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An Information-Theoretic Method for Identifying Effective 

Treatments and Policies at the Beginning of a Pandemic 

 

Amos Golan12; Tinatin Mumladze1; Jeffrey M. Perloff 3; Danielle Wilson1 

Abstract 

Background: Identifying effective treatments and policies early in a pandemic is 

challenging because only limited and noisy data are available, and biological processes are 

unknown or uncertain. Consequently, classical statistical procedures may not work or require 

strong structural assumptions. An information-theoretic approach can overcome these problems 

and identify effective treatments and policies. The efficacy of this approach is illustrated using a 

study conducted at the beginning of the COVID-19 pandemic.  

Methods: An information-theoretic inferential approach with and without prior 

information was applied to the limited data available in the second month (April 24, 2020) of the 

COVID-19 pandemic. For comparison, a second statistical analysis used a large sample with 

millions of observations available at the end of the pandemic’s pre-vaccination period (mid-

December 2020).  

Results: Even with limited data, the information-theoretic estimates performed well in 

identifying influential factors and helped explain why death rates varied across nations. Later 

experiments and statistical analyses based on more recent, richer data confirm that these factors 

contribute to survival. 

Conclusions: An information-theoretic statistical technique is a robust method that can 

overcome the challenges of under-identified estimation problems in the early stages of medical 

emergencies. It can easily incorporate prior information from theory, logic, or previously 

observed emergencies. 
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Introduction 

It’s not if but when the next pandemic will strike. 

When the next pandemic strikes, how can we choose treatments and policies to reduce 

deaths before a new vaccine is available? Eventually, we will have a plethora of data and an 

understanding of the relevant biology, so we can use standard statistical techniques to determine 

what we should have done using 20-20 hindsight. Unfortunately, at the start of a pandemic, we 

have few observations and a limited understanding of a disease’s process, so typical statistical 

methods are infeasible or require strong, possibly inaccurate assumptions. We show that an 

information-theoretic inferential model using few observations works well without imposing 

heroic conjectures.  

We demonstrated the efficacy of this approach in an analysis conducted in May 2020 [1] 

using data from the first few months of the COVID-19 pandemic, when only 485 individual 

observations from 20 countries were available. The study identified two factors, including an 

existing vaccination, associated with lower COVID-19 death rates. Later experiments and 

statistical analyses based on more recent, richer data confirm that these factors contribute to 

survival. 

 

Methods 

Statistical inference with uncertainty and little information results in multiple possible 

solutions, each consistent with the observed information because the problem is 

underdetermined. The principle of Maximum Entropy [2–4] uses the available information as 

constraints in an optimization problem to select a solution using Shannon entropy [5] as the 



2 

 

 

2 

decision function. The maximum entropy solution is the least-biased approach. It is not biased by 

structural modeling assumptions. It is the flattest, and therefore least informative, probability 

distribution compatible with the information captured in the constraints [6–8]. 

The classical Maximum Entropy (ME) formalism may not work in the presence of model 

ambiguity and insufficient, noisy, and complex information. However, an information-theoretic 

approach, which generalizes the ME, accommodates these challenges (see the Supplement). In 

the absence of these complications, the solution of this information-theoretic approach converges 

to that of the ME. 

This approach incorporates each piece of information as a flexible constraint with 

additive mean-zero uncertainty. It maximizes the Shannon entropy decision function defined 

over the probabilities of interest (here, the survival rate), accounting for the uncertainties in the 

constraints. It can be applied even with few observations and little or no knowledge of the 

underlying biological model.  

The binary choice information-theoretic approach we used dominates the classical 

maximum likelihood for finite samples and allows us to use informative priors, significantly 

improving the inference [9]. The priors may reflect fundamental principles, logical reasoning, or 

empirical observations. Empirical priors must be independent of the data used for the analysis 

but capture the universal characteristics and features of the population of interest [10]. In our 

application, the priors are observed death frequencies by age and sex for individuals previously 

infected with SARS because different coronaviruses with similar characteristics cause SARS and 

COVID-19 [11]. Our application demonstrates that this choice of priors improves the model’s in- 

and out-of-sample predictions. 
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At the beginning of the COVID-19 pandemic, we applied this approach to identify 

existing treatments and policies that could reduce death rates. The data came from the Open 

