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Abstract

Particle Migration and Focusing in Inertial Microfluidic Flows

by

Mike Garcia

The behavior of confined particles in microchannels at moderate Reynolds number

has received much attention in recent years and has developed into a new area of research

named “inertial microfluidics”. This interest has been motivated by the development of

high-throughput tools for the manipulation of bioparticles as a precursor for bio-analytic

assays. However, a crucial first step towards developing these tools is understanding

how particles are transported and localized in confined channels. Here I discuss how the

interplay between axial and lateral flow in both a porous and curved microchannel re-

sults in non-trivial lateral migration and focusing of finite sized particles. To understand

this behavior, I numerically explore this interplay by computing the lateral forces on a

neutrally buoyant spherical particle that is subject to both inertial and secondary forces

over a range of experimentally relevant particle sizes and channel Reynolds numbers.

Interestingly, the lateral forces on the particles in both cases are well represented across

a wide range of flow configurations using a simple perturbation based model. The repre-

sentation of forces in this manner significantly reduces the complexity and time required

to predict the migration of inertial particles in microfluidic channels. Finally, I exper-

imentally validate this model and demonstrate how these moderate Reynolds number

flows can be used to selectively enrich rare cells in a heterogeneous suspension.
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Chapter 1

Introduction

1.1 Motivation

The ability to separate, sort and isolate particles is critical in a variety of bio-analytical

applications including diagnostics, therapeutics, and fundamental biological studies and

require exquisite cellular manipulations. Samples of interest are often just one specific

cell type within in a large heterogeneous population of cells suspended in fluid; thus

the isolation of any particular cell type is often a challenge. Many conventional and

well established techniques have been developed for cellular isolation such as fluorescent

activated cell sorting (FACS) [5], density gradient centrifugation [6], and selective cell

lysis [7]. However, these techniques are often labor intensive and require large sample

volumes with costly reagents, which may be suitable for a large clinical lab, but are still

be too costly for widespread deployment.

Recently, there has been much interest in developing cost effective and simple tech-

niques for manipulating particles of interest [8]. These techniques take advantage of mi-

crofluidic technologies and the intrinsic properties of target analytes such as size, shape,

density, stiffness to make simple and relatively inexpensive tools. Generally the microflu-

idic technologies for particle manipulations can be classified into two categories i) active

techniques, which take advantage of external fields and ii) passive techniques, which

only utilize the interaction between particles, flow field and channel structure. Active

techniques are often more versatile and better suited for targeting particles based their in-
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Introduction Chapter 1

trinsic properties than passive techniques. Unfortunately, they are also more complicated

and expensive to fabricate due to the need for an external field. However, the perfor-

mance of passive techniques is comparable to active techniques when the manipulating

particles based on their size.

1.2 Passive size based particle separation techniques

Passive systems consist of a variety of methods that do not rely on any labeling of the

target analyte. Instead, these methods rely on the differences in particle/cellular mor-

phology to hydro-dynamically sort them. Given the simplicity of passive techniques, it is

no surprise then that much work has been dedicated towards developing novel strategies

for sorting and separating particles based on their size. These passive strategies include

both low and high Reynolds number approaches.

Some common low Reynolds number approaches include microfluidic based filtration

[9], pinched flow fractionation (PFF) [10], dynamic lateral displacement (DLD) [11]. Typ-

ically, these low Reynolds number approaches rely upon the particles directly interacting

with structures along a channel to cause a size dependent shift in the particle’s trajectory.

For example, in the case of DLD, posts within a channel are arranged in a specific array

to precisely control the trajectory of particles larger and smaller than a critical diameter.

There are numerous reviews comparing and contrasting these methods [12, 9, 13]. In

general, due to the linear nature of low Reynolds number flows these separation tech-

niques are robust, easy to optimize and have proven successful for many applications.

However, low Reynolds number flows are typically slow and thus their throughput is also

low, which has prevented their widespread use and application in clinical settings.

High Reynolds number approaches leverage the phenomena of inertial migration and

focusing and is commonly referred to as inertial microfluidics. Typically, these separation
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modalities take advantage of the nonlinear fluid flow to discriminate particles based on

their size/inertia. Inertial microfluidics has gained considerable attention since its first

application in microfluidics by Di Carlo et al. [14], as it offers precise control of particles

through the use of purely hydrodynamic interactions at high speeds. Since then there

have been numerous reviews describing this technique in various transformative applica-

tions [15, 16, 17]. Unlike the low Reynolds number approaches highlighted previously,

these set of techniques have a very high throughput O(10 mL/hr). It is becoming in-

creasingly clear that due to the robust, fault-tolerant physical effects employed and high

rates of operation, inertial microfluidics is well positioned to have a significant impact on

high-throughput separation in diagnostics and other fields. However, even with the ben-

efits of this technique there are still questions that must be answered before widespread

use is a reality.

This thesis attempts to answer some of these questions, namely:

i) Are there passive inertial techniques that allow for in-situ particle ma-

nipulations? Typically, inertial microfluidic techniques rely on the deterministic nature

of particle focusing and thus devices can only be designed for one specific application.

However, the ability to tune separations can prove useful in applications where the tar-

get analyte is not known a priori. The solution to this problem may well lie within a

ubiquitous fluid system referred to as tangential-flow filtration (TFF). Using TFF in com-

bination with inertial particle migration can control the particle dynamics in real-time

and can be tuned for a multitude of applications.

ii) Are there ways reduce the complexity of modeling particle motion in

these nonlinear inertial systems? Currently, inertial microfludics is increasingly

being exploited in many fields, but there are few computational tools to easily design

these devices. While many numerical simulations exist, the computational time often

exceeds the time needed to build and test a device experimentally. Researchers desire
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tools to accurately and rapidly predict the forces on particles in these nonlinear flows.

To answer this question I examine the nature of these forces and reduce them down to

their constituent parts.

1.3 Thesis structure

In this dissertation, I develop and model a novel technique to manipulate particle

dynamics in real-time. The dissertation is organized into five parts:

Chapter 2: Details a novel inertial microfluidic device (termed µ-TFF) that can be

used to focus particles in-situ into sized dependent streams. Here I also discuss how the

interplay between axial and permeate flow in a porous microchannel results in non-trivial

lateral migration of these finite sized particles.

Chapter 3: Presents an application of the µ-TFF device, where cells are manipulated

and concentrated at a clinically relevant throughput.

Chapter 4: I develop a numerical model for the inertial lift force on a single particle in

a square channel. While this has been extensively studied both analytically and numeri-

cally, I extend this model to include the effects of a permeate flow. I numerically explore

the interplay between permeate and inertial forces on a neutrally buoyant spherical parti-

cle over a range of experimentally relevant particle sizes and channel Reynolds numbers.

Interestingly, the lateral forces on the particle are well represented using a linearized

model across a range of permeate-to-axial flow rate ratios. Finally, I experimentally

validate this model for a range of flow conditions.

Chapter 5: I extend the principles of the model discussed in Chapter 4 and apply

them to flow in a curvilinear channel. I compare and contrast my model with an existing

linear model and a direct numerical simulation.

Chapter 6: I discuss the state of inertial microfludics and conclude my findings.

4



Chapter 2

Inertial particle dynamics in the

presence of a secondary flow

2.1 Abstract

The manipulation of particles using inertial lift forces has broad implications in the

separation, concentration and sorting of particles. In this work, we show that in the

presence of a secondary flow, equilibrium locations of particles subject to inertial lift can

be spatially varying. Using a well-defined microfabricated straight microfluidic channel

with perpendicular permeate channels, we perform experiments over a range of particle

sizes and inlet and outlet flow rates to highlight different focusing regimes. We show

that a permeate flow can control the equilibrium location of particles and can be used to

interrogate the balance between inertial and permeate forces.

2.2 Background

Migration and focussing of particles in finite Reynolds number flow is a phenomenon

that has recently received a great deal of attention due to its ability to precisely manip-

ulate cell and other biomolecules. Segre and Silberberg [18] experimentally documented

this phenomenon in 1961, coined the “tubular pinch effect”. Through their experiments

in a circular pipe, they found that rigid particles migrated to an equilibrium position
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shaped as an annulus, with a radius of about 0.6 times the pipe radius. Influenced by

these experiments, many researchers have since developed analytic and numerical models

to understand the physics governing migration in such flows [19, 20, 21, 1, 22], and have

found that hydrodynamic inertial stresses can cause particles to laterally migrate across

streamlines and ultimately focus into distinct locations in the channel (largely determined

by the confining geometry of the channel) [1]. The competing forces include a wall lift

force, a result of interactions between the particle and a confining wall acting to push the

particle away from the wall, and a shear gradient inertial force caused by the gradient of

the fluid velocity profile, pushing particles toward the wall. The balance between these

two forces predicts the existence of an unstable equilibrium position at the centerline,

and stable equilibrium positions somewhere between the channel centerline and the wall

[19].

More recently, inertial migration techniques have been exploited in microfluidic sys-

tems for applications such as the separation [23, 24, 25], concentration [26] and sorting

[27] of cells and biomolecules. In these studies, researchers rely exclusively on the deter-

ministic nature of inertial focusing combined with the incorporation of clever geometric

designs to manipulate analytes of interest. To date, no one has attempted to exploit

permeate flows to dynamically control bioanalytes in inertial microscale fluidic systems,

even though the incorporation of such flows is ubiquitous at the macroscale. For example,

it has been documented that filtration efficiency is improved in hollow fiber membrane

systems (i.e., tangential flow filtration (TFF) systems) due to inertial lift forces facilitat-

ing the transport of microparticles away from membrane walls (thereby reducing fouling)

[28, 29]. Predictive models of mass transfer in such filtration modules are largely based

on simulating the single phase flow field in the channel and coupling the solution of the

flow field to the solute mass transfer balance through the convective-diffusion equation

[29]. Unfortunately, researchers often apply many simplifying assumptions with regards
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to the hydrodynamic inertial effects on suspended particulates that either do not account

for a spatially varying axial flow rates or the influence of a secondary flow on the un-

derlying velocity profile [30, 31, 32]. For example, Altena and Belfort [32, 33] modeled

and measured inertial particle motion in a porous duct to include the effect of a con-

stant permeate force of a single wall on a particle. The theory calculated the trajectories

of particles by assuming that the inertial contribution could be superimposed with the

permeate forces, the applicability of which is limited to regimes of constant permeate

flow and constant axial flow rates. Under typical operation of TFF, both permeate flow

and axial flow rates are spatially varying due to the fouling of membrane walls and the

presence of a permeate flow, respectively.

In this chapter, we fabricate well-defined square cross-section microfluidic TFF devices

to study resulting particle equilibrium locations due to the interplay between permeate

and inertial forces. we focus on a particular case of TFF where permeate flow is spatially

dependent and interrogate how these permeate forces alter the behavior of particle equi-

librium streams. By observing the particle equilibrium location for a variety of particle

sizes, permeate and axial flow rates, we demonstrate a novel method for measuring the

spatial variation of lift forces on a particle. Finally, we demonstrate the potential for

particle separations by leveraging particle inertia in the presence of a permeate flow to

shift particles into size dependent equilibrium streams.

2.3 Experimental Methods

Figure 2.1a shows a schematic of the microfluidic TFF device (µ-TFF). Both the

primary and permeate channels are etched in silicon using typical microfabrication tech-

niques, and anodically bonded to a transparent borosilicate wafer to prevent any swelling

and delamination of the permeate channels under high operating pressures (figure 2.1b).
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β=1.0

Figure 2.1: (a) Schematic of TFF device with recirculating flow (b) Image of the pri-
mary channel and several perpendicular permeate channels within a microfabricated
TFF device (global view of the device can be seen in SI 1) (c) Non-dimensional flow
rates versus channel length for varying β (β = QR/QF = outflow/inflow). In each
case, there is good agreement between COMSOL models and data. (d) (left) Long ex-
posure image of 10µm fluorescent polystyrene particles in a 100 x 100µm TFF channel
flowing at Re = 83. The in-plane particles equilibrate at a distance (xeq) relative to
the centerline. (right) Intensity distribution of the same image showing the intensity
peaks used to determine (xeq). Note that there are three peaks, the two larger peaks
correspond to the equilibrium location of particles in-plane and the smaller peak is
attributed to the out-of-plane equilibrium location of the flowing particles.

Briefly, photoresist (AZ 4620) is patterned on a 4-inch silicon wafer (100) through a single

mask photolithography process, and subsequently etched using a standard Bosch process

(Plasma-Therm 770 SLR) to create the high aspect ratios (AR = 20) of the permeate

channels. The wafer is drilled to provide inlet and outlet vias using a 3-axis CNC drill

(Flashcut),then bonded and diced (ADT100) into individual dies. The primary chan-

nel is 3.2 cm long with a square cross sectional area of 100 x 100µm. Perpendicular

to a 2.5 cm section of the primary channel are permeate channels of 5µm width spaced
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52.5µm apart, with an average length of 415µm (figure 2.1b & figure A.1). A two sy-

ringe pump system (Harvard Apparatus) modulates the permeate flow rate. The first

pump infuses the inlet (feed) flow into the primary channel at a constant volumetric flow

rate (QF ). The second pump limits the outlet (retentate) flow rate from the primary

channel by withdrawing fluid from the channel at a constant volumetric flow rate (QR).

A global view of the device, outlining how the transverse permeate channels are arranged

and how the permeate flow reaches the permeate outlets is provided in the appendix A.1

(figure A.1).

To perform experiments, we suspended three different fluorescent polystyrene parti-

cles (Sphereotech and FluoSpheres, 5.6, 10 and 15µm) in DI water at a concentration of

104 particles/mL and add 0.5% v/v Tween 20 (Sigma-Aldrich) to reduce particle aggre-

gation. Additionally, to measure the flow rates within the system, we conducted flow vi-

sualization experiments with 2.02µm fluorescent polystyrene microspheres (Spherotech).

