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ABSTRACT OF THE DISSERTATION

Declarative Languages and Scalable Systems for

Graph Analytics and Knowledge Discovery

by

Mohan Yang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Carlo Zaniolo, Chair

The growing importance of data science applications has motivated great research interest in

powerful languages and scalable systems for supporting advanced analytics on massive data sets.

Languages such as R and Scala are used to develop advanced analytical applications that are not

supported by SQL, the traditional query language used for decades to search the database and

analyze its data. An interesting research question that arises in this scenario is whether it is possible

to design an efficient query language that simplifies the writing of advanced analytical applications

and provides a unified environment for their development and deployment on multiple platforms,

including massively parallel ones. In this thesis, we provide a positive answer to this question

by demonstrating extensions of the logic-based query language Datalog and their implementation

techniques to enable (i) scalable support for graph analytics and knowledge discovery applications,

and (ii) portability between multicore machines and clusters.

A first set of extensions discussed in this thesis is based on monotonic aggregates and led to

the implementation of our Deductive Application Language (DeAL) system which (i) achieves su-

perior performance for graph analytics applications compared with other Datalog systems on mul-

ticore machines, and (ii) outperforms other distributed Datalog systems, as well as both GraphX

and native Apache Spark. We then tackle the difficult problem of supporting knowledge discov-

ery applications, by introducing non-monotonic extensions to support generic user-defined aggre-

gates, for which we provide a formal logic-based semantics. The Knowledge Discovery in Datalog
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(KDDlog) language so derived can express efficiently both descriptive analytics, such as rollups

and data cubes, and predictive analytics, such as association rule mining, classification, regression

analysis, and cluster analysis.
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CHAPTER 1

Introduction

The growing importance of big data applications is promoting a burgeoning research interest in

parallel systems and algorithms needed to achieve scalable performance on various parallel plat-

forms, including multicore machines and clusters. A wide spectrum of systems are being proposed

for the development of advanced analytics algorithms on these parallel platforms. Among them, we

should mention MapReduce [DG08], DryadLINQ [YIF08], Scope [CJL08], Pig [ORS08], Hive [T-

SJ09], Pregel [MAB10], Hyracks [BCG11], GraphLab [LBG12], Spark [ZCD12], and Flink [fli].

While these systems feature many differences in the techniques they use, they all seek to pro-

vide levels of scalability, usability, and portability that can compete with those of DBMSs, which

for traditional applications provided (i) scalability via parallelization, (ii) usability via declarative

query languages, and (iii) portability via compliance with SQL standards.

However, extending SQL and DBMSs to provide efficient support for advanced analytics, such

as graph applications, and knowledge discovery and data mining (KDD) algorithms, proved ex-

ceedingly difficult. In particular, the difficulty of integrating into IBM DB2 the Apriori algorithm

for frequent itemset mining was documented in a much cited paper [STA98]. Instead of using

SQL, most advanced analytics tasks are currently supported in DBMSs through vendor-specific

built-in functions implemented in low-level languages such as C and Java. A similar approach is

also adopted by most big data analytics systems mentioned above, where they usually provide (i)

a high-level language, such as SQL, to express traditional data intensive applications that can be

optimized and executed on different platforms, and (ii) several subsystems where each has (a) a set
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of APIs that can be used with low-level languages, such as R and Scala, to develop programs for

a specific type of applications, and (b) a library of functions that implement popular applications

of the specific type using the subsystem APIs. For example, Spark supports SQL queries through

a subsystem called Spark SQL [AXL15], while graph computations and KDD applications are

supported through GraphX [GXD14] and MLlib [MBY16], respectively.

Despite the huge success achieved by the big data analytics systems, especially Spark, for

providing scalable support for diverse types of applications within one system, the following two

limitations remain:

1. Limited usability. The knowledge about each subsystem and the corresponding program-

ming model is required to develop complex applications that involve several types of ana-

lytics. Thus, such applications can only be developed by very experienced users. However,

even for these users, it is still a non-trivial task to pick the most suitable subsystem for a spe-

cific application at hand, i.e., there is no clear rule to decide which subsystem to use when

one application can be supported by several different subsystems. On the other hand, the

domain experts, who frequently lack the time or the skills required to develop/modify the

programs written in low-level languages, are bound by the limited functionalities provided

by the system libraries.

2. Missed optimization opportunities. Although each subsystem still performs its subsystem-

specific optimizations, different subsystems are normally not aware of the existence of each

other. As a result, the underlying system does not have a global view about complex appli-

cations that involve the use of several subsystems, thus cannot find the execution plans that

minimize the total time spent on different subsystems.

An interesting research question that arises in this scenario is whether it is possible to design a

high-level declarative language that can simplify the development of diverse analytical applications

via a unified environment that facilitates their development and scalable deployment on multiple

platforms. In this thesis, we provide a positive answer to this question by demonstrating extensions

of the logic-based query language Datalog that enable (i) efficient and scalable support for graph

2



analytics and KDD applications, and (ii) portability between multicore machines and clusters.

More specifically, we have developed the following languages and systems:

Deductive Application Language (DeAL) System. Our first set of extensions based on mono-

tonic aggregates, which (i) are recently introduced for use in recursive rules [MSZ13a, MSZ13b],

and (ii) are critical in expressing many graph applications, lead to the implementation of our DeAL

system. A key component in Datalog program evaluation is the efficient support for recursion,

and our experimental study on finding an efficient and scalable parallel evaluation strategy for

basic recursive queries was presented in [YZ14a]. Then, the resulting evaluation strategy was

generalized and used in the DeAL system for in-memory parallel query evaluation on multicore

machines [YSZ15, YSZ16]. We designed and implemented a system that delivers (i) competi-

tive performance on the non-recursive queries of the TPC-H benchmark [tpca], compared with

the state-of-the-art DBMSs such as Vectorwise [vec] and SQL Server [sql], and (ii) superior per-

formance on recursive queries compared with Datalog systems on multicore machines, namely

CLINGO [GKK14], DLV [LPF06], LogicBlox [ACG15], and SociaLite [SPS13].

Finally, our BigDatalog system that focused on the distributed evaluation of the same set of

queries on clusters was presented in [SYI16]. In fact, BigDatalog (i) outperforms or performs as

well as other distributed Datalog systems, including SociaLite and Myria [WBH15], in speed and

scalability, and (ii) often outperforms many applications written in native Spark from which Big-

Datalog is developed, and GraphX [GXD14] which is the dedicated graph processing subsystem

on Spark.

Knowledge Discovery in Datalog (KDDlog) Language. We extend DeAL to tackle the difficult

problem of supporting KDD applications that lead to the design of our KDDlog language [YZ16].

The language is built on top of a query optimization technique called constrained least fixpoint

that allows the use of non-monotonic constructs in the iterative computation of recursive rules.

We introduce the notion of genericity for KDD algorithms, i.e., algorithms that can operate on

tables having arbitrary number of columns, and we propose constructs that achieve genericity by

supporting verticalized representations for tables. While vertical representations are sufficient in
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the implementation of simple KDD tasks, such as naive Bayes classifiers, more compact repre-

sentations are needed for advanced KDD tasks. Thus we introduce more efficient representations,

called prefix tables, for rollups and data cubes. Then we show how these new constructs that are

designed for descriptive analytics can be used to express efficiently predictive analytics, includ-

ing association rule mining, classification, regression analysis, and cluster analysis, thus leading

to a unified support for both descriptive analytics and predictive analytics. Finally, the language

supports user-defined aggregate functions which enable an open environment where we can export

KDD algorithms implemented in KDDlog and import algorithms implemented in other languages.

The rest of this thesis is organized as follows. In Chapter 2, we present our experimental study

on finding the most efficient transitive closure query evaluation algorithm on multicore machines.

Then we describe techniques used in our DeAL system to support efficient in-memory parallel

bottom-up evaluation of Datalog programs on multicore machines in Chapter 3, followed by an

overview of our BigDatalog system for the distributed evaluation of Datalog programs on clusters

in Chapter 4. After that, we present the KDDlog language that supports KDD applications in a

declarative language in Chapter 5. Finally, we conclude and discuss future work in Chapter 6.
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CHAPTER 2

Transitive Closure Queries on Multicore Machines

In this chapter, we present an experimental study on finding efficient main memory recursive query

evaluation algorithms on modern multicore machines.

2.1 Introduction

As we have moved from the simple applications originally supported by MapReduce to more ad-

vanced applications requiring iteration and/or recursion, it is now clear that classical algorithms

designed for traditional architectures should be re-evaluated and re-designed for these new mas-

sively parallel systems. For instance, several recent studies [ABC11, AU12, SKH12] have focused

on the implementation of transitive closure (TC) in clusters, and Afrati et al. [ABC11] showed that

a relatively obscure algorithm called SMART [Ioa86, VB86] outperforms other algorithms on this

problem.

However, algorithms that deliver optimal performance on clusters are hardly optimal on multi-

core machines, and vice versa: in the rest of the chapter we demonstrate this point by an in-depth

experimental study of various transitive closure algorithms on multicore machines. Thus, we will

first show that many other algorithms are significantly better than SMART, and then propose a

hybrid algorithm that achieves the best performance by combining two existing algorithms.

The novel performance findings presented here are hardly surprising in view of the fact that the

most previous studies date back to the late 1980 s and early 1990 s [VK88,AJ88,WZB92,CCH93],
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and there has been much progress in multicore systems since then. Moreover, we assume here that

all our data resides in main memory, whereas past studies on recursive query evaluation [War62,

War75, Ioa86, VB86, AJ87, AJ88, IR88, VK88, AJ90, Jak91, KIC92, WZB92, CCH93, DR94] often

assumed a database-oriented environment with data residing on secondary storage, whereby query

evaluation algorithms were designed to reduce I/O costs rather than in-memory evaluation costs.

We begin with a study of the TC query evaluation using the semi-naive fixpoint computation

(denoted by SEMINAIVE) and then SMART. Then we study SSC algorithms that decompose the

TC computation into disjoint computations, each computing the closure from a single vertex us-

ing linear recursive rules. The two SSC algorithms are SSC1 based on SEMINAIVE, and SSC2

based on the breadth-first search. We also propose a new hybrid SSC algorithm, called SSC12,

which integrates the merits of SSC1 and SSC2. We perform an experimental evaluation of our

implementations focusing on memory utilization, speed, and scalability.

2.2 Transitive Closure Algorithms

2.2.1 Linear TC Rules and Semi-Naive Evaluation

Let arc(X, Y) be a relation that represents the edges of a directed graph, i.e., there is a directed

edge from x to y if and only if arc(x, y) is a fact. The transitive closure (TC) of arc is a relation

tc(X, Y) such that tc contains all pairs (X, Y) that X can reach Y via a path in the graph. A linear

version of TC is given by the rules below.

tc(X, X) <- arc(X, _).

tc(X, Y) <- tc(X, Z), arc(Z, Y).

The first rule is an exit rule1. It adds a tuple (X, X) to tc for each source vertex X. The second

rule is a left-linear recursive rule. For every tuple (X, Z) that is already in tc, it expands the path

represented by (X, Z) with one more edge, then adds the new tuple to tc. The relation tc can be

computed by iteratively performing this operation until no more new tuples can be added to it. This

1A more common way to write the exit rule is tc(X, Y) <- arc(X, Y). The exit rule here ensures that tc always
contains the tuple (X, X) for each source vertex X.
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procedure is called the naive evaluation. This simple procedure may involve redundant derivations

since the same path may be generated in several iterations.

SEMINAIVE Algorithm

Semi-naive evaluation [ZCF97] is an optimized variant of naive evaluation. The idea is to use only

the new tuples derived in the previous iteration to derive the tuples in the current iteration. The

pseudocode is shown in Figure 2.1.

1: tc := {(X, X)|arc(X, _)}, ∆tc := {(X, X)|arc(X, _)}
2: repeat
3: δtc := πX,Y

(
∆tc(X, Z) ./ arc(Z, Y)

)

4: ∆tc := δtc− tc

5: tc := tc ∪∆tc

6: until ∆tc = ∅
Figure 2.1: SEMINAIVE algorithm for computing tc.

SEMINAIVE evaluates as follows. First, all source vertices in arc are added into tc and ∆tc,

i.e., tc and ∆tc contain tuples for all paths of length 0. Then, in the i-th iteration, the initial ∆tc

contains tuples for paths of length i − 1. δtc contains tuples corresponding to paths of length i

derived from extending paths of length i − 1 with one more edge. However, some tuples may

already be present in tc. It is not necessary to do derivations on these tuples since it will only

derive tuples that are already derived. So the new ∆tc excludes these tuples that are already in tc.

All tuples in the new ∆tc are merged into tc. The algorithm iterates until ∆tc becomes empty.

The number of iterations required by SEMINAIVE equals the length of the longest simple path

in the graph. The maximal value is n− 1 for a graph of n vertices. Thus, the algorithm could take

O(n) iterations to terminate.

2.2.2 Nonlinear TC Rules and SMART Algorithm

The number of iterations required by SEMINAIVE is large when the length of the longest simple

path is very long. However the use of quadratic recursive rules, as shown below, doubles the length

of the paths at each iteration thus reducing the number of iterations required to their logarithm.
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tc′(X, X) <- arc(X, _).

tc′(X, Y) <- arc(X, Y).

tc′(X, Y) <- tc′(X, Z), tc′(Z, Y).

The SMART algorithm [Ioa86,VB86] optimizes the computation of these rules by avoiding the

generation of the same path multiple times. The pseudocode for SMART is as follows:

1: tc′ := {(X, X)|arc(X, _)}, δtc′ := arc

2: repeat
3: ∆tc′ := πX,Y

(
δtc′(X, Z) ./ tc′(Z, Y)

)

4: tc′ := tc′ ∪∆tc′

5: δtc′ := πX,Y
(
δtc′(X, Z) ./ δtc′(Z, Y)

)
− tc′

6: until δtc′ = ∅
Figure 2.2: SMART algorithm for computing tc′.

At the beginning of iteration i, tc′ contains all tuples corresponding to paths of length at most

2i−1 − 1, and δtc′ contains all tuples corresponding to paths of length exactly 2i−1 that are not in

tc′. This condition holds in the first iteration as tc′ is set to the set of tuples corresponding to paths

of length 20 − 1 = 0 in line 1, and δtc′ is set to the set of tuples corresponding to paths of length

20 = 1 in line 1. In line 3, all tuples corresponding to paths of length between 2i−1 and 2i − 1

are derived by joining δtc′ and tc′. These tuples are merged into tc′ in line 4. Now tc′ contains

all tuples corresponding to paths of at most 2i − 1. In line 5, δtc′ is joined with itself to derive

all tuples corresponding to paths of length exactly 2i. Tuples that are already in tc′ are excluded

from the new δtc′. So the condition still holds for iteration i+ 1. The algorithm iterates until δtc′

becomes empty. In an n-vertex graph, there is no simple paths of length n. Thus, δtc′ is empty at

the end of iteration dlog ne, or the algorithm terminates in O(log n) iterations.

2.2.3 Single-Source Closure Algorithms: SSC1 and SSC2

The previous algorithms compute tuples from different source vertices at the same time, whereas a

more parsimonious usage of memory can be achieved by computing the paths that originate from

one source vertex one at the time [Jak91].
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In Datalog, we can express the optimization by replacing each goal tc(X, Y) with the one-

column predicate tc′′—for each value x that satisfies arc(X, _):

tc′′(x).

tc′′(Y) <- tc′′(Z), arc(Z, Y).
(2.1)

The closure under the operation defined by the rules in Equation (2.1) contains all vertices reach-

able from the source vertex x. We call it a single-source closure (SSC). An SSC algorithm com-

putes TC by computing the SSC for every source vertex in the graph. It decomposes the original

computation into disjoint computations based on the source vertex.

The SSC1 Algorithm

A straightforward way to compute the SSC of a source vertex x is to apply SEMINAIVE to the

rules in Equation (2.1). The algorithm, named as SSC1, is shown in Figure 2.3. For each vertex

Z in ∆tc′′, it finds all the Y that satisfies arc(Z, Y), and adds Y to δtc′′. All the vertices that are

already in tc′′ are excluded from the new ∆tc′′, and the remaining vertices are added to tc′′.

When the evaluation terminates, tc′′ contains all the vertices in the SSC of x. We compute the TC

by repeating SSC1 on all source vertices.

1: tc′′ := {x}, ∆tc′′ := {x}
2: repeat
3: δtc′′ := πY

(
∆tc′′(Z) ./ arc(Z, Y)

)

4: ∆tc′′ := δtc′′ − tc′′

5: tc′′ := tc′′ ∪∆tc′′

6: until ∆tc′′ = ∅
Figure 2.3: SSC1 algorithm for computing tc′′.

SSC1 performs exactly the same (logical) computation as SEMINAIVE does. The only dif-

ference is the computation is partitioned based on the source vertex. The effect of this is similar

to hashing. For example, the set difference in line 4 of Figure 2.1 is replaced by many set dif-

ferences in line 4 of Figure 2.3 which is equivalent to a hash-based set difference where the hash

function simply returns the source vertex of a tuple. As we will see, SSC1 normally outperforms
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SEMINAIVE which is slower because of the overhead of hashing and related operations.

The SSC2 Algorithm

The SSC of x is represented as a set in SSC1. An alternative representation is a Boolean array

of size n where the i-th element represents whether x can reach the vertex i in the graph2. This

array representation converts SSC1 to the SSC2 algorithm shown in Figure 2.4. The algorithm

essentially performs a breadth-first search starting from x. d, ∆tc′′, and δtc′′ are three arrays of

size n which are reused throughout the evaluation for all source vertices. Initially, all elements in

d are set to false except d[x]. In each iteration, ∆tc′′ and δtc′′ contain the vertices derived in the

last iteration and the current iteration, respectively. For each vertex Z in ∆tc′′, edges starting from

Z are explored to derive new vertices. When a new vertex Y is derived, we check if Y is already

in tc′′ by testing if d[Y] is true. If not, we set d[Y] to true, and then add Y to δtc′′. The check

in line 8 replaces the set difference in line 4 of Figure 2.3, while the operation of setting d[Y] to

true replaces the union in line 5 of Figure 2.3. When the algorithm terminates, the actual SSC is

constructed by collecting all vertices Y where d[Y] is true.

1: set each element in d[] to false
2: d[x] := true, ∆tc′′[0] := x, L := 1
3: repeat
4: l := 0
5: for i := 0 to L− 1 do
6: Z := ∆tc′′[i]
7: for each edge (Z, Y) in arc do
8: if d[Y] = false then
9: d[Y] := true, δtc′′[l] := Y, l := l + 1

10: ∆tc′′ := δtc′′, L := l
11: until L = 0

Figure 2.4: SSC2 algorithm for computing tc′′.

The array representation allows SSC2 to replace the set operations (insert, set difference, and

union) with array accesses. This optimization reduces the time of computation (lines 2–11 in

Figure 2.4) at the expense of additional time on array initialization (line 1) which is proportional

2We assume each vertex is encoded as an integer ranging from 0 to n− 1 in an n-vertex graph.
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to n. If n is very large, but very few edges are explored during the computation, the time spent on

array initialization may be longer than the computation. In this case, SSC2 is slower than SSC1.

On the other hand, if the algorithm explores many edges during the computation, the advantage of

the array representation becomes clear, and SSC2 becomes faster than SSC1.

2.2.4 An Adaptive Single-Source Algorithm: SSC12

The performance of the previous two SSC algorithms varies on different source vertices. We

propose a hybrid SSC algorithm, named as SSC12, which is a trade-off between SSC1 and SSC2.

Evaluation starts with SSC1, and converts to SSC2 when the algorithm predicts that the time

would be shorter if it converts to SSC2.

If SSC2 is faster than SSC1 on a source vertex, the optimal conversion point is the beginning of

the evaluation. But the prediction is difficult without computing the SSC. To control the conversion

of the hybrid algorithm, we use a heuristic algorithm as shown in Figure 2.5. δtc′′ and ∆tc′′ are

represented as sets in SSC1. Assume the cost of set insert and delete is the same. Let |adj(Z)| be

the number of Y that satisfies arc(Z, Y). The number of set operations performed to compute δtc′′

and ∆tc′′ are Cδ =
∑

Z∈∆tc′′ |adj(Z)| + |tc′′| and C∆ = |tc′′| + |∆tc′′|, respectively, which are

simple to compute. The algorithm chooses to convert if Cδ > n/α or C∆ > n/β, where α and

β are parameters that control the timing of conversion. It degenerates to SSC1 (resp., SSC2) if

α = β = 0 (resp., α = β =∞).

SSC1

Start

SSC2

∑
Z∈∆tc′′ |adj(Z)| + |tc′′| > n

α

|tc′′| + |∆tc′′| > n
β

Figure 2.5: Control algorithm for SSC12 algorithm.

A sufficiently small α ensures that the time becomes shorter if the algorithm chooses to convert

since SSC2 is expected to be faster than SSC1 for a large Cδ. But the algorithm may have to

execute SSC1 for a long time to obtain such a decision. Thus, the effect of conversion on speedup

the computation is diminished as the time of conversion may be too late. On the other hand, large
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α may lead to wrong predictions which slow down the evaluation. The same dilemma applies to

β. We describe how to tune these two parameters in Section 2.4.2.

2.3 Algorithm Implementation and Memory Usage

We will next describe in more details the implementation of these algorithms which we then com-

pare in terms of memory utilization, speed, and scalability. As discussed in the introduction, the

result of this comparison will help programmers implementing recursive applications, and it is

actually critical for a compiler optimizing the execution of TC Datalog program on multicore ma-

chines. In the previous section, we have seen how a simple rewriting can be used to redirect the

execution of linear rules from SEMINAIVE to SSC1, which can in turn be recast as SSC2 and

SSC12 (by the compiler using different memory structures). Rewriting rules that transform linear

recursive rules into nonlinear rules and then these to SEMINAIVE and SMART respectively are also

available. Thus all these algorithms represent achievable targets for a parallel Datalog compiler,

which will then select the optimal one for the system at hand. Afrati et al. [ABC11] have shown

that SMART is optimal for clusters, and in the rest of the chapter we seek to resolve the optimality

question for multicore machines.

2.3.1 Main Memory Representation

The different algorithms achieve their best performance with different representations. Thus S-

MART performs well when arc is represented as a collection of tuples, but the performance of

SEMINAIVE and the SSC algorithms improves significantly when an adjacency list representation

is used for arc. The time required for structuring the input data into an adjacency list and building

an index for it is included in the total time reported in our experiments (but it is small and only

accounts for less than 2% of the total time).

Adjacency List Index

The operation of deriving new tuples in SEMINAIVE can be simply implemented as a nested loop

join between ∆tc and arc. But it requires a full scan on arc for each tuple in ∆tc. Note that arc

does not change during the evaluation. A better strategy is to build an index on arc so that all tuples
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with a specific source vertex can be accessed directly. The index is an adjacency list representation

of the graph represented by arc where each vertex X is associated with an unordered list adj(X)

describing the set of neighbors of this vertex. It is built by scanning arc twice:

1. The first scan counts how many neighbors each vertex has. These values are stored in an

array of size n.

2. A contiguous memory space is allocated for the adjacency list. The starting position with-

in the allocated space for the unordered list associated with each vertex is determined by

computing the prefix-sum of the array obtained in Step (1).

3. During the second scan, the destination vertex of each tuple is stored in the list associated

with the source vertex.

Now, for each tuple (X, Z) in ∆tc, the algorithm retrieves from the index the list adj(Z) that

contains all neighbors of Z. For each vertex Y ∈ adj(Z), it generates a new tuple (X, Y). There is

no redundant accesses on arc. This index is also used in SSC1, SSC2, and SSC12.

2.3.2 Implementation of SEMINAIVE and SMART

Figure 2.1 and Figure 2.2 contain three basic relational algebra operators: join, union and set dif-

ference. We implemented both algorithms using hash-based parallel relational algebra operators.

We discuss possible alternative implementations in Section 2.4.5.

The join operator in line 3 of Figure 2.2 joins two large relations. Hash join is an efficient main

memory join algorithm for this scenario. The standard hash join algorithm builds a hash table

using the tuples in the smaller of the two input relations, and probes the hash table to find possible

matches for each tuple in the remaining input relation. If the hash table is very huge, the random

memory access pattern in building and probing of the hash table may lead to many cache misses.

Shatdal et al. [SKN94] proposed to partition both relations into smaller relations to reduce the

cache misses. Manegold et al. [MBK02] introduced the multi-pass radix partitioning to reduce the

translation lookaside buffer misses during the partitioning. Kim et al. [KKL09] presented the radix
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join algorithm on multi-core machines, which is a parallel implementation of the radix partitioning

based join algorithm. In this study, we implement the join operator using the radix join algorithm.

The complete radix join algorithm is shown in Figure 2.6. Given two input relations R and S, a

hash function h : {0, 1}∗ → {0, 1}N , both relations are partitioned into k = 2B partitionsRi and Si

with respect to the hash function h. The partitioning is achieved in multiple passes where the i-th

pass uses Bi bits from the hash value of a tuple, starting from the least significant bit (
∑
Bi = B).

For example, assume that the hash function h maps a tuple to a 32-bit integer, B1 = B2 = 7, then

the two hash functions in Figure 2.6 are h1 = h& 7F and h2 = h& 3F80. The first pass partitions

R into 2B1 = 128 partitions by looking at bits 0–6 in the hash value, and the second pass partitions

each of the 128 partitions in the first pass into 2B2 = 128 partitions by looking at bits 7–13 in the

hash value. Similar for relation S. When the partitioning finishes, the two input relations R and S

become 2B pairs of relations Ri and Si. For each Ri and Si pair, a hash table is built using tuples

in Ri, and is then probed for each tuple in Si. If either Ri or Si is empty, this pair can be ignored

since the join result of these two relations is empty.

R

R1

R2

Rk-1

Rk

S

S1

S2

Sk-1

Sk

…

h1

h2 h2

h1

h h

Pass 1 Pass 2 Pass 2 Pass 1

1) Partition 2) Build 3) Probe 1) Partition

… …… …

Figure 2.6: Radix join algorithm (based on Figure 4 in [BTA13]).

The first pass of partitioning in the radix join algorithm can be parallelized as follows: 1) e-

qually assign the relation to each thread, and each thread scans its assigned tuples once to count

how many tuples belong to a partition; 2) compute the starting offset of each partition in the final

location for each thread; 3) each thread scans its assigned tuples again, copies each tuple to its
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target partition. The partitions resulted from the first pass of partitioning are inserted into a queue.

Each thread takes a partition from the queue and performs the second pass of partitioning on it

concurrently. The remaining passes of partitioning can also be parallelized in this way. Finally, all

Ri, Si pairs are inserted into a queue, where each thread pops a pair and joins the two relations

until it is empty.

The union operator in line 4 of Figure 2.2 represents the operation of merging the newly derived

tuples in ∆tc into tc. This operation does not simply append ∆tc to the end of tc. Instead, it also

performs deduplication to ensure the algorithm does not perform redundant derivations. An ideal

way to achieve both at the same time is to use hash tables. We implemented the union operator

using the same techniques used by the radix join to optimize main memory performance. We first

partition both input relations into smaller pairs of relations Ri and Si, and then build a hash table

using all tuples in Ri and Si for each pair of relation. The output contains all tuples in the hash

table. If only one of Ri and Si is empty, this pair should still be processed since the union of these

two relations is not empty.

The set difference operator in line 5 of Figure 2.2 represents the operation of removing previ-

ous derived tuples in tc from δtc. This operation also requires deduplication to ensure no extra

derivations. We also use hash tables and techniques from the radix join to implement the set dif-

ference operator. Both input relations are partitioned into smaller pairs of relations Ri and Si. A

hash table is built using tuples in Ri, and is then probed for each tuple in Si. Each matched tuple

is removed from the hash table. All remaining tuples in the hash table are collected as the final

result. If Ri is empty, this pair can be ignored since empty set minus another set is always empty.

