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ABSTRACT OF THE DISSERTATION

Performance of Non-Gaussian Distribution Based Communication and
Compressed Sensing Systems

by

Hwan Joon Kwon

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2013

Professor Bhaskar D. Rao, Chair

Gaussian distribution is often assumed for the signals in the analysis of and

in the design of communication systems and signal processing systems, although

Gaussian signals can never be realized in practice. Indeed, Gaussian distribution

has proven optimal in many problems of communication and signal processing, e.g.,

the channel input with a Gaussian distribution achieves the channel capacity of a

communication channel. Moreover, many problems of communication and signal

processing are mathematically tractable when the Gaussian signal distribution is

assumed. This dissertation is concerned with the performance of the systems (or

algorithms) in which the actual signal distribution is not Gaussian. In particular,

xvi



we study the performance loss of an optimal system with non-Gaussian signals

in comparison with the system performance with the optimal Gaussian signals.

In addition, when the actual signal distribution is non-Gaussian, we investigate

the performance of the practical algorithm that has been derived under the as-

sumption that the signal distribution is Gaussian. Two well-known problems in

communication and signal processing are investigated.

First, we study a communication problem, in particular, the power alloca-

tion problem that minimizes the outage probability over a slow Rayleigh fading

channel or maximizes the mutual information over a fast Rayleigh fading chan-

nel, where the channel input is equiprobable QAM signal constellations. The

mercury/water-filling (MWF) power allocation is optimal for this problem, while

the water-filling (WF) power allocation is optimal if the channel input is Gaussian

rather than QAM signals. We show that WF performs close to MWF as long as

the constellation size is appropriately chosen, more specifically, the MWF perfor-

mance itself is not limited by having too small a constellation size. In addition,

we study a simple practical power allocation policy, uniform power allocation with

thresholding (UPAT) that assigns nonzero constant power only to a subset of the

fading blocks. The UPAT can significantly alleviate the feedback overhead and

the complexity compared to MWF and WF. We show that the optimal UPAT,

namely, the UPAT with the optimal threshold, performs close to MWF as long as

the constellation size is large enough.

Next, we study a signal processing problem, in particular, the asymptotic

performance limits of reliably recovering the support of block-sparse signals (in-

cluding scalar-sparse signals as a special class) through an arbitrarily distributed

random measurement matrix (including Gaussian) in a noisy setting. Sharp suf-

ficient and necessary conditions for asymptotically reliable support recovery are

derived in terms of the signal dimension, the number of nonzero blocks, the block

size, the number of measurements, the distribution of the random measurement

matrix, and signal-to-noise ratio (SNR) of each nonzero block. The results reveal

the effect of the distribution of the random measurement matrix on the number

of measurements required for asymptotically reliable support recovery. They also

xvii



unveil how much we can potentially reduce the number of measurements required

for asymptotically reliable support recovery, when a signal is block-sparse and its

structure is known, by making use of the block-sparsity structure compared to

treating the signal as being scalar-sparse.
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Chapter 1

Introduction

Consider a simple communication channel Y (i) = X(i) + Z(i), referred to

as additive white Gaussian noise (AWGN) channel, where i = 1, 2, ... is the time

index, Y (i) ∈ R is the received signal at time i, X(i) ∈ R is the transmitted

signal at time i, and Z(i) ∈ R is the AWGN at time i. It is assumed that Z(i) is

independently and identically distributed (i.i.d.) according to Gaussian (normal)

distribution N (0, σ2
z). One wishes to send information over the AWGN channel

under the average transmit power constraint

1

N

N∑
i=1

X(i)2 ≤ σ2
x (1.1)

where N is the number of channel uses. The goal is to successfully send as much

information as possible. The maximum rate of information that can be reliably

transmitted over a given communication channel is referred to as the channel ca-

pacity [91]. Then, the capacity of the AWGN channel is given by

C =
1

2
log2(1 +

σ2
x

σ2
z

). (1.2)

The capacity of the AWGN channel C is achieved when X(i) is i.i.d. according to

Gaussian distribution N (0, σ2
x).

In addition to the simple AWGN channel, for many other communica-

tion channels such as parallel Gaussian channels, multiple access channel (MAC),

broadcast channel, and multiple input and multiple output (MIMO) channel, if

1
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the noise is AWGN, the channel capacity is achieved when the channel input is

Gaussian-distributed [91].

Now, let us consider a signal processing problem. Suppose the signal of

interest is X ∈ Rm, and X is said to be sparse when the signal dimension m is

large and only a few elements of X are nonzero whereas the rest of the elements

are zero. One wishes to estimate X via the linear measurements Y = AX + Z,

where A ∈ Rn×m is the measurement matrix and Z ∈ Rn is the measurement noise.

The goal is to estimate X from as few measurements as possible. This problem

has received much attention in many disciplines motivated by a broad array of

applications such as compressed sensing [32, 33], biomagnetic inverse problems

[34,35], and image processing [36,37] (see Chapter 3.1 for more details).

In many applications, finding the positions of the nonzero elements in X,

known as support recovery, is important. Such applications include EEG/MEG of

medical imaging [62,63] and spectrum sensing in cognitive radio systems [75] (see

Chapter 3.1 for more details). It was shown in [81] that the number of measure-

ments required for asymptotically reliable support recovery of the sparse signal X

can be minimized when the elements of the measurement matrix A are Gaussian-

distributed.

In addition to the problems introduced above, the Gaussian signal distri-

bution provides the optimal performance in many other problems of communica-

tion and signal processing under the AWGN assumption. Moreover, the Gaus-

sian distribution is analytically convenient, since many problems of communica-

tion and signal processing have closed-form expressions and are mathematically

tractable when the signal is assumed to be Gaussian-distributed. In contrast, a

non-Gaussian distribution is mathematically more complicated and is often not

mathematically tractable even though the non-Gaussian distribution is a simple

distribution, e.g., Bernoulli symmetric distribution. For instance, consider the

AWGN channel Y (i) = X(i) +Z(i). Since Z(i) is Gaussian, Y (i) is also Gaussian

if X(i) is Gaussian, which makes the problem easier. However, if X(i) is Bernoulli

symmetric, e.g., P (X(i) = +1) = 0.5 and P (X(i) = −1) = 0.5, where P (B)

indicates the probability of event B. Then, the distribution of Y (i) is the mix-
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ture of Bernoulli symmetric and Gaussian, which is not simple for mathematical

manipulation.

Due to its optimality and analytical convenience discussed above, the Gaus-

sian distribution is often assumed for the signals in the design of and in the anal-

ysis of the systems of communication and signal processing. However, Gaussian-

distributed signals are not employed for practical reasons, e.g., the Gaussian distri-

bution requires infinite granularity as well as infinite peak power. Rather, practical

signals are usually drawn from discrete constellations, e.g., ±1, which may signifi-

cantly depart from the Gaussian idealization. Thus, it is important to understand

the effect of non-Gaussian distribution on the system performance.

In this dissertation, we are particularly interested in the following questions.

• How much is the performance loss from a non-Gaussian signal distribution

compared to the optimal Gaussian distribution, especially for the signal dis-

tributions commonly used in practice?

• What are the conditions under which a non-Gaussian distribution performs

close to the Gaussian distribution?

• When the actual signal distribution is non-Gaussian, how much is the perfor-

mance loss from the algorithm that is optimal in case the signal distribution

is Gaussian, compared to the solution optimal for the given distribution?

To answer these questions, we study two well-known problems in commu-

nication and signal processing with AWGN under the assumption of non-Gaussian

distribution: (1) power allocation over fading channels with QAM inputs and (2)

limits on support recovery of sparse signals.

1.1 Contributions of the Dissertation

In the sequel, we provides a brief introduction and summarize the main

contributions for each of the research topics.



4

1.1.1 Power Allocation over Fading Channels with QAM

Inputs

The performance of a communication system over a fading channel can

be substantially improved by adapting transmit power according to the channel

gains [2–11, 91]. We study the problem of power allocation over Rayleigh block-

fading channels [2] with QAM inputs. The performance is measured by the outage

probability for nonergodic fading channels and by the ergodic mutual information

(MI) for ergodic fading channels. We investigate three power allocation schemes:

(1) waterfilling [91] (WF) that is optimal when the channel inputs are Gaussian-

distributed, (2) mercury/water-filling (MWF) that is optimal in our setting [4],

and (3) uniform power allocation with Thresholding (UPAT) that is a simple and

practical solution with reduced feedback requirement. It should be noted that

it is mathematically challenging to derive the exact performance results, since

the performance metrics (outage probability and ergodic MI) involve the MI of an

AWGN channel with QAM input, which does not have a closed-form expression. In

our work, we rely on asymptotic analysis, engineering intuition, and comprehensive

numerical work. The main results of the paper are summarized as follows.

(1) Near-optimality of waterfilling and UPAT: Through mathematical asy-

mptotic analysis and numerical simulations, we show that WF and the UPAT

with the optimal threshold, namely, the optimal UPAT perform close to

MWF as long as the constellation size is chosen appropriately not to limit

the performance.

(2) Constellation size selection rule: Taking into account the performance

and complexity tradeoff induced by the constellation size, we study the con-

stellation size selection problem. The goal is keeping the constellation size

as small as possible while not limiting the performance. We propose the

following rule: minimize the constellation size while achieving the maximum

diversity.

(3) Gain of the optimal UPAT: We quantify the gain of the optimal UPAT

over the uniform power allocation (UPA) that evenly assigns the total power
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across the blocks. We show that the gain in average transmit power increases

without bound as the number of independent fading blocks, B, increases, but

rapidly increases in dB scale only in the low B regime.

(4) A simple UPAT scheme: We present a simple method to determine the

threshold value for UPAT. Compared to the optimal UPAT, this method sig-

nificantly reduces the computational complexity with minimal performance

loss.

1.1.2 Limits on Support Recovery of Sparse Signals: Arbi-

trarily Distributed Random Measurement Matrices

and Block-Sparse Signals

We study the asymptotic performance limits of reliably recovering the sup-

port of block-sparse signals (including scalar-sparse signals as a special class)

through an arbitrarily distributed random measurement matrix in the Gaussian

noise scenario. The main contributions are summarized as follows.

(1) Information-theoretic analytical framework: We interpret the problem

of recovering of signal support of block-sparse signals as a problem of com-

munication over multiple input single output (MISO) multiple access channel

(MAC). Based on this connection, we establish an information-theoretic an-

alytical framework to unearth the performance limits in the support recovery

of block-sparse signals. The new perspective also leads to the opportunity

of leveraging the rich results and insights available in information theory to

help understand the performance limits of block-sparse signal recovery.

(2) Sufficient and necessary conditions for exact support recovery: We

derive sharp sufficient and necessary conditions for asymptotically reliable

support recovery in terms of the signal dimension, the number of nonzero

blocks, the block size, the number of measurements, the distribution of the

random measurement matrix, and signal-to-noise ratio (SNR) of each nonzero

block.
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(3) Suboptimality of a non-Gaussian measurement matrix: We show

that the loss from a non-Gaussian measurement matrix can be significant

when both the constellation size and the number of nonzero elements are

small and SNR is large.

(4) Benefit of the block-sparsity: We identify and discuss three factors of

block-sparse signals that can reduce the number of measurement required

for reliable support recovery of block-sparse signals, increased SNR, Reduced

effective number of nonzero elements, and diversity.

1.2 Dissertation Outline

The remainder of the dissertation is organized as follows.

In Chapter 2, we study the problem over fading channels with QAM inputs.

Three power allocation schemes, MWF, WF, and UPAT are compared in terms

of outage probability and ergodic MI. We derive the conditions under which WF

and UPAT perform close to the optimal MWF. We also develop a constellation

size selection rule that provides a good compromise between performance and

complexity. In addition, we present a simple method to determine the threshold

value for UPAT.

In Chapter 3, we study the problem of support recovery of block-sparse

signals through an arbitrarily distributed random measurement matrix. The sup-

port recovery problem is connected to the problem of communication over MISO

MAC. Based on this connection, we develop an information-theoretic analytical

framework to derive sufficient and necessary conditions for exact support recov-

ery. Then, we discuss the effect of non-Gaussian distribution on the measurement

matrix and the benefit of the block-sparsity.

Finally, Chapter 4 concludes the dissertation.



Chapter 2

Power Allocation over Fading

Channels with QAM Inputs

2.1 Introduction

The performance of a communication system over a fading channel can

be substantially improved by adapting transmit power according to the channel

gains [2–11, 91]. The waterfilling (WF) power allocation [91] in conjunction with

a Gaussian input distribution minimizes the outage probability over a nonergodic

block-fading channel (also referred to as slow fading channel) [2] as well as max-

imizes the ergodic mutual information (MI) over an ergodic fading channel (also

referred to as fast fading channel) [3]. In practice, however, the channel inputs must

be drawn from discrete constellations such as phase shift keying (PSK), pulse am-

plitude modulation (PAM), and quadrature amplitude modulation (QAM). For

these non-Gaussian inputs, the mercury/water-filling (MWF) power allocation is

optimal for outage probability and ergodic MI [4].

The amount of overhead to enable transmit power adaptation is often sig-

nificant in practice [5], [6], especially in a frequency-division duplex (FDD) system

in which the receiver has to feed back channel gain information to the transmitter.

Once the power levels of the fading blocks are determined, they should be signaled

to the receiver so that the received signals can be properly decoded [96], [16].

7
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In addition, the optimal MWF power allocation involves the inverse minimum

mean-square error (MMSE) functions [4], an exact implementation of which can

be excessively complex in practice [7].

To overcome these difficulties, a simple suboptimal power allocation policy,

uniform power allocation with thresholding (UPAT), that assigns nonzero constant

power only to a subset of the fading blocks has received much attention [5,6,8–11],

due to the remarkably relaxed overhead requirements [5], [6] as well as the simple

transceiver structure [11]. Since the power levels of the selected blocks are uniform,

complete information of the channel gains and the transmit power levels does not

have to be exchanged [5].

Much effort has been devoted to developing simple methods to determine

the threshold value (or equivalently, the subset of the blocks to which nonzero

constant power is assigned) for UPAT and to analyzing the resulting performance.

Dardari [5] proposed a simple UPAT scheme, referred to as the ordered subcar-

rier selection algorithm (OSSA) that always selects half of the blocks with higher

channel gains, and analyzed its performance in terms of uncoded bit-error rates

(BERs) and packet-error rates (PERs) with Reed–Solomon coding. Kwon and

Rao [6] proposed a UPAT scheme that maximizes an equivalent signal-to-noise

ratio (SNR) and evaluated the corresponding PER performance of turbo codes.

The results in [5] and [6] show that a UPAT with an appropriate threshold can

significantly improve the performance compared to no power adaptation. Then, a

fundamental question in this context is: How far from optimal is the UPAT pol-

icy? This question has been studied in [8–11] under the assumption of Gaussian

inputs over Rayleigh fast fading channels, where several bounds on the ergodic MI

loss from various UPAT schemes compared to the optimal power allocation (wa-

terfilling in this setup) have been numerically derived. However, these results do

not naturally extend to non-Gaussian practical constellations. More importantly,

the insights from the results of Gaussian inputs into design of practical systems

with non-Gaussian inputs are limited, since the optimal power allocation for Gaus-

sian inputs is quite different from that for non-Gaussian inputs and the results for

Gaussian inputs shed no light on the constellation size which is one of the most
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crucial parameters in practical systems.

In this paper, we study three power allocation schemes, WF, MWF, and

UPAT for Rayleigh fading and equiprobable QAM inputs. We are particularly

interested in the UPAT policy. We focus primarily on nonergodic block-fading

channels and study the outage probability performance. We also consider ergodic

fading channels and study the ergodic MI performance in a parallel manner. Note

that it is mathematically challenging to derive the exact performance results, since

the performance metrics (outage probability and ergodic MI) involve the MI of an

AWGN channel with QAM input, which does not have a closed-form expression.

In our work, we rely on asymptotic analysis, engineering intuition, and compre-

hensive numerical work. To give a perspective on the effect of the constellation

size on the performance, we recall that the performance of any power allocation

scheme improves with the growing constellation size at the expense of additional

complexity (see Section 2.4 and Section 2.5 for details). The main results of the

paper are summarized as follows.

