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Abstract: Wearable devices and fitness trackers have gained popularity in healthcare and telemedicine
as tools to reduce hospitalization costs, improve personalized health management, and monitor
patients in remote areas. Smartwatches, particularly, offer continuous monitoring capabilities through
step counting, heart rate tracking, and activity monitoring. However, despite being recognized
as an emerging technology, the adoption of smartwatches in patient monitoring systems is still
at an early stage, with limited studies delving beyond their feasibility. Developing healthcare
applications for smartwatches faces challenges such as short battery life, wearable comfort, patient
compliance, termination of non-native applications, user interaction difficulties, small touch screens,
personalized sensor configuration, and connectivity with other devices. This paper presents a case
study on designing an Android smartwatch application for remote monitoring of geriatric patients. It
highlights obstacles encountered during app development and offers insights into design decisions
and implementation details. The aim is to assist programmers in developing more efficient healthcare
applications for wearable systems.

Keywords: remote patient monitoring; smartwatch application; smartwatch app; Android; Wear OS;
telehealth; telemedicine

1. Introduction

Over the past decade, the surge in demand for personalized health and home care has
led to the widespread adoption of wearable fitness tracking technology, exemplified by
devices such as FitBit or Misfit [1]. These advanced sensor-equipped devices enable the
monitoring of various health parameters, including activity levels, sleep patterns, heart
rate, and estimation of energy expenditure [2–5].

In recent years, there has been a notable shift in the wearables market, with users seeking
more versatile functionality beyond traditional fitness trackers. Smartwatches have emerged
as a preferred choice due to their increasing embedded capabilities, fulfilling the desires of
individuals who seek both fitness tracking and general watch features [6,7]. Importantly,
smartwatches not only facilitate fitness tracking but also enable user interaction, phone calls,
and seamless integration with widely adopted cloud services such as Amazon Web Services
AWS and Microsoft Azure [8,9]. Notably, these cloud services have established partnerships
with renowned healthcare providers [10,11], paving the way for the integration of fitness data
from wearable devices with electronic health records (EHR).

As wearable fitness technology becomes increasingly prevalent among the public,
healthcare professionals are actively exploring ways to integrate the collected fitness data
from these devices with electronic health records. This integration holds particular sig-
nificance for frail geriatric patients living without supervision. These patients face the
risk of experiencing a decline in overall well-being, increased dependency, and a higher
susceptibility to fall-related injuries due to deteriorating motor performance. Leveraging
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noninvasive health tracking devices, especially during the postsurgery recovery period,
offers substantial benefits and is well received by patients for extended monitoring pur-
poses [12–15].

The integration of smartwatches into patient monitoring systems is currently in its
early stages, and several challenges need to be addressed. A successful integration of these
technologies into healthcare relies on the active involvement and acceptance of patients,
emphasizing the importance of their digital literacy [16,17]. This paper aims to elucidate the
implementation challenges encountered by developers when constructing healthcare appli-
cations on smartwatches. We thoroughly examine these challenges and present potential
solutions, wherever feasible. The improvement of efficiency and reliability in smartwatch
healthcare applications holds the potential to positively impact patient adherence to utiliz-
ing such technologies. By providing user-friendly and dependable applications, patients
are more likely to engage effectively and adhere to the use of these technologies.

This paper is structured as follows: Section 2 explores the potential of commercially
available smartwatches for developing healthcare applications. In Section 3, the guidelines
for ensuring patient data privacy, availability, and security are outlined, emphasizing the
necessary compliance measures in healthcare product development. Section 4 provides
detailed information on the distribution, monitoring, and remote control of our application.
It explains how the smartwatches’ sensors collect user data while conserving battery
life. Section 5 covers important configuration and setting details that can enhance the
performance of monitoring applications. Lastly, Section 6 elucidates several constraints
associated with applications developed on smartwatch platforms.

2. The Potential Role of Smartwatches in Healthcare Applications

The proliferation of consumer electronic devices equipped with embedded computing
and connectivity capabilities has facilitated the development of the Internet of Things (IoT),
enabling a network of interconnected devices to exchange data with remote cloud services.
Capitalizing on this advancement, healthcare researchers have seized the opportunity to
harness personal health mobile devices, including FitBit and smartwatches, for the purpose
of remote patient monitoring. This innovative approach presents a cost-effective solution
whereby patients can receive clinical monitoring while maintaining their presence outside
the confines of traditional healthcare settings [7].

Smartwatches have emerged as a key component of remote health monitoring systems,
owing to several advantages.

Figure 1 presents a comprehensive collection of nonintrusive wearable sensors, seam-
lessly integrated into a smartwatch application for remote monitoring purposes. These
commercially available sensors offer diverse health monitoring capabilities, emphasiz-
ing their widespread accessibility and potential for adoption in the commercial market.
However, it should be noted that Figure 1 only represents a portion of the various sensors
utilized in remote patient monitoring (RPM) systems. Recent advancements in sensor tech-
nology, such as flexible sensors and electronic skins, are actively investigated for potential
integration into healthcare and medical monitoring equipment [18].

Contemporary smartwatches are equipped with embedded sensors that enhance their
health monitoring functionalities, including step counting, energy expenditure estimation,
heart-rate monitoring, activity tracking, and sleep analysis. Additionally, smartwatches
offer supplementary features that enable healthcare developers to provide feedback and
engage in interactive tasks through touchscreens, speakers, and audio recorders [19,20].

