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Abstract

Dyslipidemia associates with and usually precedes the onset of chronic kidney disease (CKD), but 

a comprehensive assessment of molecular lipid species associated with risk of CKD is lacking. 

Here, we sought to identify fasting plasma lipids associated with risk of CKD among American 

Indians in the Strong Heart Family Study, a large-scale community-dwelling of individuals, 

followed by replication in Mexican Americans from the San Antonio Family Heart Study 

and Caucasians from the Australian Diabetes, Obesity and Lifestyle Study. We also performed 

repeated measurement analysis to examine the temporal relationship between the change in the 

lipidome and change in kidney function between baseline and follow-up of about five years apart. 
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Network analysis was conducted to identify differential lipid classes associated with risk of CKD. 

In the discovery cohort, we found that higher baseline level of multiple lipid species, including 

glycerophospholipids, glycerolipids and sphingolipids, was significantly associated with increased 

risk of CKD, independent of age, sex, body mass index, diabetes and hypertension. Many lipid 

species were replicated in at least one external cohort at the individual lipid species and/or the 

class level. Longitudinal change in the plasma lipidome was significantly associated with change 

in the estimated glomerular filtration rate after adjusting for covariates, baseline lipids and the 

baseline rate. Network analysis identified distinct lipidomic signatures differentiating high from 

low-risk groups. Thus, our results demonstrated that disturbed lipid metabolism precedes the 

onset of CKD. These findings shed light on the mechanisms linking dyslipidemia to CKD and 

provide potential novel biomarkers for identifying individuals with early impaired kidney function 

at preclinical stages.

Keywords

American Indians; AusDiab; chronic kidney disease; lipidomics; Mexican Americans; San 
Antonio Family Heart Study; Strong Heart Study

American Indians experience a disproportionately high burden of chronic kidney disease 

(CKD).1 The prevalence of kidney failure in American Indians is >2 times higher than 

that in non-Hispanic Whites.2 Epidemiologic studies have identified many risk factors 

for CKD, including hypertension,3 type 2 diabetes,3 obesity,4,5, family history of CKD,6 

and ethnicity.7 Dyslipidemia is a common risk factor for all these conditions. Patients 

with CKD often exhibit elevated triglycerides and total cholesterol, reduced high-density 

lipoprotein, and altered lipoprotein compositions compared with individuals with normal 

kidney function.8,9 Dyslipidemia may occur many years before the recognition of overt 

CKD, suggesting that blood lipids may serve as prognostic and diagnostic markers. 

However, standard lipoproteins do not reflect the diversity and complexity of human plasma 

lipidome. There is an unmet need to identify novel biomarkers for early detection and risk 

stratification among community-dwelling individuals with high risk for CKD.

Lipidomics by mass spectrometry can simultaneously identify and quantify hundreds to 

thousands of individual molecular lipid species in biological samples. Altered lipid species, 

such as free fatty acids, triacylglycerols (TAGs), diacylglycerols (DAGs), ceramides (CERs), 

phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and sphingomyelins (SMs), 

have previously associated with CKD or related traits in different populations.10–18 Lipid 

dysregulation has also been associated with risk factors for CKD, such as obesity,19–21 

diabetes,22–26 hypertension,27,28 and cardiovascular disease (CVD).29–31 However, previous 

studies were largely cross-sectional, were limited by small sample size, or had a relatively 

low coverage of plasma lipidome. No large-scale epidemiologic study has examined the 

relationship between a full spectrum of blood lipidome and risk of CKD in any racial/

ethnic group, especially in a longitudinal setting among community-dwelling individuals. 

The goal of this study is to identify lipidomic markers predictive of risk for CKD in 3 

large community-based prospective cohorts (American Indians, Mexican Americans, and 

European white populations).
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METHODS

Study participants

The discovery cohort included American Indians in the Strong Heart Family Study (SHFS), 

a family-based prospective study designed to identify genetic and metabolic factors for 

CVD and risk factors in American Indians, as previously described.32–34 Briefly, 2780 tribal 

members (aged ≥14 years) in 3 geographic regions (Arizona, North/South Dakota, and 

Oklahoma) were initially examined in 2001 to 2003 and reexamined in 2006 to 2009 (mean, 

5.5 years apart) using the same protocols. Information for demography, family history, 

medical records, and lifestyle was collected at each visit. A total of 1970 individuals (aged 

18–75 years; mean age, 40 years) with complete information for clinical and lipidomic 

data were included in this analysis. More information for covariate assessments was 

described elsewhere.24 All participants provided informed consents. The SHFS protocols 

were approved by the Institutional Review Boards of each participating institution and 

tribes.

Independent external replication was conducted in the Australian Diabetes, Obesity, and 

Lifestyle (AusDiab) Study and the San Antonio Family Heart Study (SAFHS). Briefly, 

AusDiab Study is a population-based longitudinal study established to examine the 

prevalence of diabetes and related risk factors in Australia.35 A subset of 5541 individuals 

(aged 38–62 years; mean age, 50 years) who were free of CKD at baseline and had complete 

clinical and lipidomic data were used in this analysis. Of these, 228 individuals developed 

incident CKD over a period of 5-year follow-up. SAFHS is a family-based prospective study 

comprising 1431 individuals in 42 extended families at baseline and investigates the genetics 

and risk factors of CVD in Mexican Americans.36–38 A subset of 632 individuals (aged 

18–84 years; mean age, 42 years) who were free of CKD at baseline and had complete 

information for clinical phenotypes and lipidomic data were included in the analysis. Of 

these, 38 individuals developed incident CKD over 5-year follow-up.

Clinical measures and ascertainment of CKD

In all 3 cohorts, we calculated the estimated glomerular filtration rate (eGFR) using the 

CKD Epidemiology Collaboration formula.39 CKD was defined as eGFR <60 ml/min per 

1.73 m2 or a history of dialysis or kidney transplant, as previously described.40,41 This 

corresponds to stage 3 or higher CKD, according to the Kidney Disease Outcome Quality 

Initiative.42 Incident CKD was identified if participants were free of CKD at baseline but 

develpoed CKD by end of follow-up.40,41 Clinical covariates, including age, sex, body 

mass index, diabetes, hypertension, and standard lipid panels, were measured using standard 

protocols and are available in all 3 cohorts.