1) Near-optimality of waterfilling and UPAT: Through mathematical asy-

mptotic analysis and numerical simulations, we show that WF and the opti-

mal UPAT performs close to MWF if the constellation size M is large enough

that logM � R, where R is the fixed target transmission rate. This condi-

tion logM � R turns out to define a natural system operating point. As we

show through numerical results, if logM ≈ R, WF, MWF, and the optimal

UPAT perform poorly due to having too small M and their performance

can be significantly improved by using a larger M . From these results, we

can conclude that for a given target transmission rate, WF and the optimal

UPAT performs close to MWF as long as the constellation size is chosen

appropriately not to limit the performance.

2) Constellation size selection rule: Taking into account the performance

and complexity tradeoff induced by the constellation size, we study the con-

stellation size selection problem. The goal is keeping the constellation size

as small as possible while not limiting the performance. We propose the

following rule: minimize the constellation size while achieving the maximum
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diversity. Numerical results show that (i) the proposed rule meets the above

goal and (ii) with the proposed rule, the optimal UPAT performs close to

MWF.

3) Gain of the optimal UPAT: We quantify the gain of the optimal UPAT

over the uniform power allocation (UPA) that evenly assigns the total power

across the blocks. The focus is on the low R regime since the gain fades away

as R increases (see Section 2.6). We show that the gain in average transmit

power increases without bound as the number of independent fading blocks,

B, increases, but rapidly increases in dB scale only in the low B regime.

4) A simple UPAT scheme: We present a simple method to determine the

threshold value for UPAT. Compared to the optimal UPAT, this method sig-

nificantly reduces the computational complexity with minimal performance

loss.

5) Extension to ergodic fading: We extend our work to ergodic fading chan-

nels and study the ergodic MI performance. We show through numerical

simulations that the same conclusion holds, that is, the optimal UPAT per-

forms close to MWF as long as the constellation size is chosen appropriately

not to limit the performance.

The rest of the paper is organized as follows. Section II presents the system

model and the performance metric. Section III formulates the outage probability

with MWF and the optimal UPAT. Section IV discusses the outage performance

results. Section V studies the constellation size selection problem. Section VI

quantifies the gain of the optimal UPAT over the UPA. Section VII presents a

simple UPAT scheme. Section VIII considers ergodic fading channels. Finally,

Section IX concludes the paper with a few remarks.

Throughout, Rm and Cm denote the m-dimensional real and complex Eu-

clidean spaces, respectively. The circular symmetric complex normal distribution

is denoted by NC. For a vector a = (a1, ..., an), 〈a〉 , 1
n

∑n
i=1 ai. Component-wise

inequalities are denoted by � and �. The probability of an event A is denoted by



11

P(A). Finally, log(·) and ln(·) denote the logarithm to base two and the natural

logarithm, respectively.

2.2 System Model and Performance Metric

2.2.1 System Model

Consider transmission over a nonergodic block-fading channel [7], [13], con-

sisting of B blocks of L channel uses, where block i = 1, 2, ..., B undergoes a

random channel gain Hi that is constant during the block and is independently

and identically distributed (i.i.d.) across the blocks. Assume that the channel

inputs to the blocks are independently and uniformly distributed over the stan-

dard M -QAM [17] constellation set SM , where M ∈ {22j : j = 1, 2, ...} and

1
M

∑
s∈SM |s|

2 = 1. Suppose that {|Hi|}Bi=1 is known to the transmitter so that

transmit power for each block can be adapted to the channel strength, subject to

an average power constraint P . To describe a power allocation scheme, it is con-

venient to define γi , P |Hi|2 which indicates the SNR in block i with the uniform

power allocation (UPA). Let γ = {γi}Bi=1. Then, a power allocation scheme is de-

scribed as p(γ;M) = {pi(γ;M)}Bi=1, where pi(γ;M) ≥ 0 indicates the normalized

transmit power of block i, i.e., 〈p(γ;M)〉 ≤ 1. Note that p(γ;M) depends on

{|Hi|2}Bi=1, P , and B through γ. The channel output vector Yi ∈ CL in block i, is

given by

Yi = Hi

√
pi(γ;M)P Si + Zi, i = 1, 2, ..., B, (2.1)

where Si ∈ SLM is the M -QAM channel input vector and Zi ∼ NC(0, I) is the

Gaussian channel noise vector. Note that pi(γ;M)γi corresponds to the instanta-

neous SNR in block i. Throughout, we assume the Rayleigh fading Hi ∼ NC(0, 1)

and therefore the probability density function (pdf) of γi is given by fγi(ξ) =

1
P
e−

1
P
ξ, ξ ≥ 0. We assume that {Hi}Bi=1, M , P , and p(γ;M) are known to the

receiver so that the received signals can be properly decoded. We also assume that

L is sufficiently large so that the input–output MI of the channel is meaningful.

For the sake of convenience, blocks with high and low γi are referred to as strong
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and weak blocks, respectively.

2.2.2 Performance Metric: Outage Probability

When B is finite, the system in (2.1) models a slow fading channel. In

particular, when B is small, e.g., B = 4 or B = 8, the system in (2.1) can model

a transmission over a small number of independent fading blocks, for instance,

a multiple-input and multiple-output (MIMO) transmission using singular value

decomposition (SVD) [14] with rank B over L symbols in time where the channel

is independent across the B decomposed single-input and single-output (SISO)

channels but is constant across the L symbols in time. The system in (2.1) with

a small B can also model an orthogonal frequency division multiplexing (OFDM)

transmission with a large number of subcarriers whose channel gains are highly

correlated. We assume L is arbitrarily large which makes the mutual informa-

tion operationally significant. For finite B, we consider the outage probability as

the performance metric that can provide a lower bound on the codeword error

probability of arbitrary coding schemes.

Recall that the MI of the AWGN channel Y =
√
ρS+Z under the uniform

distribution of the input S over SM is given [18] by

IAWM (ρ) = logM

− 1

M

∑
s∈SM

E

[
log

( ∑
s′∈SM

e−|
√
ρ(s−s′)+Z|2+|Z|2

)]
(2.2)

where the expectation E[·] is with respect to the random noise Z. Plots of (2.2)

for different values of M are shown in Fig. 2.1, where the MI of the AWGN

channel with the Gaussian input (i.e., the AWGN channel capacity log(1 + ρ)) is

also presented for comparison.

Then, the instantaneous MI is defined [2] by

IM(γ,p(γ;M)) ,
1

B

B∑
i=1

IAWM (pi(γ;M)γi). (2.3)

For a fixed target transmission rate R, the outage probability is defined [2]
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Figure 2.1: Mutual information of the AWGN channel with equiprobable M -

QAM input constellations.

by

P out
M (p(γ;M), P, R) , P{IM(γ,p(γ;M)) < R} (2.4)

where the probability is with respective to the random γ.

2.3 Power Allocation Schemes

2.3.1 Optimal Power Allocation: Mercury/water-filling

The outage probability minimization problem is formulated as

minimize P out
M (p(γ;M), P, R)

subject to 〈p(γ;M)〉 ≤ 1 (2.5)

p(γ;M) � 0.

We refer to the solution to this problem as the optimal power allocation, denoted

by popt(γ;M). Since the outage probability is minimized when the instantaneous
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MI (2.3) is maximized for each realization of γ, we have [2]

popt(γ;M) = arg max
〈p(γ;M)〉≤1
p(γ;M)�0

IM(γ,p(γ;M)). (2.6)

Let MMSEM(ρ) denote the MMSE incurred in the estimation of an equiprobable

M -QAM symbol over the AWGN channel with SNR ρ. By the Lagrangian duality,

the Karush–Kuhn–Tucker (KKT) conditions [19], and the relationship d
dρ
IAWM (ρ) =

1
ln 2

MMSEM(ρ) between MI and MMSE [20], the solution to (2.6) is given [4] by

popti (γ;M) =

{
1
γi
MMSE−1M

(
λMWF

γi

)
, γi ≥ λMWF

0, γi < λMWF

(2.7)

where the SNR threshold λMWF is chosen so that the average power constraint is

satisfied with equality. The solution (2.7) is often referred to as mercury/water-

filling [4]. Substituting (2.7) into (2.4) yields the outage probability with the

optimal power allocation

P out
M (popt(γ;M), P, R) =

P

{
1

B

∑
i:γi≥λMWF

IAWM

(
MMSE−1M

(
λMWF

γi

))
< R

}
. (2.8)

2.3.2 Waterfilling Power Allocation

The power allocation with the waterfilling policy pwf(γ) can formulated as

pwf(γ) = arg max
p(γ)

B∑
i=1

log2(1 + pi(γ)γi) (2.9)

subject to 〈p(γ)〉 ≤ 1 and p(γ) � 0. (2.10)

Note that the waterfilling solution is independent of M .

The solution to the above problem is given by [91]

pwf
i (γ) =

{
1
λwf
− 1

γi
, γi ≥ λwf

0, γi < λwf

(2.11)

where SNR threshold λwf is chosen such that the average power constraint is met

with equality. As seen in (2.11), the waterfilling assigns more power to stronger

blocks regardless of M if γi is larger than or equal to the threshold.
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2.3.3 Uniform Power Allocation with Thresholding

In a UPAT scheme, nonzero constant power is assigned to a set of selected

blocks while zeropower is assigned to the other blocks. Let γo1 ≤ γo2 ≤ · · · ≤ γoB be

the ordered γ sequence. Then, a UPAT scheme can be described as

pUPAT
i (γ;M) =

{
B

B−NUPAT
, γi ≥ λUPAT

0, γi < λUPAT

(2.12)

where λUPAT is the SNR threshold, 0 ≤ NUPAT < B is the number of zero-power

blocks, and λUPAT = γoNUPAT+1. Therefore, a UPAT scheme is completely defined

by how to determine the value of NUPAT (or the value of λUPAT) depending on γ

and M . The optimal value of NUPAT that maximizes the instantaneous MI is

N∗UPAT = arg max
0≤n<B

B∑
i=n+1

IAWM

(
B

B − n
γoi

)
. (2.13)

The corresponding SNR threshold is denoted by λ∗UPAT(= γoN∗UPAT+1). The UPAT

with N∗UPAT is referred to as the optimal UPAT, denoted by pUPAT∗(γ;M). Substi-

tuting (2.12) and (2.13) into (2.4) yields the outage probability with the optimal

UPAT

P out
M (pUPAT∗, P, R)

= P

{
1

B

B∑
i=N∗UPAT+1

IAWM

(
B

B −N∗UPAT

γoi

)
< R

}
. (2.14)

2.3.4 Examples

We now discuss a set of examples that show power allocations of MWF

and the optimal UPAT, corresponding instantaneous MIs, and the power loss ∆P

that indicates the additional P required for the optimal UPAT to achieve the

same instantaneous MI as MWF. The examples are with respect to two specific

realizations of γ but provide some insight into the outage probability results that

come from a random γ, discussed in subsequent sections.
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Figure 2.2: Power allocation results of mercury/water-filling, waterfilling, and

the optimal UPAT, when γ = γ1 ( 1
B

∑B
i=1 γi = −10 dB).

We consider a specific channel gain vector {hi}Bi=1 with B = 100, where

its elements were i.i.d. drawn according to NC(0, 1), normalized and ordered1

such that 1
B

∑B
i=1 |hi|2 = 1 and |h1| ≤ · · · ≤ |hB| (see Fig. 2.2 and Fig. 2.3).

Two different values of P , P1 = −10 dB and P2 = 13 dB are examined. Three

constellation sizes, M = 4, 16,∞ are considered. Let γ1 = {P1|hi|2}Bi=1 and γ2 =

{P2|hi|2}Bi=1. Then, 〈γ1〉 = −10 dB and 〈γ2〉 = 13 dB. Since MWF and the optimal

UPAT depend on (γ,M), there are 6 different cases, i.e., M = 4, 16,∞ for each γ.

The power allocations of MWF and the optimal UPAT are shown in Fig. 2.2

and Fig. 2.3 for γ = γ1 and γ = γ2, respectively. For each γ, we also present the

power allocations of waterfilling that does not depend on M . Table 2.1 shows the

instantaneous MI of MWF, IM(popt), the instantaneous MI of the optimal UPAT,

IM(pUPAT∗), the loss ∆IM of the optimal UPAT in instantaneous MI compared to

MWF, and the power loss ∆P .

The results in Fig. 2.2, Fig. 2.3, and Table 2.1 can be explained by the

following properties of IAWM (ρ) (see Fig. 2.1). Note that the sum of IAWM (piγi) is

the objective function in the relevant optimization problems (2.6) and (2.13).

1The ordering is merely intended to clearly show the dependency of power allocation on the
channel gains
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Figure 2.3: Power allocation results of mercury/water-filling, waterfilling, and

the optimal UPAT, when γ = γ2 ( 1
B

∑B
i=1 γi =13 dB).

Table 2.1: Instantaneous MI and additional P required by pUPAT∗

(γ,M) IM(popt) IM(pUPAT∗) ∆IM ∆P

(γ1, 4) 0.2314 0.2288 1.2 % 0.07 dB
(γ1, 16) 0.2385 0.2341 1.8 % 0.12 dB
(γ1,∞) 0.2394 0.2349 1.9 % 0.12 dB
(γ2, 4) 1.9499 1.8630 4.5 % 4.4 dB
(γ2, 16) 3.1917 3.1199 2.3 % 0.5 dB
(γ2,∞) 3.5950 3.5871 0.2 % 0.03 dB

(i) Given M , if ρ is so low that IAWM (ρ) � logM , IAWM (ρ) is not much different

from log(1 + ρ). In particular, IAWM (ρ) ≈ log(1 + ρ) in the low ρ regime [4].

(ii) Given M , if ρ is so high that IAWM (ρ) ≈ logM , IAWM (ρ) slowly approaches its

maximum logM as ρ increases. Therefore, in this regime, IAWM (ρ) does not

vary much as ρ changes.

Due to property (i), if (γ,M) is such that IAWM (γi) � logM for most of

the blocks, e.g., (γ = γ1,M = 16), (γ = γ1,M = ∞), and (γ = γ2,M = ∞),

MWF is not much different from waterfilling, i.e., cutting off weakest blocks and

then assigning more power to stronger blocks. This is because the solution to the
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problem (2.6) is waterfilling if IAWM (piγi) is replaced by log(1 + piγi). In this case,

as shown in [8–11] for Gaussian inputs, ∆IM and ∆P are not significant.

Due to property (ii), on the contrary, if (γ,M) is such that IAWM (γi) ≈ logM

for most of the blocks, e.g., (γ = γ2,M = 4), MWF tends to assign power inversely

proportionally to γi [4]. Intuitively, this is because with relatively small power,

stronger blocks can still provide per-block MI IAWM (piγi) close to logM . By assign-

ing more power to weaker blocks, MWF increases per-block MI of weaker blocks,

while minimally decreasing per-block MI of stronger blocks. This is how MWF

maximizes the average of per-block MI, i.e., the instantaneous MI. In contrast,

the optimal UPAT just activates most of the blocks due to the uniform power

constraint and therefore the optimal UPAT tends to be the UPA. Interestingly,

although the power allocations of MWF and the optimal UPAT are quite different

from each other, ∆IM is not so significant since the instantaneous MI of the op-

timal UPAT is close to logM and there is not much room to improve. However,

even though ∆IM is small, ∆P can be significant. This is because the optimal

UPAT is similar to the UPA and therefore if P increases, a large portion of the

increased power is assigned to the blocks that could provide per-block MI close

to logM without the increased power, which makes increasing P very inefficient

in terms of increasing the instantaneous MI. Therefore, a large ∆P is needed to

increase the instantaneous MI by a small amount.

2.4 Near-optimality of UPAT

In this section, we discuss the outage performance loss from the optimal

UPAT compared to MWF. We first show that the optimal UPAT performs close

to MWF as long as the constellation size is sufficiently large. We then show that

the constellation size should be sufficiently large for both MWF and the optimal

UPAT in order not to suffer from a huge performance degradation.
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Figure 2.4: Outage performance of the optimal power allocation (mercury/water-

filling) and the optimal UPAT for different target transmission rates (R = 0.5, 1.0,

1.5, 1.8) when the number of blocks is 4 (B = 4) and M = 4 (QPSK).

