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Abstract

Poselets and Their Applications in High-Level Computer Vision

by

Lubomir Bourdev

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Part detectors are a common way to handle the variability in appearance in high-level
computer vision problems, such as detection and semantic segmentation. Identifying good
parts, however, remains an open question. Anatomical parts, such as arms and legs, are
difficult to detect reliably because parallel lines are common in natural images. In contrast,
a visual conjunction such as ”half of a frontal face and a left shoulder” may be a perfectly
good discriminative visual pattern. We propose a new computer vision part, called a poselet,
which is trained to respond to a given part of the object at a given viewpoint and pose. There
is a wide variety of poselets – a frontal face, a profile face, a head-and-shoulder configuration,
etc. A requirement for training poselets is that the visual correspondence of object parts
in the training images be provided. We create a new dataset, H3D, in which we annotate
the locations of keypoints of people, infer their 3D pose and label their parts (the face, hair,
upper clothes, etc.). Our richly annotated dataset allows for creation of poselets as well as
other queries not possible with traditional datasets.

To train a poselet associated with a given image patch, we find other patches that have
the same local configuration of keypoints and use them as positive training examples. We
use HOG features and linear SVM classifiers. The resulting poselet is trained to recognize
the visual patterns associated with the given local configuration of keypoints, which, in turn,
makes it respond to a specific pose under a specific viewpoint regardless of the variation in
appearance.

High-level computer vision is challenging because the image is a function of multiple
somewhat independent factors, such as the appearance model of the object, its pose, and
the camera viewpoint. Poselets allow us to ”untie the knot”, i.e. decouple the pose from
the appearance and model them separately. We show that this property helps in a variety
of high-level computer vision tasks. Our person detector based on poselets is the leading
method on the PASCAL VOC 2009 and 2010 person detection competitions and naturally
extends to other visual classes. We currently have the best semantic segmentation engine for
person and several other categories on the PASCAL 2010 segmentation datasets. We report
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competitive performance for pose and action recognition and we are the first method to do
attribute classification for people under any viewpoint and pose.
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Chapter 1

Introduction

Our long-term goal is to detect and describe the objects in Flickr-style photographs, such
as the ones shown on Figure 1.1. For example, we would like to determine that the first
image contains a woman with long hair who is sitting behind a table and looking to the
right. We would like to segment the shape of the woman and the table. We would like to
determine that the second image contains a person riding a motorcycle, wearing a helmet
and facing right.

Describing these images requires solving several problems in high-level vision – detec-
tion, semantic segmentation, pose estimation, action recognition and attribute classification.
This thesis is far from providing a comprehensive solution to these central computer vision
problems; the war on solving vision is sure to go on for a long time, but we provide a new
weapon, a part based model called poselets, and we have won a few small battles with it:
Poselets are the basis of the current leading methods in both detection and segmentation
of people and several other visual categories on the PASCAL VOC 2010 test set. We show
competitive results on the PASCAL action recognition challenge and we are the first method
to provide attribute classification for people under arbitrary viewpoints and poses.

Our work differs from the traditional approaches in two aspects – our use of extra super-
vision and our choice of parts.

1

2
3

4

5 6

7

Figure 1.1: Challenges of object recognition
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1.1 The case for extra supervision

Figure 1.1 illustrates some of the challenges of person detection, which are representative
of other categories and other high-level vision problems: occlusion (1), large articulation
(4), varied clothes with sharp edges inside (2), no edges along the person’s outline (4), the
presence of glasses or hat/helmet (2,3,6,7), camera viewpoint (3), wrinkles on the clothes
(6) and many other factors. Despite the huge complexity introduced by all of these factors,
the mainstream computer vision setup, adopted by nearly all datasets, is to use the visible
bounding box as the only degree of supervision. Given just the bounding box, how is a
person classifier expected to make sense of the patterns comprising the humans shown on
Figure 1.1? The only hope is for it, with enough data, to discover common patterns and
their most likely locations, such as the fact that faces tend to have an oval shape and most
commonly appear in the upper part of the bounding box. This is, in fact, the strategy
employed by the Latent SVM detector by Felszenswalb et al. [16], one of the most popular
object detectors today. This detector consists of a global low-resolution template and a set
of smaller higher-resolution template parts. The appearance and the relative location of the
parts are learnt jointly. The benefit of unsupervised methods is that they require no extra
annotations, but the disadvantage is that they have to discover the patterns on their own,
which could lead to patterns with mixed semantics and imprecise localization. Figure 1.2
shows two examples of the Latent SVM detector instantiated on two pedestrians. As the
figure shows, the model has discovered that the head is a common pattern and has correctly
initialized and localized a head part. Notice, however, that the ”left part of the body” part
could sometimes cover half of the face and in other cases it could be instantiated below the
shoulder area. Similarly, the leg part can fire when the legs are near each other or when
only one leg is present. Parts with such mixed semantics are both harder to train and not
as informative as parts with precise semantics.

We believe that the visible bounds provide a poor and insufficient level of
supervision and make it difficult to train object detectors. The key information
that we would like to help our classifiers with is visual correspondence. That is, we would
like to associate each pixel from the body of one person to the corresponding pixel, if any,
from the body of another. To allow for such dense correspondence, we created a dataset in
which we have labelled the locations of keypoints, such as the eyes, nose, shoulders, hips,
etc. Our dataset, H3D (Humans in 3D), is described in Chapter 2. Poselets are an example
of a new part that would not be possible to construct without the extra supervision provided
by H3D.

The common counter-argument to extra supervision is its lack of scalability: if we want
to train classifiers for thousands of visual categories, it would be difficult to add keypoints to
each training example of each object class. This argument, while still valid, is less convincing
today than it was ten years ago due to the emergence of crowdsourcing. Using Amazon
Mechanical Turk we were able to annotate tens of thousands of examples of the 20 visual
categories in the PASCAL competition in less than a week and using less than $500.
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Figure 1.2: The Latent SVM model by Felzenszwalb et al.

1.2 What parts should we search for?

The second key difference of our work from traditional approaches is our choice of parts,
which are inspired by the extra supervision. While holistic detectors have been effective for
detecting faces [45] and pedestrians [11],[35], the variation in viewpoint, articulation and
the presence of occlusion associated with closeups of people have led to the development of
part-based approaches, which tend to fall into two main categories:

1. Work in the pictorial structure tradition, from Felzenszwalb and Huttenlocher [17] and
others [37, 36, 18, 1], picks a natural definition of part in the 3D configuration space
of the body, guided by human anatomy. Even earlier work with “stick figure” rep-
resentations using generalized cylinders to model various body parts made essentially
the same choice [34, 40]. While these parts are the most natural if we want to con-
struct kinematic simulations of a moving person, they may not correspond to the most
salient features for visual recognition. It may be that ”half of a frontal face and a left
shoulder” or ”the legs of a person making a step in a profile view” are particularly
discriminative visual patterns for detecting a human–does it matter that these are not
“parts” in an anatomical sense, or that English doesn’t have single words for them?

2. Work in the appearance-based window classification tradition. A flagship example is
the aforementioned work of Felzenszwalb, McAllester and Ramanan [16] who allow
an intermediate layer of “parts” that can now be shifted with respect to each other,
rendering the overall model deformable. The templates for these parts emerge as part
of the overall discriminative training. Such approaches, however, are not suitable for
pose extraction or localization of the anatomical body parts or joints. An alternative
way to provide flexibility is by the use of point descriptors as in the work of Mori and
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Malik [33], or Leibe et al. [27]. What is common to all these approaches is the parts
or point descriptors are chosen based purely on appearance.

Finally, there are now some hybrid approaches which have stages of one type followed by
a stage of another type. Ferrari et al. [18] start with holistic upper-body detection based
purely on appearance, followed by the application of a pictorial structure model in regions of
interest. Andriluka et al. [1] train part detectors for anatomically defined body parts which
then are combined using pictorial structures. However, none of the previous approaches use
parts that emerge from strong supervision.

Figure 1.3: Examples of poselets

Examples of our parts, the poselets, are shown on Figure 1.3 and the training algorithm
is described in Chapter 3. As the figure shows, poselets capture part of the pose at a given
viewpoint. They have clear semantics that can be described with a noun phrase. The first
poselet corresponds to ”the head and shoulders of a person whose left hand is lifted near
the face” and the last is ”a frontal view of the torso of a person with their hands crossed”.
Notice that poselets do not correspond to individual anatomical parts; a poselet can capture
a local configuration of anatomical parts. This results in patterns that have rich structure
and are therefore easier to discriminate. Notice also that the examples of a poselet are
not necessarily very similar visually. For instance, the second and the fourth example of a
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back-facing poselet (3rd row) are visually very different even in the gradient domain. People
have different hair styles, they wear different clothes and appear on different backgrounds.
If we were to construct our parts in an unsupervised way, entirely based on appearance, it
would have been impossible to keep these varied examples within the same poselet without
including lots of visually similar but unrelated patterns. The extra supervision allows us to
have a clean training set of examples, and it allows us to train classifiers that learn the visual
differences associated with a common underlying semantics.

That latter property of poselets means that, for example, a frontal head-and-shoulders
poselet will fire for people with long or short hair, with or without sunglasses and with or
without a hat as long as they are facing the camera, but it will not fire if the same person
is looking sideways. This allows us to use poselets as an engine to decompose the pose
from the appearance, which is key to many high-level vision tasks. For instance, the pose
is a latent parameter in detection; we would like to detect objects regardless of their pose
and camera viewpoint. Pose is key for pose estimation and action recognition – to find
out whether a person is facing the camera, or if they are reading a book, we need to find
out their articulation and pose regardless of the types of clothes they are wearing. Attribute
classification, on the other hand, treats pose as a latent parameter and requires discriminating
the variations in appearance associated with a given pose: to determine whether a person
wears glasses we would need to train glasses detectors for a variety of poses. As we show in
Chapters 4 and 5 poselets are effective in all these visual tasks.
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Chapter 2

The H3D dataset

In this section we introduce our strongly-supervised dataset of people H3D, Humans in
3D, which allows us to train poselets.

2.1 The role of datasets in computer vision

Datasets are important for making progress in computer vision research. One might argue
that the CMU-MIT Face Dataset1 contributed to significant research in face detection and
was central to solving the frontal face detection problem, and the Berkeley Segmentation
Dataset [31] was key to the progress in bottom-up segmentation research. The Internet
revolution gave us access to millions of images and allowed for new kinds of datasets. Torralba
et al. demonstrated that with a large enough dataset even hard vision problems can be
trivially solved using a nearest neighbor classifier [44].