In Figure 2.1, the join operator is implemented as an index nested loop join as described in

lines 4–5. It is parallelized by equally assigning ∆tc to each thread. The set difference between

δtc and tc requires deduplication. It is implemented as described in the previous paragraph. After

the set difference, ∆tc contains neither duplicate tuples nor tuples in tc. Thus, the union operator

is simply implemented as appending ∆tc to the end of tc.

Our implementations use the Pthreads library. Each (working) thread is assigned to a unique

physical core on a multicore machine, and performs all the computation on its assigned core. In
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addition to the working threads, there is a control thread that coordinates the computation. In

each iteration, 1) the control thread assigns the job to each working thread; 2) all working threads

perform the computation; 3) the control thread allocates some memory, revokes some memory,

assigns the job; 4) each working thread copies the tuples from its local buffer to its assigned

location; 5) the control thread decides if the termination condition is satisfied, if not starts the

next iteration. The execution time is divided into three parts: 1) control time, the time spent

by the control thread; 2) computing time, when all working threads perform some computation;

3) copying time, when each working thread copies tuples to its assigned location.

2.3.3 Implementation of SSC Algorithms

Our implementation of different SSC algorithms uses different data structures. In SSC1, we use

hash tables to represent tc′′, ∆tc′′, and δtc′′. In SSC2, we use arrays to represent d, ∆tc′′, and

δtc′′. In SSC12, we use both hash tables and arrays.

An SSC algorithm can be easily parallelized on a shared memory machine as follows: 1) add

all source vertices into a queue; 2) each thread removes a vertex from the queue, and computes

the SSC of this vertex; 3) repeat until the queue is empty. The queue is implemented as an ar-

ray with a counter. Each element in the array is a vertex. The initial value of the counter is

zero. A thread gets the index of the next vertex by calling the gcc atomic memory access func-

tion __sync_fetch_and_add. Calling the function requires an implicit synchronization between

threads that are fetching the counter value at the same time. But the time spent on this synchro-

nization is negligible compared to the control time in SEMINAIVE and SMART.

NUMA Aware Optimization. On non-uniform memory access (NUMA) hardware, the memory

is configured into several NUMA regions and each region is attached to a unique CPU as its

local memory. A CPU accesses its local memory faster than non-local memory. If the relation

arc is resident on one CPU’s local memory, the threads running on this CPU access the relation

faster than the threads running on other CPUs. This unbalanced access speed slows down the

computation when we use multiple threads running on different CPUs. If the relation fits in one

NUMA region, we can duplicate the relation on each NUMA region such that each thread accesses
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the (copy of) relation that is resident on the NUMA region attached to the CPU the thread is

running on. SEMINAIVE, SSC1, SSC2, and SSC12 adopt this optimization since our experiments

are performed on a NUMA machine. The adjacency list index is duplicated on each NUMA

region. We discuss the impact of this optimization in Section 2.4.4.1. SMART does not adopt this

optimization since arc is only used in the first iteration and the time spent on this iteration is very

short comparing to the total time.

2.3.4 Memory Requirements

The main factors determining memory usage are as follows:

n number of vertices in the graph

m number of edges in the graph

mc number of tuples in the TC

p number of threads used by an algorithm

b number of bits to store a vertex

Now, Table 2.1 summarises the memory requirement of each implementation. It is clear to see

the advantage of the SSC algorithms on the memory requirement. They use at most half (resp., one

third) of the memory required by SEMINAIVE (resp., SMART) if m � mc (i.e., the TC contains

much more tuples than arc does). Moreover, the SSC algorithms do not need to access the tuples

in the TC. If the TC does not fit in the memory, an SSC algorithm can still executes as long as

arc fits in the memory and the remaining memory is sufficient to hold the auxiliary data structures

used by the algorithm. Instead of storing a newly derived tuple in the main memory, the algorithm

now appends it to the end of a file on the disk.

Table 2.1: Memory requirements of implementations.
Algorithm Memory Requirement (bits)

SEMINAIVE ≥ 4bmc + 2bm
SMART > 6bmc

SSC1 ≤ 2bmc + bm + 6bpn
SSC2 2bmc + bm + (3b + 1)pn

SSC12 ≤ 2bmc + bm + (9b + 1)pn
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2.4 Experimental Evaluation

All experiments are run on a multicore machine with four AMD Opteron 6376 CPUs and 256 GB

memory (configured into 8 NUMA regions). Each CPU has 16 cores organized as follows: 1) each

core has its own 16 KB L1 cache; 2) two cores share a 2 MB L2 cache; 3) eight cores share a 6

MB L3 cache, and have direct access to 32 GB memory. The operating system is Ubuntu Linux

12.04 LTS and the compiler is gcc 4.6.3 using -O3 optimization. Execution time is calculated by

taking the average of five runs of the same experiment3. Execution time is measured as the number

of CPU cycles elapsed from start to finish for computing TC.

In the rest of this section, we first describe the topology of the test graphs, and then describe

how the two parameters of SSC12 are determined using some test graphs. Finally, we present the

experimental results on serial and parallel execution of the compared algorithms.

2.4.1 Topology of Test Graphs

In our experiments, we encode each vertex in an n-vertex graph as a random 32-bit integer ranging

from 0 to n− 1. Each edge is represented as a pair of 32-bit integers. The edges are shuffled into a

random order and stored in a file. Recall that the graph has m edges. We say the graph is sparse if

m is much less than n2 (e.g., m = cn or m = cn log n where c is a small constant); otherwise, we

say it is dense (e.g., m = cn2 or m = cn
3
2 where c is a small constant). The TC is also a directed

graph. Similarly, we say the TC is sparse or dense based on whether the number of tuples in the

TC is much less than n2 or not. We evaluated the algorithms on synthetic graphs of four different

topologies and four real-world graphs as shown in Table 2.2.

Synthetic Graphs.

1) Tree. A tree has a root whose in degree is zero. There is exactly one path between a vertex and

each of its descendent vertex. We say a vertex v is a level-l vertex if there are l edges on the path

from the root to v. The depth of the tree is the maximum value of l for all vertices in the tree. Given

3We are not reporting the maximal/minimum execution time since the corresponding line and the average line are
almost coincident in the figures.
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Table 2.2: Parameters of test graphs.
Name Type Vertices Edges TC Size
tree-11 tree 71,391 71,390 876,392
tree-17 tree 13,766,856 13,766,855 251,744,564
grid-150 grid 22,801 45,300 131,698,576
grid-250 grid 63,001 125,500 1,000,203,876
sf-100K scale-free 100,002 350,604 96,157,950
gnp-0.001 G(n, p) 10,000 100,185 100,000,000
gnp-0.01 G(n, p) 10,000 999,720 100,000,000
gnp-0.1 G(n, p) 10,000 9,999,550 100,000,000
gnp-0.5 G(n, p) 10,000 49,986,806 100,000,000
patent real-world 3,774,769 16,518,948 5,833,193,395
wiki real-world 1,675,063 2,505,046 8,643,588,110
road real-world 3,598,623 8,778,114 7,719,381,925
stanford real-world 281,904 2,312,497 40,044,147,167

a positive integer d, we randomly generate a tree of depth d such that the out degree of a non-leaf

vertex is a random number between 2 to 6. We use tree-d to denote such a tree of depth d. It is a

sparse graph with at most 6n edges (d = Θ(log n)). The number of tuples in the TC is

d∑

i=0

|descendent vertices of all level-d vertices|

≤
d∑

i=0

|vertices in the tree|

= (d+ 1)n

= Θ(n log n),

i.e., the number of tuples in the TC is O(n log n). In this case, we have a sparse directed graph
whose TC is also sparse. tree-11 and tree-17 are two trees used in the experiment.

2) Grid. We use grid-d to denote a (d+ 1)× (d+ 1) square grid of (d+ 1)2 vertices. The vertices

can be labeled as (0, 0), (0, 1), . . . , (0, d), (1, 0), . . . , (d, d). For each vertex (x, y) (x 6= d, y 6= d),

there is a directed edge from it to vertex (x+ 1, y) and vertex (x, y + 1), respectively. Each vertex

(d, y) (y 6= d) is connected to vertex (d, y + 1), and each vertex (x, d) (x 6= d) is connected to

vertex (x+ 1, d). The out degree of vertex (d, d) is zero. Let n = (d+ 1)2, then a square grid of n

vertices has 2d(d+ 1) = Θ(n) edges. The number of tuples in the TC is
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d∑

x=0

d∑

y=0

|vertices reachable from (x, y)|

=
d∑

x=0

d∑

y=0

(d+ 1− x)(d+ 1− y)

=

[
(d+ 1)(d+ 2)

2

]2

= Θ(n2).

A square grid is a sparse directed graph but whose TC is dense. grid-150 and grid-250 are two
grids used in the experiment.

3) Scale-free. The degree distribution of a scale-free graph follows a power law distribution, i.e.,

the probability of vertex whose degree is k is proportional to k−γ where γ is a parameter. Many

real-world graphs, including the World Wide Web link graph, the paper citation graph and the

protein-protein interaction graph, are conjectured to be scale-free graphs [CSN09]. We use the

scale-free graph generator in the GraphStream library [gra] to generate a scale-free graph sf-100K.

(The edges generated from the generator are undirected, but we use them as directed edges.) The

TC of the graph contains about 96 million tuples. It is neither as dense as the TC of a grid (0.25n2),

nor as sparse as the TC of a tree (n log n).

4) G(n, p). An n-vertex G(n, p) graph (Erdős–Rényi model) is generated by connecting vertices

randomly such that each pair of vertices are connected with probability p (the graph can have self-

loops). The expected number of edges is n2p. We use gnp-p to denote such a random graph of

10000 vertices with parameter p. gnp-0.001, gnp-0.01, gnp-0.1 and gnp-0.5 are four G(n, p)

graphs used in the experiment. gnp-0.001 is a very sparse graph as each vertex has only ten edges

on average, while gnp-0.5 is a very dense graph as every vertex is directly connected to half of

all vertices. The TC of each G(n, p) graph has 100 million edges, i.e., it is a complete graph (the

densest graph).

Real-World Graphs.

1) patent is the US patent citation graph [LKF05]. Each vertex represents a patent, and each edge
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represents a citation between two patents. The graph is a directed acyclic graph.

2) wiki is a subgraph of the Wikipedia knowledge graph [wik] (the graph was extracted in [YD-

C14]). Each vertex in the knowledge graph represents an entity in the Wikipedia. If an entity

appears in the infobox of another entity, there is a directed edge between the two corresponding

vertices. wiki contains 20% of edges and the related vertices from the knowledge graph.

3) road is the eastern USA road network [roa]. Each directed edge represents a road between two

points in the road network. The graph has a tree structure where the root is a strongly connected

component (SCC) consisting of 2141 vertices (about 0.06% of all vertices). All the paths point

toward the root.

4) stanford is the Stanford Web graph [LLD09]. Each directed edge represents a hyperlink be-

tween two pages under the stanford.edu domain in 2002. The largest SCC in the graph contains

about half of the vertices.

Memory Utilization of Algorithms. Table 2.3 shows the memory utilization of each algorithm on

the test graphs. An X mark indicates that an algorithm is not applicable to a graph because the

computation requires more memory than the machine has. The memory utilization is usually

higher when an algorithm uses more threads. But adjusting the number of threads does not affect

whether an algorithm is applicable to a graph in our experiments. Thus, each value in the table

represents a typical memory utilization of an algorithm on a test graph (using the optimal number

of threads, see Section 2.4.4.2). Two values are reported for each SSC algorithm—the memory

utilization of computing and storing TC in memory, and the memory utilization of computing TC

in memory while storing it to disk. For graphs that fit in memory but whose TC cannot fit in

memory, the storing-to-disk option allows an SSC algorithm to compute TC without loosing the

speed of in-memory computing. For example, the TC of stanford cannot fit in memory, we can

still use the SSC algorithms in the storing-to-disk mode as shown by the last row of Table 2.3.

Moreover, when the query only needs to compute some aggregates on each source vertex, an SSC

algorithm can optimize the evaluation by computing the aggregates on each SSC without storing

the whole TC. However, there is no such simple optimization for SEMINAIVE and SMART.
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Table 2.3: Memory utilization of algorithms on test graphs (unit GB).
SEMINAIVE SMART SSC1 SSC2 SSC12

tree-11 0.06 0.08 0.02/0.02 0.04/0.04 0.02/0.02
tree-17 6.83 8.77 5.57/3.70 8.79/6.91 5.68/3.80
grid-150 3.75 22.39 1.00/0.02 0.99/0.01 1.00/0.03
sf-100K 2.51 21.96 0.76/0.05 0.77/0.06 0.79/0.08
gnp-0.001 10.95 X 0.76/0.02 0.77/0.01 0.79/0.03
gnp-0.01 97.90 X 0.81/0.07 0.79/0.06 0.81/0.07
gnp-0.1 X X 1.24/0.50 1.22/0.49 1.24/0.50
gnp-0.5 X X 3.18/2.44 3.16/2.42 3.18/2.44
grid-250 X X 7.52/0.07 7.48/0.04 7.50/0.05
patent X X 44.99/0.37 45.92/0.85 45.96/0.87
wiki X X 64.76/1.54 65.24/2.45 65.26/2.52
road X X 58.45/0.94 59.50/1.99 58.45/0.94
stanford X X X/0.50 X/0.23 X/0.26

The algorithms can be ordered as follows based on their memory utilization: SMART > SEM-

INAIVE > SSC1, SSC2, SSC12. The SSC algorithms always use the least memory which is

consistent with our analysis in Section 2.3.4. They are applicable to all test graphs, while SEMI-

NAIVE and SMART are only applicable to some test graphs. Although the TCs of all test graphs can

fit in memory (except stanford), SEMINAIVE and SMART are not applicable to some test graphs

since the intermediate result (δtc in Figure 2.1 and ∆tc′ in Figure 2.2) may be extremely large

before deduplication. Moreover, ∆tc′ is usually larger than the corresponding δtcs since ∆tc′

in the i-th iteration equals the union of δtcs from iteration 2i−1 to 2i − 1. Thus, SEMINAIVE is

applicable to two more graphs than SMART.

The SSC algorithms have a significant advantage over SEMINAIVE and SMART in terms of

memory utilization—the memory utilization of SEMINAIVE and SMART is 1.2× to 120× of SS-

C12, or 1.8× to 1400× if SSC12 uses the storing-to-disk mode. In the remaining of this section,

we compare these algorithms focusing on speed and scalability. We only show the result of an

algorithm on a test graph if the algorithm is applicable to the test graph.

2.4.2 Tuning the Parameters of SSC12

Now we determine the values of α and β in SSC12. We reduce the search space by forcing

both parameters to be powers of two. α is set to a pessimistic value: we find the α which is the
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smallest power of two such that for k = n/α random integers in the range of [0, n − 1], the time

of initializing array d and setting the values corresponding to the k integers to true is smaller than

that of inserting the k integers into δtc′′. This value is pessimistic since it guarantees that the time

becomes shorter if the algorithm chooses to switch. We select α = 1/8 as it is the value found by

the above procedure for n = 106.

We tune β by executing SSC12 on four synthetic test graphs, namely tree-17, grid-250, sf-

100K, and gnp-0.01. We select these graphs since each graph represents a medium workload such

that the execution time is neither too short nor too long. The algorithm uses 16 threads on tree-17,

64 threads on the remaining three graphs as these values are optimal in Figure 2.14. Figure 2.7

shows the execution time for different β. The execution time on tree-17 decreases as β increases,

while the execution on the remaining three graphs increases as β increases. We select β = 1/128

as a trade-off between these two cases.
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Figure 2.7: Execution time of SSC12 for different β.

The meaning of this parameter setting is: SSC12 chooses to switch if the number of tuples in

the SSC is greater than n/128 or the number of derivations in an iteration is greater than n/8. The

setting derived from these four graphs proved effective at delivering good SSC12 performance

throughout the wide range of test graphs tested in our experiments.

2.4.3 Serial Execution Performance

We first study the serial execution performance of the compared algorithms. Figure 2.8 shows the

serial execution time of each algorithm. The computation of SSC2 on tree-17 did not finish in
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one day. We use a value of 1013 in the figure to indicate this.

Effectiveness of SSC algorithms. Overall, the SSC algorithms achieve the shortest serial execution

time on all the test graphs reported in Figure 2.8: SSC2 is the fastest on grid-150, sf-100K and

gnp-0.001, and SSC12 is the fastest on the remaining graphs. We say a source vertex is a type I

(resp., II) vertex if SSC1 is much faster (resp., slower) than SSC2, otherwise it is a type III vertex.

Since most vertices in trees (e.g., tree-11 and tree-17) are type I vertices, SSC2 performs poorly

on trees, while SSC1 is much faster than SSC2 on trees. On the other hand, most vertices in grid-

150 are type II vertices, thus SSC2 is much faster than SSC1. SSC2 is only slightly faster than

SSC1 on the remaining graphs since most vertices are type III vertices. The hybrid algorithm,

SSC12, is able to select the more efficient algorithm for every source vertex in the graph. The

ability to make this intelligent selection enables SSC12 to outperform both SSC1 and SSC2 on

many test graphs (e.g., tree-11 and gnp-0.01). It consistently performs well on all the test graphs.

Linear Recursion Algorithms. SEMINAIVE and the SSC algorithms are based on linear recursion.

Figure 2.8 shows that SEMINAIVE is always slower than SSC1 on all the test graphs, which is con-

sistent with the analysis in Section 2.2.3. This result shows the effectiveness of the partitioning by

source vertex optimization employed by SSC1. Algorithm I.1 [AJ88] and strategy TCr [WZB92]

share the same idea with SSC1. But both compute the tuples from a set of source vertices at the

same time. They are expected to be slower than SSC1 for the same problem that SEMINAIVE

suffers from.

Linear vs. Nonlinear Recursion. Figure 2.8 shows an empirical comparison between the nonlinear

recursion based SMART algorithm and the linear recursion based algorithms. SMART is always

faster than some linear recursion based algorithms on the four test graphs that it is applicable,

which exhibits the advantage of smaller number of iterations during the TC computation. However,

the linear recursion based SSC12 algorithm outperforms SMART on all four graphs as it uses more

efficient data structures.

2.4.4 Parallel Execution Performance

Now we study the parallel execution performance of the compared algorithms on the test graphs.
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2.4.4.1 Speedup of Algorithms

Figure 2.9 shows the speedup of each algorithm w.r.t. the serial execution. Overall, every algorithm

exhibits some speedup as the number of threads increases: SEMINAIVE and SMART show very

limited speedup, while the SSC algorithms achieve almost linear speedup. A general rule is that

the speedup does not increase linearly with the number of threads, but it becomes progressively

less due to the increased overhead of synchronizing more threads. In the extreme cases where the

time for synchronization dominates real computation time, we see the overall computation taking

a longer time when we increase the number of threads—see, e.g., SEMINAIVE and SMART on

tree-11.

We next discuss the speedups of the various algorithms in detail. We use the result of grid-150

(i.e., Figure 2.9(c)) as an example since the same trend is also observed in Figures 2.9(d), 2.9(e),

and 2.9(f).

Speedup of SEMINAIVE. The execution time of SEMINAIVE is the sum of computing time, control

time, and copying time (defined in Section 2.3.2). Figure 2.10 shows the execution time break-

down of SEMINAIVE on grid-150. The bars for copying time are unnoticeable since copying time

accounts for less than 1% of the execution time. As the number of threads increases from 1 to

64, control time remains almost unchanged, while computing time decreases by about two thirds.

(Note that computing time increases slightly when the number of threads increases from 16 to 64

as a result of increased overhead of synchronizing more threads.) Control time accounts for more

than half of the execution time when 64 threads are used. Although there is speedup in comput-

ing time, the unchanged control time limits the overall speedup in SEMINAIVE. This result is very

common for graphs that require many iterations while the computation in each iteration is very fast.

However, for graphs like gnp-0.001 and gnp-0.01 that SEMINAIVE terminates in a few iterations

(8 and 4, respectively) while the computation in each iteration takes a long time, the execution

time is still dominated by computing time, and the speedup curve of SEMINAIVE is similar to that

of SMART. As we will see next, the speedup of this kind of evaluation is bound by the memory

bandwidth.
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Figure 2.9: Speedup of algorithms (w.r.t. the serial execution) using different number of threads.
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Figure 2.10: Execution time breakdown of SEMINAIVE on grid-150.

Speedup of SMART. Figure 2.11 shows the execution time breakdown of SMART on grid-150.

Computing time in SMART scales much better than that in SEMINAIVE, while control time ac-

counts for a smaller percentage in SMART. Thus, SMART scales better than SEMINAIVE on grid-

150. However, the speedup of computing time is only 8 when 64 threads are used. We further

investigated the time spent on each relational algebra operators in computing time. There are four

operators in each iteration, namely join, union, join, and set difference. Figure 2.12 shows the total

time spent on each operator. The time spent on the union operator dominates the computing time.

A further breakdown of the time spent on the union operator reveals that the overall speedup is

bound by the speedup of partition phase. A union operator works in two phases—partition phase

and union phase. Both input relations are partitioned into smaller relations in the partition phase.

Each thread computes the union of two partitioned relations in the union phase. Figure 2.13 shows

the maximal speedup of each phase in each iteration. The speedup of union phase is twice as much

as that of partition phase from iteration 5 to 8, while the time spent on these 4 iterations accounts

for 97% of the execution time on the union operator. The speedup of partition phase is limited by

the memory bandwidth [KKL09]. Thus, the overall speedup of SMART is bound by the memory

bandwidth.

Speedup of SSC algorithms. An SSC algorithm is expected to achieve linear speedup since the

computation in one thread does not interfere with the computation in other threads. However, its

speedup stays below eight as the number of threads increases from 8 to 64 when the NUMA aware
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Figure 2.11: Execution time breakdown of SMART on grid-150.
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optimization described in Section 2.3.3 is not enabled4. The main reason for this behavior is due

to the limited memory bandwidth. The NUMA region that the shared relation is resident on is the

hotspot since all threads request data from it concurrently. When the memory is saturated (i.e., it

cannot handle more memory load requests in a time unit), increasing the number of threads does

not increase the speedup.

The memory saturation problem is alleviated by the NUMA aware optimization. This opti-

mization 1) distributes the memory load requests to each NUMA region and 2) ensures each thread

always accesses data on the local memory. The SSC algorithms exhibit linear speedup as shown

in Figure 2.9. But this optimization does not change the fact that the SSC algorithms are mem-

ory bandwidth bound. The evaluation of the all-pairs shortest path query described in Section 5

of [YZ14b] accesses more data than that of the TC query does. None of the SSC algorithms scale

linearly on the graph that does not fit in the L3 cache as a result of memory saturation.

2.4.4.2 Minimal Execution Time

Finally, we compare all the algorithms in terms of their execution time using multiple threads. The

execution time does not always decrease as the number of threads increases. The optimal number

of threads is the number of threads such that the execution time of an algorithm on a graph is

minimal among all other numbers. Figure 2.14 shows the execution time of each algorithm using

the optimal number of threads.

SMART is faster than SEMINAIVE on all four graphs that both algorithms are applicable as

a result of better speedup, which is consistent with the conclusion of [ABC11] that SMART has

advantages over SEMINAIVE on TC computation. However, neither algorithms is the fastest on

any test graph. The SSC algorithms achieve the minimal execution time on all the test graphs,

while only SSC12 consistently performs well.

Figure 2.14 also shows the minimal execution time of the SSC algorithms on grid-250 and

four real-world graphs. These graphs have much larger TCs such that only the SSC algorithms

are applicable. SSC1 is faster than SSC2 on patent and road since both graphs have tree struc-

4We are referring to the case that the graph does not fit in the L3 cache, otherwise the algorithms scale better.
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tures. SSC2 is faster than SSC1 on the remaining three graphs. Nevertheless, SSC12 is the only

algorithm that performs well on all five graphs.

Besides the speed, SSC12 is more memory efficient than SEMINAIVE and SMART. These two

advantages make SSC12 an ideal choice for main memory parallel TC evaluation.

2.4.5 Comparison with Alternative Implementations

The previous experimental result demonstrates the effectiveness of SSC12 comparing to our im-

plementation of the semi-naive evaluation and the Smart algorithm. There are other choices on

the parallel implementation of these algorithms. In this section, we compare our result with those

of the alternative implementations. The comparison is organized into three categories as proposed

in [CCH93].

Data Parallel. This approach assigns different operators to different threads. SEMINAIVE and

SMART adopt this approach. The speedup of SEMINAIVE is limited by the control time. A data

parallel implementation of the semi-naive evaluation spends a significant percentage of the exe-

cution time on the control time due to the large number of iterations required by the semi-naive

evaluation. It only achieves limited speedup as the control time does not decrease when more

threads are used. The speedup of SMART is limited by the memory bandwidth since the execution

time is dominated by the radix partition. An alternative choice is to implement the algorithm using

sort-based operators. Albutiu et al. [AKN12] reported a 4× speedup on their sort-merge join im-

plementation compared with a radix join implementation on datasets of sizes ranging from 50 GB

to 400 GB on a 32-core machine. But SSC12 is still the best algorithm even if the Smart algorithm

becomes four times faster in our experiment.

Operator Pipeline. This approach assigns different data to different threads. It might achieve

good speedup if we can execute many operators at the same time. Both the semi-naive evaluation

and the Smart algorithm contain a set difference operator which has tc on the right-hand side. The

computation for the set difference cannot start until the computation for tc is finished. Since tc

changes in every iteration, both algorithms have to synchronize before the set difference in every

iteration. Thus, we can execute at most two (resp., three) operators at the same time in an operator

32



pipeline implementation of the semi-naive evaluation (resp., the Smart algorithm). Although the

monotonic nature of the TC computation guarantees that the computation still terminates with

correct result if we proceed asynchronously without synchronizing before the set difference, the

implemented algorithm is different from the semi-naive evaluation described in Figure 2.1 and

the Smart algorithm described in Figure 2.2, and may perform redundant derivations. We limit

our comparison to the faithful implementations of Figure 2.1 and Figure 2.2. Their speedup is no

better than that of the data parallel approach.

Combining Approach. A semi-naive evaluation implementation using this approach still suffers

from the same problem as SEMINAIVE does since the evaluation requires many iterations. A

Smart algorithm implementation that belongs to this category is the one proposed by Afrati et

al. [ABC11]. Although it is designed for a distributed environment, it can be adapted to a shared

memory machine. The computation involves two kinds of tasks: join tasks and dup-elim tasks.

Given a hash function, each task is responsible for the computation of all tuples with the same

hash value. A join task receives a tuple from a dup-elim task and sends the derived tuples to the

corresponding dup-elim tasks, while a dup-elim task receives a tuple from a join task and sends

the tuple to the corresponding join task if the tuple is not in its local store. If the computation uses

p threads, then both ∆tc and δtc are supported by p/4 tasks of each kind, while each task is a

thread executed on a unique core.

Figure 2.15 compares this implementation, denoted by SMARTA, with SMART and SSC12. S-

MARTA performs duplicate elimination when a tuple is derived, while SMART waits until all tuples

in an iteration are derived. This duplicate elimination strategy reduces the memory requirement of

SMARTA on graphs that the TC computation derives a lot of duplicate tuples. SMARTA is appli-

cable to two more graphs than SMART. A disadvantage of this duplicate elimination strategy is its

poor cache behaviour. Duplicate elimination in SMARTA is implemented as a hash table lookup.

Performing many hash table lookups is expected to be slower than performing a radix partition-

ing based set difference due to the cache issues discussed in Section 2.3.2. SMART is faster than

SMARTA on three graphs among the four graphs that both algorithms are applicable. Besides the

cache issues, SMARTA needs special treatment to deal with skewed data, and it cannot fully utilize
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all cores due to the load imbalance between different kind of tasks. SSC12 is between 7× to

20000× faster than SMARTA.
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Figure 2.15: Execution time comparison with implementation of Smart algorithm proposed
in [ABC11] (denoted by SMARTA).

