finally, relevant related work

is given in Section 3.5 and we conclude our work in Section 3.6.

3.2 Core Distance

In this section, we define core distance and provide a memory ping-pong benchmark to

quantify it. We then show measured core distances for a multi-core and many-core processor

to show the architectural differences between these platforms.
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3.2.1 Definition of Core Distance

On current multi-core and many-core systems, each core usually has its own local cache to

utilize program locality and speed up memory access. In order to keep the data globally

coherent among all caches, the modification of a data block is broadcast on the intercon-

necting medium (in snooping protocols) or passed to the directory that tracks the state of

the cache (in directory-based protocols). By maintaining coherent caches, data can be easily

transferred via shared variables between cores. However the core-to-core transfer latency

varies a lot between cores on the same processor and different processors. To quantify the

core-to-core tranfer latency, we can define core distance as the duration it takes to move a

data word back and forth between two cores (one round trip). A larger core distance then

means that it is more expensive to share data between these two cores.
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Figure 3.2: Ping-pong communication for measuring core distance.

In order to measure core distances on multi-core and many-core processors, we propose a

memory ping-pong communication benchmark. Figure 3.2 shows the communication be-

tween two cores and Algorithm 3 lists the pingpong function executing in the threads, which

are bound to the measured cores. Each thread starts a timer in local variable T1. Then, it

compares the shared memory address varptr against its local value val. If they match, the

program goes into the while loop, pauses the core for a few clock cycles and then checks
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Algorithm 3 Ping-Pong Communication Function

1: cycles t pingpong (varptr, val) {
2: T1 ← CurrentCycles()
3: for iter = 1 to ITERATION do
4: while Load(varptr) = val do
5: Processor Pause
6: end while
7: Store(varptr, val)
8: end for
9: T2 ← CurrentCycles()

10: return (T2 − T1)/ITERATION
11: }

the sharing address again. Otherwise, the thread stores its val to the sharing address which

is then communicated through the cache hierarchy to the other core. As the shared data

block is in the cache of both cores, the new value in the sharing address will transfer through

interconnection path to the other core to maintain cache coherence. Each thread tries to up-

date the shared variable in turn and runs this procedure for multiple iterations. At the end,

the program stops the timer, and returns (T2 − T1)/ITERATION as the average round-trip

communication latency.

3.2.2 Core Distances on Hierarchical Multi-Core Platforms

As expected, on multi-core systems using snooping cache coherency, core distance is highly

correlative to the core placement on the platform. For example, Figure 3.3 illustrates the

architecture of a Intel Xeon dual-CPU system. Figure 3.4 shows the corresponding measured

core distances from Core 0 to other cores. As hyperthreading is enabled, there are 32 logical

cores in total on this platform. In Figure 3.4, the core distance between the two logical

threads on the same physical core (Core 0 and 16) is minimum as the two hyperthreads can

communicate via the local L1 or L2 cache. Since Core 0 to 7 are on the same processor and

Core 8 to 15 are on the other one, interprocessor communication is more expensive than
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intraprocessor communication, costing 1200 vs. 300 cycles for a round trip. As Core 17

to 31 are hyperthreads of Core 1 to 15, the core distances from Core 0 to these cores are

repeated1.
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Figure 3.3: Intel Xeon E5-2680 dual-CPU architecture.

Figure 3.4: Core Distances from Core 0 to other cores on Intel Xeon E5-2680.

3.2.3 Core Distances on Many-Core Platforms

We see that core distance is not always correlating with the physical distance on chip.

For a many-core system communicating over a ring network, such as the Xeon Phi 5110P

coprocessor, one could expect the core distance as indicated with the green line in Figure 3.5,

where Core 0 has a shorter core distance to its neighbors than to the opposite core on the ring

1Core distance is symmetric between two cores.
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network. Specifically, this chip contains 60 physical cores connected by a high performance

bidirectional ring network. As each core can fetch instructions from four hardware contexts,

there are 240 logical cores available. Every four consecutive cores (starting from 1, say

1/2/3/4, 5/6/7/8, ..., 237/238/239/0) denote four hardware threads on the same physical

core. Adjacent cores are placed next to each other in a ring topology. In contrast to the

expectation, the measured core distances from Core 0 to Core 4n+1(0 ≤ n ≤ 59) are shown

in the blue line in Figure 3.5. Except for Core 237, which is another hardware thread on the

same physical core, Core 125 exhibits the shortest core distance to Core 0.

Figure 3.5: Core distances from Core 0 to other cores on Xeon Phi 5110P.

On a closer look, we note that the Intel Xeon Phi coprocessor uses a directory-based cache

coherence protocol. The distributed tag directory maintaining cache coherence plays an

important role in the core-to-core communication. Figure 3.6 depicts the detailed communi-

cation model on this platform. When one thread (Pong in Figure 3.6) has a cache miss and

needs to fetch an updated value, it first talks to the responsible tag directory (the red TD

in Figure 3.6) to find which core cache contains the new value (Step 1). Every memory ref-

erence the processor generates is mapped through a one-to-one hash function to a TD based

on the physical address. Notably, the responsible TD is not necessarily co-located with the

core generating the cache miss [40] and could be associated with any core on the chip. When

the responsible TD finds another core (Ping in Figure 3.6) owns the updated value, it sends

58



a request for the new value to the specific core (Step 2), gets the value from that core (Step

3) and passes it back to the core exeperiencing the cache miss (Step 4). Finally, the TD

updates the sharing status of the cache block in the first core. Also, when one core writes

to the shared data block, it needs to notify the tag directory to invalidate the sharing value

in other cores. The large variation in the measured core-to-core communication latency in

Figure 3.5 2, i.e., several hundred cycles, motivates the idea in this chapter. If we place

communicating threads close to the TD in question, we can speed up this communication

significantly.
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Figure 3.6: Cache coherence via distributed tag directories (TD).

3.2.4 Core Distances on Busy Many-Core Platforms

When multiple pairs of communication happen concurrently, the core distances on the many-

core processor become even more expensive and unpredictable. Figure 3.7 shows the core

distances from Core 0 to Core 4n + 1(0 ≤ n ≤ 59) on a busy Xeon Phi coprocessor (green

line), in comparison to the situation when only two cores communicate with each other on the

2At this point, we cannot explain the ”zig-zag” behavior among neighboring cores. We suspect this stems
from other bus traffic and/or Linux interference on the ring network.
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chip (blue line, same as the blue line in Figure 3.5). Here we run a Monte Carlo simulation

which issues 60 pairs of concurrent communications and randomly distributes them on the

ring network. As half of the chip is busy and the cores compete for the access to network,

the core-to-core communication latency grows up to 10,000 cycles for one round trip. Also,

the location of the responsible tag directory becomes negligible compared to the interference

between parallel communications.

Figure 3.7: Core distances from Core 0 to other cores at 50% core utilization.

3.3 Minimizing Inter-Core Communication

Many-core processors provide a high performance of parallel computing, but the long com-

munication latency (more than 1000 cycles for one round-trip core-to-core communication)

may slow down the execution. In this section, we exploit the above observations and improve

application performance by optimizing the thread-to-core mapping to minimize the on-chip

communication overhead.
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3.3.1 Mapping Communicating Threads Close to the TD

Based on the core distance curve in Figure 3.5, we can infer the location of the responsible

TD by finding the core index which has the shortest core distance, ignoring the logical cores

on the same physical core. Algorithm 4 describes the function to find the responsible tag

directory on the ring network. In Function FindTD, one thread is fixed to Core 0 and the

other thread is set to the other cores on the ring network. Both threads run the pingpong

function simultaneously. As one thread may start first and suspend for the other, we choose

to use the core distance measured in the thread starting later (by checking timestamp T1 of

each thread). The function will find the minimum core distance and return the corresponding

coreindex as the location of the identified tag directory.