We visualized all experiments with an inverted optical microscope (Olympus IX71) and

mercury arc lamp illumination with the appropriate filter cubes (Chroma, Inc.). To find

the particle equilibrium locations, we recorded streak images with a CCD camera (An-

dor Luca) by accumulating approximately 25 seconds of image data at each downstream

location and post-processing using image processing software (MATLAB). Figure 2.1d

shows an example of a streak image and the resulting post-processed data. Finally, we

located the intensity peaks through a peak finding routine and determine particle stream

position at various locations along the channel.

2.4 µ-TFF Design

Under typical operation, the TFF device diverts a portion of the flow in the primary

channel through the permeate walls, and the flow is highly dependent on the device geom-
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etry (appendix A.7). In this particular geometry, the permeate resistance is comparable

to the main channel resistance thus the flow recirculates, i.e., exits the channel upstream

and reenters further downstream (figure 2.1a and 2.1c). To understand this global flow

in our system, We developed a CFD model (COMSOL) of our device (figure 2.1c) where

we specified the flow rates at the inlet of the channel and at the outlet of the channel,

QF and QR, respectively, and β = QR/QF is the non-dimensional parameter quantifying

the global permeate flow. We determined the volumetric flow rate in the primary chan-

nel by modeling the system as an open boundary with no normal stresses, and acquired

flow rates along the channel as shown in figure 2.1c. We experimentally validated this

model through particle tracking velocimetry (figure 2.1c) for various values of β, and

as expected, we observe a deviation from linearity of Q/QF due to recirculation. This

design allows us to vary the permeate flow by simply tuning the flow rate ratio (β) which

ultimately modifies the spatially varying permeate velocity and affects the migration of

particles.

2.5 Results

Figure 2.2 shows a representative case (a/W = 0.15, Re = 138 , β = 1.0) of the

particle intensity distribution along the channel length (y/L) in the presence of a spatial

varying permeate flow. The channel Reynolds number is defined by Re = ρUW/µ, where

ρ is the density and µ is the viscosity of water, W = 100µm is the width of the TFF

channel, and U = QF/W
2 is the mean inlet fluid velocity in the channel. We observe three

distinct regions of particle positioning: (1) The channel entrance (0 < y/L < 0.1), (2)

the outward permeate flow region, where the permeate flow is directed into the wall, and

(3) the inward permeate flow region where the permeate flow is directed into the channel.

At the entrance of the channel (1), the particles enter randomly dispersed since neither
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Figure 2.2: Experimental particle equilibrium locations in a TFF channel. (a) One
experiment showing the distribution of particles along the length of the channel (y/L)
and (top) a corresponding schematic illustrating the influence of permeate flow direc-
tion on cross-sectional distribution of particles. At the entrance (left), the particles
are dispersed and unfocused. In the outward permeate flow region, the particles are
moving towards the wall, and so the equilibrium position is closer to the wall, and the
out-of-plane equilibrium positions are unstable. In the inward permeate flow region,
the equilibrium position shifts away from the wall, due to the fluid from the permeate
channels flowing into the main channel, and the out-of-plane equilibrium positions
regain stability. (b) Streamwise equilibrium positions for the three different particle
sizes, all at a Reynolds number of 138 and a β of 1.0. (c) Experiments showing the
effect of β at a Re of 138 and a/W of 0.15. This graph also superimposes results from
a straight channel device (SC) where the equilibrium position is constant throughout
the channel. (d) Particle intensity distributions at the end of the channel (y/L = 1)
for different β and a Re = 138. Here we see that as β decreases the out-of-plane
equilibrium point disappears because more flow is diverted towards the wall, even at
the end of the channel.

11



Inertial particle dynamics in the presence of a secondary flow Chapter 2

the inertial nor permeate forces have had significant time to influence the particles. This

stage is characterized by poor focusing quality, as the particle intensity distribution has

no clear peaks. Within the outward permeate flow region (2), the permeate flow out

of the primary channel shifts the equilibrium positions of the in plane particles closer

to the walls and simultaneously destabilizes the out-of-plane equilibrium positions. As

a consequence, the two stable in-plane equilibrium locations contain the majority of

the particles. Additionally, in this region the equilibrium locations of the particles are

independent of β and channel location (y/L) (figure 2.2c), since the permeate flow at least

in the first third of the channel is also nearly independent of β and y/L (figure 2.1c). The

inward permeate flow region (3), beginning where the permeate flow is directed into the

channel and ending at the outlet of the channel (y/L = 1), is the region where equilibrium

locations along the permeate wall move towards the centerline, and are spatially-varying

throughout the remaining length of channel. This is contrasted by the case of flow

in a straight channel (SC) with no permeate channels (figure 2.2c, green), where the

equilibrium positions are constant throughout the channel. Furthermore, the out of

plane equilibrium positions become more prominent as y/L increases. This is because

the inward permeate forces act to stabilize these positions, and since this occurs over finite

time the repopulation of particles into the out-of-plane equilibrium positions transpires

over some finite distance. Decreasing β shifts the location of the beginning of this region

further downstream (this location being the extremum point of the lines in figure 2.1c)

and allows less distance for the repopulation of the stable equilibrium to occur. This is

evidenced by (figure 2.2d) where the prominence of the out of plane equilibrium decreases

with decreasing β.
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2.6 Discussion

The migration of equilibrium position in the third region is a direct result of the

varying permeate flow acting away from the wall. To understand in more detail how

permeate flow affects this migration, we examine the particle trajectories in region 3

(inward flowing permeate). We define transverse migration velocity as Um = dxeq/dy ·

dy/dt, and where dxeq/dy is calculated by using a linear fit of the measured trajectories

(figure 2.3a), and the timescale dt is found by relating Uoutlet = dy/dt to the outlet

stream-wise velocity Uoutlet = βQF/W
2. Resulting migration velocities are shown to

scale linearly with an effective Reynolds number Reβ (figure 2.3), suggesting that the

migration we observe is largely a viscous phenomenon, unlike inertial migration (scaled

as U2)[34]. Although this migration is at least an order of magnitude slower than inertial

migration, it is shown in figure 2.4a & b that the resulting equilibrium positions still

depend on particle size. If viscous forces were the only force to balance the particle

drag force, the resulting migration velocities should be independent of particle size (since

both forces scale as a). We note that larger particles migrate slower, presumably because

they are less susceptible to permeate forces since inertia scales as FL ∼ a4. Therefore,

permeate forces seem to dominate the migration of the particles, but fluid inertia is still

extremely important in characterizing the equilibrium position of particles in TFF flow.

To gain further insight on the effects of permeate flow on the focusing behavior of

the particles, in figure 2.4c we map β to the corresponding local permeate velocity (UW ).

Specifically, figure 2.4c shows the difference in equilibrium location between a TFF and a

SC for the same flow rate (βQF ) as a function of the local permeate velocity at y/L = 1.

As the magnitude of permeate velocity increases, the particles deviate further from the

SC focusing behavior. Again, smaller particles deviate further than larger particles, but

interestingly, all particles seem to match the SC focusing position when the permeate
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Figure 2.3: (a) Representative particle trajectory with fitted linear slope (b) Trans-
verse migration velocities plotted against Reβ. The linear results indicate that the
migration is largely dominated by viscous forces, however inertial aspects are ap-
parently important since there is a dependence on particle size (i.e. data does not
collapse).

velocity (UW ) is zero. Note that we experimentally find equilibrium locations for a SC

(100 x 100µm) as a function of Reynolds number (figure A.2), and interpolate between

these values to generate the data in Figure 2.4C.

The TFF system also allows us to measure the forces on particles in a manner that

is not compromised at higher particle velocity. In the past, the lift forces on particles

flowing in a microchannel have been difficult to measure, particularly, in a manner that

can capture the spatial distribution of the forces. Most recently, K. Hood et al. [34]

calculated inertial forces by tracking individual particles and calculating their lateral

migration velocities. While this technique has shown excellent agreement with theory

[22], it is unclear that it would work as well for higher particles velocities, due limitations

of image acquisition speeds. However, we can measure the forces on particles in a manner

that is not altered by particle velocity (or equivalently Re), simply by taking advantage

of a known permeate flow and how it perturbs an inertially focused equilibrium particle

stream.
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The lift forces on a given particle can be characterized by the lift coefficient (CL),

which is in general a function of Re and is spatially in-homogeneous [1, 35]. To calculate

CL we can compare the inertial and permeate forces at a given equilibrium location (xeq)

by constructing a simple model that linearly superimposes the permeate and inertial

forces. The results shown in figure A.3 show that permeate flow perturbations do not

have a significant effect on axial flow profile, supporting a superposition in such a manner.

3πµaUm = FP + FL (2.1)

Furthermore, we can relate the permeate flow to a resulting transverse force using

Stokes drag FP = 3πµaUW and the inertial forces to FL = CLρ(βU)2 a4

W 2 [21]. Finally, if

we assume that the migration velocity is small compared to the permeate velocity at the

outlet (Um/UW < 0.1) then we can derive a relationship for the inertial lift coefficient.

CL =
−3πµaUW

ρ(βU)2 a4

W 2

(2.2)

Figures 2.4d and 2.4e show our experimental data recast to plot exit equilibrium

locations vs. calculated lift coefficient for varying inlet Reynolds numbers and particle

sizes, respectively. The measured lift coefficient values are negative near the channel

walls (wall lift dominance), positive near the centerline (shear gradient lift dominance),

and also show a stable equilibrium that is shifted towards the wall for both decreasing

particle size and increasing Re (note that Re is based on the inlet flow rate). Therefore,

inertial lift coefficients determined by our system agree not only qualitatively, but also

quantitatively with previous work [1, 35]. This technique can precisely measure the

distribution of force near a particle in an inertial microfluidic flow in a manner that is

not compromised at higher particle velocity. This may be useful for future measurements

of inertial migration at even higher Re (Re > 300).
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Figure 2.4: (a) Grayscale streaklines of the particle focusing with three different chan-
nel sizes and two values of β.(b) Endpoint equilibrium locations vs. β for three differ-
ent particle sizes ( QF = 50 ml/hr at y/L = 1). (c) The difference between measured
equilibrium locations for a TFF channel and straight channel (SC) as a function of the
local permeate velocity (UW ) at the wall for QF = 50 ml/hr at y/L = 1. The presence
of a transverse permeate flow causes inertially focused particles to deviate from their
SC equilibrium location. Smaller particles are more susceptible to permeate flow as
characterized by larger deviations from the SC equilibrium for a given permeate flow.
The location of the TFF equilibrium returns to that of the SC in the absence of per-
meate flow. Measured values of the lift coefficient (CL) on particles flowing in a TFF
channel for various (d) Re = 56, 11, & 278 a/W = 0.06 and (e) particle sizes a = 5.6,
10 and 15µm (Re = 138).

Lastly, the TFF device is an excellent platform for particle separations because the

location of the equilibrium streams is highly dependent on particle size, more so than

its SC counterpart (figure A.2). This phenomena occurs because of the disproportionate

effects of permeate forces on smaller particles compared to larger (figure 2.4c). fig-

ure 2.4b demonstrates that both β and particle size determine particle equilibrium posi-

tion. Specifically, figure 2.4b shows particle equilibrium locations at y/L = 1 as a function

of particle size and β. As expected, as particle size decreases, deviation in stream location
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increases, and an increase in β focuses the particles closer to the centerline. While only

a single Re (Re = 138) is highlighted in this figure, the trends are similar for lower Re

(figure A.4). This is believed to be a consequence of the weak dependence of xeq on Re

([21] and A.2). These data effectively show our ability to tune the location of a particle

and/or separate different particles by simply modifying β.

2.7 Conclusion

The work presented in this chapter provides greater insight to the mechanisms in-

fluencing inertial migration and focusing in the presence of a secondary flow. The TFF

system can not only dynamically manipulate the equilibrium location of particles, but

also modify the state of equilibrium positions (stable vs. unstable). Using the TFF

system we was able to measure the inertial lift forces acting on a particle by leveraging

the distance an equilibrium stream is perturbed by an imposed permeate force. Finally,

we demonstrated that the focusing position is strongly dependent on particle size. This

enhancement can be attributed to increased susceptibility to permeate forces for smaller

particles (see figure 2.4c). In particular, the optimal flow configuration tested seems to

be at β = 0.1 where we observe a 3-fold increase in the separation distance between the

SC counterpart. Thus, the insight gained through this fundamental study can be applied

in the design of novel separation techniques, where in-situ manipulations of particles are

needed.
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Chapter 3

Inertial focusing and enrichment of

rare cells using µ-TFF

3.1 Abstract

In the previous chapter we demonstrated that the combination of inertial focusing and

a transverse permeate flow can enable precise and size based particle manipulation. Here

we describe the use of the micro tangential flow filtration (-TFF) device for the simulta-

neous size based isolation and enrichment of circulating tumor cells (CTC). Specifically,

in this chapter the we use the µ-TFF device, to demonstrate a proof of concept enrich-

ment for rare cells (MDA-MB-231) at a throughput of 100 mL/hr. These results suggest

that the µ-TFF device is a viable tool for separating, enriching and focusing cellular

suspensions for downstream diagnostic and characterization applications.

3.2 Background

Circulating tumor cells (CTCs) are shed from a primary tumor and are carried

through the blood circulatory system [36]. The isolation of these CTCs from the blood-

stream offers a minimally invasive method to obtain cancer cells and can assist early

patient prognoses, help determine individualized treatment and characterize treatment

efficacy [36]. However, the difficulty in isolating CTCs is two fold: 1) They are rare,
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occurring at concentrations on the order of 1 to 10 CTCs per mL of blood in patients

with metastatic disease [36]. 2) They are dispersed among billions of red blood cells and

millions of white blood cells. Thus isolating pure CTCs must address both issues and to

date has proved a significant challenge.

There are many methods for isolating CTCs. However, the only FDA cleared blood

test for enumerating and enriching CTCs is CellSearch R©. This system uses iron nano-

particles coated with anti-EpCAM antibodies for capturing and separating CTCs. Cells

captured and magnetically manipulated, then fixed and fluorescently labeled to increase

the sensitivity of the assay. The technique has many drawbacks including its high cost,

need for specialized equipment and most significantly it renders the cells in-viable. Fur-

thermore, this technology does not capture all types of CTCs, as capture is based upon

the expression of EpCAM, and surface expression may vary significantly between pa-

tients.