2.5 Related Work

The TC of a binary relation is a much-studied recursive query. The earliest work dates back to

1962, when Warshall [War62] proposed the Floyd–Warshall algorithm that computes the TC of an

n-vertex graph in Θ(n3) time. One line of research tries to speed up the computation by exploiting

the special property of the problem itself. Warren and Henry [War75] proposed a variant that

works faster for sparse graphs in a paging environment. Agrawal and Jagadish [AJ87] studied

I/O efficient variants, the Blocked Warshall algorithm and the Blocked Warren algorithm, under

the assumption that the memory size is small compared to the result relation size. The I/O cost is

further reduced in algorithms based on depth-first search and a marking optimization [IR88,AJ90].

[KIC92] and [DR94] compared I/O costs of TC algorithms using different implementations. Our

study compares the serial execution performance of several TC algorithms. But we focus on main

memory evaluation, and our implementations use cache conscious algorithms.

Our implementations of parallel TC algorithms are inspired by previous studies on parallel TC

computation [VK88, AJ88, WZB92, CCH93]. The idea of implementing SEMINAIVE and SMART

using hash-based parallel relational algebra operators is attributed to Valduriez and Khoshafian

[VK88]. Agrawal and Jagadish [AJ88] and Wolfson et al. [WZB92] proposed to partition the

computation by the source vertices so that each core applies SEMINAIVE on a set of source vertices.
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The idea is similar to that of SSC1 except SSC1 applies SEMINAIVE on one source vertex one

at the time. Cacace et al. [CCH93] provided a survey on parallel TC algorithms. Previous studies

use theoretical models to analyse the performance of algorithms, whereas our study focuses on

experimental evaluation. In another experimental study [YZ14a] that includes the parallel Floyd

algorithm [AJ88], we showed that the Floyd algorithm achieves competitive performance for small

dense graphs. But its memory requirement is impractical for large sparse graphs. Moreover, it is

outperformed by SSC12 in the experiments.

2.6 Conclusion

In this chapter, we compared several recursive query evaluation algorithms on a modern multicore

machine. A clear conclusion emerging from these experiments is that, for multicore machines, the

simple SSC algorithms perform better than other algorithms in terms of speed and significantly

better in terms of memory utilization. We thus introduced an algorithm, called SSC12, which

combines the strengths of SSC1 and SSC2. However, our experiments also confirmed that per-

formance of SSC12 (and other algorithms) on multicore machines will always be limited by the

memory bandwidth bottleneck.
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CHAPTER 3

Scaling up Datalog on Multicore Machines

In this chapter, we generalize the techniques described in the previous chapter that focus on transi-

tive closure, and introduce query evaluation techniques for parallelizing arbitrary Datalog programs

on multicore machines.

3.1 Introduction

With the first wave of interest in Datalog, much attention was paid on parallelizing its bottom-up

evaluation. Various studies were proposed focusing on the message passing model, in which pro-

cessors communicate with each other by exchanging messages. This includes both strategies for

programs that can be evaluated without any communication [WS88, Wol88, CW89, SL91] and s-

trategies to minimize the amount of communication required [GST92,ZWC95,GST95]. Although

few system implementations and experimental results were reported on these techniques, these

papers contained a number of important ideas which we have refined and extended in the imple-

mentation of our Deductive Application Language (DeAL) system [dea] (hereafter, we use DeALS

as an abbreviation for DeAL system).

In this chapter, instead of the message passing model, we assume the shared-memory mod-

el, where the data is stored in shared memory that can be directly accessed by all processors, as

supported by most modern multicore machines. We present an extensive performance comparison

between DeALS and other Datalog systems that adopt the shared-memory model, including CLIN-

GO [GKK14], DLV [LPF06], LogicBlox [ACG15], and SociaLite [SGL13, SPS13]. Figure 3.1
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Figure 3.1: Query evaluation time of sg on tree-11.

is an excerpt from the results of Exp III in Section 3.6, showing the evaluation time of the same

generation query sg (see Example 3.7) on the small test graph tree-11 for the aforementioned sys-

tems. The test graph contains 71 thousand pairs of integers, while the output contains two billion

pairs of integers. The evaluation was run on a machine with four AMD Opteron 6376 CPUs (64

cores) and 256 GB memory, and the systems were configured to use all the cores and memory on

the machine. Although the total size of input and output is only 1/16 of the memory size in the

test machine, both CLINGO and DLV run out of memory during the evaluation. The two systems,

LogicBlox and SociaLite, which can finish the evaluation, spend more than 16 hours and 8 hours,

respectively. This query can also be expressed by an SQL query with a WHILE loop, which can be

evaluated by RDBMSs. We implemented and tested the query on a commercial RDBMS with its

memory-optimized database engine, but the evaluation on tree-11 did not finish in one day, and

the similar problem occurs in other datasets we tested.1 These disappointing results, summarized

in Figure 3.1, highlight the difficulty of efficiently evaluating recursive Datalog programs on mul-

ticore machines. On the other hand, DeALS evaluates sg on tree-11 in 48 seconds—more than

600 times faster than the best evaluation time achieved by other existing systems.

In this chapter, we present the compilation techniques used by DeALS for in-memory parallel

evaluation of Datalog programs on shared-memory multicore machines. We focus on one type of

1Another way to implement this query is to use the recursive common table expressions. But the approach of using
a WHILE loop performs significantly better in our experiments.
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parallel evaluation plans in which every table in the database is hash-partitioned and the number of

partitions equals the number of available processors. In the parallel evaluation, locks are used to

ensure the atomicity of each update operation if multiple update operations on the same partition

of a table can occur concurrently, and multiple index lookups are required to achieve the effect

of one index lookup in the sequential evaluation when the corresponding index is not partitioned

by the key columns. Both the use of locks and additional index lookups introduce overhead in the

parallel evaluation w.r.t. sequential evaluation. DeALS finds a parallel plan that correctly evaluates

the query while minimizing such overhead. Here we also present a rewriting technique that trans-

forms a locking program into a lock-free program. As a result, we obtain compilation techniques

that produce efficient evaluation plans for both non-recursive programs and recursive programs.

Therefore, DeALS delivers (i) competitive performance on the non-recursive queries of the TPC-

H benchmark [tpca], compared with the state-of-the-art RDBMSs such as Vectorwise [vec] and

SQL Server [sql], and (ii) superior performance on recursive programs compared with Datalog

systems on multicore machines, namely CLINGO, DLV, LogicBlox, and SociaLite.

The rest of this chapter is organized as follows. We review some background material on

monotonic aggregates in Section 3.2. We introduce our parallel evaluation strategy in Section 3.3.

We describe how DeALS finds an efficient parallel evaluation plan in Section 3.4 and generates

code for evaluation in Section 3.5. We report experimental results in Section 3.6. We present

a sufficient condition for a program to be a lock-free program and a rewriting that transforms a

locking program into a lock-free program in Section 3.7. Related work is discussed in Section 3.8.

The chapter concludes in Section 3.9.

3.2 Monotonic Aggregates

An important contribution of DeALS is that it supports monotonic aggregates in recursion accord-

ing to the formal semantics elucidated in [MSZ13a, MSZ13b], where basic Datalog techniques,

including semi-naive evaluation and magic sets rewriting, were also extended and specialized for

these monotonic aggregates. A simple example of the use of these aggregates is provided by the

following attend program that is based on a similar one proposed by Ross and Sagiv in [RS92].
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Example 3.1. The attend program below finds all the people who will attend the party—a person

will attend the party if he/she is an organizer, or he/she has at least three friends who will attend

the party. Here we use the “<· · ·>” notation in the rule head, that is used in LDL [CGK90]

and Coral [RSS92]. However, instead of the common count aggregate that produces only a final

count, sayK, we use the countinous aggregate mcount that produces 1, . . . , K, i.e., all the integers

starting with 1 and up to K included.

cntfriends(Y,mcount〈X〉) <- attend(X), friend(X, Y).

attend(X) <- organizer(X).

attend(Y) <- cntfriends(Y, N), N ≥ 3.

Unlike the standard count, mcount is monotonic w.r.t. set containment: if applied to a superset

of S it produces a set of integers that is a superset of that produced when it is applied to S. Because

of this monotonicity property, mcount can be freely used in recursive rules while preserving the

least fixpoint semantics of Datalog. On the other hand, count is not monotonic in the lattice of

set-containment and its use in recursive rules can produce programs that have no least fixpoint

semantics. This problem is illustrated by the following example that recasts in our syntax the

example of Ross and Sagiv [RS92].

Example 3.2.
p(b).

q(b).

cp(count<X>) <- p(X).

cq(count<Y>) <- q(Y).

p(a) <- cq(1).

q(a) <- cp(1).

Here we have two minimal models that are also minimal solutions of the fixpoint equations for the

immediate-consequence operator of this program—the first is {p(b), cp(1), q(a), q(b), cq(2)}, and

the other is {p(a), p(b), cp(2), q(b), cq(1)}. If instead of count we use mcount in our program

above, we only get the following solution: {p(a), p(b), cp(1), cp(2), q(a), q(b), cq(1), cq(2)}.
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This is the correct solution since the monotonic mcount cp(2) also implies cp(1), and cq(2)

implies cq(1).

The same problem also prevents the use of the standard sum in recursion. However, it seems

that both [SGL13] and [WBH15] ignore this problem, and allow unrestricted use of count or sum

in recursion, e.g., the program in Figure 5 of [SGL13] and the program in Figure 2 of [WBH15].

Although the iterated fixpoint computation produces the correct results for these programs, this is

not true for other programs. Therefore, DeALS provides both the standard count and sum, and

the monotonic mcount and msum, but only allows the use of mcount and msum in recursive

rules. This avoids the semantic problems elucidated in [RS92, Van93], which beset systems such

as [SGL13, WBH15] which only support the standard count and sum.

At the same time, however, the DeALS compiler recognizes that in the semi-naive evaluation,

mcount (resp., msum) can often be replaced by the more efficient count (resp., sum) in programs

that satisfy the conditions discussed in [MSZ13b, SYZ15].2 This optimization is applicable in

most cases of particular interest, including the attend example above and other examples used

in previous papers on DeALS [MSZ13a, MSZ13b, SZZ13, SYZ15, SYI16], SociaLite [SGL13,

SPS13], and Myria [WBH15] that use aggregate in recursion. Therefore, starting from a rigorous

abstract semantics, DeALS is able to optimize execution into a concrete semantics that assures

superior performance by applying this and other query optimization techniques discussed in the

chapter.

3.3 Parallel Datalog Evaluation

In this section, we present a parallelization strategy for Datalog programs on a shared-memory

machine with n processors and how it is implemented in DeALS.

2The idea of this optimization is that there is no need to consider any value but the maximum value produced by
the mcount goals, i.e., the current count values, when certain conditions are satisfied. DeALS uses simple sufficient
conditions that can be easily checked by a compiler, including (i) the values produced by the mcount goals are tested
against some monotonic Boolean conditions which evaluate to true iff they are true for the max values; or (ii) the
values produced by the mcount term are fed to the final extraction rule which disregards all the values but the max
ones. Similar conditions apply for msum.
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3.3.1 Parallel Bottom-Up Evaluation

Let us recall the transitive closure program and its semi-naive evaluation described in Section 2.2.

Example 3.3. Bottom-up evaluation of tc. Let arc be a base relation that represents the edges of

a directed graph. The tc program below computes the transitive closure of arc, which is a derived

relation that contains all the pairs (X, Y) where there is a path from X to Y in the graph.

r1 . tc(X, Y) <- arc(X, Y).

r2 . tc(X, Y) <- tc(X, Z), arc(Z, Y).

The bottom-up evaluation of this program works as follows. The exit rule r1 is evaluated first. A

tuple (X, Y) is added to tc for each tuple (X, Y) in arc. Then the left-linear recursive rule r2 is

evaluated. For each new tuple (X, Z) in tc derived in the previous iteration, a tuple (X, Y) is added

to tc for each tuple of the form (Z, Y) in arc. Rule r2 is repeatedly evaluated until tc does not

change between two successive evaluations of the rule.

In the parallel bottom-up evaluation, we divide each relation into n partitions and we use the

relation name with a superscript i to denote the i-th partition of the relation. Each partition has

its own storage for tuples, unique index, and secondary indexes. Assuming that there are one

coordinator and n workers, the following Example 3.4 shows a plan for the parallel evaluation of

the tc program.

Example 3.4. Parallel bottom-up evaluation of tc. Let h be a hash function that maps a vertex

to an integer between 1 to n. Both arc and tc are partitioned by the first column, i.e., h(X) = i

for each (X, Y) in arci and h(X) = i for each (X, Y) in tci.3 The parallel evaluation proceeds as

follows.

1. The i-th worker evaluates the exit rule by adding a tuple (X, Y) to tc for each tuple (X, Y) in

arci.
3There are other possible partitioning strategies, and the choice will be discussed later in the section.
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2. Once all workers finish Step (1), the coordinator notifies each worker to start Step (3).

3. For each new tuple (X, Z) in tci derived in the previous iteration, the i-th worker looks for

tuples of the form (Z, Y) in arc and adds a tuple (X, Y) to tc.

4. Once all workers finish Step (3), the coordinator checks if the evaluation for tc is completed.

If so, the evaluation terminates; otherwise, the evaluation starts from Step (3).

In Step (1) and Step (3), each worker performs its task on one processor while the coordinator

waits. Step (2) and Step (4) serve as synchronization barriers.

In the above example, the i-th worker only writes to tci in Step (1), and it only reads from and

writes to tci in Step (3). Thus, tci is only accessed by the i-th worker. This property does not

always hold in every evaluation plan of tc. For example, if we keep the current partitioning for

arc but instead partition tc by its second column, then every worker could write to tci in Step (3),

and multiple write operations to tci can occur concurrently; in this plan, we use a lock to ensure

only one write operation to tci is allowed at a time—a worker needs to acquire the lock before it

writes to tci, and it releases the lock once the write operation completes.

In general, we use a lock to control the access to a partition if multiple read/write operations can

occur concurrently. There are two types of locks: (i) an exclusive lock (x-lock) that allows only one

operation at a time; and (ii) a readers–writer lock (rw-lock) that a) allows only one write operation

at a time, b) allows concurrent read operations when no write operation is being performed, and c)

disallows any read operation when a write operation is being performed. We use (i) an x-lock if

there is no read operation and only multiple write operations can occur concurrently; (ii) an rw-lock

if multiple read and write operations can occur concurrently since it allows for more parallelism

than an x-lock. A plan that requires locks is called a locking plan, while a plan like the one in

Example 3.4 where no lock is needed is called a lock-free plan. A program which has a lock-free

plan is called a lock-free program. Conversely, a program which does not admit any lock-free plan

is called a locking program.

A key factor that enables a lock-free plan is the selection of hash functions. It is possible to get

a lock-free plan even if we use different hash functions for arc and tc. However, we focus on the
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case where every relation is partitioned using the same hash function h defined as

h(x1, . . . , xt) =
t∑

i=1

g(xi) mod n,

where the input to h is a tuple of any arity t, g is a hash function with a range no less than n, and
∑

can be replaced with any commutative function. We prefer a commutative function to a non-

commutative function as a commutative function allows for more parallelism. It is easy to prove

that if a program has a lock-free plan using a non-commutative function, the program has the same

lock-free plan using an arbitrary commutative function. However, the inverse of the statement is

not true, and this is illustrated by the following example.

Example 3.5. Consider the following program where p is partitioned by its first and second

columns and q is partitioned by its first column.

p(X, Y, Z) <- p(Y, X, W), q(W, Z).

If the i-th worker reads from the i-th partition of p where (g(Y) + g(X)) mod n = i, then the i-th

worker only writes to the i-th partition of p since (g(X)+g(Y)) mod n = (g(Y)+g(X)) mod n = i.

Thus, this is a lock-free plan. However, if we replace
∑

with a non-commutative function, such as

concatenation (||) where h(x1, . . . , xt) becomes g(x1)|| · · · ||g(xt), the same plan is not lock-free.

Another key factor is how each relation is partitioned. We specify this for a plan using discrim-

inating sets. A discriminating set of a (non-nullary) relation R is a non-empty subset of columns

in R. Given a discriminating set of a relation, we divide the relation into n partitions by the hash

value of the columns that belong to the discriminating set. For each predicate p that corresponds to

a base relation or a derived relation, letR be the relation that stores all tuples corresponding to facts

about p in memory; we select a discriminating set of R that specifies the partitioning of R used in

the evaluation of p. The collection of all the selected discriminating sets uniquely determines how

each relation is partitioned. These discriminating sets can be arbitrarily selected as long as there

is a unique discriminating set for each derived relation. We might have selected several different
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discriminating sets of the same base relation which correspond to different ways of partitioning the

relation. This relation is preprocessed before the evaluation so that it can be efficiently accessed

for every partitioning.

Example 3.6. Discriminating sets for the plan in Example 3.4. The discriminating sets for the two

occurrences of arc are both {1}. tc is a derived relation, and its discriminating set is {1}.

3.3.2 Parallel Evaluation of AND/OR Trees

The internal representation used by DeALS to represent a Datalog program is an AND/OR tree

[AOT03]. An OR node represents a predicate and an AND node represents the head of a rule. The

root is an OR node. The children of an OR node (resp., AND node) are AND nodes (resp., OR

nodes). Each node has a getTuple method that calls the getTuple methods of its children. Each

successful invocation to the method instantiates the variables of one child (resp., all the children)

and the parent itself for an OR node (resp., AND node). The program is evaluated by repeatedly

applying the getTuple method upon its root until it fails. Thus, for an OR node, the execution (i)

exhausts the tuples from the first child; (ii) continues to the next child; and (iii) fails when the last

child fails. An OR node is an R-node if it reads from a base or derived relation with its getTuple

method, while an OR node is a W-node if it writes to a derived relation with its getTuple method.

An OR node can be both an R-node and a W-node at the same time, i.e., it corresponds to a

materialized intermediate relation. The execution of an AND node corresponds to a nested loop,

where, for each tuple of its first child, the getTuple method of its second child is called, and

continues to the next child until it reaches the last child. When the getTuple method of a child N

fails, the execution backtracks to the previous child N1 to invoke its getTuple method, and it (i)

further backtracks to the child before N1 if the invocation fails; or (ii) resets the internal status of

N and continues the execution on N .

The pipelined evaluation on an AND/OR tree only materializes relations when it is necessary,

i.e., if (i) it is the root; or (ii) the relation needs to be materialized to ensure the correctness, e.g.,

an aggregate or when semi-naive evaluation is used to compute a recursive goal; or (iii) the cost

of computing the tuples when they are needed is much higher than the cost of materializing the
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relation in memory.4 In the last case, a new stratum is added to the evaluation which computes and

materializes all the tuples of the relation.

The given program is transformed into an AND/OR tree, where the root represents the query,

and the children of each AND node are arranged in the same order as the predicates in the cor-

responding rule. The AND/OR tree is then adorned for bottom-up evaluation, which produces a

bound/free adornment [Ull85] for each node. An adornment is a string of b’s and f’s whose length

equals the arity of the corresponding predicate p, where b or f in the i-th position means the i-th

argument in p is bound or free when p is evaluated. For an R-node with an adornment that contains

some b’s, DeALS tries to build a secondary index on the accessed relation, which covers all the

columns that correspond to the positions of b’s and facilitates the evaluation of this R-node. An

OR node is an entry node if (i) it is a leaf, and (ii) it is the first R-node among its siblings, and (iii)

none of its ancestor OR nodes has a left sibling (i.e., a sibling that appears before the current node)

that has an R-node descendant or a W-node descendant.

Example 3.7. Let anc(X, Y) be a relation describing that X is a parent of Y. The sg program below

finds all the (X, Y) pairs that are of the same generation.

r1 . sg(X, Y) <- anc(A, X), anc(A, Y), X 6= Y.

r2 . sg(X, Y) <- anc(A, X), sg(A, B), anc(B, Y).

The corresponding adorned AND/OR tree is shown in Figure 3.2, where (i) the text inside a node

indicates its type and ID, e.g., “OR-1” indicates that the root is an OR node with ID 1, and (ii) the

text adjacent to a node shows the corresponding predicate with its adornment. Thus, OR-4, OR-5,

OR-7, OR-8, and OR-9 are R-nodes, and OR-1 is a W-node. OR-4 and OR-7 are entry nodes in

this program. Although OR-5 is an R-node, it is not an entry node since it is not the first R-node

among its siblings. Similarly for OR-8 and OR-9.

Now we describe the pipelined evaluation of this AND/OR tree in DeALS. We useN .getTuple

to denote the getTuple method of a node N . The evaluation starts with the exit rule repre-

sented by AND-2 and its children. For each tuple (A, X) of anc retried by OR-4.getTuple,

4Currently, the user determines when to force the materialization of a relation with an annotation in the program.
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R-nodeentry node

W-node

OR-4 OR-5 OR-6 OR-9OR-8OR-7

AND-3

OR-1

AND-2

ancbf(B, Y)X ̸= Yancbf(A, Y) sgbf(A, B)ancff(A, X)ancff(A, X)

sgff(X, Y)sgff(X, Y)

sgff(X, Y)

Figure 3.2: AND/OR tree of sg program in Example 3.7.

OR-5.getTuple is invoked to retrieve tuples of the form (A, Y) in anc with a bound A, which is

implemented by looking up a secondary index on the first column of anc. Then OR-6.getTuple

simply checks whether X 6= Y. If so, AND-2.getTuple also succeeds, and OR-1 adds the de-

rived tuple (X, Y) to sg. When AND-2.getTuple fails, the evaluation starts a new iteration that

evaluates the recursive rule represented by AND-3 and its children. For each tuple (A, X) of anc

retried by OR-7.getTuple, OR-8.getTuple looks for tuples of the form (A, B) in sg through a

secondary index on the first column of sg that indexes all the tuples in sg derived in the previous

iteration. Thus, OR-9.getTuple looks for tuples of the form (B, Y) in anc through the secondary

index on anc that is also used in OR-5.getTuple. OR-1 adds the derived tuple (X, Y) to sg after

each successful invocation to AND-3.getTuple, and checks whether a fixpoint is reached when

AND-3.getTuple fails. If not, it starts the next iteration on the subtree with root AND-3.

In the parallel evaluation of an AND/OR tree with one coordinator and n workers, we create

n copies of the same AND/OR tree, and assign the i-th copy to the i-th worker. The evaluation is

divided into n disjoint parts, where the i-th worker evaluates an entry node by instantiating vari-

ables with constants from the i-th partition of the corresponding relation, while it has full access

to all partitions of the corresponding relations for the remaining R-nodes. The parallel evaluation

ensures the same workflow as the sequential pipelined evaluation by adding synchronization barri-
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ers in the nodes that represent recursion. For example, we create a synchronization barrier B, and

add it to OR-1 of Figure 3.2 for every copy of the AND/OR tree. Now, the evaluation works as

follows.

1. Each worker evaluates the exit rule by calling AND-2.getTuple until it fails. A worker

waits at B after it finishes.

2. Once all n workers wait at B, the coordinator notifies each worker to start Step (3).

3. Each worker evaluates the recursive rule by calling AND-3.getTuple until it fails. A

worker waits at B after it finishes.

4. Once all n workers wait at B, the coordinator checks if there are new tuples derived in sg.

If so, the evaluation continues from Step (3); otherwise, the evaluation terminates.

The parallelism is achieved through the parallel evaluation of each single rule, including the paral-

lel pipelined evaluation of all the rules which support its goals. As shown in our experiments, our

strategy is able to achieve a reasonable speedup for a data intensive application to the point that we

do not need to explore rules level and components level parallelism [PRS13].

3.4 Selecting a Parallel Plan

In this section, we describe how DeALS finds the best discriminating sets to evaluate a program.

3.4.1 Read/Write Analysis

For a given set of discriminating sets, the Read/Write Analysis (RWA) on an adorned AND/OR tree

determines the actual program evaluation plan, including the type of lock needed for each derived

relation, whether an OR node needs to acquire a lock before accessing the corresponding relation,

and which partition of the relation an OR node needs to access when it accesses the relation through

index lookups. The analysis performs a depth-first traversal on the AND/OR tree that simulates

the actual evaluation to check each read or write operation performed by the i-th worker. For each

node N encountered during the traversal, the following three cases are possible:
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Case (1) N is an entry node. In this case, set it as the current entry node; then, for each W-node

that is an ancestor of N and is in the same stratum as N , determine whether the i-th worker

only writes to the i-th partition of R(pw). This is done by checking if pe[Xj] = pw[Xk],5

where pe and pw are the predicates associated with N and the W-node, respectively, and Xj

and Xk are the corresponding discriminating sets.

Case (2) N is an R-node that reads from a derived relation. In this case, determine whether

the i-th worker only reads from the i-th partition of R(pr) by checking if Xk ⊆ B and

pe[Xj] = pr[Xk], where pe and pr are the predicates associated with the current entry node

and N , respectively, Xj and Xk are the corresponding discriminating sets, and B is the set

of positions for bound arguments in N .

Case (3) N is an R-node that reads from a base relation through a secondary index. In this case,

determine whether the i-th worker only needs to read from one partition of R(pr) instead of

all the partitions by checking if Xk ⊆ B, where pr is the predicate associated with N , Xk

is the corresponding discriminating set, and B is the set of positions for bound arguments in

N .

In Case (1) of the above procedure, the set of ancestor W-nodes of an entry node can be efficiently

obtained by using a stack that keeps track of the nodes that are being traversed. The W-nodes in

the stack are processed from the last element to the first element until a W-node that is not in the

same stratum with the entry node is encountered.

Example 3.8. RWA on the AND/OR tree in Figure 3.2. Let X1 be the discriminating set of sg, X2,

X3, X4, and X5 be the discriminating sets of the four occurrences of anc. Figure 3.3 shows the

AND/OR tree with the discriminating sets. The RWA proceeds as follows.

1. The depth-first traversal visits OR-1, AND-2, and OR-4. It sets OR-4 as the current entry

node, and then checks whether anc(A, X)[X2] = sg(X, Y)[X1] since OR-1 is a W-node and

an ancestor of OR-4.

5For a predicate p, R(p) denotes the relation that stores all tuples corresponding to facts about p; p[X] denotes
a tuple of arity |X| by retrieving the arguments in p whose positions belong to X , and it is treated as a multiset of
arguments when involved in equality checking.
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Figure 3.3: RWA on the AND/OR tree of sg program. Each leaf OR node is marked with the case
it belongs to in the RWA.

2. It visits OR-5. OR-5 is an R-node that reads from a base relation, and the set of positions

for bound arguments in OR-5 is {1}. It checks whether X3 ⊆ {1}.

3. It visits OR-6, AND-3, and OR-7. It sets OR-7 as the current entry node, and checks whether

anc(A, X)[X4] = sg(X, Y)[X1].

4. It visits OR-8. OR-8 is an R-node that reads from a derived relation, OR-7 is the current

entry node, and the set of positions for bound arguments in OR-8 is {1}. Thus it checks

whether X1 ⊆ {1} and anc(A, X)[X4] = sg(A, B)[X1].

5. It visits OR-9. It checks whether X5 ⊆ {1} since OR-9 satisfies the condition of Case (3).

In the ideal situation, where all the conditions are satisfied, the i-th worker only accesses the

i-th partition of each derived relation, and it only accesses one partition when it performs an index

lookup on a relation. As a result, the program can be evaluated in a lock-free way without perform-

ing redundant work. A condition of Case (3) can be easily satisfied by picking a non-empty subset

of the set of positions for bound arguments in the R-node. But it is not always possible to satisfy

all the conditions of Case (1) and Case (2) for an arbitrary program, and each unsatisfied condition

means overhead in program evaluation, including the cost of locking and additional index lookups.

More specifically, let R be the relation accessed by node N :
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• When a condition of Case (1) is not satisfied, we check whether there are some R-nodes that

read from R in the current stratum. If so, each partition of R needs an rw-lock, and N and

all the R-nodes that read from R acquire a lock when they access R; if not, each partition of

R needs an x-lock, and N acquires a lock when it accesses R.