Algorithm 4 Find the Responsible Tag Directory

1: unsigned int FindTD (char ∗var) {
2: for all c ∈ ProcessorCores do
3: set core affinity to 0 for Thread th1

4: set core affinity to c for Thread th2

5: create Thread th1 to run t1 ← pingpong(var, 0)
6: create Thread th2 to run t2 ← pingpong(var, c)
7: if th2 starts later then
8: coredist0,c ← t2
9: else

10: coredist0,c ← t1
11: end if
12: end for
13: return coreindex where coredist0,coreindex = min{coredist0,c}
14: }

With the knowledge of the TD location we can reduce the communication latency. By in-

voking the FindTD function at the beginning of the program, our approach profiles the

application and determines the TD locations of the shared variables3 in the application.

Mapping threads close to these tag directories will reduce the onchip communication over-

3The size of a shared variable should be smaller than one cache block (64 bytes on Intel Xeon Phi) and
mapped to one tag directory.
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head4. Algorithm 5 and Algorithm 6 compare the thread initialization with and without

optimization respectively. Rather than using the default thread attributes in Algorithm 5,

Algorithm 6 first finds the tag directories tdi of each communication channel chi, and then

sets the core affinity of the communicating thread close to tdi. GetCore returns a core index

which is near tdi and tries to balance work load among all available cores in a greedy fashion.

Next, all communicating threads are created with the affinity-optimized thread attributes.

Algorithm 5 Thread Initialization without Optimization

1: for all Thread thi,1, thi,2 using Channel chi do
2: thi,1.ThreadCreate(DefaultThreadAttributes)
3: thi,2.ThreadCreate(DefaultThreadAttributes)
4: end for

Algorithm 6 Thread Initialization with Optimization

1: for all Channel chi do
2: tdi ← FindTD(addressof(chi))
3: set core affinity to GetCore(tdi) in ThreadAttributesi,1

4: set core affinity to GetCore(tdi) in ThreadAttributesi,2

5: end for
6: for all Thread thi,1, thi,2 using Channel chi do
7: thi,1.ThreadCreate(ThreadAttributesi,1)
8: thi,2.ThreadCreate(ThreadAttributesi,2)
9: end for

Figure 3.8 shows the optimized core distances for the Intel Xeon Phi coprocessor, with one

thread placed at the responsible TD (Core 125, using the same TD as Figure 3.5). The

minimum core distance here (except the logical core on the same physical hardware) is

about 500 cycles, when mapping the other thread next to the tag directory. This is much

lower than the core distance in Figure 3.5 which is as high as 1500 cycles. Also, the core

distance is now predictable with the physical location of the core, as indicated by the blue

line in Figure 3.8. The further two cores are on the ring network, the larger the core distance

is between them.

4As the hash function is unknown and the mapping is based on the physical address of the memory
reference, it is very difficult to allocate a shared variable whose responsible tag directory is close to the
communicating cores. So instead of moving the TD, we move the threads.
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Figure 3.8: Optimized inter-core communication latency.

3.3.2 Pizza Slice Algorithm

In a busy situation where many pairs of core-to-core communication run simultaneously,

transfer latency is extremely expensive (Figure 3.7) and unpredictable. Here, in order to re-

duce the interference and improve onchip communication, we propose a software algorithm

which divides the ring network into a given number of sections and localizes the communi-

cation into these sections. We name this the Pizza Slice Algorithm due to its similarity with

a sliced pizza (Figure 3.9). By evenly distributing the concurrent communications onto a

given number of different slices of the ring network, our approach maps threads onto cores

of one section and selects a shared variable whose responsible tag directory is in the same

section5.

Figure 3.10 compares the core distances from Core 0 to Core n(1 ≤ n ≤ 39) in one section,

before and after applying the Pizza Slice Algorithm to the Xeon Phi coprocessor in which half

of the chip is busy communicating. Core distances are measured using Monte Carlo simula-

tion in both cases. Before applying the Pizza Algorithm, threads are randomly distributed

on the ring network and the responsible tag directories might be in different section from

5We need to allocate a few (about 25%) more shared variables than defined in the program so as to find
enough communication channels in each section.
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Figure 3.9: ”Pizza Slice Algorithm” for cores and TDs on a ring network.

communicating cores. With the Pizza Slice Algorithm, the threads and tag directories are

localized into one section, and communication latencies decrease dramatically (from more

than 7000 to less than 1000 cycles).

Figure 3.10: Comparison of communication latency before and after applying the Pizza Slice
Algorithm.
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3.4 Experimental Results

To demonstrate the performance speedup for actual applications, we present experimental

results of two communication-intensive benchmarks: a producer-consumer example and a

Mandelbrot set renderer model. All the experiments are conducted on the Intel Xeon Phi

5110P coprocessor running at 1.052 GHz.

3.4.1 Producer-Consumer Model

Our producer-consumer model is a classic example of a multiprocess synchronization prob-

lem. Figure 3.11a shows the block diagram where Producer and Consumer are children of the

root thread, communicating a data value through a spin-locked channel6 which has a buffer

size of one. The Producer generates a data value and puts it into the channel buffer. After

the Consumer fetches the data, the Producer resumes to generate new value. In addition

to the channel buffer, the Producer and Consumer respectively own a local variable to store

the communicated data. The channel buffer is accessed by both Producer and Consumer

threads, which contain a copy of the data block in their local caches. Thus, the responsible

tag directory for the channel data is of major concern in the communication. To speed up

the synchronization, we can map Producer and Consumer threads close to the tag directory

of the channel block.

To ensure a fair comparison, we run both the default and our optimized version in the same

process, so that the same TDs are used. Figure 3.11b shows the timeline of our experimental

evaluation. First, the model runs with Linux default settings (from T1 to T2). Next, we

profile the application and apply our optimization. The overhead of profiling and optimizing

the thread mapping is measured by T3−T2. Finally, the model runs again with the optimized

6Rather than using POSIX threads API to suspend and resume threads, spin-locked channels eliminate
time variation due to Linux kernel execution.
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Figure 3.11: Producer-consumer example.

thread-to-core mapping from T3 to T4. The performance speedup of the model is calculated

by dividing T2 − T1 by T4 − T2 (i.e., including the profiling overhead).

3.4.1.1 Assigning Threads onto One Physical Core

According to Figure 3.5, communication between logical threads on the same physical core is

the fastest possible option. Figure 3.12 shows the performance improvement of the producer-

consumer model by mapping both threads to the same physical core. Running the benchmark

for 100 iterations, we show the statistical results of the application speedup.

As the inner core distance is 10 times smaller than that between physical cores, the optimized

producer-consumer model achieves an order of magnitude higher execution speed (7x to 16x)

than the original model. The variation of the performance speedup is due to the varied

locations of the responsible TD and resulting execution time in the original model. On

average the performance increases by 11.66x.

Figure 3.13 shows the histogram of the performance speedup. The shape resembles a Gaus-

sian distribution with its mean value around 11x.
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Figure 3.12: Speedup of the producer-consumer example when mapping threads onto the
same physical core.

Figure 3.13: Histogram of the producer-consumer example speedup when mapping threads
onto the same physical core.

