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Most of all my gratitude goes to my husband Árni. For his support, patience, and love. It

has been a pleasure to have you with me on this journey my love.

x



The text of this dissertation contains reprints of the following papers, either accepted or

submitted for consideration at the time of publication. The dissertation author was the primary

investigator and author of these publications.

Chapter 2

Gisladottir, V., Roubinet D., Tartakovsky D., “Particle methods for heat transfer in fractured

rocks”, Transport in Porous Media, 115:311-326. 2016.

Chapter 3

Gisladottir, V., Roubinet D., Tartakovsky D., “Efficient simulations of heat transfer in fractured

rocks”, PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering. 2018.

Chapter 4

Gisladottir, V., Roubinet D., Tartakovsky D., “Lagrangian simulations of heat transfer in fractured

rocks”, (in preparation for submission)

Chapter 5

Gisladottir, V., Ganin A., Keisler J., Kepner J., Linkov I., “Resilience of Cyber Systems with

Over-and Under-regulation”, Risk Analysis. 37.9:1644-1651. 2016

xi



VITA

2008 B. S. in Mechanical Engineering first class, University of Iceland

2011-2014 Graduate Teaching Assistant, University of California, San Diego

2012 M. S. in Engineering Science (Mechanical Engineering), University of California,
San Diego

2018 Ph. D. in Engineering Science (Engineering Physics), University of California,
San Diego

PUBLICATIONS

Gisladottir, V., Roubinet D., Tartakovsky D., “Lagrangian simulations of heat transfer in fractured
rocks”, (in preparation for submission).

Gisladottir, V., Roubinet D., Tartakovsky D., “Efficient simulations of heat transfer in fractured
rocks”, PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering, 2018.

Seager, T., Gisladottir V., Mancillas J., Roege P., Linkov I., “Inspiration to Operation: Securing
Net Benefits vs. Zero Outcome”, Journal of Cleaner Production, 2017

Gisladottir, V., Roubinet D., Tartakovsky D., “Particle methods for heat transfer in fractured
rocks”, Transport in Porous Media, 2016.

Gisladottir, V., Ganin A., Keisler J., Kepner J., Linkov I., “Resilience of Cyber Systems with
Over- and Underregulation”, Risk Analysis , 1644-1651, 2016

Linkov, I., Gisladottir, V., Wood, M., “Decision Making in a Convergent Society”, Handbook of
Science and Technology Convergence Ed. M. Roco Springer, 2015

Hjartarsson, G., Gisladottir, V., Gislason G., “Geothermal Development in the Assal Area, Dji-
bouti”, Proceedings of the World Geothermal Congress International Geothermal Association,
2010

xii



ABSTRACT OF THE DISSERTATION

Transport in Networks

by

Viktorı́a Rós Gı́sladóttir

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California, San Diego, 2018

Professor Daniel M. Tartakovsky, Chair

Transport in networks represents a class of important phenomena that occur in many

natural and anthropogenic settings. This dissertation deals with two such processes: heat

transport in fracture networks in the subsurface and resiliency response of a cyber network to

virus propagation. Numerical simulations of heat transfer provide insight into the performance

of subsurface systems (e.g. geothermal reservoirs) and the potential for their enhancement.

Standard, grid-based method of heat transfer are computationally expensive, often prohibitively

so [Karra et al., 2018], due to a vast discrepancy of scales between fracture apertures (millimeter

scale) and the ambient rock matrix domain (meter scale). In Chapter 2, we present a mesh-free

time-domain particle method for modeling heat transfer in highly heterogeneous fractured media.
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Our method is orders of magnitude faster than its grid-based alternatives and is readily adaptable

to different network configurations. We deploy this method to model heat extraction from

geothermal reservoirs by using a fractal network representing faults and damage zones. Our

analysis reveals anomalous behavior of heat transfer in fractured environments due to existence

of preferential flow paths. It also demonstrates a significant impact of the networks topology

on the performance of geothermal reservoirs. In Chapter 3, this method is used to investigate

the impact of fracture network properties on geothermal performance. Specifically, we explore

how fracture-network topology and matrix-block size distribution control, respectively, the

advective and conductive mechanisms of heat transfer in fractures and ambient matrix, as well

as the heat flux exchanged between these structures. To accomplish this goal, we examine two

different conceptual descriptors of fracture networks over a variety of hydraulic conditions and

fracture-generating parameters, and the effects of topologic properties and hydraulic conditions

on computational time. In Chapter 4 we further generalize our mesh-free particle method by

removing the physical assumption of one-dimensional conduction in the matrix. This is achieved

by accounting for both longitudinal and transversal heat conduction in the matrix. It looks at the

impact of removing set assumption and identifies the parameter set where it is of importance.

Finally, in Chapter 5, we explore transport in anthropogenic networks by presenting a method to

simulate the resiliency response of a cyber network to a virus propagation. We identify the need

for systematic data collection and appropriate metrics to enable data driven optimization of the

rule base. As well as demonstrate that the optimal number of rules necessary to regulate a cyber

network efficiently is likely to be small and focused on specific critical functions that the system

needs to maintain.
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Chapter 1

Introduction

1.1 Transport in Networks

As we move through the world, we encounter networks everywhere – both natural and

anthropogenic. Examples in the natural world include large-scale rock formations and river

networks. On a smaller scale, there are neural-networks and biological networks. Anthropogenic

networks likewise take many forms. Whether they are telecommunication networks, which

enable us to interact with the world through phone, cable, and the Internet, or transportation

networks, which take the form of highways, railways and roads, anthropogenic networks are

something that we use everyday.

All of the previously mentioned networks have one thing in common: transport takes

place in all of them. The form of dynamics and the items being circulated might change,

transportation remains constant. In rock formations, fluid, solute, and heat are transported across

the networks. Rivers transport all of these natural physical phenomena as well as boats, wildlife,

trash, and pollution. Neural networks facilitate neuron transport as biological systems interact

with each other in the form of networks exchanging information [Truskey et al., 2004]. These

communication networks route messages across data networks [Schwartz and Stern, 1980], while
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highways, railroads and roads transport vehicles and commodities [Barthélemy, 2011, Boeing,

2017].

1.2 Heat transport in fracture networks

The ground we stand on feels so familiar, but do we really know it or its potential?

Underneath the surface lies a fractured porous medium that can work as heat, oil, nuclear, or

even solute storage with preferential pathways, in the form of fluid flow in fractures. Modeling

capabilities of these processes, including heat transfer, have been used to leverage reservoirs

potential. Models of heat transfer in a fractured medium are used to optimize the performance of

geothermal energy harvesting [Saar, 2011] and secondary (enhanced) oil recovery [Al-Hadhrami

and Blunt, 2001], to interpret tests that use anthropogenically generated [Wagner et al., 2014] heat

as a groundwater tracer; and to optimize the design of building’s cooling/heating installations

via ground heat exchangers [Ciriello et al., 2015]. Modeling is additionally used to assist with

mitigating the potential negative environmental impact of subsurface heat generation due to, e.g.,

radioactive decay from a nuclear waste leakage [Wang et al., 1981] or creation and/or reopening

of microfactures from geothermal energy harvesting [Chen and Shearer, 2011] .

Geothermal energy is useful for district heating and electricity generation. While coun-

tries such as New Zealand and Iceland use it as their primary energy source, the United States

does not. Yet, the United States could fulfill about 20% of its energy needs with geothermal

energy using current technology [DOE, 2015]. Geothermal energy production relies on the heat

from the subsurface to fuel steam turbines to produce electricity or to heat water for district

heating and domestic use. A geothermal reservoir has to have three components for harvesting

to be feasible: heat, fluid and fractures. The harvesting process requires extracting geothermal

fluid from a reservoir through boreholes. The heat from the fluid is then extracted for energy

production. After the heat has been extracted, the fluid is re-injected into the reservoir to preserve

2



the pressure of the system, which is critical to maintaining the sustainability and therefore the

production of the reservoir. This step of re-injection is also critical to minimizing environmental

impact by preventing the formations of geothermal fluid lagoons. Although the re-injection

boreholes are vital, they run the risk of introducing cooler fluid to a production site and thus

causing performance to drop at a production site. Designing the layout of boreholes determines

the economic feasibility of a given energy production site. To optimize the energy production

it is critical to locate production boreholes at resource rich locations and to locate re-injection

boreholes at sites where they will have minimal impact on neighboring production sites. Un-

derstanding the heat transfer across the fractured media connecting the boreholes is essential

to optimize this interaction. Figure 1.1 shows re-injection and production boreholes and the

fracture networks connecting them.

Figure 1.1: A fracture network connecting two boreholes. The re-injection and the production
borehole are on the left and right, respectively.

This thesis focuses on modeling heat transfer across such networks to show the thermal

breakthrough and gradient at a production site, which indicates the performance of a system (e.g.

reservoir). The longer it takes for a thermal breakthrough and the flatter the gradient, the higher

the performance of the system will be (see Figure 1.2).

Scenarios where there are opportunities to optimize the engineering of a reservoir based

on heat transfer models include characterization of the percolation at potential sites during

feasibility studies, and estimation of the environmental impact of using them as a waste storage

site or industrial site. For that purpose anthropogenic heat can be used as a ground tracer [Molson

3



Figure 1.2: The Performance of the system as a function of time for heat transport between
two boreholes for Watanbe (W1, W2, W3) and Sierpinski (S1, S2, S3) networks. Thermal
breakthrough for the Watanbe networks is around 108 and for Sierpinski Networks it is closer
to 109.

et al., 2007]. Additionally, the models are useful for hot field geothermal energy harvesting where

the network’s topology determines the geothermal performance via its influence on preferential

flow paths and the spatial extent of the heat extraction area and therefore the heat flux exchange

between the fractures and the surrounding matrix. The former can be altered with reservoir

stimulation techniques (e.g. hydraulic fracturing), and the latter by changing hydraulic conditions

(e.g. flow rates). Numerical simulations of heat transfer in fractured media aid with analysis,

design, and implementation of set sites. Because of the many different benefits of having

reservoir models and all the challenges of applying them effectively, many different types of

modeling techniques have been developed.

As one pursues the goal of capturing the transport processes in a model, approximations

have to be made. All models are an idealized approximation of reality and none are truly correct.

The challenges involved in modeling heat transfer in fractured medium are due to the scale

separation between the fracture aperture (millimeter scale) and the fracture length/matrix size

(meter scale), in addition to the stark contrast of the hydraulic and thermal properties between

the fluid-filled fractures and the rock matrix [Bonnet et al., 2001, de Dreuzy et al., 2001a,b].
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This complex nature requires models to balance computational efficiency with simplifications of

geometric features of the fracture networks and physical transport processes (e.g. dimensions).

Two common descriptors of a fractured medium, discrete fracture networks (DFN) and continuum

models, address these challenges in different ways. The DFN descriptor has the advantage of

being able to capture preferential flow paths, but it is usually paired with grid-based heat transfer

methods, which can get very resource-intensive due to the scale separation. While continuum

models do not have the same resource constraint, they do not necessarily capture the anomalous

(non-Fourrierian) behavior of heat transfer that appears due to preferential flow paths. The

specific focus of the heat transfer part of this dissertation is to address these challenges by using

discrete fracture networks as a descriptor for a novel particle-based heat transfer model that

captures preferential flow pathways and does not require the resource intensity of a grid-based

method. This model is then used to examine the reservoir’s response which can inform the

engineering of the system.

In Chapter2, the particle method for heat transfer in fracture networks is presented.

We study the impact of fracture-network topology and hydraulic regimes on heat transfer by

performing simulations for a range of fracture-network properties and experimental conditions.

Numerical experiments are done simulating the heat transfer across a Watanabe network con-

necting an injection and production borehole at a geothermal site, as the Watanabe networks are

characteristic of geothermal reservoirs. We look at the thermal breakthrough, i.e. the potential

of the fluid from the injection site cooling down the production site. Our results demonstrate

a significant impact of the network topology on the performance of geothermal reservoirs.

Additionally, they demonstrate anomalous behavior of heat transfer in fractured environments.

In Chapter 3, we apply the method from Chapter 2 to two different conceptual descriptors

of fracture networks, Sierpinski and Watanabe, a range of hydraulic conditions, and a range of

fracture-generating parameters. This allows for the exploration of fracture-network topology

and matrix-block size distribution control of the advective mechanism in the fractures and the
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conductive mechanisms in the matrix, as well as the heat flux exchange between the two. We

also look at the topologies’ properties and hydraulic conditions impact on the CPU efficiency

of the simulations. Our results demonstrate that for some hydraulic regimes, the performance

of the two network descriptors can differ by close to an order of magnitude, while in others the

difference is not as stark although still present. Another finding is that the CPU efficiency is

sensitive to the hydraulic properties to some extent but is not greatly affected by topological

properties.

The particle model used in Chapter 2 and 3 relies on the assumption of one-dimensional

conduction in the matrix. In Chapter 4 , we present a particle method that extends that model

to include multi-dimensional conduction in the matrix. Numerical experiments are performed

on Sierpinski networks to study the effects of fracture-network topology and matrix-block size

distribution control, respectively, the advective and conductive mechanisms of heat transfer

in fractures and ambient matrix as well as the heat flux exchanged between these structures.

Additionally we look at the effects of the multi-dimensional verses one-dimensional conduction

in the matrix.

1.3 Virus propagation through cyber networks and the sys-

tem’s resilience

Cyber vulnerability is an increasing threat to critical systems and infrastructure. A

common reaction to a new threat or vulnerability is to add new rules that users have to follow.

However, it is unclear if more rules enhance overall system resilience. Evidence to the contrary

exists. Resilience is the ability of a system to absorb, recover, and adapt to known and unknown

threats.

In Chapter 5 we present a framework that models a relationship between number of rules

that users must follow and resilience of an organization. We identify the need for systematic

6



data collection and appropriate metrics to enable data driven optimization of the rule base. For

this purpose, we have a network with a scale-free configuration model, which takes into account

the heavy-tail degree distribution often found in communication systems. At each node, there

is an employee with decision latitude. The decision latitude directly impacts the vulnerability

and the resilience of the network. We argue that while increasing the number of rules may

decrease direct threats from external attacks, the excessive regulations actually increase internal

vulnerabilities due to the unintentional violations of operational rules by insiders. Therefore, the

optimal number of rules necessary to regulate a cyber network efficiently is likely to be small

and focused on specific critical functions that the system needs to maintain.
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Chapter 2

Particle methods for heat transfer in

fractured media

2.1 Introduction

Mathematical modeling of heat transfer in subsurface environments plays an important

role in many fields of science and engineering. It has been used to optimize the performance

of enhanced oil recovery by reducing oil viscosity with the injection of hot water or steam

[Al-Hadhrami and Blunt, 2001] and ground heat exchangers used in cooling/heating of buildings

[Ciriello et al., 2015], and to characterize subsurface environment by treating geothermal [Saar,

2011] and anthropogenically generated [Wagner et al., 2014] heat as a groundwater tracer. It has

also been deployed to forecast the adverse affects of subsurface heat generation and transfer, such

as creation and/or reopening of microfractures leading to seismic activity induced by geothermal

energy extraction [Chen and Shearer, 2011] and nuclear waste leakage due to heat generated by

radioactive decay [Wang et al., 1981].