Lipidomic profiling

In the discovery cohort (SHFS), fasting plasma lipids at 2 time points (≈5 years apart) 

were quantified by untargeted liquid chromatography–mass spectrometry, as described 

previously.24 After preprocessing and quality control, we obtained 1542 lipids (518 known; 

Supplementary Table S1) in 3916 plasma samples from 1958 unique individuals at 2 time 

points. After further excluding individuals with prevalent CKD and/or CVD and those with 
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missing covariates, 1910 participants with complete clinical and lipidomic data at both time 

points were included in the analysis.

Lipidomic profiling in the replication cohorts (AusDiab Study and SAFHS) was 

performed using fasting plasma samples collected at enrollment (i.e., baseline) by 

liquid chromatography–electrospray ionization–tandem mass spectrometry, as previously 

described.20,21,26,28,30,31,43–45 A total of 311 lipids in AusDiab Study and 288 lipids in 

SAFHS were also available in the SHFS and used in this analysis.

Statistical analysis

Before statistical analysis, all continuous variables, including lipids, were standardized to 0 

mean and unit SD. Multiple testing was controlled using the Storey q-value method.46

Prospective association analysis.—To identify baseline plasma lipids predictive of 

risk for CKD, we performed mixed-effect logistic regression (SHFS and SAFHS) or logistic 

regression (AusDiab Study), in which baseline lipid was the predictor and incident CKD 

status was the outcome, adjusting for age, sex, body mass index, diabetes, and hypertension 

at baseline. The analysis in SAFHS additionally adjusted for individual-specific estimates 

of relative Amerindian and African admixture (as estimated from genome-wide genetic 

markers). Family relatedness in the SHFS was accounted for by including a random effect 

(i.e., family) in the model. Mixed-effect probit logistic regression was used to account for 

family relatedness in the SAFHS by including underlying genetic variation as a random 

effect in the model via a variance component that was structured by the genetic relatedness 

matrix. Probit regression coefficients were converted to the logit equivalents by multiplying 

by 1.6, as suggested by Amemiya.47 Meta-analysis was performed by inverse-variance 

weighted random-effect models to combine results across cohorts. We used a stringent cutoff 

(i.e., q < 0.05) in the discovery cohort (SHFS). Lipids significantly associated with risk of 

CKD in the SHFS were then validated in the SAFHS and AusDiab Study, in which P < 0.05 

was considered statistically significant.

Repeated measurement analysis.—To examine the temporal relationship between 

change in lipidome and change in kidney function, we conducted mixed-effect linear 

regression. In the model, level difference in eGFR (baseline to follow-up) was the dependent 

variable and difference in lipid was the independent variable, adjusting for clinical factors 

(age, sex, study center, changes in body mass index, systolic blood pressure, fasting glucose, 

total cholesterol, triglyceride, and urine albumin–creatinine ratio [UACR] at baseline) and 

baseline lipid and eGFR. Family relatedness was accounted for by including family as a 

random effect in the model. Proportion of variance in eGFR change explained by change in 

lipid was also calculated. Multiple testing was controlled by the Storey q-value method,46 

and q < 0.05 was considered statistically significant. The repeated measurement analysis was 

done in SHFS only as AusDiab Study and SAFHS only measured lipids at baseline.

Lipid network analysis.—Given the high correlations between lipids, we performed 

network analysis to identify lipid classes associated with risk of CKD. Using the R package 

WGCNA,48 we built an unsigned weighted lipid coregulation network using all 1542 
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baseline lipids in the SHFS. Lipid features were hierarchically clustered, and those with 

a high topological overlap similarity were grouped into a same module. For each identified 

module, we examined its association with risk of CKD and clinical covariates. For modules 

significantly associated with risk of CKD, we defined hub lipids between cases (those who 

developed incident CKD during follow-up) and noncases (those who did not). Differential 

correlation was calculated using the program DGCA49 by comparing the correlation patterns 

between cases and noncases. Gain of correlation was defined if the correlation among cases 

was more positive than that among noncases, and loss of correlation was defined if the 

correlation among cases was more negative than that among noncases.

Sensitivity analysis.—This was done by further adjusting for standard lipids (e.g., total 

cholesterol and triglyceride), UACR, and lipid-lowering medications in the above-described 

models.

RESULTS

Over an average of 5-year follow-up, a total of 324 incident CKD cases (58 in SHFS, 

38 in SAFHS, and 228 in AusDiab Study) were identified. Table 1 presents the clinical 

characteristics of study participants in the 3 cohorts at enrollment.

Baseline plasma lipids associated with risk for CKD

After adjusting for covariates and correction for multiple testing (q < 0.05), 29 baseline 

lipids (of 518 known lipids; see Supplementary Table S1) were significantly associated with 

incident CKD in the SHFS (discovery cohort; Table 2). Specifically, higher baseline levels of 

17 glycerophospholipids (e.g., PEs, PCs, and phosphatidylinositols [PIs]), 9 glycerolipids 

(e.g., TAGs and DAG), and 2 sphingolipids (e.g., SMs and CERs) were significantly 

associated with increased risk of CKD. One sphingomyelin (SM[d40:2]) was inversely 

associated with risk of CKD.

Of the 29 lipids identified in SHFS (q < 0.05), 24 and 25 lipids were also available in 

SAFHS and AusDiab Study, respectively. Of the 24 overlapping lipids in SAHFS, 7 lipids, 

including 6 Pes and 1 SM (SM[d32:1]), were significantly associated with risk of CKD (P < 

0.05) with same direction. Of the 25 overlapping lipids in AusDiab Study, 6 lipids, including 

3 PEs, 2 PCs, and 1 TAG (i.e., TAG[53:2]), were significantly associated with risk of CKD 

(P < 0.05) with same direction. In particular, 3 PEs (i.e., PE[34:2], PE[36:4]/PE[18:2/18:2], 

and PE[38:3]/[18:0/20:3]) were significantly associated with risk of CKD in all 3 cohorts. 

