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Abstract

Background and purpose: The purpose of this study was to determine whether single 

nucleotide polymorphisms disrupting microRNA targets (mirSNPs) can serve as predictive 

biomarkers for toxicity after radiotherapy for prostate cancer and whether these may be 

differentially predictive depending on radiation fractionation.

Materials and methods: We identified 201 men treated with two forms of definitive 

radiotherapy for prostate cancer at two institutions: 108 men received conventionally-fractionated 

radiotherapy (CF-RT) and 93 received stereotactic body radiotherapy (SBRT). Germline DNA was 

evaluated for the presence of functional mirSNPs. Random forest, boosted trees and elastic net 

models were developed to predict late grade ≥2 GU toxicity by the RTOG scale.

Results: The crude incidence of late grade ≥2 GU toxicity was 16% after CF-RT and 15% 

after SBRT. An elastic net model based on 22 mirSNPs differentiated CF-RT patients at high 

risk (71.5%) versus low risk (7.5%) for toxicity, with an area under the curve (AUC) values of 

0.76–0.81. An elastic net model based on 32 mirSNPs differentiated SBRT patients at high risk 

(64.7%) versus low risk (3.9%) for toxicity, with an area under the curve (AUC) values of 0.81–

0.87. These models were specific to treatment type delivered. Prospective studies are warranted to 

further validate these results.

*Corresponding author at: Department of Radiation Oncology, Suite B265, 200 Medical Plaza, Los Angeles, CA 90095, United States. 
aukishan@mednet.ucla.edu (A.U. Kishan). 
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Conclusion: Predictive models using germline mirSNPs have high accuracy for predicting late 

grade ≥2 GU toxicity after either CF-RT or SBRT, and are unique for each treatment, suggesting 

that germline predictors of late radiation sensitivity are fractionation-dependent. Prospective 

studies are warranted to further validate these results.
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Given the high effectiveness of definitive treatments for localized prostate cancer, quality 

of life following treatment is a paramount factor in patient-physician shared decision-

making [1]. After definitive radiotherapy, a major quality of life limiting toxicity is 

late genitourinary (GU) toxicity, which could manifest as increased urinary frequency, 

retention, pain, and bleeding. The 5-year late grade ≥2 GU toxicity rates following modern 

radiotherapy ranges from 12% to 15% [2,3] with an insidious increase over time. Overall, 

these rates appear to be similar whether a patient is treated with conventionally-fractionated 

radiotherapy (CF-RT; 1.8–2.0 Gy per fraction over 39–45 treatment sessions) or stereotactic 

body radiotherapy (SBRT; >7 Gy per fraction over 5 or fewer sessions) [4,5]. While these 

data indicate that on a population level, there are no aggregate-level differences in toxicity, 

there may indeed be patients who exhibit fraction-dependent radiosensitivity.That is, some 

patients may have more toxicity after high dose per fraction versus low dose per fraction 

radiation.

There are considerable data suggesting that genomic factors may be important in 

determining clinical radiosensitivity, with several studies suggest that germline single 

nucleotide polymorphisms (SNPs) in multiple genes may be associated with GU toxicity 

after radiotherapy, however, those reported have only modest accuracy for predicting toxicity 

[6–8]. Emerging data suggest an important role for microRNAs (miRNAs) - small, non-

coding RNA elements [9]. miRNAs are global regulators of stress response pathways, 

including the local and systemic response to radiation [10]. Beyond miRNAs themselves, 

germline single nucleotide polymorphisms disrupting their target binding or regulatory 

regions (termed mirSNPs) appear to be integral to determining the response to radiation 

[1011]. Recently, miSNPs were found to predict wound-healing toxicity after SBRT in 

sarcoma [12]. In order to identify and characterize whether a signature from this pool of 

mirSNPs could help to aid in the prediction of late GU toxicity following CF-RT versus 

SBRT in a fractionation-dependent manner, we performed a translational study of germline 

DNA from 201 prospectively treated patients.