• When a condition of Case (2) is not satisfied, we first check whether N accesses R through

index lookups. If so, N performs n index lookups where each accesses one partition of R

when Xk 6⊆ B, while it only performs one index lookup when Xk ⊆ B. Then we check

whether there is a W-node that writes to R in the current stratum. If so, each partition of R

needs an rw-lock, and both the W-node and all the R-nodes that read from R acquire a lock

when they access R.

Example 3.9. Continuing Example 3.8. The resulting plan is different from the ideal plan in the

following aspects when X1 = X2 = X4 = {2}, X3 = X5 = {1}:

• Each partition of sg needs an rw-lock since the conditions in Step (1) and Step (3) of Exam-

ple 3.8 are not satisfied;

• OR-1 needs to acquire a w-lock when adding a tuple to sg;

• OR-8 needs to acquire an r-lock before it accesses the index;

• OR-8 needs to perform n index lookups to achieve the same effect of one index lookup in the

ideal plan since the condition X1 ⊆ {1} in Step (4) of Example 3.8 is not satisfied.

We assume the program does not contain aggregates and arithmetic expressions in the above

analysis. If the program contains these constructs, the same analysis is still applicable after we

ignore all the arguments which are either aggregates or arithmetic expressions. The only exception

is that the evaluation of a W-node always requires locks if it contains an aggregate with no group

by arguments.
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3.4.2 Determining the Discriminating Sets

DeALS determines the best discriminating sets for the given program by solving an optimization

problem that minimizes a cost function. We use the cost of program evaluation, which can be ap-

proximated by estimating the cost of an actual evaluation plan. There are four types of constraints

in this optimization problem:

(i) pe[Xj] = pw[Xk] for each entry node that belongs to Case (1) in the RWA;

(ii) Xk ⊆ B, pe[Xj] = pr[Xk] for each R-node that belongs to Case (2) in the RWA;

(iii) Xk ⊆ B for each R-node that belongs to Case (3) in the RWA;

(iv) ∅ ( X ⊆ {1, . . . , arity(R)} for each X appearing in the above three types of constraints,

where arity(R) is the arity of the relation R associated with X .

The constraints of Type (iii) and Type (iv) are hard constraints that must be satisfied, while the

constraints of Type (i) and Type (ii) are soft constraints that can be violated. The set of constraints

can be obtained by performing the RWA on the AND/OR tree once.

Example 3.10. Continuing Example 3.8. The set of constraints for the AND/OR tree in Figure 3.3

is shown below.
anc(A, X)[X2] = sg(X, Y)[X1]

X3 ⊆ {1}

anc(A, X)[X4] = sg(X, Y)[X1]

X1 ⊆ {1}, anc(A, X)[X4] = sg(A, B)[X1]

X5 ⊆ {1}

∅ ( Xi ⊆ {1, 2}, i = 1, 2, 3, 4, 5.

(3.1)

The best assignment that minimizes the cost function can be found by enumerating all possible

assignments. It is feasible to use brute force enumeration for a program with several predicates

(less than 20), e.g., transitive closure, bill of materials, and same generation. For a program with
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hundreds of predicates, such as the programs in DOOP [BS09], the predicates are stratified, where

each stratum typically contains less predicates. Instead of finding the best assignment for the

whole program, we can find an assignment whose cost is very close to that of the best assignment

by (i) performing brute force enumeration for each subprogram consisting of all the predicates

in one stratum, and (ii) combining the results for every stratum. Moreover, in the case that a

certain stratum contains too many predicates where the enumeration is still infeasible, local search

methods designed for constraint satisfaction problems [SLM92,SKC93,Spe93,SK93] can be used

to find a “good” assignment under a time constraint.

The idea of our approach is very similar to that of generalized pivoting where a system of e-

quations is obtained from the rules and an exact solution is required [SL91]. But our approach is

different from generalized pivoting in two aspects: (i) the set of constraints is obtained through

the RWA on the AND/OR tree instead of each single rule, since the pipelined evaluation on the

AND/OR tree might evaluate multiple rules at the same time, while generalized pivoting assumes

only one rule is evaluated at a time; (ii) an exact solution is not required since we want to obtain

the best possible evaluation plan even when the program cannot be evaluated without any commu-

nication under the message passing model.

3.4.3 A Simplified Cost Function

Now we describe how the cost of an actual evaluation plan is estimated in DeALS. Note that

minimizing the cost of program evaluation is equivalent to minimizing the overhead of program

evaluation over the “ideal” plan in which all the constraints are satisfied.

We use sg as an example to demonstrate how the cost function is computed. Consider the set

of constraints in Example 3.10 when the assignment is X1 = X2 = X4 = {2}, X3 = X5 = {1},
the first, third, and fourth constraints are violated. The differences between the resulting plan and

the ideal plan are described in Example 3.9. Thus, the overhead of program evaluation can be

expressed as
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Cw-lock ×# times OR-1 is evaluated

+ nCr-lock ×# times OR-8 is evaluated

+ (n− 1)Clookup ×# times OR-8 is evaluated,

where Cw-lock, Cr-lock, and Clookup are the costs of acquiring a w-lock, acquiring an r-lock,

and performing an index lookup, respectively, and we assume the cost is a constant throughout the

evaluation.

It is very difficult to provide an accurate estimation of the number of times a node is evaluated

without evaluating the program. In this chapter, we consider a simplified cost function in which

each node is evaluated exactly once. Furthermore, we assume a unit cost for all basic operations,

including acquiring a lock and performing an index lookup; we also assume that the value of n

is two. For each OR node N in the AND/OR tree, its contribution to the overhead of program

evaluation is denoted by c(N), where

c(N) =





3, if N needs to acquire an r-lock before performing an

index lookup and condition Xk ⊆ B is violated;

1, if N needs to acquire a lock before accessing the relation;

0, otherwise.

Thus, the optimization problem becomes finding an assignment that minimizes
∑

N c(N), where

N iterates over the set of OR nodes in the AND/OR tree.

Example 3.11. Continuing Example 3.10. Among all the possible assignments of the variables,

the minimal value of the cost function is 2, which is obtained under the following two assignments:

• X1 = X3 = X4 = X5 = {1}, X2 = {2}, which violates the third constraint;

• X1 = X3 = X5 = {1}, X2 = X4 = {2}, which violates the fourth constraint.

Both OR-1 and OR-8 need rw-locks for both assignments, i.e., the program does not have lock-

free plans. Since both assignments have the same cost, the assignment that appears first during the

evaluation is picked by DeALS.
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3.4.4 Some Notes on the Cost Function

Besides the cost of program evaluation, the total cost also includes the cost of preprocessing the

base relations. For a selection of the discriminating sets, there might be several discriminating sets

of the same base relation. Thus, the base relation needs to be partitioned, and the corresponding

secondary indexes needs to be built for each different discriminating set. The cost function can

be adjusted to include the cost of preprocessing if we want to model the total cost of program

evaluation.

So far, we have focused on finding an efficient evaluation plan for a single query. Given a

workload with many queries, such as the TPC-H benchmark that contains 22 non-recursive SQL

queries, the best plan to evaluate the whole workload is the one that minimizes the total cost for

all queries in the workload. However, brute force enumeration becomes infeasible due to the

exponential growth of the number of possible plans. We adopt a simple heuristic in DeALS that (i)

finds the best plan for each query in the workload; (ii) performs a majority voting to determine the

primary partitioning for each base relation, i.e., partition a base relation in a way that is preferred

by majority of the queries; (iii) performs preprocessing on each base relation that enables efficient

access to it for all the queries in the workload. For example, there are 17 queries in the TPC-H

benchmark that access the base relation lineitem, and DeALS determines to partition lineitem

by its first column, second column, and third column for ten queries, six queries, and one query,

respectively. Thus, DeALS partitions lineitem by its first column, builds a secondary index

partitioned by the second column that will be used by six queries, and builds a secondary index

partitioned by the third column that will be used by one query. It remains unclear how good is our

heuristic w.r.t. the optimal plan, and there are many other strategies for finding a good plan. We

leave this investigation as a future work.

3.5 Code Generation

DeALS is a Datalog prototype system developed at UCLA. Its Java-based compiler first compiles

a program into an AND/OR tree. Then, the parallel evaluation module targeted for shared-memory
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multicore machines determines the parallel evaluation plan using the techniques presented in this

chapter and generates a corresponding C++ program. We implemented the database objects (stor-

age and index), base classes for each kind of node in the AND/OR tree, and common functions.

The generated program contains the definition of tuples and relations, and the actual implementa-

tion of the AND/OR tree based on the base classes, including each node’s getTuple method. In

this section, we use the sg program as an example to present general designs and implementation

techniques that are applicable for both lock-free plans and locking plans, and the techniques for

obtaining and implementing lock-free plans will be discussed in Section 3.7.

Figure 3.4 shows the code snippet that defines the tuple and relation for sg. Each tuple in

sg is represented by a struct sgTuple that has two fields. The relation sg is represented by a

class sgRelation that extends the base class Relation as discussed next; an instance of the class

Relation holds nthreads instances of TupleArrayStore that store the tuples, where nthreads

is the number of threads for program evaluation. We set the value of nthreads to n if there

are n processors available for the evaluation. Now, besides the fields inherited from Relation,

sgRelation has four additional fields:

1. uniqueIndexes is the unique index of sg implemented as n B+ trees. Each key is an

unsigned 64-bit integer obtained from concatenating the values of two columns in a tuple in

sg. The leaf nodes in the B+ trees have no values.

2. secondaryIndexes0 is a secondary index on sg implemented as n B+ trees. Each key

is an unsigned 32-bit integer obtained from the value of the first column in a tuple in sg.

The leaf nodes in the B+ trees store the addresses of the actual tuples, i.e., offsets in the

TupleArrayStore.

3. pages points to n instances of Page, where each Page holds a list of memory blocks of

size 1 MB. The i-th instance pages[i] is responsible for allocating memory for nodes in

uniqueIndexes[i] and secondaryIndexes0[i] from the last unfilled memory block in its

list. However, when the last memory block is full, it allocates a new memory block of size 1

MB from memory, adds the new block to its list, and allocates memory from the new block.
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struct sgTuple {
uint32_t col0;
uint32_t col1;

};

class sgRelation : public Relation<sgTuple> {
public:

sgRelation(Page** pages, int nthreads);
~sgRelation();
bool add(sgTuple* tuple);
...

private:
Page** pages;
BPlusTreeK<uint64_t>** uniqueIndexes;
BPlusTreeKIndex<uint32_t>** secondaryIndexes0;
RWLock** locks;

};
Figure 3.4: Snippet of generated code for sg.

4. locks points to n instances of readers–writer lock RWLock, where locks[i] is associated

with the i-th partition of sg.

In the above implementation, sgRelation is divided into n partitions, where each partition

has an instance of TupleArrayStore, a unique index, a secondary index, an instance of Page,

and an rw-lock. When a tuple is derived during the evaluation, it is added to sg by calling method

bool add(sgTuple∗ tuple) which works as follows:

1. It computes the value of i, which is the partition of sg that tuple belongs to.

2. It acquires locks[i] for write access.

3. It adds tuple to uniqueIndexes[i], which returns false or true depending on whether

tuple is already present in uniqueIndexes[i] or not.

4. If the add operation returns false, it releases locks[i] and returns false; otherwise, it

continues.

5. It adds tuple to the i-th TupleArrayStore, and then adds tuple together with its offset in

the i-th TupleArrayStore to secondaryIndexes0[i].
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6. It releases locks[i], and returns true.

Thus, uniqueIndexes ensures that each tuple appears only once in sg.

The generated code also contains definitions of cursors that wrap all the read operations to

sgRelation, where a caller calls the getTuple method of a cursor to get a desired tuple. For

example, in the semi-naive evaluation of sg, the cursor used by OR-8 retrieves tuples of the form

(A, B) from sg derived in the previous iteration, while the getTuple method works as follows:

1. It acquires locks[i] for read access, where i = h(A).

2. It searches for a list associated with key A from secondaryIndexes0[i], and if the index

does not contain the key, it releases locks[i] and returns NULL.

3. For each address addr in the list associated with key A, it checks if addr is within the range

of tuples derived in the previous iteration, and if so, it fetches the tuple at address addr from

the i-th TupleArrayStore, releases locks[i], and returns the tuple.

Each cursor also contains a beginNextStage method, which prepares the cursor for a new iter-

ation of the semi-naive evaluation, and is called when the evaluation reaches an iteration bound-

ary. For example, the cursor used by OR-8 maintains two arrays, beginTupleAddress[i] and

endTupleAddress[i], which store the addresses of the first and last tuple in the i-th TupleArray

Store in the previous iteration, respectively. The corresponding beginNextStage method sets the

values for both arrays. Then, the cursor checks if a tuple at address addr is derived in the previous

iteration by checking if beginTupleAddress[i] ≤ addr ≤ endTupleAddress[i].

In summary, the getTuple method of a node in the AND/OR tree reads from sgRelation

through a cursor, and writes to it by invoking the add method. The sg implementation described

above is a basic implementation of the semi-naive evaluation in DeALS that is applicable in gen-

eral. The cursor abstraction allows the system to optimize the execution by plugging in different

optimized cursor implementations. For example, given an AND/OR tree like the one in Figure 3.2,

where the semi-naive evaluation only accesses the tuples of the recursive relation that are derived
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in the previous iteration by searching a secondary index, DeALS optimizes the execution by main-

taining two separate secondary indexes that keep track of the tuples in the previous and current

iteration, respectively. More details about this optimized implementation are discussed in Sec-

tion 3.7.3.

Before moving onto the discussion on compilation, we would like to discuss two more opti-

mizations. The first one is to replace B+ trees with hash tables as indexes. Instead of using B+

trees, hash tables are widely used in analytical workloads, as the cost of accessing a hash table is

lower than that of a B+ tree that indexes the same data. However, hash tables may not be the most

suitable data structures for recursive relations that are frequently updated. We choose to use B+

trees as indexes in DeALS, and our experience shows that this design choice works quite well in

general. As we will show in Exp III of Section 3.6, DeALS outperforms SociaLite that uses hash

tables for recursive relations. This is largely due to a better memory allocation pattern used by

B+ trees. Although we prefer B+ trees to hash tables for recursive relations, it is still beneficial

to use hash tables for base relations that remain unchanged throughout the evaluation. However,

the improvement is marginal as the evaluation time is usually not dominated by the time spent on

fetching tuples from base relations. Thus, DeALS supports both B+ trees and hash tables, and it

can be configured to use B+ trees or hash tables for certain relations, while it uses B+ trees as a

default setting for indexes.

Another potential important optimization is to use a worst-case optimal join algorithm called

the leapfrog triejoin [Vel14]. This is studied but not yet implemented because the current evalua-

tion model used by DeALS assumes the predicates in the body of each rule are accessed following

a fixed order, while the leapfrog triejoin algorithm only requires a fixed variable order, but the

predicates in the body of a rule might be accessed without a fixed order. For a given program, if

the program is always safe and does not trigger any magic sets rewriting for any reordering of the

predicates in the body of each rule, the leapfrog triejoin algorithm can be simply plugged into the

evaluation, and the techniques presented in this chapter are still applicable. However, the situation

becomes messy when magic sets rewritings are applicable for certain orders. There might be sever-

al orders that trigger magic sets rewritings, where each leads to a different magic sets rewriting. It
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remains unclear how to estimate the cost of the program obtained through each rewriting. Instead

of enumerating all possible orders, we can adopt a simple design that decides whether magic sets

rewritings are applicable following the left-to-right order provided by the original rules.

Finally, the generated code is compiled into the final executable by invoking the Visual C++

Compiler that comes with Visual Studio 2013 (version 120) on a Windows machine, or GCC 4.9.2

on a Linux machine. The thread implementation provided by the Microsoft Windows runtime

library is used on a Windows machine to evaluate the query in parallel, while Pthreads is used on

a Linux machine. We are working on reducing the compilation latencies from several seconds to

around 10 ms by taking advantage of compiler technologies such as LLVM [Lat08].

3.6 Experimental Results

In this section, we report some experimental results on both non-recursive and recursive programs.

Each system is configured to use all the available CPUs and memory on the test machine. All

execution times are calculated by taking the average of five runs of the same experiment. Both

DeALS and SociaLite perform code generation for a given query. The execution times for both

systems do not include the time spent on code generation and compilation, as these overheads are

usually small for long-running queries.

Exp I: Non-recursive programs—TPC-H benchmark. The benchmark contains 22 (non-recursive)

SQL queries over a database of eight tables. The data types involved in the queries are integer,

decimal, string, and date. We implemented all 22 queries following the query plans described

in [DS13].6 We tested the performance of DeALS on a test machine with four AMD Opteron

6376 CPUs (16 cores per CPU) and 256 GB memory (configured into eight NUMA regions). The

operating system is Ubuntu Linux 12.04 LTS.

DeALS is able to correctly evaluate all 22 queries on databases of size 1, 10, and 100 GB on the

test machine, while the total query evaluation time for all 22 queries using 64 processors is 1.020,

6count(distinct) is replaced with count in query16. order by and limit are ignored in our program. The evaluation
time will not change significantly if we add these constructs since most queries return very few results except query3
and query10.
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3.998, and 38.230 s, respectively.7 The speedup of evaluating all 22 queries using 64 processors

over using one processor is 5.31, 16.57, and 26.37, respectively. The predicted query evaluation

time would be 378.122 s on a database of size 1 TB if the evaluation time of DeALS scales linearly

w.r.t. the size of the database.

We also compared DeALS with the current single-machine world record for the benchmark

on databases of size 100 GB and 1 TB. VectorWise 2.0.1 evaluates all the queries in 22.8 s on a

database of size 100 GB [tpcc], while Microsoft SQL Server 2014 Enterprise Edition takes 138 s

to run this benchmark on a database of size 1 TB [tpcb]. Note that the SPECint_rate2006 of our

test machine is 1050 [cpuc] (the larger the more powerful), while the values are 695 [cpub] and

2400 [cpua] for the other two machines. The predicted evaluation time would be 15.091 s (315.429

s) for VectorWise 2.0.1 (SQL Server 2014) on a database of size 100 GB (1 TB) on our test

machine if the evaluation time is inversely proportional to the SPECint_rate2006 of the machine.

Thus, DeALS achieves very competitive performance comparing with these two highly optimized

commercial systems on the TPC-H benchmark—it is only 2.6× and 1.2× slower comparing with

VectorWise 2.0.1 and SQL Server 2014, respectively.

Exp II: Non-recursive programs—graph queries. We compare DeALS with LogicBlox and

a commercial RDBMS on evaluating three graph queries—3clique (find the number of three

cliques in the graph), 4clique (find the number of four cliques), and 4cycle (find the number of

cycles of length four) on the Pokec social network graph [LK14].8 The database contains only one

table arc(X, Y) where a unique index on (X, Y) and a secondary index on Y are built. The queries

are listed below:

3clique(count<_>) <- arc(X, Y), X < Y, arc(Y, Z), Y < Z, arc(Z, X).

4cycle(count<_>) <- arc(X, Y), X < Y, arc(Y, Z), Y < Z, arc(Z, W),

Z < W, arc(W, X).

7DeALS is about 2× faster than the version used in [YSZ15] on the TPC-H benchmark by function inline opti-
mization.

8We use the graph as a directed graph for 4cycle, and as a undirected graph for 3clique and 4clique.
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4clique(count<_>) <- arc(X, Y), X < Y, arc(Y, Z), Y < Z, arc(Z, X),

arc(Z, W), Z < W, arc(X, W), arc(Y, W).

We used a machine running Ubuntu Linux 14.04 LTS with an Intel Xeon E5-2660 CPU (eight

hyperthreads), 28 GB memory, and 400 GB SSD to run DeALS, LogicBlox 4.1.9, and a commer-

cial RDBMS. The speedups of DeALS on these three queries are 6.48, 5.96, and 6.20, respectively

(evaluation time using one processor divided by the time using eight processors). Figure 3.5 com-

pares the query evaluation time of the three systems.
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Figure 3.5: Query evaluation time of graph queries on the Pokec social network graph.

DeALS is faster than the commercial RDBMS on all three queries, while LogicBlox is faster

than DeALS on two queries which is due to the leapfrog triejoin algorithm used by LogicBlox.

It is interesting to note that LogicBlox demonstrates much better performance on the same set

of queries comparing with graph databases such as Virtuoso and Neo4j as reported in Table 6

of [NAB15] on a machine with similar hardware. Thus, DeALS achieves competitive performance

on these graph queries comparing with other existing systems with declarative languages.

Exp III: Recursive programs. We test the performance of DeALS on evaluating recursive queries.

Here, we report the results of three classical queries—tc (program in Example 3.3), sg (program in

Example 3.7), and attend (program in Example 3.1). tc and sg are two widely-studied queries in

the literature, while attend is a graph traversal query that uses the monotonic aggregate. We select

attend as a representative among other graph traversal queries, including reachability, connected
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component, and single-source shortest path, that share the same memory access pattern; but it

is more “difficult” than other queries since it requires correct and efficient handling of the count

aggregate in recursion, and this is indeed a non-trivial problem as we will see that two out of five

systems in this comparison do not support this query. The test datasets contain synthetic graphs and

real-world graphs as described below. (These graphs are also used in the experimental evaluation

reported in Section 2.4.) The parameters of the graphs are shown in Table 3.1.

Synthetic Graphs

• tree-11 is a randomly generated tree of depth 11, where the out-degree of a non-leaf vertex

is a random number between 2 to 6.

• grid-150 is a 151× 151 square grid.

• gnp-10K is a G(n, p) graph (Erdős–Rényi model) of 10,000 vertices generated by connect-

ing vertices randomly such that the average out-degree of a vertex is 10.

Real-World Graphs

• patent is the US patent citation graph [LK14]. Each vertex represents a patent, and each

edge represents a citation between two patents.

• wiki is the Wikipedia knowledge graph. Each vertex represents an entity in the Wikipedia,

and each edge represents an appearance of an entity in another entity’s infobox.

The experiments on tc (resp., sg) evaluation use each of these synthetic graphs as arc (resp., anc).

The experiments on evaluating attend use each real-world graphs as friend, while organizer

contains all the vertices in the graph whose in-degrees are zero.

DeALS evaluates all three queries correctly on the test datasets, where it uses a lock-free plan

for tc, and locking plans for sg and attend. We compare DeALS with four other Datalog systems,

namely LogicBlox, DLV, CLINGO, and SociaLite, on the same multicore machine used in Exp I.
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Table 3.1: Parameters of test graphs.
Name Vertices Edges Query Result Size

tree-11 71,391 71,390
tc 876,392
sg 2,086,271,974

grid-150 22,801 45,300
tc 131,698,576
sg 2,295,050

gnp-10K 10,000 100,185
tc 100,000,000
sg 100,000,000

patent 3,774,769 16,518,948 attend 1,742,094
wiki 3,165,181 23,190,820 attend 1,374,035
For each test graph, the table shows # vertices and # edges in the graph, and #
tuples in the output of a query on this graph.

• LogicBlox [ACG15] is a commercial deductive database system. We used LogicBlox 4.1.9

in our experiment. It supports all three queries and evaluates them correctly on the test

datasets. Our analysis of its system logs reveals that it evaluates a recursive query using

semi-naive evaluation, and each recursive rule is repeatedly evaluated as follows: (1) it de-

rives all the new tuples using the tuples from the delta relation, where the delta relation con-

tains the result of the exit rule in the first iteration; (2) if the head of the rule does not contain

any aggregates, it removes all the duplicates from the new tuples; otherwise, it performs the

aggregation using all the new tuples; (3) it computes the new delta relation, and if it is not

empty, the evaluation continues from Step (1). We also observed that, the time spent on Step

(1) and Step (2) typically dominates the evaluation time, and the system uses multiple pro-

cessors for Step (1), while it uses only one processor for Step (2). The main difference with

DeALS is that DeALS does not face the bottleneck of Step (2), and the monotonic aggregates

are optimized with the eager monotonic aggregate semi-naive evaluation [SYZ15].

• DLV [LPF06] is a system that represents the state of the art in the area of disjunctive logic

programming. We used a single-processor version of DLV released on Dec 17, 2012.9 It

correctly evaluates tc on all three test graphs, and sg on grid-150 and gnp-10K. It ran

out of memory on our test machine with 256 GB memory on the evaluation of sg on tree-

9The single-processor version of DLV is downloaded from [dlvb]. Although a parallel version [dlva] is available,
it is either much slower than the single-processor version, or it fails since it is a 32-bit executable that does not support
more than 4 GB memory required by evaluation.

63



11. The version of DLV [dlvc] that supports aggregates in recursion is a 32-bit executable

which fails on the evaluation of attend on both patent and wiki as it does not support more

than 4 GB memory required by evaluation. The system consists of three main modules:

intelligent grounding, model generator, and model checker. For each test query, there is only

one answer set, which is the output of the intelligent grounding module, and the remaining

two modules simply return the answer set. Thus, the system spends most of the evaluation

time on the intelligent grounding module, which computes the answer set using semi-naive

evaluation. However, the implementation details are not documented and cannot be inferred

from its system logs as little information is logged.

• CLINGO [GKK14] is another state-of-the-art system in disjunctive logic programming. We

used CLINGO 4.5.0, and it supports all three queries on all the test datasets, except that it

ran out of memory on the evaluation of sg on tree-11. The system consists of a sequential

grounder that replaces the variables in the program with constants, and a parallel solver that

computes the stable models from the output of the grounder. There is only one stable model

for each test query, and it is exactly the output of the grounder. Although we used a parallel

version of CLINGO, the evaluation time is dominated by the time spent on the grounder that

utilizes only one processor. Similar to DLV, the grounder of CLINGO also performs semi-

naive evaluation, but its implementation details are not known to the public.

• SociaLite [SGL13] is a graph analysis system that can evaluate Datalog-style queries. We

used a parallel version of the system [SPS13] downloaded from [Soc]. It evaluates tc and

sg correctly on the test datasets. However, it does not support attend as it only supports

the standard count aggregate that cannot be used in recursion. In fact, given a query akin

to the one in Example 3.1 where count is used instead of mcount, it produces inconsistent

results for multiple runs of the same query on the same dataset. For a given query, the system

generates a Java program that performs semi-naive evaluation. It stores a relation of arity

two as an array of hash tables, and the array is ranged partitioned into many small partitions.

Each partition of a recursive relation is protected by a lock, where a worker always acquires

the lock before accessing the data in the partition. It is clear that the generated program in
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SociaLite and the generated program in DeALS share many designs. However, as we will

show in the experimental results, the subtle differences in designs lead to drastic differences

in performance.

Figure 3.6 compares the evaluation time of five systems on these recursive queries. Bars for

DLV and DeALS-1 show the evaluation time of DLV and DeALS using one processor, while bars

for LogicBlox, clingo, SociaLite, and DeALS-64 show the evaluation time of LogicBlox, CLINGO,

SociaLite, and DeALS using 64 processors. In our experiments, both SociaLite and DeALS utilize

all the processors most of the time, while LogicBlox does not, and CLINGO utilizes only one

processor most of the time.

When DeALS uses only one processor, it always outperforms DLV and CLINGO on these

queries and datasets. Here, DeALS is limited to use one processor, while DLV is only capable of

using one processor, and CLINGO spends most of the time on the grounder that uses one proces-

sor. Although all three systems perform the semi-naive evaluation of the same query on the same

dataset, this comparison suggests that DeALS provides a tighter implementation compared with

the other two.