Another advantage of the Internet era is the possibility for collaboration on a large scale,
which could be used for construction of large datasets at very low cost or even for free.
LabelMe [38] is a dataset of images with regions labelled by the computer vision community
at large. Currently it includes more than 50000 annotated images. Google Image Labeller 2

is an effort by Google to create a large collection of images labelled by people. To encourage
people to label images they turned the task into a game where each person is rewarded points
for using the same labels chosen by other annotators. Sorokin and Forsyth [42] proposed
using Amazon’s Mechanical Turk for generating large datasets. They report that annotations
can be generated for as little as $0.01 per image. Having web users annotate the images is
appealing, as long as one can enforce quality control. LabelMe uses multiple annotations per
image and also measures precision by analyzing the level of detail of the annotated region.
Mechanical Turk allows the dataset administrator to review each annotation and decide
whether to pay for it or not.

1http://vasc.ri.cmu.edu/idb/html/face/frontal_images
2http://images.google.com/imagelabeler
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Figure 2.1: Examples of annotations from the H3D dataset. Left: Keypoint annotations.
Center: Inferred 3D pose. Right: Part labels

2.2 The Humans in 3D Dataset (H3D)

The existing datasets vary significantly in their size, degree of annotations and annotation
quality. Our emphasis is on the degree of annotation and quality. We believe that the higher
the degree of supervision the better. Our dataset currently consists of 7053 annotations
coming from 3250 images. These include the PASCAL trainval 2009 images as well as
approximately 500 additional higher resolution images of people collected from Flickr. We
have provided the following annotations as shown on Figure 2.1:

1. Keypoint annotations. We have annotated the following 20 keypoints: The eyes,
nose, ears, back of head, shoulders, elbows, wrists, hips, knees, ankles and toes. For
each keypoint we have specified the coordinates as well as the visibility status. Oc-
cluded keypoints are specified as long as their location can reasonably be estimated.

2. Depth information. We have connected the keypoints into a skeleton and have
specified the relative depth of each pair of keypoints connected by an edge. This
allows us to infer the 3D pose of people using a variation of the Taylor algorithm [43]

3. Part labels. For 1217 of our annotations we have also provided labelled segmenta-
tions of the body parts. The image is segmented into regions and regions are marked
with one of the following 20 labels: occluder, face, sunglasses, hair, neck, hat, upper
clothes, lower clothes, bag, dress, left/right arm skin, left/right leg skin, left/right sock,
left/right shoe, left/right glove.
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Figure 2.2: Our Java3D annotation tool allows the user to mark keypoints and displays
the 3D pose in real time. Users can mark the image while looking at the 3D pose from
another view. Our 3D extraction is based on the Taylor method [43] which we have extended
to further ease accurate reconstruction. We have introduced extra constraints and global
controls that use gradient descent in the overconstrained space to help the user adjust the
pose, straighten the torso, etc.

4. Gender/age. We have categorized the annotations into three cases: man, woman and
child. This categorization allows us to use a different parameters resulting in higher
accuracy of our 3D estimation.

To ensure high quality and consistent bias we have trained paid annotators and we have
manually verified and corrected the annotations. We would like to thank Hewett Packard
for sponsoring the creation of H3D.

2.3 The Human Annotation Tool

Our annotation environment consists of two main modules - a 3D pose module that allows
us to navigate the dataset, specify locations of joints and derive the 3D pose of people, and a
region labelling module that segments the human body and allows us to label the associated
regions. The 3D pose module is a Java 3D application shown on Figure 2.2. The left part of
the screen shows the image containing a person and the locations of the joints and the right
part shows the 3D pose.

2.3.1 Interaction Model

To label a person, the user can zoom and scroll the left image and then place and adjust
the keypoints associated with the shoulders, elbows, wrists, hips, knees, ankles, as well as



CHAPTER 2. THE H3D DATASET 9

the ears, eyes and nose. The names of the keypoints are shown when the mouse hovers
over them. The user can also mark joints as visible or occluded. Occluded joints and joints
outside the image are also annotated, as long as we have a rough idea where they are.

Most joints have an associated ’parent’ joint. For example, the parents of the ankles are
the knees, and their parents are the hips. The user can also specify whether a given joint is
further away, roughly equidistant, or closer to the camera relative to its parent joint. This
information is necessary for 3D reconstruction.

As the user labels joints in the left window, our tool provides real-time 3D pose estimation
in the right window. The user can orbit the right window and view the 3D pose from an
arbitrary view and see how changes in the keypoint locations of the 2D image affect the
3D pose. Figure 2.2 shows how the user is adjusting the right elbow while looking at the
pose from the left profile. The figure also shows that the user is dragging the right elbow
(highlighted in red). A perspective link connects the right elbow to the right shoulder
indicating that the shoulder is the parent of the elbow and that the shoulder is further away
from the camera. Note that the knees fall outside the image and are marked in green, which
means they are occluded.

2.3.2 3D reconstruction

Most existing 3D datasets of people consist of motion capture data. One reason is that
full 3D modeling is a very time consuming task. Making 3D modeling easier is critical for
creating large 3D datasets and we have put a lot of effort to ease the process.

Luckily, for the case of people, Taylor [43] has proposed an algorithm that can recover
the 3D pose from little more than the 2D locations of joints. In our project we have used
and extended Taylor’s algorithm, which we briefly describe here. To infer the 3D pose, the
algorithm assumes a scaled orthographic projection and also that all people have the same
body proportions. We have found that these assumptions are reasonable in practice3. These
two assumptions allow us to reconstruct the 3D length of segments up to an unknown scale
s. Using the 2D coordinates of joints we can compute the image-space length of a segment.
The relative depth of the two endpoints of the segment can then be computed using the
Pythagorean theorem:

l2 = (X1 −X2)
2 + (Y1 − Y2)2 + (Z1 − Z2)

2 (2.1)

(u1 − u2) = s(X1 −X2) (2.2)

(v1 − v2) = s(Y1 − Y2) (2.3)

Z1 − Z2 =
√
l2 − ((u1 − u2)2 + (v1 − v2)2)/s2 (2.4)

3Note that excess body mass does not materially affect the skeletal structure and thus the body propor-
tions. Our tool also allows the user to categorize the body as male, female or baby and we have separate
body proportions for each class.
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The sign of the relative depth cannot be derived by the above formulas and we ask the
user to specify whether a point is closer or further away from the camera relative to its
parent point. In the future we could determine a good default of the sign based on statistics
of poses. While the minimum scale s is unspecified, we have lower bounds for it because the
3D length cannot be shorter than the 2D length. For every segment the following must hold:

s ≥
√

(u1 − u2)2 + (v1 − v2)2
l

(2.5)

Setting s to its lower bound is reasonable. That implies that at least one of the segments
is parallel to the image plane, which is almost always the case for typical 3D poses. We refer
to that segment as the critical segment and we show it with a dashed line in the 3D view
(Figure 2.2 top-right) because small changes to it make big changes to the overall pose.

While in theory Taylor’s algorithm is sufficient to reconstruct the 3D pose, we found
that in practice it is difficult and time consuming to get the pose just right, because the
algorithm has the same number of constraints as variables and doesn’t allow for any margin
of error. We introduced additional constraints to ease 3D reconstruction. In particular, we
allow segments to be marked as equidistant to the camera. In practice, frontal views of
upright people have many segments parallel to the image plane. These extra constraints
allow the tool to determine whether some segments are too short. It marks segments whose
size is inconsistent as red, with intensity proportional to the degree of inconsistency. We
also provide three global controls that the user can apply by pressing and holding a key. We
adjust the 2D coordinates by following the gradient descent of the following energy function:

x −→ arg min
x

∑
i

wi(x̃i − xi)2 + Fj(x) (2.6)

where x̃i = (ui, vi) denote the human marked 2D coordinates, xi are the true 2D coordinates
and wi are the weights associated with the data fidelity terms. We use different weights
depending on the type of joint. For example, annotators are less accurate in specifying
hips than they are in specifying wrists. We also take into account the visibility: a keypoint
marked as occluded is less precise than a visible keypoint. Fj is the specific control method:

• Control 1 changes the length of the critical segment and affects the degree of foreshort-
ening of the pose.

• Control 2 moves keypoints of segments marked as parallel to the image plane a small
amount in a direction that makes their 2D lengths closer to their 3D lengths.

• Control 3 straightens up the torso. It moves the hips and shoulders in a direction that
moves the torso towards an isosceles trapezoid. Most of the time people’s torsos are
not twisted but it is hard to get straight torsos without using this explicit control.

Since the 3D pose is defined up to a similarity transform, we subtract similarity transforms
from all of the optimizations and adjust the keypoints only by the remaining error.
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Figure 2.3: Our region labeling tool performs hierarchical oversegmentation of the image
using [28] to allow the user to efficiently and accurately assign region labels. Users start
labelling a rough version and refine the labels.

2.3.3 Region Labeling Tool

Our labeling tool allows us to label the pixels of the image with labels such as ”left hand”,
”upper clothes”, ”face”, etc. It is important to have high quality pixel-level masks while
allowing for fast labeling. To achieve this goal we segment the image into superpixels using
[28] and allow the user to label superpixels instead of pixels. This significantly speeds up the
labeling while achieving high quality results, but is not sufficient for large images that have
thousands of superpixels. We construct a hierarchy of the superpixels based on the strength
of the edges between superpixels. Using a slider the user can select a suitable level of the
hierarchy which corresponds to the level of detail for segmentation. In a typical workflow the
user starts with rough segmentation, labels large regions and then increases the resolution
and refines the labels. Figure 2.3 shows our labeling tool at three levels of segmentation.

The time to create an annotation varies on the difficulty of the annotation and the
expertise of the annotator, but on average it takes in the order of five minutes to specify the
keypoints, set the 3D pose and label the regions.

2.4 Applications of H3D

In this section we give examples of the types of queries H3D allows for.

2.4.1 Viewpoint Extraction

Since our 3D poses are defined up to a scale, we cannot distinguish between distance from
the camera and the size of the person, but we can extract the camera viewpoint (azimuth
and elevation angles). To compute the viewpoint we define the center of the human to be
the midpoint of the shoulders and we let the X-axis be along the shoulder line. The Y-axis
is in a direction orthogonal to the X-axis and lies in the same plane as the midpoint of the
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Figure 2.4: Examples of 3D pose statistics made possible by H3D. Left:Camera azimuth
angle relative to frontal pose.Center:Expected bending angle of the left arm. Right: Ex-
pected bending angle between the left thigh and the torso (log polar graph). This angle
typically distinguishes sitting from standing people.

hips. Figure 2.4 (left) shows the camera azimuth distribution. We see that 39.6% of the
time the human pose is frontal (between −15◦ and 15◦).

2.4.2 3D Pose Statistics

In Figure 2.4 (center) we have explored the distribution of angles of between the upper and
lower arm segments. As the figure shows, physical constraints of the body are implicitly
incorporated into our statistics - there are no arms that bend backwards. Also the figure
shows that 33% of the time the arm is almost straight, bent less than 30% degrees. Figure 2.4
(right) shows the expected angle between the left thigh and the torso. It is a log-polar graph;
63% of the people in our dataset have this angle almost flat (between 175 and 185 degrees)
which usually means that they are standing. The figure again shows how the human body
limits are incorporated into our statistics, as people cannot bend their legs backwards. Note
that these statistics are performed in 3D space. Most other datasets do not contain 3D
information, which would make it impossible to derive these statistics due to foreshortening
ambiguities.