Recently researchers have devised alternatives for capturing CTCs based on cell prop-

erties [37, 38, 39, 40]. E. Sollier and coworkers successfully combined the use of micro-scale

vortices and inertial focusing, for the high-purity extraction of CTCs from blood samples

[40]. This promising technique leverages the fact that CTC diameters for a range of

cancer types are significantly larger than normal blood cells and thus captured in the

micro vortices. However, this microfluidic approach and many others are typically done

in a step-wise manner and are difficult to integrate into one continuous process, often

requiring operator handling.

The approach outlined in this chapter makes use of the µ-TFF device to filter blood

cells through the porous walls, while the larger CTCs are inertially focused and simul-

taneously concentrated in the feed channel. The entire process is passive and selectively

enriches larger cells while smaller cells are flushed out of the device. First, we character-

ized the enrichment capabilities of the µ-TFF device using rigid polystyrene microspheres.
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Figure 3.1: (a) Schematic illustration depicting the operation of the µ-TFF channel,
where a suspension of blood cells enters at a rate of Qin and exits at a rate Qout.
The permeate channels allow fluid flow and smaller particles to exit feed channel. (b)
Fluorescent streak image showing the focusing behavior of inertial particles in the
µ-TFF device showing the focusing location xeq.(c) White blood cells stained with
DAPI and anti-CD45-PE for fluorescent visualization and quantification.

Then, we validate the device using a suspension of CTCs in saline buffer. Finally, We

demonstrate that blood cells are not enriched by the device under the same flow condi-

tions in a continuous manner.

3.3 Experimental Methods

The experimental platform is described in greater detail in Chapter 2. Briefly, the

µ-TFF device contains a microscale primary channel L = 2.5 cm, W = 100µm and an

array of perpendicular permeate flow channels with a width of Wp = 5µm and spaced

50µm apart. The channels are etched into silicon at a depth of H = 100µm (figure 3.1a).

The experimental setup consists of a two syringe pump system to modulate the permeate
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flow at a constant volumetric flow rate. The first pump infuses the feed flow into the

primary channel at a constant volumetric flow rate (Qin). The second pump withdraws

fluid from the channel at a constant volumetric flow rate (Qout) (figure 3.1a); thus the

global permeate flow is set by the difference of these two rates Qperm = Qin − Qout.

Finally, the experiments were all performed using a fixed volume of 5 mL per run.

Experiments were performed with fluorescent polystyrene microspheres at a dilute

concentration (φ < 0.01%), and with blood cells that are diluted form whole blood in

a phosphate buffered saline (PBS) solution. Experiments with CTCs were performed

using MDA-MB-231 cells (MDA) at a concentration of 105 cells/mL and were conducted

separately from blood experiments. The MDA-MB-231 cell line is an epithelial, human

breast cancer cell line that is one of the most commonly used breast cancer cell lines in

medical research. As before, fluorescent streak imaging was used determine the particle

equilibrium location (xeq) at the device outlet (figure 3.1b). The inlet and outlet concen-

tration of the rigid particles, red blood cells (RBCs), white blood cells (WBCs) and MDA

cells were measured with a hemocytometer (iNCYTO, DHC-N01). The concentration of

white blood cells was determined using fluorescent imaging with an DAPI and anti-CD45

label (figure 3.1c).

3.4 Results and Discussion

The ability to concentrate particles in the µ-TFF device is inherent to its design.

Concentration occurs when particles larger than the permeate channel width (Wp =

5µm) are retained in the primary channel while the suspending fluid containing smaller

particles is diverted through the permeate channels. The number of large particles (a >

Wp) flowing through the device is constant and thus we can derive an expression relating
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the inlet to outlet concentration:

CinQin = CoutQout (3.1)

where C is the particle concentration and Q is the volumetric flow rate. Using equa-

tion 3.1 we can then predict the concentration factor at the outlet of the µ-TFF to

be:

Cout/Cin = Qin/Qout = 1/β (3.2)

The separation and concentration of large MDA cells relies on the combination of both

inertial focusing and permeate flow. Under ideal operating conditions, the µ-TFF focuses

smaller cells (RBCs and WBCs) near the channel wall and subsequently siphons them

out through the permeate channels. The larger CTCs are left intact in a focused stream

away from the walls of the channel and thus avoiding any clogging of the permeate

channels (figure 3.1a). However, the addition of a permeate flow causes the particles

to focus at size-dependent equilibrium locations where in general larger particles are

focused near the wall (figure 3.2b). It is only when β is small that this relationship

inverts and we see the optimal focusing configuration (figure 3.2a). For the flow rates

tested (Qin = 100 ml/hr, β = 0.1 to 1.0) we found that under the flow configuration of

β = Qout/Qin = 0.1 MDA and WBC cells achieved significant equilibrium separation,

where WBCs focused near the channel wall and MDA cells focused near the channel

centerline (figure 3.2a). This result is qualitatively similar to the focusing of the rigid

sphere counterparts; the difference being that the focusing location of the cells is shifted

towards the centerline by 10µm, which can be attributed to lift forces associated with

cell deformability (figure 3.2b)[41, 42, 43].

Next we characterized the concentration capabilities of the µ-TFF device using rigid
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Figure 3.2: (a) Particle/cell distributions in the TFF channel for β = 0.1 and (Qin
= 100 ml/hr) as measured through fluorescent intensity streak images. White blood
cells focus near wall and MDA cells focus near centerline. (b) Equilibrium focusing
location (xeq) as a function of particle diameter (a) for four flow configurations β.
The black points and dashed line represent the focusing location of the deformable
cells, measured at β = 0.1, which is offset by 10µm from the corresponding flow
configuration of rigid particles (purple).

polystyrene particles at Qin = 100 ml/hr. Under these conditions the polystyrene par-

ticles behaved as theoretically predicted (figure 3.3a and 3.3b). Where large parti-

cles (a = 15µm) were retained and concentrated by a factor of 1/β and small parti-

cles (a = 2µm) were not concentrated at all. Interestingly, the intermediate particle

size (a = 4.5µm) did concentrate even though the size cutoff for concentration was

Wp = 5µm, which may be attributed to hydrodynamic screening effects. Finally, we

demonstrate the ability of µ-TFF device to concentrate RBCs (a = 5.8± 0.9µm), MDA

cells (a = 19.3 ± 4.6µm) and WBCs (a = 9.5 ± 2.4µm) (figure 3.3c). The highly de-

formable WBCs and RBCs do not concentrate even though their diameter is larger than

the size cutoff. They are capable of deforming to a such a high extent that they are un-

hindered by the permeate channel. Conversely, the MDA cells which are also deformable,

but much larger than the cutoff do concentrate. MDA cellls concentrate similarly to large

rigid particles.
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Figure 3.3: (a) Fluorescent images showing particles in a hemocytomer slideof fixed
volume before and after concentration in µ-TFF device.(b) Concentration curve for
rigid polystyrene particles. Large particles are retained and concentrated, but smaller
particles are not.(c) Concentration curve for deformable cells. Large MDA cells are
retained and concentrated, but smaller WBC and RBC are not.

3.5 Conclusion

This simple yet effective method for dynamically manipulating particle equilibrium

locations in a microfluidic channel shows promise as a device capable of separating,

enriching and focusing rare cells. Specifically, the work presented in this chapter shows

that MDA cells were selectively concentrated by a factor of 1/β = Qin/Qout at the outlet

of the µ-TFF, while RBCs and WBCs were not. This low volume study was a proof of

concept and thus limited operation of the µ-TFF device to only β = 0.1. However, for
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larger clinically relevant sample volumes, the µ-TFF can operate at much lower values

of β and thus provide significantly higher concentrations. Furthermore, the performance

of the µ-TFF can be enhanced by running several devices in series theoretically scaling

concentration by (1/βn), where n is the number of devices. These preliminary results for

pure CTC collection from artificial samples are the critical first steps developing a tool

that may address an unmet clinical need. While, the device is promising more work needs

to be done to understand the interplay between the flow parameters, channel geometry

and cellular properties on effective sample enrichment.
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Chapter 4

A linearized model for calculating

inertial forces on a particle in the

presence of a permeate flow

4.1 Abstract

Understanding particle transport and localization in porous channels, especially at

moderate Reynolds numbers, is relevant for many applications ranging from water recla-

mation to biological studies. Recently, researchers experimentally demonstrated that the

interplay between axial and permeate flow in a porous microchannel results in a wide

range of focusing positions of finite sized particles [2](Chapter 2). Here we numerically

explore this interplay by computing the lateral forces on a neutrally buoyant spherical

particle that is subject to both inertial and permeate forces over a range of experimen-

tally relevant particle sizes and channel Reynolds numbers (Re). Interestingly, we show

that the lateral forces on the particle are well represented using a linearized model across

a range of permeate-to-axial flow rate ratios, γ. Specifically, our model linearizes the ef-

fects of the permeate flow, which suggests that the interplay between axial and permeate

flow on the lateral force on a particle can be represented as a superposition between the

lateral (inertial) forces in pure axial flow and the viscous forces in pure permeate flow.

We experimentally validate this observation for a range of flow conditions. The linearized
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behaviour observed significantly reduces the complexity and time required to predict the

migration of inertial particles in permeate channels.

4.2 Introduction

Lateral migration and focusing of neutrally buoyant solid particles at moderate Reynolds

number (Re) in a confined pressure driven flow is a well known phenomenon first docu-

mented by Segré and Silberberg in 1961 [18]. Specifically, hydrodynamic inertial stresses

cause particles to laterally migrate across streamlines and ultimately focus into distinct

locations in the channel [19]. In addition to the seminal work on inertial migration

and focusing [44, 19, 45] there have also been a few recent reviews highlighting progress

[46, 47, 17]. However, comparatively, there have only been a few studies on the motion

of inertial particles in the presence of a permeate flow. Systems with such flows are

ubiquitous in applications related to pressure-driven membrane filtration for the sepa-

ration of particles and cells from liquid suspensions as well as in a multitude of other

areas, including wastewater treatment [48], food [49] and beverage [50] processing, and

biotechnology [51, 52].

In general, to precisely solve for the forces on a particle in inertial migration problems,

one relies on simulation of the combined fluid-particle interaction problem. For example,

Chun and Ladd [53] used the lattice-Boltzmann method for Re ranging from 100 to 1000

to show that spherical particles migrate to one of a finite number of equilibrium locations

in the cross-section of a non-porous square channel, where only the face centeredd equi-

librium locations are stable for lower Re. Di Carlo et al. [1] performed simulations to

show how particle equilibrium locations varies with particle sizes (a trend not captured

by previous analytic approaches). Similarly, Liu et al. [54] performed exhaustive simula-

tions to determine the non-trivial relationship between the focusing location of particles
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and their size, channel aspect ratio, and Re. These numerical studies fit into generalized

formulae and shed light on how the forces on a migrating particle are distributed within

a channel and how this distribution depends on particle size. Such findings are crucial

for practical device design.

With the addition of permeate flow, the interplay between the effects of axial and

permeate flow (see figure 4.1a) results in a much richer particle behaviour than the case

of pure inertial migration of a particle in axial flow [32, 55, 56]. Earlier theoretical work

by Belfort and coworkers accounts for the effect of wall porosity on particle motion in

a 2D geometry [32, 55] and has been validated experimentally [33]. In these theoretical

studies, researchers employed asymptotic analysis to derive expressions for the forces on

a migrating particle as a sum of inertially induced forces and permeate drag. While

useful from a theoretical perspective, the researchers were unable to precisely predict

the lateral lift forces of highly confined particles in a porous channel. This limitation

is particularly critical since precise force values across the cross-section are required for

efficient device design that exploit the lateral migration of particles to separate and

concentrate particles with high specificity. More recently, Garcia and Pennathur [2]

experimentally demonstrated that a permeate flow can drastically alter the migration and

focusing of confined particles in inertial flow, with particle size significantly impacting

resulting migration behaviour. However, no model to date has accurately described this

behaviour. The ability to construct a simple model that reliably predicts these forces

across a wide range of conditions serves as the overarching motivation for the present

work.

Based on observations from a finite number of full-scale simulations, we develop a

linear model to efficiently predict the lateral forces acting on a neutrally buoyant spherical

particle migrating in a pressure driven porous channel. We first employ a previously

utilized full-physics simulation approach [1, 57, 58, 22] to numerically simulate a spherical
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particle translating in a square cross-section microchannel. We additionally validate

this model against previously published work and experiments, then exploit the model

to study the lateral forces in a system with permeate flow of varying magnitude and

direction. We observe that the relative permeate flow, γ, can generalize the data over

many particle sizes and Re, which provides a conceptual basis for developing a new

linear model. We finally validate our linear model using the full-physics simulation, and

determine that the limits of applicability are well within those of most experimental

systems. To prove as much, we design a microfluidic system to experimentally validate

the results of the linear model.

4.3 Full Physics simulations of particle-fluid interac-

tion

The present work focuses on the combined inertial and permeate migration of a single

neutrally buoyant spherical particle in Poiseuille flow within the confining geometry of a

porous channel of square cross-section (W ×W ) and length LC = 10W. Here the particle

of diameter a is translating with velocity UP = [0, UP , 0] and angular velocity Ω in a

flow of average (local) velocity U = (Uin + Uout)/2, where Uin and Uout are the average

axial flow velocities at the inlet and outlet of the porous domain respectively. The porous

channel allows for a lateral flow to exist that emanates from only two parallel walls at a

constant velocity UW . Here the channel Reynolds number is defined as Re = ρUW/µ and

the relative permeate flow γ = UW/U , where ρ and µ are the fluid density and viscosity

respectively.

We consider a moving frame of reference translating with the accelerating particle 1.

1In this moving reference frame, the lateral flow extends a length 3W as depicted in figure 4-1
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In this reference frame, we solve the steady Navier-Stokes equations:

ρ
(
u · ∇u + UP · ∇ū

)
= µ∇2u−∇p (4.1)

∇ · u = 0 (4.2)

where p is the fluid pressure, u is the fluid velocity in the reference frame of the translating

particle and ū is the undisturbed flow. Note that the additional inertial term arises due

to the acceleration of the chosen reference frame (appendix A.5).