Using only one processor, DeALS outperforms or performs as well as LogicBlox and So-

ciaLite, while LogicBlox and SociaLite are allowed to use all 64 processors. Naturally, DeALS

always significantly outperforms LogicBlox and SociaLite when they all use 64 processors. The

performance gap between LogicBlox and DeALS is largely due to the staged evaluation used by

LogicBlox, which stores all the derived new tuples in an intermediate relation, and performs d-

eduplication or aggregation on the intermediate relation. For the evaluation that produces large

amount duplicate tuples, such as tc on grid-150 and sg on tree-11, this strategy incurs a high s-

pace overhead, and the time spent on the deduplication, which uses only one processor, dominates

the evaluation time. On the other hand, for the evaluation that produces very few duplicate tuples,

such as attend on Wiki, the performance gap between LogicBlox and DeALS is much smaller.

Next, we discuss the design choices that lead to the performance gap between SociaLite and

DeALS. SociaLite uses an array of hash tables with an initial capacity of around 1000 entries for a
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derived relation, whereas DeALS uses an append-only structure to store the tuples and a B+ tree to

index the tuples. Although the cost of accessing a hash table is lower than that of a B+ tree, the de-

sign adopted by DeALS allows a better memory allocation pattern as the relation grows—DeALS

always requests for the space of a new node when a B+ tree grows, while SociaLite requests for the

space that is twice the space used by the current hash table when a hash table grows. Indeed, the

memory allocation pattern of B+ trees can be efficiently fulfilled by sequentially allocating small

memory blocks from a large pre-allocated memory block, while the memory allocation pattern of

hash tables requires lots of non-trivial work from the memory allocator. Such overhead is ampli-

fied when (i) multiple processors try to allocate memory at the same time, or (ii) the system has a

high memory footprint. As a result, DeALS performs better than SociaLite, and the performance

gap becomes larger for the evaluation of tc on gnp-10K and sg on tree-11, in which SociaLite

uses more than 10 GB memory.

Note that DeALS achieves a greater speedup (i.e., the speedup of DeALS-64 over DeALS-

1) for tc than sg and attend since no lock is used in tc, while sg and attend suffer from

lock contention. It is important to note that the evaluation of tc still requires synchronization

where the coordinator determines the next node to be evaluated after all workers finish, and the

synchronization time increases as the number of processors increases. In the extreme case where

the synchronization time dominates the evaluation time, DeALS achieves very limited speedup—

e.g., the evaluation of tc on tree-11.

A final note on this experiment is that DeALS is the only system that can handle all three

queries on all the test graphs. The other systems suffer greatly on the evaluation of one or several

queries on some test graphs, even though the size of all the test graphs is relatively small compared

to the memory size of the test machine. We also performed experiments on larger synthetic graphs

that exhibit the same structural properties as the graphs shown in Table 3.1. DeALS remains the

only system that evaluates all these queries within a reasonable time.
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3.7 Obtaining Lock-Free Programs

The experimental results in the previous section show that DeALS is able to achieve a good

speedup using multiple processors in the evaluation of lock-free programs. In this section, we

(i) present a sufficient condition for a program to be lock-free, and (ii) show how to rewrite a lock-

ing program into a lock-free program. For now, to simplify the discussion, we assume that the

program does not contain negation, aggregates, and arithmetic expressions.

3.7.1 A Sufficient Condition

In the parallel evaluation of tc presented in Example 3.4, the i-th worker only reads from and

writes to the i-th partition of tc, and finishes the evaluation when there are no new tuples in the

i-th partition of tc. Thus, the coordinator is not necessary in the evaluation, i.e., there is no need

for synchronization barriers in the nodes that represent recursion in the corresponding AND/OR

tree. If the program is evaluated in the message passing model, and every worker has full access

to all the base relations, then no worker needs to communicate with any other workers during the

evaluation. This is the ideal situation since communication is expensive in the message passing

model. Ganguly et al. [GST92] have proved (Theorem 5.1) that there exists an evaluation plan

for a linear single rule program that does not require any communication if the corresponding

dataflow graph contains a cycle. We will next generalize this result to arbitrary linear programs.

For a multi-rule program, we say it is a linear program if the head predicate of a rule appears at

most once in the rule body for every rule.

Definition 3.1. For a recursive predicate p, let p(X1, . . ., Xm) be the head of a linear recursive

rule r and p(Y1, . . ., Ym) be the occurrence of p in the body of r. The dataflow graph of (r, p) is a

directed graph G = (V,E), where:

• V ⊆ {1, . . . ,m} and i ∈ V iff ∃j ∈ {1, . . . ,m} such that Yi = Xj .

• There is an edge from i to j iff Yi = Xj .

For a program that contains equality predicates, i.e., predicates of the form X = Y where X and
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Y are variables or constants, we can remove the equality predicates, and construct the dataflow

graph on the rewritten program. However, we can also construct the dataflow graph on the original

program, while the obtained results lead to evaluation plans that follow the user’s intention. The

latter approach is adopted in DeALS.

The following theorem states a sufficient condition for a program to have a lock-free plan.

Theorem 3.2. Let P be a program where each recursive predicate is defined by a set of linear

recursive rules. For every recursive predicate p in P , if the dataflow graphs corresponding to

all the recursive rules with head p contain the same cycle, then there exists a lock-free parallel

evaluation plan for P .

Proof. The proof is a constructive one that is similar to Appendix C in [GST92]. For a recursive

predicate p(X1, . . ., Xm), assume all the recursive rules with head p contain the same cycle a1 →
a2 → · · · → at → a1. Let the discriminating set of p be {a1, a2, . . . , at}. For each recursive rule

with head p, use the recursive predicate as the first predicate in the body of the rule during the

adornment. Then the evaluation for p is lock-free.

When the condition in the theorem is satisfied, this constructive proof produces a set of dis-

criminating sets that satisfy all the constraints. Thus, we can determine the discriminating sets that

lead to a lock-free plan without enumerating all the possible assignments.

Example 3.12. Consider the following program where p is the recursive predicate. The recursive

rules that define p are r2 and r3 . The edge set for the dataflow graph of (r2 , p) is {(2, 2), (3, 3)}.
There is an edge from 2 to 2 since Y is the second argument in p(W, Y, Z) and p(X, Y, Z). Similarly

for the edge from 3 to 3. The edge set for the dataflow graph of (r3 , p) is {(1, 3), (2, 2), (3, 1)}.
Both graphs contain a self-loop from 2 to 2. Thus, the program has a lock-free plan.

r1 . p(X, Y, Z) <- b1(X, Y, Z).

r2 . p(X, Y, Z) <- b2(X, W), p(W, Y, Z).

r3 . p(X, Y, Z) <- b3(X), p(Z, Y, X).
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We use the following adorned program to explain the evaluation of a lock-free plan. We pick the

discriminating set of p as {2}, which is the same as the one picked in the proof of Theorem 3.2.

The discriminating sets of b1, b2, and b3 are {2}, {2}, and {1}, respectively.

r1 ′. pfff(X, Y, Z) <- bfff1 (X, Y, Z).

r2 ′. pfff(X, Y, Z) <- pfff(W, Y, Z), bfb2 (X, W).

r3 ′. pfff(X, Y, Z) <- pfff(Z, Y, X), bb3(X).

During the evaluation, the i-th worker evaluates (i) r1 ′ by scanning bi1 and writing to pi; (ii) r2 ′ by

scanning pi, looking for tuples (X, W) from b
h(W)
2 , and writing to pi; (iii) r3 ′ by scanning pi, looking

for tuples (X) from b
h(X)
3 , and writing to pi.

3.7.2 Rewriting to Lock-Free Programs

Now we present a rewriting that can transform a locking program into a lock-free program. The

rewriting replaces an occurrence of a recursive predicate p with a predicate p(j) that caches the

state of p at the end of the previous iteration. The corresponding relation is repartitioned and

stored in p(j). It is then used like a base relation during the evaluation of the rule. The rewrit-

ing produces lock-free programs at the cost of extra space and additional relation repartitioning

operations (which are implemented as in-memory shuffles). The rewriting consists of two steps:

(1) from a nonlinear program to a linear program; and (2) from a linear program to a lock-free

program.

Step (1). For each recursive predicate p and each nonlinear recursive rule r that can be canonically

represented as

p(X1, . . . , Xm) <- p(Y1,1, . . . , Y1,m), . . . ,

p(Yt,1, . . . , Yt,m), b1, . . . , bs.

where p appears t times in the body of r, each p(Yi,1, . . . , Yi,m) represents an occurrence of p in

the rule body, and each bj is a non-p predicate. We replace r with the following rules:
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p(X1, . . . , Xm) <- p(Y1,1, . . . , Y1,m), p(1)(Yt,1, . . . , Yt,m),

. . . , p(t−1)(Yt,1, . . . , Yt,m), b1, . . . , bs.

p(1)(X1, . . . , Xm) <- p(X1, . . . , Xm).
...

p(t−1)(X1, . . . , Xm) <- p(X1, . . . , Xm).

The program becomes a linear program after rewriting. Now we test whether the new program

satisfies the condition in Theorem 3.2. If not, we continue to Step (2).

We demonstrate how Step (1) of the rewriting can rewrite a nonlinear program that does not

have lock-free plans into a linear program that has a lock-free plan with the example below.

Example 3.13. A nonlinear formulation of the transitive closure program is shown as follows.

r1 . tc(X, Y) <- arc(X, Y).

r2 . tc(X, Y) <- tc(X, Z), tc(Z, Y).

r2 is a nonlinear rule about tc. There are two constraints about r2 in the RWA on the AND/OR

tree:
tc(X, Z)[X1] = tc(X, Y)[X1]

X1 ⊆ {1}, tc(X, Z)[X1] = tc(Z, Y)[X1]

where X1 is the discriminating set of tc. The two constraints cannot be satisfied at the same time,

i.e., the program does not have lock-free plans. Replacing the second occurrence of tc with tc(1)

leads to the following program:

r1 ′. tc(X, Y) <- arc(X, Y).

r2 ′. tc(X, Y) <- tc(X, Z), tc(1)(Z, Y).

r3 ′. tc(1)(X, Y) <- tc(X, Y).

Now the dataflow graph of (r2 ′, tc) contains a self-loop from 1 to 1. Thus, the program has a

lock-free plan, in which the discriminating set of tc is {1}.
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Step (2). For each recursive predicate q, where the dataflow graphs corresponding to all the recur-

sive rules with head q contain the same cycle, we keep all the rules with head q. For each remaining

recursive predicate p and each linear recursive rule r that can be canonically represented as

p(X1, . . . , Xm) <- p(Y1, . . . , Ym), b1, . . . , bs.

where p(Y1, . . . , Ym) represents the occurrence of p in the rule body, and each bj is a non-p predi-

cate, we replace r with the following two rules:

p(X1, . . . , Xm) <- p(1)(Y1, . . . , Ym), b1, . . . , bs.

p(1)(X1, . . . , Xm) <- p(X1, . . . , Xm).

The new program is still a recursive program; however, now in each iteration, it is impossible for a

worker to read from a partition of p while the same partition is being modified by another worker,

thereby eliminating the need for locks on p.

Our rewriting introduces additional rules and predicates to the original program. It requires ex-

tra space to store these additional predicates. The space overhead of our rewriting is characterized

by the following theorem.

Theorem 3.3. Let S be the amount of space required to evaluate a recursive program P . If m

is the maximal number of occurrences of a recursive predicate in P , then our rewriting finds a

lock-free version of P that can be evaluated with at most m× S space.

We have shown that sg does not have lock-free plans in Example 3.8 to Example 3.11. In the

following example, we show how to obtain a lock-free plan for sg using Step (2) of the rewriting.

Example 3.14. The sg program in Example 3.7 can be rewritten into the following lock-free pro-

gram by replacing the occurrence of sg in r2 with sg(1):

sgff(X, Y) <- ancff(A, X), ancbf(A, Y), X 6= Y.

sgff(X, Y) <- ancff(A, X), sg(1)bf(A, B), ancbf(B, Y).

sg(1)ff(X, Y) <- sgff(X, Y).
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The new program has a lock-free plan, in which the discriminating sets of sg and sg(1) are both

{1}, and the discriminating sets of the four occurrences of anc are {2}, {1}, {2}, and {1}, re-

spectively. anc(X, Y) is preprocessed and partitioned in two different ways: in one partitioning, it

is partitioned by the second column, and the tuples from one partition can be accessed by a scan;

in the other partitioning, it is partitioned by the first column, and the tuples from one partition can

be accessed by looking up a secondary index.

The program evaluation starts from the exit rule where the i-th worker scans from the i-th

partition of anc, looks for tuples (A, Y) from anc with a fixed A, and writes to the i-th partition of

sg. In each iteration of the evaluation of the recursive rules, the i-th worker copies all the (new)

tuples in the i-th partition of sg to the i-th partition of sg(1); after all the workers finish the copy

operation, the i-th worker scans from the i-th partition of anc, looks for tuples (A, B) from sg(1)

with a fixed A, looks for tuples (B, Y) from anc with a fixed B, and writes to the i-th partition of sg.

Although there is one more synchronization in each iteration, no locks are needed in the evaluation.

3.7.3 Implementation

The rewriting introduces predicates p(1), p(2), p(3), . . . that contain the same set of tuples as the

original predicate p. In each iteration of the iterative evaluation, the workers first copy the tuples in

p to p(1), p(2), p(3), . . ., and then evaluate the rules that correspond to rules in the original program,

where all the workers only read from p(1), p(2), p(3), . . .. Thus, for each p(j), it is only necessary to

allocate spaces for the secondary index that enables efficient access to p(j) required by the program

evaluation, while all p(j) and p share only one copy of the actual relation that stores all the tuples.

For each p(j) that has the same discriminating set as p, the i-th worker builds the secondary index of

the i-th partition of p(j) by scanning from the i-th partition of p. The case where the two predicates

have different discriminating sets is more complex. The lock-free way of building the secondary

indexes is implemented as follows:

1. The coordinator allocates an array of addresses addr . Its size is the same as the number of

tuples in p that will be accessed in the current iteration. It also allocates a two-dimensional

array hist of size n× n.
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2. The i-th worker scans through the i-th partition of p, counts the number of tuples that belong

to each partition of p(j), stores the values in hist [i], and computes the prefix sum of hist [i].

3. The i-th worker allocates an array offset of size n, where

offset [k] =
i−1∑

t=1

hist [t][k] +
n∑

t=i

hist [t][k − 1],

for k = 1, . . . , n. The i-th worker then scans through the i-th partition of p again. For each

tuple t encountered during the scan, let d be the address of t, if t belongs to the k-th partition

of p(j), it sets addr [offset [k]] = d and increments offset [k].

4. The addresses of tuples that belong to the i-th partition of p(j) are stored in addr between

index
∑n

t=1 hist [t][i − 1] and index
∑n

t=1 hist [t][i]. The i-th worker retrieves each tuple

based on its address, and adds the tuple to the i-th partition of the corresponding secondary

index.

The above mathematical expressions assume the index of an array starts with one, and the element

in any undefined index is zero. There is a synchronization barrier after each step in the above

procedure. Step (2) and Step (3) perform an in-memory shuffle that collects the addresses of tuples

that belong to the same partition of p(j) in a consecutive space in memory. After the in-memory

shuffle, each worker creates one partition of the secondary index without interfering any other

workers.

Optimizing Semi-Naive Evaluation. In the semi-naive evaluation, the rewriting that introduces

new delta rules can be viewed as a special case of our rewriting. Each occurrence of the delta

relation can be viewed as a base relation in the RWA, where we only need to ensure the corre-

sponding discriminating set is a subset of the set of positions for the bound arguments. There is a

lock-free semi-naive evaluation plan if all the constraints can be satisfied. We keep two copies of

the secondary index of the relation, where one copy indexes the tuples in the old delta relation, and

the other copy indexes the tuples in the new delta relation. The i-th worker reads from the index

that corresponds to the old delta relation, and updates the index that corresponds to the new delta
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relation, when a new tuple is added to the i-th partition of the relation. At the end of each iteration,

each worker first switches the pointers that point to these two indexes, and then clears the index

that corresponds to the old delta relation.

Example 3.15. If we apply the above optimization on the evaluation of sg, then the fourth con-

straint in Equation (3.1) is replaced by X1 ⊆ {1}. The assignment X1 = X3 = X5 = {1},
X2 = X4 = {2} satisfies all the constraints. Thus, there is a lock-free semi-naive evaluation plan

for sg. The plan is similar to the one in Example 3.14.

3.7.4 Performance Comparison

The experimental results in Figure 3.6 show that DeALS achieves limited speedup on the evalua-

tion of sg and attend due to the use of locks. However, there are lock-free plans for both queries.

We have shown a lock-free plan for sg. The following example shows a lock-free plan for attend.

Example 3.16. A lock-free plan for attend. Consider the following adorned program, where

each relation is partitioned by its first column, except for friend that is partitioned by its second

column.
cntfriendsff(Y,mcount〈X〉) <- friendff(X, Y), attendb(X).

attendf(X) <- organizerf(X).

attendf(Y) <- cntfriendsff(Y, N), N ≥ 3.

In each iteration, the i-th worker scans through the i-th partition of friend, and checks whether

there is a specific X in attend that is supported by maintaining an index on the delta relation of

attend. Thus, the i-th worker only writes to the i-th partition of cntfriends and attend, and no

lock is needed.

Table 3.2 compares the evaluation time of DeALS on sg and attend using the locking plans

and the lock-free plans. For a query evaluation plan and a dataset, it shows the evaluation time using

one processor, the evaluation time using 64 processors, and the speedup of using 64 processors over

using one processor. The results in the table show that DeALS achieves a much higher speedup

using a lock-free plan comparing to a locking plan.
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Table 3.2: Query evaluation time of DeALS on sg and attend using different plans.
Query(plan) Dataset Time-1 (s) Time-64 (s) Speedup

sg(locking)
tree-11 1349.299 148.725 9.072
grid-150 8.561 1.059 8.083
gnp-10K 3092.658 388.212 7.966

sg(lock-free)
tree-11 1309.118 48.116 27.207
grid-150 7.613 0.354 21.505
gnp-10K 2926.720 79.119 36.991

attend Patents 29.820 3.025 9.858
(locking) Wiki 26.122 3.202 8.158
attend Patents 65.112 2.917 22.319

(lock-free) Wiki 89.473 6.387 14.009
“Time-1” column and “Time-64” column show the evaluation time (in seconds)
using one processor and 64 processors, respectively.

3.7.5 Discussion

The evaluation time using one processor reflects the actual cost of evaluation without the overhead

of parallel evaluation. The results in Table 3.2 show that the lock-free plan of sg has a slightly

lower cost than the locking plan of sg, while the lock-free plan of attend has a significantly

higher cost than the locking plan of attend. For sg, the slight difference in cost is due to the

different memory access patterns in the two plans—the write operations to sg are grouped by X

in the lock-free plan, while there is no clear ordering on the write operations in the locking plan.

Although a lock-free plan produces better memory access patterns, this may not always be the best

plan in terms of evaluation time. This is demonstrated by the evaluation of attend, where the

evaluation time is dominated by the time spent on index lookups. Let N be the number of tuples

in friend. The number of index lookups performed by the locking plan is bounded by 3N , while

the number of index lookups in the lock-free plan is T×N , where T is the number of iterations in

the semi-naive evaluation. Thus, the lock-free plan has a much higher cost than the locking plan

when the semi-naive evaluation requires more than three iterations.

Besides the cost of evaluation, a lock-free plan might require partitioning a relation by a certain

column that only takes a few distinct values, which leads to imbalanced load among processors

where most processors are idle during evaluation.
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Example 3.17. Consider the following program, where X is the primary key in q and h(Z) only

takes four values.

p(Z, count<Y>) <- q(X, Y, Z).

The evaluation is lock-free if the discriminating sets of p and q are {1} and {3}, respectively.

However, if the number of available processors is greater than four, then only four processors will

be busy during evaluation since there are four non-empty partitions. A better plan is to choose the

discriminating set of q as {1}, i.e., partitioning q by its X argument. During evaluation, each work-

er performs the aggregation locally, and the coordinator merges these partial values to produce

the final aggregation result after all the workers finish.

Therefore, DeALS also provides users with the option of override the system’s default opti-

mization plan. In fact, a user can force the system to partition a relation by certain columns by

specifying a discriminating set for a predicate in the program. DeALS tries to find the best parallel

evaluation plan for the given program, where the predicates in every rule are evaluated in the same

order as they are provided in the program.

3.8 Related Work

The parallel evaluation strategy proposed in this chapter uses a simple hash-based data partitioning

strategy. Various data partitioning strategies for parallel bottom-up evaluation have been studied

in [WS88,Wol88,CW89,SL91,GST92,ZWC95,GST95]. These studies assume a message passing

model and focus on minimizing the amount of message exchange, whereas our study considers a

shared-memory model where no message exchange is needed during the evaluation; we demon-

strate the effectiveness of our technique with a real Datalog system implementation while previous

studies focus on theoretical aspects. Strategies for top-down evaluation in the shared-memory

model are proposed in [RS86, Hul89, BSH91], while in this chapter we focus on the bottom-up

evaluation.

Another line of related work is new systems that can evaluate Datalog programs on a multi-

node cluster [SPS13, WBH15]. The techniques presented in these papers are complementary to
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ours since our study focuses on the parallel evaluation on a single machine. Another difference is

the treatment of aggregates in recursion which is discussed in Section 3.2. Moreover, these stud-

ies focus on the evaluation of recursive queries with aggregates, while our study covers recursive

queries with/without aggregates and non-recursive queries. Finally, although these distributed sys-

tems have a potential to scale to larger datasets and clusters, DeALS achieves superior performance

as a single-machine solution when the datasets fit in the memory of a single machine.

3.9 Conclusion

In this chapter, we presented the compilation techniques used by DeALS for in-memory parallel

evaluation of Datalog programs on shared-memory multicore machines. The techniques produce

efficient parallel evaluation plans for both non-recursive and recursive programs. As a result,

DeALS achieves superior performance on the evaluation of recursive queries compared with other

existing systems, while maintaining competitive performance with commercial RDBMSs on non-

recursive queries. Moreover, since the speedup of parallel evaluation over sequential evaluation is

modest for evaluation plans that use locks, we presented rewriting techniques that transform the

given program into a lock-free program.

While DeALS is a very robust prototype, there remain plenty of opportunities for future im-

provement. Our ongoing work seeks to further optimize the code generation which reduces the

performance gap between DeALS and the hand written optimal programs, including (i) employing

a vectorized processing model [BZN05] and the techniques presented in [DS13] to improve the

performance on non-recursive queries; (ii) implementing the SSC12 algorithm introduced in the

previous chapter for transitive closure-like recursive queries; and (iii) providing a worst-case opti-

mal guarantee for joins used by both non-recursive and recursive queries with the leapfrog triejoin

algorithm [Vel14]. Another improvement planned for the future is to study techniques that can be

integrated into DeALS to improve its performance when skew is present.
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CHAPTER 4

Scaling out Datalog on Clusters

In this chapter, we present an overview of the BigDatalog system that focuses on the distributed

evaluation of Datalog programs on clusters. More details about the query evaluation and optimiza-

tion techniques used by BigDatalog are discussed in [SYI16] and [Shk16].

4.1 Introduction

BigDatalog is a Deductive Application Language (DeAL) implementation on Spark [ZCD12]. It

enables Spark programmers to implement complex analytics pipelines of relational, graph, and

machine learning tasks in a single declarative language, instead of stitching together programs

written in different subsystem APIs, i.e., Spark SQL [AXL15], GraphX [GXD14], and MLlib

[MBY16]. Moreover, it employs techniques to identify and evaluate recursive programs that are

decomposable and can be evaluated without communication [WS88, SL91], leading to efficient

distributed evaluations.

4.1.1 Challenges

There are following three main challenges to implement BigDatalog on Spark:

1. Acyclic Plans. Supporting compilation, optimization, and evaluation of Datalog programs

on Spark requires features not currently supported. In particular, Spark SQL lacks recursion

operators, operators are designed for acyclic use, and the Catalyst optimizer is targeted for

non-recursive plans.
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2. Scheduling. Spark’s synchronous stage-based scheduler issues tasks for a stage only after all

tasks of the previous stages have completed. This can be seen as unnecessary coordination

for monotonic Datalog programs because these programs are eventually consistent [ANB11,

IT15].

3. RDD Immutability & Memory Utilization. An iteration of recursion will produce a new

Resilient Distributed Dataset (RDD) to represent the updated recursive relation. This RDD

will contain both new facts and all the facts produced in earlier iterations, which are al-

ready contained in earlier RDDs. If poorly managed, recursive applications on Spark can

experience memory utilization problems.

4.1.2 Contributions

We make the following contributions through the design and implementation of our BigDatalog

system:

• We show how recursive Datalog programs are compiled into recursive physical plans for

Spark.

• We present a parallel evaluation technique for distributed Datalog evaluation on Spark. We

introduce recursion operators and data structures to efficiently implement the technique in

Spark.

• We propose physical planning and scheduler optimizations for recursive Datalog programs

in Spark, including techniques to evaluate decomposable programs.

• We present distributed monotonic aggregates, and accompanying evaluation technique and

data structures to support Datalog programs with aggregates on Spark.

• We provide experimental evidence that a generic declarative system can compete with a

special-purpose graph system.
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4.2 System Overview

4.2.1 Parallel Semi-Naive Evaluation on Spark

BigDatalog evaluates programs using a parallel version of standard semi-naive evaluation we call

parallel semi-naive (PSN) evaluation. PSN is an execution framework for a recursive predicate

and it is implemented using RDD transformations. Since Spark evaluates synchronously, PSN will

evaluate one iteration at a time, where an iteration will not begin until all tasks from the previous

iteration have completed.

The two types of rules for a recursive predicate, the exit rules and recursive rules, are compiled

into separate physical plans which are then used in the PSN evaluator. Physical plans are composed

of Spark SQL and BigDatalog operators that produce RDDs. The exit rules plan is first evaluated

once, and then the recursive rules plan is repeatedly evaluated until a fixpoint is reached.

The psuedocode for the PSN evaluator is shown in Figure 4.1. The exitRulesPlan (line 1)

and recursiveRulesPlan (line 5) are plans for the exit rules and recursive rules, respectively.

We use toRDD (lines 1, 5) to produce the RDD for the plan. Each iteration produces two new

RDDs—an RDD delta for the new results produced during the iteration, and an RDD all for all

results produced thus far for the predicate. The method updateCatalog (lines 3, 7) stores new all

and delta RDDs into a catalog for plans to access. The exit rule plan is evaluated first. The result

is de-duplicated by distinct (line 1) to produce the initial delta and all RDDs (line 2), which are

used to evaluate the first iteration of the recursion. Each iteration is a new job executed by count

(line 8). First, the recursiveRulesPlan is evaluated using the delta RDD from the previous

iteration. This will produce an RDD that is set-differenced (subtract) with the all RDD (line 5)

and de-duplicated to produce a new delta RDD. With lazy evaluation, the union of all and delta

(line 6) from the previous iteration is evaluated prior to its use in subtract (line 5).

4.2.2 Evaluation Plans

For a given Datalog program, the BigDatalog compiler first creates a logical plan for the program,

and then maps the logical plan into a Spark SQL plan or a BigDatalog physical plan depending
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1: delta := exitRulesPlan.toRDD().distinct()
2: all := delta

3: updateCatalog(all, delta)
4: repeat
5: delta := recursiveRulesPlan.toRDD().subtract(all).distinct()
6: all := all.union(delta)
7: updateCatalog(all, delta)
8: until delta.count() = 0
9: return all

Figure 4.1: PSN evaluator with RDDs.

on whether the program is non-recursive or recursive. We use the transitive closure query tc in

Example 3.3 to illustrate the process.

Logical Plans. The program is compiled into an AND/OR tree (discussed in Chapter 3.3.2), and

then the logical plan is produced by it into a tree of relational and recursion operators. A recursion

operator has two child logical (sub)plans: one plan for the predicate’s exit rules and the other

for the predicate’s recursive rules. Figure 4.2(a) is the logical plan produced by the BigDatalog

compiler for tc. The left side is the exit rules plan with only the arc relation, representing the exit

rule, while the right side is the recursive rules plan made up of relational operators to produce one

iteration of the recursive rule.