Results for replication are shown in Table 3.

Transethnic meta-analysis of 23 lipid species measured in all 3 cohorts identified 14 lipids 

significantly associated with risk for CKD at P < 0.05, of which 13 lipids reached q < 0.05 

(Table 4). Figure 1 schematically illustrates the associations between baseline lipids and risk 

of CKD in the 3 cohorts and meta-analysis. Further adjustments for standard lipids (e.g., 

total cholesterol and triglyceride), UACR, and lipid-lowering medications slightly attenuated 

the associations, but most lipids (19 of 29 lipids) remained to be significant (Table 5).
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Longitudinal change in plasma lipidome associated with change in kidney function

After adjusting for covariates, including baseline lipids and eGFR, and correction for 

multiple testing (q < 0.05), longitudinal changes in 258 lipids (88 known and 170 unknown) 

were either positively or inversely associated with change in eGFR between baseline and 

follow-up (Supplementary Table S2). On average, changes in plasma lipidome explained 

6.98% (range, 0.36%–13.59%) of the variability in eGFR change between baseline and 

5-year follow-up. Figure 2 schematically illustrates the association patterns between change 

in known lipids and change in eGFR among American Indians in the SHFS.

Differential lipid networks associated with risk of CKD

Network analysis in the SHFS identified 13 distinct modules. On module (brown), enriched 

in TAGs, PEs, and CEs, was significantly associated with risk of CKD (Figure 3a). This 

module included 154 lipids (73 known), with PE(36:1), PE(36:2), and TAG(51:1) being 

the hub lipids (Figure 3b). Lipids in the brown module were also significantly correlated 

with clinical variables, especially bulk triglycerides and total cholesterol. In addition, 44 

known lipids (mainly TAGs and PEs) in the module were differentially correlated with other 

lipids in the same module (Figure 3b). Comparing noncases with cases, several TAGs (e.g., 

42:1, 42:2, and 46:3) demonstrated significant gain of connectivity, whereas other TAGs 

(e.g., 51:0 and 53:1) exhibited significant loss of connectivity. Moreover, the correlation 

patterns between module lipids (e.g., TAGs, PEs, PCs, CEs, and sphingolipids [CERs or 

SMs]) and clinical variables, especially bulk triglycerides and total cholesterol, appeared to 

be similar across the 3 cohorts (see Figure 3a for SHFS; Figure 4 for SAFHS; and Figure 5 

for AusDiab Study), albeit the magnitude of correlation varies between cohorts.

DISCUSSION

In this large-scale lipidomic profiling comprising >8000 community-dwelling individuals 

from diverse cohorts, we had several key findings. First, we demonstrated that baseline 

individual lipid species, including glycerophospholipids (PEs, PCs, and PIs), glycerolipids 

(TAGs and DAGs), and sphingolipids (SMs and CERs), were significantly associated with 

future risk for CKD, independent of clinical factors. Specifically, among American Indians, 

higher baseline level of 17 glycerophospholipids, including 9 PEs, 5 PCs, and 3 PIs, were 

significantly associated with increased risk of CKD. Of these, 6 PEs and 2 PCs (i.e., 

PC[33:1] and PC[35:1]) were replicated (with same direction of association) in at least one 

external cohort (Mexican Americans in SAFHS and white populations in AusDiab Study). 

Three PEs (i.e., PE[34:2], PE [36:4]/PE[18:2/18:2], and PE[38:3]/PE[18:0/20:3]) were 

significantly associated with incident CKD in all 3 ethnic groups. We also found that altered 

baseline levels of 9 glycerolipids (8 TAGs and DAG[34:2]) and 3 sphingolipids (SM [d32:1], 

SM[d40:2], and CER[d44:1]) were significantly associated with risk of CKD in American 

Indians. Of these, TAG(53:2) and SM(d32:1) were replicated in AusDiab Study and SAFHS, 

respectively. Transethnic meta-analysis combining results of 23 lipids measured in all 3 

cohorts identified 13 lipids (8 PEs, 2 TAGs, 1 DAG, 1 PC, and 1 SM) significantly 

associated with incident CKD at q < 0.05. Further adjustments for standard lipoproteins, 

UACR, and lipid-lowering medications did not materially change the associations. Second, 

our repeated measurement analysis demonstrated, for the first time, that longitudinal change 
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in fasting plasma lipidome was significantly associated with change in kidney function, 

independent of clinical factors and baseline lipids and eGFR. Specifically, changes in 258 

individual lipid species (88 known) were significantly associated with change in eGFR 

over 5-year follow-up in American Indians. The 88 known lipid species largely included 

TAGs, PCs, PEs, SMs, fatty acids, and acylcarnitines (ACs). On average, change in plasma 

lipidome explains ≈7% of the variance in eGFR over 5-year follow-up. Third, our network 

analysis identified differential lipid clusters (i.e., modules) associated with risk of CKD. The 

identified lipid module was enriched in TAGs and PEs, and lipids in this module showed 

strong correlations with clinical variables. As we built the networks based on baseline lipids, 

the disturbed lipid coregulations may have occurred at least 5 years before CKD onset. 

These findings are consistent with a previous study showing that lipid networks enriched in 

TAG and cardiolipins-PEs discriminated progressors and non-progressors with stage 2 or 3 

CKD.14 Together, our results revealed a distinct lipidomic signature associated with risk for 

CKD and provide insight into the mechanisms through which dyslipidemia may contribute 

to CKD. Moreover, because aberrant expression of plasma lipidome associated with CKD 

is clearly present at preclinical stages, before the onset of CKD, the identified lipids may 

provide potential biomarkers for identifying individuals with impaired kidney function at 

earlier stages.