Using the annotated keypoint locations, we can determine the expected image locations
of a set of keypoints conditioned on the locations of other keypoints. Such distributions
would be valuable for any part-based human detector. Figure 2.5 (left) shows our prediction
for the locations of the left ankle and right elbow conditioned on the shoulder locations.

We can also use H3D to determine the label probability of pixels conditioned on any
property we want. For example, Figure 2.5 (right) shows the expected location of the upper
and lower clothes conditioned on the location of the two eyes and of the two hips. As
expected, the label prediction probability is higher near the fixed points and goes down for
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Figure 2.5: Left: Scatters of the 2D screen locations of the right elbow and left ankle given
the locations of both shoulders. Right: Probability of upper clothes (red) and lower clothes
(green) given the location of the eyes (left picture) or hips (right picture). Contours at 0.1,
0.3 and 0.5 are shown.

pixels further away. We could, of course, compute conditional probabilities on more variables
if the size of our dataset allows for meaningful predictions.

2.4.3 Appearance Queries

Registering 3D views with 2D images is powerful, as it allows us to query for the appearance of
parts. Given the normalized locations of two keypoints (which define a similarity transform),
a target aspect ratio and resolution, H3D can extract patches from the annotated images.

For example, to generate examples of raised hands (Figure 2.6 left) we specify the left
wrist to be in the center of the patch, the left elbow to be vertically below it (outside the
patch) and request patches for which the out-of-plane angle is small (to avoid hands pointing
towards or away from the camera).

H3D can leverage our region annotations to include or exclude specific regions. Fig-
ure 2.6(center) shows an eerie collection of frontal heads with the faces masked out. Fig-
ure 2.6 (right) shows the result of displaying people whose hip-to-torso angle is less than
130 degrees (i.e. sitting people), sorted by the hip-to-torso angle (i.e. most sitting to least
sitting). We show them with the background and any occluders masked out.

We can use H3D to learn the prior probability of the color of each part. For example
Figure 2.7 shows a GMM fit for the colors of skin, hair and upper clothes.
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Figure 2.6: Examples of appearance queries generated by H3D.

Figure 2.7: Means and proportions of Gaussian Mixtures trained to fit the colors of skin,
hair and clothes. Variances not shown.

2.5 Conclusion

Combining appearance, 3D pose and viewpoint allows for a virtually unlimited set of ques-
tions we can ask H3D for. One can compute statistics for questions such as: ”How often are
both hands occluded?”, ”What fraction of the women are blonde?” or ”How often do sitting
people wear a hat?”. Each of the examples in this section was done using less than half a
dozen lines of Matlab via the H3D toolset.

The H3D dataset, the Matlab H3D toolbox and the Java3D annotation tool are available
on our website, together with a video tutorial and the associated papers. Poselets are one
example of a novel computer vision part that is made possible by H3D. We hope that our
richly supervised dataset will inspire other new methods and new ways of thinking about
data.
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Chapter 3

Poselets

In this chapter we describe an algorithm for training poselets and for combining them to
form object hypotheses.

Figure 3.1: A poselet describing a frontal face and five of its examples. Top row: The
configuration spaces showing the eyes, nose and left ear keypoints. Bottom row: the corre-
sponding image patches. By construction all examples of a poselet have similar configurations
and are therefore semantically similar.

3.1 Finding corresponding patches

3.1.1 Distance in configuration space

A poselet is specified with an image patch, such as a frontal face poselet shown on the left of
Figure 3.1. The first step in training a poselet is finding positive training examples, which



CHAPTER 3. POSELETS 16

are patches similar in configuration space. In the example on Figure 3.1 we find four similar
patches by transforming the annotated people in our training set so that the locations of
their eyes, nose and left ear match those in the seed, as shown in the first row of Figure 3.1.

Specifically, given the local keypoint configuration within a seed window, we extract
patches from other training examples that have similar local keypoint configurations. Fol-
lowing [5] we compute a similarity transform that aligns the keypoints of each annotated
image of a person with the keypoint configuration within the seed window and we discard
any annotations whose residual error is too high. We use the following distance metric which
we introduced in [4]:

D(P1, P2) = Dproc(P1, P2) + λDvis(P1, P2), (3.1)

where Dproc is the Procrustes distance between the common keypoints in the seed and des-
tination patch and Dvis is a visibility distance, set to the intersection over union of the
keypoints present in both patches. Dvis has the effect of ensuring that the two configura-
tions have a similar aspect, which is an important cue if 3D information is not available. We
empirically set the tradeoff between the two criteria to λ = 0.1. This equation is efficient
to compute as the Procrustes distance involves solving a least squares system. Thus we can
find all patches similar to the seed, searching over thousands of training examples, in the
order of a couple of seconds.

One issue is whether to use a full similarity transform, or whether to restrict it to just
rotation and scale. The advantage of using a full similarity transform is that we can find
more training examples: For instance, to train a tilted head poselet we don’t have to restrict
our examples to people whose heads are tilted; we could also rotate upright faces. On the
other hand, some visual categories have strong rotational prior (we rarely see cars rotated
at 45 degrees). In such cases disabling the rotation can improve the match, because rotation
is misused to minimize the distance between keypoint configurations of different aspects. It
is better to keep parts from different aspects in different poselets. Currently we have a flag
for each visual category. We allow rotation for people, birds, cats, etc, and we don’t allow it
for ”grounded” categories, such as cars and buses.

Equation 3.1 is only one possible way to define the correspondence between patches.
Variations of this equation involve using a different weight for each keypoint, for example by
giving higher weight to keypoints closest to the center of the patch and giving non-zero weight
to nearby keypoints that fall outside of the patch, or using distance in 3D if available [5].
We could associate a penalty if the visibility status of keypoints does not match, or we could
take into account other optional cues, such as aligning the outlines of the two objects. The
specifics of the distance transform are not important; what is key is that we are defining a
notion of a distance between pairs of patches that would allow clustering in configuration
space.
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3.1.2 Determining the right number of training examples

Our distance transform is defined for every training example, but we certainly don’t want to
use as training examples patches that vary significantly from the seed. While the residual
error D is a reliable way to order the patches from most to least similar, we need to find
a threshold of the residual error above which we would discard the examples. Determining
this threshold is not an easy task. There is no universal threshold that works for all poselets;
the distance metric D is not on the same scale for different poselets. If we use a threshold
that is too small we would have very few training examples and our poselet classifiers will
not train well. Using too large a threshold would result in including bad examples into the
training set and would similarly result in suboptimal training.

Figure 3.2: Example of the swamping phenomenon for a profile face poselet. The examples
are shown sorted by residual error. The rank of each example is indicated.

There is a more subtle phenomenon here which we call swamping of a poselet. It is
illustrated on Figure 3.2. The figure shows patches corresponding to a profile face poselet
sorted by increasing residual error. The first hundred or so examples are good profile faces,
but once we run out of profile faces we start including tilted frontal faces. They are good
matches because the right eye and the nose are at the same position as in a profile face.
Since there are an order of magnitude more frontal faces, if our threshold allows many of
them to be included they will end up dominating the training examples and we will end up
training a poselet to respond to tilted frontal faces as opposed to profile faces. Swamped
poselets are harder to train and have poor pose estimation capabilities.

To avoid swamping we use the following strategy: We first use a conservatively low
threshold that guarantees there is no swamping. Empirically we found that the first k1N
examples have no swamping, where N is the size of our training set and k1 is set to 3%. We
train poselets using the smaller set of ”unswamped” examples. We then evaluate them on
the training set and count the number of patches they are able to find. Let that number be
P . In the example on Figure 3.2 we would find the number of profile faces in our training
dataset. We then do a second round of training of the poselet using exactly P training
examples. Effectively we are bootstrapping the poselets based on the appearance of the
unswamped examples.
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3.2 Training a poselet

The previous section describes a method for generating positive training examples for a
poselet. We generate negative examples by randomly sampling patches from images that
don’t contain the visual category. We then compute features of each patch and train a
classifier. Our features of choice are Histograms of Oriented Gradients first introduced by
Dalal and Triggs [11] and we use a linear SVM classifier1.

After the initial training round, we perform a bootstrapping procedure: We run the
classifiers on a set of images not containing the object in question, we collect the false
positives with highest scores and we retrain the classifier. We perform this bootstrapping
procedure on the training images in the PASCAL dataset that don’t contain instances of the
object we are training to detect.

Due to the disproportional size of negative vs positive training examples, we found that
the training procedure does not set the SVM bias threshold reliably. We would like a
threshold that is not too low (so we detect instances of the pattern) but not too high (so we
don’t generate too many false positives). We found that the optimal way to set the threshold
is to run the poselet classifier in a window scanning manner on the training set, collect the
top activations and set the threshold so that precisely k2N of them have a positive score.
We used k2 = 2.

3.3 Poselet selection

The previous two sections provide an algorithm that given a seed image patch would train the
corresponding poselet classifier. In this section we describe a method for selecting suitable
poselets. A good set of poselets must satisfy the following criteria: Each poselet must be
trained well, the poselets must be complementary, they must provide a good ”coverage”
of the training examples and they must be as few as possible. We do poselet selection as
follows:

1. We pick 1200 random seed patch windows from the training images. We make sure
that each window sufficiently overlaps a training example. We sample with uniform
distribution over location and log scale. This results in higher probability of sampling
patterns that are common, such as frontal faces. We take equal number of samples
from each of the following normalized dimensions: 64x96, 64x64, 96x64, and 128x64
pixels.

2. We then use the algorithm in the previous sections to extract training patches, thresh-
old them, and train poselet classifiers for each of the seed patch windows.

1While we might train better with more powerful classifiers, we use linear SVMs due to their simplicity
and speed.
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3. We apply the poselets in a scanning-window fashion on our training set and collect
their top k2N activations.

Figure 3.3: Examples of a left-back-head-profile poselet activations classified into true posi-
tives, false positives and unlabeled.

4. We assign labels (true positive, false positive, unlabeled) to each poselet activation
(Figure 3.3). To assign a label we use the bounds of the patches we extracted in
step 2 and their rank according to the distance metric (equation 3.1) with disabled
rotation. We partition the bounds into two classes: the top-rank patches (which we
used for training) are treated as ground truth; the lower-rank patches are treated as
secondary ground truth. Any activation that has intersection over union overlap of
more than 0.35 with a ground truth is assigned a true positive label. If the overlap
with a secondary ground truth is less than 0.1 or none, it is assigned a false positive
label. All other cases remain unlabeled.

5. The previous step determines if a poselet activation is a true positive and, if so, which
training example it activates on. We now construct a coverage matrix that captures
which poselets activate on which training example. That is, entry ci,j is true if and
only if poselet type i activates on a training example j (Figure 3.4).