Physical Plans. Figure 4.2(b) is a physical plan for the logical plan in Figure 4.2(a). The root

of the plan is the recursion operator (RO) for the tc recursive predicate. It is a special driver

operator that runs on the master and executes PSN. An RO has two child physical (sub)plans, the

Exit Rules Plan (ERP) and the Recursive Rules Plan (RRP). In the RRP, δtc is a recursive relation

and when evaluated will produce tc’s facts from the previous iteration. In each iteration, δtc is

joined with arc to derive new tuples. BigDatalog uses binary hash join operators, and a multi-way

join is converted into a hierarchy of binary join operators in a left-to-right fashion. Here, both

inputs to the binary hash join are shuffled. The subscript Z, [N] indicates the partitioning key is the

Z argument (from the rule), and there will be N partitions. Here Z is the join argument so that tuples

of arc and δtc having the same key will be co-located on the same worker.
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(a) Logical Plan (b) Physical Plan
Figure 4.2: BigDatalog plans for tc.

4.2.3 Optimizations

BigDatalog employs various optimization techniques to enable efficient and scalable distributed

evaluation of Datalog programs, including introducing a specialized RDD called SetRDD tailored

for set operations needed for PSN, data partitioning optimization, join optimizations, optimization

for decomposable programs, and job optimizations. These optimizations are discussed in details

in [SYI16] and [Shk16]. Here, we show the effectiveness of these optimizations with example

results from the transitive closure query evaluation. Again, more experiments and analysis are

presented in [SYI16] and [Shk16].

Performance Comparison. The experiments are conducted on a 16 node cluster. Each node runs

Ubuntu 14.04 LTS and has an Intel i7-4770 CPU (3.40 GHz, 4 core/8 thread), 32 GB memory and

a 1 TB 7200 RPM hard drive. The cluster are connected with 1Gbit network. Our implementation

is in Spark 1.4.0 and uses Hadoop 1.0.4.

Figure 4.3 shows the execution time required to compute a 100 million vertex pair transitive

closure of a graph using a highly optimized handwritten Spark program versus the BigDatalog

version. It is clearly to see that BigDatalog is both considerably better than its host framework and

also performant w.r.t. other distributed Datalog systems, namely, Myria [WBH15] and SociaLite
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[SPS13]. This orders of magnitude speed-up is achieved by employing the efficient evaluation

techniques and optimizations of Datalog in Spark.

BigDatalog

Spark

Myria

SociaLite

0 250 500 4500 4750 5000
Time (s)

22

340
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4736

Figure 4.3: Example recursive query performance.

4.3 Conclusion

BigDatalog is a powerful Datalog system that enables Spark programmer to develop complex dis-

tributed algorithms in a declarative language, while maintaining the efficiency of highly optimized

programs. In fact, BigDatalog can also be backed by other general dataflow systems, including

Hyracks [BCG11] and Naiad [MMI13], and many of the optimization techniques that are current-

ly employed by BigDatalog will also apply. This is the benefit of employing a declarative language,

and comparing and analyzing the performance tradeoffs between different backend systems and/or

computation models on various workloads would be an interesting future work.

An interesting direction for future research is to extend BigDatalog to support XY-stratification

[ZCF97, AOT03]. This will realize the vision of [BBC12a] and [BBC12b], in which the authors

1. showed that many machine learning algorithms, such as PageRank and batch gradient de-

scent, can be expressed using XY-stratified Datalog programs that dovetail with the MapRe-

duce paradigm of cluster computing;

2. thus argued that users can greatly benefit from systems that support such feature in the de-

velopment and deployment of complex machine learning algorithms over massively parallel

systems.

In fact, this is the topic of the next chapter, where we present a language extension of DeAL with
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the support for XY-stratification. It is interesting to note that this new language also supports

monotonic aggregates, which can be used in recursive rules to express asynchronous computations

that (i) can not be expressed by XY-stratification1, and (ii) is also part of the vision of [BBC12a]

and [BBC12b] but presented as a future work.

1The semantics of monotonic aggregates does not define whether the underlying computation is synchronous or
asynchronous. Thus, the compiler is free to choose an implementation that is more efficient. In fact, we have shown
in [SYZ15] that an asynchronous version, i.e., eager monotonic aggregate semi-naive evaluation, is usually more
efficient than the synchronous version, i.e., monotonic aggregate semi-naive evaluation. Thus, our systems use an
asynchronous implementation by default.
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CHAPTER 5

Knowledge Discovery in Datalog

In this chapter, we present a new language, called Knowledge Discovery in Datalog (KDDlog),

that extends DeAL with support for knowledge discovery and data mining (KDD) applications.

5.1 Introduction

In the previous chapters, we have discussed the progress achieved through the research and de-

velopment of DeAL and its system implementations. However, major research challenges remain

before we can realize the ambitious goals of KDDlog that seeks to support KDD tasks in Datalog.

In particular, we must overcome the following two limitations of current Datalog technologies:

1. Limited expressive power, whereby the current Datalog systems might not be able to express

complex KDD tasks, or they can only express them in ways that are not amenable to efficient

implementation and parallelization. The current state of the art is such that basic SQL and

Datalog have demonstrated to be conducive to efficient implementation via optimization and

scalability via data-oriented parallelism for both applications that do not require recursion,

and those that do not require aggregates in recursion. However, most KDD tasks require

aggregates and other non-monotonic constructs in recursion. In spite of the recent progress

on monotonic aggregates that can be used in recursion [MSZ13a, MSZ13b], the programs

with monotonic aggregates usually do not exhibit the same time and space complexities as

that of procedure programs that a user would write for KDD tasks. Thus, there is still a need

86



for more general and efficient solutions.

2. Lack of genericity whereby programs must be written specifically for the number and types

of each column in the table rather than for generic tables. A typical solution is to convert

a given table from a row-oriented representation to a column-oriented representation, and

write programs for tables using a column-oriented representation. However, this conversion

introduces space overhead, and it is not easy for a Datalog system to fully optimize the

accesses to the resulting tables for the programs that operate on these tables since the system

is not aware of the properties of this representation.

Thus, in order to overcome the first limitation, we adopt an approach called Constraint Pushing

into Recursion (CPR) that allows the use of non-monotonic constructs in recursion [ZYD16a,

ZYD16b], and we demonstrate how it will allow us to express efficiently KDD algorithms. We

focus on providing declarative formulations for these algorithms, while leaving the investigation

for parallelization as a future work. In order to overcome the second limitation, we introduce

constructs that achieve genericity by supporting verticalized views for tables, whereby we can

write algorithms that work on tables with arbitrary number of attributes, and the system is then

able to optimize the accesses to these tables.

The rest of this chapter is organized as follows. We first introduce CPR and the body aggregate

notations in Section 5.2. Then we present our constructs for obtaining columnar views of tables

and rollups in Section 5.3. After that, from Section 5.4 to Section 5.8, we show how to express

efficiently major KDD algorithms in KDDlog, including data cubes, frequent item set mining,

classification, regression analysis, and cluster analysis. We discuss how to support the exportation

of KDD algorithms implemented in KDDlog and importation of algorithms implemented in oth-

er languages through user-defined aggregate functions in Section 5.9. The chapter concludes in

Section 5.10.
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5.2 Background

5.2.1 Constraint Pushing into Recursion

The declarative and constructive semantics of a Datalog program P is defined in terms of the Im-

mediate Consequences Operator (ICO) for P , denoted by TP (I), and where I denotes a Herbrand

interpretation of P . For basic Datalog, without negation or aggregates, TP (I) is a monotonic con-

tinuous mapping in the lattice of set-containment which the interpretation I belongs to, whereby

we have the following well-known properties:

1. A unique minimal (w.r.t. set-containment) solution of the equation I = TP (I) always exists

and it is known as the least-fixpoint of TP which defines the declarative semantics of P .

2. The fixpoint iteration T ↑ωP (∅), often called the naive fixpoint of TP , defines the operational

semantics of our program. For cases of practical interest, the computation only needs to be

performed till the first integer n+1 where, T n+1
P (∅) = T nP (∅). For positive programs without

negation and aggregates, the operational and declarative semantics coincide.

In order to express many practical applications, basic Datalog must be extended to allow the use of

negation and aggregates, and in fact most Datalog compilers do so, but require that the programs

be stratified w.r.t. negation and aggregates, such as the following program:

Example 5.1. Shortest path from node a.

r1 . path(Y, Dy) <- arc(a, Y, Dy).

r2 . path(Y, Dy) <- path(X, Dx), arc(X, Y, Dxy), Dy = Dx + Dxy.

r3 . spath(Y,min〈Dy〉) <- path(Y, Dy).

The syntax min〈Dy〉 above illustrates the head notation for aggregates that is used in many

Datalog systems, and follows SQL-2 approach of allowing zero, one or more group-by variables

for aggregate. Thus, in our example Dy is the aggregate variable (specifically the min variable) and

Y is the group-by variable. We will often refer to the min and max variables as cost variables.

88



Stratification can be used to avoid the semantic problems caused by using aggregates in recur-

sion. For instance, in our example spath belongs to a stratum that is above that of path, whereby

our program is assured to have a perfect-model semantics [Prz88]. The perfect model of a stratified

program is unique and can be computed using an iterated fixpoint computation [ZCF97], whereby

the least fixpoint is computed starting at the bottom stratum and moving up to higher strata. In our

example, therefore, all the possible paths will be computed using rules r1 and r2 , before selecting

values that are minimal using r3 . This is the approach used by current Datalog compilers, and it

can be very inefficient or even non-terminating when the original graph contains cycles.

In fact, for large classes of programs, the computation can be significantly optimized by simply

pushing constraints into the fixpoint computation. In Example 5.1 above, the constraint is imposed

by the last rule that, for each point reached, selects the minimal value of its distance from a. This

non-monotonic constraint can now be pushed into the recursive rules whereby the rules used by

the compiler in the actual implementation become:

Example 5.2. Optimized shortest path from node a.

r1 ′. path(Y,min〈Dy〉) <- arc(a, Y, Dy).

r2 ′. path(Y,min〈Dy〉) <- path(X, Dx), arc(X, Y, Dxy), Dy = Dx + Dxy.

r3 ′. spath(Y, Dy) <- path(Y, Dy).

The rules so obtained define the optimized ICO that will be used in the fixpoint iteration to

construct path. This optimization is referred to as Constraint Pushing into Recursion (CPR) opti-

mization [ZYD16a, ZYD16b].

As illustrated by Example 5.1, the CPR optimization considers programs (or segments of larger

programs) consisting of (i) rules defining one or more recursive predicate(s), and (ii) one constraint

rule that has one or more of those recursive predicates as its goals with min, max, and possibly

other constraints on their variables. Such programs are called CPR-structured programs. The CPR

optimization removes the constraint goals from the constraint rule to add them to the rules defining

the recursive predicates with the expectation that they will be compiled into an execution plan that
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realizes the declarative semantics of the original program. In the optimized program, constraints

are applied to the rules or facts defining the recursive predicate, and the old constraint rule has

now become a copy rule that returns the values produced by the recursive predicate. Thus, the

transformed program in Example 5.2 shows the min constraint now implanted into the heads of

rules r1 ′ and r2 ′, whereas r3 ′ has become a copy rule from path to spath.

Now, given a CPR-structured program P , let γ and Tρ denote the constraints in the constraint

rule1 and the recursive ICO, respectively. If the following equality holds for any interpretation I ,

γ(Tρ(I)) = γ(Tρ(γ(I))),

then we say that γ is implantable into P ’s recursion, and it is not hard to prove that the CPR-

optimized version of P is both sound and complete, i.e., no incorrect result is ever produced by the

optimized rules, and any result that is produced by the iterated fixpoint computation of P is also

produced by the optimized rules. Thus, the CPR-optimized program (the copy rule is excluded)

behaves as a positive program since Tγρ has a unique least fixpoint computable as T ↑ωγρ (∅).

In practice, it is not necessary to check whether the equality condition holds for every inter-

pretation. In fact, there are other sufficient conditions that can be easily checked through simple

syntactic analyses on a given program, and these conditions apply to most examples of practical

interest [ZYD16b]. Thus, in the rest of this chapter, we use CPR-optimized programs without

providing formal proofs on the correctness of the optimized programs.

5.2.2 Notations for Body Aggregates

We allow the use of aggregates in the body. For example, the rule r3 in Example 5.1 is equivalent

to the following rule, where a body notation is used for the min aggregate:

spath(Y, Dy) <- path(Y, Dy), is_min((Y), (Dy)).

We also allow the use of aggregates with multiple arguments as in the following:

1We use the symbol γ to denote both a constraint, and the application of the constraint itself.
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onearc(X, Y, D) <- arc(X, Y, D), is_min((X), (D, Y)).

which is a short-hand for:

minarc(X, D) <- arc(X, Y, D), is_min((X), (D)).

onearc(X, Y, D) <- arc(X, Y, D), minarc(X, D), is_min((X), (Y)).

Thus we first select the nodes of min distance, and if there are several of such nodes, we select the
one that has the min value (as nodes are numeric or belong to a totally ordered domain).

5.3 Basic Representations and Constructs

Now we start introducing the new constructs as well as the corresponding representations that are

added to KDDlog to provide efficient support for KDD applications.

5.3.1 Verticalization

Data mining tool sets support algorithms that are generic and can be applied to datasets described

by tables with arbitrary number of columns. However, in Datalog, SQL and other database query

languages, different queries must be written for tables having different number of columns. To

addresses the need for genericity, we describe an approach called verticalization, which displays

column numbers and values for the tuples. For example, the well-known PlayTennis example

from [Mit97] and the verticalized representation of its first three tuples are shown in Table 5.1 and

Table 5.2, respectively.

We provide the meta-level construct Val@Col, i.e., the value Val at column Col, that turns

the original row-oriented representation into a column-oriented one. For example, the rule of

Example 5.3 transforms Table 5.1 into the vertical representation shown in Table 5.2, where train

and vtrain are the names of the relations that store all the tuples in Table 5.1 and Table 5.2,

respectively.

Example 5.3. From a row-oriented representation to a column-oriented representation.

vtrain(ID, Col, Val) <- train(ID, Val@Col).
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Table 5.1: Training examples for the PlayTennis table.
ID Outlook Temperature Humidity Wind PlayTennis

(1) (2) (3) (4) (5)
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes

10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Table 5.2: Vertical view of the tuples in
Table 5.1.

ID Col Val
1 1 sunny
1 2 hot
1 3 high
1 4 weak
1 5 no
2 1 sunny
2 2 hot
2 3 high
2 4 strong
2 5 no
3 1 overcast
3 2 hot
3 3 high
3 4 weak
3 5 yes
. . . . . . . . .

Table 5.3: Tuples produced by the rule in
Example 5.5.

ID Col Val PlayTennis
1 1 sunny no
1 2 hot no
1 3 high no
1 4 weak no
2 1 sunny no
2 2 hot no
2 3 high no
2 4 strong no
3 1 overcast yes
3 2 hot yes
3 3 high yes
3 4 weak yes
. . . . . . . . . . . .

The inverse transformation is achieved by using the Val@Col construct in the head of a rule.

For example, the rule of Example 5.4 transforms Table 5.2 back to the corresponding row-oriented

representation in Table 5.1.
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Example 5.4. From a column-oriented representation to a row-oriented representation.

train(ID, Val@Col) <- vtrain(ID, Col, Val).

Moreover, we allow extra columns after the Val@Col construct to indicate the columns that

will be used as labels. For example, the rule of Example 5.5 produces tuples shown in Table 5.3,

where for every column of a tuple in Example 5.1 except for the fifth column (i.e., the PlayTennis

column), it generates a tuple with the tuple ID, column number and value, while the value of the

fifth column is displayed in the last column.

Example 5.5. Obtaining a column-oriented representation with values in the PlayTennis column

as labels.

vtrain2(ID, Col, Val, PlayTennis) <- train(ID, Val@Col, Val@5),

PlayTennis = Val@5.

While the rules above can be used to materialize verticalized tables shown in Table 5.2 and

Table 5.3, more often than not, they will be used as virtual views defining some mappings that are

then folded into the computation of rollups and data cubes described in the following sections.

In the following, we use k and n to denote the number of columns (excluding the ID colum-

n) and the number of tuples in the row-oriented representation, respectively. Then the column-

oriented representation vtrain contains kn tuples, and there are (k − 1)n tuples in vtrain2.

Assume that every column of a tuple requires the same amount of space to store2, then we use the

product between the number of columns and the number of tuples as the space cost of a relation.

For example, the space cost of train is (k + 1)n, and the space costs to materialize vtrain and

vtrain2 are 3kn and 4(k − 1)n, respectively.

2We store each integer or real number using 64 bits, and store a 64-bit pointer for each string, where the pointer
points to the actual unique string. In practice, the space required to store these unique strings is relatively small w.r.t.
the size of the data set. Thus, it is a fair approximation to assume that every column of a tuple requires the same
amount of space to store.
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Table 5.4: The count rollup for the example in Table 5.1.
ID Outlook Temperature Humidity Wind PlayTennis count

(1) (2) (3) (4) (5)
1 null null null null null 14
2 overcast null null null null 4
3 overcast cool null null null 1
4 overcast cool normal null null 1
5 overcast cool normal strong null 1
6 overcast cool normal strong yes 1
7 overcast hot null null null 2
8 overcast hot high null null 1
9 overcast hot high weak null 1

10 overcast hot high weak yes 1
11 overcast mild null null null 1
12 overcast mild high null null 1
13 overcast mild high strong null 1
14 overcast mild high strong yes 1
. . . . . . . . . . . . . . . . . . . . .

5.3.2 Rollups and Rollup Prefix Tables

Next, we describe a more compact representation that assures low storage and good run time, while

preserving intuitive appeal and data independence at the logical level.

A basic SQL-2003 count rollup on our example in Table 5.1 produces the output in Table 5.4

once the result is displayed using ROW_NUMBER, ASC, NULLS FIRST (to save space we only show

the first 14 lines among the 51 lines in total).

Now, we see that, in columns 1–5, only the items in the main diagonal hold new information

(highlighted in sky blue). The items to left of the diagonal repeat previous values, whereas those to

right are nulls. Then we can use a more concise representation such as the one in Table 5.5, where

the first four columns contain the same information as an item in the main diagonal does, whereas

the last column (PID) specifies the ID of the tuple from where we can find the value of the previous

column. We refer to this condensed representation as a prefix table. In this particular case it is a

rollup prefix table for count, and similar representations can be used for other aggregates.

The rollup prefix tables for count are just relational representations for prefix trees, which
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Table 5.5: A rollup prefix table for the tuples
in Table 5.4.

ID Col Val count PID
1 1 null 14 1
2 1 overcast 4 1
3 2 cool 1 2
4 3 normal 1 3
5 4 strong 1 4
6 5 yes 1 5
7 2 hot 2 2
8 3 high 1 7
9 4 weak 1 8

10 5 yes 1 9
11 2 mild 1 2
12 3 high 1 11
13 4 strong 1 12
14 5 yes 1 13
. . . . . . . . . . . . . . .

Table 5.6: A logically equivalent rollup prefix
table of Table 5.5.

ID Col Val count PID
1 1 null 14 1
3 1 overcast 4 1
7 2 cool 1 3
7 3 normal 1 7
7 4 strong 1 7
7 5 yes 1 7
3 2 hot 2 3
3 3 high 1 3
3 4 weak 1 3
3 5 yes 1 3

12 2 mild 1 3
12 3 high 1 12
12 4 strong 1 12
12 5 yes 1 12
. . . . . . . . . . . . . . .

proved very valuable in data mining algorithms, such as the famous FP-growth algorithm [H-

PY00]. The nodes of rollup prefix tables are identified by integers. In Table 5.5 the integers form a

sequence of consecutive integers. However in general, no logical significance needs to be associ-

ated to those numbers: the only requirement is that no two nodes are assigned the same identifier,

i.e., the combination of (ID, Col, Val, PID) must be unique. In fact, we can reuse the IDs of the

original tuples in Table 5.1, and one such example is shown in Table 5.6. An algorithm to construct

a rollup prefix table from a verticalized representation vtrain(T, C, V) (T, C, and V stand for the ID

column, Col column, and Val column, respectively) is presented in the example below.3

Example 5.6. Rollup prefix tables. Given two IDs T1 and T2, we say that the tuple with ID T1

can represent the tuple with ID T2 (or T1 can represent T2 for short) in column C if both tuples are

identical in the first C columns. repr is a recursive relation that represents vtrain in a different

format, where each tuple (T, C, V) in vtrain is augmented with one more column T1 indicating that

T1 can represent T in column C− 1, i.e., the parent ID of the current tuple is T1. Then a prefix table

rupt is constructed on top of repr in r3 , where among all the tuples with the same parent ID Ta,

3Hereafter, a rollup prefix table does not contain the tuple that represents the total number of tuples, i.e., the tuple
(1, 1, null, 14, 1) in Table 5.5 and Table 5.6.
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and the same value V in column C, the tuple with the minimal ID T is selected as a representative

by the monotonic aggregate mmin, and the number of tuples that satisfy this property is tracked

by the other monotonic aggregate mcount. The recursive computation for repr is performed as

follows. The exit rule r1 initializes repr by setting that all the tuples have the parent ID 1 in

column 1. Then the recursive rule r2 is repeatedly evaluated until no more tuples can be added

to repr, where for each tuple (T, C, V) in vtrain, if the parent ID of the tuple with ID T is Ta in

column C− 1, and the tuple with ID T1 is selected as the current representative, then T1 is the

parent ID for the tuple with ID T in column C.

r1 . repr(T1, C, V, T) <- vtrain(T, C, V), C = 1, T1 = 1.

r2 . repr(T1, C, V, T) <- vtrain(T, C, V), C1 = C− 1, repr(Ta, C1, V1, T),

rupt(T1, C1, V1, _, Ta).

r3 . rupt(mmin〈T〉, C, V,mcount〈T〉, Ta) <- repr(Ta, C, V, T).

The rule below is the extraction rule that gets the final values of the monotonic aggregates for each

unique combination of (Ta, C, V).

r4 . rupt2(min〈T〉, C, V,max〈CT〉, Ta) <- rupt(T, C, V, CT, Ta).

Note that rupt2 might contain more tuples than the final rollup prefix table since (i) the continuous

monotonic aggregates might produce multiple tuples of the form (T, C, V, CT, Ta) for each unique

combination of (Ta, C, V), and (ii) these T values then become the parent IDs of some tuples in

repr, rupt, and rupt2. However, it is easy to see that these parent IDs share the same T value in

rupt2. Thus, r5 is added to keep the minimal parent ID Ta, i.e., to keep a unique parent for every

node. This rule is not necessary if the tuples in vtrain are accessed in increasing order of IDs.

This condition is guaranteed since vtrain is produced by our built-in verticalization function.

r5 . rupt3(T, C, V, CT, Ta) <- rupt2(T, C, V, CT, Ta), is_min((T, C, V), (Ta)).

Performance Optimizations. In practice, vtrain is usually a very large relation, and we prefer
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access it with sequential scans to index lookups since the cost of indexing is very high. Thus,

one full scan to vtrain is performed in each iteration of the semi-naive evaluation. The semi-

naive evaluation requires k + 1 iterations, where the i-th iteration derives new tuples based on

tuples of the form (_, i, _) in vtrain, i.e., it creates the i-th level of the prefix table. The main

reason that leads to this behavior is due to the design of the semi-naive evaluation, which only

uses tuples derived in the previous iterations to derive new tuples in one iteration. For example,

assume that we start the second iteration of the evaluation, where all the tuples in repr and rupt

are in the form of (_, 1, _, _) and (_, 1, _, _, _), respectively. We read the first tuple (1, 1, sunny)

in vtrain, but do not derive anything since there is no tuple in repr in the form of (_, 0, _, _).

Then we read the second tuple (1, 2, hot), find (1, 1, sunny, 1) in repr, find (1, sunny, 1, _, 1) in

rupt, and derive (1, 2, hot, 1) for repr. After that, we move to the third tuple (1, 3, high), but do

not derive anything since the tuple (1, 2, hot, 1) in repr cannot be used until the next iteration.

We can reduce the number of iterations by allowing the evaluation to use all the tuples derived

so far. Such an evaluation strategy is called the eager semi-naive evaluation. Thus, with eager

semi-naive evaluation, one scan of vtrain is performed in the evaluation of r1 , and two scans of

vtrain are performed in the evaluation of r2 —all the tuples are derived during the first scan, and

the evaluation terminates when it completes the second scans since it identifies that no new tuple

is derived during this scan. We can further eliminate the scan required by the exit rule by replacing

r1 and r2 with the following rule:

r6 . repr(T1, C, V, T) <- vtrain(T, C, V),

if(C = 1

then T1 = 1

else C1 = C− 1, repr(Ta, C1, V1, T),

rupt(T1, C1, V1, _, Ta).

The expression h <- if(p then q else w) is equivalent to the following two rules:

h <- p, q.

h <- ¬p, w.
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Thus, the new rule r6 eliminates the exit rule, and only two scans of vtrain are required in total.

Space Optimizations. Both repr and rupt are recursive relations, and are materialized during

the evaluation. The purpose to materialize a recursive relation is to avoid redundant computation

and ensure the termination of computation. However, the space cost can be very expensive. In

Example 5.6, repr contains the same number of tuples as vtrain does. Thus, the space cost to

materialize repr is 4kn. On the other hand, the space cost of to materialize vtrain is only 3kn.

Although we try to reduce the space cost by not materializing vtrain, the computation produces

an intermediate relation that is actually larger than the space we tried to save. For this program, it

is not necessary to materialize the full repr relation during the evaluation. Let repri be the subset

of repr that contains all the tuples of the form (_, i, _, _). During the i-th (i > 1) iteration of the

standard semi-naive evaluation, it is easy to see that only tuples in repri−1 will be accessed to

derived tuples in repri. Thus, it is only necessary to keep the tuples in repri−1 and repri during

the i-th iteration, and the tuples in repri−2, . . . , repr1 can be removed. In this way, the space cost

to materialize repr is reduced from 4kn to 4 × 2n. Moreover, if the eager semi-naive evaluation

is used, the space cost can be further reduced to a constant. At any time of the evaluation, it is

only necessary to keep two tuples in repr, where one tuple T1 is used to derive the other tuple T2,

T1 is removed after T2 has been derived, and the newly derived tuple T2 is then immediately used

to derive another tuple4. Thus, the space cost to materialize repr is only 4 × 2 = 8 in the eager

semi-naive evaluation. We have focused on the space cost to materialize repr. The materialization

of rupt is unavoidable since it represents our final prefix table. Moreover, no extra space is used

for rupt2 since r4 is an extraction rule implemented as reading the final values of the monotonic

aggregates from rupt.

Thus, we have come up with a Datalog program that achieves the same time and space com-

plexity as a fully optimized procedure program for constructing a rollup prefix table. To enhance

usability, we provide the following construct:

myrupt(rollup〈ID〉, Col, Val, count〈ID〉, prev〈ID〉) <- train(ID, Val@Col).

4No tuple from repr is used in the derivation when the condition C = 1 in if is satisfied.
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In this built-in construct, the keyword rollup indicates that we are computing a rollup prefix table,

rollup〈ID〉 denotes the operation that selects a representative among all the tuples with the same

combination of (PID, Col, Val), and prev〈ID〉 denotes the corresponding operation that decides

the PID of a tuple based on the actual implementation of rollup〈ID〉. We have used the mmin/min

aggregates to implement rollup〈ID〉 in Example 5.6. Other constructs, such as mmax/max and

choice, could also be used to deliver logically equivalent rollup prefix tables.