In summary, Figure 1 provides an illustrative representation of commercially available
wearable sensors, acknowledging ongoing advancements in sensor technology and the
added capabilities of embedded sensors within smartwatches. These innovations have the
potential to revolutionize remote patient monitoring applications, leading to improved
accessibility and precision in healthcare. Moreover, the connectivity of smartwatches is
enhanced through Bluetooth technology, facilitating connections with various Bluetooth-
compatible sensor devices, expanding the scope of their applications [21]. A few examples
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would be thermometers, sphygmomanometers (blood pressure monitors), oximeters (blood
oxygen level monitors), and electrocardiograms (ECG), harnessed with either Bluetooth
Generic Attribute Profile protocol (GATT) [22] or the custom Software Development Kit
(SDK) provided by the devices, with an example that can be found in [23]. Note that
the chest strap Bluetooth ECG device shown in the figure can be utilized for continuous
monitoring. While some smartwatches have ECG monitoring capabilities, it is important to
note that as of the time of writing this paper, these smartwatches only support spot-check
ECG measurements at 30 s intervals. Moreover, users are required to actively hold the
electrodes during the measurement process. In contrast, the chest strap device enables
passive ECG data collection, providing the advantage of continuous monitoring without
the need for active user involvement. Moreover, Wi-Fi connectivity enables smartwatches
to serve as local hubs, facilitating real-time, continuous monitoring by transferring data
from the watch and its locally connected devices to remote cloud services.
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Among all the platforms available for smartwatches, we identified WearOS, the
Android-based operating system developed by Google, as the most suitable platform
for healthcare researchers. The WearOS platform inherits the flexibility and extensive
community support from the Android open-source system, providing a favorable envi-
ronment for application development. Additionally, due to the widespread popularity of
Android as a mobile platform, Wear OS is highly accessible. Major cloud service providers,
including Amazon Web Services (AWS), Azure, and Google Cloud Platform (GCP), offer
Android SDKs that seamlessly integrate with Wear OS, enabling crucial functionalities such
as authentication, file uploading, and remote configuration for remote health monitoring.

It is worth noting that the Wear OS platform enforces specific structures and policy re-
quirements during application development to uphold standard quality. Notably, there are
limitations on network and CPU-intensive tasks for applications running in the background
when the user is not actively engaging with them. This restriction presents challenges for
long-running background health monitoring applications seeking to gather continuous
data. To address this issue, we introduce a comprehensive application framework supple-
mented with code examples. This framework aims to aid healthcare developers in ensuring
the proper functionality of their applications while adhering to the policy requirements of
the Wear OS operating system [24,25].
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3. Cloud and HIPAA Compliancy

Professionals involved in the design and development of healthcare infrastructures,
particularly in remote patient monitoring and Internet of Things (IoT) systems, play a vital
role in ensuring the availability, security, and privacy of patient data. This responsibility
entails strict adherence to the guidelines outlined in the Health Insurance Probability and
Accountability Act (HIPAA) during healthcare product development. These guidelines
encompass data security and privacy standards for medical records and must be integral
to the development of IoT platforms [26,27]. Key aspects of ensuring HIPAA compliance
include the following:

1. Authorization access: Access to medical data, electronically and physically, is re-
stricted to authorized individuals or relevant patients.

2. Secure encryption: Medical data, whether at rest or in transit, must be encrypted.
3. Audit report: A comprehensive logging system records all data-accessing activities, doc-

umenting the specific user, the data section accessed, and the corresponding timestamps.
4. Backup policies: To safeguard against disasters or failures, data in storage systems are

replicated, thereby preserving data integrity.

In our system, we utilize the services of premier cloud service providers like AWS
and Azure, which incorporate these facets in their service configurations. These providers
also offer Software Development Kits (SDKs) that aid in establishing secure connections,
thereby enhancing data security from patients to cloud servers.

To ensure HIPAA regulations, we implemented the following stipulations in
our smartwatches:

1. Information revealing patients’ identity is not archived on the smartwatches; instead,
patient associations are drawn from unique IDs on a secure server.

2. Data accumulated by the watches are encrypted and housed in the application’s
exclusive folder. OS-provided storage sandboxes ensure that these data are not leaked
to other apps.

3. The smartwatch application records all executed tasks for security and debugging.
4. Data transmission from the watches to the cloud storage employs the HTTPS protocol,

with every transaction logged for audit.
5. Multifactor authentication is required for read access to cloud storage.
6. Access to cloud server requires Virtual Private Network (VPN) access and robust

password protections.
7. In the event of smartwatch compromise, the cloud monitoring service can trigger a

factory reset command via an associated administrative application, thereby erasing
all user data, inclusive of our application. Additionally, the IoT-Hub can invalidate
the authentication of compromised smartwatches.

4. System Overview

The proposed general structure of the healthcare application for smartwatches on
Wear OS, as depicted in Figure 2, comprises the following components:

1. Data collection application initialization: This stage ensures compliance with Android
policy requirements for the data collection application to run in the background con-
tinuously. It involves requesting permissions for various sensors, network capabilities,
and storage. Additionally, the initialization stage consolidates all long-running tasks
into a foreground service to circumvent interference from the OS doze mode, which is
discussed in the subsequent section.

2. Signal class: This component facilitates the coordination of actions among various
components of the data collection application. As healthcare monitoring tasks are
primarily asynchronous background processes involving sensor data collection and
storage, a reliable signal system is crucial for timely message delivery.

3. Sensor class and data collection: Serving as the core of the data collection application,
this class gathers sensor data from the smartwatch and any connected Bluetooth
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sensors. Data collection occurs passively in the background and actively during user
interaction events. To ensure secure storage, the collected data are encrypted using
the Advanced Encryption Standard (AES) algorithm. Given that the sensor class
operates continuously, battery conservation measures must be implemented without
compromising data quality.

4. User interface (UI) class: This class provides health monitoring status feedback to
patients and handles user interaction events. Notably, in smartwatch UIs, any UI
changes must be executed on the UI thread (main thread). Consequently, long-running
tasks should be delegated to the background thread to prevent UI freezing.

5. Network and monitoring class: Responsible for communication with remote cloud
services, this class encompasses authentication, data uploading, remote configuration
synchronization, and adaptive online user interaction events. Detailed information
regarding these network tasks is covered in section VII.B, while strategies to overcome
unreliable connections are discussed in section VIII.E.

6. Data collection application deployment through administration application: The ad-
ministration application, developed separately from the data collection application,
possesses elevated permissions and monitors the behavior of the data collection appli-
cation. The interaction between the administration application and the data collection
application is illustrated in Figure 3. The data collection application communicates its
status such as application state, battery state, and network state to the administration
application, which utilizes this acquired data to assess the optimal timing for imple-
menting remote configuration and software updates. For instance, the administration
application waits until the Wi-Fi connectivity is accessible and the device is actively
charging to initiate software updates, thereby ensuring efficient and uninterrupted
operations. Additionally, the administration application performs system updates.
By maintaining a separate administration application, privileges such as software
updates, watch configuration, and data wiping actions can be limited exclusively to
the administration application.
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4.1. Data Collection Application Initialization

The Wear OS platform enforces runtime policies to ensure user control over application
behavior and preserve device battery life. Two critical policies are (1) permission requests
for utilizing device resources and (2) minimizing background activity during doze mode,
which are elaborated upon in the subsequent paragraphs. Noncompliance with these
policies severely impacts the functionality of healthcare applications.