COVID-19 Data Curation Group [12], which had only a small amount of publicly available 

patient-level data as of April 24, 2020. Although the disease had infected millions, the dataset 

contained only 485 individuals from twenty countries with the age, sex, and survival information 

necessary for our analysis. We supplemented this dataset with country-specific information on 

BCG–tuberculosis and polio vaccination policies, public health policies, pollution levels, 

education, and economic characteristics. (Because the polio vaccination, education, and 

economic variables were not statistically significant, we do not report them in the following 

results.) The polio and BCG vaccinations are used because these are well-studied and known to 

positively affect the immune system (especially the BCG) beyond their original purpose (e.g., 

Rivas et al.).  

We use two binary BCG policy variables. The first equals one if a country never had a 

universal vaccination program (e.g., the United States) and zero otherwise. The second equals 

one if a country’s former BCG policy ended before the pandemic (e.g., Australia). The base case 

is a current BCG policy (e.g., the Philippines). 

Our environmental variable is the air pollution death rate. The World Bank estimates the 

annual deaths attributable to household and ambient air pollution.  

We used three health variables for each country: the World Health Organization’s 

estimate of the domestic private health expenditure per capita (in international dollars at the 

purchasing power parity) and the measles and hepatitis B immunization rates [13]. We did not 

expect those vaccinations to affect COVID-19 outcomes directly but viewed them as proxies for 
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health policies in general. Table S1 in the supplement summarizes the dataset used and its 

resources. 

We estimated (in early 2020) an information-theoretic, binomial model [1, 14] to infer 

the survival probability of an infected individual, conditional on age, sex, and country-specific 

factors with and without priors.  

 

Results 

The models with and without priors fit the data well and give similar qualitative results. 

In the model with priors, all estimated coefficients except for health expenditures and females 

are statistically significant at the 0.05 level. The asymptotic t-statistics are 4.60 for age, 4.23 for 

BCG never, 2.91 for BCG past, 6.67 for air pollution, 1.42 for females, 1.53 for health 

expenditure, 1.85 for measles, and 3.57 for hepatitis B. The pseudo-R2 is 0.54. Table 1 show our 

estimated coefficients and confidence intervals (CI). The last column shows the marginal effects: 

the change in death probability as a change of some explanatory variable. For example, if a 

country never had a BCG program, the death rate would be 57.4% (with a 95% confidence 

interval of [25.5%, 89.2%]) higher than if it currently has such a program, holding other 

variables constant.  

The model with priors better predicts outcomes. Its in- and out-of-sample predictions 

were about 90% correct. Table 2 shows the out-of-sample predictions for the models with and 

without priors. We estimated the model using 200 randomly selected individuals (41% of the 

sample) and predicted the outcomes for the 285 others. The model without priors correctly 

predicted 222 (= 50 + 172) or 78% of the out-of-sample people. The model with priors 

accurately predicted 264 or 93%. Henceforth, we discuss the results for the model with priors. 
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We focus on the pollution and BCG vaccination effects on COVID-19 patients’ survival 

probabilities. Pollution substantially affected COVID-19 patients’ survival probabilities. A one 

percentage point increase in the air pollution death rate raised the probability of death from the 

virus by about 2.6 percentage points evaluated at the other explanatory variables’ means other 

than age. 

Figure 1 shows the death probabilities controlling for all other factors and vaccines. The 

death probability curves rise sharply with age. The curves evaluated at the ninetieth pollution 

percentile lie substantially above those at the median and the tenth. The women’s curves lie 

below the men’s. 

Panel A of Figure 2 shows that current or past BCG vaccine policies substantially 

increased survival probabilities. At the margin for the middle of the age distribution, men and 

women from countries that never had a universal BCG vaccination policy were about 50 

percentage points more likely to die from COVID-19 than individuals from countries with a 

current universal policy, and about 30 percentage points more likely than those with a previous 

vaccination policy. The death probability rises substantially with age, and the curves for women 

lie below those for men. 

We used a much larger publicly available dataset from a longer period to determine 

whether these results based on limited and imperfect information available at the beginning of 

the pandemic are plausible and qualitatively accurate. Panel B of Figure 2 shows the cumulative 

frequencies from the pandemic’s beginning through mid-December 2020, the end of the pre-

vaccination period for 12,654,066 individuals in eleven countries. To illustrate the effects of 

BCG policies while controlling for pollution, this figure includes only countries with low (10%) 

pollution levels. The death rates are much lower in Panel B than in Panel A because these data 
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are primarily from later in the pandemic. However, the qualitative results are the same as our 

small sample estimates from early in the pandemic: The BCG policies reduced death rates. 