Finally, we introduce a self-explanatory horizontal representation, called compact rollups, to

provide a more intuitive visualization for rollup prefix tables. An example of a compact rollup

is shown in Table 5.7. In this representation, each item e that is not under the ID column and is

not empty represents a tuple in the rollup prefix table, where the values for ID, Col, Val, count

columns are the tuple ID of e, e’s column number, e’s value, and the number associated with

e’s value, respectively, and the value of the PID column is determined as follows: if the column

number of e equals 1, then PID equals 1; if the item before e is not empty, then PID equals ID;

otherwise PID equals the tuple ID of the first non-empty item above e. The compact rollup in

Table 5.7 represents the 51 tuples in Table 5.4 (excluding the first tuple that shows the total number

of tuples) by only 14 tuples. It is easy to see that this representation displays the same information

in a more concise and appealing way to end-users w.r.t. the typical rollup output format displayed

in Table 5.4.

5.4 Data Cubes

The representations used in rollup prefix tables and compact rollups are also good for representing

data cubes. Example 5.7 shows a program that computes a data cube from a rollup prefix table

myrupt, where the data cube also uses a prefix table representation that we refer to as a cube prefix

table. Note that a cube prefix table is also a prefix tree. To simplify the discussion, we will use

terms that are specifically for trees, i.e., we use node, root, and leaf to refer to a specific tuple, and

use path to refer to a collection of tuples that forms a path.

Example 5.7. From a rollup prefix table to a data cube. Predicates crepr and cpt correspond

to repr and rupt in Example 5.6, respectively. Let crepri be the set of tuples in crepr with the
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Table 5.7: A compact rollup for the example in Table 5.1.

ID Outlook C1
Tempe

C2 Humidity C3 Wind C4
Play

C5rature Tennis
1 sunny 5 hot 2 high 2 weak 1 no 1
2 strong 1 no 1
8 mild 2 high 1 weak 1 no 1

11 normal 1 strong 1 yes 1
9 cool 1 normal 1 weak 1 yes 1
3 overcast 4 hot 2 high 1 weak 1 yes 1

13 normal 1 weak 1 yes 1
7 cool 1 normal 1 strong 1 yes 1

12 mild 1 high 1 strong 1 yes 1
4 rain 5 mild 3 high 2 weak 1 yes 1

14 strong 1 no 1
10 normal 1 weak 1 yes 1
5 cool 2 normal 2 weak 1 yes 1
6 strong 1 no 1

value of the first column being i. Similarly for cpti. cpti stores a subset of the data cube as a

prefix tree, where the value of the i-th column is null, and crepri stores the intermediate results

that lead to cpti.

Let k be the number of columns in train. The recursive computation of crepr and cpt is

guided by the predicate step, where for each (i, j) pair such that 1 ≤ i < j ≤ k, for each path

from the root to a leaf in cpti, a new path is constructed by replacing the value of the j-th level

with null, and the new path is then added to creprj and cptj .

r1 . cpt(0,mmin〈T〉, C, V,msum〈(T, CT), Ta〉) <- myrupt(T, C, V, CT, Ta).

r2 . crepr(X, T2, C, V1, T1, CT) <- step(X, Y, MT, _), cpt(Y, T, C, V, CT, Ta), C >= X,

if(C = X

then T2 = Ta, V1 = null

else C1 = C− 1, Ta1 = MT + Ta,

crepr(X, Ta2, C1, V2, Ta1, _),

cpt(X, T2, C1, V2, _, Ta2), V1 = V),

T1 = MT + T.

r3 . cpt(X,mmin〈T〉, C, V,msum〈(T, CT)〉, Ta) <- crepr(X, Ta, C, V, T, CT).
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Rule r4 extracts the final aggregate values from cpt, and rule r5 obtains the final data cube by

projecting out the first column.

r4 . cpt2(X,min〈T〉, C, V,max〈CT〉, Ta) <- cpt(X, T, C, V, CT, Ta).

r5 . cpt3(T, C, V, CT, Ta) <- cpt2(_, T, C, V, CT, Ta).

The rules below construct step recursively.

r6 . stat(max〈T〉,max〈C〉) <- vtrain(T, C, V).

r7 . step(1, 0, MT, MC) <- stat(MT, MC).

r8 . step(X1, Y1, MT1, MC) <- step(X, Y, MT, MC),

if(X = Y + 1

then X < MC, X1 = X + 1, Y1 = 0, MT1 = MT ∗ 2
else X1 = X, Y1 = Y + 1, Y1 < X, MT1 = MT).

Now we show some intermediate results obtained during the semi-naive evaluation of the above

program. These results are displayed as compact cubes, which uses a representation that is similar

to the one used in compact rollups. We display a value in the ID column in the format of T(+MT)

indicating that the ID value is T + MT, and an item in this row is derived from an item in the row

with ID T. In Table 5.8, the items that are marked in sky blue represent nodes in the data cube that

are derived in the second iteration of the semi-naive evaluation, and the remaining items are copied

from the rollup prefix table during the first iteration where the exit rule r1 is evaluated. With all the

tuples in Table 5.8, the third iteration of the semi-naive evaluation leads to a compact cube shown

in Table 5.9, where the newly derived items are marked in sky blue.

Note that the performance and space optimizations presented for Example 5.6 are all applicable

to the program of Example 5.7. We introduce the following construct to denote the computation of

a data cube directly from train, where cube〈ID〉 tells the compiler that we are dealing with a data

cube.

mycpt(cube〈ID〉, Col, Val, count〈ID〉, prev〈ID〉) <- train(ID, Val@Col).
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Table 5.8: The compact cube for the example in Table 5.1 obtained after the 2nd iteration of the
semi-naive evaluation of the program in Example 5.7.

ID Outlook C1
Tempe

C2 Humidity C3 Wind C4
Play

C5rature Tennis
1 sunny 5 hot 2 high 2 weak 1 no 1
2 strong 1 no 1
8 mild 2 high 1 weak 1 no 1

11 normal 1 strong 1 yes 1
9 cool 1 normal 1 weak 1 yes 1
3 overcast 4 hot 2 high 1 weak 1 yes 1

13 normal 1 weak 1 yes 1
7 cool 1 normal 1 strong 1 yes 1

12 mild 1 high 1 strong 1 yes 1
4 rain 5 mild 3 high 2 weak 1 yes 1

14 strong 1 no 1
10 normal 1 weak 1 yes 1

5 cool 2 normal 2 weak 1 yes 1
6 strong 1 no 1

1(+14) null 14 hot 4 high 3 weak 2 no 1
3(+14) yes 1
2(+14) strong 1 no 1

13(+14) normal 1 weak 1 yes 1
4(+14) mild 6 high 4 weak 2 yes 1
8(+14) no 1

12(+14) strong 2 yes 1
14(+14) no 1
10(+14) normal 2 weak 1 yes 1
11(+14) strong 1 yes 1
5(+14) cool 4 normal 4 weak 2 yes 2
6(+14) strong 2 no 1
7(+14) yes 1

Iceberg Cubes. The above cube construct can be used to define iceberg cubes [FSG98], which

compute aggregate functions over certain set of attributes to find aggregate values above pre-

defined thresholds. For example, an iceberg cube that finds all the nodes with count values no

less than a predefined threshold can be defined by the following rule:

icebergcpt(ID, Col, Val, Cnt, PID) <- mycpt(ID, Col, Val, Cnt, PID),

threshold(T), Cnt ≥ T.

Our algorithm computes the iceberg cube by constructing a cube prefix table from the rollup prefix
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Table 5.9: The compact cube for the example in Table 5.1 obtained after the 3rd iteration of the
semi-naive evaluation of the program in Example 5.7.

ID Outlook C1
Tempe

C2 Humidity C3 Wind C4
Play

C5rature Tennis
1 sunny 5 hot 2 high 2 weak 1 no 1
2 strong 1 no 1
8 mild 2 high 1 weak 1 no 1

11 normal 1 strong 1 yes 1
9 cool 1 normal 1 weak 1 yes 1

1(+28) null 5 high 3 weak 2 no 2
2(+28) strong 1 no 1
9(+28) normal 2 weak 1 yes 1

11(+28) strong 1 yes 1
3 overcast 4 hot 2 high 1 weak 1 yes 1

13 normal 1 weak 1 yes 1
7 cool 1 normal 1 strong 1 yes 1

12 mild 1 high 1 strong 1 yes 1
3(+28) null 4 high 2 weak 1 yes 1

12(+28) strong 1 yes 1
7(+28) normal 2 strong 1 yes 1

13(+28) weak 1 yes 1
4 rain 5 mild 3 high 2 weak 1 yes 1

14 strong 1 no 1
10 normal 1 weak 1 yes 1
5 cool 2 normal 2 weak 1 yes 1
6 strong 1 no 1

4(+28) null 5 high 2 weak 1 yes 1
14(+28) strong 1 no 1
5(+28) normal 3 weak 2 yes 2
6(+28) strong 1 no 1
1(+14) null 14 hot 4 high 3 weak 2 no 1
3(+14) yes 1
2(+14) strong 1 no 1

13(+14) normal 1 weak 1 yes 1
4(+14) mild 6 high 4 weak 2 yes 1
8(+14) no 1

12(+14) strong 2 yes 1
14(+14) no 1
10(+14) normal 2 weak 1 yes 1
11(+14) strong 1 yes 1
5(+14) cool 4 normal 4 weak 2 yes 2
6(+14) strong 2 no 1
7(+14) yes 1

continued on the next page . . .
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Table 5.9 (continued)

ID Outlook C1
Tempe

C2 Humidity C3 Wind C4
Play

C5rature Tennis
1(+42) null 14 high 7 weak 4 no 2
3(+42) yes 2
2(+42) strong 3 no 2

12(+42) yes 1
5(+42) normal 7 weak 4 yes 4
6(+42) strong 3 no 1
7(+42) yes 2

table representation of the data set, and checking if the minimal support constraint is satisfied for

each node in the cube immediately after the corresponding tuple is derived.

5.5 Association Rule Mining

This type of tasks focus on discovering associations among items in a large transactional data set.

Given a set of items I = {i1, . . . , ik}, and a list of transactions D = [t1, . . . , tn], where each

transaction ti has a unique transaction ID and contains a subset of items in I , an association rule is

a pattern of the following form:

X ⇒ Y, where X, Y ⊆ I and X ∩ Y = ∅,

indicating that if the items in X are bought, then the items in Y are also bought. For example,

{beer} ⇒ {diapers} means if a customer buys beer, he/she also buys diapers.

The support of an association rule is the frequency ofX∪Y appearing inD, and the confidence

is the proportion of the transactions that contains X which also contains Y . Typically, we are

looking for association rules that satisfy both a minimum support constraint (min_sup) and a

minimum confidence constraint (min_conf ). The mining process consists of two steps. We start

with finding all the itemsets that are subset of I and appear in at least min_sup × n transactions.

Then, for each itemset discovered in the first step, we enumerate all possible ways of splitting the

set into two subsets X and Y and check whether the corresponding association rules satisfy the

minimum confidence constraint. The first step of this mining process is elaborated in more detail
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Table 5.10: List of transactions.
ID Items
1 {I1, I2, I5}
2 {I2, I4}
3 {I2, I3}
4 {I1, I2, I4}
5 {I1, I3}
6 {I2, I3}
7 {I1, I3}
8 {I1, I2, I3, I5}
9 {I1, I2, I3}

Table 5.11: A table representation of transactions in
Table 5.10.

ID I1 I2 I3 I4 I5
1 yes yes no no yes
2 no yes no yes no
3 no yes yes no no
4 yes yes no yes no
5 yes no yes no no
6 no yes yes no no
7 yes no yes no no
8 yes yes yes no yes
9 yes yes yes no no

Table 5.12: A compact rollup for the tuples in Table 5.11.
ID I1 C1 I2 C2 I3 C3 I4 C4 I5 C5
1 yes 6 yes 4 no 2 no 1 yes 1
4 yes 1 no 1
8 yes 2 no 2 yes 1
9 no 1
5 no 2 yes 2 no 2 no 2
2 no 3 yes 3 no 1 yes 1 no 1
3 yes 2 no 2 no 2

in Example 5.8.

Example 5.8. Mining frequent itemsets. Given a list of transactions as shown in Table 5.10, we

can represent the transactions as a table trans as shown in Table 5.11, where a “yes”/“no” value

under a column indicates whether a transaction contains the corresponding item or not. The rule

below converts the table into a compact rollup as shown in Table 5.12:

transrupt(rollup〈ID〉, Col, Val, count〈ID〉, prev〈ID〉) <- trans(ID, Val@Col).

Furthermore, with the cube construct introduced previously, the rule below produces a compact

cube as shown in Table 5.13:

transcpt(cube〈ID〉, Col, Val, count〈ID〉, prev〈ID〉) <- trans(ID, Val@Col).
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Table 5.13: A compact cube for the tuples in Table 5.11.
ID I1 C1 I2 C2 I3 C3 I4 C4 I5 C5

1 yes 6 yes 4 no 2 no 1 yes 1
4 yes 1 no 1

1(+72) null 2 yes 1
4(+72) no 1

8 yes 2 no 2 yes 1
9 no 1

8(+72) null 2 yes 1
9(+72) no 1
1(+36) null 4 no 3 yes 2
9(+36) no 1
4(+36) yes 1 no 1

1(+108) null 4 yes 2
4(+108) no 2

5 no 2 yes 2 no 2 no 2
5(+72) null 2 no 2
5(+36) null 2 no 2 no 2

5(+108) null 2 no 2
1(+18) null 6 no 2 no 1 yes 1
4(+18) yes 1 no 1
1(+90) null 2 yes 1
4(+90) no 1
5(+18) yes 4 no 4 no 3
8(+18) yes 1
5(+90) null 4 no 3
8(+90) yes 1
1(+54) null 6 no 5 yes 2
5(+54) no 3
4(+54) yes 1 no 1

1(+126) null 6 yes 2
4(+126) no 4

2 no 3 yes 3 no 1 yes 1 no 1
2(+72) null 1 no 1

3 yes 2 no 2 no 2
3(+72) null 2 no 2
2(+36) null 3 yes 1 no 1
3(+36) no 2 no 2

2(+108) null 3 no 3
2(+18) null 3 no 1 yes 1 no 1
2(+90) null 1 no 1
3(+18) yes 2 no 2 no 2
3(+90) null 2 no 2
2(+54) null 3 yes 1 no 1
3(+54) no 2 no 2

2(+126) null 3 no 3
continued on the next page . . .
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Table 5.13 (continued)
ID I1 C1 I2 C2 I3 C3 I4 C4 I5 C5

1(+9) null 9 yes 7 no 3 no 1 yes 1
2(+9) yes 2 no 2

1(+81) null 3 yes 1
2(+81) no 2
3(+9) yes 4 no 4 no 3
8(+9) yes 1

3(+81) null 4 no 3
8(+81) yes 1
1(+45) null 7 no 5 yes 2
3(+45) no 3
2(+45) yes 2 no 2

1(+117) null 7 yes 2
2(+117) no 5

5(+9) no 2 yes 2 no 2 no 2
5(+81) null 2 no 2
5(+45) null 2 no 2 no 2

5(+117) null 2 no 2
1(+27) null 9 no 3 no 1 yes 1
2(+27) yes 2 no 2
1(+99) null 3 yes 1
2(+99) no 2
3(+27) yes 6 no 6 no 5
8(+27) yes 1
3(+99) null 6 no 5
8(+99) yes 1
1(+63) null 9 no 7 yes 2
3(+63) no 5
2(+63) yes 2 no 2

1(+135) null 9 yes 2
2(+135) no 7

In Table 5.13, each path that starts from the root represents an itemset, and the count value associ-

ated with the end node indicates the number of occurrences for this path. However, different paths

can represent the same itemset, but not all count values represent the total occurrences of this

itemset. The itemsets together with their total occurrences can be extracted with the rules below,

where each path that starts from the root, ends at a “yes” node, and does not contain any internal

“no” node, is kept (the end nodes of all the paths kept are marked in sky blue in Table 5.13). For

example, the path starting from the root ending at the node with ID 80 and i5 column represents

the itemset {i1, i2, i3, i5} with frequency 1.
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itemset(T, C, V, CT, Ta, C, T, []) <- transcpt(T, C, V, CT, Ta), V = yes.

itemset(T, C, V, CT, Ta, C2, Ta1, L1) <- itemset(T, C, V, CT, Ta, C1, T1, L),

C1 > 0, C2 = C1− 1,

if(C1 = C then Ta1 = Ta, V1 = V

else transcpt(T1, C1, V1, _, Ta1), V1 6= no),

if(V1 = yes then L1 = [C1|L] else L1 = L).

itemset2(L, CT) <- itemset(T, C, V, CT, Ta, C1, _, L), C1 = 0.

Finally, we can find all the itemsets that satisfy the minimum support constraint as follows:

transcnt(count〈ID〉) <- trans(ID, Val@Col), Col = 1.

freqitemset(L, CT) <- itemset2(L, CT), transcnt(C), threshold(MC, MS),

CT ≥ C ∗ MS.

Performance and Space Optimizations. The space cost of the table representation shown in

Table 5.11 is 3kn, where k is the number of unique items, and n is the number of transactions. Let

m be the total number of items in these n transactions. In practice, the average number of items per

transaction c = m/n is usually a small number such that c� k. It is not hard to see that the prefix

table representation of the transactions containsm tuples, and its space cost is 5m. So far, the actual

space cost is only 5m since the table representation of transactions is not materialized. However,

the cost to compute the data cube is prohibitive—it creates at least 2k tuples in basketcpt with at

least 2k derivations, and both the time and space requirements are extremely high for a small value

of k. In fact, the computation produces way more than 2k tuples, e.g., the value of 2k is only 32

when k equals 5, but there are 215 tuples in basketcpt as shown in Table 5.13. On the other hand,

only a small fraction of tuples are kept with the rules that derive itemset2, e.g., only 34 tuples

in Table 5.13 that represent 19 itemsets are kept. The main reason that leads to this gap is due to

the representation used to represent transactions and paths, where each transaction or path has all

k columns and the value of each column can be yes, no, or null. In this representation, both no and

null indicate that a certain item does not appear in an itemset. For many items with null values in
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Table 5.13, the corresponding count value of such an item is the same as that of the item with no

value that derives it. For example, the item with ID 41 column I4 is derived from the item with ID

5 column I4, and both items have the same count value 2. Since these items with null values do

not hold new information w.r.t. the items with no values, the key to optimize the computation and

space costs is to use an appropriate representation that can avoid these duplicates.

Our solution is to use a variable-length representation for the transactions and paths as shown

in Table 5.14 and Table 5.15, respectively. In the table representation of transactions shown in

Table 5.14, a tuple of the form (ID, Col, Val) indicates that the Col-th item in the transaction ID is

Val. Then we obtain a rollup prefix table shown in Table 5.15 using a program similar to that of

Example 5.6. The prefix tree represented by the current rollup prefix table is different from the one

in Table 5.12—instead of having a fixed depth for every leaf, the depth of a leaf varies from 2 to

4. On top of this prefix table, we can compute the data cube using the same computation described

in Example 5.7, i.e., in the i-th iteration of the semi-naive evaluation, we replace the value of

the i-th column with null for every path derived in the previous iterations. However, the same

logical operation is implemented via a different set of physical operations since the underlying

representation of paths is different. In the i-th iteration of the semi-naive evaluation, for each

path derived in the previous iterations containing a value Ii, i.e., there is a tuple N of the form

(X, T, C, Ii, CT, Ta) in the current cube prefix table, the following two steps are performed:

1. For each tuple C that represents a child of N , it is in the form of (X, T1, C + 1, Ij, CT1, T),

and we create a new subtree with a new tuple (i, T1 + 2i−1n, C, Ij, CT1, Ta + 2i−1n) as root

by copying the subtree with C as root.

2. For each tuple S that represents a sibling of N that is in the form of (X, T1, C, Ij, CT1, Ta)

with j > i, we create a new subtree with a new tuple (i, T1 + 2i−1n, C, Ij, CT1, Ta + 2i−1n)

as root by copying the subtree with S as root.

The monotonic aggregates are responsible for finding the common patterns among these subtrees

and keep track of the number of paths that share the same pattern. Note that we have also removed

the null values in this representation. Now if we need to reconstruct a complete path, we can
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(i) start from an end node, (ii) traverse backward toward the root until we cannot find a tuple of

the form (i, T1, C, _, _, _), (iii) recover the next tuple by retrieving the tuple of the form (_, T1 −
2i−1n, C, Ii, _, _), and (iv) continue the traversal until we reach the root.

Table 5.14: A verticalized table representation of transactions in Table 5.10.
ID Col Val
1 1 I1
1 2 I2
1 3 I5
2 1 I2
2 2 I4
3 1 I2
3 2 I3
4 1 I1

ID Col Val
4 2 I2
4 3 I4
5 1 I1
5 2 I3
6 1 I2
6 2 I3
7 1 I1
7 2 I3

ID Col Val
8 1 I1
8 2 I2
8 3 I3
8 4 I5
9 1 I1
9 2 I2
9 3 I3

Table 5.15: A compact rollup for the tuples in Table 5.14.
ID 1 C1 2 C2 3 C3 4 C4
1 I1 6 I2 4 I5 1
4 I4 1
8 I3 2 I5 1
5 I3 2
2 I2 3 I4 1
3 I3 2

Moreover, we can further reduce the space cost by skipping the operations in Step (2) when no

subtree is created in Step (1) since the subtrees created in Step (2) do not carry any new information

w.r.t. existing subtrees in such a situation. The data cube obtained from this computation is shown

in Table 5.16. There are only 34 tuples, and we mark 19 tuples in sky blue, where the path

starting from the root and ending at a marked node corresponds to an itemset, and the count value

associated with the end node indicates the number of occurrences of the itemset. It is clear to see

the space saving achieved through this representation w.r.t. the representation used in Table 5.13—

the number of tuples in the data cube is reduced to 34 from 215, and only 19 tuples (instead of 34

tuples) are needed to represent the final itemsets.

Finally, we describe how to extract the final itemsets from the cube prefix table. The condition

is the same as that in the rules that derive itemset2, where a tuple is kept iff the path starting from
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Table 5.16: A compact cube for the tuples in Table 5.14.
ID 1 C1 2 C2 3 C3 4 C4

1 I1 6 I2 4 I5 1
4 I4 1
8 I3 2 I5 1

1(+36) I5 2
4(+36) I4 1

5 I3 2
1(+18) I5 1
4(+18) I4 1
5(+18) I3 4
8(+18) I5 1
1(+54) I5 2
4(+54) I4 1

2 I2 3 I4 1
3 I3 2

2(+18) I4 1
3(+18) I3 2
1(+9) I2 7 I5 1
2(+9) I4 2
3(+9) I3 4
8(+9) I5 1

1(+45) I5 2
2(+45) I4 2
5(+9) I3 2

1(+27) I5 1
2(+27) I4 2
3(+27) I3 6
8(+27) I5 1
1(+63) I5 2
2(+63) I4 2

the root and ending at the current node does not contain any node with a no value. This condition

also maps to a different implementation under the current representation. For each tuple in the

cube prefix table, let l1 be the list of all the items on the corresponding path, l2 be the list of all the

items that were removed to derive the tuple, if the union of l1 and l2 equals {I1, . . ., Ik} where Ik

is the last item in l1, then the tuple is kept. It is important to note that this condition can also be

used to speedup the computation where the derivations for certain tuples are not performed. In the

i-th iteration of the semi-naive evaluation, for each tuple that is already in the data cube, if the first
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item that is missing on the corresponding path is Ij where j < i, then we can skip this tuple. The

tuples that are pruned through this optimization are marked in red in Table 5.16.

5.6 Classification

In this type of tasks, we seek to extract models from existing data, and use these models to predict

class labels for future data. The existing data and future data is often referred to as the training data

and testing data, respectively. Thus, each tuple in the training data has a column that indicates the

class label, e.g., the PlayTennis column in Example 5.1, and we use its verticalized representation

vtrain2(ID, Col, Val, PlayTennis) as an example to show how to build classifiers.

5.6.1 Decision Trees

Data cubes represent all subsets and from these we can generate all the edges in the lattice relating

such subsets. For example, in the lattice shown in Figure 5.1, a cube contains all the links in solid

lines, but the links in dotted lines are not generated. We add an additional column Lev to the

∅

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B, C} {B,D} {C, D}

{A,B,C} {A,B,D} {A,C,D} {B, C, D}

{A,B,C,D}

1

Figure 5.1: Links in a lattice.

cube prefix table, which denotes the number of nodes on the path from the root to the node, and is

generated alongside the construction of the cube prefix table. Then two nodes are on the same level

in the lattice if the values are the same for column Lev, and these additional links can be generated
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by the simple rule in Example 5.9, that all the children of a node’s grandparent with the same Col

and Val are also the node’s parents.

Example 5.9. From a cube prefix table to a lcube prefix table.

lcpt(Lev1, ID, Col1, Val1, Cnt, PID1) <- cpt(Lev, PID, Col, Val, _, GP),

Lev1 = Lev + 1, cpt(Lev1, ID, Col1, Val1, Cnt, PID),

cpt(Lev, PID1, Col1, Val1, _, GP).

We refer to a prefix table obtained from the rule of Example 5.9 as a lcube prefix table. Such

a prefix table provides a suitable representation for decision tree classifiers. Assume we want to

build a decision tree classifier for the example in Table 5.1 to predict the values for the PlayTennis

column.

First, we define a cube prefix table as follows:

ptcpt(cube〈ID〉, Col, Val, sum〈P〉, sum〈NP〉, prev〈ID〉) <-
vtrain2(ID, Col, Val, PlayTennis),

if(PlayTennis = yes then P = 1 else P = 0),

NP = 1− P.

This cube prefix table computes two aggregates for each node, counting the number of yes and no

decisions among all the training data that satisfy the conditions defined by the path leading to the

node.

Second, we obtain a lcube prefix table ptlcpt from ptcpt using a rule similar to the one in

Example 5.9. For each node in ptlcpt that stores the count of yes and no values, we can derive

Gini index, information gain, or other functions that evaluate the purity of the node. For example,

the Gini index of a node is computed by the rule below, where Cy and Cn are the number of yes

and no decisions, respectively:

gini(Cy, Cn, G) <- C = Cy + Cn, G = 1− (Cy ∗ Cy + Cn ∗ Cn)/(C ∗ C).
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Third, we compute a decision tree where each intermediate node shows a maybe decision, as

shown in Example 5.10. Clearly once the Gini index falls below the prescribed threshold, no more

branches are generated. However our compiler will be able to realize this only once it understands

that the children of nodes with an index below the threshold will have Gini indexes that are below

the threshold as well.

Example 5.10. A decision tree. The Gini index of leaves must be under a threshold:

branch(1, 0, 0, 1, maybe).

branch(PID, Col, Val, ID, Dec) <- branch(_, _, _, PID, maybe),

bestsplit(PID, Col),

ptlcpt(_, ID, Col, Val, Cy, Cn, PID),

decision(Cy, Cn, Dec).

decision(Cy, Cn, maybe) <- gini(Cy, Cn, G), threshold(T), G ≥ T.

decision(Cy, Cn, yes) <- gini(Cy, Cn, G), threshold(T), G < T, Cy > Cn.

decision(Cy, Cn, no) <- gini(Cy, Cn, G), threshold(T), G < T, Cy ≤ Cn.

Now we have to determine the best column to split for a given node in the lcube prefix table:

bestsplit(PID, Col) <- improv(PID, Col, C, WG), G = WG/C,

not(improv(PID, Col1, C1, WG1), G1 = WG1/C1, G1 < G).

improv(PID, Col, sum〈C〉, sum〈WG〉) <- ptlcpt(_, ID, Col, Val, Cy, Cn, PID),

gini(Cy, Cn, G), C = Cy + Cn, WG = G ∗ C.