We identified significant associations of multiple PEs with risk of CKD in 3 diverse cohorts 

comprising individuals with different genetic and environmental (or lifestyle) backgrounds. 

Also, these associations were consistently detected in different statistical models. Many 

of the identified PEs (e.g., PE[34:1], PE[34:2], PE[36:2], PE[36:4]/PE[18:2/18:2], PE 

[16:0/16:1], and PE[38:3]/PE[18:0/20:3]) were also significantly associated with diabetes 

and prediabetes in American Indians,24 Mexican Americans, and white populations.26 The 

associations of PEs with CKD are also in line with previous studies reporting that some 

PEs (e.g., 38:3, 38:4, 38:6, 40:4, 40:5, and 40:6) were associated with CKD in Chinese 

individuals18 or blood pressure in white populations.50 Collectively, our results suggest a 

potential important role of dysregulated PE metabolism in CKD.

PE is the second most abundant phospholipid, after PC, in the membranes of all 

mammalian cells. Besides serving as the backbone of cellular membranes and precursor 

for other lipids, PEs and their derived lipid mediators are involved in many biological 

processes, such as signal transduction, apoptosis, mitochondrial function, and modulation 

of cellular responses.51–53 Dysregulation in PE metabolism has been implicated in 

neurodegeneration,54,55 cancer,56 and metabolic disorders, such as nonalcoholic liver 

disease, atherosclerosis, insulin resistance, and obesity.51,57 Although the precise 

mechanisms linking PEs and CKD remains to be determined, it is possible that PEs 

may cause nephrotoxicity through their roles in insulin resistance, inflammation, oxidative 

stress, lipid peroxidation, and impaired β-oxidation, as well as other as yet unknown 

mechanisms.9,58–63

Besides PEs, we also identified significant associations of other glycerophospholipids 

(e.g., PCs and PIs), glycerolipids (e.g., TAGs and DAGs), and sphingolipids (e.g., SMs 

and CERs) with risk of CKD. Many lipids, such as PC(33:1), PC(35:1), TAG(53:2), 

TAG(52:4), DAG(34:2), and SM(d32:1), were validated in at least one external cohort 
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and/or meta-analysis. The associations of SMs, ceramide, and PCs with CKD are 

consistent with previous studies reporting that they were associated with microalbuminuria/

macroalbuminuria or kidney impairment.16,18,64–66 The associations of glycerolipids (TAGs 

and DAGs) with CKD are supported by our previous studies showing that altered baseline 

levels of various TAGs and DAGs were significantly associated with risk of diabetes in 

American Indians24 or hypertension in Mexican Americans.28 The current study also found 

that higher baseline level of 3 PIs (e.g., 17:0/20:4, 18:0/20:3, and 18:0/20:4) predicted 

the risk of CKD in American Indians. Although these results were not replicated in 

external cohorts, the observed associations appear to be in line with a previous study 

demonstrating that altered plasma PIs were associated with diabetes in Mexican Americans 

and Causasians.26

Our repeated measurement analysis revealed, for the first time, the temporal relationship 

between change in plasma lipidome and change in kidney function, independent of 

covariates and baseline lipids and eGFR. Specifically, changes in long-chain unsaturated 

fatty acids, long-chain saturated acylcarnitines, and PCs with a lower degree of unsaturation 

were positive, whereas changes in polyunsaturated TAGs, PCs with a higher degree of 

unsaturation, unsaturated SMs, polyunsaturated PEs, and intermediate-chain acylcarnitines 

were inversely associated with change in eGFR. These processes are likely a reflection of 

impaired mitochondrial β-oxidation of saturated fatty acids (such as palmitate), in parallel 

with upregulation of elongation/desaturation processes, leading to higher abundance of 

unsaturated fatty acids and their incorporation into longer polyunsaturated complex lipids, 

such as TAGs.11,12,67,68

In addition, we observed differential correlation patterns between prospective association 

and repeated measurement analyses. Despite the fact that some lipid species (e.g., TAGs) 

were detected in both statistical models, lipids identified in the 2 analyses were largely not 

overlapped. For instance, PEs showed strong and consistent associations with risk of CKD in 

prospective analysis, whereas repeated measurement analysis revealed that change in other 

lipid species (e.g., PCs, TAGs, SMs, fatty acids, and ACs) were associated with change in 

eGFR. The reasons behind these differential association patterns are unclear. It is likely that 

baseline lipids and longitudinal changes in the lipidome reflect different aspects of disease 

pathophysiology. Future research should investigate the temporal relationship between 

plasma lipidome and disease outcomes to comprehensively understand the mechanisms 

underlying dyslipidemia and metabolic disorders.

In the field of lipidomics, replication of individual lipid species across populations has 

proved to be challenging. This is largely due to the following facts: (i) Different studies 

often employ different mass spectrometry platforms, which usually result in different 

resolution and/or coverage of the lipidome. This impedes replication of individual lipid 

species across studies. (ii) Blood lipidome is determined by genetic, environmental, and 

lifestyle factors, all of which may vary across populations. (iii) Given the high correlation 

between lipids, different statistical models may detect different individual lipids, even in a 

same population. This is especially true for complex diseases, such as CKD. Lipidomic 

signature of CKD progression is the net effect of differential lipolysis, lipogenesis, 

elongation, desaturation, and β-oxidation of fatty acids at various stages of the disease 
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processes that impact many lipid classes or clusters with high degrees of similarities. As 

such, no single lipid can have a large enough effect to represent the variation in lipidomic 

signature, nor any one lipid may gain advantageous predictive power over other structurally 

similar significant lipids in predicting a complex disease outcome. Hence, it is not surprising 

that approaches based on individual lipid species often fail to be replicated in independent 

cohorts. Replication at the class/clusters (with similar structures or class) level may be 

a reasonable approach. Nevertheless, multiple individual lipids (e.g., PEs, PCs, SMs, and 

TAGs) identified in American Indians could be replicated in external cohorts in our study. 