6. We use a greedy selection algorithm (Algorithm 1) to pick a small set of poselets
that cover as many training examples as possible while allowing for some controlled
redundancy:

This algorithm starts with the poselet that covers the largest number of examples and after
that picks poselets that cover the largest number of so-far-uncovered examples. For the
person category we used N = 1200, T = 150 and γ = 5. The first ten poselets chosen for the
person category are shown on Figure 3.5. The algorithm prefers head-and-shoulders poselets
as they train well and cover a large number of the training examples. Other high ranking
poselets are a frontal face and a pedestrian. Leg poselets come later in the ranking as they
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Figure 3.4: Poselet coverage matrix.

Algorithm 1 Poselet selection algorithm

Input: N > 0 Number of poselet candidates
T ∈ [1, N ] Number of poselets to select
γ > 0 Smoothing constant
ci,j Coverage table, ci,j = true iff poselet i activates on example j

Output: M : a set of selected poselets
∀j, rj ⇐ γ
M ⇐ ∅
for t = 1 to T do
k ← argmax

i∈[1,N ]:i/∈M

∑
j:ci,j=true

rj

M ←M ∪ {k}
for all j such that ck,j = true do
rj ← max(0, rj − 1)

end for
end for
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are harder to train and have weaker coverage (in many cases the legs are occluded.) Hand
poselets are rare.

For the person category, our training set is H3D trainval + PASCAL train09 (a total of
3809 training examples). The first 10 poselets cover 63.8% of the training examples and the
first 150 cover 76.8%. The maximum coverage of 77.5% of the training set would be achieved
using 245 poselets. It is important to note that a poselet activated on a person is necessary
but not sufficient for us to detect that person. Person detection, as defined in the PASCAL
competitions, requires correctly predicting the visible bounds of the person.

Figure 3.5: The first ten poselets for the person category. Each poselet is represented as the
mean of its top 40 training examples.

3.4 Training poselet prediction parameters

Given poselet i and its labelled activations on the training set we train the following:

1. We fit a logistic over the positive and negative activations and the associated scores to
convert SVM scores into probabilities qi.

2. We set a threshold for the SVM score that ensures 90% of the positive and unlabeled
examples are above the threshold. This allows each poselet’s detection rate to match
the frequency of the pattern it has learned to detect.

3. We fit a model for the keypoint predictions conditioned on each poselet by observing
the keypoint distributions of the true positive activations of each poselet type. An
example is shown in Figure 3.6. We model the distributions using a 2D Gaussian
associated with each keypoint.

4. We fit the prediction of the visible bounds of the human relative to the poselet in a
similar way using the true positive activations. We find the mean and variance of xmin,
ymin, xmax, and ymax of the visible bounding box.

5. We fit a foreground probability mask: Using the foreground/background region an-
notations in the training images we estimate the probability of each pixel within the
poselet patch to be an object pixel vs. one coming from the background. This mask
(shown on Figure 3.12) will be useful in the segmentation task.
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Figure 3.6: Empirical keypoint distribution: locations of the shoulders (left), shoulder and
ear (middle), and shoulders and hips (right) over true positive poselet activations of three
different poselets.

3.5 Consistent poselet activations

One of the key steps of processing poselet activations in a test image is determining whether
two activations refer to the same object instance. Two activations are called consistent if
they are true positive and detect parts of the same object instance. Consistent activations
are often nearby in space, but sometimes they can be far apart: a frontal face and legs
activations can be consistent while being spatially far apart.

We measure consistency between two poselet activations using the symmetrized KL-
divergence of their empirical keypoint distributions N k

i and N k
j :

DSKL(N k
i ,N k

j ) = DKL(N k
i ||N k

j ) +DKL(N k
j ||N k

i ) (3.2)

Di,j =
1

k

∑
k

DSKL(N k
i ,N k

j ) (3.3)

Since we represent these keypoint distributions as 2D Gaussians, DSLK has a closed-form
solution. Since not all keypoints are available for all poselets, we average over those keypoints
predicted by both poselets.

We treat two activations i and j as consistent if Di,j < τ . We set τ as the threshold
that best separates distances among consistent activations from distances among inconsistent
activations on the training set. Note that for all pairs of labeled activations on the training
set we can determine whether they are consistent or not - namely, two activations i and j
are consistent if they are both true positive and refer to the same training example. An
example of consistent and not consistent activations is shown on Figure 3.7.
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Figure 3.7: An example of two poselet activations that are consistent (left) and not consistent
(right). Consistent activations have similar predictions for the locations of the keypoints. In
this case we show their predictions of the hips and shoulders.

The symmetrized KL-divergence is an estimate of the likelihood that two poselet activa-
tions are consistent. It is not the only such estimate. In general one could define a distance
by measuring the discrepancy in their predictions of various object properties. For example,
each poselet activation can predict the visible bounds of its reference object. The intersection
over union of the predicted visible bounds of two activations defines an alternative estimate.
The intersection over union of the soft foreground masks predicted by the two activations
define yet a third estimate.

3.6 Enhancing poselets using context

Poselet classifiers can make mistakes because the pattern can be hard to detect or it could
be rare and we don’t have enough training examples. There are also “near-metamers”;
patterns that can be distinguished by a human observer using additional context, but are
indistinguishable given the signal inside the image patch encoded in the HOG feature vector.
For example, a back-facing head-and-torso pattern is similar in appearance to a front-facing
head-and-torso pattern (Figure 3.8 left), and thus a back facing poselet will often fire on front-
facing people as well. False positives are common (Figure 3.8 center). Another example is a
left leg, which in isolation looks very similar to a right leg (Figure 3.8 right).

One can resolve these ambiguities by exploiting context – the signal within a patch may
be weak, but there is strong signal outside the patch or at a different resolution. This is no
different from the case of object detection where the surrounding scene – nearby objects –
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Figure 3.8: Poselet classifiers can make mistakes for many different reasons. Left: The
head-and-shoulders pattern looks similar for front and back facing people. Center: An oval
shape is often mistaken for a frontal face. Right: Due to body symmetry it is hard even for
a person to determine if this is a left or a right leg.

provide the disambiguating signal. In our setup we use nearby consistent activations as a
source of context. In the examples on Figure 3.8 the presence of a frontal face activation at
the right location and scale is a strong indicator that the person is front-facing. The lack of
head-and-shoulders poselet or a pedestrian poselet is an indication that the middle example
is a false positive. The location of a pedestrian poselet can help disambiguate the left from
the right leg.

We refer to the score of a poselet activation based on its classifier only as q-score and
one enhanced by its consistent activations as Q-score. For each poselet activation i in the
training set we construct a context feature vector f of size the number of poselet types. The
value of fp is the maximum q-score of any activation of poselet type p that is consistent
with activation i (or zero if none). We train a linear SVM on the context feature vectors of
activations in the training set using their true and false positive labels. We then fit a logistic
to convert the SVM score into a probability. The result is what we call Q-score. Figure 3.9
shows an example of the effect our context classifier has on improving the activations and
Figure 3.10 shows ROC curves for various poselets on the PASCAL val09 set which has not
been used in training.

3.7 Combining poselet activations

Once we detect the poselet activations in the test image and enhance them using context, the
next logical step is to cluster them so that all activations that refer to the same object are in
the same cluster. Our initial approach in [5] is build upon the Max Margin Hough Transform
from [30] in order to group poselet activations to consistent people detections. This comes
with the assumption that the object has a stable central part and the relative position of
all other parts has very small variance – an assumption that is not satisfied for articulated
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Figure 3.9: The top activations of a poselet trained to find back facing people.Top row:
Sorted by q score. Bottom row: Sorted by Q score.The correct activations have a green
frame and the wrong ones have a red one. The Q-scores are computed using context to
disambiguate front-facing from back facing people so nearly all top examples are correct,
while the q-scores are based on the poselet classifier alone and result in 6/10 mistakes.

Figure 3.10: ROC curves of activations of three poselets on our validation dataset. Red
continuous lines use q-score and green dashed lines use Q-score. These performance im-
provements are representative for the rest of the poselets.
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objects, such as people. To this end we propose an alternative clustering algorithm:

Algorithm 2 Poselet clustering algorithm

Input: T > 0 Maximum number of hypothesis clusters
τ > 0 Clustering threshold
a : A set of poselet activations in the image sorted by decreasing Q-score

Output: M : a set of activation clusters
M1 ⇐ {a1}
for i = 2 to |a| do
k ← argmin

j
d(ai,Mj)

if d(ai,Mk) < τ then
Mk ←Mk ∪ ai {Append the poselet to a current cluster}

else if |M | < T then
M ←M ∪ {ai} {Start a new cluster}

end if
end for
return M

In the end the poselet activations are grouped into clusters each corresponding to an object
detection hypothesis. In addition some poselets with low scores that are inconsistent with
any clusters are marked as false positives and are discarded. The parameter T is a tradeoff
between speed and false positive rate. We set T = 100, i.e. we collect at most 100 hypothe-
ses from each image. We use approximate average linkage, i.e. d(ai,Mj) = Eak∈Mj

Dai,ak

where Di.j is the symmetrized KL-divergence (Equation 3.3). For performance, if cluster
Mj contains more than K activations, we sample a random set of K of them. We found
empirically that we can set K = 5 without affecting the accuracy.

Figure 3.11: Example of a detection cluster for a person. Left: The highest probability
activation creates the first cluster. Center: The second activation is compatible so it falls
in the same cluster. Right: The third activation is incompatible with the first two so it
forms a second cluster.
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This algorithm is a form of greedy clustering by considering the highest scored detections
first. Compared to other schemes such as spectral clustering or agglomerative clustering,
the proposed algorithm has computational advantages because it processes the most salient
information first. The algorithm runs in linear time. We do not spend compute cycles
measuring distances between low scoring detections, and the algorithm can be terminated at
any time with a good list of the most-salient-so-far hypothesis M . Furthermore, by starting
with the highest probability detections we are less likely to be mislead by false positives.
Example of the clustering algorithm in action is shown on Figure 3.11.

This algorithm returns a set of clusters of poselet activations in the test image. A cluster
of poselets is the output of the poselet detection algorithm and is the input to all poselet-
based high-level vision methods as described in Chapter 4.

3.8 Poselets beyond people

We extended the above algorithm for training and detection of poselets to all 20 visual
categories in the PASCAL challenge. The first challenge is deciding which keypoints to use.
This is fairly straightforward for other animal categories but becomes more complicated for
categories, such as a chair, a boat and an airplane, whose examples have large structural
variations. There are chairs with four legs or one stem and a wide base. Some chairs have
armrests, and others don’t. Military airplanes look very different from commercial ones, and
sail boats have little in common with cruise ships. We decided to split the categories into a
few common subcategories and provide separate keypoints for each subcategory. This allows
us to train separate poselets for the pointed front of a military airplane, the round tip of a
commercial airliner and the propeller blades of a propeller plane.