2.4.1 The Optimal UPAT is Near-Optimal If logM � R

Fig. 2.4 shows the outage probability of MWF and the optimal UPAT when

M = 4 (QPSK), R = 0.5, 1.0, 1.5, 1.8, and B = 4. We observe that when R = 0.5,

the optimal UPAT performs near MWF. But, as R increases, the performance

loss from the optimal UPAT increases. In particular, the loss is significant when

R ≈ logM , e.g., at 10−3 outage rate, the loss is about 1 dB and 6 dB for R = 1.5

and R = 1.8, respectively.

The performance loss of the optimal UPAT for various values of M , R, and

B is summarized in Fig. 2.5. Each curve in the figure indicates the additional

P required for the optimal UPAT to achieve the same outage probability 10−3 as

MWF. The results clearly show that the loss due to the optimal UPAT is marginal

when R� logM , increases with R, and becomes significant when R ≈ logM .

Intuitively, the above results can be explained as follows. By the definition

of the outage probability (2.4), when R � logM , the outage events occur when

IAWM (γi) � logM for most of the blocks. As discussed in the previous section,



20

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

R

A
d
d
it
io

n
a
l 
P

o
w

e
r 

R
e
q
u
ir
e
d
 b

y
 t
h
e
 O

p
ti
m

a
l 
U

P
A

T
 [
d
B

]

 

 

B = 4

B = 10

B = 50

QPSK 16−QAM 64−QAM

∞−QAM

Figure 2.5: UPAT suboptimality for various (M,R,B): each curve indicates the

additional P required for the optimal UPAT at outage rate 10−3 to achieve the

same outage probability as mercury/water-filling.

for γ realizations such that IAWM (γi)� logM for most of the blocks, MWF is not

much different from waterfilling and the additional power required for the optimal

UPAT to achieve the same instantaneous MI as MWF is not significant.

When R ≈ logM , in contrast, the outage events occur unless IAWM (γi) ≈
logM for most of the blocks. For γ realizations such that IAWM (γi) ≈ logM for

most of the blocks, the optimal power allocation tends to be inversely proportional

to γi, while the optimal UPAT tends to be the UPA. In this case, the additional

power required for the optimal UPAT is significant, as discussed in the previous

section.

An asymptotic behavior of these observations is proved by the following

proposition.

Proposition 1

lim
R→0

P out
M (pUPAT∗(γ;M), P, R)

P out
M (popt(γ;M), P, R)

= 1.

Proof: See Appendix 2.10.1.
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Figure 2.6: Outage performance gain of 16-QAM over QPSK with the optimal

power allocation (mercury/water-filling) when B = 4.

2.4.2 A System Should Operate in the Regime in Which

logM � R

The following property of the outage probability is important for subsequent

discussion.

Lemma 1 P out
M (p(γ;M), P, R) is a decreasing function of the constellation size

M .

Proof: Since IAWM (ρ) is an increasing function of M [21], [22], IM(γ,p(γ;M))

is an increasing function of M . The proof follows by (2.4).

Lemma 1 implies that the outage probability with∞-QAM inputs not only

provides an analytical insight into the asymptotic behavior for large M but also

serves as a lower bound for the outage probability of any finite M .

Now, we show through numerical results that the condition logM � R is a

necessary prerequisite for a system to perform well. Fig. 2.6 shows the performance

gain of 16-QAM over QPSK (4-QAM) with MWF for B = 4 fading blocks. We

observe that when R = 0.5, QPSK and 16-QAM exhibit a similar performance.
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Figure 2.7: Gain from using a larger constellation size in average power P at

10−3 outage probability when B = 4.

But, as R increases, the gain of 16-QAM increases. In particular, when R is close

to the maximum achievable rate of QPSK (i.e., logM = 2), the gain is significant,

e.g., 16 dB gain at 10−3 outage probability when R = 1.8.

Fig. 2.7 summarizes the gain from using a larger M for various values of M

and R when B = 4. The dashed line indicates the gain in P from using one-step

larger M at 10−3 outage probability. The solid line indicates the gain of ∞-QAM,

which bounds the gain from using any larger (finite) M . We note the following

observations. If logM � R, the gain from using a larger M is marginal for both

MWF and the optimal UPAT. In contrast, if logM ≈ R, the performance of them

can be significantly improved by even one-step larger M . In other words, both

MWF and the optimal UPAT perform poorly in this regime, due to having too

small M .

Intuitively, these results can be explained as follows. If R � logM , the

outage events occur when IAWM (γi)� logM for most of the blocks. For γ realiza-

tions such that IAWM (γi) � logM for most of the blocks, increasing M does not

significantly increase the instantaneous MI, since IAWM (γi) ≈ IAWM ′ (γi), M < M ′,
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for most of the blocks (see Fig. 2.1). Therefore, increasing M does not signif-

icantly decrease the outage probability. In contrast, if R ≈ logM , the outage

events occur unless IAWM (γi) ≈ logM for most of the blocks. For γ realizations

such that IAWM (γi) ≈ logM for most of the blocks, increasing M can significantly

increase the instantaneous MI, since IAWM (γi) � IAWM ′ (γi), M < M ′, for most of

the blocks (see Fig. 2.1). Therefore, increasing M can substantially decrease the

outage probability.

2.4.3 Summary

If logM � R the optimal UPAT performs close to MWF; otherwise, the

suboptimality of the optimal UPAT can be significant. However, if logM ≈ R,

both MWF and the optimal UPAT perform poorly and therefore a system should

avoid operating in this regime. In conclusion, for a given target transmission rate

R, the optimal UPAT is near-optimal as long as the constellation size M is chosen

appropriately not to limit the performance.

2.5 Constellation Size Selection

Although a larger constellation size provides a better outage performance

(Lemma 1), it is more complex to implement in practice [23]. In this section,

we study the constellation size selection problem under the assumption that the

values of B and R are given. The goal is keeping the constellation size as small as

possible while not limiting the performance (i.e., while minimizing the performance

loss compared to ∞-QAM).

An interesting observation from Fig. 2.6 is that the outage performance gain

of 16-QAM over QPSK is mainly linked to the slope of the outage probability curve.

When R = 0.5, the slope with 16-QAM seems essentially identical to that with

QPSK and the difference in required P to achieve the same outage probability is

not significant. However, when R = 1.5 and R = 1.8, the slopes with 16-QAM are

much steeper than those with QPSK and the difference in slope makes a significant

difference in required P at a low outage probability.
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Based on this observation, we propose the following constellation size selec-

tion rule: minimize the constellation size while maximizing the slope. The asymp-

totic slope in log-log scale is referred to as the outage diversity [24], which is defined

by

d , lim
P→∞

− logP out
M (p(γ;M), P, R)

logP
. (2.15)

For both the UPA [24] and MWF [25], the outage diversity of the Rayleigh block-

fading channel in (2.1) is given by

d = 1 +

⌊
B

(
1− R

logM

)⌋
. (2.16)

We can readily show that the outage probability for the optimal UPAT is also

given by (2.16) using the fact that P out
M (pUPA) ≥ P out

M (pUPAT∗) ≥ P out
M (popt) where

pUPA = (1, ..., 1).

Therefore, for both MWF and the optimal UPAT, the constellation size

selection rule that minimizes the constellation size while maximizing the outage

diversity can be formulated from (2.16) as

min
{
M : logM ≥ RB, M = 22i, i = 1, 2, ...

}
. (2.17)

Note that for any given B and R, the constellation size according to this rule

provides the maximum diversity B. For example, when B = 4, the rule results in:

QPSK for 0 < R ≤ 0.5, 16-QAM for 0.5 < R ≤ 1.0, 64-QAM for 1.0 < R ≤ 1.5,

and so forth.

Fig. 2.8 shows the outage probability with the proposed constellation se-

lection rule, where B = 4, R = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and the M value for

each (B,R) follows (2.17). The solid lines indicate the performance bounds ob-

tained with MWF and ∞-QAM inputs. First, we observe that the slopes of all

the curves are the same in the low outage probability regime, which confirms that

the proposed rule leads to the maximum outage diversity for both MWF and the

optimal UPAT. Second, we observe that the gaps in P between the performance

bounds and the results with the proposed rule are marginal for all the cases, which

indicates that the performance gain from using an M larger than the proposed
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Figure 2.8: Outage probability when B = 4 and the constellation size M is chosen

according to (2.17) depending on (B,R). The solid lines denote the performance

bounds obtained with mercury/waterfilling and ∞-QAM inputs.

rule is minimal. Since the performance loss from having an M smaller than the

proposed rule can be significant due to less diversity, especially in case B is small

and/or a low outage probability is concerned, we can conclude that the proposed

rule meets our goal, that is, to choose as small constellation size as possible while

not limiting the performance. Finally, we observe that with the proposed rule, the

optimal UPAT performs close to MWF.

2.6 Gain of the Optimal UPAT over the UPA

In this section, we analyze the gain of the optimal UPAT over the UPA (i.e.,

no power adaptation). To support a high R, γi should be large for many blocks. For

such γ realizations, the optimal UPAT tends to be the UPA as discussed in Section

2.3.4 and therefore the gain from the optimal UPAT fades away as R increases.

Thus, we focus on the low R regime. The amount of the gain is evaluated from

two different perspectives: (i) gain in outage probability for a given P and (ii) gain
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Figure 2.9: Approximate gains of the optimal UPAT over the UPA in terms

of outage probability (Ĝout in (2.20)) and required P to achieve the same outage

probability (Ĝpow in (2.23)) in the low R and high P regime.

in required P to have the same outage probability.

2.6.1 Outage Probability Gain

We define the outage probability gain of the optimal UPAT over the UPA

as

Gout ,
P out
M (pUPA, P, R)

P out
M (pUPAT∗(γ;M), P, R)

(2.18)

where pUPA = (1, ..., 1). The next proposition characterizes Gout in the low R

regime.

Proposition 2 In the low R regime, the outage probability gain of the optimal

UPAT over the UPA is approximated by

G̃out =
Γl(B,

BR ln 2
P

)

(B − 1)!(1− e−R ln 2
P )B

(2.19)
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Figure 2.10: Outage probability when M = 16, B = 4, and R = 0.02, 0.2, 0.5.

‘UPA’ and ‘UPAT*’ indicate the uniform power allocation and the optimal UPAT,

respectively. ‘UPAT*, estimated’ corresponds to
P out
M (pUPA,P,R)

G̃out
where G̃out is given

by (2.19).

where Γl(s, x) =
∫ x
0
ts−1e−tdt is the lower incomplete gamma function [27]. Fur-

thermore, in the high P regime, G̃out is approximated by

Ĝout =
BB−1

(B − 1)!
. (2.20)

Proof: See Appendix 2.10.2.

Note that gain in the high P regime reflects gain in the low outage prob-

ability regime, e.g., Pout = 10−3 or lower. Proposition 2 indicates that when R

is low, the outage probability gain in the high power regime depends only on B

and exponentially increases without bound as B increases, as shown in Fig. 2.9.

Therefore, for a given B, Gout behaves like a constant in the low R and high P

regime, indicating that the outage probability curves for the optimal UPAT and

the UPA are parallel to each other, which agrees with the results in the previous

section that both the schemes have the same outage diversity.
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‘UPA’ and ‘UPAT*’ indicate the uniform power allocation and the optimal UPAT,

respectively. ‘UPAT*, estimated’ corresponds to the left-shifted P out
M (pUPA, P, R)

by G̃pow in (2.22).

Fig. 2.10 compares the outage probability between the optimal UPAT and

the UPA when M = 16, B = 4, and R = 0.02, 0.2, 0.5. The solid lines correspond

to
P out
M (pUPA,P,R)

G̃out
, showing how accurately G̃out in (2.19) estimates the actual outage

probability gain of the optimal UPAT. As expected, G̃out precisely estimates the

actual gain when R is low, while it tends to overestimate the gain as R increases.

2.6.2 Average Transmit Power Gain

Next, we analyze the gain of the optimal UPAT over the UPA in terms of

the required P to achieve the same outage probability. We first define PUPAT∗(P )

as the average transmit power required for the optimal UPAT to achieve the same

outage probability as the UPA with transmit power P , i.e., P out
M (pUPA, P, R) =

P out
M (pUPAT∗(γ;M), PUPAT∗(P ), R). Then, we define the power gain of the optimal
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UPAT as

Gpow ,
P

PUPAT∗(P )
. (2.21)

The next proposition characterizes Gpow in the low R regime.

Proposition 3 In the low R regime, the average transmit power gain of the opti-

mal UPAT over the UPA is approximated by

G̃pow = − P

R ln 2
log

(
1−

(
Γl(B,

BR ln 2
P

)

(B − 1)!

) 1
B
)

(2.22)

Furthermore, in the high P regime, G̃pow is approximated by

Ĝpow = B(B!)−
1
B . (2.23)

Proof: See Appendix 2.10.3.

Proposition 3 indicates that when R is low and P is high, the power gain of

the optimal UPAT depends only on B and increases without bound as B increases.

As shown in Fig. 2.9, the power gain in dB rapidly increases as B increases, only

in the low B regime.

Fig. 2.11 compares the outage probability between the optimal UPAT and

the UPA when M = 16, B = 2, 4, 8, and R = 0.02. The solid lines correspond to

the left-shifted P out
M (pUPA, P, R) by G̃pow, showing how accurately G̃pow in (2.22)

estimates the actual power gain of the optimal UPAT. We observe that (i) G̃pow

precisely estimates the actual power gain of the optimal UPAT when R is low and

(ii) the power gain of the optimal UPAT increases as B increases, which agrees

with the analytical result in (2.23).

2.7 A Simple Algorithm for UPAT

The optimal UPAT requires finding the optimal number of zero-power

blocks (N∗UPAT) or equivalently finding the optimal SNR threshold value (λ∗UPAT)
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for a given (γ,M). Since the objective function in (2.13) is non-convex with re-

spect to n, it is not easy to develop an efficient algorithm for finding the optimal

solution. In case IAWM (ρ) is implemented by a lookup table, a naive algorithm for

solving (2.13) would include 1
2
B(B + 1) series of multiplications, additions, divi-

sions, and interpolations, which can be burdensome if B is large. To tackle this

problem, we derive a simple method to determine the value of NUPAT, leading to

marginal performance loss compared to the optimal thresholds.

Consider the fact that IAWM (ρ) ≈ 1
ln 2
ρ in the low ρ regime [4]. Let η be the

maximum α ∈ R satisfying that IAWM (ρ) ≈ 1
ln 2
ρ for 0 ≤ ρ ≤ α. Let pmax(γ) denote

the power allocation scheme that assigns the entire power to the block with the

highest γi. Then, we can readily show that

pmax(γ) = arg max
〈p(γ;M)〉≤1
p(γ;M)�0

1

B

B∑
i=1

1

ln 2
pi(γ;M)γi. (2.24)

Therefore, if p(γ;M) is such that pi 6= 0 and piγi < η for some i, i.e., if the

instantaneous SNRs for some blocks are within the near-linear regime of the MI

curve of the AWGN channel, then p(γ;M) is inefficient in the approximate sense

of maximizing the instantaneous MI.

Based on this argument, we propose to set NUPAT such that the resulting

minimum nonzero instantaneous SNR is equal to η, i.e., B
B−NUPAT

γoNUPAT+1 = η. As

a result, the proposed method activates as many blocks as possible while guaran-

teeing that there is no block whose instantaneous SNR is less than η. The proposed

method can be formulated as follows.

(i) If BγoB < η, NUPAT = B − 1.

(ii) Otherwise,

NUPAT = min
{
k :

B

B − k
γok+1 ≥ η, 0 ≤ k < B

}
. (2.25)

The case when BγoB < η in (i) corresponds to the case when all the blocks are so

weak that even if the total power is assigned to the strongest block, its instanta-

neous SNR is lower than η. In this case, NUPAT = B − 1 is near-optimal due to

(2.24).
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Figure 2.12: Comparison of outage probability between the UPAT schemes with

the proposed thresholding method and the optimal thresholds when B = 4. For

each (B,R), the value of M is chosen according to (2.17). In the proposed method,

η = −3 dB for all the cases.