3.4.1.2 Assigning Threads to Close Cores

In most applications, it is a bad idea to map threads onto the same physical core. Figure 3.14

shows the performance of the producer-consumer example when assigning the threads onto

cores close to the TD (one core co-located with the tag directory, and the other next to it).

Here, our approach shortens communication latency and gains speedup in most experiments,

up to 2.5x. In some rare cases (2 of the 100 iterations), if the Linux default scheduler ”luckily”
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sets threads to the optimal cores, our approach performs only a little worse (95%) due to

our overhead. Figure 3.15 reflects the histogram of the performance speedup in Figure 3.14.

The mean value of the speedup is 1.45x.

Figure 3.14: Speedup of the producer-consumer example when mapping threads close to the
TD.

Figure 3.15: Histogram of the Producer-Consumer Model Speedup by Mapping Threads
Close to the TD.

3.4.2 Mandelbrot Set Renderer Example

As an example of highly parallel graphics applications, we use a renderer for Mandelbrot set

images [61]. Figure 3.16 shows its block diagram. In the model, there are four Coordinators
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which work on four separate slices of each frame and send coordinates in the complex plane

to 8 Mandelbrot worker threads. Each worker thread calculates whether the point belongs

to the Mandelbrot set or not. The coordinates of each pixel in the image is sent through a

spin-locked channel. Zooming into an interesting area of the image, our application generates

a series of 100 Mandelbrot set images.
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Figure 3.16: Block diagram of the Mandelbrot renderer example.

Figure 3.17a shows that our Pizza Slice Algorithm accelerates the graphics application by

a maximum speedup of 150% and a minimum of 95%. The Pizza approach optimizes the

application by mapping each Coordinator and its associated worker threads and channel

tag directories into one of four sections on the ring network. Worker threads are assigned

to the same cores of the responsible TDs (or next to TD to balance CPU load) and the

Coordinator is placed in the middle of the section. Figure 3.17b shows the overhead of

profiling and optimization (time T3−T2 in Figure 3.11b). Compared to the execution time

of the new model (T4 − T2), the profiling overhead is less than 0.8 second absolute, or

1% of the execution time. The speedup is 125% on average, as shown in the histogram in

Figure 3.17c.
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(a) Performance speedup.

(b) Profiling overhead.

(c) Histogram of the speedup.

Figure 3.17: Apply Pizza Slice Algorithm to the Mandelbrot renderer.
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3.5 Related Work

With the fast increasing number of processing cores on a single die, we expect hundreds and

even thousands of cores integrated on the Chip Multiprocessor (CMP) systems, which are

known as many-core platforms. Currently, some many-core systems are readily available,

e.g. Tilera [1], Intel’s TeraFlop [89] and MIC [39]. Together with GPGPU and distributed

shared memory (DSM) systems, these high-performance computing platforms provide abun-

dant parallel processing power. How to efficiently exploit these platforms has been a hot

topic in recent researches. [54] and [5] address the thread mapping strategy in heteroge-

neous multiprocessor systems by utilizing dynamic thread-to-core assignment. [51] proposes

a formal model to characterize threads and cache hierarchy of GPGPUs and generate an op-

timized thread mapping scheme. [50] also optimizes the shared cache GPGPU, but targets

applications with irregular data accesses. [88] and [82] describe novel approaches to sched-

ule threads on DSM systems, taking memory traces and hierarchy into consideration. [9]

addresses the problem of application mapping on a Network-on-Chip (NoC) multiprocessor.

In [83] and [16], the authors propose an analytical model to characterize programs, machines

and costs for multiprocessor platforms with hierarchical memory architectures.

In comparison to these works, our approach differs in two aspects. First, we are optimizing

thread mapping on homogeneous many-core platforms with distributed tag directories main-

taining cache coherence. As this type of platform is a different processor architecture, the

problem of thread-to-core mapping cannot be addressed by the existing methods for CMPs

with hierarchical memory system or GPGPUs. Second, we propose the measurement of core

distance to quantify the core-to-core transfer latency precisely, rather than using theoretical

values as in other work.
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3.6 Conclusion

In this chapter, we propose a software approach [58] to optimize the thread-to-core mapping

for homogeneous many-core processors with distributed tag directories. By profiling the

application and optimizing thread assignments, our approach can reduce the core-to-core

transfer latency significantly and improve the application performance by more than 25%

over the Linux default strategy.
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Chapter 4

Communication-Aware Thread

Mapping

In Chapter 3, we define the concept of core distance, and optimize thread mapping to re-

duce on-chip communication overhead on many-core platforms with distrbuted cache tag

directories. In this chapter, we target more general host architectures, and propose a thread

mapping framework which requires no a priori knowledge of the underlying platform. Our

framework aims at minimizing the costly inter-chip communication.

4.1 Introduction

Multi-core and many-core platforms have been in wide use during the past few decades.

These parallel platforms feature different processor architectures and memory hierarchies. As

the most common architecture, a typical hierarchical multiprocessor includes multiple tiles,

each consisting of a number of processing cores that share an on-chip Last-Level Cache (LLC).

Between separate tiles, they use inter-chip communication for synchronization and data
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sharing. To take advantage of the faster on-chip cache access, it is intuitive to map threads

that share a huge chunk of data to cores on the same processor. In this chapter, we propose a

framework to automatically detect processor architectures and communication patterns, and

optimize thread-to-core mapping to minimize the costly inter-chip communication latency

in SystemC PDES. The key contributions of this chapter are the following:

1. We explore the relationship between communication latency and communication size

on hierarchical multiprocessors, and extend our RISC compiler (Section 1.2) to analyze

the communication pattern of an application.

2. We adopt the core distance concept discussed in Chapter 3 to automatically detect

general processor architectures, not restricted to any particular type.

3. We propose a communication-aware thread mapping framework, which automatically

identifies communication patterns and processor architectures, and formulates the

problem of thread-to-core mapping as graph partitioning. We evaluate our framework

with comprehensive experiments.

The rest of the chapter is organized as follows: Section 4.2 reviews related work on communication-

based thread mapping optimization. Section 4.3 presents our observations on communication

latency with varying communication sizes on a hierarchical multiprocessor. In Section 4.4,

we identify three categories of communication patterns in ESL design models, and extend our

RISC compiler infrastructure to automatically analyze the communication pattern of a de-

sign. Then Section 4.5 proposes our communication-aware thread mapping framework, with

the aim of minimizing costly inter-chip communication latency. In Section 4.6, we thoroughly

evaluate our framework with benchmarks that follow the three categories of communication

patterns. Section 4.7 concludes the chapter.

74



4.2 Related Work

Thread mapping optimization has been broadly explored in the past few decades, with

objectives to minimize the resource contention and communication latency. In [85], the au-

thor converts thread mapping to the well-known problem of maximum network flow, and

introduces an efficient solution to the two-processor problem, which is derived from the Ford-

Fulkerson algorithm. [15, 88, 64] explore various design objectives to improve thread-to-core

mapping and achieve better performance. In [4, 19, 13, 46, 59], authors optimize thread

mapping based on dynamic information obtained at run time, in order to minimize commu-

nication cost. In addition, [21, 22] characterize communication patterns of shared-memory

applications by monitoring page table accesses and page faults, and use this information

to optimize thread-to-core mapping. In [9], authors propose a compiler approach to im-

prove thread and data mapping on Networks-on-Chip (NoC) multiprocessors. [60] intro-

duces a template library that accepts users’ input to reduce costly remote memory accesses

on NUMA multiprocessors. [90] proposes the Mix-Scheduling policy to evenly mix threads

across cores and achieve thread diversity in every core.