The velocity of the suspended particle (UP and Ω) can be self-consistently deter-

mined by setting conditions such that the axial motion satisfies a drag constraint Fy = 0

(equation 4.3) and its rotational motion satisfies a torque constraint τx = τy = τz = 0

(equations 4.4). Justification for this assumption can be found in appendix A.8.

Fy ≡ ey ·
∫
s

nr ·T ds = 0 (4.3)

τi ≡ ei ·
∫
s

(r− rp)× nr ·T ds = 0 where i = x, y, z (4.4)

where the integrals are over the surface of the sphere, rp is the particle position

vector that points from the center of the channel to the center of the particle and nr =

(r−rp)/|r−rp| is the unit normal at each point on the surface of the sphere. T is the total

stress tensor and, for an incompressible Newtonian fluid, is given by T = −pI + 2µE,

where E = 1
2
(∇u +∇uT ) is the rate of strain tensor.

The boundary conditions of this problem are in the reference frame of the translating

30



A linearized model for calculating inertial forces on a particle in the presence of a permeate flow
Chapter 4

(a) (b)

UW

Figure 4.1: (a) Schematic illustration of the square channel model with average flow
velocity U . In the channel a spherical particle of diameter a is migrating within the
confines of the bounding walls where two of the walls are permeable (yz-plane) and
allow flow to penetrate at a constant rate of UW . For each x − z location of the
particle in the channel cross section, the lateral lift forces (Fz and Fx) are calculated.
(b) Mesh sensitivity analysis showing that the calculated lift forces have converged
and are, thus, insensitive to the degrees of freedom (DOF) in the model. The inset
depicts the error relative to a model with 1.6× 106 DOF. (Re = 100, a/W = 0.1).

particle. Therefore, the no slip condition on the wall is:

u = −Upey on all walls (4.5)

additionally, the channel has two parallel porous walls that can advect fluid into or out

of the channel at a constant rate of UW . Thus the condition on these walls also must

satisfy:

u · n = UW (4.6)

where n is the wall unit normal pointing out of the channel and a positive value of

UW indicates flow out of the channel. The no slip condition on the rotating particle is

enforced by assigning a velocity to the surface of the sphere corresponding to that of
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rigid body rotation at angular velocity, Ω:

usurface = Ω× (r− rp) (4.7)

Finally, far from the particle the flow field satisfies

u = ū− Upey (4.8)

To solve for the unknowns (i.e. u, p, Up and Ω) we couple equation 4.3 and equa-

tion 4.4 to the fluid flow equations and solve directly using the COMSOL multiphysics

software. This procedure is performed for a lattice of discrete positions of the particle

within the cross-section of the channel (using only a quarter of the domain via symmetry

arguments to minimize computational effort). To calculate the lift force on the particle,

we integrate the surface stresses on the particle in the appropriate direction (x or z):

Fi = ei ·
∫
s

nr ·T ds where i = x, z (4.9)

4.4 Numerical Results

4.4.1 Mesh convergence analysis

We discretize the fluid domain using tetrahedral elements in COMSOL Multiphysics.

The surface of the sphere is discretized into triangular boundary elements (BE) with 6

boundary layer (BL) elements at the surface of the sphere to accommodate large gradi-

ents. We use quadratic basis functions for representing the velocity solution and linear

basis functions for the pressure. The resulting discretization has approximately 3.6× 105

degrees of freedom (DOF). To show that the calculated results were independent of mesh
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Figure 4.2: (a) Inertial forces calculated in a single quadrant of the square cross-section
for a particle of a/W = 0.10 at Re = 100. Here the black small squares indicate the
locations of the stable equilibrium points, i.e. locations where the lift forces go to zero.
(b) A comparison of the x-component inertial forces along the z/W = 0 axis between
the present study and that of Di Carlo et al. [1], showing good agreement at Re = 38
for two particles a/W = 0.30 and a/W = 0.38. (c) Experimental measurements
(discrete points) from Garcia and Pennathur [2] of the inertial focusing locations
(xeq/W ) as a function of Re for three particle sizes (a/W ) with overlaid corresponding
numerical simulations (solid lines).

density We increased the number of DOF in our model by varying the BE, BL and fluid

domain tetrahedral density. The resulting calculated lift forces are shown in figure 4.1b,

and show no significant differences (≤ 1% change) in the spatial lift force among the

different cases.

4.4.2 Model validation

To demonstrate validity of the model, we performed simulations of a particle within

the channel with no permeate flow (UW = 0), since this reduces to the well-studied case of

an impermeable channel [1, 59, 60]. Typically in experimentally relevant flows for inertial

microfluidic systems, particle diameters are a significant fraction of the channel width

(a/W ≥ 0.10) and generally Re ranges from ∼ 10 to 100. In the case of an impermeable

channel under these conditions, particles focus to four symmetric equilibrium positions

near the center of each wall face and approximately 0.3W away from the channel center

[1]. Figure 4.2a provides a detailed map of the spatially varying inertial lift forces in a
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single quadrant of a channel. With this map, we can identify the location of zero lateral

lift force, which agrees with previous experimental studies [59, 60]. In figure 4.2b, we

compare the spatial variation of the lift forces on the particle which show good agreement

with data from Di Carlo et al. [1] (figure 4.2b). Finally, We show that the model can

correctly predict changes in the locations of equilibrium with increasing Re [21] and

increasing particle size [1] in figure 4.2c, where we compare our previous experimental

data [2], with current simulation results.

4.4.3 Permeate flow results

We next consider the effects of permeate flow, for a range of Re, γ (γ = UW/U),

and particle sizes. We consider Re = 25, 50, 75, 100, γ = ±0.003,±0.002,±0.001, 0 and

particle sizes a/W = 0.05, 0.10, 0.15. Figure 4.3a & b plots the lateral lift force vectors

for a subset of the simulations. Figures 4.3c-h show the equilibrium locations for the

full range of γ and Re, with figures 4.3a & 4.3b showing full force vector fields for the

extreme cases. At large Reynolds number (Re) and large particle size (a/W ), the vector

fields are only slightly disturbed by the presence of the permeate flow when compared to

the case with no permeate flow (γ = 0) (e.g. figure 4.3a), presumably because inertial

lift forces are more dominant (since the lift force FL ∼ a4 [21]). Conversely, for flows

with less inertia (i.e. smaller Re and a/W ) (e.g. figure 4.3b) the vector fields are highly

disturbed due to the substantial effects of permeate flow. Specifically, for γ = 0.003 (e.g.

figure 4.3b right), we observe a complete suction where the force equilibrium coincides

with the location where wall contact occurs and is when all ‘streamlines’ appear to be

guided towards the porous wall (x/W = 0.5)2. Conversely, when γ = −0.003 (e.g.

figure 4.3b left), there is a reversal of ’streamlines’, now directed towards the centerline

2We do not actually model the physics of wall contact, when referring to wall contact we do so in the
context of the particle equilibrium location i.e xeq/W ≥ 0.5− a/2W .
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Figure 4.3: Lateral force vector fields spanning the extremities of the parameter space
γ = [−0.003 : 0.001 : 0.003] and Re = [25 : 25 : 100] for two particle sizes (a)
a/W = 0.15 (b) and a/W = 0.05. The blue ‘streamlines’ are for visualization of
the vector fields which are bounded by a 0.45W × 0.45W box. (c-e) x-equilibrium
locations for all direct simulations in this study along the z/W = 0 axis for (c)
a/W = 0.15 (d) a/W = 0.10 and (e) a/W = 0.05. Note that the equilibrium shift
is in the direction of the permeate flow. (f-h) z-equilibrium locations for all direct
simulations in this study along the x/W = 0 axis for (f) a/W = 0.15 (g) a/W = 0.10
and (h) a/W = 0.05.
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(x/W = 0).

Figures 4.3c-h captures all these observations as we plot the x− and z− force equi-

librium location (xeq/W and zeq/W ) for all Re and a/W . Through this representation

we can clearly see that as permeate flow increases, the equilibrium location of each vec-

tor field shifts in the direction of the permeate flow (figures 4.3c-e). Furthermore, in

agreement with the qualitative observation in figure 4.3a,b the shift in equilibrium loca-

tion becomes less sensitive with increasing a/W and Re. We also see a slight shift in

the z-equilibrium with the addition of a permeate flow, but in general the z-equilibrium

shift is less sensitive than the x-equilibrium counterpart. One thing to note is that the

z-equilibrium shifts either towards or away from the wall as a function of γ, depending

on the flow Re. In general, there is a clear dependence on two factors, the first being

the magnitude of permeate forces (set by UW ) and the second being the magnitude of

inertial forces (set by U). The combination of these two factors dictates the behavior of

the particles in our geometry, ultimately leading to non-trivial force fields.

4.4.4 Linearized Model

Solving for the effect of combined inertial and permeate forces with full-physics numer-

ical simulations can quickly become computationally infeasible. For instance, the results

in the previous sub-section involved performing 4(Re)× 3(a/W )× 9(x/W )× 9(z/W )×

7(γ) = 6804 simulations, that required expending substantial computational resources.

The computational requirements become even larger when modeling dynamic processes

where a particle may be migrating in a continuously varying flow field, or in which γ is

spatially and/or temporally changing. Therefore, we develop a linearized model (based

on observations from the previous sub-section) to produce quantitatively similar results

to the full simulation, but with significantly less computational requirements.
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Figure 4.4: (a) Residual force plot. Each curve represents a different value of γ,
where the residual is the difference in the force between a particle in the presence of
permeate flow and a particle in a channel with no permeate flow (γ = 0) at different
x locations. (b) The force residuals for all γ normalized by a characteristic drag
force resulting in three distinct master curves corresponding to each particle size at
Re = 100. (c) Normalized force residuals for four distinct Re at a constant particle
size (a/W = 0.10). Note that normalizing in this manner results in the collapse of
the curves into a single ‘master curve’. Due to noise in our simulations, we averaged
values in both (b) and (c) as shown in the colored lines. Black curves underneath
represent the raw normalization).

We consider a linearization of the lateral lift force F(γ,Re, a/W, x/W, z/W ) about

the γ = 0, i.e. impermeable channel case. There are multiple reasons for choosing

such a linearization strategy: (1) This builds upon available lift force results for the

impermeable channel case, which enables easy generalization to other cross-sections, (2)

this takes advantage of the fact that parameter γ is naturally very small for the purposes

of linearization (since |γ| ≤ 0.01 in typical microfiltration processes [29]), and (3) such

a linearization has prior analytical precedent that suggests an additive decomposition of

the lift force into an inertial lift force and a permeate drag force [32].

We write the linearization as

F(γ,Re, a/W, x/W, z/W ) ∼ F0(Re, a/W, x/W, z/W )|γ=0

+ γF1(Re, a/W, x/W, z/W ) +O(γ2) (4.10)
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where F0 is the lift force calculated for a particle at a given location in the absence of

any permeate flow (i.e., γ = 0, which is the standard inertial migration in an impermeable

channel) and F1 represents the first order linearization effect. As indicated earlier, for

small γ, we speculate that F1 is proportional to the drag force, Fd = 3πµaU :

F1 = g(Re, a/W, x/W, z/W )× Fd (4.11)

where g(Re, a/W, x/W, z/W ) encodes the spatial variation across the cross-section. In

this work, we do not try to analytically identify the form of the scaling function g , but

explore how it can be constructed by using a minimal set of full physics simulations.

In fact, we show below that g(Re, a/W, x/W, z/W ) (and hence, F1) can be reliably

constructed using just two full physics simulations. We rewrite Equation 4.10 (for a fixed

Re and a/W ) to compute F1 as:

F1(Re, a/W, x/W, z/W ) =
F(Re, a/W, γ, x/W, z/W )− F0(Re, a/W, x/W, z/W )

γ

(4.12)

Here F − F0 is the difference between the calculated forces maps. F represents the

force vector field of a particle in the presence of a permeate flow at some fixed Re and

γ and F0 is force vector field for the same particle at the same Re but in the absence

of permeate flow (γ = 0). Figure 4.4a shows the spatial distribution of this residual for

various values of γ. Interestingly, it appears that these curves are self-similar when scaled

by FP = 3πµaγU , suggesting the utility of the proposed linear model. In figure 4.4b and

4.4c we construct g by dividing the residual F−F0 by the characteristic permeate force

FP . In figure 4.4b, keeping Re constant, we see three distinct curves representing our

three particle sizes, showing that all normalized residual curves fall on top of each other

when divided by γ. Similarly, the curves collapse as shown in figure 4.4c corresponding
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(a)

(b) (c)

Figure 4.5: (a) Force fields for various values of γ for both the direct numerical
simulation (DNS) and the linear model (LM) with a streamline trace overlaid in blue
for visualization (a/W = 0.05 and Re = 100). The bounding box for each field
is 0.45W × 0.45W (b) x-equilibrium plotted against the relative permeate flow γ.
(c) z-equilibrium plotted against the relative permeate flow γ. The discrete points
represent the results from the DNS and the continuous black line is the result of the
LM.
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to each value of Re (at a fixed a/W ). We note that g is insensitive to the choice of Re

(figure 4.4c and A.5).

We compare the force maps constructed using F1 (i.e. LM, for linearized model), with

that from the full physics simulations (i.e. DNS) in figure 4.5a. We chose the interesting

case of Re = 100 and a/W = 0.05, and seven discrete values of γ, where fields yield

drastically different ‘streamline’ morphologies, from a complete wall suction at γ = 0.003

to center-plane focusing at γ < −0.003.

First we compute F1 according to equation 3.3 for each of the six permeate solutions

[i.e. γ = ±0.001,±0.002,±0.003]. With this result, we average all six F1 fields to produce

a master solution, and thus eliminate any numerical noise that is inherent in this type

of model construction. From figure 4.5a, it is apparent that the LM reconstructs the

lateral lift force maps qualitatively well with little discernible error; where the advantage

of the LM is that it only requires knowledge of a finite number of simulations. More

importantly, the LM is not limited to discrete values of γ, but can be used to evaluate

forces for continuous values of γ. We next compare the predicted location of the focusing

points (force equilibrium points) in figure 4.5b and 4.5c for different γ. In figure 4.5b we

see that the x-equilibrium diagram spans a wide range of the channel where the limits

are set by the centerline (x/W = 0) and by contact with the porous wall (x/W = 0.475).