All Wear OS applications must explicitly request user permission to access hardware
components and sensitive data. Permission requests can be made either upon application
launch or just before performing actions that require specific permissions (e.g., requesting
permission for Bluetooth sensor usage prior to scanning for nearby Bluetooth proximity
sensors). Once a permission request is submitted, users receive a prompt to grant or
deny permission for the requested action. Generally, users are prompted only once for
permission grants, unless they choose the “one-time permission” option. Table 1 provides
an overview of actions that require specific permissions, along with their correspond-
ing permission names. A sample code demonstrating permission requests is presented
in Appendix A Figure A1.

Upon obtaining the necessary permissions, the data collection application must pre-
pare a service to handle background monitoring tasks. One notable challenge in this regard
is the implementation of the Wear OS doze mode, which restricts long-running background
tasks. Doze mode is activated when users have not interacted with the device for an
extended period. During doze mode, the CPU is put to sleep to conserve battery, and
certain restrictions apply. Pending background tasks are deferred to a brief maintenance
window when the CPU briefly wakes up to execute them before returning to doze mode.
The interval between maintenance windows increases as device idle time lengthens until
the user interacts with the device again. Figure 4 depicts the operation of the doze mode
maintenance window. Additionally, all alarms used to trigger background tasks are also
deferred to the maintenance window. This deferral of tasks can pose challenges for time-
sensitive background tasks, such as collecting sensor data at fixed intervals. In Section 5,
we elucidate methods to bypass these challenges.

To ensure the continuity of background tasks during doze mode, a foreground ser-
vice must be employed. This Android service class incorporates notification bars to in-
form users about the service running in the background. By executing tasks through
a foreground service, the imposed restrictions of doze mode can be bypassed, render-
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ing it a powerful tool. Sample code for setting up the foreground service can be found
in Appendix A Figure A2. However, it is important to note that utilizing this method
will activate the CPU to perform background tasks, resulting in a potential impact on the
battery life of the smartwatches. Subsequent sections provide more comprehensive details
on battery life conservation strategies.

Table 1. List of relevant tasks requiring permission with their corresponding permission name.

Task Required Permission

Using Internet android.permission.INTERNET

Check network connection state android.permission.ACCESS_NETWORK_STATE

Using Bluetooth to discover and pair device android.permission.ACCESS_FINE_LOCATION
android.permission.BLUETOOTH_ADMIN

Using onboard sensor such as
accelerometer, heartrate android.permission.BODY_SENSORS

Detect when the watch restarts android.permission.RECEIVE_BOOT_COMPLETED

Using audio recorder android.permission.RECORD_AUDIO

Wake up the CPU from sleep android.permission.WAKE_LOCK

Read and write data to external storage android.permission.READ_EXTERNAL_STORAGE
android.permission.WRITE_EXTERNAL_STORAGE

Use vibration to notify wearer android.permission.VIBRATE

Retrieve device serial number android.permission.READ_PHONE_STATE
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Figure 4. Illustration of doze mode implementation of Wear OS. The red section is when the CPU
wakes up and runs all the pending tasks. The green section is when the CPU is put to sleep and
ignores all tasks. The interval between the maintenance windows gets longer until the user interacts
with the device again.

4.2. Signal Class

Healthcare monitoring tasks can be categorized into two main types: asynchronous
recurring tasks, such as collecting sensor data at predetermined intervals, and sequential
tasks, which involve uploading data to a remote service, requiring Internet availability
checks, authentication, data transmission, and confirmation from the server. To ensure the
orderly execution of these tasks, a reliable signal delivery system is crucial. Wear OS offers
three systems—BroadcastReceiver, AlarmManager, and LiveData—that can be combined
to serve as the signal delivery system for both types of tasks [28–31].
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The BroadcastReceiver serves as the primary signal mechanism for general applica-
tions [28]. It operates in the background, awaiting registered triggering signals to wake up
and execute tasks accordingly. For instance, a BroadcastReceiver can be registered with
signals such as STEP_COUNT and PROXIMITY_SCAN. Upon receiving the STEP_COUNT
signal, the BroadcastReceiver collects pedometer data, while the PROXIMITY_SCAN signal
prompts it to scan for nearby proximity sensors. The triggering signals, known as intents,
are registered with the BroadcastReceiver during its creation, allowing any modules within
the same application to send out the triggering signals. Appendix A Figure A3 presents a
sample code demonstrating the setup of a BroadcastReceiver in Android.

The AlarmManager, often used in conjunction with the broadcast receiver, sends out
triggering signals at specific times or intervals [29]. Developers can specify the exact time
for the alarm to fire and determine whether it will repeatedly fire after a certain interval.
This alarm system is particularly useful for tasks that require regular scheduling or precise
timing, such as conducting a survey every Thursday at 5 p.m. It is important to note
that during doze mode, only three functions—setAndAllowWhileIdle, setExactAndAl-
lowWhileIdle, and setAlarmClock—are allowed to run in the background. For continuous
background monitoring tasks, we recommend utilizing these three functions to avoid the
signal being deferred by the operating system. Appendix A Figure A4 provides a sample
code illustrating the setup of an alarm in Android.

LiveData, on the other hand, triggers tasks when associated values change and is
primarily used to update UI components [30,31]. For example, a LiveData task can be
associated with the “step_count” value, and whenever there is a change in the “step_count”
value, the LiveData task will run to update the UI with the latest value. The advantage of
this type of signal is that it relieves the UI from constantly checking for new values in the
background while ensuring real-time updates. Further details on setting up LiveData for
UI components are discussed in the following section.

4.3. Sensor Class and Data Collection Architecture

Smartwatch applications can collect user data through two types of components:
passive sensors (accelerometer, gyroscope) and active sensors (Wi-Fi/Bluetooth/GPS and
speaker/recorder). Passive sensors operate independently from the CPU, allowing them
to function even when the CPU is in low-power doze mode. The CPU periodically wakes
up to read the data stored in the sensors’ buffer. On the other hand, active sensors require
the CPU to be in full-power mode every time they are controlled, making them the most
power-consuming components of the smartwatch. Considering these factors, it is important
to focus on the configurations and settings that enhance battery efficiency while describing
the sensors used in our system.