Compared to the previous work, our proposed framework differs in the following aspects:

1. Our framework can automatically detect the processor architecture and generate the

communication pattern, which are used as inputs to the graph partitioning tool to

optimize thread-to-core mapping. It requires no manual intervention from the user.

2. Our framework is implemented at the user level, which requires no kernel information

from the operating system. Thus, our framwork is more flexible and portable than

those kernel-level approaches [21, 22].

3. The overhead of our approach is negligible and it can attack the n-processor problem

(as opposed to the two-processor problem in [85]).
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4.3 Communication Latency on Hierarchical Multipro-

cessor Platforms

In this section, we first explore the relationship between communication size and communica-

tion latency on hierarchical multiprocessors. We implement a SystemC model as Figure 4.1,

running on a 2-chip hierarchical multi-core platform. The multiprocessor architecture is

depicted in Figure 4.2. Here, each node in Figure 4.1 is implemented as an SC MODULE, initi-

ating an SC THREAD that repetitively receives and sends a data chunk without any processing.

All the communications between SC MODULEs go through sc fifo channels. The size of the

transferred data chunk is varying from 64 Bytes to 16 MB. In our experiments, we first run

the model using our synchronous parallel SystemC simulator with the Linux default schedul-

ing for a few times, and then optimize the thread-to-core mapping in the parallel simulation.

Intuitively, it is more efficient to map the two groups of SC MODULEs onto separate chips, so

as to avoid the costly inter-chip communication.
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Figure 4.1: Benchmark for communication latency exploration.
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Figure 4.2: A 12-core workstation architecture.
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(a) Performance comparison of the Linux default mapping and the opti-
mized mapping.

(b) Performance variation of the Linux default mapping and the optimized
mapping.

Figure 4.3: Performance of the Linux default mapping and the optimized mapping.

Figure 4.3a shows the performance gain of the optimized mapping compared to the Linux

default mapping. Here, we compare the elapsed time, user time and system time when

using the Linux default mapping and the optimized mapping. Figure 4.3b demonstrates

the variations of elapsed times with the Linux mapping and the optimized mapping, by
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comparing the maximum and minimum run time. These two figures allow the following

observations:

1. The optimized mapping performs better when the communication size is

large: In the case that the data chunk is small, e.g., less than 16 KB, the optimized

mapping has similar or even worse performance than the Linux default mapping. How-

ever, when the communication volume across chips becomes larger, we observe increas-

ing improvement up to 60%. Therefore, it is critical to optimize the thread-to-core

mapping when the communication size is large in the model.

2. The optimized mapping improves only inter-chip communication: When the

data chunk becomes larger than 512 KB, the performance gain of the optimized map-

ping flattens as not all the shared data can fit into the Last-Level Cache (LLC). In

this case, part of shared data stays in the main memory, and our optimized thread

mapping only mitigates the costly inter-chip communication.

3. The optimized mapping mainly affects user time: While the system time varies

little between the Linux default mapping and the optimized mapping, the speedup of

user time is quite similar to that of the total elapsed time. This matches our point in

Section 1.5 that it is difficult to improve system time by user-level thread mapping.

4. The performance of the optimized mapping is consistent: Compared to the

Linux default mapping, our optimized mapping yields much more stable performance.

While the run time with the Linux default mapping varies by more than 50%, the run

times with our optimized mapping stay quite close.

Based on these observations, we conclude that only the large communication size matters

in thread mapping optimization. On the 12-core multiprocessor platform as Figure 4.2, the

optimized mapping achieves little speedup for shared data that is smaller than 16 KB. Thus,
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we propose the Scaling Communication Pattern to simplify the communication graph of a

design model, which eliminates the lightweight communications (e.g., whose communication

size is smaller than the scaling parameter, say 16 KB for the host architecture as Figure 4.2).

4.4 Communication Patterns of System Level Designs

In system level designs, inter-thread communication is usually wrapped in channels. Thus

it is possible to statically analyze the communication pattern of a system level design, by

counting the size of the shared data chunk in the channel. In [76], we present an approach to

automatically extract thread communication graphs from SystemC source code. By extend-

ing our dedicated RISC compiler (Section 1.2) with the approach in [76] and calculating the

communication size of every channel in AST, we can generate the communication pattern of

an ESL design model.
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Figure 4.4: Different communication patterns in ESL design models.
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Figure 4.4 lists three common types of communication patterns in system level designs. Here,

each node of the communication pattern is a thread segment, and an edge represents the

communication between two thread segments. Both nodes and edges have weights, which

are computation loads and communication sizes respectively. In Figure 4.4a, except the

source and drain, every thread segment receives a data chunk from its predecessor and sends

another to its successor. All thread segments operate in a pipelined fashion. In Figure 4.4b,

the source segment distributes data chunks to multiple parallel thread segments, and the

drain collects results from the parallel pipelines. The communication pattern in Figure 4.4c

is most general, which is a combination of the previous two patterns.

Even though we do not have complete numbers for all the existing system level designs, we

count the communication patterns of the ESL design models used in our lab for the past 15

years. Table 4.1 lists the numbers of different communication patterns used in our designs,

including our SpecC and SystemC implementations, and the S2CBenchmark models.

Table 4.1: Numbers of different communication patterns in our ESL design models.

Communication Pattern Number Percentage
Pipeline pattern 26 44%
Parallel pattern 17 28%
General pattern 17 28%

Total 60 100%

In Table 4.1, it is clear that all the communication patterns of our design models are cov-

ered by the three types. Some examples of the pipeline pattern include the monochrome

JPEG encoder, Data Encryption Standard (DES) cipher and all the S2CBenchmark models.

Other applications, e.g., the Mandelbrot set renderer, H264 decoder, and polychrome JPEG

decoder, follow the parallel communication pattern. As for the general pattern, it is used in

the implementations of the Canny edge detector, Networks-on-Chip (NoC) particle simulator

and DVD player.
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4.5 Communication-Aware Thread Mapping Framework

In Chapter 3, we introduced core distance to quantify core-to-core communication latency

on multi-core and many-core platforms. Combined with Operating System (OS) query or

user input on the clustering of core IDs, core distance profiling can be used to automatically

detect the underlying processor architecture.

Algorithm 7 Processor Architecture Detection Algorithm

Input:
coredisti,j where i, j ∈ ProcCores and i 6= j
∀ProcCoresk where ProcCoresk is the set of all the core IDs on Processor k

1: MaxV aration ← 0
2: for all ProcCoresk do
3: calculate the varationk of coredisti,j on Processor k
4: if varationk > MaxV aration then
5: MaxV aration ← varationk

6: end if
7: end for
8: if MaxV aration ≤ threshold then
9: return Hierarchical Multiprocessor Architecture

10: else
11: return Ring-Based Many-Core Architecture with Distributed Tag Directories
12: end if

Algorithm 7 lists the pseudocode of our algorithm to detect the overall processor architecture.

Here, the input coredisti,j can be measured by using our pingpong function presented in

Section 3.2, and ProcCoresk lists all the core IDs on Processor k, which can be specified

by the user or rely on OS query (e.g., parsing the system file /proc/cpuinfo). Then, it

calculates the varition of core distance between cores on the same processor. Based on our

observations of core distance on multi-core and many-core platforms in Section 3.2, we see

that if the core distances on the same processor stays close, it is a hierarchical multiprocessor.