The second challenge is that some categories do not have a principal orientation, which
makes it difficult to assign keypoints in the reference frame of the object. For example, it
is clear what the front left leg is in the case of a horse, but what is the front left leg of a
table? Other categories have round parts and thus have no extrema points, such as the base
of a bottle or a potted plant. Our solution in these cases is to introduce view-dependent
keypoints. For example, we have a keypoint for the bottom left corner of a bottle, and we
define the front left leg of a table based on the current camera view.

With the exception of the person category, our keypoint locations are defined in 2D.
The absence of 3D information can cause certain ambiguities in configuration space. For
example, a front and a back view of a bicycle will have the same coordinates of most of
the keypoints (with the exception of the left/right handle which would switch places). Such
ambiguities would result in a poselet containing examples of front and back views of a bicycle;
something we certainly don’t want to allow. To prevent such scenarios we annotate the view
of our examples (front, left, right and back) and we disallow examples to match seeds of the
opposing view.

As mentioned in Section 3.1.1 for some categories we have disabled rotation when search-
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Class #Keypoints #Poselets Rot AR Training set
Aeroplane 16x3 200 Y 64x128 trainval10

Bicycle 11 150 N 64x128 trainval10
Bird 12x2 200 Y 32x32 trainval10
Boat 11x5 200 N 64x128 trainval10

Bottle 8 100 Y - trainval10
Bus 8 100 N 64x128, 64x256 trainval10
Car 14 100 N - trainval10
Cat 16 150 Y - trainval10

Chair 10 100 Y - trainval10
Cow 16 150 N 64x128 trainval10

Dining table 8 100 N - trainval10
Dog 16 150 Y - trainval10

Horse 19 100 Y - trainval07+trainval09
Motorbike 10 100 N 64x128 trainval10

Person 20 150 Y 128x64 H3D+train09
Potted plant 6 150 N - trainval10

Sheep 16 150 N - trainval10
Sofa 12 100 N 64x128, 64x256 trainval10
Train 7 100 N 64x128, 64x256 trainval10

TV monitor 8 100 N - trainval10

Table 3.1: Class-specific variations in the poselet training parameters.#Keypoints is the
number of keypoints, and the number of subcategories. # Poselets is the number of selected
poselets. Rot denotes whether we fit over rotation when finding training examples of a given
poselet. AR is class-specific poselet aspect ratios, in addition to the standard ones of 64x96,
64x64 and 96x64

ing for similar patches (Equation 3.1) as shown on Table 3.1. Lastly, the visual categories
vary widely in aspect ratios and using poselets of a fixed size and aspect ratio is suboptimal.
We extended the algorithm to support poselets of variable class-specific aspect ratios, as
well as trained different number of poselets for each category. The differences are listed on
Table 3.1. Examples of poselets from various categories are shown on Figures 3.12 and 3.13.
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Figure 3.12: Examples of poselets from various visual categories. The last column shows the
foreground probability mask.
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Figure 3.13: More examples of poselets from various visual categories.
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Chapter 4

Applications of Poselets

4.1 Introduction

The image of a person is a complex function of the camera view, the pose, the lighting con-
ditions, the clothes of the person and other variables. Changing just one of these parameters
in isolation can result in a very different image pattern. Poselets are effective in handling this
complexity because they decompose the camera view and pose from the appearance: each
poselet responds to a given part of the pose under a given viewpoint regardless of the ap-
pearance parameters. This decomposition of pose from appearance is essential for high-level
computer vision tasks because it allows us to treat pose and appearance separately. This
section gives an overview of how poselets help in several computer vision problems. The
next section describes in more detail the use of poselets in attribute classification. The input
for all of these problems is a cluster of poselet activations in the test image, as described in
Section 3.7.

4.2 Object Recognition with Poselets

The goal of object recognition is to detect instances of the object regardless of viewpoint,
pose and appearance. Poselets can be used almost ”out of the box” here: each cluster of
activations corresponds to a hypothesis. All we need to do is train a regression for estimating
the bounding box, and a classifier for scoring each cluster. We use the following steps:

1. Initial bounds prediction.

• For categories other than person: Each poselet in the cluster has an estimate
for the location of each side of the visible bounding box (xmin, ymin, xmax, ymax).
We take the weighted average of the predictions, weighting each activation by its
probability. We use the probability without context (i.e. qi) here. We include all
poselets within the cluster, as well as any poselet consistent with them. We then
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perform non-max suppression: we use agglomerative clustering to merge clusters
whose intersection-over-union of the initial bounds prediction is greater than 0.6.
We interpolate the bounds of the merged clusters.

• For person: Instead of predicting the person bounds we predict the location of
the torso, as the torso is a more stable region to predict. The torso is defined
with a center, size and angle. We predict the locations of the hips and shoulders
as the average prediction of each poselet activation, weighted by the score of the
activation. The center is the midpoint of the hips and shoulders and the size is
the length between the midpoint of the shoulders and the midpoint of the hips.
We use a fixed aspect ratio of 1.5. We then perform non-max suppression on
the torso bounds the same way as above, using agglomerative clustering to merge
torso predictions whose intersection over union is greater than 0.6. This results
in a refined set of clusters. We then predict the person bounds from the poselet
activations in a given cluster as above, i.e. we predict separately the value of
each of xmin, ymin, xmax, andymax as a weighted average of the predictions of each
poselet activation, weighting each by its probability qi.

2. Improving the predicted bounds. The above generative bounding box prediction is
not very accurate and we enhance it using a linear regression similar to [16]. Specifically
we transform [xmin ymin xmax ymax]T with a 4x4 regression matrix T . To train T , we
perform step 1 on the training set, we match the bounds predictions to the ground
truths using intersection over union overlap of 0.45 and collect the true positives. We
then fit T using the predicted bounds and the associated ground truth bounds via
linear regression.

3. Computing the score of a poselet cluster. We follow [5] to predict the score of the
poselet cluster, i.e., we train a linear discriminative classifier with positivity constraints
on its weights to predict the scores based on the context-adjusted scores (Qi) of the
activations within the cluster. For our positive examples we use detections on the
training set whose bounds intersection over union overlap is over 0.5. For negative
examples we use detections that do not intersect the truth or whose overlap is less
than 0.1. Our feature vector has dimensionality equal to the number of poselet types.
The feature value for each poselet type is the maximum of all activations of that poselet
type within the cluster.

We participated in the PASCAL person recognition competitions [13] for 2009 and 2010
and we also report results on the 2007 and 2008 datasets. In all datasets we are currently
the leading method among all methods competing in Competition 3 and Competition 4.
(Table 4.1)1. On Table 4.2 we show the effect of using context and the effect of varying the

1We did not participate in the 2007 and 2008 competitions. We computed the numbers for 2007 since
the test set is available. The numbers for 2008 came as a result of our submission to 2010.
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Dataset Poselets Second-best
VOC 2010 48.5% 47.5%
VOC 2009 48.6% 47.9%
VOC 2008 54.1% 43.1%
VOC 2007 46.9% 43.2%

Table 4.1: Average precision on the PASCAL competitions (best of comp 3 and comp 4)
on the person category. The second-best results were obtained with various releases of the
method by Felzenszwalb et al. [16].

Num. poselets no context (q) context (Q)
10 36.9% 37.8%
40 43.7% 44.3%
100 45.3% 45.6%
200 45.7% 46.9%

Table 4.2: AP on PASCAL VOC 2007 test set for the person category for various number
of poselets without and with context.

number of poselets. Table 4.3 shows our performance for other visual categories. Figure 4.1
shows some examples of detecting people.

4.3 Attribute Classification with Poselets

We have used poselets for the task of inferring attributes of people from a static image, such
as the gender, the hair style, the presence of a hat or glasses and the style of clothes. In this
problem the pose and camera viewpoint are latent parameters: for example, we would like
to detect the presence of glasses regardless of whether the person is in a frontal or a profile
view. However, the huge variability in appearance introduced by pose variation prevents us
from training a universal detector for glasses. Poselets are a natural way to address this
problem: we train attribute classifiers for each poselet type and combine them into a single
robust classifier. We are the first method to infer attributes for people under arbitrary pose
and viewpoint variations. We also report state-of-the-art results for our gender classifier.
This work is discussed in detail in Chapter 5.

4.4 Semantic Segmentation with Poselets

Semantic segmentation is the task of inferring which pixels in the image come from the
object of interest and which ones come from the background. Poselets are useful for this
task because if we know the pose and viewpoint at a given part of the object we can predict
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Category Detection AP Segmentation AP
background N/A 82.2%
aeroplane 33.2% 43.8%

bicycle 51.9% 23.7%
bird 8.5% 30.4%
boat 8.2% 22.2%

bottle 34.8% 45.7%
bus 39.0% 56.0%
car 48.8% 51.9%
cat 22.2% 30.4%

chair 9.2%
cow 20.6% 27.7%

dining table 6.9%
dog 18.5% 29.6%

horse 48.2% 42.8%
motorbike 44.1% 37.0%

person 48.5% 47.1%
potted plant 9.1% 15.1%

sheep 28.0% 35.1%
sofa 13.0% 23.0%
train 22.5% 37.7%

TV monitor 33.0% 36.5%

Table 4.3: Detection and segmentation results for poselets on PASCAL 2010, competitions
4 and 6. Our detection results were part of the competition. Our segmentation results are
obtained after the competition and are reported in [7]. The results shown in bold are the
ones on which our method is currently the leading one for the category.
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the foreground mask. We leverage the foreground probability masks associated with each
poselet (Figure 3.12). We combine our top-down prediction based on poselets with the
bottom-up segmentation engine of Maire et al. [28]. We use an optical flow method of
Brox and Malik [6] to align the mask to the underlying segmentation. On Table 4.3 we
show our segmentation results on the PASCAL VOC 2010 competition 6. We report the
best performance for person, chair, horse and sofa. Examples of our method are shown on
Figures 4.2, 4.3, and 4.4. Full details of our method are described in Brox, Bourdev, Maji
and Malik [7].

4.5 Pose Estimation with Poselets

Pose estimation is the task of inferring the articulation parameters of an object. In the case
of a person we would like to infer the joint locations, 3D skeleton, the torso or head angles.
For this task the appearance parameters, such as the clothes and the hair style are noise and
all the signal is in the pose parameters. Poselets are useful as they are trained to respond
to pose configurations regardless of appearance.

As we describe in Chapter 3 each poselet is trained to predict a spatial probability
distribution for the location of each keypoint. To test the ability of poselets to infer the
locations of individual keypoints, we created a simple keypoint predictor by taking the mean
of the (x,y) predictions of a given keypoint from all poselets within the same cluster. Each
poselet prediction is weighted according to the poselet probability and the variance in its
Gaussian prediction. We tested the predictions on the true positive poselet clusters of the
H3D test set. The results are shown on Figure 4.5. As expected, our prediction is best for
keypoints on the head where we have lots of poselets, deteriorates for predicting the shoulders
and hips, and it would deteriorate further in prediction of the outermost keypoints, such as
wrists and ankles, since their location variability is highest. Notice also that keypoints
along the axis of symmetry (the nose and the neck) are better predicted compared to other
keypoints (left/right shoulder, left/right eye). The reason is that due to axial symmetry
sometimes back-facing poselets fire on front-facing patterns and vice versa. This results in
swapping the predictions of the left and right keypoint, which has the effect of lowering the
prediction accuracy. We report these results in [5].