In geothermal reservoirs, advection is the dominant mechanism of heat transfer within a

fracture network, while the ambient matrix acts as the principal heat-storage medium [Bruel, 2002,
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Kolditz, 1995, Ruiz Martinez et al., 2014]. A network’s topology determines the spatial extent of

a heat extraction area, and the heat flux exchanged between fractures and the surrounding matrix

controls the geothermal performance. The former can be modified with reservoir stimulation

techniques (e.g., hydraulic fracturing), and the latter can be affected by varying hydraulic

conditions (e.g., flow rates). Numerical models of heat transfer in fractured media facilitate

design and implementation of both strategies.

These models must contend with a strong contrast in the hydraulic and thermal properties

of fluid-filled fractures and the surrounding rock matrix, as well as with heterogeneous fracture

networks that span a hierarchy of scales and often exhibit fractal behavior [Bonnet et al., 2001,

de Dreuzy et al., 2001a,b]. Such fractured media might not have a representative elementary

volume. Hence, they are not amenable to standard homogenization [Long et al., 1982, Painter and

Cvetkovic, 2005, Roubinet et al., 2010a] and modeling based on a single-continuum advection-

dispersion equation (ADE). Two conceptual frameworks have been proposed to tackle this

problem in the context of solute transport. The first treats a fractured rock as a stochastic

continuum, whose transport properties are random fields; one postulates either the existence

of a scale on which the (stochastic) ADE is valid [Neuman, 2005] or the absence of such a

scale by adopting instead, e.g., continuous time random walk (CTRW) models [Berkowitz and

Scher, 1997]. Both approaches predict anomalous (non-Fourier-like) average behavior of solute

transport in fractured media [Scher et al., 2002, Neuman and Tartakovsky, 2009, Cushman

et al., 2011]. CTRW has also been used to model the anomalous behavior of heat transfer in

heterogenous and fractured media [Emmanuel and Berkowitz, 2007, Geiger and Emmanuel,

2010].

The second modeling framework explicitly incorporates dominant fractures into mathe-

matical representations of the subsurface, i.e., replaces the continuum-medium representation

of fractured rocks with two non-overlapping continua: a fluid-filled discrete fracture network

(DFN) and the ambient rock matrix. Mass transfer models of this sort have been applied to
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both deterministic [Dverstorp et al., 1992, Nordqvist et al., 1992] and stochastic [Cacas et al.,

1990, Ezzedine, 2010] fracture networks. Numerical solutions of such models must combine a

meter-scale discretization of the matrix with a millimeter-scale discretization of fracture aper-

tures, which makes them computationally intensive, often prohibitively so. This has led to the

development of mesh-free, particle-based solvers for solute transport in fractured rocks [Painter

et al., 2008, Roubinet et al., 2010b]. We are not aware of similar methods for heat transfer.

To study heat transfer due to injection of fluids into fractured geothermal reservoirs, we

adopt the particle-based method of [Roubinet et al., 2010b]. The computational efficiency of this

method allows us to handle site-specific fractal geometries of fracture networks characteristic

of geothermal reservoirs and the hydraulic conditions representative of geothermal systems.

Our simulations, conducted on a wide range of fracture network parameters and experimental

conditions, reveal the anomalous behavior of heat transfer in heterogeneous fractured media.

They also demonstrate the significant impact of the network properties and hydraulic conditions

on the performance of geothermal reservoirs. Section 2.2 contains a description of the fracture

network and heat transfer models used in our analysis. In Section 2.3 we describe the mesh-free

numerical method used to solve this problem, and present a set of numerical experiments in

Section 2.4. The simulations results are interpreted and discussed in Section 4.5.

2.2 Problem formulation

To study geothermal energy harvesting, we consider fracture networks that are represen-

tative of geothermal reservoirs. The fracture network construction is described in Section 2.2.1,

and models of fluid flow and heat transfer on these networks are formulated in Sections 2.2.2

and Sections 2.2.3, respectively.
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2.2.1 Fracture networks models

Following [Watanabe and Takahashi, 1995], we consider a fractal fracture network model

of geothermal reservoirs. The model defines the number of fractures Nf and the length r

i

of the

ith fracture (i = 1, . . . ,Nf) as

Nf = int(C/r

D

0 ), r

i

= (C/i)1/D, (2.1)

where the function int(x) rounds x up to the next integer and D is the fractal dimension (a fitting

parameter). The remaining two parameters, the fracture density C and the smallest fracture

length r0, can be estimated from a core sample. The fracture network is constructed by treating

the midpoint of each fracture pair as a random variable. The angle between the pair of fractures

can take one the two prescribed values, q1 or q2, with equal probability. The fracture’s aperture

b is constant and the same for all fractures.

2.2.2 Fluid flow in the network

We consider steady-state laminar flow of an incompressible fluid, which takes place in the

fracture network while treating the ambient rock matrix as impervious. Assuming that a fracture

is formed by two parallel smooth plates and that the fluid density r and dynamic viscosity µ

remain constant, the Poiseuille law results in the average flow velocity u given by

u =�rgb

2

12µ

J. (2.2)

Here g is the gravitational acceleration constant, and J is the hydraulic head gradient along the

fracture. Enforcing mass conservation at fracture junctions and applying expression (2.2) to

each fracture segment leads to a linear system Ah = b where h is the vector of the (unknown)

hydraulic heads at fracture junctions [e.g., Long et al., 1982, de Dreuzy et al., 2001a]. Given the
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global pressure gradient imposed on the outer edges of the network, we solve this linear system

and use the resulting hydraulic heads to compute the average flow velocity in each fracture of the

network.

2.2.3 Heat transfer in fracture-matrix systems

The particle method described in Section 2.3 constructs a solution to the problem of heat

transfer in fracture networks from a solution to the problem of heat transfer in an individual

fracture, with aperture b and semi-infinite length, embedded in an infinite matrix. The latter

problem is formulated as follows. The fracture is represented by Wf = {(x,z) : 0  x < •, |z|

b/2} and the matrix by Wm = {(x,z) : 0  x < •, |z|� b/2}. Fluid temperature in the fracture,

T

f(x,z, t), satisfies an advection-dispersion equation (ADE)

∂T

f

∂t

+u

∂T

f

∂x

= D

f
L

∂2
T

f

∂x

2 +D

f
T

∂2
T

f

∂z

2 , (x,z) 2 Wf, (2.3)

where u is the fluid velocity computed in Section 2.2.2, and D

f
L

and D

f
T

are the longitudinal

and transverse dispersion coefficients, respectively. These coefficients are defined as D

f
L

=

lf
L

/(rc)+E

f
L

/(rc) and D

f
T

= lf
T

/(rc)+E

f
T

/(rc), where c is the fluid’s heat capacity; lf
L

and

lf
T

are the longitudinal and transverse thermal conductivity coefficients, respectively; and E

f
L

and E

f
T

are the longitudinal and transverse thermal dispersion coefficients, respectively [Yang

and Yeh, 2009].

Since the ambient matrix Wm is assumed to be impervious to flow, temperature in the

matrix, T

m(x,z, t), is governed by a diffusion equation (DE)

∂T

m

∂t

= D

m
L

∂2
T

m

∂x

2 +D

m
T

∂2
T

m

∂z

2 , (x,z) 2 Wm, (2.4)

where D

m
L

and D

m
T

are the longitudinal and transverse diffusion coefficients, respectively. These
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coefficients are defined as D

m
L

= le

L

/c

e

and D

m
T

= le

T

/c

e

, where c

e

is the effective heat capacity

of the matrix; and le

L

and le

T

are the longitudinal and transverse thermal conductivity coefficients

in the matrix, respectively.

At the fracture-matrix interfaces |z|= b/2, the continuity of both temperature and heat

flux is enforced with conditions

T

f = T

m, f
m

D

m
T

∂T

m

∂z

= D

f
T

∂T

f

∂z

, |z|= b/2, (2.5)

where f
m

= [f+(1�f)r
s

c

s

/(rc)]; f is the matrix porosity; and r
s

and c

s

are the density and

heat capacity of the solid phase, respectively. Finally, equations (4.1) and (4.2) are subject to

initial conditions

T

f(x,z,0) = T0, T

m(x,z,0) = T0, (2.6)

and boundary conditions

T

f(0,z, t) = Tinj, T

f(+•,z, t) = T0, T

m(x,±•, t) = T0, (2.7)

where T0(x,z) is the initial temperature in the system, and Tinj the temperature of the fluid injected

at the entrance of the fracture.

Since the heat transfer problem (4.1)-(4.5) is invariant under transformations T = T

i�T0

(i = f,m), we set, without loss of generality, T0 = 0.

2.3 Particle method for heat transfer in fractured media

Since the underlying mathematical structure of the heat and mass transfer problems is

the same, we adapt the particle method of [Roubinet et al., 2010b], which was developed to
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model solute transport, to describe heat transfer in fractured rocks. The method consists of three

parts: i) at the fracture-matrix scale, heat transfer is described by advection in the fracture and

conduction in the infinite matrix; ii) at the matrix-block scale, heat conduction in the matrix is

restricted by the presence of neighboring fractures, into which particles can transfer; and iii)

at the fracture-network scale, heat flux conservation is enforced at each fracture intersection

by considering that the probability for a particle to enter a fracture depends on the intersection

configuration and flow rate distribution.

At the fracture-matrix scale, we use the analytical solution of [Tang et al., 1981], which

is derived under the following simplifications of the boundary-value problem (4.1)–(4.5). First,

the ADE (4.1) is averaged over the fracture aperture to replace it with its one-dimensional

counterpart. Second, longitudinal dispersion in the fracture is assumed to be negligible relative

to convection. Third, diffusion in the matrix is assumed to be one-dimensional, in the direction

perpendicular to the fracture. Finally, the flux continuity expressed by the second condition

in (2.5) at the fracture-matrix interfaces is replaced by a source term in the fracture equation,

which depends only on the matrix properties. Under these conditions, whose validity has been

studied by [Roubinet et al., 2012], the temperature distribution inside the fracture is given by

T

f(x, t) = Tinj erfc

 
f

m

p
D

m
T

x

2ub

p
t � x/u

!
. (2.8)

This expression is converted into a probabilistic model for a particle’s diffusion time in infinite

matrix, t

•
d

, as

t

•
d

=

"
f

m

p
D

m
T

t

a

2b erfc�1(R)

#2

, t

a

=
x

u

(2.9)

where R is a uniform random number in the interval [0,1], and t

a

is the advection time spent in

the fracture to reach the position x.

To take into account the impact of potential neighboring fractures (i.e., the finite size of

matrix blocks), we consider the scenario of a fracture f

i

surrounded by i) a fracture f1 located at
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distance l1 on one side of f

i

, and ii) a fracture f2 located at distance l2 on the other side of f

i

. For

each particle that diffuses into the matrix surrounding f

i

, we define P

1
transfer as the probability to

reach fracture f1 without crossing fracture f2, and P

2
transfer as the probability to reach fracture

f2 without crossing fracture f1. These probabilities in the Laplace domain are given by [Feller,

1954]

P̄

1
transfer =

exp(l1
p

s/D

m
T

)

s

1� exp(�2l2
p

s/D

m
T

)

1� exp[2(l1 � l2)
p

s/D

m
T

]
(2.10a)

P̄

2
transfer =

exp(l2
p

s/D

m
T

)

s

1� exp(�2l1
p

s/D

m
T

)

1� exp[2(l2 � l1)
q

s/D

f
T

]
, (2.10b)

where s is the Laplace variable. The numerical inversion of these expressions is performed with

the [Stehfest, 1970] algorithm. The final diffusion time of each particle and its final position after

diffusing in the matrix are computed in two steps. First, we determine Ptransfer, the probability for

a particle to transfer to one of the neighboring fractures with an associated transfer time ttransfer

smaller than the maximum diffusion time t

•
d

, as

Ptransfer = P

1
transfer (ttransfer  t

•
d

)+P

2
transfer (ttransfer  t

•
d

) . (2.11)

Second, we pick a random number U from a uniform distribution on the interval [0,1]: if U is

larger than Ptransfer, the particle does not transfer to the neighboring fractures (i.e., the particle

goes back to its initial fracture) and its diffusion time is equal to t

•
d

(i.e., the assumption of

infinite matrix is valid); otherwise, the particle transfers to one of the neighboring fractures, the

transfer time is defined by solving Ptransfer(t  ttransfer) =U , and the particle transfers to fracture
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f1 if condition

U

Umax
>

l1

l1 + l2
(2.12)

is verified and to f2 otherwise with Umax = Ptransfer. This method enables us to handle the

presence of neighboring fractures in heterogeneous fracture networks. In the context of solute

transport, a comparison between this approach and analytical solutions considering either a

single fracture [Tang et al., 1981] or infinite systems of parallel fractures [Sudicky and Frind,

1982] is provided in [Roubinet et al., 2010b, 2013b].

Finally, when a particle reaches a fracture intersection that forks into multiple fractures,

which fracture it transitions into is determined based on the intersection configuration and flow

rate distribution. The particles can only enter into fractures that have a positive flow velocity

(i.e., a fluid flowing from the studied intersection to another intersection) considering complete

mixing and streamline routing rules [Hull and Koslow, 1986, Berkowitz et al., 1994]. In most

cases, complete mixing is assumed and the probability for a particle to enter into a fracture is

expressed as the ratio of the flow rate in the considered fracture to the sum of the flow rates

leaving the studied intersection. A particular case is considered when a particle can entered into

two fractures: if the closest fracture has a dominant flow rate, the particle goes in priority to this

fracture [Le Goc, 2009a].

2.4 Simulations of heat transfer in geothermal reservoirs

2.4.1 Geothermal reservoir properties

To study heat transfer in realistic geothermal reservoir models, we consider a square

domain of length L = 100 m, whose left and right borders are connected by a fracture network.

The latter has the fractal dimension D = [1,1.3] which has been observed in the natural environ-
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ments [Main et al., 1990, Scholz et al., 1993], and fracture density C = [2.5,6.5] [Watanabe and

Takahashi, 1995]. Three groups of fracture networks, DFN1, DFN2 and DFN3, are defined with

a fracture density set to C = 2.5, 4.5 and 6.5, respectively. For each group, we generate four

fracture networks with a fractal dimension set to D = 1, 1.1, 1.2 and 1.3. Table 2.1 shows the

parameters used to generate these fracture networks which are presented in Fig. 2.1.

Injection and extraction of fluid in these domains are simulated by considering injection

and extraction wells located on the left and right borders of the domains, respectively. Two

hydraulic regimes are applied between these wells in order to study different conditions of the

geothermal exploitation. To this end, we define the Fast Flows regime where the head gradient

is equal to 1.25 MPa as considered in existing studies on geothermal systems [Suzuki et al.,

2015]. For comparison, we also define the Slow Flows regime where the head gradient is set

to 10�2 MPa. Considering a no-flow condition on the bottom and top borders of the domain, a

flow going from the left to right borders of the domains is observed through the interconnected

fracture networks. The corresponding flow velocity fields are computed with the fluid density

r = 103 kg/m3 and the dynamic viscosity µ = 10�3 kg/(m·s), on the interconnected fracture

networks shown in Fig. 2.2.