In contrast, if all the blocks are so strong that with the UPA, even the

weakest block has the instantaneous SNR equal to or higher than η, then the

UPAT with (2.25) turns into the UPA.

Note that the proposed method can significantly reduce the computational

complexity compared to directly solving (2.13) because it does not actually com-

pute the instantaneous MI for each possible value of NUPAT and the monotonicity

of B
B−kγ

o
k+1 with respect to k can be used to develop an efficient algorithm for

solving (2.25), e.g., a binary search [26] can be applied.

Fig. 2.12 compares the outage probability between the optimal UPAT and

the UPAT with the proposed thresholding method, when B = 4. Various values

of R from 0.1 to 1.8 are examined. For each (B,R), the constellation size M is

chosen according to the proposed M selection rule (2.17). For all the cases, η is

set to −3 dB. We observe that the proposed method performs close to the optimal

thresholds for all the cases.
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2.8 Extension to Ergodic Fading Channels

2.8.1 System Model and Performance Metric

The system model with an ergodic fading channel is obtained from (2.1) by

letting B → ∞. We assume that the channel gain process {Hi}∞i=1 is stationary

and ergodic. Then, it suffices [4] to consider power allocation schemes of the form

pi(γ;M) = p(γi;M,P ) which depends on the pdf of γi, fγi(ξ) = 1
P
e−

1
P
ξ, ξ ≥ 0,

through P .

The ergodic MI is defined [4] by

I∞M (P, p(γ;M,P )) , lim
B→∞

1

B

B∑
i=1

IAWM (p(γi;M,P )γi)

=

∫ ∞
0

IAWM (p(γ;M,P )γ)fγi(γ)dγ. (2.26)

Since IAWM (p(γi;M,P )γi) is an increasing function of M , I∞M (P, p(γ;M,P )) is an

increasing function of M . Therefore, the ergodic MI with∞-QAM serves an upper

bound on the ergodic MI for any finite M .

2.8.2 Power Allocation Schemes

Optimal Power Allocation

The ergodic MI maximization problem is formulated as

maximize I∞M (P, p(γ;M,P ))

subject to

∫ ∞
0

p(γ;M,P )
1

P
e−

1
P
γdγ ≤ 1 (2.27)

p(γ;M,P ) ≥ 0.

The solution to the above problem, the optimal power allocation is given [4] by

popt(γ;M,P ) =

{
1
γ
MMSE−1M (λMWF

γ
), γ ≥ λMWF

0, γ < λMWF

(2.28)

where the SNR threshold λMWF is chosen so that the average power constraint is

satisfied with equality. Substituting (2.28) into (2.26) yields the ergodic MI with
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the optimal power allocation

I∞M (P, popt(γ;M,P ))

=

∫ ∞
λMWF

IAWM

(
MMSE−1M

(
λMWF

γ

))
1

P
e−

1
P
γdγ. (2.29)

Uniform Power Allocation with Thresholding

A UPAT scheme is given by

pUPAT(γ;M,P ) =

{
p0, γ ≥ λUPAT

0, γ < λUPAT

(2.30)

where λUPAT is the SNR threshold and a constant power level p0 > 0 depends on

λUPAT. The optimal SNR threshold that maximizes the ergodic MI is given by

λ∗UPAT = arg max
λ≥0

∫ ∞
λ

IAWM (p0γ)
1

P
e−

1
P
γdγ (2.31)

subject to

∫ ∞
λ

p0
1

P
e−

1
P
γdγ ≤ 1. (2.32)

From the average power constraint (2.32), we have

p0 = e
λ
P . (2.33)

Thus, (2.31) and (2.32) reduce to

λ∗UPAT = arg max
λ≥0

∫ ∞
λ

IAWM (e
λ
P γ)

1

P
e−

1
P
γdγ. (2.34)

The UPAT with the optimal threshold λ∗UPAT is referred to as the optimal UPAT

and denoted by pUPAT∗(γ;M,P ). Substituting (2.33) and (2.34) into (2.26) yields

the ergodic MI with the optimal UPAT

I∞M (P, pUPAT∗(γ;M,P )) =

∫ ∞
λ∗UPAT

IAWM
(
e
λ∗UPAT
P γ

) 1

P
e−

1
P
γdγ. (2.35)

2.8.3 Ergodic Mutual Information and Constellation Size

Fig. 2.13 shows the ergodic MI for MWF and the optimal UPAT when

M = 4, 16, 64, 256. We observe that the difference along the vertical axis between
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Figure 2.13: Ergodic mutual information of the Rayleigh fading channel with the

mercury/waterfilling (optimal) and the optimal UPAT.

the power allocation schemes, i.e., the loss in ergodic MI due to the optimal UPAT

compared to the optimal power allocation is insignificant for all the cases. However,

the difference along the horizontal axis, i.e., the additional P required for the

optimal UPAT to achieve the same ergoridc MI as the optimal power allocation is

significant when the ergodic MI is close to logM . Note that in order to support

the ergodic MI close to logM , the required P has to be so high that per-block MI

is close to logM with high probability. For such a (M,P ), as discussed in Section

2.3.4, the optimal power allocation tends to be inversely proportional to γ, while

the optimal UPAT tends to be the UPA. In this case, the additional P required

for the optimal UPAT is significant. However, in this regime, the required P for

the both MWF and the optimal UPAT could be significantly reduced by a larger

M . With a larger M , the performance loss of the optimal UPAT compared to

MWF becomes marginal. Therefore, we reach the same conclusion as that in the

nonergodic fading case, that is, the optimal UPAT performs near-optimal as long

as the constellation size M is appropriately chosen not to limit the performance.

With the goal of keeping the constellation size as small as possible while
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Figure 2.14: Comparison of the ergodic mutual information between the UPAT

schemes with the optimal thresholds and with the thresholds according to the

proposed rule. In the proposed rule, the η value is set to −3 dB regardless of M

and P .

not limiting the performance, based on the results in Figure 2.13, a reasonable M

selection rule is: QPSK for 0 < I∞M ≤ 0.5, 16QAM for 0.5 < I∞M ≤ 1.8, 64QAM for

1.8 < I∞M ≤ 3.8, and so forth. With this rule, the optimal UPAT performs close to

MWF.

2.8.4 A Simple UPAT Scheme

We propose a simple thresholding method that alleviates the computational

complexity of the optimal SNR threshold given by (2.34). We apply the same idea

as in the nonergodic fading case, that is, setting λUPAT such that the resulting

minimum nonzero instantaneous SNR equals η, i.e., p0λUPAT = η. By (2.33), the

proposed SNR threshold is the solution to

λUPATe
λUPAT
P = η. (2.36)

The performance of the above method for M = 4, 16, 64 is presented in Fig.
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2.14, where the η value was set to −3 dB regardless of M . We observe that the

proposed method performs close to the optimal thresholds for all the constellation

sizes considered and over the entire range of P .

2.9 Concluding Remarks

Compared to the optimal mercury/water-filling (MWF) power allocation

scheme, a uniform power allocation with thresholding (UPAT) scheme can signif-

icantly reduce the overhead requirements with a simple transceiver structure. In

this paper, we have shown that for Rayleigh fading channels with QAM inputs,

the UPAT policy achieves a near-optimal performance, as long as the constellation

size and the threshold value are appropriately chosen. We propose a constellation

size selection rule and a simple, but yet close to optimal, thresholding method.

Our thresholding method is applicable to practical systems with a large number

of fading blocks such as orthogonal frequency-division multiplexing (OFDM) with

a larger number of subcarriers and has potential applications to singular value

decomposition (SVD) multiple-input and multiple-output (MIMO) with a large

number of antennas (e.g., massive MIMO [28], [29]), for which determining the

number of active subcarriers and the number of spatial streams (sometimes referred

to as rank) may have prohibitively high complexity. We leave it as future work to

extend our result to fading distributions other than Rayleigh and to multiple-user

scheduling scenarios as in orthogonal frequency division multiple access (OFDMA)

systems.

The text of this chapter, in part, is a reprint of the paper, H. Kwon, B. Rao,

and Y. Kim, “Uniform Power Allocation with Thresholding for Rayleigh Fading

and QAM Inputs”, in preparation for submission. The dissertation author is the

primary researcher and author, and the co-authors contributed to or supervised

the research which forms the basis of this chapter.
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2.10 Appendices

2.10.1 Proof of Proposition 1

Let pmax(γ) denote the power allocation scheme that assigns the entire

power to the block with the highest γi. Let γmax = max{γ1, γ2, . . . , γB}. Then, for

any R > 0,

P
( 1

B
IAWM (γmax) < R

)
(2.37)

= P
(
IM(γ,pmax(γ)) < R

)
(2.38)

≥ P
(
IM(γ,pUPAT∗(γ;M)) < R

)
(2.39)

≥ P
(
IM(γ,popt(γ;M)) < R) (2.40)

= P

(
1

B

B∑
i=1

IAWM (popti (γ;M)γi) < R

)
(2.41)

≥ P

(
1

B

B∑
i=1

1

ln 2
popti (γ;M)γi < R

)
(2.42)

≥ P

(
1

B

B∑
i=1

1

ln 2
pmax
i (γ)γi < R

)
(2.43)

= P

(
1

B ln 2
γmax < R

)
, (2.44)

where (2.39) is due to the definition of pUPAT∗(γ;M), (2.42) is due to IAWM (ρ) ≤
(1/ ln 2)ρ for all ρ [4], and (2.43) is due to (2.24). Therefore, Proposition 1 can be

proved by showing that

lim
R→0

P

(
IAWM (γmax) < BR

)
P

(
γmax < (ln 2)BR

) = 1. (2.45)

Let f(x) denote the pdf of γmax, i.e., f(x) = d
dx

P
(
γmax < x

)
= d

dx

(
1 − e−

x
P

)B
.

Then, f (n)(x) = d
dx
f (n−1)(x) is well-defined for every n ≥ 1, where f (0)(x) = f(x).
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Let g(ρ) = IAWM (ρ). Then,

lim
R→0

P

(
IAWM (γmax) < BR

)
P

(
γmax < (ln 2)BR

) = lim
x→0

P

(
IAWM (γmax) < x

)
P

(
γmax < (ln 2)x

)
(a)
= lim

x→0

f(g−1(x)) d
dx
g−1(x)

f((ln 2)x) · ln 2
= lim

x→0

f (0)(g−1(x))

f (0)((ln 2)x)

(b)
= · · · = lim

x→0

f (k)(g−1(x))

f (k)((ln 2)x)
= lim

x→0

f (k)(0)

f (k)(0)
= 1,

where (a) follows [4] by limρ→0
ρ

IAW
M (ρ)

= ln 2, (b) follows by the L’Hôpital’s rule,

and k is the smallest integer such that f (k)(0) > 0 (there must exist one since f(x)

is a pdf).

2.10.2 Proof of Proposition 2

When R is close to zero, the outage events occur when IAWM (pi(γ;M)γi) is

zero or close to zero for all i. Let pUPA = (1, ..., 1) denote the UPA. Then, in the

low R regime,

P out
M (pUPA, P, R)

(c)
≈ P

(
1

B ln 2

B∑
i=1

γi < R

)

= P

(
B∑
i=1

|Hi|2 <
BR ln 2

P

)
=

Γl(B,
BR ln 2
P

)

(B − 1)!

where (c) is due to the fact that IAWM (ρ) ≈ (1/ ln 2)ρ in the low ρ regime [4].

For the optimal UPAT, in the low R regime,

P out
M (pUPAT∗ , P, R)

(d)
≈ P out

M (pmax, P, R) = P
( 1

ln 2
γmax < R

)
= P

(
|Hmax|2 <

R ln 2

P

)
=

(
1− e−

R ln 2
P

)B
where (d) is due to (2.45), γmax = max{γ1, ..., γB}, and |Hmax|2 = γmax

P
. Therefore,

Gout ≈
Γl(B,

BR ln 2
P

)

(B − 1)!(1− e−R ln 2
P )B

, G̃out.
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The lower incomplete gamma function Γl(s, x) can be expanded as

Γl(s, x) =
xs

s
e−xK(1, s+ 1, x) (2.46)

where K is Kummer’s confluent hypergeometric function given by

K(1, s+ 1, x) = 1 +
x

s+ 1
+

x2

(s+ 1)(s+ 2)

+
x3

(s+ 1)(s+ 2)(s+ 3)
+ · · · . (2.47)

Therefore,

lim
P→∞

G̃out = lim
P→∞

(BR ln 2
P

)B

B
e−(

BR ln 2
P

)K(1, B + 1, (BR ln 2
P

))

(B − 1)!(1− e−R ln 2
P )B

=
BB−1

(B − 1)!
.

2.10.3 Proof of Proposition 3

As shown in Appendix 2.10.2, in the low R regime,

P out
M (pUPA, P, R) ≈

Γl(B,
BR ln 2
P

)

(B − 1)!
.

and

P out
M (pUPAT∗(γ;M), P, R) ≈

(
1− e−

R ln 2
P

)B
.

By the definition of PUPAT∗ in Subsection 2.6.2, in the low R regime,

Γl(B,
BR ln 2
P

)

(B − 1)!
≈
(

1− e−
R ln 2

PUPAT∗

)B
.

Therefore, in the low R regime,

Gpow ≈ −
P ln 2

R
log

(
1−

(
Γl(B,

BR ln 2
P

)

(B − 1)!

) 1
B
)

, G̃pow.

It follows that

lim
P→∞

G̃pow = lim
P→∞

− P

R ln 2
log

(
1−

(
Γl(B,

BR ln 2
P

)

(B − 1)!

) 1
B
)

(e)
= lim

P→∞
− P

R ln 2
log

(
1− RB ln 2

P
(B(B − 1)!)−

1
B

)
= B(B!)−

1
B .

where (e) follows by (2.46) and (2.47).



Chapter 3

Limits on Support Recovery of

Sparse Signals: Arbitrarily

Distributed Random

Measurement Matrices and

Block-Sparse Signals

3.1 Introduction

Recent years have witnessed a great deal of work on the problem of recov-

ering a sparse signal X ∈ Rm in high dimension with a small number of nonzero

elements. This problem involves the estimation of X via linear measurements

Y = AX + Z, where A ∈ Rn×m is the measurement matrix, and Z is the mea-

surement noise. The goal is to estimate the signal X from as few measurements

as possible. This problem has been motivated by a broad spectrum of applica-

tions, including compressed sensing [32,33], biomagnetic inverse problems [34,35],

image processing [36, 37], bandlimited extrapolation and spectral estimation [38],

robust regression and outlier detection [39], speech processing [40], channel esti-

mation [41, 42], echo cancellation [43, 44], and wireless communication [45]. Com-

40
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putationally efficient algorithms for solving the problem have been proposed in

different settings, e.g., matching pursuit (MP) [46], orthogonal matching pur-

suit (OMP) [47], LASSO [48], basis pursuit (BP) [49], FOCUSS [34], and sparse

Bayesian learning [50]. In addition, analysis (e.g., [32, 51–58]) has been developed

to establish conditions under which a given algorithm succeeds with high proba-

bility.

In various applications, the nonzero elements of X often take place in clus-

ters, referred to as block-sparse [59–61]. For instance, in magnetoencephalogra-

phy (MEG) and electroencephalography (EEG) of medical imaging [62–64], the

brain activities are in localized regions rather than at a single point, which can

be modeled as a block-sparse signal. Another example is communication channel

modeling where an ideal sparse channel consisting of a few specular multi-path

components has a discrete time, bandlimited, baseband representation which ex-

hibits a block-sparse structure with the block centers determined by the arbitrary

arrival times of the multi-path components. Other examples are multi-band sig-

nals [65–68], measurements of gene expression levels [69], Neuromagnetic source

imaging [35], and DNA microarrays [69]. Since there is structure in the sparse sig-

nal, if the additional information is judiciously utilized in a sparse signal recovery

algorithm, the performance can be improved. Such algorithms have been proposed

together with mathematical tools to analyze the performance of the proposed al-

gorithms [59,60,70–74].