This further highlights the robustness of our findings and signifies the potential important 

role of dysregulation in the metabolism of these lipids in CKD.

Several limitations of our study should be noted. First, because of our focus on participants 

without overt CKD and CVD at baseline, along with a relatively short period of follow-up, 

the number of participants with incident CKD in each cohort was relatively small, and 

thus our study could be underpowered in detecting lipidomic markers. Nevertheless, the 

current analysis included >8000 individuals without prevalent CKD at baseline, of whom 

324 developed incident CKD over ≈-year follow-up. To our knowledge, this represents 

the largest lipidomic profiling of risk for CKD in 3 large community-based prospective 

cohorts of multiethnic individuals. Second, despite the large number of lipids detected 

in our discovery cohort, many lipids are unknowns; and we were unable to distinguish 

isomeric lipids either. Additional experiments are needed to characterize these unknowns if 

considered of interest. Also, the lack of absolute quantification does not allow clinical utility. 

Moreover, the static lipidomic platforms may not disclose the contribution of upstream 

lipid regulators with differential flux and yet steady-state concentrations. Third, as emerging 

evidence suggests that lipidomic signature of CKD progression may vary, depending on the 

etiology of CKD progression, the lipidomic alterations identified in our study may not point 

to specific underlying etiologies of CKD progression. Fourth, although our statistical models 

controlled many clinical factors known to be associated with CKD, we cannot exclude 

the possibility of residual confounding by unknown or unmeasured factors. Finally, as in 

all other observational studies, we cannot determine whether the observed associations are 

cause or consequence of CKD.

However, our study has several strengths. First, the current study included >8000 

community-dwelling individuals of diverse cohorts, which, to our knowledge, represents 

the largest lipidomic profiling of risk for CKD. Second, the longitudinal profiling of plasma 

lipidome in a large community-based cohort represents another major strength of this study. 

Third, our statistical analyses in all 3 cohorts adjusted for chronic conditions associated with 

CKD (e.g., obesity, diabetes, and hypertension). In addition, we examined the relationship 

between plasma lipidome and CKD development at both individual lipid species and lipid 

class level. Moreover, we performed sensitivity analysis to additionally adjust for bulk lipids 

(total cholesterol and triglyceride), UACR, and use of lipid-lowering medications in the 

SHFS. Thus, lipids identified in our study should be independent of these conventional risk 

factors. Finally, our high-resolution lipidomic platforms in both discovery and replication 

cohorts identified a larger number of molecular lipid species, allowing us to identify novel 

lipid species associated with risk of CKD and offering unprecedented opportunities for 

future investigations.
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In summary, we identified a range of novel molecular lipids associated with risk of CKD 

at both individual lipid species and lipid class levels, independent of clinical factors. Our 

results demonstrated that dysregulated lipid metabolism occurs years before CKD onset. 

Thus, the newly identified lipids may help identify individuals with early impaired kidney 

function at preclinical stages. Our findings offer potential opportunities for new intervention 

strategies (e.g., lifestyle/drug) to prevent/attenuate CKD progression by modifying lipid 

metabolism. Our results further highlight the need for mechanistic studies to characterize the 

role of lipid species in CKD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DATA STATEMENT
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corresponding author on reasonable request. Clinical data in the SHFS can be requested 
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Figure 1 |. Baseline plasma lipids associated with risk of chronic kidney disease in the discovery 
(Strong Heart Family Study [SHFS]) and replication (San Antonio Family Heart Study [SAFHS] 
and Australian Diabetes, Obesity, and Lifestyle [AusDiab] Study) cohorts as well as meta-
analysis.
Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by mixed-effect 

logistic regression (SHFS and SAFHS) or logistic regression (AusDiab Study), adjusting 

for age, sex, body mass index, hypertension, and diabetes at baseline. The analysis in 

SAFHS additionally adjusted for individual-specific estimates of relative Amerindian and 

African admixture (as estimated from genome-wide genetic markers). Family relatedness 

in the SHFS was accounted for by including a random effect (i.e., family) in the 

model. Family relatedness in the SAFHS was accounted for by including underlying 

genetic variation as a random effect in the model via a variance component that 

was structured by the genetic relatedness matrix. CER, ceramide; DAG, diacylglycerol; 

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, 

sphingomyelin; TAG, triacylglycerol.
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Figure 2 |. Longitudinal association between changes in plasma lipidome and change in estimated 
glomerular filtration rate (eGFR) over 5-year follow-up in the Strong Heart Family Study.
The heat map was arranged on the basis of lipid classes. Only known lipids (top 5 in each 

class) whose longitudinal changes were significantly associated with change in eGFR (q 

< 0.05) are shown. Color of the heat map was based on regression coefficients obtained 

from mixed-effect linear regression, adjusting for clinical factors, including baseline age, 

sex, study site, and changes in body mass index, systolic blood pressure, fasting plasma 

glucose, total cholesterol, triglyceride, and urine albumin–creatinine ratio (between baseline 

and follow-up) plus baseline lipids and eGFR. Family relatedness was accounted for by 

including a random effect (i.e., family) in the model. **P < 0.001, *P < 0.01, and +P 
< 0.05. AC, acylcarnitine; FA, fatty acid; FAHFA, fatty acyl esters of hydroxy fatty 

acid; GlcCer, glycosylceramide; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 

PI, phosphatidylinositol; SM, sphingomyelin; TAG, triacylglycerol.
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Figure 3 |. Lipid network analysis in the Strong Heart Family Study (SHFS).
(a) Dendrogram showing the hierarchical clustering of lipid modules (top) and heat map 

displaying the correlations between lipid modules and clinical traits (bottom) in the SHFS. 