On the other hand, if the core distances match the blue line in Figure 3.5, it is a ring-

network many-core processor with distributed tag directories. The decision criteria in Line

8 can be extended to take more types of processor architectures into consideration. Here we
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only distinguish between the two common types of platforms discussed in Section 3.2, i.e.,

hierarchical multi-core platforms and ring-based many-core platforms with distributed tag

directories. Empirically, the threshold in Algorithm 7 can be 125%.

With the communication pattern and processor architecture available, we can effectively im-

prove the thread-to-core mapping in SystemC PDES. Here, our goal is to minimize the costly

inter-chip communication latency1. Figure 4.5 depicts our communication-aware thread

mapping framework. It consists of three parts, i.e., the static analysis in the compilation

phase, the dynamic profiling in the pre-run phase, and the online scheduling in the simula-

tion. The major functional blocks of our framework are as follows:
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Figure 4.5: Communication-aware thread mapping framework.

1. RISC Compiler: In the compilation phase, we first utilize our dedicated RISC com-

piler [56] to statically analyze the design model, and automatically generate the seg-

ment structure and scaling communication pattern, as presented in Section 2.4.3 and

4.4. Also, the RISC compiler will generate the parallel executable, which is linked

against our PDES library.

1Chapter 3 presents a novel technique to reduce the expensive on-chip communication on many-core
platforms.
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2. Platform Profiler: Second, the platform profiler generates the core distance graph

of the underlying platform by using the proposed pingpong function from Section 3.2.

3. Processor Architecture Detector: The third step in the compilation phase is to

detect the processor architecture based on the OS query and core distance graph.

Algorithm 7 describes this procedure.

4. Application Profiler: Next, our framework dynamically profiles the parallel exe-

cutable in the pre-run phase. As discussed in Section 2.4.4, threads in system level

designs are usually implemented in a loop structure. Here, we run the parallel exe-

cutable for a few iterations, in order to measure the workload of each thread segment.

Typically, the workload of a segment varies only little in different iterations.

5. Graph Partition Tool: When the segment structure, communication pattern, seg-

ment loads and processor architecture are ready, we optimize the thread-to-core map-

ping in the parallel SystemC simulation. For the common hierarchical multiprocessors,

on-chip communication latencies between cores on the same processor are identical, as

these cores share the Last-Level Cache (LLC). However, the inter-chip communication

is much more expensive than on-chip communication, as shown in Figure 3.4. In or-

der to improve the communication overhead in the parallel simulation, it is necessary

to minimize the costly inter-chip communication. Besides, the workloads on separate

processors must be balanced in order to utilize the processing units efficiently. Thus,

our optimization objectives are twofold:

• Minimize inter-chip communication volume;

• Balance workloads on separate processors.

This is a classic graph partitioning problem, to which the optimal solution is proven

to be NP-complete [2]. Thus, we utilize heuristic algorithms to efficiently generate the

desired optimized thread-to-core mapping. Here, we are using the open-source package
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METIS [47], which implements the multilevel Recursive-Bisection (RB) and multilevel

k-way (K-way) algorithms, to solve the graph partitioning problem. Our framework

converts the communication pattern and segment loads into the format of the METIS

graph file2, and specifies the number of target partitions as the number of separate

processors. Then, the METIS library takes these inputs and efficiently generates an

optimized thread-to-core mapping, which partitions threads for different processors.

6. Communication-Aware Parallel Scheduler: The last step of our framework is

to follow the optimized thread-to-core mapping at run time. Our communication-

aware scheduler will dispatch thread segments to the target processors, based on the

partitioning results from METIS.

Table 4.2: Comparison of the Linux scheduling and our thread mapping framework.

Linux Scheduling Our Thread Mapping Framework
Unaware of segment structure. Aware of segment structure.

Segment Able to identify whether threads Make better prediction
Structure are I/O bound or computation of workload based on the

bound. Favor interactive threads. static segment information.
Unaware of communication Aware of communication pattern.

Communication pattern. Randomly distribute Optimize thread mapping
Pattern threads over separate to minimize inter-chip

processors. communication.
Aware of processor architecture. Profile processor architecture

Processor Rebalance workload on and make fast adjustments
Architecture different processing cores by using workload

in an ad-hoc fashion. information at run time.

Table 4.2 compares the differences between the Linux default scheduling and our thread

mapping framework. As discussed in Section 2.4.4, Linux is unaware of the segment struc-

ture of a design model. It only identifies whether a thread is I/O bound (e.g., interactive

processes) or computation bound (e.g., batch processes), and favors interactive processes. In

2Specifically, the computation load of a thread segment is defined as the node weight, and the communi-
cation size between threads is defined as the edge weight.
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comparison, by using the segment information from the RISC compiler, our segment-aware

profiler makes better prediction of the run time of a thread segment. Also, Linux is unaware

of the communication pattern of the design, and thus it randomly distributes threads to

separate processors and may trigger more costly inter-chip communication. To fix this is-

sue, our graph partition tool takes the communication pattern and processor architecture as

inputs, and generates an optimized thread mapping that minimizes communication volume

across processors. Regarding the processor architecture, while Linux has full access to the

kernel information and rebalances workloads in an ad-hoc fashion, our framework profiles

the processor architecture and makes fast adjustments at the user level when the thread

workload changes.

4.6 Experimental Evaluation

In this section, we evaluate our framework with communication-intensive benchmarks to

demonstrate its performance gains. The whole set of benchmarks are generated by Task

Graphs for Free (TGFF) [20], and evaluated on two hierarchical multiprocessors. Table 4.3

lists their hardware specifications and Figure 4.2 and 4.6 depict their architectures.

Table 4.3: Workstations used for evaluation.

Host 12-Core 16-Core

Processor
Intel Xeon Intel Xeon

X5650 E5-2680
CPU frequency 2.67 GHz 2.7 GHz
Physical CPUs 2 2
Cores/CPU 6 8
Hyperthreading off off
Total HW threads 12 16
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Figure 4.6: A 16-core workstation architecture.

4.6.1 Task Graph Benchmarks

In Section 2.5.1, we extended TGFF to output actual SystemC models. Here, we use the same

tool to generate SystemC benchmarks which follow the three categories of communication

patterns. Specifically, each SC THREAD has a single segment, and repetitively transfers data

chunks through sc fifo channels without any processing. Thus, the thread segment in this

evaluation has little computation load but intensive communication overhead.

Next, we demonstrate the evaluation results for the three categories of communication pat-

terns separately.

4.6.1.1 Pipeline Communication Patterns

For the first experiment, we evaluate our framework with SystemC models which follow

the pipeline communication pattern like Figure 4.4a. Here, the sizes of the data chunks in

sc fifo channels are generated by TGFF as attributes, randomly distributed in the range

from 500 KB to 1.5 MB. Also, we generate three sets of task graphs which have different

amount of parallelism. The average number of parallel threads per core is chosen in the

range of less than 1, 1 to 2, or 3 to 5. Each set of task graphs consists of 30 benchmarks,

running on both workstations.
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Table 4.4: Performance of different graph partitioning algorithms for pipeline communication
patterns (Figure 4.4a).

12-Core Host 16-Core Host
Par Linux K-way K-way RB RB Linux K-way K-way RB RB

Runtime Speedup Overhead Speedup Overhead Runtime Speedup Overhead Speedup Overhead
less than
1 thread 56.76s +28.55% 0.001s +23.66% 0.001s 39.97s +19.67% 0.001s +19.14% 0.001s
per core
1 to 2

threads 108.74s +18.90% 0.001s +15.06% 0.001s 77.23s +11.59% 0.001s +7.99% 0.001s
per core
3 to 5

threads 243.07s +8.83% 0.001s +7.01% 0.001s 160.81s +3.92% 0.001s +3.50% 0.001s
per core

Table 4.4 shows the average performance gains of our thread mapping framework over the

30 benchmarks, deploying two different graph partitioning algorithms (K-way and RB) in

METIS. We use the Linux default scheduling as the baseline of our evaluation. The first

column Par in the table refers to the average number of parallel threads per core in the

SystemC models. Next, the table lists the average performance of the parallel simulation,

using different thread mapping schemes, together with the overhead of our optimization.