Of particular importance is to find the positions of the nonzero elements in

X, known as support recovery, in a wide variety of applications such as EEG/MEG

of medical imaging [62,63], spectrum sensing in cognitive radio systems [75], mul-

tiuser detection in communication systems [45], graphical model selection [76], and

signal denoising [49]. Information-theoretic tools have proven successful to provide

sufficient and necessary conditions to characterize the asymptotic performance lim-

its of optimal algorithms for support recovery with additive white Gaussian noise

(AWGN), regardless of computational complexity [77–82].

One of the most fundamental questions in the problem of estimating X

or its support is what are the conditions on the measurement matrix A, under
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which reliable estimation is possible. A well-known tool for characterizing the

recovery ability of a measurement matrix is the restricted isometry property (RIP)

[83, 84]. It has been shown that if a measurement matrix satisfies the RIP with

an appropriate restricted isometry constant, BP can exactly recover X in the

noiseless setting, i.e., Zi = 0 for all i. Another way to characterize the recovery

ability is the coherence measure [57,85–88]. It has been proved that under proper

conditions on the coherence measure, X can be accurately recovered by BP, MP,

and OMP in the noiseless setting. For block-sparse signals, the RIP and the

coherence measure have been generalized to the block-RIP and the block-coherence

measure, respectively [70]. Then, an interesting question that arises in this context

is how to construct a good measurement matrix. In fact, a measurement matrix

whose elements are independently and identically distributed (i.i.d.) realizations of

certain zero-mean distributions (e.g., Gaussian and symmetric Bernoulli), referred

to as random measurement matrix, has been shown to satisfy the RIP (or block-

RIP) and the required conditions on the coherence measure with high probability

[32, 52, 89]. In addition, a collection of deterministic matrices that satisfy the

RIP was established in [90], formed by deterministic selection of rows of Fourier

matrices. In analysis of asymptotic performance bounds (i.e., m → ∞) in the

AWGN setting, the zero-mean Gaussian distribution has been shown to achieve

the optimal performance of support recovery. However, non-Gaussian distributions

have not been well studied, and only limited results are available, e.g., a sharp

necessary condition for asymptotically reliable support recovery was presented in

[78], which is commonly applicable to any distribution with zero mean and unit

variance including the Gaussian distribution.

In this paper, we study two interesting questions on the support recovery

of sparse signals through measurements with AWGN: (1) what is the effect of the

distribution of the random measurement matrix on the asymptotic performance

limits for exact support recovery?, and (2) especially in case a signal is block-

sparse how much can we reduce the number of measurements for exact support

recovery by exploiting the block-sparsity structure? We focus on the scenario where

the number of nonzero elements k in the sparse signal is fixed, which has been
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observed in practical applications, e.g., medical applications such as EEG/MEG

and the GPS signal acquisition (refer to [82] for details). Our contributions in

regard to each of the above two questions are summarized below.

(1) Effect of the distribution of the random measurement ma-

trix: For simplicity and clarity of presentation, we first restrict our attention to

conventional sparse signals [32, 33], referred to as scalar-sparse signals. For a ran-

dom measurement matrix A whose distribution P is arbitrarily given, we derive

the asymptotic performance limits for reliable support recovery of scalar-sparse

signals in the AWGN setting. The performance limits involves the signal dimen-

sion m, the number of nonzero elements k, the number of measurements n, the

nonzero value vector w, the distribution P , and the signal-to-noise ratio (SNR) of

each nonzero element γi (defined in (3.3)). In particular, we show that, when k is

fixed, n = (logm)/Csym(P ,w) is sufficient and necessary for asymptotically suc-

cessful support recovery. We provide a complete characterization of Csym(P ,w)

as a function of the maximum achievable sum-rates of (2k − 1) Gaussian-noise

multiple-access channels (MACs) [91], where the maximum achievable sum-rate of

each Gaussian MAC depends on the distribution P and the SNRs of each nonzero

element. Together with interpretations of our main result, we demonstrate the con-

ditions under which a non-Gaussian random measurement matrix performs close

to the Gaussian random measurement matrix.

The main result is inspired by the connection between the problem of sup-

port recovery of scalar-sparse signals and the problem of communication over Gaus-

sian MAC. This connection was introduced in [81] where only Gaussian random

measurement matrices are considered. In this paper, we make this connection more

specific and tighter as well as generalize it to the support recovery problem with

arbitrarily distributed random measurement matrices. Especially, we show that

Csym(P ,w) is the same as the symmetric maximum achievable rate (SMAR) of a

conventional Gaussian MAC with a given channel input distribution, where the

SMAR is defined to be the highest rate at which all the messages from each sender

can be reliably decoded at the receiver. The SMAR of a conventional Gaussian

MAC can be simply obtained from the known result of optimal achievable rate
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region for the Gaussian MAC. This clear relationship leads to the opportunity of

leveraging the rich results and insights available in network information theory to

help understand the performance limits of sparse signal recovery. In addition, the

approach of interpreting our original support recovery problem as a Gaussian MAC

communication problem has motivated us to develop the proof of the main result.

It should be noted that the proof techniques in [81] do not naturally extend to non-

Gaussian random measurement matrices and we develop new techniques to prove

our main result, which are applicable to any distribution (including Gaussian) of

the random measurement matrix.

(2) Benefit of the block-sparsity structure: We derive the asymp-

totic performance limits for reliable support recovery of block-sparse signals in

the AWGN setting. The performance limits involves the signal dimension m, the

number of nonzero blocks kb, the block size b, the number of measurements n,

the nonzero value vector w, the distribution P , and the SNR of each nonzero

block γ
(b)
i (defined in (3.33)). In particular, we show that, when the number of

nonzero element k is fixed, n = (logm)/C
(b)
sym(P ,w) is sufficient and necessary

for asymptotically successful support recovery. We give a complete characteriza-

tion of C
(b)
sym(P ,w) as a function of the maximum achievable sum-rates of (2kb − 1)

Gaussian-noise multi-input and single-output (MISO) MACs [91], where the maxi-

mum achievable sum-rate of each Gaussian MISO MAC depends on the distribution

P and the SNRs of each nonzero block.

Based on the asymptotic sufficient and necessary condition, we discuss how

much we can reduce the number of measurements for asymptotically accurate

support recovery by exploiting the block-sparsity structure. We identify three

factors by which the number of measurements can be potentially reduced: increased

SNR, reduced effective number of nonzero elements (i.e., not individual elements

but blocks), and diversity. In addition, we discuss in which environment and how

much the above factors take effect.

The main results are motivated by an interesting interpretation of the prob-

lem of support recovery for block-sparse signals, where the original problem is

viewed as a communication problem over Gaussian MISO MAC with each sender
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equipped with multiple transmit antennas whose number corresponds to the block

size of the block-sparse signal. We show that C
(b)
sym(P ,w) is identical to the SMAR

of a conventional Gaussian MISO MAC, which can be readily derived from the

known result of the optimal achievable rate region of the conventional Gaussian

MISO MAC. As in the case of scalar-sparse signal recovery, this explicit relation-

ship makes a number of results and insights on MISO MAC communication more

accessible to help understand the performance limits of block-sparse signal recov-

ery.

The rest of this paper is organized as follows1. In section II, we consider

the problem of recovering the support of scalar-sparse signals where the distribu-

tion of the random measurement matrix is arbitrarily given. First, we present the

signal model and formulate the problem. We then discuss an interpretation of the

problem via multiple-access communication, to motivate the main results and their

proof techniques. Next, we present the asymptotic sufficient and necessary condi-

tion for exact support recovery, along with discussion on the effect of distribution

of the measurement matrix on the asymptotic performance limits. In section III,

we study the problem of recovering the support of block-sparse signals in a parallel

manner. After presenting signal model and problem formulation, we introduce an

important interpretation of the problem by relating it to a MISO MAC communi-

cation problem. We then present the asymptotic sufficient and necessary condition

for exact support recovery, in conjunction with a discussion on the benefit of the

block-sparsity structure. Section IV concludes the paper with further discussions.

Throughout this paper, a set is a collection of unique objects. Let Rm

denote the m-dimensional real Euclidean space. Let N = {1, 2, 3, . . . } denote the

set of natural numbers. Let [k] denote the set {1, 2, . . . , k}. The notation |S|
denotes the cardinality of set S, ‖x‖ denotes the `2-norm of a vector x, and ‖A‖F
denotes the Frobenius norm of a matrix A.

1The two main subjects of the paper, the effect of the distribution of the random measurement
matrix and the benefit of the block-sparsity structure, could be treated at the same time by
considering the problem of support recovery for block-sparse signals with a given probability
distribution of the random measurement matrix. However, for ease of exposition, we first focus
on the first subject with scalar-sparse signals and then study the second subject with block-sparse
signals.
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3.2 Limits on Support Recovery of Scalar-Sparse

Signals: Effect of the Measurement Matrix

In this section, we restrict our attention to the scalar-sparse signals. Of

special interest is the effect of the distribution of the random measurement matrix

on the asymptotic performance limits of support recovery.

3.2.1 Signal Model and Problem Formulation

Let w = (w1, . . . , wk)
ᵀ ∈ Rk, where wi 6= 0 for all i. Let S = (S1, . . . , Sk)

ᵀ ∈
[m]k be such that S1,. . . ,Sk are chosen uniformly at random from [m] without

replacement. Then, the signal of interest X = X(w,S) is generated as

Xs =

{
wj if s = Sj,

0 if s /∈ {S1, . . . , Sk}.
(3.1)

Thus, the support of X is supp(X) = {S1, . . . , Sk} and |supp(X)| = k. We measure

X through the linear operation

Y = AX + Z (3.2)

where A ∈ Rn×m is the measurement matrix, Z ∈ Rn is the measurement noise,

and Y ∈ Rn is the noisy measurement. We further assume that the elements of

the measurement matrix A are i.i.d. realizations of the probability distribution P ,

either a probability mass function (pmf) or a probability density function (pdf)

with zero mean and variance σ2
a, and the noise Zi is i.i.d. according to the Gaussian

distribution N (0, σ2
z). Let us define the SNR of the i-th nonzero element as

γi , w2
i

σ2
a

σ2
z

. (3.3)

We assume that k, A, and N (0, σ2
z) are known, but w is unknown.

Upon observing the noisy measurement Y, the goal is to recover the support

of the scalar-sparse signal X. A support recovery map is defined as

d : Rn 7−→ 2[m]. (3.4)
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Given the signal model (3.1), the measurement model (3.2), and the support

recovery map (3.4), the performance metric is defined to be the average probability

of error in support recovery, i.e.,

P{d(Y) 6= supp(X(w,S))}

for each (unknown) signal value vector w ∈ Rk. Note that the probability here is

taken over the random signal support vector S, the random measurement matrix

A, and the random noise Z.

3.2.2 Interpretation of Support Recovery via Multi-User

Communication

An analogy was drawn in [81] between the problem of recovering the support

of a scalar-sparse signal through a Gaussian random measurement matrix and

a communication problem over a MAC with Gaussian inputs (Gaussian random

codebooks). We make this connection more specific and generalize it to the problem

of support recovery via arbitrarily distributed random measurement matrix.

We first define a conventional Gaussian MAC problem in which encoding is

restricted to random code ensembles with a given probability distribution, referred

to as the conventional MAC (CMAC ) problem. We then define the problem of

communication over a Gaussian MAC that is equivalent to the support recovery

problem, referred to as the equivalent MAC (EMAC ) problem. Finally, we relate

the performance limit of EMAC to known results on CMAC, by discussing the

differences between the two problems and their expected effects on the performance

limits, which will be proved in the next subsection.

This approach not only motivates the intuition behind our results on the

support recovery problem but also facilities the development of the proof tech-

niques. We will extend this approach to the problem of support recovery for

block-sparse signals in Section 3.3.
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Conventional MAC (CMAC)

Consider the k-sender Gaussian MAC [93]. Sender i has access to a ran-

domly generated codebook A(i) = {A(i)
1 , · · · ,A

(i)

m(i)}, where A
(i)
j ∈ Rn is a codeword

whose elements are i.i.d. realizations of a probability distribution P with zero mean

and variance σ2
a, and m(i) is the number of codewords in A(i). Codebooks of differ-

ent senders are independent of each other. The rate of sender i, R(i) = (log m(i))/n.

To transmit a message, each sender chooses a codeword from its codebook. Let

Si, uniformly distributed over [m(i)], denote the codeword index chosen by sender

i. Then, the received signal Y ∈ Rn at the receiver is

Y = w1A
(1)
S1

+ · · ·+ wkA
(k)
Sk

+ Z (3.5)

where wi ∈ R is the channel gain associated with sender i and Z ∈ Rn is the noise

with components Zj i.i.d. according to N (0, σ2
z). Upon receiving Y, the receiver

determines the codeword indices transmitted by each sender, (Ŝ1, . . . , Ŝk). The

channel gain vector w = (w1, . . . , wk) is known to the receiver.

Since the senders interfere with each other, there is an inherent trade-

off among their operating rates. The notion of achievable rate region is intro-

duced to capture this tradeoff by characterizing all possible rate tuples R ,

(R(1), R(2), · · · , R(k)) at which the decoding error probability, P{(Ŝ1, . . . , Ŝk) 6=
(S1, . . . , Sk})} when averaged over the random code ensemble, diminishes as m→
∞. The optimal achievable rate region can be characterized

R =

{
(R(1), . . . , R(k)) :

∑
i∈T

R(i) ≤ IT (P ,w),∀T ⊆ [k]

}
(3.6)

where

IT (P ,w) , I((Vj : j ∈ T );YT ) (3.7)

is the maximum achievable sum-rate of the |T |-sender Gaussian MAC

YT =
∑
j∈T

wjVj + Z. (3.8)

Here the inputs (Vj : j ∈ T ) are i.i.d. according to P , wj is a constant channel

gain associated with the j-th sender, and the noise Z is distributed according to
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N (0, σ2
z). For example, when k = 2, T = {1, 2}, and P = N (0, σ2

a),

IT (P ,w) =
1

2
log

(
1 + (w2

1 + w2
2)
σ2
a

σ2
z

)
.

Another example which will be useful for later discussion is the case in which k = 2,

T = {1, 2}, and P is a symmetric Bernoulli distribution with P(Vj = ±σa) = 1/2.

Then,

IT (P ,w) = 2− 1

4

∑
v∈V

EZ

[
log

(∑
v′∈V

e
−(v−v′+Z)2+Z2

2σ2z

)]
(3.9)

where V = {(|w1| + |w2|)σa, (|w1| − |w2|)σa, (−|w1| + |w2|)σa, (−|w1| − |w2|)σa}.
Note that when |w1| 6= |w2|, (3.9) is nothing but the input–output mutual infor-

mation of the standard AWGN channel Y = X + Z with equiprobable 4-PAM

input constellations [94] where distances between consecutive signal points are not

uniform. In particular, when |w1| = 2|w2|, (3.9) becomes the mutual information

of the standard AWGN channel with the standard (i.e., equiprobable and equally

spaced) 4-PAM input at SNR 5w2
1σ

2
a/(2σ

2
z). Let Csym(P ,w) denote the highest

rate at which all the messages from each sender can be reliably decoded at the re-

ceiver, referred to as the symmetric maximum achievable rate (SMAR) of CMAC.

Then, Csym(P ,w) can be readily obtained from R as

Csym(P ,w) = max
{
R(1) : R(1) ∈ R ∩D

}
(3.10)

where D =
{

(R(1), . . . , R(k)) : R(1) = · · · = R(k)
}

. Thus,

Csym(P ,w) = min
T ⊆[k]

[
1

|T |
IT (P ,w)

]
. (3.11)

Equivalent MAC (EMAC)

Now, we define the EMAC problem that interprets our original support

recovery problem as a communication problem over a Gaussian MAC. The mea-

surement model in (3.2) can be alternatively represented by

Y = XS1AS1 + · · ·+XSkASk + Z = w1AS1 + · · ·+ wkASk + Z (3.12)
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where As ∈ Rn corresponds to the s-th column of A of which elements are i.i.d.

realizations of a probability distribution P . Contrasting (3.12) to (3.5), we can

view the support recovery problem as the following communication problem: There

are k senders and a common receiver. All the senders use the common codebook

A = {A1, . . . ,Am} where As ∈ Rn is the s-th codeword. The codeword index

chosen by sender s and the corresponding codeword are Ss and ASs , respectively.