The name of lipid modules reflects the dominating lipid class within each cluster. (b) 

Circos plot showing differential correlations between lipid pairs in the brown module. The 

difference in lipid correlations between incident chronic kidney disease (CKD) cases and 

noncases was calculated by the R package DGCA. Only known lipids with significant 

differential correlations (P < 0.05) were included. Edges are colored according to the 

differential correlation type, categorized as gain of correlation (GOC) or loss of correlation 

(LOC). Edge width represents differential correlation strength, defined as the absolute 

value of the z-score for differential correlations between cases and noncases. Node color 

represents lipid class. Node size is proportional to the intramodular connectivity, defined 

as the connectivity of a specific lipid to other lipids in the same WGCNA module. 

Hub lipids of the brown module are bolded. AC, acylcarnitine; BMI, body mass index; 

FA, fatty acid; FPG, fasting plasma glucose; GlcCer, glycosylceramide; LC, long chain; 

LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 

PI, phosphatidylinositol; SBP, systolic blood pressure; SFA, saturated fatty acid; SM, 

sphingomyelin; TAG, triacylglycerol; TC, total cholesterol; TG, triglyceride; UACR, urine 

albumin–creatinine ratio; US, unsaturated.

Zeng et al. Page 17

Kidney Int. Author manuscript; available in PMC 2023 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 |. Correlations between module lipids and clinical variables in the San Antonio Family 
Heart Study.
Top panel: dendrogram showing the hierarchical clustering of lipid modules. Bottom panel: 

heat map displaying the correlations between lipid modules and clinical traits. The name 

of lipid modules reflects the dominating lipid class within each cluster. AC, acylcarnitine; 

BMI, body mass index; CE, cholesteryl ester; CER, ceramide; CKD, chronic kidney disease; 

DAG, diacylglycerol; FA, fatty acid; FPG, fasting plasma glucose; LC, long chain; LPC, 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; 

PE, phosphatidylethanolamine; PS, phosphatidylserine; SBP, systolic blood pressure; SM, 

sphingomyelin; TAG, triacylglycerol; TC, total cholesterol; TG, triglyceride; UACR, urine 

albumin–creatinine ratio; US, unsaturated.
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Figure 5 |. Correlations between module lipids and clinical variables in the Australian Diabetes, 
Obesity, and Lifestyle Study.
Top panel: dendrogram showing the hierarchical clustering of lipid modules. Bottom 

panel: heat map displaying the correlations between lipid modules and clinical traits. 

The name of lipid modules reflects the dominating lipid class within each cluster. AC, 

acylcarnitine; BMI, body mass index; CE, cholesteryl ester; CER, ceramide; CKD, chronic 

kidney disease; DAG, diacylglycerol; FPG, fasting plasma glucose; LC, long chain; LPC, 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; 

PE, phosphatidylethanolamine; SBP, systolic blood pressure; SM, sphingomyelin; TAG, 

triacylglycerol; TC, total cholesterol; TG, triglyceride; UACR, urine albumin–creatinine 

ratio; US, unsaturated.
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Table 1.

Clinical characteristics of study participants at enrollment in the three cohorts

Characteristics SHFS (n=1,910) SAFHS (n=632) AusDiab (n=5,541)

Age (years) 40.1±13.9 42.2±14.9 50.2±12.4

Female (%) 1190 (62.0) 405 (64.0) 2,944 (53.1)

BMI (kg/m2) 31.8±7.7 31.0±6.9 26.8±4.8

SBP (mmHg) 122±15.3 124±19.1 127.9±17.2

DBP (mmHg) 77.3±10.6 71.8±10.7 70.3±11.6

Hypertension (%) 545 (28.5) 175 (28.0) 1,559 (28.2)

FPG (mg/dL) 109±46.2 106±40.2 99.0±18.0

Diabetes (%) 340 (17.8) 114 (18.0) 295 (5.3)

Total cholesterol (mg/dL) 185±36.7 178±35.9 217.7±18.7

Triglyceride (mg/dL) 171±201 154±307 107.1±85.8

HDL (mg/dL) 51.7±14.5 47.9±12.5 55.3±32.0

LDL (mg/dL) 102±29.9 102±29.3 136.5±34.8

UACR (mg/g) 47.3±281.6 69.3±431 11.5±57.9

eGFR (mL/min/1.73 m2) 115±16.7 103±23.1 77.7±10.3

Results are expressed as mean ± SD unless otherwise noted. BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, 
FPG: fasting plasma glucose, HDL: high-density lipoprotein, LDL: low-density lipoprotein, UACR: urine albumin-to-creatinine ratio, eGFR: 
estimated glomerular filtration rate.
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Table 2.

Baseline plasma lipids associated with risk for CKD (discovery cohort, SHFS). Only lipids with q <0.05 are 

shown.