Similarly, figure 4.5c shows the z-equilibrium diagram for the same system, where the

equilibrium shift is seemingly independent of γ. The LM provides the ability to tune the

permeate flow rate, γ to precisely select a desired equilibrium location. This is potentially

very useful for particle separation applications.

We next investigate the scaling interplay between the inertial force F0 and the perme-

ate drag γF1 with increasing Re and particle size, we note that γF1 scales as the Stokes

drag force i.e., FP ∼ 3πµaγU and the inertial lift forces scale as FL ∼ ρU2a4/W 2. Hence,

when |FP | � FL we would expect that permeate forces are dominant and the force fields
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(a) (b)

(c) (d)

Figure 4.6: (a) x-equilibrium as a function of the relative permeate force (FP /FL)
for three particle diameters (a/W = 0.05, 0.10 and 0.15) at Re = 100. Of note is
that the data is limited by either the centerline (x/W = 0) or the confining walls
for large values of (x/W = 0.50) (b) z-equilibrium diagram for three particle diam-
eters (a/W = 0.05, 0.10 and 0.15). Here the equilibrium shift is less sensitive than
the xeq counterpart that is the particle deviate only slightly from the zero permeate
equilibrium. (c) x-equilibrium as a function of the relative permeate force (FP /FL)
for four Re (Re = 25, 50, 75 and 100) for a single particle of diameter a/W = 0.05.
(d) z-equilibrium as a function of the relative permeate force (FP /FL) for four Re
(Re = 25, 50, 75 and 100) for a single particle of diameter a/W = 0.05.
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would appear as if inertial forces were negligible. Conversely, when |FP | � FL we would

expect that inertial forces would dictate the migration and focusing of a particle in the

channel. In figure 4.6 we plot the equilibrium location against the relative permeate

force FP/FL for all particle size (figure 4.6a and 4.6b) and Re (figure 4.6c and 4.6d). The

continuous diagrams seen in figure 4.6 show very clear and specific trends that would

be difficult to interpret from discrete DNS data such as that seen in figure 4.3. The

equilibrium diagrams shown in figures 4.6a and 4.6c clearly demonstrate the behaviour

of a particle at the two extremes as predicted. That is, for large values of magnitude of

|FP | � FL we see a dominance of the permeate flow and the force equilibrium is shifted

either to the walls (xeq/W = (W−a)/2W ) or to the centerline (xeq = 0) and on the other

extreme, when |FP | � FL, we see that the force equilibrium is only slightly perturbed

from the case of no permeate flow. Finally, figures 4.6b and 4.6d show the change in

z-equilibrium location as a function of the relative permeate force (FP/FL) for a/W and

Re. The zeq of large particles are more affected when compared to small particles under

this representation of FP/FL (figure 4.6b). Further, in figure 4.6d we see that as FP/FL

increases, the zeq migrates towards the channel wall for low Re and towards the centerline

for high Re. This behaviour is indicative of secondary effects that can not be captured

by such a simple scaling argument.

4.4.5 Limits of the linear model

We next explore when the additive decomposition of the force into an inertial compo-

nent and a linear viscous component breaks down. We examine the error in the LM model

by comparing the lateral forces of the direct numerical simulation with those constructed

with our linear model to determine when nonlinear effects due to γ, Re and a/W cause

the model to become unreliable. In figure 4.7a we show a comparison of the inertial force
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for three distinct γ at Re = 100 and a/W = 0.10 and for three distinct Re for γ = 0.2

and a/W = 0.10 (right). As expected, at increasing values of both γ and Re, mismatch

between the two models increases. However, the increasing mismatch associated with a

change in Re is difficult to discern and so we plot in the inset to figure 4.7b the relative

spatial error for each case. We define the error in the LM as:

error =
‖FDNS − FLM‖2
‖FDNS‖2

(4.13)

Where FDNS and FLM are the force distribution calculated using the direct numerical

simulation and the linear model respectively. Figure 4.7b shows how the error in the LM

increases with a/W , γ and Re. In general, as the permeate Reynolds number ReUW

(ReUW
= |γ| a

W
Re) increases, so does error. This confirms our hypothesis that as both

inertial and permeate flow increase, nonlinear effects become more prominent and cannot

be captured in our linear model.

Over all sets of data for ReUW
≤ 1 the error in the LM is less than 5%, represented

by the dashed lines in figure 4.7b. Therefore, in figure 4.7c we determine the maximum

|γ| for a given a
W
Re defined as where error will be 5%. Superimposed on this figure

we show the γ (at a given a
W
Re) at which the particle equilibrium location coincides

with the confining walls (i.e. wall contact) and therefore an increase in γ will no longer

result in a change in particle equilibrium. It is clear that for the particles studied in this

work, that we will never reach the 5% error limit of the LM, suggesting that the LM is a

viable, useful and applicable model for fast experimental exploration of the effect inertial

migration under permeate flow conditions.
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(a) (b)

(c) (d)

Figure 4.7: A direct comparison of the forces on a particle as computed by a DNS and
the LM showing how error in the LM increases with increasing γ (a) and Re (b). It is
difficult to see from a direct comparison that the error is increasing with Re therefore,
we plot in the inset the local relative error. (c) A plot illustrating how error in the
LM increases with the permeate Reynolds number ReUW

= |γ|Re aW . The dashed lines
shows that for ReUW

> 1 error in the linear model is greater than 5%. (d) γ − Re aW
operating parameter space for the LM, where using the LM in the space beneath the
blacked dashed line should yield less than 5% error in the model. Superposed onto
this operating parameter space are data points for the three particle sizes representing
the value of |γ| at which complete wall suction occurs for the particles studied.
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4.5 Experiments

In this section, we illustrate the utility of the linearized model by comparing ex-

periments with predicted trajectories of inertial particles within a porous channel. We

microfabricated a model porous system as seen in figure 4.8a. The microfluidic device is

composed of a primary channel that is 3.2 cm long with a square cross-sectional area of

100×100µm. The particles enter the channel through a long straight region intended to

prefocus the particles. Following this region, there is a permeate region L = 1.0 cm where

flow can enter and exit the channel through an array of permeate channels of WP = 5µm

width spaced δ = 50µm apart, with a length of LP = 4.95 mm. A two-syringe pump

system (Harvard Apparatus) provides both inlet flow and permeate flow: the first pump

infuses the inlet flow into the primary channel at a constant volumetric flow rate (QF ),

and the second pump has two possible configurations depending on the ratio β = QR/QF .

If β is less than one the second pump is placed at the exit of the primary channel and

limits the flow rate to a rate of QR through the primary outlet. If β is greater than

one the second pump infuses flow through the permeate channels at a rate QP where

QF + QP = QR. In general the flow in a device like this is highly dependent on the

relative hydrodynamic resistance of the permeate channels to that of the main channel.

In our geometry, the permeate resistance is large compared to the main channel and it

can be shown that in this limit the volumetric flow rate decreases linearly with axial

location, so Q(y) = QF [1 + y
L

(β − 1)] (appendix A.7). Using conservation of mass we

find the constant permeate velocity to be UW = QF (1−β)
2WL

, and thus γ(y) = W 2UW/Q(y).

We performed migration experiments with a suspension of 10µm fluorescent polystyrene

particles in DI water at a concentration of 104 particles/ml, and we add 0.5% v/v Tween

20 (Sigma-Aldrich) to reduce particle aggregation. To find the particle locations, we

record streak images with a CCD camera (Andor Luca) by accumulating approximately
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Figure 4.8: (a) schematic showing the microfluidic device composed of a long straight
region (≈ 1.9 cm) followed by a region (L = 1.0 cm) where there is an array of per-
pendicular permeate channels (inset) that allow permeate flow to enter or exit the
channel. (b) Long exposure image of 10 µm fluorescent polystyrene particles in a
100×100 µm (W ×W ) channel. The in-plane particles are measured at a distance x
relative to the centerline. (c) Comparison of computed (solid lines) and experimen-
tally measured trajectories (shapes) of a particle a/W = 0.10 for various operating
conditions of the microfluidic device.

25 s of image data at each downstream location and the post-processing using image-

processing software (MATLAB). Figure 4.8b shows an example of a streak image. We

post process images like this to locate three peaks, the center peak corresponds to the

out-of-plane equilibrium while the remaining two correspond to the in-plane equilibrium.

Since the in-plane equilibria are symmetric about the centerline, we build a trajectory

from one in-plane equlibria at various axial locations along the length of the channel to

compare with our LM. More details on the experiments can be found in [2].
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Figure 4.8c shows four experimental trajectories of 10µm particles. The prefocused

particles enter the permeate region at y/L = 0 and begin to migrate either towards the

wall or away, depending on the direction of the permeate flow. Here values of β > 1 indi-

cate the permeate flow is directed towards the center of the channel and conversely β < 1

indicates that the flow is directed out of the channel. Even though the permeate flow is

constant, the trajectories can be non-monotonic, where the particles begin migrating in

one direction and subsequently reverse directions due to the evolving nature of inertial

and permeate forces in the spatially varying flow field (figure 4.8c). We can calculate the

particle trajectories with our linear model by knowing how the flow parameters (i.e. γ

and Re) change with axial location in the channel.

We calculated the theoretical trajectories with a first order time stepping approxima-

tion (i.e. Euler method), evaluating the force at z = 0. We do not expect much motion

in the z-direction because the lift forces in the z-direction are much smaller than the

x-direction lift force for the prefocused stream of particles we are modeling. Thus the

equations of motion become:

yn+1 = yn + uy(xn, z = 0)
Q(y)

QF

∆t (4.14)

xn+1 = xn +
Fx(xn, yn, z = 0)

3πµaλ
∆t (4.15)

where uy(x, z) is the flow field in a square channel [61] and Fx(x, y, z) is the predicted

force in the lateral direction calculated using our linear model. The axial dependence

of the lateral force Fx is calculated by mapping the axial location of the particle to a

corresponding local value of Re. With this information, we interpolate between a pre-

calculated data set and generate the local zero permeate lift force. Using the observation

that gx is invariant to Re (figure 4.4c and A.5), we construct the linear model using
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equation 4.10. Finally, λ is the correction factor for Stokes’ drag near a confining wall

(appendix A.6). Using the linear model we are able to reproduce the experimental

trajectories reasonably well (figure 4.8c), further proving the viability of our linear model.

4.6 Conclusion

Our findings describe the spatially inhomogeneous forces on confined inertial particles

in the presence of a permeate flow. Our numerical simulations suggest that the relative

permeate force (FP/FL) is an important parameter in the characterization of behaviour

of these particles. For very small magnitudes of the relative permeate force the location of

force equilibrium remains unchanged and reminiscent of flow in a nonporous duct. As the

magnitude of the relative permeate force is increased, the equilibrium position deviates

further from the non-porous case until it is either limited by the wall or centerline.

Using the results from our numerical simulations we are able to construct a model which

superposes the linear viscous effects of the permeate flow to that of the underlying inertial

forces. This linear model shows excellent agreement over a continuous span of permeate

flow with both full simulations and experimental observations when ReUW
< 1 with no

added computational penalty. This is especially noteworthy because the flow field in a

channel with permeable walls is not trivial and would normally require much effort to

simulate with another approach. We speculate that this model can help rapidly design

microfluidic devices that can precisely manipulate particle streams. Furthermore, the

framework for our linear model presented in this work can also be implemented in other

systems where external forcing of inertial particles exists such as with magnetic or electric

forces. Our model greatly reduces the complexity of a well studied and ubiquitous flow.

We emphasize the fact that the linearization, while useful, does not account for potentially

important phenomena like particle deformability and non-Newtonian suspending fluids,
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which are typical of real world systems. Developing similar simple and computationally

efficient methods for accounting for such interactions is a future area of research work.
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Chapter 5

A model for interial focusing of

particles in curvilinear

microchannels

5.1 Abstract

The behavior of confined particles in curvilinear microchannels at moderate Reynolds

number has received much attention in recent years. This interest has been motivated

by applications such as the separation and concentration of bioparticles. However, the

ability to design a curvilinear channel for a specific application is often based on empirical

results, as no complete theoretical model currently exists. In this chapter we numerically

model the flow physics of a particle in a curvilinear channel. To do so we borrow from

the model presented in Chapter 4, that is we choose a reference frame that is rotating

with the particle and include both Coriolis and centripetal forces. Here we investigate

the three dimensional focusing behavior of inertial particles and the applicability of the

point particle assumption previous researchers have proposed. Finally, we propose a new

model that takes into account the full physics, but relies on a perturbation expansion of

the lateral forces, where the perturbation parameter is the curvature ratio of the channel.

The insight gained through this fundamental study can be applied in the design of new

separation devices for a wide plethora of applications by non-experts in the field of fluid
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mechanics.

5.2 Introduction

It has long been known that particles flowing at a finite Reynolds number (Re)

have the tendency to passively migrate laterally across streamlines and focus at stable

equilibrium locations [18]. The phenomena is a result of the nonlinear fluid stresses that

act on a confined particle to produce a lateral motion and focusing [19]. Recently, this

phenomena has received a new found interest due to its use in the precise manipulation

of micron-sized particles in a continuous microflow. Researchers have designed many

unique devices to isolate [62], sort [23], focus [63, 64] and concentrate [26] particles

on the basis of inertial microfludics. By far the most common device designs leverage

curvilinear channels to produce a transverse Dean flow, allowing for exquisite control of

particle streams by simply tuning the Dean forces. The Dean flow is a consequence of

the curvilinear geometry which introduces a centrifugal acceleration component directed

radially outward as flow navigates through the curved channel. The resulting Dean flow

is orthogonal to the streamwise flow direction and is composed of two symmetric-counter

rotating vortices known as Dean vortices (figure 5.1a). The effect of these vortices in

combination with inertial forces serve to perturb the inertial equilibrium locations of a

particle into a size dependent stream. The magnitude of this perturbation is set by the

strength of these vortices, which is dictated by the Dean number (De) [65, 66, 67].