The common rate, R = (logm)/n. Upon receiving Y, the receiver determines the

set of codeword indices transmitted by the k senders, {Ŝ1, . . . , Ŝk}. The channel

gain vector w is unknown to the receiver.

Let Rmax denote the maximum R at which the probability of decoding error,

P{{Ŝ1, . . . , Ŝk} 6= {S1, . . . , Sk}}, diminishes as m→∞. Since determining the set

of codeword indices in the EMAC problem is identical to recovering the signal

support in the original problem, the asymptotic sufficient and necessary condition

for exact support recovery is given by

logm

n
= Rmax. (3.13)

Connecting EMAC to CMAC

Now, let us relate Rmax to the known result Csym(P ,w). The discussion

below facilitates interpretation of the main result in the next subsection that

(logm)/n = Csym(P ,w) is the asymptotic sufficient and necessary conditions

for exact support recovery. We first identify the differences between EMAC and

CMAC, and then discuss why these differences do not affect the asymptotic per-

formance limit (thus, Rmax = Csym(P ,w)):

(i) Recovery of the codeword index set : The set of the codeword indices is es-

timated in EMAC, whereas the ordered tuple of the codeword indices are

estimated in CMAC.

(ii) Common codebook : The codebook is shared by all senders in EMAC, whereas

individual codebooks are used in CMAC.

(iii) Unknown channel gains at the receiver : The channel gains are unknown to

the receiver in EMAC, whereas they are known to the receiver in CMAC.
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For ease of explanation, let us define the following two interim problems.

(P1) The MAC problem that is the same as the CMAC problem except that the

receiver recovers the set of codeword indices in P1. The SMAR of P1 is

referred to as CP1.

(P2) The MAC problem that is the same as P1 except that all the senders share a

common codebook, and no two codeword indices are the same. The SMAR

of P2 is referred to as CP2.

We first show that Csym(P ,w) = CP1 = CP2.

Let us compare CMAC and P1. Since the codeword index set is recovered

in P1, the decoding error probability in P1 is lower than or equal to that in CMAC,

i.e., CP1 ≥ Csym(P ,w). By adapting the standard Fano’s inequality (see Appendix

B), it can be easily shown that CP1 ≤ Csym(P ,w). Thus, CP1 = Csym(P ,w), which

indicates that recovering the codeword index set does not increase the SMAR

compared to recovering the codeword index vector in an asymptotic sense.

Next, let us compare P1 and P2. Recall that in this paper, we only consider

the case where k is fixed as m → ∞. Thus, we can disregard the events that

codeword indices chosen by different senders are identical since the probability

of the events tends to zero as m → ∞. Since all codewords in both P1 and P2

are random realizations of the same probability distribution, common codebook vs.

individual codebooks does not make any difference in error probability averaged

over the codeword ensembles. Therefore, CP1 = CP2, which implies along with

the result CP1 = Csym(P ,w) that if the channel gains were known in EMAC, then

Rmax = Csym(P ,w).

Since the channel gains are unknown at the receiver in EMAC, Rmax ≤
Csym(P ,w). We show in Appendix A that Csym(P ,w) is achievable in EMAC.

Thus, Rmax = Csym(P ,w), which implies that the SMAR of CMAC does not

decrease even when the channel gains are unknown.

The above discussion clearly exteriorizes the connection between the prob-

lems of support recovery of sparse signals and communication over Gaussian MAC.

In addition, although the result has been obtained for revealing the performance
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limits of support recovery, it may be of interest on its own in information theory,

since decoding in EMAC should be performed without any explicit channel gain

information and without any channel training procedure (e.g., through pilot sym-

bols), but can still achieve the same performance as decoding with the channel

gains known. More details of this aspect will be discussed in the next subsection.

3.2.3 Main Results

Now, we provide sufficient and necessary conditions for asymptotically re-

liable support recovery of scalar-sparse signals, of which problem is formulated in

Section 3.2.1. Note that we consider the support recovery of a sequence of sparse

signals generated with the same signal value vector w. In particular, we assume

that k is fixed. In the two theorems below, the subscript in nm denotes possible

dependence between the number of measurements n and the signal dimension m.

The proofs of the next two theorems are presented in Appendices 3.5 and 3.6,

respectively.

Theorem 1 If

lim sup
m→∞

logm

nm
< Csym(P ,w) (3.14)

where Csym(P ,w) is given by (3.11), then there exists a sequence of support recovery

maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m], such that

lim
m→∞

P{d(m)(Y) 6= supp(X(w,S))} = 0. (3.15)

Theorem 2 If

lim sup
m→∞

logm

nm
> Csym(P ,w), (3.16)

then for any sequence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m],

lim inf
m→∞

P{d(m)(Y) 6= supp(X(w,S))} > 0. (3.17)

Theorems 1 and 2 together indicate that η , n/(logm) = 1/Csym(P ,w) is

the normalized sufficient and necessary (NSN) number of measurements for exact
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support recovery2. The constant Csym(P ,w) explicitly captures the role of each

parameter: the number of nonzero elements k, the SNR of each nonzero element

γi, and the distribution of the measurement matrix P .

3.2.4 Significance of the Main Results in Information The-

ory

The proof of Theorem 2 for the necessary condition employs the assump-

tion that the values of the nonzero elements are known. This indicates, from the

communication perspective discussed in the previous subsection, that the SMAR

of the CMAC problem is not reduced even when the channel gains are unknown to

the receiver and no channel training procedure (e.g., with pilot symbols) is allowed.

Note that the decoding technique described in Appendix A produces estimates of

both the codewords and the channel gains only through the received signal. We

can readily derive a more general result, by slightly modifying our proofs, that the

optimal achievable rate region of the Gaussian MAC with an arbitrary input dis-

tribution does not decrease when the channel gains are not known to the receiver

and no channel training procedure is allowed.

3.2.5 Effect of the Distribution of the Measurement Matrix

We further explore the effect of the distribution of the measurement matrix

on the asymptotic performance limits in the support recovery of sparse signals

with fixed number of nonzero elements. Theorems 1 and 2 indicate that among

all distributions, the Gaussian distribution minimizes the NSN number and show

how much the NSN number increases for a non-Gaussian measurement matrix,

depending on the number of nonzero elements k and the SNR of each nonzero

element γi. To obtain more insight, we take a closer look into a class of uniform

distributions which is often studied in the literature for the problem of support

recovery for sparse signals.

2The NSN number of measurements for exact support recovery is simply referred to as the
NSN number throughout the paper.
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Consider a set M that corresponds to the standard (equally spaced) M -

PAM constellations [94], i.e.,M = {±r,±3r, . . . ,±(M −1)r}, where M is an even

natural number and r ∈ R satisfies that 2
M
{r2 + (3r)2 + · · ·+ ((M − 1)r)2} = σ2

a.

Let PM denote the uniform distribution (pmf) over M. For example, if M = 2,

then M = {±σa} and

P2(V = v) =

{
1
2

for v = ±σa,
0 otherwise.

(3.18)

Let G denote the Gaussian distribution N (0, σ2
a). We compare the NSN number

between PM and G, or equivalently, compare Csym(PM ,w) with Csym(G,w). Let

us define

ηexcess ,
Csym(G,w)

Csym(PM ,w)
(3.19)

which measures the excess number of measurement due to using a non-Gaussian

distribution.

Uniform distribution is near-optimal when k is large

It can be readily shown that for both PM and G,

Csym(P ,w) = min
T ⊆[k]

[
1

|T |
IT (P ,w)

]
=

1

k
IT (P ,w) (3.20)

when |w1| = · · · = |wk|. For other values of w, we can check that (3.20) still

tends to hold as k increases (i.e., (3.20) holds for any w, as k → ∞). Let VPM =∑k
j=1wjVj with Vj i.i.d. ∼ PM . Let VG =

∑k
j=1wjVj with Vj i.i.d. ∼ G. Then, as k

increases, the distribution of VPM tends to that of VG by the central limit theorem.

It immediately follows that ηexcess tends to one as k increases, i.e., the NSN number

with Pm is approximately the same as that with G in the high k regime.

The excess NSN number required by a uniform distribution compared

to the Gaussian distribution can be significant when both M and k are

small and SNR is large

By (3.10) and the definition of IT (P ,w) in (3.37) (also, refer to (3.9)),

Csym(PM ,w) < logM (3.21)
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and

lim
γi→∞,...,γk→∞

Csym(G,w) =∞. (3.22)

Thus,

lim
γi→∞,...,γk→∞

ηexcess =∞ (3.23)

for any finite M .

To deliver more insight, we discuss a simple example below. First, note

that when M1 > M2,

Csym(PM1 ,w) > Csym(PM2 ,w) (3.24)

since IT (PM1 ,w) > IT (PM2 ,w) for any T ⊆ [k] (recall that for M -PAM input,

a larger constellation size leads to a higher input–output mutual information of

the standard AWGN channel Y = X + Z [96, 97]). Therefore, given k and w, the

NSN number is a decreasing function of M . Consider the case when k = 2 and

M = 2. This is a worst case for PM in the sense that M = 2 is the minimum

possible number and as discussed above, ηexcess tends to increase as k decreases (in

fact, the worst case is k = 1 and M = 2, but this case is trivial). Without loss of

generality, we assume that |w1| < |w2|. Then, by (3.10),

Csym(G, (w1, w2)) = min

[
1

2
log

(
1 + w2

1

σ2
a

σ2
z

)
,
1

4
log

(
1 + (w2

1 + w2
2)
σ2
a

σ2
z

)]
(3.25)

and

Csym(P2, (w1, w2)) = min

[
I{1}(P2, (w1)),

1

2
I{1,2}(P2, (w1, w2))

]
(3.26)

where

I{1}(P2, (w1)) = 1− 1

2

∑
v∈V1

EZ

[
log

( ∑
v′∈V1

e
−(v−v′+Z)2+Z2

2σ2z

)]
(3.27)

with V1 = {±|w1|σa} and

I{1,2}(P2, (w1, w2)) = 2− 1

4

∑
v∈V2

EZ

[
log

( ∑
v′∈V2

e
−(v−v′+Z)2+Z2

2σ2z

)]
(3.28)
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with V2 = {(|w1|+|w2|)σa, (|w1|−|w2|)σa, (−|w1|+|w2|)σa, (−|w1|−|w2|)σa}. Note

that (3.27) is nothing but the mutual information of the standard AWGN channel

with 2-PAM input at SNR γ1 = w2
1σ

2
a/σ

2
z , which is an increasing function of γ1 and

lim
γ1→∞

I{1}(P2, (w1)) = 1. (3.29)

The result in (3.28) corresponds to the mutual information of the standard AWGN

channel with unequally spaced 4-PAM input constellations at SNR γ , 1
2
(γ1 + γ2)

(averaged over 4-PAM symbols), which is an increasing function of γ and

lim
γ→∞

I{1,2}(P2, (w1, w2)) = 2. (3.30)

Thus, Csym(P2, (w1, w2)) < 1 is the minimum of the mutual information of the

AWGN channel with 2-PAM input and a half of the mutual information of the

AWGN channel with 4-PAM input, as a function of SNRs γ1 and γ (refer to [96]

and [97] for the mutual information curves for 2-PAM and 4-PAM). We can check

that when either γ1 or γ is low, ηexcess ≈ 1. In contrast, ηexcess grows without

bound, as both γ1 and γ increases.

3.3 Limits on Support Recovery of Block-Sparse

Signals: Benefit of the Block-Sparsity Struc-

ture

Now, let us study the case in which the sparse signal is block-sparse, i.e, the

nonzero elements of the sparse signal appear in clusters. We consider a commonly

used block-sparse signal model [59, 60, 71], where clusters of nonzero elements are

of the same size. We investigate the asymptotic performance limits on support

recovery of block-sparse signals. Of particular interest is the benefit of making use

of the block-sparsity structure, in terms of the number of measurements required

for successful support recovery.
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3.3.1 Signal Model and Problem Formulation

Let wi = (w(i−1)b+1, ..., wib)
ᵀ ∈ Rb with wj 6= 0 for all j. Let w =

(wᵀ
1, ...,w

ᵀ
kb

)ᵀ ∈ Rk. Thus, k = b · kb. Let S = (S1, ..., Skb)
ᵀ ∈ [mb]

kb be such

that S1, ..., Skb are chosen uniformly at random from [mb] without replacement.

Let m = b ×mb. Let Xi = (X(i−1)b+1, ..., Xib)
ᵀ ∈ Rb. Then, the signal of interest

X = X(w,S, b) = (Xᵀ
1, ...,X

ᵀ
mb

)ᵀ ∈ Rm is generated as

Xs =

{
wj if s = Sj,

0 if s /∈ {S1, ..., Skb}
(3.31)

where 0 is the all-zero column vector of size b. Thus, the nonzero elements of X

appear by the block of size b. The set suppb(X) = {S1, ..., Skb} is referred to as

the block-support of X. Note that X becomes scalar-sparse when b = 1.

We measure X through the linear operation

Y = AX + Z (3.32)

where A ∈ Rn×m is the measurement matrix, Z ∈ Rn is the measurement noise,

and Y ∈ Rn is the noisy measurement. We further assume that the elements of

the measurement matrix A are i.i.d. realizations of the probability distribution P ,

either a pmf or a pdf with zero mean and variance σ2
a, and the noise Zi is i.i.d.

according to N (0, σ2
z). The SNR of the i-th block is defined as

γ
(b)
i , ‖wi‖2

σ2
a

σ2
z

. (3.33)

We assume that b, kb, A, and N (0, σ2
z) are known, but w is unknown.

Upon observing the noisy measurement Y, the goal is to recover the support

(equivalently, block-support) of the block-sparse signal X, supp(X). A support

recovery map is defined as

d : Rn 7−→ 2[m]. (3.34)

Given the signal model (3.31), the measurement model (3.32), and the

support recovery map (3.34), the performance metric is defined to be the average

probability of error in support recovery, i.e.,

P{d(Y) 6= supp(X(w,S, b))}
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for each (unknown) signal value vector w ∈ Rk. Note that the probability here

is taken over the random signal block-support vector S, the random measurement

matrix A, and the random noise Z.

3.3.2 Interpretation of Support Recovery via Multi-User

Communication

We introduce an interesting interpretation of the problem of support recov-

ery of block-sparse signals by relating it to a multiple-input single-output (MISO)

MAC communication problem. This can be viewed as an extension of the connec-

tion, discussed in the previous section, between the problem of support recovery

of scalar-sparse signals and a MAC communication problem.

As in the case of support recovery of scalar-sparse signals, we first define

a conventional Gaussian MISO MAC problem in which encoding is restricted to

random code ensembles with a given probability distribution, referred to as the

conventional MISO MAC (CMMAC) problem. We then define a communication

problem over a Gaussian MISO MAC that is equivalent to the problem of support

recovery of block-sparse signals, referred to as the equivalent MISO MAC (EM-

MAC) problem. Finally, we relate the performance limit of the EMMAC to known

results on the CMMAC, by discussing the differences between the two problems

and their expected effects on the performance limit, which will be proved in the

next subsection.

This approach not only motivates the intuition behind our main results

presented in the next subsection but also facilities the development of the proof

techniques.