4.3.1. Passive Sensors

Passive hardware sensors capture raw data directly from the device’s modules and
chips, including components like the accelerometer and gyroscope. On the other hand,
software sensors utilize the built-in functions of the Operating System to process the raw
data obtained from the hardware sensors to infer specific data types. An example of this
is the calculation of a user’s pedometer, which is derived from the data collected by the
accelerometer and gyroscope.

The sensors’ data are characterized by three primary attributes: timestamp, sensors’
measurement, and accuracy. The timestamp represents the time in nanoseconds corre-
sponding to the sampling rate. Sensors’ measurement refers to the floating-point value
reading obtained. Accuracy denotes the reliability of the sensors’ reading, ranging from 0
to 3, with 3 being the most dependable. For instance, the accuracy of heart rate reading is
assigned a value of 3 when the operating system detects that the watches are tightly worn
and 0 when the watch is not worn at all.

Each sensor within the smartwatch encompasses three configuration types: (a) sam-
pling interval, (b) report interval, and (c) wake-up/non-wake-up. The sampling interval
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determines the frequency at which sample data are transferred to the sensors’ buffer stor-
age, where the data are temporarily held until the CPU reads them. The report interval
determines how often the CPU reads all the data present in the sensors’ buffer. The wake-
up/non-wake-up configuration determines whether the CPU is compelled to awaken and
read the data when the sensors’ buffer becomes full, regardless of the report rate.

The configuration of sensors has a significant impact on battery consumption and
buffer capacity, thereby influencing the overall performance of the data collection appli-
cation. Careful consideration should be given by programmers when determining these
parameters. Often, there exists a tradeoff between optimal battery consumption and the
required sensor performance, with the most suitable settings determined empirically.

Frequent wake-ups of the CPU due to shorter report intervals lead to increased power
consumption. Thus, the general strategy should be to maximize the report interval as
much as possible. The maximum report interval, without any loss of data, is calculated by
dividing the buffer capacity by the sampling frequency (Equation (1)).

Optimal report interval = buffer capacity/sampling frequency (1)

An additional complexity arises due to the presence of two types of buffers, i.e., re-
served and shared. The reserved buffer is dedicated to specific sensors, such as the ac-
celerometer/gyroscope sensor, wherein an independent buffer storage is employed. The
shared data buffer on the other hand caters to other sensors, allowing for their concurrent
utilization. The reporting interval, as determined by Equation (1), facilitates the CPU’s acti-
vation and subsequent data retrieval from all sensors before the buffer attains its maximum
capacity. It is imperative to recognize that not all sensors are equipped with buffers. For
instance, sensors like the pedometer or worn-status sensor merely retain the most recent
value. Consequently, to avert data loss, these sensors consistently awaken the CPU when-
ever a new value is updated. The list of sensors with buffer types and power consumption
available on Android smartwatches is shown in Appendix A Table A1. We should note that
companies are investing efforts in designing chipsets tailored for wearables to optimize
battery consumption and overall device performance. Examples include Qualcomm’s Snap-
dragon series and Samsung’s Exynos series, which focus on specialized chipsets, leading to
improved battery efficiency and performance in wearable devices.

Sensors with Buffer

This category encompasses various types of sensors, including accelerometer, gyro-
scope, magnetometer, barometer, linear acceleration (excluding gravity), and gravity. These
sensors are characterized by their buffer capacity, which permits the Central Processing
Unit (CPU) to adopt a low-power mode during report intervals, thereby optimizing battery
longevity. A sampling rate of 20 Hz has been validated as effective for facilitating the
day-long operation of these sensors, ensuring precise activity recognition [32]. For sus-
tained background functionality, the data collection application aligns the sensor’s report
interval with the designated buffer capacity. An exception is noted for the gyroscope sensor,
attributed to its elevated power consumption relative to other sensors in this category. The
gyroscope sensor is selectively employed to facilitate the classification of intricate activities
beyond the capacity of accelerometer data alone [33]. Within the data collection application,
the report rate for the accelerometer is established at 10 s intervals, and the data procured
are directed towards an activity classifier to ascertain the user’s ambulatory status. This
walking state classification (walking/nonwalking) then serves as a basis for enhancing the
power efficiency of Bluetooth localization.

Sensors without Buffer

Heart rate, ambient light, orientation, wear state, wrist tilt gesture, geometric ro-
tation vector, step counter, step detector, and significant motion sensors are among the
sensors without buffer. For instance, the data collection application selectively employs
the heart-rate, step counter, wear state, and ambient light sensors. Given their absence of
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buffer capacity, immediate data retrieval is essential upon availability to avoid loss. This
necessitates a concurrent sampling and report interval or necessitates operation in wake-up
mode. Given the Android operating system’s configuration to retrieve all sensor data upon
activation, the sensors in this category are programmed with sampling and report intervals
of 10 s. This synchronicity permits the operating system to conduct simultaneous data
reading from both sensor types [6,7].

4.3.2. Active Sensors

As previously stated, active sensors are characterized by their substantial power
consumption due to the continuous engagement and maintenance of the Central Processing
Unit (CPU) in a wakeful state. Consequently, the predominant strategy to mitigate power
usage for these sensors is to employ them in short, concentrated bursts, thereby employing
a high sampling rate within condensed timeframes.

Bluetooth

Bluetooth sensors, notable for their extensive utility, are incorporated in the data
collection application in conjunction with proximity beacons to determine indoor patient
localization. Proximity beacons propagate their presence to Bluetooth-enabled devices, a
feature harnessed by our SARP system to calculate the proximity of smartwatches to bea-
cons using Received Signal Strength Indicator (RSSI) values, thus deriving patient indoor
locations. The utilization of Bluetooth Low-Energy (BLE) beacons for contextual aware-
ness collection has gained momentum due to their durability and cost-effectiveness. Like
lighthouses, these beacons emit signals broadcasting their presence that can be perceived
and interpreted by Bluetooth modules embedded in wearable devices, thereby enabling
the indoor location of the wearable device to be calculated. Broadcasting at a power of
−80 dBm and 250 ms intervals enables these beacons to cover a 6 m radius. More extensive
analyses of Bluetooth beacons’ radiation emission pattern can be found in [15,34–37].