Inertial Dean flow focusing has been used with both alternating curves and spirals

for various bio-analytic purpose [14, 64, 3, 68, 69, 70]. However, modeling the flow in

these devices for a specific application is quite challenging as the full Navier-Stokes equa-

tions are needed to solve for the particle dynamics in these complex channels. Often

complete models are too computationally burdensome to be of any practical use in de-

51



A model for interial focusing of particles in curvilinear microchannels Chapter 5

signing these devices [71]. Given the complexity of simulating particle migration, some

authors have proposed the use of lattice Boltzmann methods (LBM) as the technique

very computationally efficient [53, 72]. However, LBM is prone to instability issues be-

cause of the coarse grained representation of the fluid-boundary interface [72]. By far the

most common approach has been a point particle model, where the inertial component

is solved for in a straight channel and is added to a Dean flow component. The Dean

flow component of the force is solved separately by assuming that is is simply a Stokes

drag associated with the underlying Dean flow [3, 68, 73, 74, 75]. The technique is quick

and has shown some success, but the ability to superpose these two forces may not hold

under certain flow regimes. In particular, it becomes questionable at high De where

the Reynolds number based upon the Dean flow velocity (ReD) approaches unity (figure

5.1b) and inertial corrections to Stokes drag are necessary. Furthermore, at higher De,

their is also a redistribution of the axial flow profile (figure 5.1c) that can alter the shear

gradient lift forces. Recently, Dinler and coworkers [76] have proposed the use of a direct

numerical simulation (DNS) model, where the flow problem is solved in reference frame

fixed to a moving sphere simliar to [1, 76, 75, 57]. This method is robust and provides

the inertial force distribution over the particle in a section of the channel. This method

is well suited for fundamental studies [1], but not for practical design because the it is

computationally inefficient. It is no surprise then that Diner et al. applied this model

in a curvilinear geometry using coarse parameters and an incomplete description of the

momentum equations [76].

There is a need for a simple and precise model that can reliably predict the behavior of

confined inertial particles across a wide range of flow parameters in a curvilinear geometry.

To address this need we first use a numerical model similar to [76], but include Coriolis

and centripetal terms in our momentum equations. Based on our numerical observations,

we then develop a perturbation based model to predict the lateral forces acting on a
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neutrally buoyant spherical particle migrating in curved channel. We then validate this

model against previously published experiments, and compare to the Stokes drag model

proposed in the past. Finally, we use this model to design a spiral channel and speculate

on how this model can be used to design devices in the future.

5.3 Numerical Model

In order to understand the inertial focusing and the effects of the Dean flow in curved

microchannels it is necessary to study an idealized system where the individual compo-

nents of the forces can be determined. The model in this chapter focuses on the flow of a

neutrally buoyant particle of diameter a in a channel of rectangular cross-section W ×H

(W/H = 2), arc-length 5W and average radius R (figure 5.1a). The particle is translating

with at a velocity UP = −Upeθ = Up[− cos θex, 0ey, sin θez] and angular velocity Ω in a

flow of average velocity U . We define the channel Reynolds number as Re = ρUDh/µ the

relative curvature of the channel as δ = Dh/2R, and the Dean number as De = Re
√
δ,

where ρ and µ are the fluid density and viscosity respectively and Dh = 2(W+H)/(WH)

is the hydraulic diameter of the channel.

To solve for the flow field and pressure around the particle, it is convenient to consider

a rotating frame of reference such that the particle appears stationary. The rotating

reference frame is a non-inertial frame of reference and thus the Navier-Stokes equations

adopt a form that takes into account the effects of centripetal and Coriolis forces. Note

that we assume a quasi-steady model and thus the time dependent terms vanish from

the Navier-Stokes equations (appendix A.8):

ρu · ∇u = µ∇2u−∇p− ρ
(
2θ̇ × u + θ̇ × θ̇ × r

)
(5.1)
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Figure 5.1: (a) Schematic illustration of the channel considered in this chapter. The
channel is rectangular with cross-section (W×H) and average radius R. The spherical
particle of diameter a flows within the confines of the bounding walls at a location rp
relative to origin. A cross sectional slice of the channel reveals that the recirculating
flow patterns shown in the red dashed window. (b) A plot of the Reynolds number
(ReD) of this recirculating flow versus the Dean number (De). For high De the flow
has appreciable inertia as the ReD is O(1).(c) A plot of the axial flow profile for
various De. For low De we observe a symmetric profile similar to flow in a straight
channel, but for high De the symmetry vanishes due to increased flow redistribution
associated with the Dean flow.

∇ · u = 0 (5.2)

where p is the fluid pressure field, u is the fluid velocity field in the rotating reference

frame, θ̇ is the angular velocity of the frame, and r is the position vector of a fluid element

about the point of rotation of the frame. The frame velocity, θ̇ is related to the particle
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velocity by: Up = rp × θ̇, where rp is the position vector of the particle center relative

to the point of rotation (i.e. at the origin).

In a manner similar to Chapter 4, the rates of the suspended particle (UP and Ω) can

be self-consistently determined by setting conditions such that the axial motion satisfies

a drag constraint Fθ = 0 (equation 4.3) and its rotational motion satisfies a torque

constraint τr = τz = τθ = 0 (equations 4.4). The boundary conditions of this problem

are in the rotating reference frame. Therefore, the no slip condition on the walls is:

u = −θ̇ × r on all walls (5.3)

The no slip condition on the particle is enforced by assigning a velocity to the surface

of the sphere corresponding to that of a rigid body rotation at angular velocity Ω

usurface = Ω× (r− rp) (5.4)

Finally, far from the particle the flow is undisturbed and regains the behavior of flow

in the absence of a particle. To solve for the unknowns (i.e., u, p, Up and Ω) we couple

the Navier-Stokes equations to the equations constraining the particle motion (i.e. torque

and force free equations of motion) and solve directly using the COMSOL multiphysics

software. This procedure is performed for a lattice of discrete positions of the particle

within the cross-section of the channel (using only the top half of the crossection via

symmetry arguments to minimize computational effort). To calculate the lift force on

the particle, we integrate the surface stresses on the particle in the appropriate direction

(y or z) according to equation 4.9 1.

1Note that because the particle is placed at θ = 0 the forces in the radial direction become force in
the z -direction upon transformation of the coordinate system.
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5.3.1 Equations of motion

The numerical model outlined in the section above can be used to calculate the hy-

drodynamic inertial lift forces on a small rigid sphere. This model restrict the motion of

a particle in the lateral direction that and calculates the forces that would lead to migra-

tion. However, it neglects the contribution of other forces (e.g. lateral drag, centripetal

and Coriolis forces). To reconcile this difference we start by considering the equations

of motion and noting that the velocity of a body is not measured to be the same in the

inertial and rotating frame.

Up,i = Up,r + θ̇ × rp (5.5)

Here Up,i and Up,r are the inertial and relative velocity of the particle, respectively,

which in general may also include the migration velocity. Where the equations of motion

for a particle are:

mp
d

dt

(
Up,i

)
i

=

∫
s

n · T̂ ds (5.6)

The left hand side of equation 5.6 are the inertial forces, where mp is the mass of the

particle, and right hand side represents the hydrodynamic forces. T̂ is the total stress

tensor of the flow around a particle that is not restricted from moving laterally. Note that

we neglect any gravity force because the particle is neutrally buoyant. Then substituting

equation 5.5 into equation 5.6 we obtain:

mp
d

dt

(
Up,i

)
r

+ θ̇ ×Up,i =

∫
s

n · T̂ ds (5.7)
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Applying equation 5.5 to this result yields:

mp

[
d

dt

(
Up,r + θ̇ × rp

)
r

+ θ̇ ×
(
Up,r + θ̇ × rp

)]
=

∫
s

n · T̂ ds (5.8)

Assuming that the rate of rotation is constant the equations of motion become:

mp
d

dt

(
Up,r

)
r

=

∫
s

n · T̂ ds−mp

[
2θ̇ ×Up,r + θ̇ × (θ̇ × rp)

]
(5.9)

We can simplify this result by considering that the axial component of the particle’s

velocity is much greater than the lateral migration velocities and thus the Coriolis forces

are negligible in comparison to the centripetal forces.

θ̇ ×Up,r � θ̇ × (θ̇ × rp). (5.10)

Furthermore, if we assume that the particle is not accelerating in the rotating reference

frame (quasi-steady) than the equations of motion reduce to:

0 =

∫
s

n · T̂ ds−mpθ̇ × (θ̇ × rp) (5.11)

The hydrodynamic contribution in equation 5.11 has been the subject of many fun-

damental studies [77]. The most notable of which was a rigorous derivation by Maxey

and Riley [78]. They formulated an expression for the hydrodynamic contribution that

was decomposed into several independent components: Stokes drag, buoyancy, a pressure

gradient (accounting for effects of the undisturbed flow), the virtual mass (accounting

for the acceleration of the displaced fluid), and a history term (accounting for the initial

conditions of the particle). However, this transient equation of motion for particles did

not capture the lateral migration forces because they were derived in the low Re limit

and neglect and effect of particle rotation.
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In this work we assume that: i) Our numerical model includes the pressure gradient

term, as the pressure field is inherent to the solution of the flow problem. ii) We can

neglect the buoyancy term because the particle density is identical to the fluid density.

iii) We can neglect the virtual mass and history terms because the Stokes number is small

(St� 1). iv) The hydrodynamic stress on the surface of the particle can be decomposed

into the hydrodynamic lift and drag, that is to say:

∫
s

n · T̂ ds =

∫
s

n ·T ds− Fdrag (5.12)

The first term on the right hand side represents the forces calculated using our quasi-

steady numerical model, while the second term is the force required to move a sphere in

quiescent channel at the velocity Up,r. Using these assumptions, the final form of the

equations of motion are:

0 = FDNS − Fdrag =

∫
s

n ·T ds−mpθ̇ × (θ̇ × rp)− Fdrag (5.13)

In the following sections we consider the spatial representation of FDNS in the lateral

directions for various combinations of the flow parameters Re and δ.
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5.3.2 Numerical results

(a)

z
yflow

(b)

(c)

Ref. [3]
DNS

Figure 5.2: (a) Schematic illustration of a curved channel depicting the region of
interest (red dashed box).(b) The cross-section plots show the simulated resultant
force FDNS on the particle for multiple channel geometries (δ = DH/2R) at Re = 100.
The grey line are streamlines of the force field and are for visualization purposes. The
purple lines are arbitrary streamlines (seeded at z/W = y/H = 0.2) that show the
trajectory a particle would take as it moves towards a stable equilibrium (squares).
(c) Stable equilibrium location as a function of the relative channel curvature δ for
the results of this numerical model and experiments done by Martel et al., 2013 [3].

The numerical model presented in this chapter investigates the steady state forces

FDNS on a finite sized particle through direct numerical simulation of the flow field

with a particle. This model includes finite size effects, the redistribution of the axial

velocity profile and the Coriolis/centripetal acceleration terms in the momentum equa-

59



A model for interial focusing of particles in curvilinear microchannels Chapter 5

tion. Figure 5.2a shows a schematic illustration of the top half of the channel cross-

section over which we simulate a particle spanning the parameters Re = [10, 50, 100]

and δ = [0, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05]. Figure 5.2b plots

the force-field FDNS for a subset of the simulation space, that is for an intermediate

sized particle (a/Dh = 0.15) and at Re = 100. Under these conditions, and without loss

of generality, we observe that the force-fields are progressively perturbed for increasing

channel curvature (i.e. δ) at a constant flow rate (Re = 100) (figure 5.2b). Further,

in a straight channel (i.e. δ = 0) we see four stable equilibrium locations, where the

equilibrium along the long faces (LFE) attracts more streamlines than the equilibrium

along the short faces (SFE). The phenomena of a relatively more stable LFE has been

observed experimentally and numerically for a rectangular channel under the similar con-

ditions [54]. As the channel curvature increases, the location of the LFE shifts towards

the inner wall until. The LFE eventually merges with the SFE at sufficiently high chan-

nel curvature (δ = 0.005). After this point the SFE/LFE begins a retrograde motion

towards the outer wall (figure 5.2c). Interestingly, after the SFE/LFE switch direction,

the equilibrium destabilizes. At this point the particle is not focused at a single point,

but rather orbits in plane (figure 5.2b, δ = 0.01). These results are compared to the

experiments of Martel et al. [3] and show excellent agreement.

The non-monotonic shift in LFE at a fixed Re for varying δ is caused by the presence

of the Dean flow within the channel [75]. Initially, for low δ the LFE is at a vertical

location where the Dean flow is directed towards the inner wall. The strength of this

Dean flow increases with the curvature of the channel (figure 5.1b) and thus the LFE

shifts towards the inner wall with increasing δ. As LFE the shifts towards the inner

wall the Dean flow in that region beings to impart a vertical force that is directed in the

negative y-direction (figure 5.1a). This causes the LFE to move towards the SFE and

eventually merge. Finally, the merged LFE/SFE migrate towards the outer wall (locally
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the direction of the Dean flow) at sufficiently high De. This transition occurs because

the shear gradient across the width of the channel on the inner half of the channel is

insufficient to counter the increasing Dean flow forces; thereby adjusting the location of

the LFE/SFE towards the center-line [3].

5.3.3 Second order perturbation model

The process of solving for the inertial forces with the numerical model proposed in

the previous subsection is computationally challenging. Therefore, we propose a model

that can produce quantitatively results, but with significantly less computational require-

ments. This model is based on the observation that the inertial forces are increasingly

perturbed for increasing channel curvature (figure 5.2). Dean’s seminal study laid the

framework for analytic solutions for flow in curved channels [67]. He used the pertur-

bation method, with the curvature ratio as the perturbation parameter to describe the

flow in a curved pipe. Following the work of Dean, we propose a similar model, which

assumes that the forces on a particle (and not the flow) in a curved geometry can be

thought of as a perturbation series. Like Dean’s model the leading term in this power

series is the solution of the straight channel problem, while further terms describe the

deviation in the solution due to increased curvature δ.

We first consider a perturbation of the lateral lift forces FDNS(δ, Re, a/Dh, y/H, z/W )

about the δ = 0, i.e. straight channel case.