2.4.2 Heat transfer simulations

Heat transfer is simulated in the interconnected fracture networks presented in Fig. 2.2

assuming an infinite matrix around each domain. For each fracture network and each flow regime,

particles are injected into the fractures that intersect the injection well (left border of the domain),

they are transported across the domain according to the heat transfer particle method presented

in Section 2.3, and their arrival time to the production borehole (right border of the domain) is

recorded. The rock porosity is f = 0.1 and the thermal parameters are provided in Table 2.2.

These form data set (i) from [Lippmann and Bödavarsson, 1983], data set (ii) from [Pruess

et al., 1999], data set (iii) from [Bödvarsson and Tsang, 1982], and data set (iv) from [Geiger
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and Emmanuel, 2010].

Figure 2.3 exhibits the relative temperatures in the fracture network DFN2a with Fast

Flow (Fig. 2.3a) and Slow Flow (Fig. 2.3b), for the thermal parameters representative of the

values found in geothermal fields (Table 2.2). The between-set variability is not significant and

has only minor impact on the temperature curves. Therefore, in the simulations presented below

we use the parameter set (ii) in Table 2.2.

Figure 2.4 shows the corresponding relative temperature curves for the interconnected

fracture networks DFN1a, DFN2a and DFN3a and the Fast Flows (Fig. 2.4a) and Slow Flows

(Fig. 2.4b) regimes. In these figures, the relative temperature T

⇤ is defined as

T

⇤ =
Text �T0

Tinj �T0
(2.13)

with Text the temperature of the fluid extracted at the right extremity of the domain for a

continuous injection, at the left extremity of the domain, of a fluid at temperature Tinj. These

curves are obtained from the cumulative distribution functions (CDFs) of the particle arrival

times using N = 1855 particles, and these results are similar to those obtained from 104 particles.

This empirical CDF T

⇤(t) deviates significantly from the Gaussian CDF G(t), with the

same mean t̄ and standard deviation s
t

, over wide ranges of the fractal dimension D and fracture

density C. This finding is reported in Table 2.3 in terms of the Kolmogorov-Smirnov (KS)

statistic [Lurie et al., 2011] [Chapter 11.8]

SKS ⌘ max
1iN

|G(t
i

)�T

⇤(t
i

)|= max
1iN

⇢����G(t
i�1)�

i�1
N

���� ,
����

i

N

�G(t
i

)

����

�
(2.14)

where {t1, . . . , tN} are the particle arrival times arranged in the ascending order. The KS goodness-

of-the-fit test rules out the hypothesis that the CDF T

⇤(t) is Gaussian and, hence, that heat transfer

in fractured rocks follows Fourier’s law, with any degree of confidence. For example, the 5% (or

20%) level of significance requires SKS not to exceed the critical value S?
KS ⇡ 1.36/

p
N = 0.0316
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(or ⇡ 1.07/
p

N = 0.0248 [Lurie et al., 2011, Table T-13], but the values of SKS in Table 2.3

are more than an order of magnitude larger than S?
KS. Even with the caveat that the mean t̄ and

variance s2
t

of the Gaussian CDF G(t) should ideally be determined from simulations of an

effective model rather than N samples, the discrepancy between SKS and S?
KS is so large as to

demonstrate the anomalous (non Fourier-like) nature of heat transfer in fractured rocks.

To elucidate this anomalous behavior further, we define a relative temperature T ⇤, which

corresponds to the relative temperature T

⇤ for an instantaneous temperature change of the

injected fluid. Figure 2.5 shows the temperature distribution in the interconnected fracture

networks DFN1a, DFN2a and DFN3a for the Fast Flows (Fig. 2.5a) and Slow Flows (Fig. 2.5b)

hydraulic configurations. These results are obtained by transforming the CDFs presented in

Fig. 2.4 into the probability density functions (PDFs). Here 106 particles have been used in order

to obtain smooth curves, and these results are similar to those obtained with 107 particles.

Geothermal performance of fractured reservoirs is often reported in terms of P

f

= 1�T

⇤,

such that P

f

= 0 represents the minimum efficiency of the system as the temperature of the

extracted fluid is equal to the temperature of the (here cooler) injected fluid. Conversely, P

f

= 1

represents the maximum efficiency of the system as the temperature of the extracted fluid is

equal to the (here warmer) initial temperature of the system. Figure 2.6 shows the temporal

profiles P

f

(t) for all considered fracture networks and for both the Fast Flows and Slow Flows

hydraulic regimes. As in Fig. 2.4, these results are obtained using 103 particles and they are

similar to those obtained from 104 particles.

2.5 Results and discussion

2.5.1 Anomalous heat transfer

The results presented in Fig. 2.4 show a different behavior of T

⇤ depending on the

considered fracture density and flow regime. When T

⇤ increases from 0 to 1, the temperature
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of the extracted fluid varies from the initial temperature in the system to the temperature of the

injected fluid. This shows the progressive impact of the cooled injected fluid on the temperature

of the extracted fluid due to the propagation of the cold front from the injection to the extraction

wells. For Fast Flows (Fig. 2.4a), increasing the fracture density from DFN1a to DFN3a results

in delaying the variations of T

⇤, showing that the cold front reaches the extraction well at longer

times when considering larger fracture densities. In this case, the complexity and density of the

fracture networks determine the propagation of the cold front across the domain and increasing

the fracture network density implies an increase of the time required to propagate from the left to

right sides of the domain. Conversely, for Slow Flows (Fig. 2.4b), the impact of the cold front on

the production well is delayed when the fracture density decreases. In this case, the properties of

the matrix blocks have a more important impact on the cold front propagation than the fracture

network properties. For a small fracture densities (DFN1a), the cold front can propagate far

away in the matrix without reaching a fracture, implying that this front reaches the extraction

well at very large times. Increasing the fracture density (DFN2a and DFN3a) implies that the

cold front propagation inside the matrix is limited by the presence of fractures, which results

in reaching the exploitation well at smaller times. These results show that the impact of the

geological structures on the propagation of a cold front depends on the hydraulic regime, as these

structures determine if heat transfer is controlled by the fracture network properties or the size of

the matrix blocks.

Converting the previous results into PDFs enables us to study the anomalous behavior

of heat transfer in our simulations. As demonstrated by the heavy tails observed in Fig. 2.5,

this anomalous behavior occurs for both Fast Flows (Fig. 2.5a) and Slow Flows (Fig. 2.5b)

configurations. This is mostly due to the contrast between the fracture and matrix properties, as

these structures are responsible for fast and slow heat propagation across the domain, respectively.

However, the results presented in Fig. 2.4 reveal that this anomalous behavior is also related to

the heterogeneities of each structure (fracture networks and matrix blocks) whose importance
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is determined by the hydraulic conditions. For Fast Flows, the fracture network complexity

impacts the observed anomalous behavior. In this case, there is no impact of the matrix block

heterogeneities as heat conduction inside these blocks is not limited by their size. Conversely,

for Slow Flows, the matrix block size distribution impacts the observed anomalous behavior as

heat conduction is limited by the size of these blocks.

2.5.2 Performance of geothermal systems

Figure 2.6 depicts the impact of both fracture density and fractal dimension on the

performance of geothermal systems. The fracture networks with small fracture densities are not

sensitive to the fractal dimension for both Fast Flows (Fig. 2.6a) and Slow Flows (Fig. 2.6b)

conditions. This is due to the corresponding interconnected fracture networks which present

small differences when changing the fractal dimension from 1 (Fig. 2.2a) to 1.1 (Fig. 2.2b)

and no differences from 1.1 to 1.2 (Fig. 2.2c) and 1.3 (Fig. 2.2d). This shows the limitation

of characterizing geothermal reservoirs only from core sampling as the related data do not

give information on the connectivity of the domain. In terms of geothermal performance, this

implies that reservoirs with different fracture network properties might have a nearly identical

performance.

As the fracture density increases, from DFN1 to DFN3, the impact of the fractal dimen-

sion D on the geothermal performance P

f

depends on the hydraulic regime. For Fast Flows

conditions (Fig. 2.6, left column), D does not have a significant impact on P

f

, which is equal

to 0 for times larger than 108 sec. For Slow Flows conditions (Fig. 2.6, right column), D has a

significant impact for the largest fracture density considered in this study (DFN3, Fig. 2.6f): an

increase in the fractal dimension, from DFN3a to DFN3d, decreases the reservoir’s performance.

For Slow Flows, P

f

= 0 for times larger than 1012, 1011, and 1010 sec for the fracture networks

DFN1 (Fig. 2.6b), DFN2 (Fig. 2.6d), and DFN3 (Fig. 2.6f), respectively. This shows that

increasing the fracture density causes the performance to decrease.
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The different behavior of P

f

for Fast Flows and Slow Flows conditions is related to the

structural heterogeneities that control heat transfer in fractured domains. As demonstrated in

Section 2.5.1, the fracture network and matrix block heterogeneities are determinant for Fast

Flows and Slow Flows conditions, respectively, and, as demonstrated in Fig. 2.2, increasing the

fracture density and fractal dimension results in more complex structures with more important

heterogeneities. Therefore, broader distributions of the matrix block size are observed with the

presence of small blocks that limit heat conduction in the matrix and reduce the performance of

the systems.

2.6 Conclusion

Quantitative understanding of heat transfer in heterogeneous fractured media is necessary

for economically feasible harvesting of geothermal energy. We used a mesh-free particle tracking

method to model heat transfer in fractured geothermal reservoirs. This approach is capable of

handling realistic discrete fracture networks and has computational efficiency that significantly

exceeds that of standard (mesh-based) numerical methods. This enables us to conduct a series of

two-dimensional heat transfer simulations for a large range of fracture network properties and

experimental conditions and to interpret the corresponding results in terms of anomalous heat

transfer and geothermal performance of reservoirs.

Our analysis leads to the following major conclusions.

1. Depending on hydraulic conditions, the propagation of a cold front across fractured

domains is controlled by either the fracture network (Fast Flows) or matrix block (Slow

Flows) properties.

2. The contrast of properties between fractures and matrix results in anomalous (non Fourier-

like) behavior of heat transfer, which is enhanced by heterogeneity of the fracture networks

(Fast Flows) and matrix blocks (Slow Flows).
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3. For small fracture densities (C = 2.5), different values of the fractal dimension (D =

[1,1.3]) can lead to identical interconnected fracture networks with similar geothermal

performance.

4. In fractured domains with large fracture density (C = 6.5) and fractal dimension (D = 1.3),

a broad distribution of the matrix block size is obtained with the presence of small blocks

that reduce the geothermal performances under Slow Flows conditions.

5. Over a wide range of fracture densities and fractal dimensions, the heat transfer sig-

nificantly deviates from the Fourier law, giving rise to anomalous effective behavior

characterized by long tails.

Although the low-computational cost of our method is attractive, some improvements

could be introduced in future studies. These include incorporation of heterogeneity of matrix

properties, implementation of two-dimensional convection by means of the analytical solutions

developed by [Ruiz Martinez et al., 2014], and extensions to three-dimensional conditions.

In the latter case, the modeled fractures will be represented as two-dimensional elements

and the impact of the domain and structure dimensionality could be studied by progressively im-

proving our model. For example, representing the fractures as rectangles with a one-dimensional

flow [Lee et al., 2001, e.g.,] will allow us to evaluate the impact of the fracture-network di-

mensionality. In comparison with two-dimensional simulations, the larger number of advective

paths connecting the domain borders in three dimensions should lead to a larger distribution

of the advection times spent in the fractures. These fractures could also be represented as

ellipses [de Dreuzy et al., 2013, e.g.,] in which the heterogeneous flow velocity fields expand

the distribution of advective times in comparison with the one-dimensional flow representation.

As flow velocity in the fractures impacts heat propagation in both fractures and matrix, we also

expect broader distributions of temperature of the extracted fluid with a significant anomalous

behavior.
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Finally, this study could be extended to more complex configurations where, for example,

the impact of heterogeneous fracture apertures and randomly distributed fracture angles could be

considered. In order to evaluate the interest of representing different levels of heterogeneity, our

work is related to the uncertainty in site characterization [de Barros et al., 2012, Ezzedine, 2010]

with Monte Carlo simulations.
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(a) DFN1a (b) DFN1b (c) DFN1c (d) DFN1d

(e) DFN2a (f) DFN2b (g) DFN2c (h) DFN2d

(i) DFN3a (j) DFN3b (k) DFN3c (l) DFN3d

Figure 2.1: Fracture networks generated with the fracture network parameters presented in
Table 2.1. The blue rectangles on the left and right sides of the domains represent the injection
and extraction wells of the geothermal systems, respectively.
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(a) DFN1a (b) DFN1b (c) DFN1c (d) DFN1d

(e) DFN2a (f) DFN2b (g) DFN2c (h) DFN2d

(i) DFN3a (j) DFN3b (k) DFN3c (l) DFN3d

Figure 2.2: Interconnected fracture networks related to the fracture networks presented in
Fig. 2.1 and connecting the injection and extraction wells.
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Figure 2.3: Temporal variability of the relative temperature T

⇤ in fracture network DFN2a

with fractal dimension D = 1, for parameter sets (i)–(iv) in Table 2.2.
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Figure 2.4: Temporal variability of the relative temperature T

⇤ in fracture networks DFN1a,
DFN2a, and DFN3a (see Fig. 2.2), for the matrix properties from data set (ii) in Table 2.2
and(a) Fast Flows and (b) Slow Flows conditions.
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Figure 2.5: Temporal variability of the relative temperature T ⇤ in fracture networks DFN1a,
DFN2a, and DFN3a (see Fig. 2.2), for the matrix properties from data set (ii) in Table 2.2
and (a) Fast Flows and (b) Slow Flows conditions.
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Table 2.1: Parameters used to generate alternative fracture networks.

C [-] D [-] q1 [�] q2 [�] r0 [m] b [m]
DFN1a 2.5 1 25 145 10�1 5⇥10�4

DFN1b 2.5 1.1 25 145 10�1 5⇥10�4

DFN1c 2.5 1.2 25 145 10�1 5⇥10�4

DFN1d 2.5 1.3 25 145 10�1 5⇥10�4

DFN2a 4.5 1 25 145 10�1 5⇥10�4

DFN2b 4.5 1.1 25 145 10�1 5⇥10�4

DFN2c 4.5 1.2 25 145 10�1 5⇥10�4

DFN2d 4.5 1.3 25 145 10�1 5⇥10�4

DFN3a 6.5 1 25 145 10�1 5⇥10�4

DFN3b 6.5 1.1 25 145 10�1 5⇥10�4

DFN3c 6.5 1.2 25 145 10�1 5⇥10�4

DFN3d 6.5 1.3 25 145 10�1 5⇥10�4
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Table 2.2: Physical properties of fractured rocks used to simulate heat transfer.