Methods

Participants and treatment characteristics

The patient population included 108 patients receiving CF-RT on a single-arm prospective 

study at Oslo University Hospital [13] and 93 patients receiving SBRT on two single arm 

prospective studies at the University of California, Los Angeles (NCT01059513 [n = 63] and 

NCT02296229 [n = 30]) (Table S1–2). Patients included in this sub-study provided signed 

consent for collection and analysis of germline DNA for the evaluation of predictors of 
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toxicity and efficacy. A minimum follow-up of six months was required for inclusion (all 

patients on the protocol that had available germline DNA met this criteria). This study was 

approved by the Ethics Committee of the Health Region South/East of Norway as well as 

the Institutional Review Board at the University of California, Los Angeles. Patients in the 

CF-RT cohort received 74 Gy in 37 fractions to the prostate and 50 Gy in 25 fractions to 

the pelvic lymph nodes as described previously [13]. The initial portion was delivered with 

intensity modulated radiotherapy techniques, with expansions on the prostate ranging from 

13-15 mm and imaging guidance predominantly consisting of alignment to bony markers. 

Patients in the SBRT cohort received 40 Gy in five fractions to the prostate, as described 

previously [14]. SBRT plans were delivered by volumetric modulated arc therapy, with a 

planning margin of 5 mm around the prostate, reduced to 3–5 mm posteriorly. Inter- and 

intrafractional motion management relied on alignment to intraprostatic fiducial markers. 

The toxicity scale used was the RTOG scale, rather than the more contemporary Common 

Terminology Criteria for Adverse Events (CTCAE) scale. This scale is functionally similar 

to the RTOG scale with respect to significant (i.e., moderate or greater) toxicity. Toxicity 

was assessed q3 monthly in the first year, then q6 monthly for two years, and then annually. 

Late toxicity events were defined as events occurring >90 days after radiotherapy.

Analysis of germline DNA

Genomic DNA from peripheral blood mononuclear cells, whole blood, or normal tissue 

found in biopsy specimens was isolated using standard techniques and analyzed in a single 

Clinical Laboratory Improvement Amendments–certified laboratory as previously described 

[15]. Biomarkers were identified from a pool of miRNA-based biomarkers discovered and 

determined to be functional previously through sequencing and bioinformatic approaches 

[16]. Mutations in DNA damage repair and response genes and immune response genes, 

in the key gene targets of miRNAs known to be critical in the DNA damage or immune 

response, and in the promoters of miRNAs known to be important in these responses were 

prioritized. Therefore, for this analysis, panels were run using the Sequenom platform, an 

analysis which included approximately 300 single nucleotide polymorphisms or deletions. 

Each panel was run with internal controls that used Taqman Genotyping as the gold 

standard. To compare the genetic variation between the CF-RT and SBRT cohorts, we 

calculated the fixation index for each analyzed mirSNP (Fig. S1) [17].

Variable selection and model fitting

Statistical models and analyses were conducted in R (version 4.0.0). All mirSNPs with 

variance close to zero (nearZeroVar::caret version 6.0–84)27 or that had an almost perfect 

correlation (r2 ≥ 0.99) were removed. Fisher’s exact test was used to test the pairwise 

independence between each mirSNP and the outcome of experiencing a late grade ≥2 GU 

toxicity event as scored on the Radiation Therapy Oncology Group (RTOG) scale [18]. This 

scoring system was developed in 1985 and grades the severity of radiation-induced reactions 

from 0 to 5, with grade 2 toxicity being considered moderate. For the initial assessment 

of pairwise independence, the p-values were only used for model selection and thus no 

adjustment for multiplicity of testing was performed. Toxicities studied were restricted to 

GU toxicity rather than gastrointestinal (GI) toxicity since the low event rate in either cohort 
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of GI toxicity precluded meaningful statistical analysis. Furthermore, we evaluated grade ≥2 

toxicity, rather than grade ≥3, GU toxicity, due to limitations of such events.