We have two ways to achieve that. The first is to specify in our query that we are only interested

in branches that have been generated by parents with an index above the threshold, and the second

is to add to the rules defining the lcube prefix table a condition that states that the Gini index of a

child node must be less than that of its parents.
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5.6.2 Bayes Classifiers

Next we describe how to build a different type of classifier called naive Bayes classifier. Let

C1, . . . , Cm be the classes we aim to predict. In the PlayTennis example, m equals 2, C1 and

C2 represent the values of the Play column (we use Play to refer to the PlayTennis column

for short) being “yes” and “no”, respectively. Let p(Ci) be the prior probability of class Ci, i.e.,

the probability of having a tuple with class Ci in the training data. For each tuple, let xj be the

value of the j-th column, then the likelihood p(xj|Ci) is the probability that a tuple with class

Ci also having value xj . Given a tuple from the testing data, the classifier predicts a class for

the tuple by finding the class Ci that maximizes the posterior, which is equivalent to maximizing

log(p(Ci))+
∑k

j=1 log(p(xj|Ci)). In the PlayTennis example, we use a multinomial distribution for

each likelihood, then p(xj|Ci) = count〈xj〉/count〈Ci〉, where count〈xj〉 is the number of tuples

with the value of the j-th column being a specific xj , count〈Ci〉 is the number of tuples with class

Ci, and both numbers are computed using tuples in the training data. The example below shows

how to implement such a classifier in KDDlog.

Example 5.11. A naive Bayes classifier. The training data is scanned to count the number of

“yes”/“no” decisions for the Play column, and the number of such decisions for each (Col, Val)

combination. (The condition Col = 1 in the first rule ensures that the aggregate count〈T〉 counts

each unique value of T only once.) Relation domaincnt stores the number of unique values for

each column, where countd is equivalent to COUNT DISTINCT in SQL. Then we compute the

likelihood using Laplace smoothing.

prior(Play, count〈T〉) <- vtrain2(T, Col, _, Play), Col = 1.

occur(Col, Val, Play, count〈T〉) <- vtrain2(T, Col, Val, Play).

domaincnt(Col, countd〈Val〉) <- occur(Col, Val, _, _).

likelihood(Col, Val, Play, Prob) <- occur(Col, Val, Play, C1),

prior(Play, C2), parameter(K), domaincnt(Col, C3),

Prob = log(C1 + K)− log(C2 + K ∗ C3).

115



Now assume that table test stores the test data. For each test point, we compute the posterior

for “yes”/“no” decisions, and select the decision with higher posterior as the prediction for this

point.

test_likelihood(T, Play, sum〈Prob1〉) <- test(T, Val@Col), prior(Play, C1),

if(likelihood(Col, Val, Play, Prob)

then Prob1 = Prob

else parameter(K), domaincnt(Col, C2),

Prob1 = log(K)− log(C1 + K ∗ C2)).

predict(T, Play) <- test_likelihood(T, Play, Prob), prior(Play, C),

Prob1 = Prob + log(C), is_max((Play), (Prob1)).

5.7 Regression Analysis

In this section, we use a new running example to explain how regression analysis works. Assume

that relation house(ID, Price, . . .) stores the information about house listings, where the values

of the first two columns are the ID and listing price of a house, respectively, and the remaining

columns represented by “. . .” contain other basic properties of this house, such as area, built year,

longitude, and latitude. Moreover, we assume that all values are numeric, and the values of house

ID form an integer sequence 1, . . . , n, where n is the number of houses. Given a relation like

house, regression analysis can help us learn the relationship between house price and other basic

properties, i.e., find a function that takes the values of other basic properties as the input and the

output is a predicted house price that is very close to the actual house price provided in the house

relation. Such a function is usually referred to as a regression model.

To perform regression analysis, we need to decide the representation of the function we want

to learn. For example, we choose to approximate the relationship we want to learn with a lin-

ear function, then the regression analysis under this assumption is called linear regression, and

the resulting regression model is a k-dimensional vector, where k is the number of columns in

house (excluding the ID column). The rules below produce a verticalized view for house that
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represents each house as a k-dimensional vector—on top of the results produced by our standard

verticalization construct, an additional column 0 with a fixed value 1 is added for every house.

vhouse(ID, Col, Val, Price) <- house(ID, Val@Col, Val@1), Price = Val@1.

vhouse(ID, 0, 1, Price) <- vhouse(ID, _, _, Price).

We also need to define a cost function that measures how close the predicted house prices are

w.r.t. the actual house prices. Let us assume that the “closeness” is defined as the square of the

difference between a predicted house price and the actual house price, and the cost function is the

average of the “closeness” values for all houses in the table. Such a cost function is referred to as

the least-squares cost function. In the following, we describe three algorithms on finding a model

that minimizes the value of the cost function. These algorithms can also be used to find regression

models for functions in other forms.

Example 5.12. Batch Gradient Descent. We start with an initial model that is a zero vector (or

a random vector), and iteratively compute a new model using the model obtained in the previous

iteration. For each column Col, the value of this column in the new model is obtained by adding

2.0/N ∗ LR ∗ G to its current value, where N is the total number houses, LR is a parameter that

represents the learning rate, and G is the Col-th element of the gradient vector. This method is

called batch gradient descent since the gradient vector is computed by aggregating the gradient

vectors for every house.

r1 . model(0, Col, 0) <- vhouse(_, Col, _, _).

r2 . model(J1, Col, Val1) <- model(J, Col, Val), gradient(J, Col, G),

parameter(LR), housecnt(N),

Val1 = Val + 2.0/N ∗ LR ∗ G, J1 = J + 1.

r3 . gradient(J, Col, sum〈G〉) <- vhouse(ID, Col, Val, Price),

cp(J, ID, Predict),

G = (Price− Predict) ∗ Val.
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r4 . cp(J, ID, sum〈Prod〉) <- vhouse(ID, Col, Val, _), model(J, Col, Val1),

Prod = Val ∗ Val1.
r5 . housecnt(count〈_〉) <- vhouse(_, Col, _, _), Col = 0.

Example 5.13. Stochastic Gradient Descent. This method can be obtained by replacing r3 and

r4 in Example 5.12 with the rule below.

model(J1, Col, Val1) <- housecnt(N), model(J, Col, Val),

vhouse(ID, Col, Val, Price), choice((J), (ID)),

choice((ID), (J%N)), cp(J, ID, Predict),

G = (Price− Predict) ∗ Val, parameter(LR),

Val1 = Val + 2.0 ∗ LR ∗ G, J1 = J + 1.

Instead of computing the gradient vector by averaging the gradient vector for every house, we use

the gradient vector at a certain house as an approximation, and compute a new model based on

this approximated gradient vector. In each pass over the data set, we repeat this computation for

every house. Thus, the iteration counter J is increased by N after each pass, where N is the number

of houses. Moreover, the data set is shuffled once before the actual computation.5 These behaviors

are achieved through the two choice goals, where the former ensures that only one ID is selected

for each J, and the latter ensures that each ID is always associated with a J that has the same

value of J%N. Thus, each ID is selected exactly once in each pass, and the IDs are accessed in the

same order in every pass, while the ordering can be any one among all possible N! orderings.

Example 5.14. Coordinate Descent. Instead of updating the whole model in every iteration, this

algorithm changes only one element in the model in each iteration, where all the remaining el-

ements are fixed, and the selected element is updated with a new value that minimizes the cost

function. The algorithm repeatedly iterates over all the elements in the model following a pres-

elected ordering. This control flow is implemented by rules r3 , r4 , and r5 , where r4 selects an

5The data set is shuffled before each pass in the standard stochastic gradient descent. However, it is very expensive
to do shuffling in each pass for large data sets. Here, we adopt a solution proposed in [FKR12] which only shuffles the
data set before the first pass, and it was shown that this strategy is a good trade-off.
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ordering, and r5 performs the actual computation following the ordering selected by r4 .

Similar to the previous two examples, a tuple of the form (J, Col, Val) in relation model indi-

cates Val is the value of the Col-th element in the model at iteration J. However, in this example,

there is only one tuple in model for each value of J, while the values for the remaining elements

are not changed in the current iteration, and can be found from the tuples of the form (J1, _, _) in

model for J− K < J1 < J, where K is the number of columns in vhouse.

r1 . colcnt(count〈Col〉) <- vhouse(ID, Col, _, _), ID = 1.

r2 . colsum(Col, sum〈Val1〉) <- vhouse(_, Col, Val, _), Val1 = Val ∗ Val.
r3 . model(0, 0, 0).

r4 . model(J1, Col, 0) <- model(J, _, _), colcnt(K), J < K, colsum(Col, _),

choice((J), (Col)), choice((Col), (J)), J1 = J + 1.

r5 . model(J1, Col, MV1) <- model(J, _, _), colcnt(K), J ≥ K, J1 = J + 1,

J2 = J1− K, model(J2, Col, MV),

gradient(J, Col, G), colsum(Col, S),

MV1 = MV + G/S.

r6 . error(K, ID, Price) <- vhouse(ID, Col, _, Price), Col = 0, colcnt(K).

r7 . error(J1, ID, EV1) <- error(J, ID, EV), J1 = J + 1, model(J1, Col, MV1),

colcnt(K), J2 = J1− K, model(J2, Col, MV2),

vhouse(ID, Col, Val, _),

EV1 = EV− (MV1− MV2) ∗ Val.
r8 . gradient(J, Col, sum〈P〉) <- vhouse(ID, Col, Val, _), error(J, ID, EV),

P = Val ∗ EV.

5.8 Cluster Analysis

The goal of cluster analysis is to partition a set of objects into subsets, where each subset is a

cluster such that the objects in this cluster are similar to each other while dissimilar to objects

in other clusters. We continue our discussion with the house relation introduced in the previous
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section, and we refer to each house as a point. In the following, we describe four types of cluster

analysis algorithms with an example for each of them.

5.8.1 Partitioning Methods

Given a parameter k, a partitioning method organizes a given set of objects into k disjoint partitions,

where each partition represents a cluster.

Example 5.15. k-Means. Let K be the number of clusters the user wants to find. During the

initialization, we randomly select K points from the data set.

init(0, 0, 0).

init(C1, Col, Val) <- mc(C), threshold(K, _), C < K, house(ID, Val@Col),

choice((C), (ID)), choice((ID), (C)), C1 = C + 1.

mc(mmax〈C〉) <- init(C, _, _).

We use these K selected points as the initial cluster centers. Then in each iteration, we assign every

point ID to a cluster C such that the Euclidean distance between point ID and the center of cluster

C is the closest among all the clusters, and the new cluster center of each cluster is the average of

all the points that are assigned to this cluster.

center(1, C, Col, Val) <- init(C, Col, Val), C > 0.

center(J1, C, Col, avg〈Val〉) <- house(ID, Val@Col), dp(J, ID, C, Dist),

is_min((C), (Dist)), J1 = J + 1.

dp(J, ID, C, sum〈Diff〉) <- house(ID, Val@Col), center(J, C, Col, Val1),

Diff = (Val− Val1) ∗ (Val− Val1).

We say that a cluster changes in iteration J1 if the Euclidean distance between the cluster center

in iteration J1 and the cluster center in iteration J1− 1 is larger than a prescribed threshold T.

We add the constraint not(change(J1)) to select the final clusters from center(J1, C, Col, Val)

such that no cluster changes in iteration J1, and the final constraint is_min((), (J1)) ensures that
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only the results from the first iteration that the previous constraint is satisfied are selected.

dc(J1, C, sum〈Diff〉) <- center(J, C, Col, Val), J1 = J + 1,

center(J1, C, Col, Val1),

Diff = (Val− Val1) ∗ (Val− Val1).

change(J1) <- dc(J1, C, Dist), threshold(_, T), Dist > T.

cluster(C, Col, Val) <- center(J1, C, Col, Val),

not(change(J1)), is_min((), (J1)).

In the above example, the constraints not(change(J1)) and is_min((), (J1)) in the last rule

can be pushed into the recursive computation of center so that only tuples up to iteration J1 are

produced where J1 is the value that satisfies both constraints. Moreover, in each iteration, we only

need to keep the tuples produced in the current iteration and the previous iteration, and all the

tuples produced in the iterations before the previous iteration can be removed.

5.8.2 Hierarchical Methods

A hierarchical method organizes the objects into a hierarchy of clusters. It can be done by iter-

atively merging small clusters into a large cluster, or splitting a large cluster into small ones. A

method that adopts the former approach is called an agglomerative hierarchical clustering method,

while a method that adopts the latter approach is called a divisive hierarchical clustering method.

The example below presents an agglomerative hierarchical clustering method.

Example 5.16. AGglomerative NESting (AGNES). Initially, every point is in a cluster of its own,

with the point ID as the cluster ID. Then, at each step, we select two clusters C1 and C2 such

that neither is selected before and the distance between these two clusters (defined in r9 ) is the

smallest. We merge them to create a new cluster J + 1, where J is the current maximal cluster ID.

This merge operation is recorded by two tuples (J + 1, C1) and (J + 1, C2) in cluster, indicating

that cluster J + 1 is the parent of both cluster C1 and cluster C2.
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r1 . cluster(ID, ID) <- house(ID, Val@1).

r2 . mc(mmax〈C〉) <- cluster(C, _).

r3 . merge(J1, C1, C2) <- mc(J), cluster(C1, _), cluster(C2, _),

C1 < C2, choice((C1), (J)), choice((C2), (J)),

choice((J), (C1, C2)), dc(C1, C2, Dist),

is_min((C1, C2), (Dist)), J1 = J + 1.

r4 . cluster(J1, C1) <- merge(J1, C1, _).

r5 . cluster(J1, C2) <- merge(J1, _, C2).

These clusters form a hierarchical structure, where the points in a cluster can be found by collect-

ing all the points that belong to its child clusters. Then the distance Dist between two clusters

C1 and C2 is defined as the minimal Euclidean distance between every pair of points (ID1, ID2),

where ID1 and ID2 belong to C1 and C2, respectively.

r6 . cp(ID, ID) <- cluster(ID, ID).

r7 . cp(C, ID) <- cluster(C, C1), cp(C1, ID).

r8 . dp(ID1, ID2, sum〈Diff〉) <- house(ID1, V1@Col), house(ID2, V2@Col),

Diff = (V1− V2) ∗ (V1− V2).

r9 . dc(C1, C2,min〈Dist〉) <- cp(C1, ID1), cp(C2, ID2), dp(ID1, ID2, Dist).

In the above example, the is_min((C1, C2), (Dist)) goal in r3 is a constraint—the set of rules

without this constraint defines all possible hierarchical structures of clusters, while the current

formulation that contains this constraint selects the one that is the output of the AGNES algorithm.

5.8.3 Density-Based Methods

A density-based method models clusters as dense regions separated by sparse regions.

Example 5.17. Density-Based Spatial Clustering of Applications with Noise (DBSCAN). There

are two user-specified parameters Eps and T. The former is used to define the Eps-neighborhood

of a point, which is the space within a radius Eps centered at the current point. The latter is then
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used to define a core object, which is a point with an Eps-neighborhood that contains at least T

points.

r1 . dp(ID1, ID2, sum〈Diff〉) <- house(ID1, V1@Col), house(ID2, V2@Col),

Diff = (V1− V2) ∗ (V1− V2).

r2 . neighbor(ID1, ID2) <- dp(ID1, ID2, Dist), threshold(Eps, _),

Dist ≤ Eps.

r3 . neighborcnt(ID1, count〈ID2〉) <- neighbor(ID1, ID2).

r4 . core(ID) <- neighborcnt(ID, Cnt), threshold(_, T), Cnt ≥ T.

We say that two core objects ID1 and ID2 are density-connected if there is a chain of core objects

c1, c2, . . . , ck, such that c1 = ID1, ck = ID2, and ci+1 is in the Eps-neighborhood of ci for i =

1, . . . , k − 1. It is easy to see that the relation density-connected dc is an equivalence relation,

and for each equivalence class, we pick the point with the minimal ID to represent all the points

in this class. Then, all the points in the same equivalence class together with all the points in their

Eps-neighborhoods form one cluster, and we use the ID of the point that is selected to represent

all the points in the equivalence class as the cluster ID.

r5 . dc(ID, ID) <- core(ID).

r6 . dc(ID1, ID3) <- dc(ID1, ID2), neighbor(ID2, ID3), core(ID3).

r7 . repr(min〈ID1〉, ID2) <- dc(ID1, ID2).

r8 . cluster(ID1, ID2) <- repr(ID1, ID2).

r9 . cluster(ID1, ID3) <- repr(ID1, ID2), neighbor(ID2, ID3).

It is important to note that r7 represents a constraint over dc, and this constraint can be pushed

into the recursive computation of dc. Moreover, the aggregate min that is used to select one point

for each equivalence class can be replaced by other constructs, such as max and choice, to delivery

logically equivalent clustering results—for each equivalence class, the set of points in the corre-

sponding cluster remains the same, while the cluster ID might be different. In fact, we obtain the

following procedures when choice is used.
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1. Initially all the core objects are unselected.

2. We select an unselected core object ID, create a new cluster with ID as its cluster ID, and

add the core object to the cluster.

3. After a core object is added, we also select all the core objects that belong to its Eps-

neighborhood and add them to the cluster. This operation is repeated until no more core

objects can be added to the cluster.

4. We complete the current cluster by augmenting it with all the points in the Eps-neighborhoods

of the core objects in the cluster.

5. We repeat from Step (2) until all the core objects are selected.

The operations in Step (3) and Step (4) can be performed together, where we add all the points in

the Eps-neighborhood of a core object to the cluster, and we repeat this operation for every newly

added point as long as it is a core object. This is indeed the DBSCAN algorithm.

5.8.4 Grid-Based Methods

A grid-based clustering algorithm uses a multi-resolution grid data structure. To simplify the

discussion, we use an example in two dimensional space, although it can be easily generalized to

higher dimensional spaces. Assume that the schema of the house relation contains four columns,

where a tuple of the form (ID, Price, X, Y) represents that the listing price for house ID is Price,

and the latitude and longitude of the house are X and Y, respectively. The example below explains

how does a grid-based clustering algorithm work on this data set.

Example 5.18. STatistical INformation Grid (STING). We first build the hierarchical structure

from the root to the leaves, where the each non-leaf node has four children, and each child corre-

sponds to one quadrant of the parent node. The average number of points in a leaf is no more than

a prescribed threshold.

delta(1, 0,−1, 0,−1).

delta(2, 1, 0, 0,−1).
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delta(3, 0,−1, 1, 0).

delta(4, 1, 0, 1, 0).

range(count〈ID〉,min〈X〉,max〈X〉,min〈Y〉,max〈Y〉) <- house(ID, _, X, Y).

grid(0, 1, Cnt, XL, XH, YL, YH) <- range(Cnt, XL, XH, YL, YH).

grid(ID1, MT1, Cnt1, XL1, XH1, YL1, YM1) <- grid(ID, MT, Cnt, XL, XH, YL, YH),

threshold(T), Cnt > T, delta(DID, DXL, DXH, DYL, DYH),

ID1 = ID + MT ∗ DID, MT1 = MT ∗ 4, Cnt1 = Cnt/4,

DX = (XH− XL)/2, XL1 = XL + DX ∗ DXL, XH1 = XH + DX ∗ DXH,
DY = (YH + YL)/2, YL1 = YL + DY ∗ DYL, YH1 = YH + DY ∗ DYH.

Then, we scan the data set once to obtain parameters for each leaf, where the parameters are

computed based on all the points that fall into the range of a leaf. After that, we propagate these

parameters from the leaves to the root, and the parameters of a non-leaf node is computed by

aggregating the corresponding parameters of all its children. Finally, we store the final results in

sting.

param(ID, MT,mcount〈_〉,msum〈P〉,msum〈P2〉,mmin〈P〉,mmax〈P〉) <-
grid(ID, MT, Cnt, XL, XH, YL, YH), threshold(T),

Cnt ≤ T, house(_, P, X, Y), XL ≤ X, X ≤ XH,

YL ≤ Y, Y ≤ YH, P2 = P ∗ P.
param(ID1, MT1,msum〈Cnt〉,msum〈SP〉,msum〈SP2〉,mmin〈MinP〉,

mmax〈MaxP〉) <- param(ID, MT, Cnt, SP, SP2, MinP, MaxP),

MT1 = MT/4, ID1 = ID%MT1.

param2(ID, MT,max〈Cnt〉,max〈SP〉,max〈SP2〉,min〈MinP〉,max〈MaxP〉) <-
param(ID, MT, Cnt, SP, SP2, MinP, MaxP).

sting(PID, ID, Cnt, MP, StdP, MinP, MaxP) <-

param2(ID, MT, Cnt, SP, SP2, MinP, MaxP), Cnt > 0,

if(MT = 1 then PID = ID else PID = ID%(MT/4)),

MP = SP/Cnt, StdP = sqrt(SP2/Cnt− MP ∗ MP).
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The above example shows the key steps in the STING algorithm, and some details are simpli-

fied. In the Datalog program that implements the complete algorithm, we need to (i) make proper

treatment to the points on the boundary of some rectangle areas so that each point is counted only

once on the leaf level, and (ii) collect an additional parameter for each node that indicates the type

of distribution that prices of houses fall into this node follow.

5.9 User-Defined Aggregate Functions

Most existing systems support data mining functionalities through built-in functions. This ap-

proach has proven to be natural for many users. In KDDlog, we will also support this approach,

where we ship our data mining algorithm implementations with user-defined aggregate (UDA)

functions. Basically, an aggregate can be viewed as a mapping between tuples of a predicate that

are streamed in, and a set of tuples returned at the end or during the computation and defines a

new derived predicate. In order to support tables with different number of columns, these UDA

functions are defined over tables that use verticalized representations.

We can create a UDA function for the predicate likelihood in Example 5.11 as follows:

aggregate nbctrain(ID, Col1, Val1, Play1): (Col2, Val2, Play2, Prob)

[mytable, likelihood AS:

occur(Col, Val, Play, count〈ID〉) <- mytable(ID, Col, Val, Play).

prior(Play, sum〈C〉) <- occur(Col, Val, Play, C), Col = 1.

total(sum〈C〉) <- prior(Play, C).

likelihood(Col, Val, Play, P) <- occur(Col, Val, Play, C1),

prior(Play, C2), P = log(C1)− log(C2).

likelihood(0, all, Play, P) <- prior(Play, C1), total(C2),

P = log(C1)− log(C2).

]

This example assumes that the Datalog definition of the aggregate is also used as executable code

in the aggregate library. But our framework does not limit the language to Datalog. For instance,

126



the code in the brackets can be written in Java or other programming languages.

UDA functions are typically called in the body of rules, as per the following example:

save(Col2, Val2, Play2, Prob) <- train(ID, Val@Col, Val@5), Play = Val@5,

nbctrain(ID, Col, Val, Play):(Col2, Val2, Play2, Prob).

In many situations, besides the names of the input and output predicates, we will also specify

those of auxiliary tables where important parameters are kept. For instance, the aggregate for

predicting in a naive Bayes classifier, we will also include the name of the table save whereby its

aggregate definition becomes:

aggregate nbctest(ID1, Col1, Val1): (ID2, Col2, Val2, Play)

[testtable, predict, likelihood AS:

test_likelihood(ID, Play, sum〈Prob〉) <- testtable(ID, Col, Val),

likelihood(Col, Val, Play, Prob).

result(ID, Play) <- test_likelihood(ID, Play, Prob1),

likelihood(0, all, Play, Prob2),

Prob = Prob1 + Prob2, is_max((Play), (Prob)).

predict(ID, Col, Val, Play) <- testtable(ID, Col, Val), result(ID, Play).

]

Then, nbctest(ID1, Col1, Val1):(ID2, Col2, Val2, Play) can be used in goals of rules to classify

tuples as shown in the following example, where we pass in the name of the auxiliary table in the

square bracket:

decision(ID1, Col1, Val1, Play) <- test(ID, Val@Col),

nbctest(ID, Col, Val):(ID1, Col1, Val1, Play)[save].

Horizontal Calls for Vertical Aggregates. Our UDA functions are defined over tables that use

vertical representations. They are called in the body of the rules in a very natural fashion. In
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KDDlog, the basic built-in aggregates are also called in the head of the rules, in a style that is

inspired by SQL. Thus KDDlog will also support the invocation of UDA functions in the head of

the rules. This will enable the importation and invocation of those UDA functions in Spark SQL,

which is the SQL module on Apache Spark, thus combining the benefits of horizontal and vertical

representations. For example, for our nbctest aggregate, KDDlog will support a call such as the

following:

decision(Out, Temp, Hum, Wind, nbctest〈save〉) <- test(Out, Temp, Hum, Wind).

which will actually be rewritten and interpreted as follows:

testid(tupleid〈〉, Out, Temp, Hum, Wind) <- test(Out, Temp, Hum, Wind).

decision(Val1@Col1, Play) <- testid(ID, Val@Col),

nbctest(ID, Col, Val):(ID1, Col1, Val1, Play)[save].

Here tupleid is an aggregate that assigns a unique ID, e.g., a sequence number, to tuples.

We refer to the use of a UDA function in the head of a rule as a horizontal call. In order to use

horizontal calls, the number of columns in the head must be the same as those in the output of UDA

functions. This is true in our case since besides the (ID1, Dec1) pair, we also include Col1 and

Val1. For rollups and data cubes, we fill the missing values with nulls to satisfy this requirement.

Note that the aggregate nbctest takes only one argument, but any number of arguments (including

zero) can be entered at any time.

Finally, horizontal calls can be easily integrated into SQL, where the corresponding SQL query

for the above example is shown as follows:

SELECT Out, Temp, Hum, Wind, kmeans(save) AS Play

FROM test

GROUP BY Out, Temp, Hum, Wind
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5.10 Conclusion

We have presented the KDDlog language and its support for major KDD applications. While these

results are still preliminary, they show that logic constructs can provide enough expressive power

to express efficiently KDD algorithms. Moreover, traditional database applications and graph ap-

plications are naturally supported by KDDlog since these applications can be efficiently expressed

using basic Datalog constructs and monotonic aggregates that are supported by KDDlog. Thus,

the results presented here also demonstrate that it is possible to provide a declarative language that

supports various types of applications in a unified framework, while its efficient implementation

and parallelization remain as a future work.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we have presented a declarative language solution for the unified support of advanced

analytics and various big data applications, and discussed the scalable and portable implementation

of the language over various computing environments.

We presented an experimental study that compared several recursive query evaluation algo-

rithms for the in-memory query evaluation on multicore machines. Our experimental results

showed that the simple SSC algorithms significantly outperformed other compared algorithms in

terms of speed and memory utilization.

We presented the DeAL system with focus on the compilation techniques that enable efficient

in-memory parallel evaluation of Datalog programs on shared-memory multicore machines. The

proposed techniques (i) recognize when a given program is lock-free, (ii) transform a locking

program into a lock-free program, and (iii) find an efficient parallel plan that correctly evaluates

the program while minimizing the use of locks and other overhead required for parallel evaluation.

We demonstrated the effectiveness of the proposed techniques with extensive experiments.

We have designed the KDDlog language by extending DeAL with new constructs and rep-

resentations for descriptive analytics. We start with the problem of supporting algorithms that

can operate on tables having arbitrary number of columns, and this leads to the verticalization

constructs that support verticalized representations for tables. Then we provide compact represen-

tations called prefix tables for rollups and data cubes. Then we show how the constructs and repre-
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sentations for descriptive analytics can be used to express a wide spectrum of predictive analytics

tasks, including association rule mining, classification, regression analysis, and cluster analysis.

Thus, KDDlog enables a unified support for both descriptive analytics and predictive analytics.

Finally, the language supports the exportation of KDD algorithms implemented in KDDlog and

importation of algorithms implemented in other languages through user-defined aggregate func-

tions.

The results presented in this thesis are encouraging, but much future work is still required to

fully realize the ambitious goal of unifying various types of applications in a single declarative

language. An immediate future work is to develop a system that supports the parallel evaluation of

KDDlog programs on multicore machines and clusters. Another interesting topic for future work

is to support other types of applications, including extending our languages to support machine

learning applications, and implementing the language proposal in [Zan12] to support streaming

applications. Lastly, we plan to investigate techniques that accelerate the query evaluation by

taking advantage of new hardwares, including solid state drives, graphics processing units, and

field-programmable gate arrays.
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