Conventional MISO MAC (CMMAC)

Suppose kb senders wish to transmit messages to a common receiver. Each

sender is equipped with b transmit antennas and the receiver is equipped with a

single receive antenna. Sender i has access to a randomly generated codebook

A(i) = {A(i)
1 , · · · , A

(i)

m
(i)
b

}, where A
(i)
j ∈ Rn×b is a MISO codeword of which elements
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are i.i.d. realizations of the probability distribution P and m
(i)
b is the number of

MISO codewords in A(i). The rate of sender i, R(i) = (log m
(i)
b )/n. To transmit a

message, each sender chooses a MISO codeword from its codebook. Let Si denote

the MISO codeword index chosen by sender i. Then, the received signal Y ∈ Rn

at the receiver is

Y = A
(1)
S1

w1 + · · ·+ A
(kb)
Skb

wkb + Z (3.35)

where wi ∈ Rb is the MISO channel gain associated with sender i and Z ∈ Rn

is the noise with components Zj i.i.d. according to N (0, σ2
z). Upon receiving Y,

the receiver determines the MISO codeword indices transmitted by each sender,

(Ŝ1, . . . , Ŝkb). The channel gain vector w is known to the receiver.

The optimal achievable rate region of CMMAC can be characterized

R =

{
(R(1), . . . , R(kb)) :

∑
i∈T

R(i) ≤ I
(b)
T (P ,w), ∀T ⊆ [kb]

}
(3.36)

where

I
(b)
T (P ,w) , I((V(j−1)b+i : i = 1, . . . , b, j ∈ T );YT ) (3.37)

is the maximum achievable sum-rate of the |T |-sender Gaussian MISO MAC

YT =
∑
j∈T

b∑
i=1

w(j−1)b+iV(j−1)b+i + Z. (3.38)

Here the inputs (V(j−1)b+i : i = 1, . . . , b, j ∈ T ) are i.i.d. according to P , w(j−1)b+i

is a constant channel gain associated with the i-th antenna of the j-th sender,

and the noise Z is distributed according to N (0, σ2
z). For instance, when kb = 2,

T = {1, 2}, and P = N (0, σ2
a),

I
(b)
T (P ,w) =

1

2
log

(
1 + (‖w1‖2 + ‖w2‖2)

σ2
a

σ2
z

)
.

From (3.36), the symmetric maximum achievable rate (SMAR) of CMMAC is

obtained as

C(b)
sym(P ,w) = min

T ⊆[k]

[
1

|T |
I
(b)
T (P ,w)

]
. (3.39)
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Equivalent MISO MAC (EMMAC) and Connection to CMMAC

Let us define the EMMAC problem. The measurement model (3.32) can

be alternatively represented by

Y = AS1w1 + · · ·+ ASkbwkb + Z (3.40)

where Ai = (A(i−1)b+1, . . . ,Aib) ∈ Rn×b is the i-th block of columns of A of which

elements are i.i.d. re. Contrasting (3.40) to (3.35), we can view the support re-

covery problem as the following communication problem: There are kb senders

and a common receiver. Each sender has b transmit antennas and the common

receiver has a single receive antenna. All the senders share the common codebook

A = {A1, . . . , Amb} where Ai ∈ Rn×b is a MISO codeword of which elements are

i.i.d. realizations of the probability distribution P . The MISO codeword index cho-

sen by sender i and the corresponding MISO codeword are Si and ASi , respectively.

The common rate, R(b) = (logmb)/n. Upon receiving Y, the receiver estimates the

set of MISO codeword indices transmitted by the kb senders, {Ŝ1, . . . , Ŝk}. The

channel gains w are unknown to the receiver.

Let R
(b)
max denote the maximum R(b) at which the probability of error,

P{{Ŝ1, . . . , Ŝkb} 6= {S1, . . . , Skb}}, diminishes as m → ∞. Since determining the

set of MISO codeword indices in the EMMAC problem is identical to recovering

the block support in the original problem, the asymptotic sufficient and necessary

condition for exact support recovery is given by

logmb

n
= R(b)

max. (3.41)

The distinctive features of EMMAC compared to CMMAC are recovery of

the MISO codeword index set, common codebook, and unknown MISO channel gains

at the receiver. The effect of the differences on the asymptotic performance limits

are essentially the same as in the case of scalar-sparse signals, discussed in Section

3.2.2. Consequently, R
(b)
max = C

(b)
sym(P ,w), which explicitly relates the performance

limits of support recovery of block-sparse signals to the SMAR of CMMAC.
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3.3.3 Main Results

Now, we provide sufficient and necessary conditions for asymptotically re-

liable support recovery of block-sparse signals. Note that we consider the support

recovery of a sequence of block-sparse signals generated with the same signal value

vector w. In particular, we assume that k (or kb) is fixed. The proofs of the next

two theorems are presented in Appendices 3.5 and 3.6, respectively.

Theorem 3 If

lim sup
m→∞

logm

nm
< C(b)

sym(P ,w) (3.42)

where C
(b)
sym(P ,w) is given by (3.39), then there exists a sequence of support recovery

maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m], such that

lim
m→∞

P{d(m)(Y) 6= supp(X(w,S, b))} = 0. (3.43)

Theorem 4 If

lim sup
m→∞

logm

nm
> C(b)

sym(P ,w), (3.44)

then for any sequence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m],

lim inf
m→∞

P{d(m)(Y) 6= supp(X(w,S), b)} > 0. (3.45)

Theorems 3 and 4 together indicate that ηb , n/(logm) = 1/C
(b)
sym(P ,w)

is the normalized sufficient and necessary (NSN) number of measurements for

exact support recovery of block-sparse signals. The constant C
(b)
sym(P ,w) explicitly

captures the role of each parameter: the number of nonzero blocks, block size,

SNR of each nonzero block γ
(b)
i , and distribution of the measurement matrix P .

Significance of the main results in information theory discussed in Section

3.2.4 is straightforwardly extended to the case of block-sparse signals. We can

readily derive a more general result, by slightly modifying our proofs, that the

optimal achievable rate region of the Gaussian MISO MAC with an arbitrary

input distribution does not decrease when the channel gains are not known to the

receiver and no channel training procedure is allowed.
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3.3.4 Benefit of Block-Sparsity Structure

One of the most interesting questions in the problem of support recovery

of block-sparse signals is how much the NSN number can be reduced by exploiting

the known block-sparsity structure, compared to treating the block-sparse signal

as being scalar-sparse. In fact, there are three factors that can potentially reduce

the NSN number.

(i) Increased SNR: In EMMAC, total transmit power per sender increases lin-

early with the number of transmit antennas (or block size). Thus, the SNR of

a MISO codeword γ
(b)
i increases accordingly. This is different from a conven-

tional comparison [98] between single-input single-output (SISO) and MISO

in communication theory, where total transmit power is assumed to be the

same, regardless of the number of transmit antennas.

(ii) Reduced effective number of nonzero elements : The signal support is esti-

mated not by the individual element but by the block of elements.

(iii) Diversity : Suppose that correlation among magnitudes of each nonzero ele-

ment |w1|, . . . , |wk| is small and γ1, . . . , γk are low. Then the NSN number

is mainly determined by |wmin| = min{|w1|, . . . , |wk|} when the block-sparse

signal is treated as being scalar-sparse signal (see (3.11)). However, if we ap-

propriately exploit the block-sparsity structure (see (3.39)), the NSN number

is determined by |w(b)
min| = min{‖w1‖, . . . , ‖wkb‖}. Note that |w(b)

min| can be

much larger than |wmin| due to diversity effect.

We further explore in which environment and how much the above factors

take effect. To elaborate, we assume that P = N (0, σ2
a).

The increased SNR and the reduced effective number of nonzero ele-

ments are beneficial in the low and the high SNR regime, respectively

Consider block-sparse signals X(1) and X(2) with kb1 and kb2 nonzero blocks

(kb1 6= kb2), respectively. Assume that X(1) and X(2) have the same block size b

and the same l2-norm for each nonzero block, i.e., ‖w1‖ = ‖w2‖ = · · · . Note that
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the total number of nonzero elements are different between the two signals. Let η1

and η2 be the NSN number for X(1) and X(2), respectively. Let γ = ‖w1‖2σ2
a/σ

2
z

denote the SNR of each nonzero block. Then,

η2/η1 ≈ kb2/kb1 for high γ and (3.46)

η1 ≈ η2 ∝ 1/γ for low γ. (3.47)

The proof is presented in Appendix 3.7. The above result indicates that the NSN

number is mainly determined by the number of nonzero blocks in the high SNR

regime and is mainly determined by the SNRs of each nonzero block in the low

SNR regime.

Minimum block-sparsity gain and diversity effect

Consider a block-sparse signal X(1). Let η1 denote the NSN number when

X(1) is treated as a scalar-sparse signal, i.e., η1 = 1/Csym(P ,w) where Csym(P ,w)

is given by (3.11). Let η2 denote the NSN number when the block-sparsity structure

is properly utilized, i.e., η2 = 1/C
(b)
sym(P ,w) where C

(b)
sym(P ,w) is given by (3.39).

Then,

η2 ≤
1

b
η1. (3.48)

The proof is presented in Appendix 3.8. Thus, we can reduce the number of mea-

surements for asymptotically reliable support recovery by at least ‘1/(block size)’ if

we properly utilize the block-sparsity structure, compared to ignoring the the struc-

ture. It can be readily shown that equality in (3.48) holds when |w1| = · · · = |wk|,
i.e., the benefit of block-sparsity structure is minimal in case the nonzero values

have the same magnitude. In contrast, as discussed above, if the correlation in the

magnitudes of the nonzero values is small, η2/η1 can be much less that 1/b due to

diversity effect. However, it can be easily shown that for any w, limσ2
z→0

η2
η1

= 1
b
,

which implies that the gain from block-sparsity structure is no more than 1/(block

size) when the noise power is small, regardless of the correlation in the magnitudes

of the nonzero values.
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3.4 Concluding Remarks

In this paper, we have developed asymptotic performance limits of recover-

ing the support of block-sparse signals (including scalar-sparse signals as a special

class) in a noisy setting, through a random measurement matrix of which elements

are i.i.d. realizations of a given probability distribution. For the case when the

number of nonzero blocks is fixed, sharp sufficient and necessary conditions for

asymptotically reliable support recovery have been derived as a function of the

input–output mutual information of plural point-to-point communication chan-

nels. The results reveal the role of the distribution of the random measurement

matrix as well as the benefit of the known block-sparsity structure.

Our work rely on an important connection between the problem of support

recovery of block-sparse signals and the problem of communication over MISO

MAC, generalizing the idea originally introduced in [81]. We provide a clear con-

nection between the two problems, which helps us understand the original support

recovery problem in more depth. In particular, this interpretation has the poten-

tial to deal with various theoretical and practical issues related to sparse signal

recovery. Some examples of potential applications were addressed in [81,82]. Two

more interesting potential directions are discussed below.

(i) Design of the measurement matrix for block-sparse signals with correlated

nonzero elements within a block : In this paper, we have considered the ran-

dom measurement matrix whose elements are i.i.d. and therefore all the

columns are independent. This is optimal for the case when the values within

each nonzero block are uncorrelated. This is also the best approach even for

the case when the values within each nonzero block are correlated, but the

correlation coefficient is unknown, although a genie could find the optimal

measurement matrix depending on the exact values of nonzero elements, i.e.,

could implement transmit beamforming so that the sub-codewords (different

columns associated with a block) are coherently combined, providing 3 dB

SNR gain compared to independent sub-codewords. In contrast, if the corre-

lation information is available, we can improve the performance by appropri-
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ately designing the measurement matrix taking into account the correlation

information. This problem was briefly addressed in [71], conjectured to be a

difficult design problem. According to the interpretation of the support re-

covery of block-sparse signals as a communication over MISO MAC, this can

be regarded as the problem of designing the MISO codewords with spatially

correlated MISO channels. One can develop optimal design strategies for the

measurement matrix by applying the results for correlated MISO systems

(e.g., [99]).

(ii) Adaptive measurement matrix : Another interesting potential application is

the problem of adaptive measurement matrix [100,101], variously referred to

as adaptive sensing and dictionary learning, where the measurement matrix

is not deterministic but adaptive to the noisy measurements available. Ac-

cording to our information-theoretic analytical framework, this problem can

be viewed as communication over Gaussian MAC with feedback [102, 103].

Therefore, one can explore this connection and leverage the techniques avail-

able in communication with feedback (e.g., [104]) to come up with adaptive

algorithms as well as the performance bounds.

Finally, we conclude this paper by leaving it as future work to extend our

approach to the problem of support recovery of block-sparse signals with multiple

measurement vectors [70,82,105,106], which can be interpreted as the problem of

communication over multiple-input multiple-output (MIMO) MAC.

The text of this chapter, in part, is a reprint of the paper, H. Kwon, B. Rao,

and Y. Kim, “Limits on Support Recovery of Sparse signals: Measurement Matrix

and Block-Sparsity”, in preparation for submission. The dissertation author is the

primary researcher and author, and the co-authors contributed to or supervised

the research which forms the basis of this chapter.

3.5 Proof of Theorems 1 and 3

Recall that Theorem 3 is a generalized result of Theorem 1 since scalar-

sparse signals are a special class of block-sparse signals, i.e., block size b = 1. Thus,
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we only present the proof of Theorem 3. We assume that the receiver applies the

distance decoding [92] to obtain an estimate of codeword index set. To bound the

probability of decoding error, we use Sanov’s theorem [91, Section 11.4, Theorem

11.4.1] that gives a bound on the probability of observing an atypical sequence of

samples from a given probability distribution.

Fix ε ∈ R > 0. First, form an estimate ρ̂ of ‖w‖ as

ρ̂ ,

√∣∣ 1
n
‖Y‖2 − σ2

z

∣∣
σ2
a

. (3.49)

For r, ζ > 0, let Q = Q(r, ζ) be a minimal set of points in Rk satisfying the

following properties:

i) Q ⊆ Bk(r), where Bk(r) is the k-dimensional hypersphere of radius r, i.e.,

Bk(r) , {b : b ∈ Rk, ‖b‖ = r},

ii) For any b ∈ Bk(r), there exists ŵ ∈ Q such that ‖ŵ − b‖ ≤ ζ
2
.

The following properties [81] are useful:

Lemma 2 1)

lim
m→∞

P
(
∃Ŵ ∈ Q(ρ̂, ζ) such that ‖Ŵ −w‖ < ζ

)
= 1.

2) q(r, ζ) , |Q(r, ζ)| is monotonically non-decreasing in r for fixed ζ.

Given ρ̂ and ε, fix Q = Q(ρ̂, ε). Declare d(Y) = {ŝ1, ŝ2, ..., ŝkb} ⊆ [mb] is

the recovered block-support of the signal, if it is the unique set of indices such that

1

n

∥∥∥∥∥Y −
kb∑
j=1

AŝjŴj

∥∥∥∥∥
2

≤ σ2
z + ε2σ2

a (3.50)

for some Ŵ = (Ŵᵀ
1, . . . ,Ŵ

ᵀ
kb

)ᵀ ∈ Q with Ŵj ∈ Rb×1. Here Aŝj ∈ Rn×b is the

ŝj-th block of columns of A. If there is none or more than one such set, pick an

arbitrary set of kb indices.

Next, we analyze the average probability of error

P(E) = P{d(m)(Y) 6= {S1, ..., Skb}}.
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We assume without loss of generality that Sj = j for j = 1, 2, ..., kb, which gives

Y =

kb∑
j=1

Ajwj + Z

for some w = (wᵀ
1, . . . ,w

ᵀ
kb

)ᵀ. Define the event

Es1,s2,...,skb ,

{
∃Ŵ ∈ Q and {s′1, s′2, ..., s′kb} = {s1, s2, ..., skb}

such that
1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ σ2
z + ε2σ2

a

}
.

Then

P(E) = P

Ec1,2,...,kb ∪
 ⋃
s1<···<skb :{s1,...,skb}6=[kb]

Es1,s2,...,skb


≤ P

(
Ecaux ∪ Ec1,2,...,kb ∪

( ⋃
s1<···<skb :{s1,...,skb}6=[kb]

(Es1,s2,...,skb ∩ Eaux)

))

≤ P(Ecaux) + P(Ec1,2,...,kb) +
∑

s1<···<skb :{s1,...,skb}6=[kb]

P(Es1,s2,...,skb ∩ Eaux) (3.51)

where Eaux , {ρ̂− ‖w‖ ∈ (−ε, ε)}.
We now bound the terms in (3.51). First, by the LLN, limm→∞ P(Ecaux) = 0.