Given the substantial power consumption of the Bluetooth antenna, it is advised
to confine scanning for proximity Bluetooth beacons to periods when the accelerometer
detects user movement. Indoor location is ascertained in the data collection application
by considering the top three beacons with the highest mean RSSI power received by the
smartwatch’s Bluetooth module. Nevertheless, this location estimation method may suffer
accuracy deficits due to increased environmental objects. As such, rather than calculating
the indoor localization on the wearable itself, exhaustive scan results are documented
and transmitted to a cloud server, which will apply intricate analysis techniques, such as
fingerprinting and triangulation, yielding more precise location tracking.

An evaluation of the smartwatch Bluetooth module’s behavior when scanning prox-
imity beacons was conducted to better comprehend beacon behavior and assess battery
consumption under differing beacon configurations. A smartwatch equipped with a
2.4 GHz Bluetooth 4.1 BLE + BR/EDR module was positioned centrally in an unoccupied
room, facing upward. For each test case, a single beacon was arranged within a one-meter
radius of the smartwatches, and the experiment was repeated with ten beacons within the
same radius. Scanning intervals for the beacons varied from 0.25 to 10 s, with each scan
recording the number of beacon detections. The results, displayed in Figure 5, suggest
a stabilization of the detection rate at approximately three detections per second after
two seconds. An increase in beacon quantity slightly decreased this rate. Therefore, we
calibrated the scanning interval to ensure sufficient detection counts for indoor localization
calculation. Considering that beacon signals are prone to interference from the environ-
ment, the orientation of smartwatches, and the human body, we determined 3.6 s to be
the optimal scanning interval to balance battery preservation with data collection for user
location tracking [15,35,37].

The pervasive proliferation of Bluetooth technology has enabled a variety of health
monitoring devices to transmit their readings through Bluetooth, thereby making smart-
watches an emergent central hub within the ecosystem of home health devices. This
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mode of communication mirrors the prevalent adoption of the Generic Attributes (GATT)
data structure system across Bluetooth-enabled devices, enhancing interoperability. These
devices, employing distinct Universally Unique Identifiers (UUID) [38], broadcast their
available services and data in accordance with the GATT standard [23]. Devices intending
to access these data can establish a pairing with the broadcasting devices and subscribe
to the available services and data via the UUID. It should be noted that not all Bluetooth
health devices currently on the market rigorously adhere to this process (for example,
iHealth and Buerer’s devices employ custom service protocols for data reading) [39,40].
Nevertheless, for the devices that do comply with this standard (such as Polar, A&D, and
Contour Next) [41–43], the procedure for data reading remains relatively straightforward.
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Wi-Fi/4G

The utilization of Wi-Fi networks constitutes an additional method for indoor local-
ization, primarily due to three factors: (1) the proliferation of smartphones equipped with
GPS and Wi-Fi, (2) the prevalent practice of users leaving their device’s Wi-Fi and GPS
enabled, and (3) the periodic background transmission of status reports, inclusive of nearby
routers’ IP and GPS location, by Android devices to Google. Consequently, in the absence
of Bluetooth beacons, Wi-Fi provides a swift and efficient approach to ascertain a user’s
general location (for example, the building they occupy). By default, the Android operating
system permits applications to perform scans once every half hour. This frequency does
not impart a discernible impact on the battery life of smartwatches.

The primary function of the Wi-Fi antenna in the data collection application is to
facilitate the synchronization of data with the remote cloud server. This synchronization
process involves transmitting sensor data and device status to the IoT-Hub, interpreting
remote configurations, and updating the watch time. With consistent access to a Wi-Fi
network with an average upload speed of 20 Mbps, our data collection application only
requires a few minutes of Wi-Fi usage per hour for smartwatches to successfully complete
all cloud synchronization tasks. This includes uploading less than 3 MB of sensor data per
hour, considering activities such as accelerometer sampling at 25 Hz, Bluetooth scanning
during user movement, heart rate sampling every minute, encoded survey responses, and
more. Some of the files in the synchronization task may remain pending due to Wi-Fi issues
or watches running out of battery. Then, the data collection application will resume the
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leftover cloud synchronization tasks while the user charges the smartwatch, as long as a
Wi-Fi network is available. This guarantees that user data remains current and updated.
Additionally, the Wi-Fi antenna can be leveraged to extend its functionality by employing
geolocation techniques, utilizing the wearer’s current IP address, for the purpose of tracking
the wearer’s location.

GPS

Among all antennas, the GPS antenna demonstrates the highest power consumption
per reading. The requirement for maintaining connections to weak signals from multiple
satellites for durations between 10 to 60 s to yield a single reading necessitates considerable
power. Consequently, the activation of this antenna should be reserved for situations where
alternative localization methods described earlier are unfeasible or during emergency alerts.
To ensure that the smartwatch can function for an entire day with all other sensors and
antennas being operational, the recommended interval between GPS scans should be longer
than 10 min [44].

Speaker/Recorder

The speaker and recorder functionalities of smartwatches are employed to facilitate
a weekly survey within the data collection application. Given the compact screen size of
smartwatches, the built-in voice recognition feature provided by Wear OS is optimally
used to capture users’ responses. The smartwatch’s speaker vocalizes the survey questions
while simultaneously presenting it on the screen. Users have the choice to respond either
by selecting an answer on the screen or through voice command. An adaptive survey
approach can also be utilized, where subsequent questions are determined by the remote
server based on users’ preceding responses. Upon completion of the survey, the smartwatch
documents the responses and uploads them to the remote server for storage. The surveys
can be scheduled to run at customizable time intervals (e.g., hourly, daily, or monthly). The
survey content should be designed to allow the user to complete it quickly to minimize the
time the CPU needs to be awake and conserve the watch’s battery.