Parameter set (i) Values
Thermal conductivity [W/(m·�C)] 1.5
Rock density [kg/m3] 2700
Rock heat capacity [J/(kg·�C)] 920
Parameter set (ii) Values
Thermal conductivity [W/(m·�C)] 2.1
Rock density [kg/m3] 2650
Rock heat capacity [J/(kg·�C)] 1000
Parameter set (iii) Values
Thermal conductivity [W/(m·�C)] 2
Rock density [kg/m3] 2500
Rock heat capacity [J/(kg·�C)] 1000
Parameter set (iv) Values
Thermal conductivity [W/(m·�C)] 2.5
Rock density [kg/m3] 2500
Rock heat capacity [J/(kg·�C)] 880
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Table 2.3: The Kolmogorov-Smirnov statistic SKS for fracture networks characterized by their
fractal dimension D and fracture density C.

Fractal dimension, D Fracture density, C Kolmogorov-Smirnov statistic, SKS

1.0 2.5 0.472
1.0 3.5 0.470
1.0 4.5 0.456
1.0 5.5 0.451
1.0 6.5 0.447
1.3 2.5 0.466
1.3 3.5 0.470
1.3 4.5 0.473
1.3 5.5 0.448
1.3 6.5 0.403
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Figure 2.6: Temporal variability of the geothermal performance P

f

of the fracture networks
presented in Fig. 2.2 with the matrix properties from data set (ii) in Table 2.2, for the Fast

Flows (left column) and Slow Flows (right column) conditions.
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Chapter 3

Efficient simulations of heat transfer in

fractured rocks

3.1 Introduction

Models of heat transfer in fractured media require information about hydraulic and

thermal properties of both a fluid-filled fracture network and the ambient rock matrix. Features

germane to geothermal reservoirs include (i) a strong contrast between the fracture and matrix

properties resulting in advective and conductive mechanisms in the fractures and matrix, respec-

tively; (ii) topological properties of a fracture network that determine the spatial extent of a

heat extraction area; and (iii) fracture-matrix heat flux exchanges that control the geothermal

performances.

Fracture networks often have a hierarchical or fractal structure [Sahimi, 1993]. There

are many different ways to generate such networks for reservoir modeling. One example of a

fractal network, commonly used to simulate solute transport in hierarchically fractured rocks,

are Sierpinski lattices [Doughty and Karasaki, 2002], [Roubinet et al., 2013a]. Another example

is a Watanabe-Takahashi network [Watanabe and Takahashi, 1995], which often captures key
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attributes of geothermal reservoirs. Both have been successfully employed in reservoir models,

where coupled fluid flow and solute/heat transport are induced by either ambient or forced

hydraulic conditions. However, fractal networks with same geometrical parameters (e.g., fractal

dimension) and similar physical and/or hydraulic properties can look very different from each

other [Roy et al., 2007]. This complicates both in-situ characterization of geothermal systems

and identification of their ”realistic” conceptual representations.

The presence of fractures on a large range of spatial scales and the strong contrast in

properties between fractures and matrix imply that fractured reservoirs exhibit multi-scale het-

erogeneity. They also suggest that standard numerical models of coupled fluid flow and heat

transport processes in these domains have (prohibitively) large computational cost. To tackle

this challenge, we have introduced a mesh-free particle method, which was used to demonstrate

the anomalous (non-Fourierian) behavior of heat transfer in fractured rocks [Gisladottir et al.,

2016]. Here, we use this method to simulate heat extraction in various hierarchical fracture

networks at a small computational cost. Our main objectives are to compare the geothermal

performances for different types of fractal networks and to analyze the impact of network prop-

erties on the computation efficiency of our method. For this purpose, we consider Sierpinski

lattices and Watanabe-Takahashi networks with identical fracture density and smallest fracture

length. Our analysis of the Sierpinski and Watanabe networks reveals that (i) for hydraulic

regimes characterized by slow flow velocities (i.e., ambient hydraulic conditions), the geothermal

performances of the two network classes differ by close to an order of magnitude, and (ii) for

hydraulic regimes characterized by fast flow velocities, the differences are much smaller and

the geothermal performances are of the same order of magnitude. These different behaviors are

mostly due to the differences in topological properties of the Sierpinski or Watanabe networks.

Additionally, the CPU efficiency is not greatly affected by the topological properties (i.e. Sier-

pinski vs. Watanabe), however depending on the hydraulic regime fracture density may or may

not increase the computational cost. For an example of hydraulic parameters used in geothermal
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studies the fracture density increase did not increase computational cost.

3.2 Problem formulation

3.2.1 Fracture networks

Since the introduction of the notion of fractal geometry to geological structures [Man-

delbrot, 1982] and [Turcotte, 1997], the idea has gained support that fracture networks often

have a hierarchical or fractal structure [Sahimi, 1993]. Multiple fracture networks have been

used for transport modeling. Sierpinski lattices are an example of synthetic fractal fracture. They

have been used to simulate dynamic processes in hierarchically fractured rocks [Doughty and

Karasaki, 2002], [Roubinet et al., 2013a]. Watanabe and Takahashi (1995) have introduced

an alternative fractal network, which captures geothermal reservoir characteristics observed in

the field, using only a few parameters that can be obtained from borehole data. In Sierpinski

networks, a flow domain is subdivided into nine equal squares by two orthogonal sets of fractures.

For a domain of size of L, each fracture spacing, both between the fractures and the distance from

the domain border, is L/3. This is referred to as the template. Then N

sq

squares are filled with the

template. When the length of the template’s set of orthogonal fractures is L/3 (and the fracture

spacing is L/32 ), this is known as level 2. The process is then repeated until a desired level is

reached. An example of a level-3 Sierpinski lattice with N

sq

= 3 and orthogonal fracture set with

smallest fracture length equal to L/33 is shown in Figure 3.1. In Watanabe-Takahashi networks,

the number of fractures, N

f

, and the normalized length, r

i

, of the ith fracture (i = 1...N
f

) are

related by

N

f

= int(C/r

D

0 ), r

i

=C/i

1/D (3.1)
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where D is the fractal dimension, and the function int(x) rounds x up to the next integer. The

fracture density C and the smallest fracture length r0 can be estimated from a core sample. The

fracture aperture b is constant and the same for all fractures. A fracture network is generated

by assigning each midpoint of a fracture pair a random variable. There is an equal probability

that the angle between the pair of fractures takes on two prescribed values, q1 or q2. To facilitate

comparison of the Sierpinski and Watanabe networks, both are assigned the same fracture density

and smallest fracture length. The former is defined as the cumulative length of fractures per area

of the domain [Singhal and Gupta, 2010],

r = Â
i

r

i

/L

2 (3.2)

For the Sierpinski lattices the length of the smallest fracture element is used, while for the

Watanabe network the smallest fracture length is r0/L.

3.2.2 Fluid flow and governing equations

We consider steady-state laminar flow of an incompressible fluid in fractures embedded

into impervious surrounding rock matrix. Each fracture is formed by two parallel smooth plates,

resulting in the parabolic (Poiseuille) velocity profile and the average flow velocity u given by

u =�
⇣r

l

gb

2

12µ

J

⌘
(3.3)

where r
l

and µ are, respectively, density and dynamic viscosity of the fluid; J is the hydraulic

head gradient along the fracture; and g is the gravitational acceleration constant. By applying

equation 3.3 to each fracture segment and enforcing mass conservation at the fracture junctions,

a linear system A=hb is formed where h is the vector of the (unknown) hydraulic heads at

fracture junctions [Long et al., 1982, De Dreuzy et al., 2001]. With a known global pressure
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gradient imposed on the boundaries of the domains, the linear system is solved providing the

hydraulic heads necessary to compute the average flow velocity in each fracture of the network.

The particle-based method described in Section 3.2.3, and presented in Gisladottir et al. (2016),

models heat transfer in fractured media by using a solution for a single fracture embedded in an

infinite matrix as a base for a probabilistic model. Heat transfer in a single fracture of aperture,

b, and semi-infinite length is described by coupled boundary-value problems. One, consisting of

an advection-dispersion-equation (ADE), governs temperature in the fracture, T

f (x,x, t). The

other, involving a diffusion equation (DE), represents temperature in the matrix, T

m(x,z, t). The

continuity of temperature and heat flux is enforced at the fracture-matrix interfaces, coupling

these two boundary-value problems. Initially the temperature throughout the domain, both in

the fracture and the matrix, is equal to T0. The same temperature is prescribed along all external

boundaries. The temperature of the injected fluid is equal to Tinj.

3.2.3 A particle-based algorithm for heat transfer

To ascertain the impact of network model selection (e.g., Sierpinski vs. Watanabe

networks) and to evaluate the impact of global network properties on heat transfer, we use the

mesh-free particle method presented by Gisladottir et al. [2016]. For the sake of completeness,

we reproduce it here. The method spans three scales: i) the fracture-matrix scale where heat

transfers by advection in the fractures and conduction in the infinite matrix, ii) the matrix-block

scale where heat conduction is limited by neighboring fracture, and iii) the fracture-network

scale where heat flux conservation is enforced at each fracture intersection and depends on the

corresponding flow rate distribution. At the fracture-matrix scale, an approximate analytical

solution of the boundary-value-problems formulated in Section 3.2.2 takes the form (Tang et al.,

1981)

T

f (x, t) = Tinjer f c

⇣ f
m

p
D

m

T

x

2ub

p
t � x/u

⌘
(3.4)
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It relies on the following simplifications: (i) longitudinal dispersion in the fracture is assumed to

be negligible in comparison with convection, (ii) the ADE equation is averaged over the fracture

aperture, and (iii) heat transfer in the matrix is assumed to be one-dimensional, perpendicular

to the fracture. This analytical solution is inverted in order to evaluate the time tdiff spent by a

”particle” in the matrix for a given displacement in the fracture. To do so, Equation 3.4 is used

as a probabilistic model, which replaces T

f with a uniform random generator R defined on the

interval [0,1], and the result is inverted to compute corresponding random realization of tdiff. At

the matrix-block scale, the effects of potential neighboring fractures are taken into account by

considering the case of a fracture f

i

with one fracture on each side f1 and f2 at distance l1 and

l2, respectively. For a particle leaving fracture f

i

and diffusing into the matrix, we define P

1
t

,

the probability of reaching fracture f1 without crossing fracture f2 and P

2
t

, the probability of

reaching fracture f2 without crossing fracture f1. These first-passage-time probabilities are given

analytically in the Laplace space [Feller, 1954], and back-transformed into the time domain

using numerical inversion with, e.g., the Stehfest [1970] algorithm. Next, we generate Ptransfer,

the probability for a particle to transfer to one of the neighboring fractures with an associated

transfer time ttransfer smaller than the maximum diffusion time tdiff, as

Ptransfer = P

1
transfer

�
ttransfer  tdiff

�
+P

2
transfer

�
ttransfer  tdiff

�
(3.5)

Once the value of Ptransfer is evaluated, we pick a random number U from a uniform distribution

on the interval [0,1]. If U is larger than Ptransfer, the particle does not transfer to the neighboring

fractures, otherwise it does and the transfer time ttransfer is found by solving Ptransfer =U . The

particle transfers to f1 if the condition U/Umax > l1/(l1+l2) holds with Umax = Ptransfer, otherwise

it transfers to f2. At the fracture-network scale, if a particle reaches a fork intersection at the

end of the fracture, the fracture to which it transfers is determined from heat flux conservation.

The latter accounts for the intersection configuration and flow rate distribution as follows. The
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(a) S1 full 

 

(b) S2 full 

 

(c) S3 full 

 
Figure 3.1: Sierpinski networks with levels M = 3 (S1, left), = 4 (S2, center), and = 5 (S3,
right).

particles enter fractures with positive flow taking into account full mixing and streamline routing

rules (Hull, 1986 and Berkowitz, 1994). Assuming that complete mixing takes place, the

probability of a particle to enter into a fracture is the ratio of flow rate in the considered fracture

to the sum of the flow rates leaving the considered intersection. If a particle can enter two

fractures, the particle enters the fracture with dominant flow [Le Goc, 2009b].

3.3 Simulation set up

In order to investigate the importance of network model selection, we consider the

Sierpinski and Watanabe fracture networks embedded into a square matrix domain with side

lengths of 100 m. Figure 3.1 shows Sierpinski lattice networks S1, S2, and S3 with N

sq

=3 and

level M=3, 4, and 5, respectively. The fracture densities and smallest length elements of these

networks are collated in Table 3.2.

For each of the Sierpinski networks S1, S2, and S3, there exists a Watanabe network

with a similar fracture density (within 2% difference) and the same smallest fracture length

(Table 3.2). Those networks are labeled Watanabe network W1, W2, and W3, respectively. They

are shown in Figure 3.2 with the fractures generated by Equation 3.1 (top row) and the backbone
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(a) W1 full 

 

(b) W2 full 

 

(c) W3 full 

 

(d) W1 backbone 

 

(e) W2 backbone 

 

(f) W3 backbone 

 

Figure 3.2: Top row: three Watanabe networks generated by equation (1) for the parameters in
Table 3.2. Bottom row: backbones of these networks.

of those fracture networks (bottom row). The Watanabe networks have the fractal dimension D

whose values are found in the natural environment [Main et al., 1990], [Scholz et al., 1993] and

is employed for geothermal characteristic networks [Watanabe and Takahashi, 1995]. For both

networks only the fractures belonging to their respective backbones are identified based on the

velocity field.

An injection well spans the left side of the computational domain, and the extraction

well represents its right side. Fluid flow takes place from left to right through the interconnected

network. To show the robustness of the prediction we look at two different hydraulic regimes

between two boreholes set up for the geothermal exploitation. The first regime, called Fast flow,

is defined with a head gradient of 1.25 MPa and is employed in existing studies on geothermal

systems [Suzuki et al., 2015]. The second regime, called Slow flow, is defined with a head
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gradient set to 10�2 MPa and is used for comparison. Bottom and top borders of the domain

are considered to have no-flow boundaries. The flow velocity fields are generated as described

in Section 3.2.2 with fluid density and dynamic viscosity, r
v

= 103 kg and µ = 10�3 kg/(m s),

respectively. The physical properties are thermal conductivity, k = 2.1 W/(m·�C); rock density,

r
f

= 2650 kg/m3; and rock heat capacity, c

p

= 1000 J/(kg·�C). The Peclet number is defined as

Pe = (L ·uave)/a where L=100 m is the length of the domain; uave is the average flow velocity in

the network (Table 3.1); and a is the thermal diffusivity a = k/(r
f

c

p

).

Table 3.1: Global parameters for Sierpinski and Watanabe networks generation.

Fracture Density Level Frac. Density Smallest fracture
[-] M [-] parameter, C [-] length [m]

S1 0.109 3 3.7
S2 0.147 4 1.23
S3 0.185 5 0.41
W1 0.109 45 3.7
W2 0.149 22.3 1.23
W3 0.184 13.87 0.41

Reporting on geothermal reservoirs is often done in the form of P

f

= 1�T where the

minimum efficiency of the system is represented as P

f

= 0 because the temperature of the

extracted fluid is equal to the temperature of the (here cooler) injected fluid. Therefore the

maximum efficiency of the system is represented as P

f

= 1 corresponding to cases where the

temperature of the extracted fluid is equal to the (here warmer) initial temperature of the system.