Here, the simulation time of K-way and RB already includes the overhead of our framework.

Table 4.4 allows the following observations:

1. Our framework performs significantly better than Linux with negligible

overhead: Our framework yields much better performance than Linux for all the three

sets of benchmarks, using either graph partitioning algorithm. While the maximum

speedup reaches 28%, the overhead of our optimization is negligible compared to the

total runtime.

2. Our framework shows better performance when most of the shared data

can fit into LLC: With an increasing number of parallel threads in the benchmarks,

the performance speedup of our optimization decreases. As discussed in Section 4.3,

our optimized thread-to-core mapping only improves inter-chip communication. When
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there are more parallel threads running in the simulation, not all the shared data can

fit into the Last-Level Cache (LLC). Currently, our framework can not optimize main

memory access. This will be one direction of our future work.

Figure 4.7 and 4.8 shows the performance of our framework using different graph partition-

ing algorithms, for each individual benchmark on both hosts. Here, we make another two

observations:

3. The graph partitioning results affect the simulation performance: In Fig-

ure 4.7 and 4.8, the K-way partitioning algorithm yields better performance than RB

for some benchmarks, while it is opposite for others. Clearly, a better graph parti-

tioning result leads to higher performance gain. While both partitioning algorithms

(K-way and RB) are only heuristics, they generate significantly better thread mapping

than Linux.

4. Our framework shows better performance than Linux with only few ex-

ceptions: Even though the 180 benchmarks used in our experiment have different

amounts of thread parallelism and communication size, our framework performs better

than the Linux default scheduling for almost all the benchmarks. Only in some rare

cases when Linux is ”lucky” to find an optimal mapping, the graph partitioning results

are slightly worse.

4.6.1.2 Parallel Communication Patterns

Next, we use the extended TGFF to generate SystemC benchmarks with parallel communi-

cation patterns as Figure 4.4b. Table 4.5 shows the experimental results.

In addition to the same observations from Table 4.4, Table 4.5 allows the following observa-

tion:
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.7: Performance comparison for pipeline communication patterns (Figure 4.4a) on
a 12-core host.
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.8: Performance comparison for pipeline communication patterns (Figure 4.4a) on
a 16-core host.
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Table 4.5: Performance of different graph partitioning algorithms for parallel communication
patterns (Figure 4.4b).

12-Core Host 16-Core Host
Par Linux K-way K-way RB RB Linux K-way K-way RB RB

Runtime Speedup Overhead Speedup Overhead Runtime Speedup Overhead Speedup Overhead
less than
1 thread 67.33s +18.71% 0.001s +22.48% 0.001s 56.23s +19.50% 0.001s +20.93% 0.001s
per core
1 to 2

threads 127.75s +19.00% 0.001s +18.71% 0.001s 111.91s +11.05% 0.001s +11.40% 0.001s
per core
3 to 5

threads 273.71s +10.21% 0.001s +9.66% 0.001s 188.70s +4.98% 0.001s +4.87% 0.001s
per core

5. The graph partitioning algorithms generate better results for simpler pat-

terns: Compared to Table 4.4, we observe that the performance gain of our framework

for parallel communication patterns is slightly worse than that for pipeline communi-

cation patterns, in the case that the average number of parallel threads per core is less

than 1. Clearly, the K-way and RB partitioning algorithms yield better results for

the simple pipeline patterns, achieving a speedup of 28%, while it is only 22% for the

parallel communication patterns.

Figure 4.9 and 4.10 shows the performance gain of our optimization for each individual

benchmark with the parallel communication pattern on the 12-core and 16-core hosts. Again,

our framework performs much better than the Linux default scheduling for the large majority

of benchmarks.

4.6.1.3 General Communication Patterns

Finally we evaluate our optimization with benchmarks that follow the general communication

patterns, like Figure 4.4c. Table 4.6 shows the average performance gain of our framework

on both hosts. Figure 4.11 and 4.12 demonstrate the performance for each individual bench-

mark. Here, we make another observation:
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.9: Performance comparison for parallel communication patterns (Figure 4.4b) on a
12-core host.
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.10: Performance comparison for parallel communication patterns (Figure 4.4b) on
a 16-core host.
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Table 4.6: Performance of different graph partitioning algorithms for general communication
patterns (Figure 4.4c).

12-Core Host 16-Core Host
Par Linux K-way K-way RB RB Linux K-way K-way RB RB

Runtime Speedup Overhead Speedup Overhead Runtime Speedup Overhead Speedup Overhead
less than
1 thread 134.30s +14.80% 0.001s +16.66% 0.001s 116.35s +16.59% 0.001s +20.01% 0.001s
per core
1 to 2

threads 252.90s +13.77% 0.001s +11.67% 0.001s 205.15s +14.39% 0.001s +15.92% 0.001s
per core
3 to 5

threads 769.86s +14.41% 0.001s +14.28% 0.001s 732.51s +12.88% 0.001s +13.35% 0.001s
per core

6. The performance gain of our framework is more stable for general commu-

nication patterns: Compared to the experiments with pipeline and parallel commu-

nication patterns, our framework achieves a more stable speedup for benchmarks with

general communication patterns. While the performance gain of our framework is up

to 16% on the 12-core host in cases of less than 1 thread per core, it remains 14% when

the parallelism increases to 3 to 5 threads per core. In the general communication

pattern, each thread segment has more dependencies on others, and thus there are less

threads and shared data chunks active simultaneously.

4.7 Conclusion

In this chapter, we proposed a communication-aware thread mapping framework, which

automically analyzes communication patterns and detects processor architectures. By using

an open-source graph partitioning tool and our RISC infrastructure, our framework generates

an optimized thread-to-core mapping to minimize costly inter-chip communication. In our

comprehensive evaluation, our framework consistently shows a significant speedup compared

to the Linux default scheduling. Also, we observe negligible overhead in our thread mapping

framework.
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.11: Performance comparison for general communication patterns (Figure 4.4c) on
a 12-core host.
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(a) Less than 1 thread per core.

(b) 1 to 2 threads per core.

(c) 3 to 5 threads per core.

Figure 4.12: Performance comparison for general communication patterns (Figure 4.4c) on
a 16-core host.
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Chapter 5

Computation- and

Communication-Aware Thread

Mapping

In Chapter 2, we proposed a segment-aware multi-core scheduler, addressing the load bal-

ancing problem in the parallel SystemC simulation. Then in Chapter 4, we introduced a

communication-aware thread mapping framework, which minimizes costly inter-chip com-

munication. However, a real-world application may consist of both significant computation

and communication load, for which our previous two methods may not yield a satisfac-

tory performance. In this chapter, we integrate the previous two methods and evaluate the

integration with a real-world graphics application.
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5.1 Integration of Our Methods

Before integrating our proposed methods in Chapter 2 and 4, we first present the computation

weight of a real-world application. Then we propose our integration which optimizes thread

mapping for reducing both computation and communication time in ESL simulation.