Next, we consider P(Ec1,2,...,kb). Note that, for any Ŵ ∈ Q,

1

n

∥∥∥∥∥Y −
kb∑
j=1

AjŴj

∥∥∥∥∥
2

=
1

n

∥∥∥∥∥
kb∑
j=1

Ajwj + Z−
kb∑
j=1

AjŴj

∥∥∥∥∥
2

=
1

n

kb∑
j=1

kb∑
l=1

b∑
i=1

(w(j−1)b+i − Ŵ(j−1)b+i)(w(l−1)b+i − Ŵ(l−1)b+i)A
ᵀ
(j−1)b+iA(l−1)b+i

+
2

n

kb∑
j=1

b∑
i=1

(w(j−1)b+i − Ŵ(j−1)b+i)A
ᵀ
(j−1)b+iZ +

1

n
‖Z‖2. (3.52)

By applying the weak law of large numbers (LLN) to each term in (3.52) and using

Lemma 2-1), we have

lim
m→∞

P

∃Ŵ ∈ Q s.t.
1

n

∥∥∥∥∥Y −
kb∑
j=1

AjŴj

∥∥∥∥∥
2

≤ σ2
z + ε2σ2

a

 = 1
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which implies that limm→∞ P(Ec1,2,...,kb) = 0.

Next, we consider P(Es1,s2,...,skb ∩ Eaux) for {s1, s2, ..., skb} 6= [kb]. For no-

tational simplicity, define ξ , σ2
z + ε2σ2

a, T , {s1, s2, ..., skb} ∩ [kb], and T c ,

{s1, s2, ..., skb}\T . For any permutation (s′1, s
′
2, ..., s

′
kb

) of {s1, s2, ..., skb} and any

Ŵ ∈ Q,

P

(
1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)

= P

(
1

n

∥∥∥∥∥
kb∑
j=1

b∑
i=1

w(j−1)b+iA(j−1)b+i + Z−
kb∑
j=1

b∑
i=1

Ŵ(j−1)b+iAs′
(j−1)b+i

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)

= P

(
1

n

∥∥∥∥∥ ∑
j∈[kb]\T

b∑
i=1

w(j−1)b+iA(j−1)b+i

−
( ∑
s′j∈T c

b∑
i=1

Ŵ(j−1)b+iAs′
(j−1)b+i

+
∑
s′j∈T

b∑
i=1

(Ŵ(j−1)b+i − ws′
(j−1)b+i

)As′
(j−1)b+i

)

+ Z

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)
. (3.53)

Define T ′ , [kb]\T . Consider the |T ′|-sender CMMAC

YT ′ =
∑
j∈T ′

b∑
i=1

w(j−1)b+iV(j−1)b+i + Z. (3.54)

Thus, Vl (l = 1, . . . , k) are i.i.d. according to P and Z ∼ N (0, σ2
z). Define

VT ′ ,
∑
j∈T ′

b∑
i=1

w(j−1)b+iV(j−1)b+i. (3.55)

Let VT ′ denote the set of all possible values of VT ′ , which depends on P . Let

Q(v), Q(y), Q(y|v), and Q(v, y) denote the marginal distributions, the conditional

distribution, and the joint distribution of VT ′ and YT ′ , respectively. Note that Y n
T ′

corresponds to

∑
j∈[kb]\T

b∑
i=1

w(j−1)b+iA(j−1)b+i + Z (3.56)
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in (3.53). Also define

VŴ ,
∑
s′j∈T c

b∑
i=1

Ŵ(j−1)b+iVs′
(j−1)b+i

+
∑
s′j∈T

b∑
i=1

(Ŵ(j−1)b+i − ws′
(j−1)b+i

)Vs′
(j−1)b+i

(3.57)

where Vl are i.i.d. ∼ P . Let QŴ (v) denote the distribution of VŴ . Note that V n
T ′

and V n
Ŵ

are independent. Also note that

1

n

∥∥∥∥Y n
T ′ − V n

Ŵ

∥∥∥∥2 =
logQ(ynT ′ |vnŴ )

log e
+ c. (3.58)

for some constant c since Y n
T ′ is the output sequence of the CMMAC YT ′ = VT ′+Z.

Thus, the probability in (3.53) is bounded by the probability that (V n
Ŵ

, Y n
T ′) ∼

Πn
i=1QŴ (vi)Q(yi) are jointly ε′-typical with respect to Q(v, y), where ε′ depends

only on ε and tends to zero as ε → 0. By applying Sanov’s theorem [91, Section

11.4, Theorem 11.4.1], we have

P

(
1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)
≤ 2−n{D(p(v,y)∗||QŴ (v)Q(y))−δn}, (3.59)

where D(p||q) denotes the relative entropy [91] of p with respect to q (also known

as the Kullback-Leibler divergence), δn tends to zero as n→∞,

p(v, y)∗ = arg min
p(v,y)∈Dε′

D(p(v, y)||QŴ (v)Q(y)), (3.60)

and

Dε′ = {p(v, y) : |p(v, y)−Q(v, y)| ≤ ε′Q(v, y), ∀(v, y) ∈ UT ′ × R}.

Since minp(v,y)∈Dε′ D(p(v, y)||QŴ (v)Q(y)) increases as ε′ decreases and limε′→0Dε
′
=

Q(v, y), we have

P

(
1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)
≤ 2−n{D(p(v,y)∗||QŴ (v)Q(y))−δn}

≤ 2−n{D(Q(v,y)||QŴ (v)Q(y))−δε′−δn}

≤ 2−n{I(VT ′ ;YT ′ )−δε′−δn}, (3.61)

where δε′ tends to zero as ε′ → 0, I(VT ′ ;YT c) is the input–output mutual informa-

tion of the AWGN channel YT ′ = VT ′ + Z (or the maximum achievable sum-rate
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of the |T ′|-sender CMMAC (3.54)), and the last inequality follows from the fact

that

D(Q(v, y)||QŴ (v)Q(y)) = I(VT ′ ;YT ′) +D(Q(v)||QŴ (v)) (3.62)

and D(Q(v)||QŴ (v)) ≥ 0.

Hence, by the union of events bound, for {s1, s2, ..., skb} 6= [kb],

P(Es1,s2,...,skb |Eaux)

≤
∑

{s′1,...,s′kb}={s1,...,skb}

P

(
∃Ŵ ∈ Q s.t.

1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)

≤
∑

{s′1,...,s′kb}={s1,...,skb}

∑
Ŵ∈Q

P

(
1

n

∥∥∥∥∥Y −
kb∑
j=1

As′jŴj

∥∥∥∥∥
2

≤ ξ

∣∣∣∣Eaux
)

≤ kb! · |Q| · 2−n{I(VT ′ ;YT ′ )−δε′−δn}.

Furthermore, conditioned on Eaux, ρ̂ < ‖w‖ + ε and hence |Q| ≤ q(‖w‖ + ε, ε) by

Lemma 2-2). Thus,

P(Es1,s2,...,sk ∩ Eaux) ≤ kb! · q(‖w‖+ ε, ε)· ≤ 2−n{I(VT ′ ;YT ′ )−δε′−δn}. (3.63)

Note that the probability upper-bound (3.63) depends on s1, ..., skb only through

T . Grouping the
(
mb−kb
kb−|T |

)
events {Es1,s2,...,skb ∩ Eaux} with the same T ,

P(E)

≤ P(Ecaux) + P(Ec1,2,...,kb) +
∑
T ⊂[kb]

(
mb − kb
kb − |T |

)
· kb! · q(‖w‖+ ε, ε) · 2−n{I(VT ′ ;YT ′ )−δε′−δn}

≤ P(Ecaux) + P(Ec1,2,...,kb) + kb! · q(‖w‖+ ε, ε)

·
∑
T ⊂[kb]

2(kb−|T |) logmb · 2−n{I(VT ′ ;YT ′ )−δε′−δn}

= P(Ecaux) + P(Ec1,2,...,kb) + kb! · q(‖w‖+ ε, ε)

·
∑
T ⊆[kb]

2|T | logmb · 2−n{I(VT ;YT )−δε′−δn}



71

which tends to zero as mb →∞, if

lim sup
mb→∞

logmb

nmb
<

1

|T |
2−n{I(VT ;YT )−δε′} (3.64)

for all T ⊆ [kb]. Since ε > 0 is arbitrarily chosen, the proof is complete.

3.6 Proof of Theorems 2 and 4

Since Theorem 4 is a generalized result of Theorem 2, we only present the

proof of Theorem 4. We show that if

lim
m→∞

P
(mb)

e = 0 (3.65)

where P
(mb)

e = P{d(mb)(AX + Z) 6= supp(X(w,S, b))}, then

lim sup
m→∞

logm

nm
≤ C(b)

sym(P ,w). (3.66)

The main techniques to prove the above statement include Fano’s inequality and

the properties of entropy.

For any T ⊆ [kb], denote the tuple of random variables (Sl : l ∈ T ) by

S(T ). From Fano’s inequality [91], we have

H(S(T )|Y, A) ≤ H(S1, ..., Skb|Y, A)

≤ log kb! +H({S1, ..., Skb}|Y, A)

≤ log kb! + P
(mb)

e log

(
mb

kb

)
+ 1. (3.67)

On the other hand, by a basic permutation argument,

H(S(T )|S(T c), A) = log

|T |−1∏
q=0

(mb − (kb − |T |)− q)

 = |T | logmb − nε1,n

(3.68)

where T c , [kb]\T and

ε1,n ,
1

n
log

m|T |b /

|T |−1∏
q=0

(mb − (kb − |T |)− q)

 (3.69)
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which tends to zero as n→∞. Hence, combining (3.67) and (3.68), we have

|T | logmb = H(S(T )|S(T c), A) + nε1,n

= I(S(T ); Y|S(T c), A) +H(S(T )|Y, S(T c), A) + nε1,n

≤ I(S(T ); Y|S(T c), A) +H(S(T )|Y, A) + nε1,n (3.70)

≤ I(S(T ); Y|S(T c), A) + log kb! + P
(mb)

e log

(
mb

kb

)
+ 1 + nε1,n

=
n∑
i=1

I(Yi;S(T )|Y i−1
1 , S(T c), A) + log kb! + P

(mb)

e log

(
mb

kb

)
+ 1 + nε1,n

(3.71)

≤ nI
(b)
T (P ,w) + log kb! + P

(mb)

e log

(
mb

kb

)
+ 1 + nε1,n (3.72)

where (3.70) follows the fact that conditioning reduces entropy, (3.71) follows the

chain rule of mutual information [91], and I
(b)
T (P ,w) is defined in (3.37). Therefore,

lim sup
mb→∞

logmb

nm
−

log kb! + P
(mb)

e log
(
mb
kb

)
+ 1 + nmε1,nm

|T |nm
≤ 1

|T |
I
(b)
T (P ,w)

for all T ⊆ [kb]. Due to the fact that log
(
mb
k

)
≤ k logmb, we have

lim sup
mb→∞

(1− kbP
(mb)

e /|T |) logmb

nm
− log kb! + nmε1,nm + 1

|T |nm
≤ 1

|T |
I
(b)
T (P ,w)

for all T ⊆ [kb]. Since limmb→∞ P
(mb)

e = 0, we reach the conclusion

lim sup
m→∞

logm

nm
≤ 1

|T |
I
(b)
T (P ,w)

for all T ⊆ [kb], which completes the proof.

3.7 Proof of Property 1

It can be easily shown that if ‖w1‖2 = · · · = ‖wk‖2, then

C(b)
sym(P ,w) = min

T ⊆[kb]

[
1

|T |
I
(b)
T (P ,w)

]
=

1

kb
I
(b)
T (P ,w) (3.73)

with T = [kb]. Therefore, we have ηi = kbi/log (1 + kiγ), for i = 1, 2. We can

easily derive the result in the high and the low SNR regimes, respectively.
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3.8 Proof of Property 2

η1 =
1

Csym(P ,w)
=

1

minT ⊆[k]

[
1
|T |IT (P ,w)

] (3.74)

and

η2 =
1

C
(b)
sym(P ,w)

=
1

minT ⊆[kb]

[
1
|T |I

(b)
T (P ,w)

] . (3.75)

Define S1 , { 1
|T |IT (P ,w) : T ⊆ [k]} and S2 , { 1

|T |I
(b)
T (P ,w) : T ⊆ [kb]}. If

a ∈ S2, then b · a ∈ S1. Using the inequality, min[a1, a2] ≤ 1/bmin[b · a1, b ·
a2, a3, a4],∀ai ∈ R, we have

η2 ≤
1

b
η1. (3.76)



Chapter 4

Conclusion

This dissertation investigates the performance of communication and com-

pressed sensing systems with emphasis on non-Gaussian practical distributions for

the channel input and the measurement matrix. In particular, we have studied

(1) how much is the performance loss from a non-Gaussian signal distribution

compared to the optimal Gaussian distribution, especially for the signal distri-

butions commonly used in practice?, (2) what are the conditions under which a

non-Gaussian distribution performs close to the Gaussian distribution?, and (3)

when the actual signal distribution is non-Gaussian, how much is the performance

loss from the algorithm that is optimal in case the signal distribution is Gaussian,

compared to the solution optimal for the given distribution? To answer these ques-

tions, we have investigated two problems, power allocation over fading channel and

support recovery of block-sparse signals.

First, we have considered the problem of power allocation over fading chan-

nels with QAM inputs. We have studied the performance of three power alloca-

tion schemes: (1) waterfilling (WF) that is optimal when the channel inputs are

Gaussian-distributed, (2) mercury/water-filling (MWF) that is optimal in our set-

ting, and (3) uniform power allocation with Thresholding (UPAT) that is a simple

and practical solution with reduced feedback requirement. We have shown that

WF and the optimal UPAT perform close to the optimal MWF as long as the

constellation size is properly chosen so that the performance is not limited by too

small constellation size. In addition, we have studied the practical solution, UPAT

74
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in more depth. A constellation size selection rule for the optimal UPAT has been

derived with the aim of providing a good compromise between performance and

complexity. The proposed rule is: minimize the constellation size while achieving

the maximum diversity. We have also analyzed the gain of the optimal UPAT over

the uniform power allocation that evenly assigns the total power across the blocks.

The gain in average transmit power increases without bound as the number of

independent fading blocks, B increases, but rapidly increases in dB scale only in

the low B regime. Finally, we have developed a simple method to determine the

threshold value for UPAT. Compared to the optimal UPAT, the proposed method

significantly reduces the computational complexity with minimal performance loss.

We leave it as future work to extend our result to fading distributions other than

Rayleigh and to multiple-user scheduling scenarios as in orthogonal frequency di-

vision multiple access (OFDMA) systems.

Next, we have studied the asymptotic performance limits of reliably recover-

ing the support of block-sparse signals (including scalar-sparse signals as a special

class) through an arbitrarily distributed random measurement matrix in the Gaus-

sian noise scenario. We have developed a new perspective from which the problem

of recovering of signal support of block-sparse signals is viewed as a problem of

communication over multiple input single output (MISO) multiple access channel

(MAC). Based on this connection, we have established an information-theoretic

analytical framework to unearth the performance limits in the support recovery of

block-sparse signals. The new perspective also leads to the opportunity of leverag-

ing the rich results and insights available in information theory to help understand

the performance limits of block-sparse signal recovery. We have also derived sharp

sufficient and necessary conditions for asymptotically reliable support recovery in

terms of the signal dimension, the number of nonzero blocks, the block size, the

number of measurements, the distribution of the random measurement matrix, and

signal-to-noise ratio (SNR) of each nonzero block. Based on the result, the loss

from a non-Gaussian measurement matrix compared to the Gaussian measurement

matrix can be significant when both the alphabet size and the number of nonzero

elements are small and SNR is large. Finally, we have identified and discussed
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three factors of block-sparse signals that can reduce the number of measurement

required for reliable support recovery of block-sparse signals, increased SNR, Re-

duced effective number of nonzero elements, and diversity. Our approach that

the support recovery problem is interpreted as a communication problem can be

extended to the problem of support recovery of block-sparse signals with multiple

measurement vectors, which can be interpreted as the problem of communication

over multiple-input multiple-output (MIMO) MAC.
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