Figure 3.3 shows the temporal profiles P

f

(t) for all six networks for both hydraulic regimes Fast

flow and Slow flow. These simulations were done using 5 ·103 particles and they are similar to

simulations performed with 104.
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Figure 3.3: The Performance of the system as a function of time for heat transport between
two boreholes 100 m apart across fracture networks: S1, S2, and S3 (Figure 1) as well as W1,
W2, and W3 (Figure 2) for Slow flow (left) and Fast flow (right)

3.4 Results and discussion

In Figure 3.3 we look at the performance of the system over time at the extraction

borehole on the right-hand side of the domain for all six interconnected networks S1, S2, S3,

W1, W2, and W3 presented in Figure 3.1 and Figure 3.2. For Slow flow (left), the Watanabe

networks have significantly faster drop in the performance, almost an order of magnitude, than

the Sierpinski networks in which the particles appear to spend more time in the matrix. This is

due to the fact that there are far more preferential pathways, fractures that span the entire domain

left to right, in the Watanabe networks. When performing a simulation with the same hydraulic

head on those two networks, such as here, it results in higher average velocity in the Watanabe

networks (due to higher number of preferential pathways) then the Sierpinski networks as is

shown in Table 3.1. The increased velocity causes lower probability for the particles to enter

the matrix. For both the Watanabe network and the Sierpinski network as the fracture density

increases the arrival times decrease due to the limitations of the matrix block. Although there is

eventually a difference between W1 and W2, the performance is quite similar past the 50% drop
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in the performance.

Table 3.2: Network flow velocity values for Sierpinski and Watanabe networks for Slow and
Fast flow.

Velocity Slow flow Slow flow Slow flow Fast flow Fast flow Fast flow
m/s Ave Min Max Ave Min Max
S1 6.37 ·10�5 9.57 ·10�7 3.05 ·10�3 7.96 ·10�2 1.20 ·10�4 3.81 ·10�1

S2 3.95 ·10�4 4.11 ·10�8 3.12 ·10�3 4.94 ·10�2 5.14 ·10�6 3.90 ·10�1

S3 2.31 ·10�4 6.25 ·10�10 3.15 ·10�3 2.89 ·10�2 7.82 ·10�8 3.94 ·10�1

W1 1.18 ·10�3 2.96 ·10�5 3.86 ·10�3 1.47 ·10�1 3.70 ·10�3 4.82 ·10�1

W2 1.16 ·10�3 9.46 ·10�6 3.35 ·10�3 1.14 ·10�1 1.18 ·10�3 4.19 ·10�1

W3 1.17 ·10�3 6.00 ·10�8 3.47 ·10�3 1.47 ·10�1 7.49 ·10�6 4.34 ·10�1

For the Fast flow (right) the velocity variation (Table 3.1) between the networks is not

as high and hence the variance of the performance between Sierpinksi and Watanabe networks

is not as stark for the Fast flow regime. Yet again the Watanabe networks have faster drop

in the performance then the Sierpinski networks, although the difference is not as dramatic.

For the Watanabe networks, initially there is not a large difference between the performances

for the different fracture density networks, although the lowest fracture density network W1’s

performance drops slightly faster to begin with. Eventually about approximately at the mean this

trend reverses and the performance of W1 drops slower than for W2 and W3 where the highest

fracture density network W3 has a faster drop in the performances. For Sierpinski lattices the

low fracture density network S1 starts off with faster drop in performance but also reverses roles

with the high-density fracture network S3 as time passes this happens slightly before reaching

the mean. Over all the main features of the fracture network is of importance in the Fast flow and

the matrix block only play a minor role and mostly somewhere after the mean of the performance

drop. The Peclet numbers for networks S1-S3 and W1-W3 generated based on the average

velocity presented in Table 3.1 and defined in Section 4.4 are on the [6.95 ·103 1.88 ·105] range

for Slow flow regime and the [3.15 ·106 2.35 ·107] range for Fast flow regime both of which are

advection dominant. To begin with the all three Watanabe networks have a similar performance
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eventually past the 50% level of drop the W1 performance drops slower then the other two

Watanabe networks. For the Sierpinski networks initially S1 performance drops of faster then S2

and S3, who have similar drop, but once past the 50% performance drop this reverses. Although

the difference is not as much S1’s performance drops slower then the other two.

Figure 3.4: Temporal variability of the relative temperature of fracture networks (left) S1, S2,
S3, (see Figure 1) and (right) W1, W2, and W3 (see Figure 2) for Fast flow hydraulic regime.

Figure 3.5: The CPU for the varying fracture density for the Watanabe and Sierpinski Networks
for Fast flow and Slow flow.

To elucidate the anomalous (non Fourier like) nature of heat transfer in fracture rocks

we define a relative temperature as the instantaneous temperature change of the injected fluid.
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In Figure 4 we see the temperature distribution for the S1, S2, S3, W1, W2, and W3 for Fast

flow and Slow flow regimes. These results are obtained by taking a PDF of the original CDF

distribution of the arrival times. The heavy tail found in Figure 3.4 demonstrates that this

anomalous behavior is found in for all of the Sierpinski and Watanabe networks in the Fast flow

regime. Its presence is due to fracture properties as they influence fast heat propagation across

the domain.

In Figure 3.5 we look at the computational cost of running the simulations of heat

transport across our 100 m domain for the six networks S1, S2, S3, W1, W2, and W3 producing

the results presented in Figure 3.5 as a function of their fracture density which is found in

Table 3.2. For both the Sierpinski and the Watanabe networks there is significant higher CPU

usage for Slow flow hydraulic regime for high fracture density networks. However in both case

the increase is not significant for low fracture density networks. Interestingly enough for the

hydraulic regime representative of those used in geothermal field studies Fast flow (Suzuki et al.

2015) increasing the fracture density does not increase computational cost, this applies to both

Sierpinski and Watanabe networks.

Figure 3.6: The temporal variation of the performance drop of the system over 100 m to levels
of 80% and 50% for varying degrees of fracture density for Fast flow hydraulic regime.

From Figure 3.6 we conjure that the time it takes the performance drop of the system to

level of 80% and 50% performance has more dependence on the type of fracture network then
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the density of the network itself. There is more significant difference on the 50% performance

drop between Watanabe and Sierpinski network then for the networks for 80% drop.

3.5 Conclusion

We use a computationally light mesh-free particle method to perform numerical simula-

tions on discrete fracture networks representative of a fractured porous medium. The particle

method is applied to two different networks, Sierpinski and Watanabe networks, with three sets

of parameters for fracture density and smallest fracture length. For all six simulations, we have

reported on performance of the system, in particular: pulse injection anomalous behavior; CPU

expenditure; and levels at which we project 20% and 50% performance drops.

The results show that depending on hydraulic conditions, the propagation of a cold front

across fractured domains is controlled by either the fracture network (Fast Flows) or matrix

block (Slow Flows) properties. For fast flow both Sierpinski (S2 and S3) and Watanabe (W2 and

W3) demon straight similar behaviors within in the network type although the density increases.

However both of their lower density networks S1 and W1 very from their network type past the

50% performance drop, although S1 additionally varies from S2 and S3 to begin with. There

is a stark contrast between the performance drop of all three Sierpinski and all three Watanabe

networks. This in turn means that the performance drop of the system to levels of 80% and

50% are far more dependent on the type of network rather then fracture density for Fast flow

hydraulic regime. The heat transfer significantly deviates from the Fourier law, over a wide

range of fracture densities, giving rise to anomalous effective behavior characterized by long

tails. Additionally the hydraulic regime has far more impact then the topological properties as for

an example of a hydraulic regime used in geothermal field studies Fast flow the computational

cost did not significantly increase with increased fracture density.

Our results demonstrate that our algorithm takes a fraction of the time that it would take
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a mesh based numerical solutions of heat transfer equations. To further quantify the relative

improvement we are engaged in further quantitative comparison of the particle method against a

mesh method for a particular physical fracture example. Additionally, extending the studies to

incorporate heterogeneity of matrix properties and for example randomly distributed fracture

angles (Watanabe network) and/or heterogeneous fracture apertures (Watanabe and Sierpinski

network). Our work is connected to uncertainty in site characterization [Ezzedine, 2010] with

Monte Carlo simulations.

We presented computationally efficient quantitative forecasting of site-specific geother-

mal energy extraction simulations of heat transfer between two boreholes. The hydraulic regime

is the key determinant in the computational efficiency of the method and its translation into

a velocity field, determined by the conceptualization of the chosen network, is to critical on

geothermal performance.
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Chapter 4

Lagrangian simulations of heat transfer in

fractured rocks

4.1 Introduction

Modeling heat transport in fractured porous media is of importance in many applications.

The structural properties of ambient rocks can be impacted by heat conduction as it can modify

rock alteration patterns [Xu and Pruess, 2001] as well as reopen or create new microfractures

[Wang et al., 1989; Lin, 2002]. In some cases heat variations in fractured medium can cause

seismic activity when performing enhanced geothermal energy harvesting [Gunasekera et al.,

2003; Chen and Shearer, 2011]. In enhanced oil harvesting heat transfer is of importance since

oil viscosity can be reduced by injecting hot water or steam, to increase the rock temperature

[Al-Hadhrami and Blunt, 2001]. For nuclear waste management, it is of importance to prevent

leakage due to heat generated by radioactive decay [Xiang and Zhang, 2012; Wang et al.,1981].

Although heat transport in fractured porous media is of importance in many applications,

one particular application is geothermal energy production. The harvesting process requires

extracting geothermal fluid from a reservoir through boreholes. After the heat has been extracted
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from the fluid the fluid is re-injected into the reservoir now at a lower temperature. The re-

injection is critical to maintaining the performance of the reservoir as it maintains its pressure.

Additionally, it minimizes the environmental impact of the production as it prevents onsite lagoon

formations. Although the re-injection boreholes are vital, they run the risk of introducing cooler

fluid to a production site and thus causing performance drop. It is therefore critical to having a

thorough understanding of the interplay between the production and the re-injection boreholes

when designing and engineering the locations of such boreholes. This interplay can be modeled

as a heat transfer in fractured porous medium using our method.

The complexity of simulating heat transfer in fractured porous media is due to the stark

contrast between thermal and hydraulic properties in the advective fluid-filed fractures, the

conduction in the ambient matrix (heat storage medium ) [Bruel, 2002, Kolditz, 1995], as well as

capturing the heat exchange between the two domains [Carrera et al., 1998, Neretnieks, 1983].

Additionally, the spatial extent of the exchange area is dependent on the topography, whose

multi-scale nature of fracture lengths (meter-scale) and aperture (millimeter-scale) adds another

layer of complexity [Bonnet et al., 2001, Bour and Davy, 1999, Neuman, 2005]. Determining

the topology and the heat transfer across it directly determines the reservoirs heat extraction

potential.

To do the transport processes justice the models have to account for the presence of

fractures (with different hierarchy of scales). The representative elementary volume might

not apply to such fractured media, rendering standard homogenization [Long et al., 1982,

Painter and Cvetkovic, 2005, Roubinet et al., 2010a] or single-continuum advection-dispersion

equation(ADE) models infeasible. To address this problem in solute transport, two frameworks

have been proposed. In one of the frameworks, the fractured rock is treated as a stochastic

continuum with random field transport properties. Either the assumption is made that there is a

scale where the stochastic-advection-dispersion equation (SADE) is valid [Neuman, 2005] or

that there is no such scale and therefore using other methods e.g. particle methods continuous
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time random walk models [Berkowitz and Scher, 1997]. The other framework, discrete fracture

network (DFN), does not assume continuum but instead accounts for dominant fractures. While

the DFN framework is able to capture the multi-scale phenomenon (millimeter aperture for

fractures in multi meter domains fractures) involved in modeling dominant fractures and the the

distinct flows and thermal properties, it can also be prohibitively computationally heavy [Karra

et al., 2018]. Both deterministic [Dverstorp et al., 1992, ?] and stochastic [Cacas et al., 1990,

Ezzedine, 2010] fracture networks have been used in DFN models.

The requirements of numerical schemes with multi-scale meshing render these models

computationally prohibitive even for methods using nonuniform meshes. A simulation of a

uniform mesh for the same governing equations, boundary, and initial conditions, without a super

computer would require a drastic simplification. On the other hand non-uniform mesh, although

computationally more efficient, often requires manual adjustment with each alteration of the

fracture network. Our results show that the particle method presented in this paper produces

substantial results/insight with dramatically reduced computational complexity, while capturing

the multi-scale geometry of physical processes found in nature for a variety of network.

The CPU efficiency of such particle methods is the motivation for the development

of mesh-free particle based solvers for transport in fracture [Painter et al., 2008], and in our

previous work, mass and heat transport in fracture networks with one dimensional conduction in

the matrix, [Roubinet et al., 2010b] and [Gisladottir et al., 2016] respectively. Here we develop a

more general approach that does not make this assumption. Instead in our enhanced approach

accounts for both transversal and longitudinal, two dimensional, conduction in the ambient

matrix for heat transfer, while achieving substantially improved computational efficiency. We

are not aware of a similar method for 2D conduction in the matrix. Some of the literature makes

the claim that one-dimensional conduction is sufficient for modeling purposes [?], where as

other studies demonstrate that the two-dimensional conduction is an important mechanism in

the modeling [Kolditz, 1995, Ruiz Martinez et al., 2014, ?]. Our results shows that in some
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parametric regime the former does apply while in others the multi-dimensional conduction is

required. The mesh-free numerical particle method that accounts for two dimensional conduction

is presented in Section 4.3. In Section 4.4 shows numerical experiments with one- and two-

dimensional conduction in the matrix heat transfer. Then in Section 4.5 the results from the

simulations are interpreted and discussed.

4.2 Problem Formulation

For the purpose of studying heat transfer in fractured porous media, we consider the

impact topography and the physical assumptions of conduction in the matrix on the heat trans-

fer - specifically the implications of using multi-dimensional conduction as compared to one

dimensional conduction. The Sierpinski latices representing the fracture network are described

in section 4.2.1, the fluid flow is introduced in 2.2.2, and the heat transfer processes with

multi-dimensional conduction in the matrix are presented in section 4.2.2.

4.2.1 Fracture Network represented by Sierpinski latices

The fractal geometry is found in geological structures as is seen in fracture networks who

often have a hierarchical or fractal structure [Mandelbrot, 1982, ?]. Multiple fracture networks

have been used for transport modeling. Sierpinski lattices are an example of synthetic fractal

fracture patterns whose have been used to simulate dynamic processes in hierarchically fractured

rocks [Doughty and Karasaki, 2002, Roubinet et al., 2013a]. In Sierpinski networks, domain is

subdivided into nine equal squares by two orthogonal sets of fractures. For a domain of size of L,

each fracture spacing, both between the fractures and the distance from the domain border, is

L/3. This is referred to as the template. Then Nsq squares are filled with the template. When the

length of the templates set of orthogonal fractures is L/3 (and the fracture spacing is L/3), this is

known as level 2. The process is then repeated until a desired level is reached. An example of a
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level-3 Sierpinski lattice with Nsq = 3 and orthogonal fracture set with smallest fracture length

equal to L/3 is shown in Figure 4.1.
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(a) SL1 (b) SL2 (c) SL3

Figure 4.1: Sierpinski networks with levels 1, 2, and 3, respectively SL1, SL2, and SL3.