5.1.1 Computation Weight in Real-World Examples

In the Mandelbrot set renderer example [61], an iterative calculation is performed for each

pixel in the complex plot area, and it breaks the loop when the escape conditions meet.

The designer can determine the maximum depth of this iterative calculation. The higher

the maximum depth, the more details and accuracy appear in the result image. Figure 5.1

shows images of the same Mandelbrot set with different calculation depths. Here, we use

16 different colors1 to show the number of executed iterations for each pixel. Clearly, the

Mandelbrot set image with a maximum calculaton depth of 1024 is much more detailed than

images with lower calculation depths.

Figure 5.2 shows the computation weight in the Mandelbrot set renderer example, when

running on the 12-core host as depicted in Figure 4.2. All the Mandelbrot set renderer

examples have the same plot area, only differing in the maximum depth of calculation for

each pixel. When the maximum calculation depth is 4, a lot of details are missing in the

Mandelbrot set image (Figure 5.1a), and computation takes up 57% of the total execution

time. This weight climbs up quickly when the calculation depth increases, reaching 99% for

a calculation depth of 1024. Clearly, computation is more intensive than communication

in the Mandelbrot set renderer example on the hierarchical multiprocessor, which is also

true for many real-world examples. The communication-aware thread mapping framework

10: black, 1: brown, 2: red, 3: orange, 4: yellow, 5: light green, 6: green, 7: blue green, 8: turquoise, 9:
light blue, 10: white, 11: pink, 12: light pink, 13: purple, 14: blue, 15: dark blue.
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(a) Calculation depth: 4 (b) Calculation depth: 16

(c) Calculation depth: 64 (d) Calculation depth: 256

(e) Calculation depth: 1024

Figure 5.1: Mandelbrot set images with different calculation depths.

proposed in Chapter 4 may yield little speedup for this category of examples. Thus, it is

important to determine the correct thread mapping optimization for an example.
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Figure 5.2: Computation weight of a Mandelbrot set renderer example.

5.1.2 Computation- and Communication-Aware Scheduling Algo-

rithm

In order to determine the thread mapping optimization suitable for an example, it is intu-

itive to first identify the type of the application through profiling. If the example is mainly

computation-intensive, we should apply our segment-aware mutli-core scheduler from Chap-

ter 2. On the other hand, if the inter-thread communication takes up the majority of the

simulation time, the communication-aware thread mapping framework from Chapter 4 can

guarantee a significant speedup compared to the Linux default scheduling. For examples

and benchmarks that have both intensive computation and communication, we propose an

integration of the previous two methods.

In Chapter 2, the segment-aware multi-core scheduler aims at utilizing the processing units

as efficiently as possible. It is possible that one thread is migrated between cores or even

processors for the sake of computation efficiency, which creates redundent inter-chip commu-

nication. On the other hand, the objectives of our communication-aware thread mapping in

Chapter 4 are inter-chip communication minimization and workload balancing on separate
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Algorithm 8 Computation- and Communication-Aware Scheduling Algorithm

Input:
Current thread thcurr

Next segment SegIDnext

1: thcurr.Tend ← CurrentCycles()
2: RunTime[thcurr.SegID] ← thcurr.Tend − thcurr.Tstart

3: thcurr.SegID ← SegIDnext

4: while true do
5: while READY 6= ∅ do
6: if ∃ READYi 6= ∅ and ThreadNum(Proci) < MaxThreadsPerProc then
7: thnext ← pop(READYi)
8: thnext.Tstart ← CurrentCycles()
9: dispatch(thnext, Proci)

10: else
11: suspend(thcurr)
12: end if
13: end while
14: Delta cycle δ ← δ + 1
15: process any requested updates in primitive channels
16: process any delta notifications
17: if READY = ∅ then
18: advance simulation time
19: process any timed notifications
20: if READY = ∅ then
21: terminate the simulation
22: end if
23: end if
24: sort threads ∀th ∈ READYi in decreasing order of RunTime[th.SegID]
25: end while

processors. However, the thread dispatch order on every processor is determined by Linux,

and simulation may run longer due to the inferior dispatch order.

Algorithm 8 lists the pseudocode of our integrated computation- and communication-aware

scheduling algorithm, which makes a trade-off between the two methods in Chapter 2 and

4. While it reduces inter-chip communication as our framework in Chapter 4, it dispatches

ready threads on every processor following the segment-aware LJF policy.

Compared to Algorithm 2 in Section 2.4.4, Algorithm 8 has the following differences:

101



1. The READY queue is divided into a set of queues for different processors: In

our integrated algorithm, the READY queue consists of a set of queues, each containing

ready-to-run threads for a specific processor.

READY = ∪READYi

Here, READYi contains all the ready threads mapped to Processori, in the order of

LJF. The thread-to-processor mapping is determined by our communication-aware

optimization in Chapter 4, and a thread will only be dispatched to its target processor.

Then, Linux determines when and on which core of the target processor this thread will

run. As Linux has access to run-time processor information, it usually makes better

decisions than manually fixing the thread affinity to a single core in Algorithm 2.

2. The number of threads running on a processor is greater than the number

of cores: In Algorithm 8, when there exists a thread in READYi and the number of

running threads on Processori is less than MaxThreadsPerProc, the scheduler will

dispatch the first thread in READYi to Processori. As the threads in the applica-

tion have high communication load and need to halt for data fetching and recording,

MaxThreadsPerProc is usually set to be greater than the number of processing cores

on the processor. Empirically, MaxThreadsPerProc is defined as 2 times the number

of cores on a processor, to achieve the best run-time performance.

Also, our thread mapping framework (Figure 4.5) needs fine-tuning for the integration. Here

are a few changes:

1. The graph partition tool needs to be invoked dynamically in the simulation:

In the parallel simulation, as not all the threads are active simultaneously, the static

communication pattern only guarantees that the total workloads on distinct processors

are balanced. However, in any delta cycle, the static thread-to-core mapping from Fig-
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ure 4.5 may distribute unbalanced workloads to separate processors2. In order to cope

with the problem of static thread mapping, the scheduler invokes the METIS library

for any dynamic communication pattern, and then memorizes the METIS partition

result as the same pattern may appear again. In the dynamic communication pattern,

the computation loads of all the inactive threads are set to zero, and all the communi-

cation sizes keep the same. Next, the dynamic patition result from METIS determines

the READY queue (READYi) that a thread is pushed into.

2. The communication-aware scheduler dispatches threads according to LJF:

Rather than using the Linux default dispatching policy, the communication-aware par-

allel scheduler applies Algorithm 8 to dispatch ready threads. As identified in Chap-

ter 2, Longest Job First (LJF) is a better than default thread dispatch policy, when

the scheduler has accurate predicition of thread run times.

In our integration, the dynamic partition may incur more inter-chip communication than the

static one from Chapter 4, and some processing cores may stay idle while there exist ready

threads for other processors. These are the trade-offs we make between the previous two

methods, so as to efficiently utilize processing units and minimize inter-chip communication

at the same time.

5.2 Experimental Evaluation

In this section, we evaluate our integration with the pipelined Canny edge detector introduced

in Chapter 2. Here, we implement the Canny edge detector by actually transferring image

blocks between modules, rather than using global shared data as in Chapter 2. Thus, this

2In Chapter 4, as the applications are communication-intensive, most threads have little computation
load and thus the static thread-to-core mapping performs well.
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implementation has both intensive computation and communication load. Figure 5.3 depicts

the communication graph of the pipelined Canny edge detector.
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Figure 5.3: Communication graph of the pipelined Canny edge detector.