For example, we estimated that a 55-year-old man’s death probability was 7.6 times 

greater in a country that never had a BCG policy relative to one with a current policy in the 

initial analysis. This ratio for the cumulative frequencies is 7.4. The corresponding ratio for a 

country with a past BCG policy to a current one was 5.5 using predicted probabilities and 4.5 

using frequencies.  

 

Discussion  

Our early, small-data-set study identified two factors that reduce death rates. Our study 

using a larger dataset was consistent with these results.  

Moreover, well-designed experimental evidence also supports these results. For example, 

a randomized, double-blinded, placebo-controlled trial to test the efficacy of the BCG vaccine 

against COVID-19 found that BCG is safe and is approximately 92% efficacious relative to a 

placebo group [15]. See also [16-18]. Two studies [19-20] confirm the negative impact of 

pollution on COVID patients.  

 

Conclusions 

An information-theoretic approach can identify factors affecting patients’ survival 

probabilities in the face of great uncertainty stemming from limited information about a complex 

system and few collinear observations at the beginning of a pandemic. Thus, it can allow 

policymakers to respond before more reliable experimental studies and data are available early in 

pandemics and before a new vaccine is available. 
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The same information-theoretic approach can be used in other scenarios where the data 

are limited and imperfect, and we are uncertain about the underlying physiological process, such 

as with emerging diseases. It could also be used for imperfect experiments (with attritions or 

imperfect protocols or that include a small number of individuals) and for initial study of rare 

diseases. 



8 

 

 

8 

References 

1. Golan A, Mumladze T, Wilson D et al., Effect of universal TB vaccination and other 

policy-relevant factors on the probability of patient death from COVID-19. Human 

Capital and Economic Opportunity Global Working Group at the University of Chicago; 

2020. https://hceconomics.uchicago.edu/research/working-paper/effect-universal-tb-

vaccination-and-other-policy-relevant-factors 

2. Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106(4):620–

630. doi: https://doi.org/10.1103/PhysRev.106.620 

3. Levine RD, Tribus M, eds. The Maximum Entropy Formalism. MIT Press; 1979. 

4. Skilling J. Data analysis: The maximum entropy method. Nature. 1984;309:748–749. doi: 

https://doi.org/10.1038/309748a0 

5. Shannon CE. A mathematical theory of communication. BSTJ. 1948;27:379–423. 

6. Skilling J. The axioms of maximum entropy. In Erickson GJ, Smith CR, eds. Maximum-

Entropy and Bayesian Methods in Science and Engineering. Springer 

Netherlands;1988:173–187. 

7. Shore JE, Johnson RW, Axiomatic derivation of the principle of maximum entropy and 

the principle of minimum cross-entropy. IEEE Trans Inf Theory. 1980;26(1):26–37. doi: 

10.1109/TIT.1980.1056144 

8. Golan A, Harte J. Information theory: A foundation for complexity science. Proceedings 

of the National Academy of Sciences. 2022;119(33). doi: 

https://doi.org/10.1073/pnas.2119089119 

9. Golan A, Judge G, Perloff JM. A maximum entropy approach to recovering information 

from multinomial response data. JASA. 1996; 91(434):841-853. doi: 

https://doi.org/10.2307/2291679 

10. Golan, A. Prior information. In Foundations of Info-Metrics: Modeling, Inference, and 

Imperfect Information. Oxford University Press; 2018:194-230. 

11. Karlberg J. Do men have a higher case fatality rate of severe acute respiratory syndrome 

than women do? Am J Epidemiol. 2004;159(3):229–231. doi: 

https://doi.org/10.1093/aje/kwh056 

12. Open access epidemiological data from the COVID-19 outbreak. Accessed April 24, 

2020. https://github.com/beoutbreakprepared/nCoV2019 

13. World Bank open data. Accessed May 18, 2020. https://data.worldbank.org 

14. A. Golan. Foundations of Info-Metrics: Modeling, Inference, and Imperfect Information. 

Oxford University Press; 2018. 

15. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and 

MERS: are they closely related? CMI. 2020;26(6):729–734. doi: 

10.1016/j.cmi.2020.03.026 

16. Berg MK, Yu Q, Salvador CE, Melani I,  Kitayama S. Mandated Bacillus Calmette-

Guérin (BCG) vaccination predicts flattened curves for the spread of COVID-19. Sci. 

Adv. 2020:6(32). doi: 10.1126/sciadv.abc1463 

17. Rivas MN, Ebinger JE, Wu M et. al. BCG vaccination history associates with decreased 

SARS-CoV-2 seroprevalence across a diverse cohort of health care workers, J Clin 

Invest. 2021;131(2). doi: https://doi.org/10.1172/JCI145157 

https://github.com/beoutbreakprepared/nCoV2019
https://www.jci.org/articles/view/145157
https://www.jci.org/articles/view/145157
http://www.jci.org/131/2


9 

 

 

9 

18. Faustman DL, Lee A, Hostetter ER et al. Multiple BCG vaccinations for the prevention 

of COVID-19 and other infectious diseases in type 1 diabetes. Cell Rep Med. 2022;3(9). 

doi: 10.1016/j.xcrm.2022.100728 

19. Yu Z, Bellander T, Bergström A et al. Association of short-term air pollution exposure 

with SARS-CoV-2 infection among young adults in Sweden. JAMA Netw Open. 

2022;5(4). doi: 10.1001/jamanetworkopen.2022.8109 

20. Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 

mortality in the United States: Strengths and limitations of an ecological regression 

analysis. Sci Adv.2020; 6(45). doi: 10.1126/sciadv.abd4049 

  

https://doi.org/10.1126/sciadv.abd4049


10 

 

 

10 

Figure 1. Pollution-Death Probability Relations by Sex and Age 

 

Note: Figure shows the probability an infected COVID-19 patient died by age and sex (Females, dashed lines) 

conditional on pollution at low (10th percentile, light gray), median (dark gray line) and high (90th percentile, black 

line) levels.   
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Figure 2. BCG-Death Rate by Age and Sex 

 

Note: Panel A shows the estimated probability an infected COVID-19 patient died by age and sex (male – dark gray, 

female –  light gray) conditional on BCG vaccination policies using data through April 24, 2020. Panel B illustrates 

the cumulative frequency of death of infected individuals over 50 years old using data from the beginning of the 

pandemic through mid-December 2020, the pre-vaccine period, in countries with a low pollution level. 
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Table 1. Estimated Coefficients and Marginal Effects of the Model with Priors. 

 Coefficients Marginal Effects 

Female –0.760 -0.063 

 (–1.44, –0.079) (-0.123, -0.004) 

Age 0.104 0.009 

 (0.082, 0.126) (0.006, 0.012) 

BCG never 6.868 0.574 

 (3.582, 10.154) (0.255, 0.892) 

BCG past 2.825 0.236 

 (0.638, 5.012) (0.043, 0.430) 

Health expenditure 0.000 0.000 

 (–0.001, 0.000) (0.000, 0.000) 

Air pollution 0.036 0.003 

 (0.025, 0.048) (0.002, 0.004) 

Measles –0.111 -0.009 

 (–0.216, –0.006) (-0.018, -0.0001) 

Hepatitis– B 0.193 0.016 

 (0.089, 0.297) (0.006, 0.026) 

Constant –17.098 -1.428 

 (–21.994, –12.203) (-0.647, -0.188) 

Observations 485 

Entropy 132.386 

Normalized Entropy 0.394 

Entropy Ratio 

Statistic 
407.580 

P–Vale for LR 0.000 

Pseudo R–squared 0.54 

 

Note: 95% confidence interval in parentheses. 
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Table 2. Out-of-Sample Prediction Table (Counts) 

  

 

Observed Death 
Total 

  
Yes No 

Predict

ed Death 

Yes 
50 24 74 

(86) (18) (104) 

No 
39 172 211 

(3) (178) (181) 

Total 
89 196 285 

(89) (196) (285) 
 

Note: Out-of-sample prediction: estimates of randomly chosen 200 observations are used to predict the other 285 

observations. Comparison of the information-theoretic model with priors and that without priors. Results not in 

parenthesis are from the model without priors, while results in parenthesis are from the model with priors. 

 