Due to the unequal distribution of patients with and without toxicity, up-sampling was 

used (upSample::caret version 6.0-84) [19] to create balanced populations. Random forest 

(randomForest::randomForest version 4.6-14) [20], boosted trees (gbm::gbm version 2.1.5) 

[21], and elastic net (glmnet::glmnet version 3.0-2) [22] models were then generated to 

predict toxicity in each patient for both the CF-RT and the SBRT cohorts. In all models, 

SNP mutation status was included as a categorical predictor (3 categories). The p-value 

threshold for inclusion in the models were 0.3 except for the boosted tree model for 

the SBRT cohort, which had a p-value threshold of 0.15. Each model was run using 

various parameters, and model performance was assessed for sensitivity, specificity, negative 

predictive value (NPV), positive predictive value (PPV), F1 score, and AUC (AUC::cvAUC 

version 1.1.0), using held-out samples [23]. To reduce selection bias and overfitting, these 

metrics were calculated using leave-one-out-cross validation (LOO-CV). Cross validation 

(CV), as opposed to external validation on a held-out test sample, is more appropriate for 

medium to low sample sizes, as reliance on a small test data-set leads to unreliable statistical 

inference. In this context, CV has been shown to provide a nearly unbiased estimate of the 

expected prediction error [24]. We considered nested CV as an alternative to simple CV and 

found that our results did not vary significantly. Finally, we evaluated toxicity-free survival 

for patients in both the CF-RT and SBRT cohorts stratified into low and high-risk groups 

based on mirSNP signatures [25].

Results

Median follow-up periods were 8.5 years (standard deviation 2.6 years) in the CF-RT 

group and 3.2 years (standard deviation 0.5 years). Notably, all patients treated with 

CF-RT identified as Caucasian, while 19% of the patients in the SBRT cohort did not 

identify as Caucasian. Seventeen of the 108 patients in the CF-RT cohort (16%) and 14 

patients in the SBRT cohort (15%) experienced late grade ≥2 GU toxicity. Associations 

between late toxicity and mirSNPs for the CF-RT and SBRT cohorts are shown in 

Tables 1 and 2. Twenty-two mirSNPs (involving 19 genes) in the CF-RT cohort and 32 

mirSNPs (involving 30 genes) in the SBRT cohorts met the initial p-value threshold of 

0.3 for inclusion in machine learning models. In the CF-RT cohort, 10 of the mirSNPs 

(45%) were in genes associated with the immune response (accounting for eight genes), 

and seven mirSNPs (32%) were in genes associated with DNA repair (accounting for 

five genes). In the SBRT cohort, 15 mirSNPs (47%) were in genes associated with 

the immune response (accounting for 14 genes), and 6 (19%) were in genes associated 

with DNA repair. Given the imbalances in race, we evaluated fixation indices of the 

mirSNPs analyzed in this study, only two mirSNPs had fixation indices >0.2, with 

only one having an index >0.25. The top six mirSNPs sorted by fixation index were 

IL8_rs4073 (0.887), BMP2_rs1980499 (0.249), IL6_rs1800797 (0.172),IL6_rs1800795 

(0.162), TNNT2_rs3729843 (0.160), CD274_rs2297136 (0.128) (Supplement Fig. S1).

Bar charts showing the proportions of patients within each cohort who had toxicity, 

stratified by mirSNP-based risk classification, are shown in Fig. 1. CV-based estimates 
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of performance metrics for random forest, elastic net, and boosted trees models trained 

to predict toxicity after CF-RT or SBRT are shown in Table 3. The elastic net model for 

toxicity after CF-RT performed best, with an AUC of 0.81 and an F1 score of 0.71. The 

random forest and boosted trees models still had good performance with AUC ranges of 

0.76–0.78 and F1 ranges of 0.54–0.65. For the elastic net model, the negative predictive 

value (NPV) was 94%, with a specificity of 97%. For predicting toxicity after SBRT the 

elastic net model also performed the best, with an AUC of 0.87 and an F1 score of 0.71. 

Once more, the other models still had good performance, with AUCs of 0.81 for both and 

F1 scores of 0.53–0.63. The NPV of the elastic net model for SBRT was 0.96, and the 

specificity was 0.92. Any given mirSNP had a relatively low impact on the overall model 

F1 scores in isolation, with changes in F1 score after removal of any mirSNP ranging from 

−0.05 to +0.18 (Fig. S2).