4.2.2 Heat transfer in fracture-matrix systems

The Particle method presented in section 4.3 offers a solution to the problem of heat

transfer in fractured porous medium. It is derived from the solution of the problem of heat transfer

in a single fracture with aperture b in a infinite matrix. The formulation of a single fracture in an

infinite matrix is as follows. The matrix is represented by Wm = {(x,z) : 0  x < •, |z|� b/2}

and the fracture by Wf = {(x,z) : 0  x < •, |z|  b/2}. The advection-dispersion equation

(ADE) for the fluid temperature in the fracture satisfies

∂T

f

∂t

+u

∂T

f

∂x

= D

f
L

∂2
T

f

∂x

2 +D

f
T

∂2
T

f

∂z

2 + f , (x,z) 2 Wf, (4.1)

where the fluid velocity computed in Section 2.2.2 is u, the forcing term is defined as f =

T0ud(x)H (t), and D

f
T

and D

f
L

are the transverse and longitudinal dispersion coefficients, re-

spectively. The definition of the coefficients are as follows D

f
T

= lf
T

/(rc) + E

f
T

/(rc) and

D

f
L

= lf
L

/(rc)+E

f
L

/(rc), where the fluids’ heat capacity is c; the transverse and longitudinal

thermal conductivity coefficients are lf
T

and lf
L

, respectively; The transverse and longitudinal

thermal dispersion coefficients are E

f
T

and E

f
L

, respectively [Yang and Yeh, 2009]. With an
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ambient matrix impervious to flow, the diffusion equation (DE) governing the temperature in the

matrix, T

m(x,z, t), is

∂T

m

∂t

= D

m
L

∂2
T

m

∂x

2 +D

m
T

∂2
T

m

∂z

2 , (x,z) 2 Wm, (4.2)

where D

m
T

and D

m
L

are the transverse and longitudinal dispersion coefficients, respectively. The

definitions of of the coefficients are as follows D

m
L

= le

L

/c

e

and D

m
T

= le

T

/c

e

, the effective heat

capacity of the matrix is c

e

; and the transverse and longitudinal thermal conductivity coefficients

in the matrix are le

T

and le

L

, respectively.

The continuity of heat and temperature is ensured with the following conditions at the

fracture-matrix interfaces

T
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where c

s

and r
s

are the heat capacity and density of the solid phase, respectively; the matrix

porosity isf; and fm = [f+(1�f)r
s

c

s

/(rc)]. and equations (4.1) and (4.2) have the following

initial conditions

T

f(x,z,0) = T

i

(x,z), T

m(x,z,0) = T

i

(x,z) (4.4)

and boundary conditions

T
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,
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i

, T

m(x,•, t) = T

i

(4.5)
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4.3 Particle method for heat transfer in fractured media with

two dimensional diffusion in the matrix

In previous work, we presented Lagrangian simulation using a particle method for heat

transport in fracture media with one dimensional conduction in the matrix, [Gisladottir et al.,

2016]. Here we expand on that method by presenting a particle method with multi-dimensional

conduction in the matrix.

The method takes place at three scales: the fracture-matrix scale where the heat transfer

is captured by conduction in the infinite matrix and advection in the fracture (Section 4.3.1);

the matrix-block scale, where heat conduction is restricted because particles might transfer to

neighboring fractures (Section 4.3.2- 4.3.2); and the fracture network scale, heat flux conservation

is ensured by probabilistically determining which fracture enters using the flow rate distribution

and intersection configuration (Section 4.3.2).

4.3.1 Probabilistic expression of temperature in single fractures

For the fracture-matrix scale, we use the boundary-value problem (4.1)–(4.5), which

is simplified to lend it self to a closed form solution [Ruiz Martinez et al., 2014]. For fluid

temperature in the fracture with constant injection, the ADE with multidimensional conduction

has an analytical solution given by

T
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where R=(f
p

DTDL)/(ub), R0 =R

2+1 and R1 =R

4+R

2+2. We observe the fluid temperature

at an observation point x = L, for a finite observation time tmax. Let Tmax = max{T (t;x = L) :
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0  t  tmax}, the maximum temperature reached there during the observation time. Then using

(4.6), at x = L, and normalizing with Tmax we determine the cumulative distribution function for

the fluid temperature at time t to be represented by

T

c

(t;x = L) =
T

f (t;x = L)

T max
, t 2 (0 t

max

) (4.7)

T

c

is a continuous function which is monotonically increasing on the domain [0 1] hence fulfilling

the properties of a CDF. Thus the CDF representing fluid temperature at a given point in space,

L, is treated

T

c

(t;L) = P(t < t) (4.8)

resulting in the probabilistic cumulative distribution of the relative temperature as a function of

time.

However, our goal is to understand the heat propagation, and thus the distribution of how

heat traverse through the system. The CDF of the heat distribution T

c

(t;L) effectively describes

the number concentration of particles having arrived at L at time t. We are interested in the

probabilistic distribution of the diffusion time, i.e. the time that it takes a certain heat particle to

arrive to L. For this purpose equation 4.8 is inverted. From this distribution the arrival time is

drawn. We achieve this by by replacing P(t<t) with a uniform random variable U 2 [0,1], and

the function is then evaluated for t using a global Newton-Raphson method.

4.3.2 Accounting for the presence of neighboring fractures

For the transport in the network the effects of the neighboring fractures need to be taken

into account (i.e. the finite size of the matrix blocks). This is done by first segmenting the fracture

and identify the time it takes a particle to cross each segment (section 4.3.2), and then using that

information by determining weather the particle crosses the segment (remains in the fracture) or

transfers to a neighboring fracture using a particle transfer process described in section 4.3.2.
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Figure 4.2: Segmenting the fracture

Segmenting the fracture

We consider a segment, s, of the fracture with length Ls = send �sbeg. The time it

takes to transverse segment s is a random variable d described by corresponding cumulative

distribution function (CDF). The distribution for the time it takes to travel from the origin of the

fracture to the beginning of the segment, t
beg

, is represented by T

c

(t;L = s
beg

). Similarly the

distribution for the time it takes to travel from the origin of the fracture to the end of the segment

t
end

is the T

c

(t;L = s
end

). It follows, that

tend = d+ tbeg (4.9)

Moreover, we observe that d and t
beg

are independent random variables. It follows that

cumulative distribution function for t
end

is equal to the convolution of the cumulative distribution

function of t
beg

and the probability density function of d, or [Miller, 2017]:

T

c

(s;send) =
Z •

0
T

c

(s� t;sbeg) f

d(t)dt

(4.10)

where f

d(t) is the PDF for d.

Unfortunately 4.10 does not lend itself to a closed form solution for f

d(t). However, we can
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derive f

d(t) numerically as follows.

First, by discretizing the timeline into time increments d, we define the discrete sequence

{c

i

: c

i

= T

c

(iDt;send)}. Full definition of CDF i.e. P(t  idt). It follows that this sequence

defines a discrete CDF T

0
c

corresponding to the continuous CDF of T

c

. Further define the

sequence {e

i

: a0 = c0;e

i

= c

i

� c

i�18i > 0}. It follows that the sequence e

i

, defines the discrete

PMF, corresponding the CDF at send. We similarly define the PMF corresponding to the CDF

at send, by the sequence {b

i

, i >= 0}, using T (idt;sbegin}. For any discrete random variable X

values in the non-negative integers {0,1, ...}, then the probability generating function of X is

defined as [Miller, 2017]

G(z) = E(zX) =
•

Â
x=0

p(x)zx, (4.11)

where p is the probability mass function of X . The power series converges absolutely at least for

all complex numbers z with —z—  1.

From this, and using the sequences above we obtain the probability generating functions
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D

i

s

i (4.12)

Then it follows that Gbeg is the probability generating function for the discrete distribution

corresponding to T (idt;sbegin}. Similarly, Gend, is the probability generating function for the

discrete distribution corresponding to T (idt;send}. By reducing dt to smaller and smaller values,

we can make the correspondence arbitrarily close to the continuous version of the distribution.

Lastly we define Gd as the generating function for the values of d and D is d’s probability mass

function. Our goal is to solve As before, since tbeg and delta are independent, their sum is given

by the convolution of their respective generating functions, giving us [Miller, 2017]

Gend(s) = Gbeg(s)Gd(s) (4.13)
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We seek to calculate the coefficients of Gd(s), effectively inverting the convolution. By matching

the corresponding powers of s on each side this is relatively straight forward (assuming b0 is not

0 for that special case ), and we get: [Miller, 2017]
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This is the equivalent of a lower diagonal triangle matrix and can be calculate iteratively. We

therefore obtain:
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and its corresponding numerical cumulative distribution for d as

{h

i

: h0 = D0;h

i

= D

i

+h

i�18i > 0} (4.16)

Using this discrete cumulative distribution of the relative temperature of the segment s we use

equation 4.8 to determine the time for heat propagation across the segment s.

Td(t) = P(t<t) (4.17)

providing a probabilistic cumulative distribution of the relative temperature in segment s as a

function of time.

To randomly draw the arrival times of the particles from this distribution P(t<t) is

replaced with U a uniform random generator, where U 2 [0,1]. Since Td has a numerical

representation (see Equation 4.16) the function is evaluated with a numerical approach, by

identify the value in {h} that U corresponds with or the interval in {h} that it lives on. In the

former case the index on {h} provides the index in the time vector that is our diffusion time. In
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the later case, extrapolation provide the td.

Using this approach does introduce an error for fd(t) at very small t due to a numerical

instability at the boundary in fend(t) and fbeg(t) to address that the first element of the PMF

vectors is evaluated for the functions is evaluated at a slightly larger time value then t0. This

avoids the instability and the margin of error that it introduces in the mass of the probability mass

function ranges from 10�6 to 10�2 depending the fracture and hydraulic properties. Additionally,

the analytical solution (see Equation 4.6) only holds true for t > tmin and therefore for values

smaller then that one dimensional conduction is assumed in the matrix and the heat transfer

approach from our previous work [Gisladottir et al., 2016] is applied.

Particle transfer

The effects of a neighboring fracture are incorporated with particle transfer. For this

purpose we consider the case where there are three parallel fractures where one is located at l

i

,

fracture of origin, another above, f1 located at l1, and fracture below, f2 located at l2. Noting that

the distance between the fracture of origin and the fracture above (|l
i

� l1|) does not have to be

equal to the distance between fracture of origin and the fracture below (|l
i

� l2|). Each particle

that conducts into the matrix, leaving the fracture of origin, has the probability of reaching

fracture f1 without crossing fracture f2, P

1
transfer. The same applies for its probability of reaching

fracture f2 without crossing fracture f1, P

2
transfer. In La place domain these probabilities are

defined as [Feller, 1954]

P̄

1
transfer =

exp(l1
p

s/D

m
T

)

s

1� exp(�2l2
p

s/D

m
T

)

1� exp[2(l1 � l2)
p

s/D

m
T

]
(4.18a)
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exp(l2
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s

1� exp(�2l1
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]
, (4.18b)
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where s is the Laplace variable. These expressions numerical inversion is found using the method

from [Stehfest, 1970]

This solution, of first passage time, assumes 1D conduction in the matrix. First passage

time for when a particle escapes a strip of parallel barrier is the same for Brownian motion with

1D conduction and 2D conduction. If there are particles traveling in a domain with three parallel

fractures at y = 0, y = l1 and y = l2 (see Figure 4.3). The transport across the 2D domain is

composed of two components (C
L

(t),B
T

(t)). The first component represents the transport in the

longitudinal direction and the second the transport in the transverse direction. The transverse

transport is governed by Brownian motion and the particles are released into the system from the

fracture at y = 0 into the system. They can reach fractures located at y = l1 or y = l2 in which

case they are absorbed. We are interested in the First Passage Time of the particles reaching those

fractures. Since the second component of the process is not influenced by the first component

(i.e. the second process is independent of where it is located in the x).

T = inf{t � 0 : B

T

(t) = l1 or l2} (4.19)

Therefore, the solution for First Passage Time with 1D conduction introduced by Feller in 1954

will provide the time it took a particle to conduct through the matrix between two parallel plates

with two dimensional conduction (Prof. Williams, communication). Although the assumption

is made here that the particle enters the neighboring fracture at a point perpendicular to where

it left the fracture of origin. The time that a particle takes conducting in the matrix and where

it travels two are determined in the following way. First we identify the the probability for a

particle to transfer to a neighboring fracture, Ptransfer, and its corresponding transfer time ,ttransfer

smaller than the maximum conduction time t

•
c

, as follows

Ptransfer = P

1
transfer (ttransfer  t

•
c

)+P

2
transfer (ttransfer  t

•
c

) . (4.20)
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Figure 4.3: Three parallel fractures. The particles originate from the fracture at y = 0 and can
diffuse to fractures located at y = l1 or y = l2 where they are absorbed.

Next a random number U is drawn from a uniform distribution of the interval [0,1]. IF U <

Ptransfer the particle is assumed to transfer and the value is used to determine transfer time by

solving Ptransfer(t  ttransfer) = U . Otherwise the particle does not transfer and is consider to

return to its fracture of origin displaying behavior of a single fracture in an infinite matrix which

is therefore used to calculate the conduction time, t

•
c

, to cross a set distance of the segment of

the fracture. If a particle transfer takes place, the particl transfers to fracture f1 if

U

Umax
>

l1

l1 + l2
(4.21)

holds true. Otherwise it transfers to f2 with Umax = Ptransfer. If a particle crosses the entire length

of the fracture, with out transferring to a neighboring fracture during its time in the matrix, it

reaches an intersection which forks into multiple fractures. The fracture that the particle enters at

the intersection is based on the configuration of the intersection and the flow rate distribution. The

particle can only enter a fracture whose flow is leaving the intersection (i.e. positive velocity) and

complete mixing and streamline routing rules are assumed [Hull and Koslow, 1986, Berkowitz

et al., 1994]. The probability of a particle entering a fracture with a positive velocity is based on

the flow rate ratio between the fractures that have a potential of being entered. In the special case

when a particle can enter into two fractures, then if the closest fracture has a dominant flow rate

the particle has a priority of enter set fracture [Le Goc, 2009a].
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4.4 Simulations

4.4.1 Heat transfer simulations

To study the heat transfer we consider a square domain of length L = 0.5 m across which

there is an interconnected fracture network in the form of Sierpinski lattices. For the Sierpinski

networks, the Nsq = 3 and the simulations are performed on Sierpinski networks with levels

1, 2, and 3, which is presented in Figure 4.1. The flow across the network is assumed to enter

the fractures intersecting the left side of the domain and exit through the fracture on the right

hand side of the domain. To study different hydraulic regimes two different heat gradients are

applied. The hydraulic regime i) applies a gradient of 2.3 ·10�3 and hydraulic regime ii) is one

order magnitude smaller or 2.3 ·10�4. For the top and bottom boundary no-flow conditions are

assumed and the flow travels through the interconnected network. The flow velocity fields are

calculated using a fluid density r = 103 kg/m3 and dynamic viscosity µ = 10�3 kg/(m·s).