FDNS ≈ F0 + δF1 + δ2F2 +O(δ3) (5.14)

Where F0 = FDNS

∣∣
δ=0

is the full physics lift force calculated for a particle under a

given Re for a straight channel (i.e., δ = 0), F1 and F2 represents the effects of channel

curvature on the lateral forces experienced by a particle. We speculate that for sufficiently
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Re = 50Re = 10 Re = 100

model

DNS

model

DNS

model

DNS

Figure 5.3: Stable equilibrium location as a function of the relative channel curvature
δ for three distinct Re and a/Dh = 0.15. The square markers represent results from
direct numerical simulations (DNS) and the solid lines represent the results from the
second order perturbation model (model). The shaded region at Re = 100 represents
the orbit focusing limits.

small δ, F1 and F2 in equation 5.14 are the only terms required to model the lateral forces

and thus we neglect any higher order terms. In this work, we do not try to analytically

identify the form of the functions F1 and F2, but explore how it can be constructed by

using a minimal set of full physics simulations. We show below that F1 and F2 (and

hence, F) can be reliably constructed using just three full physics simulations - to do so

we solve for these perturbation functions by rewriting equation 5.14 for a fixed Re and

a/Dh.

F1 =

(
δ21F0 − δ22F0 − δ21FDNS

∣∣
δ=δ2

+ δ22FDNS

∣∣
δ=δ1

)
δ1(δ22 − δ1δ2)

(5.15)

F2 = −
(
δ1F0 − δ2F0 − δ1FDNS

∣∣
δ=δ2

+ δ2FDNS

∣∣
δ=δ1

)
δ1(δ22 − δ1δ2)

(5.16)

Here FDNS

∣∣
δ=δ1

and FDNS

∣∣
δ=δ2

are the full physics simulation results for flow at the same

Re in two distinct channels of curvature ratio δ = δ1 and δ = δ2 respectively.
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To demonstrate the utility of such a model, we calculate F1 and F2 using equations

5.15 and 5.16 with only three DNS (δ = 0, 0.02, 0.05) at a fixed Re and a/Dh. Figure

5.3 shows the results of this model. Where we show the predicted equilibrium location

and compare to DNS results for the three distinct flows (Re). From this figure, it is

apparent that the second order model reconstructs the lateral lift force maps well with

little discernible error; where the advantage of the model is that it only requires knowledge

of three full simulations. Moreover, the model is not limited to discrete values of δ - as

it can predict the particle behavior at any combination of δ or Re provided that basis

are known. The second order model is so precise that it even predicts the orbit focusing

for Re = 100, δ = 0.01 that was observed previously in figure 5.2b; It does so with

no knowledge of the flow as δ = 0.02 and δ = 0.05 were used to solve for the model

parameters (figure 5.3, Re = 100).

5.4 Model Comparison

a/Dh = 0.225a/Dh = 0.149a/Dh = 0.066

Stokes
model

ref. [3]

Figure 5.4: Stable equilibrium location as a function of the relative channel curvature
δ for three distinct particle size (a/Dh) at Re = 100. The square markers indicate
the predictions from a simple Stokes drag model (Stokes). The solid lines are the pre-
dictions from the second order model (model). The stars represent the experimental
results from Martel et al. [3].

In this section we compare the results of our model with a simple Stokes model
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and experimental results of Martel et al. [3]. The Stokes model has been proposed in

previous studies as a quick an reliable method for modeling the lateral forces on a particle

in curvilinear channel. The Stokes model adds the inertial lift forces (F0), derived for a

straight channel, with a force caused by the Dean flow velocity (UDean) in the channel.

Here UDean is the flow field in a channel with no particle at discrete values of δ and Re.

F = F0 + 3πµaUDean (5.17)

Of note is that the centripetal force has been neglected in this model and in previous

work [3, 68, 73, 74, 75]. It is a serendipitous occurrence and can be shown that for

a small and neutrally buoyant particle that the pressure gradient term associated with

the undisturbed flow imparts a force that exactly cancels out centripetal forces [79, 80].

While this model has been proposed as a simple tool and used heavily in literature, the

validity of it has yet to be tested. Particularly, for large particles and at high Re where

some of the assumption in this model are no longer valid.

Figure 5.4 shows a comparison of the predicted focusing location for the two models

discussed in this chapter with the experimental results of Martel et al. [3]. The second

order model agrees well with all experimental results. Where in general a small addition

of curvature causes the particles to migrate towards the inner wall. However, for the

smallest particles (a/Dh = 0.066 and a/Dh = 0.149), at a sufficiently high curvature, we

observe that the particles are entrained in an orbit and not a single focusing location. As

expected, for small particles the Stokes model and second order model agree well, but for

larger particles and at higher δ, the predicted focusing locations begin to diverge. This

discrepancy is attributed to two factors: 1) the redistribution of the axial flow profile at

high Dean number, De = Re
√
δ and 2) finite size effects which are not considered by the

point particle assumption inherent in the Stokes model. Our findings resolve confusion
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about the size dependence of inertial lift forces combined with Dean flow experienced

by particles traveling through curved microchannels. Many studies have assumed that

this behavior can be represented by a simple Stokes model. However, by numerically

dissecting the equations of fluid flow around the particle, we find that this assumption

does not hold for larger particles.

5.5 Modeling of a spiral channel

To demonstrate one potential application of the model proposed in this chapter,

we consider the focusing of particles in a ”spiral channel”. The spiral channel is a

geometry that is ubiquitous in inertial microfluidics. The geometry has been utilized

in numerous studies to manipulate particles [65, 69, 70, 3, 81]. However, modeling the

focusing behavior of particles in type of channel is typically quite challenging. The

challenge is due to the fact that the channel does not have a single radius, but rather

a radius that is evolving with the streamwise direction. Modeling the flow in this type

of channel using the techniques outlined in the introduction of this chapter would be in

feasible as the 3D geometry has a very large aspect ratio. The computational time and

memory requirements would be extensive. However, the second order model is well suited

for this problem. The second order model predicts local force values and is parameterized

by only the local curvature. Thus providing precise force predictions with no knowledge

of the flow field everywhere in channel.

Here we consider an Archimedean spiral (figure 5.5a) with a simlar cross-section as

the previous section (i.e. W ×H) that is parameterized by:

R = a+ bθ (5.18)
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Where R is the local channel radius, a is the channel radius at the inlet (θ = 0) and b

is a parameter that controls the spacing between spirals. To determine the lateral forces

on a particle, we first use equation 5.18 to to derive and expression for relative channel

curvature everywhere in the channel:

δ =
Dh

2(a+ bθ)
(5.19)

From equation 5.19 it apparent that curvature can vary significantly over the length

of then channel. In figure 5.5b we show this variation in a polar coordinate representation

from the inlet to the outlet of this spiral channel. We can then compute the lateral forces

using equation 5.17 and coupling it with the result from equation 5.19.

Next, we calculate the trajectories of particle in this geometry with a first order time

stepping approximation.

θn+1 = θn +
uθ(yn, zn)

R
∆t (5.20)

yn+1 = yn +
Fy(yn, zn)

3πµa
∆t (5.21)

zn+1 = zn +
Fz(yn, zn)

3πµa
∆t (5.22)

Where uθ is the streamwise flow field, Fy and Fz are the predicted forces in the lateral

directions calculated using the second order model. Figure 5.5c and 5.5d show the the

trajectories calculated for three distinct particles a/Dh = 0.066, 0.149, 0.225 at the same

flow rate (Re = 100). As a basis for comparison we choose an arbitrary common location

to seed the particles (z/W = 0, y/H = 0.1). Interestingly, we see that the particles never

reach an equilibrium, but rather are constantly migrating (figure 5.5d). This result is
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rationalized by considering that the curvature is never constant and thus the forces on

the particles are ever evolving. These results agree well with experimental findings, where

the focused particle streaks in a simlar spiral channel were seen to continuously migrate

[81]. Furthermore, we note that the trajectory is high oscillatory for small particles,

but the oscillations dampen towards the outlet. Suggesting that smaller particles in this

particular geometry may not focus properly. Finally, an intriguing observation of this

channel is observed separation of the focused particle trajectories. For particles seeded in

the exact location we observe a significant discrepancy in outlet focusing location between

all three particles – suggesting that this may be a viable channel for separation purposes.

This section was purely an exercise in the utility of the proposed model. It is clear that

there is tremendous value in predicting the lateral forces in an arbitrary geometries such

as the spiral channel presented here. One could imagine easily iterating over thousands

of channels to obtain the optimal design for separating particle “A” from particle “B” in

minutes. Such a tool can be used to simplify the complex focusing dynamics observed in

many previous studies. This chapter provides a deeper quantitative analysis of inertial

focusing in spiral channels as well as establishing the framework for channel optimization

model.
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Figure 5.5: (a) Schematic illustration of the spiral channel considered in this chapter.
(b) The radius of curvature in this spiral channel decreases in the stream-wise direction
as δ ∼ 1/θ. at the inlet δ = 0.392 and at the outlet δ = 0.136. (c) The cross-sectional
trajectories of the three particles in this spiral channel at Re = 100. The particles
are seeded at a common reference and their outlet location is indicated by the square
markers. (d) A projection of the particle trajectories in (c) onto the stream-wise plane
from inlet (θ = 0 to outlet θ = 7π).

5.6 Conclusion

There is a clear need for a simple yet precise model of the inertial forces leading to

particle migration and focusing in curved channels. This is a first attempt to precisely

model the complete equations of fluid motion to determine the effect of channel curva-

68



A model for interial focusing of particles in curvilinear microchannels Chapter 5

ture on the inertial forces. Using the full numerical model we observed that particle

equilibrium locations are highly dependent on the magnitude of the underlying Dean

flow. Based on this full model we have developed a simple perturbation based model

that provides a simple yet precise representation of these forces with minimal compu-

tation burden. This model proved to be more precise and versatile than the commonly

references Stokes model. Future work in this problem will answer the ill-posed inverse

problem for which there is no tractable solution i.e. can a channel be designed given a

desired focusing location? Continued development and investigation of this model can

help answer this question and aid in the rapid design of novel biomedical tools.
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Conclusion

Inertial microfluidics is an increasingly growing field and has demonstrated numerous

exciting possibilities. This growth is fueled by many transformative uses of inertial flows

in biomedicine. These high impact applications include, but certainly not limited to, the

isolation of extremely rare cells [40], rapid mechanophenotyping [82], particle fabrication

[83].

Although there have been numerous studies on the mechanism of particle inertial mi-

crofluidics, and a plethora of applications, precise and rapid design rules are still lacking

for particle inertial manipulation in confined geometries. This is largely because inertial

microfluidics represents a class of problems that are non-trivial. The physics at hand are

described by nonlinear partial differential equations and complicated domains. Existing

methods to solve these problems often require time consuming numerical solutions. Con-

sequently, more work is needed to develop better techniques that capture the underlying

mechanisms and provide simple tools to users with no expertise of knowledge of fluid

mechanics.

In this dissertation I investigated the intricate balance of secondary and inertial forces

on particles as a means to precisely manipulate their behavior. The secondary flows

(e.g. permeate, Dean) serve to adjust the particle equilibrium and trajectories in three-

dimensions at high speeds. The effects of these flows can be faithfully reproduced using

simple perturbation models that are derived from the underlying physics. Through use

of this type of model I showed that the complexity and time required to predict particle
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behavior was greatly reduced. While there are a large variety of applications for this

tractable forward model, the ultimate goal of this work is to make these results more

accessible to researchers with no knowledge of inertial microfluidics. Future work will

attempt to integrate some form of machine learning to solve the seemingly intractable

reverse problem. That is given a desired focusing location of one or more particles,

can we design a channel to achieve this behavior? The relatively new field of inertial

microfluidics has only very recently been appreciated as being useful, but with the large

amount of interest and the endless applications, inertial microfluidics is well poised to

have a large and lasting impact.
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A.1 Detailed images of µ-TFF device

Permeate outlet

1 mm

Permeate outlet

200 m

Feed inlet Retentate outlet

Permeate outlets

(a) (b) (c)

0.5 cm

Figure A.1: (a) Image of a microfabricated tangential flow filtration (TFF) device.
The image highlights the four channel openings (feed, retentate and permeate) that
allow for fluid to be infused and withdrawn from the device. (b) A close-up of the
center of the device. The primary channel in the device connects the feed inlet to
the retentate outlet, where a portion of the primary flow is diverted to the permeate
outlets via the permeate channels. (c) The permeate channels are perpendicular to
the primary channel with dimensions of 5µm by 415µm long with a spacing between
channels of 52.5µm.
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A.2 Equilibrium location as a function of channel

Reynolds number in Straight Channel

Figure A.2: Equilibrium position of a particle in a straight channel as a function of
distance in a straight microchannel (100 x 100µm) for different Reynolds numbers
(Re). These data suggest that the particle location depends very slightly on Reynolds
number.
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A.3 COMSOL simulations of flow field

0 105 

vorticity (1/s)
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wall
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(b)

(a)

COMSOL

parabolic

COMSOL
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Figure A.3: COMSOL simulation of the flow in a TFF channel at Re =100, y/L = 1
(a) The presence of a transverse permeate flow (and channels) can alter the dynamics
of the underlying base flow as characterized by the transverse velocity and vorticity
field very close to the permeate channel. (b) Streamwise averaged axial flow profile,
showing that the flow field remains unaffected by these localized disturbances.
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A.4 Equilibrium location as a function of channel

Reynolds number in µ-TFF

β=0.1

β=0.4
β=0.7
β=1.0

Figure A.4: Experimental measurements of particle stream equilibrium at (y/L = 1.0)
over all Reynolds numbers and particle sizes tested. From these data it is apparent
that smaller particle sizes are very sensitive to permeate flow and the effects are only
slightly dependent on Re.
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A.5 Additional momentum term

The momentum equation can be transformed from a velocity field in the lab frame

to that of a frame translating with a particle moving at a velocity Up using the following

transformations.

t′ = t (A.1)

x′i = xi + xp,i(t) (A.2)

u′i = ui + Up,i(t) (A.3)

p′ = p (A.4)