In general, we can use the cluster of poselet activations to predict the angle of the head
and the torso. Specifically, we constructed a feature vector consisting of the score of each
poselet type (or 0 if missing). We split the full circle into eight 45-degree pies and we trained
eight view-specific classifiers. We did the same for the head and for the torso. The results
are shown on Figure 4.6. On average we correctly predict the yaw of the head 62.1% of the
time and the yaw of the torso 61.7%. Our average error is 26.3◦ for the head and 23.4◦ for
the torso. More detail can be found in the work of Maji, Bourdev and Malik [29].
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Category Poselet AP
Phoning 49.6%

Playing an instrument 43.2%
Reading 27.7%

Riding a bike 83.7%
Riding a horse 89.4%

Running 85.6%
Taking a photo 31.0%

Using a computer 59.1%
Walking 67.9%

Table 4.4: Average precision on the PASCAL VOC 2010 action classification task. The
results are generated after the competition. Results in bold are the current best for the
category.

4.6 Action Classification with Poselets

We consider the task of inferring the action of a person from a static image. In this problem
there is signal both in the pose and, sometimes, in the appearance. Specifically, the pose
is very discriminative for actions, such as taking a picture, using a computer, walking, etc.
The appearance can be useful for actions which are typically performed in specific outfits,
such as biking and horse riding. The ability of poselets to decompose the pose from the
appearance plays a key role for action recognition.

We trained action classifiers for the 9 actions in the PASCAL 2010 action classification
competition. For each action we trained action-specific poselets by restricting the positive
examples to come only from images of the given action and by selecting a small subset of
the potential poselets based on their action-discrimination capabilities. Figure 4.7 shows
examples of action-specific poselets. Our full model takes into account the responses of
action-specific poselets, the responses of object detectors for horse, bicycle and TV monitor
in the vicinity, as well as context based on the predicted actions of other people in the image.
Our performance on the PASCAL 2010 action recognition dataset is shown on Table 4.4.
We report the best results on two categories: biking and riding a horse. More detail can be
found in the work of Maji, Bourdev and Malik [29].
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Figure 4.1: Detection examples. The proposed bounding box of each person is shown in red.
The highest probability poselet activation is shown in a cyan bounding box and a figure-
ground outline. Above each image we show three training examples from the poselet that
was activated.
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Figure 4.2: Examples of our person segmentation.

Figure 4.3: Examples of segmenting multiple categories.
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Figure 4.4: Segmentation examples from multiple visual categories.

Figure 4.5: Detection rate of some keypoints conditioned on true positive torso detection
on the H3D test set. We consider a detection as correct if it is within 0.2S of its annotated
location, where S is the 3D distance between the two shoulders.
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Figure 4.6: Error in predicting yaw across views.

Figure 4.7: Examples of poselets trained to recognize specific actions.
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Chapter 5

Attribute Classification with Poselets

In this chapter we explore the problem of attribute classification of people under arbitrary
viewpoints and we develop a method based on poselets.

5.1 Introduction

We have an impressive ability to reliably recognize the gender of people under arbitrary view-
point and articulation, even when presented with a cropped part of the image (Figure 5.1).
Clearly we don’t rely on the appearance of a single body part; gender can be inferred from
the hair style, body proportions, types of clothes and accessories. We use different cues
depending on the pose and viewpoint, and the same is true for other attributes, such as the
hair style, presence of glasses and types of clothes.

Let us consider how we might build a system for classifying gender and other attributes.
If we could somehow isolate image patches corresponding to the same body part from the
same viewpoint then attribute classification becomes much easier. If we are not able to
detect and align the parts well, however, the effect of nuisance variables, such as the pose,
viewpoint and localization will affect the feature vector much more than the relevant signal
(Figure 5.2). The visual cues associated with the attribute ”has glasses”, for example, are
very subtle and different for a person facing the camera vs. a person looking sideways. As
we show on Table 5.2, a generic classifier for has-glasses performs only slightly better than
chance when trained on the entire person, but works much better when trained on aligned
frontal faces.

Localizing body parts, however, is in itself a very hard problem, e.g. [18]. The PASCAL
2010 person layout challenge had only two contestants and the best AP for detecting hand
is just 10.4% and foot just 1.2%! Frontal face is an exception, which is why virtually all
state-of-the-art gender recognition approaches rely on carefully aligned frontal faces.

We develop an approach to solve this problem for gender as well as for other attributes,
such the hair style, presence of glasses or hat, and the style of clothes. Specifically, we decom-
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Figure 5.1: People can easily infer the gender based on the face, the hair style, the body
proportions and the types of clothes. A robust gender classifier should take into account all
such available cues.

pose the image into a set of parts, poselets [5], each capturing a salient pattern corresponding
to a given viewpoint and local pose, such as the one shown in Figure 5.2 (right). This decom-
position allows us to combine evidence from different parts of the body at different scales.
The activations of different poselets give us a robust distributed representation
of a person from which attributes can be inferred without explicitly localizing
different body parts.

Prior work on gender recognition has focused on high resolution frontal faces or pedes-
trians and requires a face detector and alignment modules. Not only do we not need such
modules, our method gracefully deals with profiles, back-facing people or even when the
face is occluded or at too low a resolution, because we leverage information at multiple
scales and aspects. Even though we use standard HOG and color features we outperform
a leading commercial gender identification system that relies on proprietary biometric anal-
ysis. Furthermore, the same mechanism allows us to handle not just gender but any other
attribute.

We illustrate our approach on the task of determining nine attributes of people – is-male,
has-hat, has-t-shirt, has-shorts, has-jeans, has-long-hair, has-glasses, has-long-sleeves, has-
long-pants. The training input is a set of images in which the people of interest are specified
via their visible bounds and the values of their attributes. We use a three layer feed-forward
network (Figure 5.4). In the first layer we predict the attribute value conditioned on each
poselet type, such as the gender given a frontal face. In the second layer we combine the
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Figure 5.2: The problem of determining the people wearing hats (top) vs. no hats (bottom)
is difficult in unconstrained setup (left). If we can detect and align parts from the same view
(right) the problem becomes much easier.

information from all such predictions (such as the gender given the face, the legs and the
full body) into a single attribute classification. In the third layer we leverage dependencies
between different attributes, such as the fact that gender is correlated with the presence of
long hair.

We also collected a new dataset for attribute classification of people in unconstrained
settings consisting of 8035 examples labelled with the nine attributes (Section 5.3). Although
attribute recognition of people has been studied for frontal faces [24] and pedestrians [8], our
dataset is significantly harder; it exhibits a large variation in viewpoint, pose, occlusion and
self-occlusion, close proximity to other people, variable resolution, etc. (Figure 5.3).

5.2 Related work

Prior research on attributes has generally followed two directions. One line of work has
used attributes as an intermediate representation layer with the goal of transfer learning
as well as describing properties of objects [25, 14]. Farhadi et al. propose a method for
localizing part-based attributes, such as a head or a wheel [15]. Recognition and localization
of low-level attributes in a generative framework has also been proposed by Ferrari and
Zisserman [19]. Joint learning of classes and attributes has been explored using Multiple
Instance Learning [46] and latent SVMs [48]. Automated discovery of attributes from text
and associated images has also been explored [19, 2, 47]. The key advantage of our method
is that our parts implicitly model the pose and camera view, which we believe results in
more powerful discrimination capabilities.
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A second line of work has focused on attributes of people. Gender recognition methods
using neural networks date back to the early 1990s [10, 21]. Support vector machines [32] and
AdaBoost classifiers on Haar features [39] have been proposed for gender and race recognition.
Kumar et al. propose using face attributes for the purpose of face recognition [24] as well
as visual search [23]. Gallagher and Chen have explored inferring gender and age from
visual features combined with names [20]. Gender, age and weight attributes have also been
successfully extracted from 3D motion capture data [41]. These approaches generally require
careful alignment of the data, and most of them apply to frontal faces only. We leverage the
full body under any articulation without the need for alignment.

Our solution is based on poselets, which have been used effectively for recognition and
segmentation of people [4], [5]. These problems are similar to ours, because the articula-
tion and camera views are also latent parameters when recognizing and segmenting people.
Thus, as we stated in Chapter 4, we can think of poselets as a general purpose engine for
decomposing the viewpoint and pose from the appearance.

5.3 The Attributes of People dataset

There are several existing datasets of attributes of people but we did not find any suitable
for the context in which our method is used. FaceTracer [23] uses 15000 faces and full body,
but provides only URLs to images and many of the images are no longer available. Other
datasets, such as PubFig [24] and the Labeled Faces in the Wild [22] include only frontal
faces.

We propose a new dataset of 8035 images, each centered at a full body of a person. The
images are collected from the H3D [5] dataset and the PASCAL VOC 2010 [12] training
and validation datasets for the person category, but instead of the low-resolution versions
used in PASCAL, we collected the full resolution equivalents on Flickr. For each person we
cropped the high resolution image around that person, leaving sufficient background around
the visible bounds and scaled it so the distance between hips and shoulders is 200 pixels.
For each such image we provide the visible bounds of the person in the center and a list of
bounds of all other people in the background.

We used Amazon Mechanical Turk1 to provide labels for all attributes on all annotations
by five independent annotators. A label was considered as ground truth if at least 4 of the 5
annotators agreed on the value of the label. We discarded 501 annotations in which less than
two attributes were specified as ground truths which left us with 8035 images. Table 5.1
shows the distribution of labels. We split the images into 2003 training, 2010 validation and
4022 test images by ensuring that no cropped images of different set come from the same
source image and by maintaining a balanced distribution of the H3D and PASCAL images
in each set. Figure 5.3 shows 50 examples drawn at random from our test set.

1http://www.mturk.com
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Figure 5.3: Fifty images drawn at random from our test set and slightly cropped to the
same aspect ratio. Each image is centered at a target person. Our dataset is challenging
as it has a large variability of viewpoints, poses, and occlusions. In some cases people are
close to each other which makes identifying the correct person challenging as well. To aid
identification we provide the visible bounds of the target person, as well as the bounds of all
other people in the image.

Attribute True False
is male 3395 2365
has hat 1096 5532

has t-shirt 1019 3350
has shorts 477 2020
has jeans 771 1612

Attribute True False
long hair 1456 3361
glasses 1238 4083

long sleeves 3045 3099
long pants 2020 760

Table 5.1: Number of positive and negative labels for our attributes.



CHAPTER 5. ATTRIBUTE CLASSIFICATION WITH POSELETS 46

LONG 
PANTS?

HAS HAT?IS MALE?

0

5

10

15

20

25

0

5

10

15

20

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

LONG 
PANTS?