To investigate the uniqueness of the final models for predicting toxicity to CF-RT versus 

SBRT, we applied the identified signatures of toxicity for each, to the other, i.e., we 

evaluated the mirSNP signature for CF-RT toxicity to the SBRT cohort, and vice versa. 

We found that these models did not predict toxicity to the alternative treatment course (Table 

S2). All models had AUC values <0.55 and F1 scores of 0.25 or less. The PPVs in these 

models ranged between 0.17–0.25, and the NPVs were all >82%. A bar graph showing the 

stratification of each cohort into high-risk and low-risk of toxicity subgroups based on this 

reversed classification scheme is shown in Fig. S3.

Finally, we evaluated toxicity-free survival curves for patients in the CF-RT and SBRT 

cohorts based on both mirSNP signatures (Fig. 2). Among patients receiving CF-RT, patients 

predicted to be at high risk of toxicity based on the CF-RT-derived mirSNP signature had 

significantly shorter toxicity-free survival when compared against men predicted to have a 

lower risk of toxicity (p < 0.0001). Similarly, among patients who received SBRT, patients 

predicted to be at higher toxicity based on the SBRT-derived mirSNP signature had a 

significantly shorter toxicity-free survival (p < 0.0001) than men predicted to have a lower 

risk of toxicity. If stratified by the SBRT-derived mirSNP signature, however, no significant 

differences were seen between toxicity-free survival in patients receiving CF-RT (p = 0.25). 

An analogous result was seen if the SBRT cohort was stratified by the CF-RT mirSNP 

signature (p = 0.43). These findings again support the unique application of each signature to 

the specific fractionation schema, CF or SBRT.

Discussion

In this post hoc translational study of 201 patients enrolled on two prospective protocols, we 

developed models that could reliably predict late GU ≥2 toxicity after either CF-RT or SBRT 

based on germline mirSNPs. These models all had AUC values of >0.75 (>0.8 for all models 

developed in the context of SBRT), with the elastic net model for toxicity after CF-RT and 

SBRT having AUCs of 0.81 and 0.87, respectively; both had F1 scores of 0.71. The values 

indicate a high accuracy for predicting toxicity. Notably, models that predicted for toxicity 

after CF-RT did not predict toxicity for patients treated with SBRT, and vice versa. Overall, 

these data strongly suggest that variants in germline DNA can predict for significant GU 
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toxicity after definitive radiotherapy, and that these germline signatures appear to predict for 

toxicity dependent on fractionation schema.

There are several limitations to this study. First, this constitutes a post-hoc analysis of subset 

of prospectively treated patients and is therefore retrospective by nature. While toxicity was 

scored prospectively, selection biases may have affected which patients contributed to the 

analysis, however, none had biomarker testing before this study was completed. Second, 

patients in the CF-RT cohort had a significantly larger area of tissue radiation, both by 

virtue of the pelvic nodal coverage and due to larger planning volumes around the prostate 

target. However, this difference alone would not account for the poor performance of models 

trained on the SBRT cohort in the CF-RT cohort, and modern pelvic nodal radiotherapy 

does not appear to be associated with increased toxicity [26]. Third, there may be other 

underlying differences between patients treated with CF-RT and SBRT that could explain 

the apparent uniqueness of the predictive models to each population. For instance, all 

patients treated with CF-RT identified as Caucasian, while 19% of the patients in the SBRT 

cohort did not identify as Caucasian. Race has been previously identified as a potential 

predictor for toxicity following radiotherapy, and any difference in toxicity based on race 

might also explain the difference in model performance [27]. However, when evaluating 

the fixation indices of the mirSNPs analyzed in this study, only two mirSNPs had fixation 

indices >0.2, with only one having an index >0.25. Fourth, patient-reported outcomes, rather 

than physician-scored toxicity, would ultimately be the most appropriate metric for whether 

a toxicity is “severe” or not [28–30], and such patient-reported outcomes were not available 

for this study. Fifth, other important factors, such as smoking status, dosimetry, medical 

comorbidities such as diabetes, could have influenced the development of late grade ≥2 