Sensors Setup for Activity and Indoor and Outdoor Location Tracking

By integrating a range of sensors, including accelerometers, gyroscopes, Bluetooth, Wi-
Fi, and GPS, a comprehensive tracking system can efficiently monitor users’ activities both
indoors and outdoors, which can help depict a comprehensive storyline of patients’ daily
routines and behaviors. In our application, the accelerometer is utilized to continuously
capture data in the background, determining whether the wearer is in motion or stationary
using a pretrained classifier embedded on the watch. When the user is stationary, the data
collection application conserves battery power by excluding the reading of location-related
sensors, focusing solely on the accelerometer to identify potential changes in physical
activity [13]. In instances where the classification result lacks confidence, supplementary
data from the gyroscope sensor is collected to enhance the accuracy of the classification.
When the user is in motion, the application updates the location by employing the Bluetooth
sensor to scan for nearby proximity beacons. If beacons are detected, the indoor location is
determined based on the strongest RSSI; otherwise, it is assumed that the user is outside
their residence. In such scenarios, the smartwatch checks for the availability of Wi-Fi to
determine the location based on the IP address or resorts to GPS if Wi-Fi is not accessible.
Figure 6 illustrates the decision tree rule employed by the data collection application for
activity and location tracking, taking into consideration battery consumption concerns at
each stage.
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4.4. User Interface (UI) Class

In the interest of conserving battery life, we recommend employing a black background
within the user interface. By limiting the illuminated portion of the screen to merely a
fraction of the total available pixels, the associated energy expenditure becomes negligible.
Moreover, the brightness level of the screen is strategically reduced whenever feasible,
leveraging data from the ambient light sensor. In instances of user interaction, the screen
can temporarily be brightened for a few seconds.

Another method to save battery is by utilizing the LiveData class for the UI thread, as
described in Section 4.2. Typically, the CPU needs to be fully awake at regular intervals to
run the UI thread and check for any updates to UI elements (e.g., watch clock time or step
counter). With LiveData, any changes in the UI element are buffered and updated later
when the CPU is fully active. This approach is particularly beneficial when the user does
not interact with the watch for an extended period, as the watch enters doze mode to save
battery life. LiveData allows the app to defer UI changes until the CPU wakes up again,
either during a periodic maintenance window or when the user interacts with the watch,
thereby prolonging battery conservation mode.

4.5. Network and Monitoring Class

In our case study, both the administration and the data collection applications con-
sistently record their activities into designated log files. Each activity log is diligently
timestamped on a daily basis, encompassing the time, day, month, and year. These log
files are securely retained in storage until they are scheduled for upload to the cloud.
The essence of these logs is paramount for conducting security audits and facilitating
developmental processes.

At the top of each hour, the data collection application attempts to transmit a series of
information to the IoT-Hub. This information includes sensor data, the latest version of
the log files, and pertinent device status information, such as battery level and the most
recent charging instance. When the smartwatches find themselves in a charging state, the
administration application initiates a retrieval of remote configuration data from the IoT-
Hub. These configurations encompass a spectrum of modifications, from minor adjustments
like survey details, UI language, and survey initiation timings to more substantial updates,
such as application upgrades for both the administration and data collection applications.
Following the successful execution of these configurations, the administration application
cedes control to the data collection application, allowing it to execute its routine activities
for the subsequent hour.

4.6. Data Collection Application Deployment through Administration Application

In a conventional Android application deployment scenario, developers submit their
applications to the Android app store, where they undergo scrutiny for potential mali-
cious activity. After successfully navigating this review process, the applications become
accessible on the Android app store, ready for download via the Google Play application
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on users’ devices. This standard model, however, can prove unsuitable for healthcare
monitoring applications akin to ours, which primarily targets the geriatric population for
remote patient monitoring. The reasons for this incongruity may include the following:

1. The Google Play application requires the presence of Google accounts on smart-
watches. Given that our primary users constitute the geriatric population, many of
whom may be less familiar with smart device technology, reliance on the Google Play
application could impose unnecessary complications. While it is feasible to create
Google accounts for each user, this strategy could inadvertently introduce additional
security vulnerabilities into the system.

2. The security of users’ personal data can be compromised when the application is
made available on the Android store. Potential malicious actors could download the
applications and employ reverse engineering tools, such as Apktool, to identify any
hardcoded credentials within the application [45].

One plausible solution to circumvent these issues involves direct installation of the
data collection application onto devices via console command, bypassing the Android
app store. However, this approach would impede our ability to update the data collection
application, given that typical Android applications are restricted from installing other
applications absent from the Android app store. Furthermore, console command usage is a
less accessible approach, especially for our target demographic—the geriatric community.

Beyond the complexities of application deployment, the data collection application
faces potential issues related to storing user credentials on devices. Every Android device
has a debugging mode, enabling the execution of custom shell commands. There exists a
particular command of concern that roots devices, thereby granting potential hackers access
to sensitive data and credentials. Furthermore, it opens the possibility for the installation
of malicious software, thereby compromising both the devices and any connected cloud
systems. This factor poses a considerable issue for any application, particularly ones similar
to ours which necessitate long-term storage of user credentials on devices in an effort to
minimize user interaction.

Our framework introduces an ancillary administration application on smartwatches
to address these security concerns. This application operates in “Device Owner mode” [46],
which facilitates a level of direct control over the devices not attainable by a typical Android
application. The salient features of this mode, as they pertain to our application, include
the ability to disable debugging mode and the capability to programmatically install
custom applications.

The disabling of debugging mode: This action serves to thwart any efforts to execute
shell commands on the devices, thereby preventing potential hackers from gaining root
access to the devices to steal security information or install malicious applications. The
only way to re-enable the debugging mode on the devices is via a factory reset, which
concurrently erases the administration application and sensitive data during the process.
This approach safeguards the users’ sensitive data and credentials stored on the devices by
precluding the possibility of device rooting.

The installation of custom applications programmatically: This feature permits direct
oversight of the data collection application distribution, as it no longer relies on the Android
store. Instead, we utilize the Azure Device Provisioning Service (DPS) [47] in conjunction
with the Azure IoT Hub Service (IoT-Hub) for the data collection application distribution.
During the initial setup, the administration application authenticates itself with the DPS.
The DPS, in turn, registers a device ID on the IoT-Hub and returns that ID’s credentials to
the administration application. Subsequently, the administration application downloads the
actual data collection application via the IoT-Hub and initiates its installation. This method
provides the added advantage of enabling the IoT-Hub to monitor and remotely configure
the data collection application, as described in the previous networking and monitoring
class section. Figure 7 illustrates the complete network communications between the
administration app, the data collection app, and the remote server for the data collection
app deployment, data uploading, and remote monitoring.
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5. Notes to Consider
5.1. Standalone or Smartphone-Dependent

Applications crafted for Wear-OS-enabled smartwatches predominantly adhere to a
design philosophy in which each application is envisaged as a companion to a smartphone
to execute an action. Given the tendency of our target audience to either not possess
smartphones or to lack advanced technological literacy, the necessity to develop standalone
applications becomes paramount, effectively eliminating the requirement for smartphones.
This approach presents an added advantage of mitigating potential user frustration arising
from technical complications. However, it should be noted that several sections of this paper,
such as those discussing the data collection application deployment through administration
applications, are aimed at addressing challenges predominantly arising from developing a
standalone application that operates without a smartphone.