HAS HAT?IS MALE?

qi

φi

rj
i

sj

Sj

Poselets
(Section 5.5)

Features
(Section 5.6)

Poselet-level
attribute classifiers

(Section 5.7.1)

Person-level
attribute classifiers

(Section 5.7.2)

Context-level
attribute classifiers

(Section 5.7.3)

... .........

... ...

...

...

IS 
MALE?

LONG
PANTS?

HAS
HAT?

IS 
MALE?

LONG
PANTS?

HAS
HAT?

IS 
MALE?

LONG
PANTS?

HAS
HAT?

IS 
MALE?

LONG
PANTS?

HAS
HAT?

Figure 5.4: Overview of our algorithm at test time. Poselets are detected on the test im-
age; detection scores qi are computed and features φi are extracted. Poselet-level attribute
classifiers rij are evaluated for every poselet activation i and attribute j (unless the attribute
is part-specific and the poselet does not cover the part, such as the has-hat for three of the
four shown poselets). A person-level attribute classifier sj for every attribute combines the
feedback of all poselet-level classifiers. A context-level classifier Sj for the attribute takes
into account predictions of the other attributes. This picture uses 4 poselets and 3 attributes,
but our system uses 1200 poselets and 9 attributes.

5.4 Algorithm Overview

Our algorithm at test time is shown on Figure 5.4 and can be summarized as follows:

Step 1 We detect the poselets on the test image and determine which ones are true positives
referring to the target person (Section 5.5). Let qi denote the probability of poselet type i.
qi is the score of the poselet classifier transformed by a logistic, with zero mean, or 0 if the
poselet was not detected.

Step 2 For each poselet type i we extract a feature vector φi from the image patch of the
activation, as described in Section 5.6. The feature vector consists of HOG cells at three
scales, a color histogram and skin-mask features.

Step 3 For each poselet type i and each attribute j we evaluate a classifier rij for attribute
j conditioned on the poselet i. We call these the poselet-level attribute classifiers. We use a
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linear SVM followed by a logistic g:

rij = g(wi
j

T
φi + bij) (5.1)

where wi
j and bij are the weight vector and the bias term of the SVM. These classifiers

attempt to determine the presence of an attribute from a given part of the person under a
given viewpoint, such as the has-hat classifier for a frontal face shown on Figure 5.2.

Step 4 We zero-center the outputs of the poselet-level attribute classifiers, modulate them
by the poselet detection probabilities and we use them as an input to a second-level classifier
for each attribute j, called a person-level attribute classifier, whose goal is to combine the
evidence from all body parts. It emphasizes poselets from viewpoints that are more frequent
and more discriminative. It is also a linear classifier with a logistic g:

ψi
j = qi(rij − 0.5) (5.2)

sj = g(w′j
T
ψj + b′j) (5.3)

Step 5 Finally, for each attribute j, we evaluate a third-level classifier which we call the
context-level attribute classifier. Its feature vector is the scores of all person-level classifiers
for all attributes, sj. This classifier exploits the correlations between the attributes, such
as gender vs. the presence of a skirt, or short-sleeves vs. short-pants. We use an SVM
with quadratic kernel which we found empirically to work best. We denote the score of this
classifier with Sj, which is the output of our algorithm.

5.5 Training and using poselets

We trained poselets as described in Chapter 3. For each poselet, during training, we build a
soft mask for the probability of each body component (such as hair, face, upper clothes, lower
clothes, etc) at each location within the normalized poselet patch (Figure 5.5) using body
component annotations on the H3D dataset (Chapter 2). We did not use poselet selection to
reduce the number of poselets; we used all 1200 poselets. In addition we did not use context
(Section 3.6) for this problem. After clustering the activations (Section 3.7) we predicted
the hypothesis bounding box as in the detection task (Section 4.2).

We now need to decide which cluster of poselets refers to the person in the center of
the image. This is not a trivial problem and simply picking the bounding box closest to
the center of the image is not always correct because sometimes people are close to each
other and their visible bounds largely overlap. In addition some clusters may refer to false
positive detections. We found that it is better to find the optimally global assignment of all
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Figure 5.5: Left:Examples of a poselet. Right: The poselet soft mask for the hair, face and
upper clothes.

Figure 5.6: Example of matching detected bounds to truth bounds. This image is centered
at the woman and the man behind her is part of the background. The thick rectangles
are the truth bounds and the thin ones are the detected bounds. The colors indicate the
assignment. The goal is to find which detected bounds corresponds to the woman. A simple
rule, such as ”the most central one” or ”the one with the highest score” does not aways work
well. We use the Hungarian algorithm to provide optimal assignment.
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hypotheses to all truth bounding boxes by preferring to assign a bounding box to a given
truth if its intersection over union is high, and by giving preference to hypotheses with higher
scores, which are less likely to be false positives. Figure 5.6 shows an example where visible
bounds overlap significantly and using the strongest or the one nearest the center results in
assigning to the wrong person. We formulate this problem as finding the maximum flow in
a bipartite graph and we used the Hungarian algorithm to find a solution. Once we do the
matching, we associate the poselets with the cluster matched to the ground truth bounds
and discard all other poselet activations as false positives or belonging to other people. The
result is a set of poselet activations qi that refer to the foreground person.

5.6 Poselet-level features φi

In this section we describe our poselet-level features φi, which consist of HOG features, color
histogram and skin-specific features.

For the HOG features we use the same parameters as described in [11]. In addition to the
8x8 cells we extract HOG at two coarser levels - 16x16 and 32x32. Depending on the patch
dimensions this feature is of size between 2124 and 4644. The color histogram is constructed
with 10 bins in each of the H, S and B dimensions.

For the skin-specific features we trained a skin classifier, which is a GMM with 5 com-
ponents fit from the LAB-transformed patches of skin collected from various skin tones and
illuminations. We use three skin features: hands-skin, legs-skin and neck-skin. Each feature
is the fraction of skin pixels in the corresponding part. Figure 5.7 describes how the feature
is computed using the hand-skin feature of an upper-body-torso poselet as an example.

5.7 Classifiers

5.7.1 Poselet-level attribute classifier rij

We train a separate classifier for each of the 1200 poselet types i and for each attribute j.
We used the 2003 training images for training these classifiers.

We construct a feature vector from all activations of poselet i on the training set. The
label of a given activation is the label associated with the ground truth to which the poselet
activation is assigned. We discard any activations on people that don’t have a label for the
given attribute. Figure 5.2(right) shows instances of positive (top row) and negative (bottom
row) examples for the frontal face poselet and the ”has-hat” attribute.

Some attributes have associated parts and poselets in which these parts don’t appear are
excluded from training of the attribute. For example, as shown on Figure 5.4 it doesn’t make
sense to use a legs poselet to train the ”has-hat” attribute.2 To determine if a poselet covers

2Poselets away from the useful part can sometimes be effective in training the part attribute. For example,
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Figure 5.7: Computing skin-specific features. The skintone classifier is applied to the poselet
activation patch (A) to obtain the skintone probability mask (B). The poselet part soft mask
(C), in this case, a mask for the hands, is used to modulate the skintone mask and the result
is shown in (D). While for this poselet the positions of the hands vary, as evidenced by
the widespread hands mask, we are still able to exclude most non-hand skin areas. The
hand-skin feature is the fraction of skin pixels in the modulated mask (D). This feature is
especially useful for determining if a person wears short or long sleeves.

a given part, we check to see if its mask (Figure 5.5) has presence of that part. This spatial
selection reduces the dimensionality of our classifiers and the opportunity for overfitting and
we found that it improves performance.

Our classifiers are linear SVMs trained with weighted examples. The weight of each
training example is the probability of the corresponding poselet activation qi.

5.7.2 Person-level attribute classifier sj

The person-level attribute classifier for attribute j combines all poselet-level classifiers for
the given attribute. The feature vector has one dimension for each poselet type. Our features
are zero-centered responses of the poselet-level attribute classifiers, see Equation 5.2. Our
classifier is similar to a linear SVM, except we impose positivity constraints on the weights.
The positivity constraints restrict the solution space to the correct half-space. A negative
weight of a classifier would mean that the SVM takes the opposite of the classifier’s advice.
This could only happen due to overfitting so we prevent it explicitly. Since the input of
the classifier is trained on the training set, we use the 2010 validation images to train the
person-level attribute classifier.

a leg poselet can be trained for the ”has-long-sleeves” attribute, because short pants are correlated with short
sleeves. However we leverage the correlations between attributes in a later level of our hierarchy.
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5.7.3 Context-level attribute classifier Sj

There are strong correlations among various attributes. Long hair is much more common in
women than in men; when people wear short pants they also tend to wear short sleeves, etc.
We would like to adjust each attribute based on the values of the others. This is especially
helpful when the direct evidence for the attribute is non-salient.

To take advantage of the correlations among attributes we train an SVM with a quadratic
kernel for each attribute. The features are the scores of all person-level attribute classifiers
for a given person. We trained the context-level classifier on the training + validation sets.

5.8 Experimental results

The highest/lowest scoring examples for each attribute on the test set are shown on Fig-
ure 5.8. Our system performs very well, correctly classifying 103 of the top 108 examples
across attributes. The most confused examples are on Figure 5.9. The confusions are often
due to unusual examples, such as men with long hair, errors in the ground truths, severe
occlusion and assignment to the wrong person.

5.8.1 Performance vs. baselines

To validate the design choices of our approach we tested the effect of disabling portions of
our model. Specifically, we measured the effect of disabling the skin features and the context
classifier. The results are shown on Table 5.2, columns 7-9. As expected, skin features are
essential for clothes-style attributes (the bottom five on Table 5.2) and without skin their
mean AP drops from 63.18 to 55.10. The other attributes, such as gender and hairstyle
are largely unaffected by skin. The context classifiers help on seven of the attributes and
decrease performance on two, boosting the overall mean AP from 61.5 to 65.2.

Our baseline method uses Canny-modulated Histogram of Oriented Gradients [3] with
Spatial Pyramid Matching kernel [26] which is effective for image classification in Caltech-
101 as well as gender classification on MIT pedestrians [9]. The results of training it on
the full bounds of the person are in column 6 of Table 5.2. We handily outperform SPM
across all attributes with a mean AP of 65.18 vs. 45.91 for the SPM. We believe this is
partly due to the fact that the generic spatial model used in the SPM is insufficient and
the implicit pose-specific alignment provided by the poselets is necessary. Our examples
have large degree of articulation and a generic classifier would suffer from localization errors,
especially for location-sensitive attributes such as has-glasses. To help SPM with localization
we extracted higher resolution views of the people, zoomed on the head, upper body and
lower body (Figure 5.10). Columns 3-5 on Table 5.2 show the results of using an SPM trained
on each of the zoomed views. As expected, the head zoom improves detection of gender,
hairstyle, presence of glasses and a hat. However, even if we used the best view for each
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Figure 5.8: The six highest and lowest scoring examples of each attribute on our test set.
Of the 108 examples, five are classified incorrectly and marked with an X in the upper right
corner. Three of them are women wearing hats misclassified as men. The gender attribute
is the only one negatively affected by the context classifier and the effect applies only for the
lowest recall mode, shown here.
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Figure 5.9: Examples of most confused attributes. Many of the most confused males have
long hair and the most confused females hide their hair under a hat. Results are affected by
incorrect ground truth labels (has t-shirt, has-shorts), occlusion (has-jeans), and confusion
with another person (has-shorts, not has-long-pants).
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Figure 5.10: To help with localization, we provide our baselines the full bounds (left), as
well as zoomed and aligned views of the head, upper body and lower body.

attribute, we would get a mean AP of 51.87, which, despite the extra supervision, remains
substantially lower than our AP of 65.18.