Lipid Class OR (95% CI)ǂ q*

PC(33:1) Phosphocholines 1.59 (1.23, 2.06) 0.012

PC(34:1) Phosphocholines 1.75 (1.23, 2.49) 0.026

PC(35:1) Phosphocholines 1.65 (1.27, 2.15) 0.006

PC(p-36:4)/PC(o-36:5) Phosphocholines 1.05 (1.04, 1.06) <.001

PC(p-38:4)/PC(o-38:5) B Phosphocholines 1.07 (1.06, 1.08) <.001

PE(36:1) A Phosphoethanolamines 1.36 (1.15, 1.6) 0.008

PE(34:1) Phosphoethanolamines 1.57 (1.26, 1.97) 0.003

PE(34:2) B Phosphoethanolamines 1.47 (1.16, 1.87) 0.024

PE(36:2) Phosphoethanolamines 1.46 (1.17, 1.83) 0.017

PE(36:3) Phosphoethanolamines 1.36 (1.13, 1.64) 0.024

PE(36:4)/PE(18:2/18:2) Phosphoethanolamines 1.48 (1.17, 1.87) 0.018

PE(16:0/16:1) Phosphoethanolamines 1.38 (1.13, 1.7) 0.026

PE(16:0/18:3) Phosphoethanolamines 1.37 (1.12, 1.68) 0.031

PE(18:0/20:3) Phosphoethanolamines 1.41 (1.14, 1.75) 0.024

PI(17:0/20:4) Phosphoinositols 1.47 (1.19, 1.8) 0.008

PI(18:0/20:3) A Phosphoinositols 1.5 (1.15, 1.96) 0.033

PI(18:0/20:4) Phosphoinositols 1.52 (1.16, 1.99) 0.031

DAG(34:2) Diacylglycerols 1.13 (1.12, 1.14) <.001

TAG(51:0)/TAG(16:0/17:0/18:0) Triacylglycerols 1.36 (1.1, 1.69) 0.048

TAG(51:1) Triacylglycerols 1.37 (1.11, 1.69) 0.038

TAG(52:4) Triacylglycerols 1.02 (1.01, 1.03) <.001

TAG(53:1) Triacylglycerols 1.36 (1.14, 1.62) 0.014

TAG(53:2) Triacylglycerols 1.36 (1.1, 1.68) 0.048

TAG(53:3) Triacylglycerols 1.43 (1.15, 1.77) 0.024

TAG(53:5)/TAG(16:0/17:1/20:4) Triacylglycerols 1.26 (1.08, 1.46) 0.031

TAG(54:3) Triacylglycerols 1.52 (1.14, 2.01) 0.038

SM(d40:2) C Sphingomyelins 0.81 (0.81, 0.82) <.001

SM(d32:1) B Sphingomyelins 1.49 (1.15, 1.95) 0.034

CER(d44:1) Ceramides 1.13 (1.12, 1.14) <.001

ǂ
Obtained by the mixed-effect logistic regression, adjusting for age, sex, BMI, hypertension, and diabetes at baseline.

*
Adjust for multiple testing using the Storey’s q-value method.
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Table 3.

Replication in external cohorts (SAFHS, AusDiab). Only lipids matched to SHFS are shown. Lipids with 

P<0.05 are bolded

Lipid Class

SAFHS AusDiab

OR (95% CI)ǂ Pǂ OR (95% CI)* P*

PC(33:1) Phosphocholines 1.03 (0.88, 1.22) 0.686 1.2 (1.06, 1.36) 0.004

PC(34:1) Phosphocholines 1.04 (0.87, 1.24) 0.676 1.11 (0.97, 1.28) 0.129

PC(35:1) Phosphocholines 1.07 (0.91, 1.25) 0.427 1.20 (1.05, 1.36) 0.006

PC(p-36:4)/PC(o-36:5) Phosphocholines 1.07 (0.9, 1.27) 0.469 0.90 (0.77, 1.06) 0.281

PC(p-38:4)/PC(o-38:5) B Phosphocholines 1.13 (0.97, 1.31) 0.131 0.94 (0.81, 1.08) 0.391

PE(36:1) A Phosphoethanolamines 1.10 (0.96, 1.27) 0.191 1.07 (0.93, 1.22) 0.338

PE(36:4)/PE(18:2/18:2) Phosphoethanolamines 1.19 (1.01, 1.4) 0.037 1.17 (1.04, 1.31) 0.009

PE(34:1) Phosphoethanolamines 1.20 (1.02, 1.41) 0.030 1.12 (0.99, 1.26) 0.079

PE(34:2) B Phosphoethanolamines 1.28 (1.09, 1.5) 0.003 1.15 (1.02, 1.29) 0.019

PE(36:2) Phosphoethanolamines −/− −/− 1.09 (0.96, 1.23) 0.202

PE(36:3) Phosphoethanolamines 1.26 (1.1, 1.43) 0.002 1.13 (1, 1.27) 0.074

PE(16:0/16:1) Phosphoethanolamines 1.10 (0.95, 1.27) 0.212 1.11 (1, 1.24) 0.055

PE(16:0/18:3) Phosphoethanolamines 1.20(1.03, 1.41) 0.024 1.11 (1, 1.24) 0.081

PE(38:3)/PE(18:0/20:3) Phosphoethanolamines 1.17 (1, 1.37) 0.043 1.15 (1.02, 1.29) 0.024

PI(17:0/20:4) Phosphoinositols −/− −/− 1.09 (0.96, 1.23) 0.167

PI(18:0/20:3) A Phosphoinositols 1.16 (0.97, 1.38) 0.113 1.00 (0.88, 1.14) 0.989

PI(18:0/20:4) Phosphoinositols 0.93 (0.77, 1.13) 0.470 1.08 (0.95, 1.23) 0.236

DAG(34:2) Diacylglycerols 1.00 (0.83, 1.20) 0.974 1.1 (0.97, 1.25) 0.187

TAG(51:0)/TAG(16:0/17:0/18:0) Triacylglycerols 0.98 (0.83, 1.16) 0.849 1.11 (0.97, 1.28) 0.156

TAG(51:1) Triacylglycerols 0.99 (0.84, 1.17) 0.924 −/− −/−

TAG(52:4) Triacylglycerols 1.05 (0.9, 1.23) 0.575 0.99 (0.86, 1.14) 0.462

TAG(53:2) Triacylglycerols 1.01 (0.85, 1.21) 0.913 1.18 (1.03, 1.35) 0.020

TAG(54:3) Triacylglycerols 1.07 (0.94, 1.21) 0.388 1.00 (0.86, 1.15) 0.799

SM(d40:2) C Sphingomyelins 1.19 (1.03, 1.37) 0.019 1.04 (0.9, 1.2) 0.321

SM(d32:1) B Sphingomyelins 1.25 (1.07, 1.46) 0.004 1.12 (0.98, 1.27) 0.110

CER(d44:1) Ceramides 1.14 (0.98, 1.34) 0.097 0.94 (0.81, 1.09) 0.412

ǂ
Obtained by mixed-effect logistic regression, adjusting for age, sex, BMI, ethnicity, hypertension, and diabetes at baseline.

*
Obtained by logistic regression, adjusting for age, sex, BMI, hypertension, and diabetes at baseline.

−/− denotes lipid not measured in that cohort.
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Table 4.