A further challenge posed by standalone applications pertains to the mandatory initial
watch pairing setup imposed by all smartwatch manufacturers, which necessitates pairing
the watch with a phone. To circumvent this restriction for the deployment of remote
patient monitoring applications, an initial setup procedure is employed. During this setup,
smartwatches are temporarily paired with a smartphone to satisfy the pairing prerequisite.
Once this prerequisite is met, the smartphone Bluetooth connection can be disconnected,
which eliminates the pairing data, thereby facilitating the independent operation of the
smartwatches without the persistent necessity for a paired phone.

5.2. Background Execution Limit

Most smartwatch OS platforms have runtime restriction policies to save battery con-
sumption that developers need to follow to have their applications made available on
the app store of the platform. The most disruptive one is the background execution limit,
which constrains the amount of time the application can run in the background before
being put to sleep by the OS. However, our application needs to run continuously in the
background without interruption. Under the background execution limit, after 15–20 min
of no hand movement, the smartwatches will enter a sleep state to conserve battery. The
smartwatches will only wake up their CPUs for a minute in 10 min intervals for the app
to collect sensors’ data. This disruption will cause significant data loss during the deep
sleep period. Currently, there is no option for Wear OS smartwatches to whitelist the app
from this limit. To solve this issue, according to Google guidelines [48], our app will need
to register a notification channel for the app. This will help the OS to consider the app as
active and will not put the app to sleep when the wearer is inactive.
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Most smartwatch operating system (OS) platforms enforce runtime restriction poli-
cies to mitigate battery consumption, a prerequisite that developers must abide by for
their applications to be listed on the platform’s app store. Among these constraints, the
background execution limit, which curtails the duration an application can operate in the
background before the OS places it into a dormant state, is particularly intrusive. However,
remote patient monitoring applications normally necessitate uninterrupted, continuous
operation in the background. Given the background execution limit, the smartwatches
will transition into a power-conserving sleep state after approximately 15–20 min of no
hand movement. During this deep sleep period, the smartwatch’s CPU will only awaken
at intervals of ten minutes for a single minute, permitting the data collection application to
gather sensor data. This interruption leads to significant data loss during the deep sleep
period. As of the time of this manuscript’s preparation, Wear OS smartwatches offer no
provision to exempt an application from this constraint. To address this predicament, the
data collection application, as per Google guidelines, will need to register a notification
channel. This approach will enable the OS to perceive the data collection application as
active and forestall the induction of a sleep state during wearer inactivity [46].

5.3. Handling Time without Paired Smartphone

Wear OS inherently ensures the synchronization of the smartwatches’ date and time
via either a Wi-Fi network or paired phone. Nonetheless, the time zone on the smartwatch
can be synchronized exclusively through a paired phone or user intervention. In the data
collection application, we implemented time synchronization utilizing an API from ip-
api.com, accessed on 17 July 2021. This API enables the retrieval of the time zone from the
users’ Wi-Fi router, and the data collection application synchronizes its time accordingly. In
the case of Wear OS version 2.2 (released in November 2018) with a target application level
of 28, the administration application we described earlier can request the OS to modify the
system time zone as needed. However, for applications older than this version, Wear OS
currently does not provide an option to alter the system time zone using an administration
application. Consequently, users are required to manually adjust the system time zone
upon traveling.

5.4. Control Wi-Fi Switch

In a typical Android application, the process of synchronizing data with Google
servers consumes approximately 2–3 h of battery power when Wi-Fi connectivity is avail-
able. To optimize battery life, smartwatches are designed to keep the Wi-Fi functionality
disabled, except during designated synchronization periods with cloud services. However,
in situations where the application requests the operating system (OS) to disable Wi-Fi
and the watch is not actively paired with a nearby phone, the OS system briefly disables
Wi-Fi before reactivating it. To address this issue, immediate action can be taken upon
the installation of the administration application on the smartwatches. By granting the
“android.permission.WRITE_SECURE_SETTINGS” permission to the administration ap-
plication via a console command, the application gains the capability to activate airplane
mode. Notably, the Bluetooth module, which is crucial for indoor localization within our
application, is excluded from airplane mode. It is important to emphasize that this per-
mission is granted only once, following the installation of the administration application,
and cannot be modified subsequently, as the ability to execute console commands is no
longer available. Furthermore, it is noteworthy that this privilege does not revert, even
after installing system updates.

5.5. File Write

The data produced by the data collection application are stored in a private directory,
which is allocated by the operating system for enhanced security. By defining a custom
binary storage format rather than traditional file formats, such as CSV, XML, or JSON,
it is feasible to drastically reduce the size of the files. In the data collection application,
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the binary format for various data types, shown in Appendix A Figure A5, amounts to
merely 1/5th of the size of its CSV-formatted counterpart. For instance, an average 1 h data
file, which contains accelerometer data sampled at a frequency of 20 Hz, approximates to
around 1 MB. The remainder of the collected data, in comparison with accelerometer data,
generates less than 1 kB of data per hour, making its size relatively negligible. Given the
2 GB of storage provided by the smartwatch, it can hold up to two months’ worth of data
in the absence of Internet connectivity for transmission to cloud storage.

5.6. Dual Communication between the Administrative App and Patient Monitoring App

The data collection application transmits its operational status to our administration
application at one-minute intervals. This communication proves to be integral for the
application’s consistent functioning, given the imperative nature of coordinating data
transmission and software updates to circumvent potential data losses. For instance, a
scenario where the administration application initiates an update to the data collection
application while the latter is in the process of data transmission could potentially result
in data loss. Additionally, in an effort to conserve memory space, Wear OS occasionally
terminates running applications. Given that our data collection application is continuously
operational, it runs the risk of being terminated by the OS in the event of low available RAM
on the smartwatch. In such instances, the administration application detects the termination
and proceeds to restart the data collection application. This functionality also proves useful
in the event of unexpected crashes; by restarting the data collection application, crash
reports can be sent to the remote server, thereby aiding in debugging efforts.