Table 5.1: Performance comparison of our proposed methods for Canny edge detector.

Host
Linux SEG COMM INTG
Time Speedup Speedup Speedup +Speedup1 +Speedup2

12-Core Host 50.29s 99.16% 99.62% 110.69% +11.63% +11.11%
16-Core Host 90.44s 100.81% 100.32% 102.87% +2.04% +2.66%

Table 5.1 compares the performance of our proposed methods for the Canny edge detector

example on the 12-core and 16-core hosts. The specification of these two workstations is

presented in Table 4.3. Here, Linux refers to our synchronous parallel SystemC simulator

using the Linux default scheduling, SEG refers to our segment-aware LJF optimization

from Chapter 2, COMM refers to the parallel simulation with our communication-aware

optimization from Chapter 4, and INTG applies our integration presented in this chapter.

In the second row, Speedup shows the performance gain of the specific method compared to

the Linux default scheduling, +Speedup1 refers to the relative speedup of INTG compared
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to SEG, and +Speedup2 is the relative performance gain of INTG in comparison to COMM.

Table 5.1 allows the two following observations:

1. For examples with high computation and high communication load, our

integration performs significantly better than the previous two methods:

In Table 5.1, while our segment-aware LJF scheduler and communication-aware op-

timization show similar performance to the Linux default scheduling for the Canny

edge detector example, our integration of the two optimizations achieves a significant

speedup of 11% on the 12-core host. Clearly, for real-world examples that have both sig-

nificant computation and communication, our integration performs much better than

each individual optimization from Chapter 2 and 4.

2. Our integration shows better performance gain when most of the shared

data fit into LLC: In Table 5.1, our integration yields higher speedup on the 12-core

host than on the 16-core host. Again, as discussed in Section 4.6.1, our integration

reduces the costly inter-chip communication. When the parallel threads require a lot

of main memory accesses on the 16-core host, the performance gain of our integration

is limited3.

3In the Canny edge detector example, BlurX Par and BlurY Par need to evenly split the processing
image into slices. Thus, on the 16-core host, the image size needs to be enlarged, and part of shared images
may not fit into LLC.
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Chapter 6

Conclusion

In this chapter, we first summarize the contributions of this dissertation, and then discuss

the future work we can explore.

6.1 Contributions

In summary, we have the following four contributions in this dissertation, namely:

1. An open-source software package for Out-of-Order PDES [56];

2. A segment-aware multi-core scheduler for SystemC PDES [57];

3. Core distance profiling on many-core and multi-core platforms [58];

4. A communication-aware thread mapping framework (Chapter 4 and 5).
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6.1.1 An Open-Source Software Package for Out-of-Order PDES

In Section 1.2, we presented the Recoding Infrastructure for SystemC (RISC) [56], which

implementes a dedicated SystemC compiler and an Out-of-Order PDES simulator. Other

than the regular SystemC-agnostic C++ compiler, our RISC compiler is SystemC-aware,

and performs segment graph construction, conflict analysis and source code instrumentation,

which are necessary for the Out-of-Order PDES in the RISC simulator. OoO PDES is an

advanced parallel scheduling algorithm for SystemC, which breaks the implicit temporal

barriers in traditional DES and also perserves timing accuracy. The RISC simulator, which

is semantics-compliant with the SystemC standard [37], allows a higher number of threads

to run concurrently on parallel processing cores. Currently, the RISC package is available

online at [55] as open source.

6.1.2 A Segment-Aware Multi-Core Scheduler for SystemC PDES

In Chapter 2, a segment-aware scheduling algorithm with optimized thread dispatching is

proposed for SystemC PDES. By using the RISC compiler from Section 1.2, our scheduler [57]

accurately predicts thread run times based on the static segment graph and the specific

segments ahead, and then dispatches threads according to the Longest Job First (LJF)

policy. The segment-aware scheduler aims at a more efficient utilization of the available

processing units. Our experimental results show that our proposed segment-aware algorithm

consistently speeds up SystemC PDES for both synthetic and real-world examples.

Our segment-aware multi-core scheduler covers the goal of Reducing the Computation

Time in SystemC PDES in Section 1.5.
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6.1.3 Core Distance Profiling on Multi-Core and Many-Core Plat-

forms

In Chapter 3, we defined the core distance concept for multi-core and many-core plat-

forms, and proposed a software approach [58] to optimize thread mapping for homogeneous

many-core processors with distributed tag directories. For the many-core architectures using

directory-based cache coherence protocols, the core-to-core communication latency depends

not only on the physical placement of communicating cores on the chip, but also on the

location of the distributed cache tag directory. By profiling the application and localizing

the threads and the responsible tag directories, our approach can significantly reduce the

on-chip communication latency on many-core platforms.

6.1.4 A Communication-Aware Thread Mapping Framework

In Chapter 4, we proposed a communication-aware thread mapping framework, which stati-

cally profiles communication patterns and processor architectures, and formulates the prob-

lem of thread-to-core mapping as graph partitioning. Our communication-aware framework

optimizes thread mapping in order to minimize the costly inter-chip communication. This

optimization meets the goal of Mitigating the Communication Time in SystemC

PDES, and shows a consistent performance gain compared to the Linux default mapping.

Chapter 5 integrates our optimizations from Chapter 2 and 4, which covers the goal of

Decreasing the Total User Time in SystemC PDES. The integration utilizes our

communication-aware framework to minimize inter-chip communication, and dispatches ready

threads on each processor according to the LJF policy.
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6.2 Future Work

In addition to the research work we present in this dissertation, we would like to explore the

following directions in the future.

6.2.1 Thread Mapping for Sporadic Models

As presented in Section 1.3 and 2.4.4, most of the ESL design models in SystemC are periodic.

Thus, our segment-aware optimization [58] profiles the execution time of a specific segment

and uses it as a prediction of its next run time. However, this is not valid for sporadic models.

In future, we would like to utilize our RISC compiler to generate static load estimates, in

order to improve our segment-aware scheduler for both sporadic and periodic models.

6.2.2 Extending the Thread Mapping Framework for More Plat-

forms

In Chapter 3 and 4, we mainly study the thread mapping for homogeneous many-core pro-

cessors and hierarchical multi-core processors. One direction of our future work is to extend

our current thread mapping framework for more host architectures, e.g., Networks-on-Chip

(NoC), Distributed Shared Memory (DSM), and Graphics Processing Units (GPU) systems.

In particular, we want to add more decision criteria for these platforms to our Processor

Architecture Detection Algorithm (Algorithm 7). Also, our graph partiton tool in the frame-

work (Figure 4.5) needs to take the characteristics of these architectures into consideration,

in order to automatically optimize thread-to-core mapping on these platforms.
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6.2.3 Resource Contention Analysis on More Factors

In this dissertation, we focus on improving computation efficiency, on-chip and inter-chip

communication overhead. However, parallel threads on the multi-core and many-core plat-

forms contend for many other shared resources, e.g., memory access interfaces, special func-

tional units, and on-chip cache space. In addition, the Hyper-threading technology intro-

duced by Intel may incur extra resource contention. On multi-core and many-core platforms

with hyper-threading enabled, extra logical processing cores are added to the chip. These

logical processing units have their own architectural states, but share the common execution

resource. This leads to additional resource contention between the hyper-threading cores.

In our future work, we plan to also investigate the contention on these shared resources in

our thread mapping approach.
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[57] G. Liu, T. Schmidt, and R. Dömer. A segment-aware multi-core scheduler for SystemC
PDES. In HLDVT, Santa Cruz, California, October 2016.
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