Results from transethnic meta-analysis. Lipids with q<0.05 are bolded

Lipid Class OR (95% CI)ǂ Pǂ q*

CER(d44:1) Ceramides 1.08 (0.95, 1.24) 0.249 0.302

DAG(34:2) Diacylglycerols 1.13 (1.12, 1.14) <0.001 <0.001

PC(33:1) Phosphocholines 1.25 (1.01, 1.55) 0.037 0.061

PC(34:1) Phosphocholines 1.24 (0.94, 1.62) 0.129 0.177

PC(35:1) Phosphocholines 1.29 (1.04, 1.59) 0.020 0.038

PC(p-36:4)/PC(o-36:5) Phosphocholines 1.02 (0.92, 1.13) 0.756 0.790

PC(p-38:4)/PC(o-38:5) B Phosphocholines 1.05 (0.96, 1.16) 0.305 0.351

PE(16:0/16:1) Phosphoethanolamines 1.19 (1.04, 1.36) 0.010 0.023

PE(16:0/18:3) Phosphoethanolamines 1.23 (1.06, 1.44) 0.007 0.020

PE(38:3)/PE(18:0/20:3) Phosphoethanolamines 1.24 (1.09, 1.42) 0.001 0.006

PE(34:1) Phosphoethanolamines 1.31 (1.06, 1.61) 0.012 0.024

PE(34:2) B Phosphoethanolamines 1.32 (1.10, 1.59) 0.003 0.010

PE(36:1) A Phosphoethanolamines 1.19 (1.02, 1.38) 0.026 0.046

PE(36:3) Phosphoethanolamines 1.28 (1.10, 1.50) 0.002 0.007

PE(36:4)/PE(18:2/18:2) Phosphoethanolamines 1.28 (1.10, 1.48) 0.001 0.006

PI(18:0/20:3) A Phosphoinositols 1.21 (0.94, 1.55) 0.131 0.177

PI(18:0/20:4) Phosphoinositols 1.14 (0.86, 1.51) 0.372 0.408

SM(d32:1) B Sphingomyelins 1.30 (1.07, 1.58) 0.008 0.022

SM(d40:2) C Sphingomyelins 1.02 (0.77, 1.34) 0.902 0.902

TAG(51:0)/TAG(16:0/17:0/18:0) Triacylglycerols 1.14 (0.97, 1.35) 0.117 0.177

TAG(52:4) Triacylglycerols 1.02 (1.01, 1.03) <0.001 0.001

TAG(53:2) Triacylglycerols 1.20 (1.07, 1.33) 0.001 0.006

TAG(54:3) Triacylglycerols 1.16 (0.93, 1.46) 0.197 0.252

ǂ
Obtained by inverse-variance weighted random-effects meta-analysis combining results across all 3 cohorts. The analysis included 23 lipids 

measured in all 3 cohorts.

*
Adjusted for multiple testing using the Storey’s q-value method.
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Table 5.

Results from sensitivity analysis in the SHFS. Lipids with P<0.05 are bolded

Lipid Class OR (95% CI)ǂ Pǂ

PC(33:1) Phosphocholines 1.55 (1.15, 2.09) 0.004

PC(34:1) Phosphocholines 1.51 (1.02, 2.24) 0.039

PC(35:1) Phosphocholines 1.51 (1.10, 2.06) 0.010

PC(p-36:4)/PC(o-36:5) Phosphocholines 1.12 (0.83, 1.52) 0.458

PC(p-38:4)/PC(o-38:5) B Phosphocholines 1.09 (0.81, 1.47) 0.576

PE(36:1) A Phosphoethanolamines 1.71 (1.12, 2.61) 0.013

PE(34:1) Phosphoethanolamines 1.52 (1.13, 2.03) 0.005

PE(34:2) B Phosphoethanolamines 1.39 (1.03, 1.86) 0.029

PE(36:2) Phosphoethanolamines 1.49 (1.10, 2.02) 0.011

PE(36:3) Phosphoethanolamines 1.46 (1.09, 1.96) 0.011

PE(36:4)/PE(18:2/18:2) Phosphoethanolamines 1.31 (1.00, 1.71) 0.047

PE(16:0/16:1) Phosphoethanolamines 1.26 (0.98, 1.61) 0.070

PE(16:0/18:3) Phosphoethanolamines 1.34 (1.03, 1.73) 0.028

PE(18:0/20:3) Phosphoethanolamines 1.34 (1.03, 1.75) 0.029

PI(17:0/20:4) Phosphoinositols 1.54 (1.22, 1.93) <0.001

PI(18:0/20:3) A Phosphoinositols 1.45 (1.06, 1.98) 0.019

PI(18:0/20:4) Phosphoinositols 1.52 (1.10, 2.08) 0.010

DAG(34:2) Diacylglycerols 1.11 (0.83, 1.48) 0.475

TAG(51:0)/TAG(16:0/17:0/18:0) Triacylglycerols 1.28 (0.98, 1.68) 0.071

TAG(51:1) Triacylglycerols 1.34 (1.02, 1.76) 0.037

TAG(52:4) Triacylglycerols 0.97 (0.71, 1.33) 0.841

TAG(53:1) Triacylglycerols 1.30 (1.03, 1.64) 0.028

TAG(53:2) Triacylglycerols 1.31 (0.98, 1.75) 0.073

TAG(53:3) Triacylglycerols 1.39 (1.01, 1.89) 0.040

TAG(53:5)/TAG(16:0/17:1/20:4) Triacylglycerols 1.36 (1.11, 1.68) 0.003

TAG(54:3) Triacylglycerols 1.35 (0.96, 1.88) 0.083

SM(d40:2) C Sphingomyelins 0.85 (0.60, 1.21) 0.372

SM(d32:1) B Sphingomyelins 1.47 (1.08, 2.00) 0.014

CER(d44:1) Ceramides 1.05 (0.76, 1.45) 0.763

ǂ
Obtained by mixed-effect logistic regression, adjusting for age, sex, BMI, hypertension, diabetes, total cholesterol, triglyceride, UACR, and use of 

lipid-lowering medications at baseline.
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