6. Limitations of Smartwatch Applications and Future Research

In this section, we delineate the limitations encountered by developers when con-
structing remote patient monitoring applications that necessitate continuous operation
on smartwatch platforms. It is important to note that while our primary focus is on An-
droid Wear OS, we acknowledge that other platforms impose comparable constraints
on developers.

Reliance on the Wear OS platform presents a significant limitation for smartwatch-
based healthcare applications. The dynamic nature of the Wear OS platform can introduce
uncertainties over time, particularly affecting the uninterrupted operation of remote moni-
toring applications. Wear OS is designed to restrict background applications in order to
optimize battery consumption, thereby conflicting with the requirements of these appli-
cations. A notable constraint is the background execution limit described in Section 5.2.
Before API level 26, Wear OS allowed applications to run continuously in the background
without any time limitations. However, this behavior changed with the introduction of
API level 26, as background applications are paused when the watch enters doze mode,
resulting in the cessation of sensor data collection. To address this concern, we propose the
utilization of a foreground service to ensure that sensor operations persist even during doze
mode. Despite the fact that the most recent API level 30 has not modified this behavior, it
cannot be guaranteed that future versions of Wear OS will retain the same characteristics,
potentially necessitating substantial adaptations to accommodate the new API.

Another limitation of the Wear OS platform pertains to the absence of mechanisms
for distributing applications without mandating a Google account registration on the
smartwatch. Google Play serves as the primary channel for application distribution and
updates within the Wear OS ecosystem, necessitating a Google account for these purposes.
In our proposed remote patient monitoring (RPM) system, we leverage the “DeviceOwner”
functionalities of the smartwatch to establish an administrative application responsible for
application distribution, bypassing the reliance on Google Play. However, it is important to
note that not all Wear OS smartwatches support this particular feature. For instance, the
Samsung Galaxy Watch 5, a recent model, encompasses this feature, whereas the TicWatch
Pro 3 GPS does not. Therefore, it is imperative for developers to ascertain the availability of
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DeviceOwner capabilities on their targeted smartwatch prior to determining the suitability
of our proposed method.

A standardized benchmark for ensuring the consistent quality and behavior of re-
mote monitoring health applications on Wear OS platforms is currently lacking. However,
developers can leverage native tools available on the platform, namely Android Profiler,
Microbenchmark, and Macrobenchmark, to address this issue. Android Profiler facilitates
the measurement of application performance in terms of CPU utilization, memory con-
sumption, and power consumption. Microbenchmark empowers developers to assess
specific components of the application that are frequently executed, ensuring they meet
predefined target metrics related to CPU, memory, network, power, GPU, network, and
machine learning. Similarly, Macrobenchmark enables the evaluation of overall application
performance during typical user interactions. In our forthcoming research endeavors,
we intend to integrate these three tools to establish comprehensive guidelines for quality
assurance in remote monitoring health applications on smartwatches.

Developers should be aware that emerging sensor technologies, such as flexible and
skin sensors, are currently under investigation to be integrated into healthcare ecosystems.
It is essential to conduct further research to assess the efficacy of incorporating these sensors
alongside wearable technologies. Such investigations are critical to inform decision making
and optimize the potential benefits in healthcare applications.

7. Conclusions

This paper tried to demonstrate the potential of using smartwatches as a means of con-
tinuous patient monitoring in healthcare. The popularity of wearable devices, particularly
smartwatches, has provided an opportunity for healthcare and telemedicine providers to
leverage these technologies for various purposes, such as reducing hospitalization costs,
improving personalized health and care management, and monitoring patients in remote
and rural areas. While smartwatches offer promising capabilities for patient monitor-
ing, their adoption in healthcare is still in its early stages. Existing research primarily
focuses on feasibility studies, and there is a lack of comprehensive investigations into
the challenges associated with developing smartwatch-based applications for continuous
healthcare data collection.

This paper presented a guidance to design an Android smartwatch app for remote
monitoring of geriatric patients. We demonstrated several obstacles in app development,
including short battery life, wearable comfort, subject compliance, operating system app
termination behavior, difficulty in user interaction due to small touch screens, personalized
sensor configuration, and the ability to connect to other monitoring devices. By shedding
light on these challenges and providing insights into the design decisions and implemen-
tation details of the smartwatch app, this paper aims to assist other programmers and
healthcare professionals in developing more efficient healthcare applications. The findings
and experiences shared in this study can serve as valuable guidelines and lessons learned
for future endeavors in smartwatch-based patient monitoring.

As the field of wearable technology continues to evolve, it is crucial for researchers, de-
velopers, and healthcare practitioners to address the challenges associated with smartwatch-
based healthcare applications. With further advancements and innovations, smartwatches
have the potential to revolutionize patient monitoring, enhance healthcare outcomes, and
bridge the gap in access to care, particularly in remote and underserved areas. By overcom-
ing the identified obstacles and leveraging the capabilities of smartwatches, we can pave
the way for a more patient-centric and efficient healthcare system.

8. Patents

The Sensing At-Risk Population system is protected by a patent (US patent 10937547) [15]
owned by the University of California, Los Angeles, in which RR, AE, and AN are listed
as co-inventors.
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Table A1. Details of all sensors on the smartwatch used in the data collection application.

Sensor Sensor Type Reserved Buffer (byte) Shared Buffer (byte) Power (mA)

Accelerometer Hardware 150 3000 0.23

Gyroscope Hardware 150 600 6.1

Magnetometer Hardware 150 600 0.23

Heartrate Hardware None None 0.79

Ambient light sensor Hardware None None 0.23

Barometer Hardware 150 300 0.005

Orientation Software None None 6.56

Wear state Software None None 0.23

Wrist tilt gesture Software None None 0.23

Geometric rotation vector Software None None 6.56

Step counter Software None None 0.23

Step detector Software None None 0.23

Significant motion Software None None 0.23

Linear accelerometer
(excludes gravity) Software 150 3000 0.23

Gravity Software 150 3000 6.1
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