5.8.2 Performance from different viewpoints

As the examples on Figure 5.8 show, the classifiers are most confident for people facing
the camera. To test the robustness of our method to different viewpoints we partitioned
the test set into three partitions – frontal, profile and back-facing people and we tested the
performance for each view. To automatically partition the data we made use of the keypoint
annotations that come with our images. Specifically, images for which both eyes are present
are treated as frontal; if only one eye is present the image is treated as a profile, and if no
eyes are present, and the left shoulder is to the left of the right shoulder we assign the image
to the back-facing category. Approximately 61% of our test data consists of frontal images,
18% is profile images and 11% is back-facing people. Around 9% of the data did not fall into
any of these categories. In some cases this is due to missing annotation data, and in other
cases the head is not visible. Table 5.3 shows the average precision of the attributes on all
the data and on each partition. As expected, performance is highest for frontal examples,
followed by back-facing and then profile examples.

5.8.3 Optimal places to look for an attribute

It is not obvious exactly which part of the image is most discriminative for a given attribute.
Consider the attribute has-long-hair. Clearly we should look at the face, but what is the
optimal zoom level and pose? What if the person is in a profile or back-facing view? Our
method automatically determines the optimal location, scale and viewpoint to look for ev-
idence for a given attribute. This is a function of both the frequency of the given pose in
the training set and the ease of discrimination given the pose. Specifically, the person-level
classifier ranks each poselet type according to its predictive power. Figure 5.12 shows the
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Attribute(1) Freq(2) Spatial Pyramid Match Our Method
Head(3) Lower(4) Upper(5) BBox(6) No ctxt(7) No skin(8) Full(9)

is male 59.3 74.9 63.9 71.3 68.1 82.9 82.5 82.4
has long hair 30.0 60.1 34.0 45.2 40.0 70.0 73.2 72.5
has glasses 22.0 33.4 22.6 25.5 25.9 48.9 56.1 55.6

has hat 16.6 53.0 24.3 32.3 35.3 53.7 60.3 60.1
has t-shirt 23.5 32.2 25.4 30.0 30.6 43.0 48.4 51.2

has long sleeves 49.0 53.4 52.1 56.6 58.0 74.3 66.3 74.2
has shorts 17.9 22.9 24.8 22.9 31.4 39.2 33.0 45.5
has jeans 33.8 38.5 38.5 34.6 39.5 53.3 42.8 54.7
long pants 74.7 79.9 80.4 76.9 84.3 87.8 85.0 90.3
Mean AP 36.31 49.81 40.66 43.94 45.91 61.46 60.84 65.18

Table 5.2: Average precision of baselines relative to our model. Freq is the label frequency.
We trained separate SPM models on the head (Head), lower body (Lower), upper body
(Upper) and full bounding box (BBox) as shown on Figure 5.10. We tested our method
by disabling the skin features (No skin), the context classifiers (No ctxt) and on the full
system (Full).

Attribute All Frontal Profile Back
is male 82.4 82.9 82.9 83.2

has long hair 72.5 81.3 31.3 47.2
has glasses 55.6 59.8 33.9 18.8

has hat 60.1 66.4 54.8 41.9
has long sleeves 74.2 76.1 70.6 75.1

has t-shirt 51.2 55.7 43.3 46.7
has long pants 90.3 89.9 92.9 94.2

has jeans 54.7 53.0 46.9 70.0
has shorts 45.5 47.8 48.6 45.3
Mean AP 65.18 68.11 56.12 58.05

Num. examples 4022 2449 736 459

Table 5.3: Average precision for the attributes using all test annotations as well as using
frontal-only, profile-only and back facing-only ones. The has-glasses attribute is most affected
by the head orientation, and it drops to chance level for the back-facing case.
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Figure 5.11: Precision-recall curves of the attribute classifiers on the test set. Our full result
(column 9 in Table 5.2) is shown in thick green. Our performance without context classifiers
(column 7) is shown in red; the SPM using the optimal view per attribute (max of columns
3-6) is shown in blue and the frequency of the label (column 2) is the dashed black horizontal
line.
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Figure 5.12: Our algorithm automatically determines the optimal poses and viewpoints to
look for evidence of a given attribute. First row: The top poselets for is-male. Second
row: The top poselets for has-long-hair. Third row: The top poselets for has-glasses.
These three attributes require progressively higher zoom, which is reflected in the choice of
poselets. The poselets are drawn by averaging their top ten training examples.

top five poselets used for determining the gender, hair length and presence of glasses. Since
more than half of the people in our training set are facing the camera, and frontal view is
usually more discriminative, the top poselets all come from frontal view.

5.8.4 Gender recognition performance

Comparison with other methods is challenging because the vast majority of person-specific
attribute classification methods operate on frontal faces only [24, 32, 39]. If we applied our
method on their datasets, our three-level hierarchy would reduce to a single frontal poselet
and the comparison will reduce to the effectiveness of HOG features for gender classification,
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a problem that is interesting but not directly relevant to our work3. In addition, other
methods use different attributes, with the exception of gender.

Fortunately we have access to the Cognitec face recognizer, which is the winner of FRVT
2002 and one of the leading commercial face recognizers according to MBE 2010, the latest
NIST test4. Cognitec can also report gender. As with other methods, it operates on frontal
faces only. The Cognitec API does not allow for training of gender, so we could not train
it on our training set. For optimal performance, we applied the engine on the zoomed head
views (Figure 5.10b). Cognitec failed to find the face in 38.0% of the images (not all of
them have frontal faces) and it failed to predict gender of another 20.0%. If we use mean
score for the missing predictions we get AP of 75.0% for Cognitec vs. our AP of 82.4%. The
precision-recall curve is shown on Figure 5.14. If we restrict the test to the faces for which
Cognitec predicts gender, we get AP of 83.72% for Cognitec and 83.74% for our method,
essentially equal, even though we aid Cognitec by providing a zoomed centered view of the
head. Note that we use simple HOG features and linear SVMs and Cognitec uses careful
alignment and advanced proprietary biometric analysis. We believe that our method benefits
from the power of combining many view-dependent poselet classifiers.

We don’t have access to other leading methods, such as [24], but we can give an upper
bound to their performance since they all require frontal faces. In our dataset 60.9% of the
faces are frontal. If other methods use perfect face detector, perfect alignment and perfect
recognition for frontal faces and perform at chance level for other cases, their AP would be
60.9*1 + 39.1*0.5 = 80.5 vs. our AP of 82.4.

5.8.5 Comparisons to human visual system

Are the cues used by humans similar to the ones exploited by our system? To help answer
this question we conducted an experiment using 10 representative poselets chosen to cover
various parts of the body at various zoom levels. For each poselet we picked 100 examples, 50
male and 50 female. We flashed a random poselet example for an average of 200ms followed
by a random image and asked each of the 8 subjects to immediately choose the gender of the
example. We then sorted the 10 poselets using their mean AP averaged over all subjects,
and we also sorted them according to their AP of discriminating gender in our system. The
results are shown on Figure 5.13. The figure shows that there is a strong correlation between
poselets preferred by humans and those preferred by our system.

5.9 Describing people with poselets

We can easily combine the attribute predictions that have high confidence values to generate
complete descriptions of the person. Some of the better predictions are shown on Figure 5.15.

3Our skin features are only useful for attributes not visible from the frontal face
4http://www.cognitec-systems.de/FaceVACS-Performance.23.0.html
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Figure 5.13: The poselets that performed best (left) to worst (right) for people (top row)
and the computer algorithm (bottom).

Figure 5.14: Precision-recall curves on gender recognition using our full method (AP=82.4),
our method without context classifiers (AP=82.9) and Cognitec (AP=75.0).
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Figure 5.15: We combine the attributes with higher confidence obtained for a given person
into complete descriptions.
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5.10 Discussion

We are the first to address an important but challenging problem with many practical appli-
cations - attribute classification of people ”in the wild”. Our solution is simple and effective.
It is robust to partial occlusion, articulation and camera view. It draws cues from any part
of the body at any scale and it leverages the power of alignment without explicitly inferring
the pose of the person. While we have demonstrated the technique using nine attributes
of people, it trivially extends to other attributes and other visual categories. We provide a
large dataset of 8035 people annotated with 9 attributes, which we hope will inspire others
to follow with better methods.
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Chapter 6

Conclusion

No single method currently dominates all high-level computer vision problems. Depend-
ing on the task, the dataset the currently leading methods could be based on a Latent SVM,
Spatial Pyramid Matching, Multiple Kernel Learning, or others, and are sometimes custom-
designed for the dataset. We propose a single approach that, almost out-of-the-box, applies
to a variety of problems and often achieves state-of-the-art performance.

Our approach can be thought of as a feed-forward network. The neurons on the first layer
are poselet classifiers operating on the HOG features of the image and the neurons on the
second level are context-enhanced poselets. Our choice of linear SVMs followed by logistic
classifiers makes our setup equivalent to a standard multi-layer neural network. Our pose
and action classifiers essentially add a third layer to the network. Our attribute classifiers
add a few layers on the network – one layer of aspect-specific attribute classifiers, followed
by a layer of aspect-independent classifiers, followed by a layer of context-enhanced aspect-
independent attribute classifiers.

Our system is a hierarchy in which every layer is more abstract and has more invariance
than the previous one. It starts with simple gradient orientations (the HOG features),
followed by local pattern recognizers that don’t rely on context and it ends with nodes that
detect the gender of a person or her current action independent of her pose and camera
viewpoint.

There is one important difference from other neural networks: we don’t rely on back-
propagation for training. Instead we train each node in the hierarchy in a supervised manner,
starting from the bottom layer. This supervision at every level means that training is simple,
efficient and there is no danger of getting stuck in a local minima. Moreover, the system is
not a black box: every node has associated semantics that can be described with words, such
as ”probability of back-view of a person’s hand next to a hip” or ”probability of long hair
given a left-profile view of the head and shoulders”. It is easy to measure performance, look
at failure cases and visualize the output of every node. Semi-supervised and unsupervised
methods have been the subject of much attention in computer vision. In this thesis we argue
for the opposite: extra supervision is good. It makes the problem easier, allows us to train
better classifiers and, with the rise of crowdsourcing, is scalable and inexpensive.
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