The Lagrangian heat transfer simulation is performed on the interconnected fracture

networks presented in Figure 4.1 where the domain is considered to be in an infinite matrix.

For each of the fracture network and each flow regime two heat transfer process are simulated

where the particles are injected into the fractures intersecting the left hand side of the domain

and then transferred across the domain until they reach the right hand side. The first heat transfer

process transports the particles across the domain according to the particle method presented in

Section 4.3.2. In for comparison the latter assumes that there is no transfer between the fractures

(i.e. each fracture is treated as it is in an infinite domain). The thermal arrival is recorded. The

rock porosity is f = 0.78. Thermal parameters are provided in Table 2.2.

In Figures 4.5-4.6 we look at the relative temperature curves for heat transfer across the

interconnected networks S1, S2, and S3, with hydraulic regime i) with one-dimensional and two

dimensional conduction in the matrix, respectively. Here the relative temperature T

⇤ is defined
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as

T

⇤ =
Text �T0

Tinj �T0
(4.22)

the temperature of the fluid at the right side of the domain, representing the the extraction site, is

Text, and the temperature of the fluid at the left side of the domain with continuous injection is

Tinj. These curves are obtained from the cumulative distribution functions (CDFs) of the particle

arrival times using N = 5000 particles, and these results are similar to those obtained from 104

particles.

4.5 Results

4.5.1 Comparison

To demonstrate the effectiveness of our particle transport across segmented fracture

approach in section 4.3.2 we compare it against the analytical solution for a single fracture in

an infinite matrix found in equation (4.6). Lets consider the case of a fracture of length L = 0.5

m in an infinite domain. The fracture is segmented into two parts. A particles crosses the first

segment using equations (4.6)–(4.8) to determine the conduction time t

c

. The conduction time

for the second segment is determined using the approach presented in Section 4.3.2. This is done

for 5000 particles and the temperature profile it produces is plotted (green circles) against the

analytical solution (red line) in Figure 4.4. Our result demonstrate that the probabilistic method

captures the ADE behavior of the analytical solutions.

4.5.2 Heat transfer in fracture networks

We look at the heat transfer across Sierpinski fracture networks level 1, 2, and 3, known

as SL1, SL2, and SL3 respectively (see Figure 4.1). In Figure 4.5 we have temperature as a
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Figure 4.4: The temperature at the end of the fracture as a function of time computed with the
analytical solution by Ruiz et. al 2012 treating the fracture as single segment (red solid line)
and with the particle method and probabilistic generating functions where the fracture is made
up of two segments (green circles).

function of time for the particle method we presented in [Gisladottir et al., 2016]. The thermal

breakthrough for the SL1 network is slower then the ones for SL2 and SL3. The 50% performance

drop for SL3 is slight above 105 whereas for SL1 it is closer to 5 ·105. In Figure 4.6 the same

simulation is performed using the extended Lagrangian particle method presented in this paper

with multi-dimensional conduction in the matrix. With the multi-dimensional conduction in the

matrix SL2 and SL3 exhibits a slower thermal breakthrough whereas SL1 thermal breakthrough

is earlier. The same reversal of behavior is observed for 50% performance drop. For the later

simulation the SL1 takes place before the SL2 and SL3. In this case the performance drop in

SL1 is half an order of magnitude faster than simulation with the initial method i.e. occurs at

105, whereas the 50% performance drop is quite similar to that in SL3.
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Figure 4.5: Sierpinski level 1,2, and 3 with one dimensional conduction in the matrix.

Figure 4.6: Sierpinski level 1,2, and 3 with two dimensional conduction in the matrix.
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4.6 Conclusion

Quantitative understanding of heat transfer processes in fractured porous media is critical

for effective geothermal energy harvesting. We have presented a novel mesh-free heat transfer

Lagrangian particle-tracking approach to model this interaction. Our approach allows us to

model more realistic discrete fracture networks, while achieving computational efficiency that

significantly exceeds that of standard (mesh-based) numerical methods. Our approach has

the ability to account for multi-dimensional conduction in the matrix enabling us to study the

effects of conductions dimensionality on the model. Some of the literature makes the claim

that one-dimensional conduction is sufficient for modeling purposes [?], whereas other studies

demonstrate that the two-dimensional conduction is an important mechanism in the modeling

(Kolditz 1995 [?]). Our results shows that for the parameter set studies that for simpler networks

dimension of the conduction in the matrix can have an impact on the performance drop of the

system whereas for the more complex networks the difference is less. The fact that the particle

can only re-enter the fracture of origin at the point it exited the fracture (i.e. with one-dimension

conduction in the matrix) rather then having the possibility of reentering the fracture downstream

has more impact on the simpler networks. In those networks when a particle enters the matrix the

particles are more likely to reenter the fracture of origin rather then to diffuse to a neighboring

fracture.

Although the low-computational cost of our method is attractive, some improvements

could be introduced in future studies. These include incorporation of heterogeneity of matrix

properties, study the potential effects of the dimensionality of the conduction in the matrix in

different parameter settings, and extensions to three-dimensional conditions.
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Chapter 5

Resilience of cyber systems with over- and

under- regulation

5.1 Introduction

National Institute of Standards and Technology, Department of Homeland Security, and

other agencies are applying traditional risk assessment paradigms to cyber security [Sedgewick,

2014],[Nat, 2014]. The objective of cyber security is to protect the hardware, software, and

information on computer systems against specific Threats (e.g., adversaries) that are trying

to exploit system Vulnerabilities (e.g., web browsing) to achieve Consequences that would

result in either economic or political impacts. Most efforts in cyber security are focused on

decreasing system vulnerabilities and, to a lesser extent, the consequences of a successful attack

(e.g., by creating backups of important data). In addition to fixes in software and hardware

design, the introduction of operational constraints through the use of rules is a widely applied risk

management practice in a number of fields [Shleifer, 2005, A., 2005] . Rules are designed to limit

operator access to certain components of the system and decrease their ability to intentionally or

unintentionally create new vulnerabilities. However, rules can negatively impact cyber security
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due to human factors. Cyber security is typically studied from a computer science perspective and

traditional approaches often do not incorporate behavioral science. As Douglas Maughan, head

of cyber security research at the U.S. Department of Homeland Security, describes, ”We’ve had

too many computer scientists looking at cybersecurity, and not enough psychologists, economists

and human-factors people” [Waldrop, 2016]. Under-regulation in systems with high vulnerability

opens these systems to outside attacks. Rules play a key role in implementing and enforcing

security objectives, i.e., preventing a breach or aiding recovering after an adverse event. Rules

provide a means for ensuring that employees have access to relevant information to maintain

system functionality and to minimize the access to sensitive components of the system. Because

under-regulation often leads to system collapse and creates opportunity for disruptions [USGPO,

2015, Gunningham and Johnstone, 1999], rules are required to establish barriers to external

threats. Even though stricter regulation decreases risk related to external threats, it can also

increase risk due to human factors associated with the rules’ implementation (e.g., demanding

regular password changes (8). As regulations become too restrictive, impeding people’s ability to

perform their jobs, people inevitably start to circumvent or outright disregard these regulations.

Hence, in practice, the regulations might as well not exist [A., 2005, Kepner et al., 2015, Magat

et al., 1988]. Additionally, as the number of rules exceeds a certain threshold, people are more

likely to make mistakes and be less motivated to follow the rules (11-13). Most people’s objective

isn’t to stay secure, but to get their job done [Waldrop, 2016]. A reasonable inference, therefore,

is that increased rules transfer risk from external threats to internal vulnerabilities, there is some

intermediate number of rules that minimizes the overall risk level (Figure 5.1). But unless we

have some idea where that point is, this Goldilocks observation is not of much use.

Neither is risk the whole story when it comes to ensuring system function. Notably,

over-regulation may decrease a system’s resilience with respect to insider threats. Resilience, as

defined by the National Academy of Science, is the ability of a system to absorb, recover and

adapt to both known and unknown threats [Council et al., 2012]. Over-regulation may increase

73



Figure 5.1: System risk is a function of the number of rules. The red line represents the risk
from external threats; the blue line represents the risk from internal vulnerabilities; and the
green line represents the combined risk from external threats and internal vulnerabilities.

the time that a system needs to recover from a cyber-attack, thus reducing its resilience [Zhu and

Başar, 2011]. This is especially true if the attack is focused on human-related vulnerabilities. It

has been observed that a significant increase in the number of rules imposed upon a complex

technological system (e.g. railways and nuclear power plants) can cause rules to lose effectiveness

[Aizenman, 2009]. Analyzing a system’s resilience is an effective way to understand the

relationship between the risk management strategies regulating the system and its functionality.

Risk assessment starts with the development of a threat scenario (often hypothetical), whereas

resilience assessment starts with the definition of the system’s critical functions and their temporal

patterns. Rules acting on specific system vulnerabilities, as opposed to the collective effect

on the system’s performance, may merely provide incremental protection at the component

level [Shleifer, 2005, Waldrop, 2016] and cause the temporal nature of resilience to be ignored

[Linkov et al., 2014]. Even though the influence of over- and under-regulation on the system’s

performance has been widely discussed in the academic literature and there is a significant

number of studies on how to change people’s habits, the reports on quantitative modeling that

incorporate both are lacking. Specifically, rule-risk models have been developed for analyzing

individual behavior (e.g., Kepner et al. [2015]), and in various ways, resilience in organizations

has been analyzed using network models. Our point of departure is to extend the individual
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rule-risk models by embedding them within a network model. Associated with such a model

are various simple assumptions about the mechanisms through which individuals act and risks

propagate. Such models are a useful step in building knowledge about phenomena such as the

rules-risk-resilience relationship. System behaviors predicted by such models can be viewed as

testable hypotheses whose assumptions may be refined to better reflect observed reality. To the

extent that the model and any future refinements are valid, the model will also have prescriptive

use for determining optimal rules, i.e., for operationalizing the general qualitative insight that

there can be too few and too many rules. Thus, our short term questions to be answered by

constructing this model are (1) does a simple mechanistic model produce the hypothesized rules-

risk relationships and (2) in what range is the right number of rules’ We construct a numerical

example which serves as an experiment to inform answers to these questions. This is a step

toward answering the related questions for much richer systems. We develop a model, to be

formally defined in the next section, which represents an organization as a network of individual

employees affected by cyber threats. The employees within the organization are connected

according to their business relationships. Each of these employees also has to follow a certain

number of rules, which is a simplified representation of human behavior. An initial attack on

the system results in the delivery of a virus to one employee’s computer. Depending on the

employee’s job functions, they may unintentionally propagate the virus to their collaborators. It is

assumed that employees who cannot perform their work while upholding the rules will disregard

the rules. This impacts the system’s behavior and the size of the impact varies depending on the

setup of the system. The results from this simple model will show that the pattern in Figure 5.1

is indeed an emergent system behavior: adding more rules increases the resilience of the system

until it reaches a tipping point where the trend reverses indicating increased vulnerability in the

system and increased risk.
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5.2 Model and example

Here, we lay out the model and construct a numerical example which demonstrates the

influence of rules on the resilience of an organization with respect to the diffusion of a threat

across its business relationships network. In this network the nodes represent the employees

of the organization, while the links show collaborations between these employees on various

projects. The main acronyms, parameters (including their values used in the case study) and

variables of the model are given in Table 5.1.

Table 5.1: Main acronyms, parameters, and variables of the model.

Name Values Description
Mainacronyms

DL Users’ decision latitude
CF Critical functionality of the network
R Resilience of the network

Parameters and variables
b 1...50 Number of rules (barriers placed on the unit segment)
K Critical functionality of the system
k Degree of a node in the network model
kj Degree of node j in the network model
Li Amount of DL between barriers i and i�1
Lmin 0.2,0.25,0.33,0.5 Minimal DL required by users to perform normal activities in

the 1D model
L

k

min for a node of degree k in the network model
LT 0.5 Amount of DL required for a threat to succeed in an attack

against a node
N 10000 Total number of nodes
Nin Number of infected nodes
Nns Number of not-strict barriers the threat have to breach
Ns Number of strict barriers the threat have to breach
pdet 0.01 Probability that the user detects the threat at each time step
pnew Probability that the threat succeeds in an attack against a node
pns 1 Probability that the threat breaches a not-strict barrier
ps 0.1 Probability that the threat breaches a strict barrier
TC 540 Control time
Tlatency 10 Threat latency time
V System vulnerability (same as Lmin)
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We assume that the modeled network is scale-free, that is, its degrees follow a power

law. This assumption takes into account the heavy-tailed degree distribution often found in

communication systems. To construct the network, we used a configuration algorithm [Catanzaro

et al., 2005]. The algorithm starts with the generation of N power law distributed integers

corresponding to the nodes’ degrees, where N is the number of nodes in the network. Then,

the links are placed between the nodes in accordance with these degrees. In this study the

network consists of 10,000 nodes. The number of nodes was selected to be large enough to allow

non-linear emergent effects to occur, while increasing the statistical fidelity of the simulations,

and to be small enough to represent a significant fraction of real world businesses (according to

the Census Bureau [USC, 2016] more than 30,000,000 people were working for firms of 10,000

or more employees in the U.S. in 2013). Barabasi et al. have shown ([Barabási and Albert,

1999]) that the World Wide Web degree distribution (as of 1999) follows the power law with

the exponent of 2.1, while its average degree equals 5.46. We select the average degree to be 5,

and the power law exponent of the degree distribution to be 2.25. The minimal degree of each

node is 2 to exclude nodes that do not impact the virus diffusion process. These parameters

unambiguously determine the maximal degree of a node as 88. The virus diffusion process

starts when an insider (intentionally or unintentionally) sends an email with malicious code

to their colleagues. The propagation of the virus throughout the network is dependent on the

regulatory environments of the individual employees. We model the rules implemented within

an organization as either strict or not-strict barriers. The strict barriers are defined as rules that

are always followed by all employees, while the not-strict barriers represent the rules that may

occasionally be circumvented. We assume, that an insider is able to cross any number of the

non-strict barriers without raising red flags. Notably, if there are too many or too few rules the

likelihood of an insider’s success increases: while the presence of too few rules is not sufficient

to prevent insiders from accomplishing their goals, the presence of too many rules causes users

to disregard these rules (barriers) in order to perform their usual tasks, which renders the barriers
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Figure 5.2: 1D users decision latitude model (9).

not-strict. These assumptions are intended to be rather non-controversial for inclusion in this

investigation even though there could obviously be situations where they do not exactly hold.