GU toxicity, and we did not have sufficient information to comprehensively incorporate 

these important features into our models. Regardless of these potential limitations, our 

findings are strong and appear to be in line with the data generated by others that there 

are important components in the germ-line DNA that can predict radiotoxicity. Additionally, 

there was no manner to account for interobserver variability in toxicity assessment. Further, 

we optimized our analysis using the binary event of “toxicity” vs. ‘no toxicity” as we 

felt that endpoint was more important to patients than the toxicity-free interval. While our 

time-to-toxicity analyses confirm that our predictive signatures also are associated with 

toxicity-free survival, our training and validation processes were not designed with that 

endpoint. Finally, follow-up time was unequal with far greater follow-up in the CF-RT 

cohort. As more toxicity events occur in medium-term follow-up in the SBRT cohort, our 

results could be impacted.

Kerns et al. recently reported an individual patient data meta-analysis of six genome-wide 

association studies who underwent RT with a mix of different radiotherapy schedules 

(including patients who received brachytherapy and post-prostatectomy radiation) [7]. In 

a multivariable model that included SNPs using a genome-wide association study approach 

found to be associated with time to toxicity, the SNP rs17599026 was found to afford 

a statistically significant 37% increased risk of grade ≥1 urinary frequency. However, 

inclusion of SNP data into a predictive model for the risk of increased urinary frequency led 

to a modest increase in the concordance index from 0.56 without inclusion of SNP data to 

0.57 with inclusion of the SNP data. Lee et al. assessed the performance of a random forest 
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model for predicting changes in patient-reported GU symptoms after brachytherapy with 

or without external beam radiotherapy [8]. For the endpoint of weak stream, the predictive 

model had an AUC of 0.70. Most SNPs included in their model were in genes associated 

with neurogenesis and ion transport, which are associated with the development of lower 

urinary tract symptoms regardless of radiation [31].

In contrast, the present study has identified highly predictive models of functional variants 

that predict late GU toxicity in a fractionation-dependent fashion without the incorporation 

of baseline clinical characteristics and instead utilizing machine-learning approaches trained 

exclusively on germline mirSNPs. These models predicted for a broader endpoint of general, 

significant (i.e., grade ≥2) GU toxicity, over simply a weak urinary stream. Moreover, 

the mirSNPs identified in our model are largely related to immune response and DNA 

repair, pathways known to be directly related to the radiation response and thus are logical 

candidates for late toxicity.

Importantly, a strength of this study is the homogeneity of radiation delivery in patients 

within each cohort, as all patients were enrolled on prospective clinical trials with strict 

planning constraints and all patients in each cohort received the same dose and fractionation 

scheme. The high NPVs of the predictive models suggest that decisions based off these 

models are poised to have a significant impact: if a patient’s pre-test risk of late GU 

≥2 toxicity is roughly 15–20% but his biomarker panel does not predict for toxicity, his 

chance of toxicity is dramatically reduced. Given the importance of post-treatment quality 

of life in patients with clinically localized prostate cancer as well as the cost of managing 

post-radiation complications [32,33], this is a meaningful benefit. These findings, as well 

as their impact on patient decision-making, warrant validation in a prospective clinical trial, 

which is currently underway.

Conclusions

Models based on germline mirSNPs primarily in regulatory regions of miRNA binding in 

multiple genes have negative predictive values exceeding 90% for late grade ≥2 GU toxicity 

following either CF-RT or SBRT. Models are unique for each treatment modality, as shown 

by our finding that models predicting toxicity after CF-RT do not predict toxicity after 

SBRT, and vice versa. These findings underscore that clinically relevant radiosensitivity can 

be strongly explained by simultaneously evaluating functional, miRNA variants in multiple 

genes, and that this radiosensitivity appears to be dependent on the fractionation regimen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Bar Chart of Toxicity Percentage Based on Risk-Stratification. The percentage of patients 

experiencing grade ≥2 genitourinary toxicity in the conventional radiotherapy (CF-RT) and 

stereotactic body radiotherapy (SBRT) cohorts based on single nucleotide polymorphisms 

disrupting microRNA targets (mirSNPs).
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Fig. 2. 
Toxicity-Free Survival Curves. Curves depict the predicted toxicity over time for men 

predicted to have a low or high risk of toxicity by the indicated mirSNP signature. p-values 

derived from the log-rank test.
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