Here the variable associated with a prime denote the lab frame and those without a

prime denote the moving frame. We can then relate the derivatives with respect to time

and space for either frame by:

∂()

∂xj
=
∂x′k
∂xj

∂()

∂x′k
=
∂(xk + xp,k)

∂xj

∂()

∂x′k
= δjk

∂()

∂x′k
=
∂()

∂x′j
(A.5)

∂()

∂t
=
∂t′

∂t

∂()

∂t′
+
∂x′k
∂t

∂()

∂x′k
=
∂()

∂t′
+ Up,k

∂()

∂x′k
(A.6)

We can then relate the momentum equation in the lab frame to that of a moving
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frame by using equation A.5 & A.5

ρ

[
∂u′i
∂t′

+ u′j
∂u′i
∂x′j

]
= − ∂p

′

∂x′i
+ µ

∂

∂x′j

(
∂u′i
∂x′j

)
(A.7)

ρ

[
∂(ui + Up,i)

∂t′
+ (uj + Up,j)

∂(ui + Up,i)

∂x′j

]
= − ∂p

∂x′i
+ µ

∂

∂x′j

(
∂(ui + Up,i)

∂x′j

)
(A.8)

ρ

[
∂(ui + Up,i)

∂t
−Up,j

∂(ui + Up,i)

∂xj
+(uj+Up,j)

∂(ui + Up,i)

∂xj

]
= − ∂p

∂xi
+µ

∂

∂xj

(
∂(ui + Up,i)

∂xj

)
(A.9)

Now canceling like terms and knowing that Up,i has no spatial gradients because it

is only a linear translation of the laboratory frame and not a continuum value, we can

write the momentum equation as:

ρ

[
∂(ui + Up,i)

∂t
+ uj

∂ui
∂xj

]
= − ∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

)
(A.10)

We assume that in the moving reference frame the flow is quasi-steady and thus the

time derivative of the flow is zero, yielding:

ρ

[
∂Up,i
∂t

+ uj
∂ui
∂xj

]
= − ∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

)
(A.11)

At a given moment in time the acceleration of the particle that is being tracked by

the moving reference frame is dictated by the underlying flow (ūi) and its gradient and
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thus the acceleration is given by

∂Up,i
∂t

= Up,j
∂ūi
∂xj

(A.12)

Finally, substituting this term back into the momentum equation yields:

ρ

[
Up,j

∂ūi
∂xj

+ uj
∂ui
∂xj

]
= − ∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

)
(A.13)

where ū is the undisturbed velocity field. However, the only non-zero component of

(A12) in our model acts in the axial direction and scales with γ as:

∂Up,i
∂t

= Up,j
∂ūi
∂xj
∼ Up

γU

W
(A.14)

Note the term is negligible for small γ and near the channel walls where Up approaches

zero.
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A.6 Correction to Stokes’ drag and the relationship

to g

U

W

x

F=3��aU�

(a) (b)

(c) (d) (e)

Figure A.5: (a) The relationship between the translational velocity of a sphere (U)
and the force (F ) required to produce such a motion can be significantly modified by
the effects of confining walls. We show the effect of this spatial retardation (λ) on
spheres of diameter a/W = 0.05, 0.10, 0.15 (at z/W = 0) and compare with the ana-
lytic results of [4]. (b) A plot of the spatially varying permeate velocity (at z/W = 0)
within the channel modeled in this work. At the walls the permeate velocity is max-
imal (ux/UW = 1) and decays to zero at the center of the channel. (c) Normalized
residual curves (gx) as a function of x/W at z/W = 0 for a particle of diameter
a/W = 0.05 (d) Normalized residual curves (gx) as a function of x/W at z/W = 0 for
a particle of diameter a/W = 0.10 (e) Normalized residual curves (gx) as a function of
x/W at z/W = 0 for a particle of diameter a/W = 0.15 The solid black lines in (c)-(e)
represent gx modeled using the retardation factor and permeate velocity depicted in
(a) and (b) respectively.

When the size of a flowing particle is comparable to the dimensions of its confining

channel, it is important to consider the hydrodynamic effects from the walls on the lateral
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motion of the particle. To account for this, we introduce a spatially varying retardation

factor λ that relates force (F ) on a particle of diameter (a) and its migration velocity

(U) [4]:

F = 3πµaUλ (A.15)

Here, λ is calculated with a numerical simulation where a particle is modeled in a

square channel of cross-section W ×W and is assigned a velocity U (Re � 1) in the

direction of a wall. Then we calculate the required force to produce such a motion by

integrating the fluid stress on the surface of the particle and using equation A.15 we solve

for λ. We repeat this process for discrete locations that span the width of the channel. In

figure 9a we plot λ for three particles (a/W = 0.05, 0.10, 0.15 at z/W = 0) and show how

our calculations compare to the existing analytic model [4]. Interestingly, even though

in our simulations the particle is confined by four walls, the semi-infinite domain of the

Brenner model seems to match well at z/W = 0. In our work we find that the normalized

residual g (figure 4.4b & 4.4c) is weakly dependent on Re. A quick approximation of g

(for any sized particle) may useful for any researcher who may be interested in applying

this linear model. Here we provide a simple method for approximating g . We begin

by interpreting g to represent the effects of the permeate flow (UW ) on the force (FP )

experienced by a particle.

FP = γF1 = 3πµaUWg (A.16)

Likewise, if we interpret equation A.15 as the force experienced by particle with a

flow moving past it (i.e. particle reference frame) then we can construct a force field

everywhere in the channel according to the local permeate velocity given by the x, and

80



Chapter A

z components of undisturbed flow ū that should approximate the permeate force field.

Fp ≈ 3πµaūλ (A.17)

Without loss of generality we consider only the x-component of the permeate force.

If we equate equation A.16 and A.17 to obtain a relationship for gx:

gx ≈ λ
ūx
UW

(A.18)

Here ūx is x-component of the undisturbed flow and can be seen in figure 9b. The

results of implementing equation A.18 can be seen in figures A.5c-e. Where in general the

approximation works best for smaller particles at a lowerRe. However, the approximation

is remarkably accurate and only requires knowledge of flow field, which is relatively simple

to determine.
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A.7 Local volumetric flow rate in a porous channel

Figure A.6: (a) schematic showing the microfluidic device used in the experiments.
The channel has a height W into the page (b) volumetric flow rate curves for channels
of varying channel resistance L/δ (δ2 = RP /RC) for a β = 0.1 (β = QR/QF ) as L/δ
approaches 0 the axial flowrate distribution becomes linear.

The local volumetric flow rate in a porous duct Q(y) is typically axially varying due

to a non-zero fluid flux. Thus the local volumetric flow rate can be modeled as:

Q(y) = QF −
∫ y

0

UW (y′)Wdy′ (A.19)

Where QF is the feed flow rate (i.e., Q(y = 0)), UW is the average permeate flow

velocity, W is the channel height and y is the axial coordinate. Now assuming that the

wall can be treated as a continuously porous wall of a constant permeability we can use

Darcy’s law to write.

Q(y) = QF −
∫ y

0

κ
P (y′)− P0

µLP
Wdy′ (A.20)

Where P (y′) is the local pressure in the channel, P0 is the reservoir pressure on the
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other side of porous wall, Lp is the wall thickness and κ is the wall permeability. It is

convenient to define the constant RP = µLP/κW so that we can rewrite equation A.20

Q(y) = QF −
∫ y

0

P (y′)− P0

RP

dy′ (A.21)

Equation A.21 can be rewritten in terms of pressure by using the Hagen-Poiseuille

equation:

Q = − 1

RC

dP

dy
(A.22)

Here RC represents the channel resistance per unit length in the axial direction. This

equation can now be substituted into A.21

− 1

RC

dP

dy
= QF −

∫ y

0

P (y′)− P0

RP

dy′ (A.23)

If we differentiate equation A.23 once and use the fundamental theorem of calculus

we obtain a ordinary differential equation for the axial pressure distribution.

− 1

RC

d2P

dy2
= −P (y)− P0

RP

(A.24)

Now rearranging the equation to a standard form

RP

RC

d2P

dy2
− P (y) + P0 = 0 (A.25)

say that δ2 = RP/RC and solve the ODE

P (y) = C1 exp
(y
δ

)
+ C2 exp

(
−y
δ

)
+ P0 (A.26)

This solution is valid however the known boundary conditions are in terms of volu-
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metric flowrate. Therefore, it is convenient to differentiate the solution once

dP

dy
=
C2

δ
exp

(
−y
δ

)
− C1

δ
exp

(y
δ

)
(A.27)

and then again apply the Hagen-Poiseuille relationship to obtain the axial flowrate

distribution

Q(y) =
C1

δRC

exp
(y
δ

)
− C2

δRC

exp

(
−y
δ

)
(A.28)

Where the boundary conditions are Q(0) = QF and Q(L) = QR and are used to solve

for C1 and C2

C1 =
−δRC exp

(
L
δ

) [
QR −QF exp

(−L
δ

)]
exp

(
2L
δ

)
− 1

(A.29)

and

C2 =
−δRC exp

(
L
δ

) [
QR −QF exp

(
L
δ

)]
exp

(
2L
δ

)
− 1

(A.30)

upon simplification

Q(y) =
QR sinh

(
y
δ

)
+QF sinh

(
L−y
δ

)
sinh

(
L
δ

) (A.31)

This model is sufficient to model the flow rate in a porous channel, but it can be

further simplified in the limit where the flow resistance through the channel wall is much

greater than the resistance through the primary channel L/δ << 1 and sinh(L/δ) ≈ L/δ

and in this limit equation A.31 reduces down to

Q(y) = QF

[
1 +

y

L
(β − 1)

]
and β = QR/QF (A.32)
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The resistance of a rectangular section of channel of height 2b and width 2a (a > b)

is given by [61].

R =
3µ

4ba3
(

1− 192a
π5b

∞∑
n=1,3,5,...

tanh(nπb/2a)
n5

) (A.33)

For a square channel of width, W height, W the axial channel resistance is given by

RC ≈
28µ

W 4
(A.34)

The permeability of a porous material is defined as

κ = µŪ
Lp
∆P

(A.35)

choosing the right formulation for average permeate velocity ŪW is not obvious, but

one reasonable approximation is to treat the wall as a continuously permeable (rather

than discretely) but then use the resistance of single permeate channel to calculate the

volumetric flow rate for a section of the channel.

Q = 2ŪWW (WP + δ) =

[
1− 192W

π5Wp

∞∑
n=1,3,5,...

tanh(nπWp/2W )

n5

]
W 3WP

12µ

∆P

Lp
(A.36)

Equation A.35 can be used to solve for an expression giving ŪW . Here ∆P = P (y)−P0

and WP is the width of the permeate channels (figure A.6). Knowing ŪW we can substi-

tute that into the definition of κ (equation A.34) then substitute κ into the definition of

RP to arrive at:

RP ≈
24µLP (Wp + δ)

W 3WP [1− 0.63(W/WP ) tanh(πWp/2W )]
(A.37)
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If we use values that are representative of our microchannel we can calculate a value

of δ ≈ 0.0194 m and the resulting ratio L/δ = 0.52. This ratio is of O(10−1) which is

sufficiently small to use the small angle approximation that results in the distribution of

equation A.32. Figure A.6b shows that as L/δ decreases we observe a more linear trend

in the axial flowrate distribution and for L/δ = 0.01 the distribution is for all practical

purposes linear which is approximated well by L/δ = 0.52.
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A.8 Quasi-Steady Assumption

In the numerical models presented in this dissertation we consider a particle that is

moving at a velocity Up such that it experiences no net force in the streamwise direction

(and no torque). This formulation of the problem is a quasi-steady approach that implies

that the particle migrates across streamlines so slowly that there is no time dependence

in the equations of motion. In general, the equations of motion should reflect a balance

between the particles drag and inertial forces.

mp
d

dt

(
Upey

)
= ey ·

∫
s

nr ·T ds (A.38)

Here we assume ey is the streamwise direction, Up is the particles velocity, mp is the mass

of the particle, T is the total stress tensor, and nr is the unit normal on the surface of

the sphere. To validate our force free assumption, we non-dimensionalize equation A.38

using the characteristic scales associated with each variable. That is:

U ′p =
Up
U
, t′ =

t

τ
, T′ =

T

(µU/a)
, ds′ =

ds

a2
(A.39)

Where U is average flow velocity, τ is the characteristic timescale of the lateral migra-

tion, a is the particles diameter, and µ is the fluid viscosity. To determine this timescale,

we consider the particles lateral migration as it moves through the flow. The timescale

of this movement is given by:

τ ∼ W

Umig
(A.40)

If we assume that force causing the lateral migration of the particle scales as FL ∼

ρU2a4/W 2 where ρ is the fluid (and particle) density, and W is the channel width,

then we can estimate the migration velocity by balancing this force with a viscous drag
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(F ∼ µaUmig):

Umig =
ρU2a4/W 2

µa
(A.41)

Finally we can non-dimensionalize equation A.38 using equation A.39, A.40 and A.41:

Re2p

(
a

W

)
d

dt′
(
U ′pey

)
= ey ·

∫
s

nr ·T′ ds′ (A.42)

Here Rep is the particle Reynolds number and is defined as Rep = ρUW
µ

(
a
w

)2
. From

equation A.42 it is apparent that because of the O(Re) migration experiences transla-

tional acceleration that are O(Re2). The force free assumption becomes questionable

at large values of Re2p
(
a
w

)
. However, in the model presented in this dissertation this

parameter is small enough (O(0.1) at the most extreme case) that the acceleration of

the particle can be neglected and the force free assumption is valid. Note that a similar

non-dimensionalization can be done for rotational equations of motion, where the result

is:

Re2p

(
a

W

)2
dΩ′

dt′
=

∫
s

nr · (r′ ×T′) ds′ (A.43)

Here Ω′ is the particle’s rotation rate non-dimensionalized by the flow times scale

U/W and r’ is the position vector normalized by the particle diameter. The inertial

terms on left hand side of equation A.43 are more stringent than in equation A.42 and

therefore, the particle can also be modeled as torque free.
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