5.2.1 Employees susceptibility to the virus

In order to evaluate a node’s susceptibility to a threat, we use the concept of decision

latitude (DL) defined as the measure of the employee’s ability to make work related decisions.

Kepner et al(9) structurally represent the decision latitude as shown in Figure 5.2: they character-

ize the regulatory environment of a node as a set of barriers X1, ... , Xb placed on a unit segment

of a straight line, where Xi is the position of the ith barrier. Then, the amount of decision latitude

between barriers is defined as Li = Xi ... , Xi-1. The sum of all the DL amounts equals unity

[Magat et al., 1988].

Similarly, we assign a unit segment of a possible rules implementation to the whole

network, that is, each node (or each employee) has the same set of rules to follow. While in a real

system there may be various levels of access and trust, in this initial approach they are ignored.

The barriers’ positions are drawn from a uniform distribution in the range (0; 1). It is easy to

notice, that the modeled regulatory environment depends not only on the number of barriers

(rules) but also on their stochastic placement. We account for this by running a set of 10,000

Monte-Carlo simulations for each data point. Let Lmin denote the minimum value of decision

latitude individuals need to perform their business tasks. In the original 1D model this value is

a constant parameter. We assume that employees with more connections (higher node degree)

have more expertise and therefore need less latitude to perform their work. To reflect this, we

modify the 1D model so that the minimum latitude (Lmin) depends on the node’s degree and is
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Figure 5.3: Model of the business relationships network (a) and its nodes’ minimum decision
latitudes (b). Notably, users of higher degrees have a smaller value of the decision latitude, a
higher number of strict barriers (red) and, hence, are less vulnerable [Magat et al., 1988].

inversely proportional to the natural logarithm of that degree. Let kj be the degree of node j.

Then, presuming that the values of Lmin depend only on nodes’ degrees (and not on any other

topological parameters or properties of the network) we find the minimum latitude of all nodes

with degree k(Lk

min) as follows (Figure 5.3):

L

k

min =
Lmin

lnk

N/
N

Â
j=1

1
ln(k

j

)
(5.1)

Above, the multiplication by N/ÂN

j=1
1

ln(k
j

) ensures that the average value of a node’s minimum

latitude across the whole network is Lmin. Notably, this formalism implies that the smallest

degree in the network is 2. We now introduce the concept of strictness. Intuitively a barrier is

strict if the employees execute their business functions on a regular basis without crossing the

barrier. We define a barrier to be strict if Li >Lmin and not-strict otherwise.

Figure 5.3: Model of the business relationships network (a) and its nodes’ minimum

decision latitudes (b). Notably, users of higher degrees have a smaller value of the decision

latitude, a higher number of strict barriers (red) and, hence, are less vulnerable.

Now we shift our attention to the idea that if a user is a nefarious insider they wish to

execute a threat such as a virus. To represent the difficulty of executing the threat, we use LT -

the minimum latitude needed to execute the threat. The privileges most users need, and have, is

less than what is needed to execute the threat, typically LT > Lmin (most users are restricted in

access to sensitive corporate data). We presume that the adversary cannot control the set rules

that must be exploited by the threat to successfully overcome the system’s defense and model
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that the threat latitude extends from 0 to LT (as opposed to selecting the optimal for the adversary

range on the unit segment). Therefore, we find the numbers of strict and not-strict barriers the

adversary has to breach to succeed in attacking a node in the network, Ns and Nns respectively,

as the numbers of strict and not-strict barriers in the range (0; LT).

5.2.2 Infection propagating through the organization

An initial attack starts the process of propagating the threat through the network. For

example, an infected email can spread a virus. The susceptibility of a new node, such as a user’s

station, becoming breached (or infected) is represented by the probability of breaching a new

node in the network, which we derive as follows:

pnew = p

Nns
ns p

Ns
ns (5.2)

Above, ps is the probability for a threat to breach a strict barrier, and pns is the probability for

a threat to breach a not strict barrier (pns > ps). Once the probability of breaching a node is

determined in the simulation, that value is compared to a randomly generated value U: [0, 1]. If

pnew > U the node is breached. When the breach of a new node in the network is successful, the

threat needs latency time, Tlatency, to collect information before attempting to breach neighboring

nodes (e.g. sending email messages to collaborators of the person that just became infected).

At every time step there is a probability that the user detects the threat (e.g. discovers a virus

manually, or through antivirus check) which is represented by pdet. Once a threat is detected in a

node, the node recovers and is considered to be immune to future breaches.

5.2.3 Resilience of the organization

Now that we have specified how threats propagate in a given system, we want to measure

performance, i.e. the resilience of a system in face of threats. An organization’s resilience is
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its ability to prepare and plan, absorb, recover from, and more successfully adapt to adverse

events(14). In this paper we model only the absorption and recovery phases of resilience ac-

cording to the methodology proposed by Ganin et al. [2016] and evaluate the system’s critical

functionality (CF), defined as the system’s performance function of time, during the two afore-

mentioned phases. For this simple case the critical functionality (K) is chosen as the ratio of

uninfected nodes to the total number of nodes at each time step in the simulation. Let Nin be the

number of infected nodes, then K is found as follows:

K = 1� Nin

N

(5.3)

We assume that the preparation and adaptation phases of resilience do not take place during the

attack, and therefore are not implemented in the simulation. Hence, we simulate the critical

functionality of the system while it goes through the absorption and recovery phases. Those

phases take place within control time TC. The resilience value R is calculated by integrating the

CF over the time interval [0, TC] (21):

R =
1
T

c

Z
T

c

0
Kdt (5.4)

The absorption phase starts directly after the initial attack when some nodes are breached while

the others resist. The recovery phase occurs when the users detect the breach. Note that we

model the system’s evolution in discrete time steps, and therefore, equation 5.4 can be simplified

to

R ⇡ 1� 1
T

c

T

c

Â
t=0

Nin

N

(5.5)
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5.3 Results

Figure 5.4 plots critical functionality as a function of time, and the risk and resilience as

a function of number of rules. Each of the lines in figure 5.4b-c represents a different level of

system vulnerability (V).We observe that at very high levels of vulnerability, risk is high and

resilience is low regardless of regulations. Risk and resilience in highly vulnerable systems

cannot be managed effectively, and as a result, vulnerability should be reduced first (this is what

cybersecurity efforts are currently focused at). For lower (and thus more manageable) levels of

vulnerability, we observe in each of the graphs that as the number of rules increase there is an

initial decrease in risk down to a clear minimum, after which the trend reverses and risk steadily

increases. The resilience exhibits a similar pattern, but in the opposite direction - there is clear

optimality in the number of rules resulting in high system resilience. This indicates that the first

few rules applied to the system decrease the risk and increase resilience. However, after reaching

a tipping point the trend reverses, revealing that beyond a certain level additional rules may be

detrimental. We note that in the numerical example, the peak value occurs at a relatively small

number of rules (between 5 and 15), regardless of the level of vulnerability. Thus, this may be

a reasonable range for system designers to consider in the absence of model assumptions and

parameter values more explicitly customized for particular networks.

5.4 Conclusion

Administrators aim to find the optimal balance of regulation[Linkov et al., 2014] which

decreases system risk and increases system resilience. While currently the malicious insider

risks are assessed qualitatively with focus on the optimal number of employees (usually security

guards) to maintain security[Carroll, 2004, Bunn, 2004, Sagan, 2004], Ghaffarzadegan [2008]),

we call for a framework for a systematic evaluation of rules, risk, and resilience of cyber systems
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Figure 5.4: a) Critical functionality of the system as a function of time for different numbers of
rules, b) risk and c) resilience as functions of rules for different vulnerability levels. The shaded
areas in panels b) and c) correspond to the values of risk and resilience for threat latitudes of
4.5 and 5.5 while the lines reflect the case of LT = 0.5.

incorporating behavioral science. Such a framework is needed for a number of reasons. It

is in part due to the complexity of the problem and the underlying system - including data

vulnerabilities, event tracking, software patching, and interdependence of stakeholders[Bauer

and Van Eeten, 2009]. The need to collect and systematically utilize data from existing systems

and the need to establish best practices based on goals and performance of the optimization also

contribute to the necessity of the framework. Although some data and models currently exist,

more is needed; not enough of the existing data are readily available and further frameworks

need to be developed. The optimization would minimize the expenditure of resources on system-

induced threats and focus the security resources towards cardinal threats. Research models,

relating a user’s ability to keep the security rules intact and the resiliency of a cyber system,

are often overlooked. However, this is a key component in our cyber security eco-system and

therefore in the security of critical systems and infrastructure as a whole. It is necessary to

move away from reacting to threats with incremental adjustments (i.e. new rules) and move

towards managing resiliency at a higher level. A select number of well-framed rules are the key

to minimizing human factor risks and maximizing the resilience of cyber systems. Both over-
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and under-regulating cause the system to become more vulnerable and therefore less resilient.

Optimizing the regulations that increase system resilience and performance requires a systematic

framework. With robust quality data and a perspective model it is possible to move towards such

optimization. The results from the simple model introduced here demonstrate the hypothesized

u-shaped system risk as an emergent system behavior. That fact gives us confidence that it is

possible to move up the knowledge pyramid[Zeleny, 1987] toward a more explanatory model and

ultimately toward a more accurate predictive model. Furthermore, it can be used to analyze more

complex emergent patterns in a network to gain understanding of those patterns and how they

can be controlled. The first step towards the practical application of the model developed in this

study involves estimation of the minimum decision latitude (Lmin). This may be accomplished

using cognitive psychology methods, such as testing the people’s ability to follow a certain

number of rules while executing certain tasks. A second step is research into a methodology to

quantify the latitude employees have. The two tasks mentioned will build a base for the final

stage of work which involves the development of analysis techniques to evaluate the effect of a

new rule on the security of a particular system.
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Chapter 6

Conclusions

We have developed a set of numerical tools to model dynamics in natural and anthro-

pogenic networks. Fracture networks in subsurface environments provide an example of the first

types of networks. The second type is represented by cyber-networks.

6.1 Heat transfer in fractured rocks

The mesh free particle method for heat transfer presented in this thesis is a general

methodology, which can be used with any analytical solution that describes the physical process

of transport across a single fracture embedded in an infinite matrix. We used it to to simulate

heat transfer in fractured media by applying it to fractal networks, which are characterized by a

fracture density parameter C and fractal dimension D. Our study, reported in Chapters 2–4, leads

to the following major conclusions.

• Depending on hydraulic conditions, the propagation of a cold front across fractured

domains is controlled by either the fracture network or matrix block properties.

• For small fracture densities (C = 2.5), different values of the fractal dimension (D =

[1,1.3]) can lead to identical interconnected fracture networks with similar geothermal
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performance.

• In fractured domains with large fracture density (C = 6.5) and fractal dimension (D = 1.3),

a broad distribution of the matrix block size is obtained with the presence of small blocks

that reduce the geothermal performances under slow flow conditions.

• Over a wide range of fracture densities and fractal dimensions, the heat transfer sig-

nificantly deviates from the Fourier law, giving rise to anomalous effective behavior

characterized by long tails.

• There is a stark contrast between the predicted performance drop of the system depending

on whether one uses the Sierpinski or Watanabe fractal network.

• As fracture density increases in the fast flow hydraulic regime there is variation in the

performance of the system within each network type. However it is very minimal in

comparison to the performance variation between the network types.

• The heat transfer significantly deviates from the Fourier law, over a wide range of fracture

densities, giving rise to anomalous effective behavior characterized by long tails.

• Computational cost is far more dependent on hydraulic regime rather then topological

properties.

• Sierpinski networks although helpful in studying the fracture spacing and topography

effects on different modeling parameters, it important to look at the mass flow rate when

using them for reservoir performance simulation as their thermal breakthrough curves are

an orders of magnitude different then Watanabe networks (representative of actual fields)

for the same hydraulic regime.

• From the fractures generated for each network only the interconnected fractures, the

backbone, are included in the DFN for simulation purposes. Where as the Sierpinski
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networks incorporation of small fractures increases the heat sweep despite the no flow

conditions and is preferable network to study the effects of fracture spacing and matrix

block size on the performance of the system. The Watanabe network is more representative

of the the field and better equipped for field studies.

• To compensate for the lack of realistic features in Sierpinski it would be smarter to compare

equivalent flow rates or mass rates rather then hydraulic regimes which is common.

• Parameter space for which two-dimensional conduction in the matrix is of importance is

identified.

6.2 Spread of viruses in cyber networks

In Chapter 5 we have an alternative application of transport in networks. Where the

recptability of a cyber network to virus infiltration and propagation is dependent on the number

of rules imposed on employes. Therefore requiring a limit on the number of rules impose on

network members. Our study, reported in Chapter 5 leads to the following major conclusions.

• The decision latitude directly impacts the vulnerability and the resilience of the network.

• To small of a decision latitude increase the networks vulnerability.

• We identify the need for systematic data collection and appropriate metrics to enable data

driven optimization of the rule base.

• While increasing the number of rules may decrease direct threats from external attacks,

the excessive regulations actually increase internal vulnerabilities due to the unintentional

violations of operational rules by insiders.

• The optimal number of rules necessary to regulate a cyber network efficiently is likely to

be small and focused on specific critical functions that the system needs to maintain.
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6.3 Future work

Although the low-computational cost of our method is attractive, improvements could

be introduced in future studies. The current set up considers the matrix to be impermeable.

This is representative of some reservoirs of interest (e.g. enhanced geothermal systems) but

adding the flow in the matrix would widen the range of application. This can be done by

leveraging the Lagrangian particle method as a component of a hybrid model, in which a

continuum (Darcy-scale) representation would account for flow in the matrix. Such an extension

would require an analytical solution for advection-diffusion in the matrix, which will replace

the current probabilistic model. Another generalization is to improve the way we account for

multi-dimensionality of heat transfer in the matrix. Our current implementation determines

the entry point to the neighboring fracture to be perpendicular to the fracture of origin at a

point of departure (i.e. one-dimensional spatial translation). We will expand the method to

include two-dimensional spatial translation by replacing the use of first time passage with the

probabilistic tools found in [?]. Finally, we will incorporate heterogeneity of matrix properties

and, for example, randomly distributed fracture angles (Watanabe network) and/or heterogeneous

fracture apertures (Watanabe and Sierpinski networks).

Extension of our modeling framework from two to three spatial dimensions will represent

fractures as two-dimensional elements, which would enable us to study the impact of the domain

and structure dimensionality by progressively improving our model. For example, representing

the fractures as rectangles with a one-dimensional flow [Lee et al., 2001, e.g.,] would allow

us to evaluate the impact of the fracture-network dimensionality. In comparison with two-

dimensional simulations, the larger number of advective paths connecting the domain borders

in three dimensions should lead to a larger distribution of the advection times spent in the

fractures. These fractures could also be represented as ellipses [de Dreuzy et al., 2013, e.g.,]

in which the heterogeneous flow velocity fields expand the distribution of advective times in
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comparison with the one-dimensional flow representation. As flow velocity in the fractures

impacts heat propagation in both fractures and matrix, we would also expect broader distributions

of temperature of the extracted fluid with a significant anomalous behavior.
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