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INTRODUCTION

Although machine learning (ML)-based clinical decision support has seen some successful 

implementations in radiology1,2 and ophthalmology,3,4 its overall presence in health care 

is modest when compared with its potential. This underutilization remains particularly true 

in the intensive care unit (ICU). A major hurdle to the widespread deployment of ML 

models has been their inconsistent performance as a result of several factors, including 

hospital-dependent operating procedures, patient demographics, and missing data.5–7 These 

factors all contribute to data heterogeneity, so an ML prediction model (herein termed 

“ML model” or “model”) trained on one dataset may exhibit degradation in performance 

when deployed on another,8 resulting in inadequate generalizability. However, as noted 

by Futoma and colleagues, the colloquial use of the term generalizability in clinical ML 

literature is broad and not well-defined.9 For clinical applications of ML models, a published 

hierarchy10 describes it as a set of rules that may apply to internal, temporal, and external 

applications relative to the original training dataset. An internal application refers to using 

an ML model to the same patient cohort on which it was trained (eg, the same dataset at 

the same hospital). A temporal application denotes using this model at the same location but 

across a different time period. An external application refers to using this model at a separate 

location during any time period. The ideal model will be able to demonstrate similar levels 

of performance under any application, notably external ones.11–14 This makes sense—it is 
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essential to verify that a model for clinical use can provide similar results for any group of 

patients, especially those it was not explicitly trained on.9 Yet due to the current nature of 

ML and statistics, external generalizability approaches a limit as the applicable population 

grows because of increasing variation in workflow practices, point-of-care measurement 

devices, and population characteristics. As such, the current literature suggests that it is 

infeasible to develop a single universal prediction model. Therefore, our focus should shift 

toward more clearly defining the “conditions for use” of a model while improving its 

external generalizability within the intended use population. These “conditions for use” are 

ideally broad enough so that a prediction model can be impactful for as many patients as 

possible while minding the aforementioned limitations.

Patient-focused clinical predictive modeling can be classified as diagnostic versus 

prognostic.15 Diagnostic tasks rely on a patient’s “true state,” which are typically defined 

by proxy criteria and construct via laboratory values, imaging, and physical symptoms, 

among others, to predict a clinical development (eg, sepsis). Prognostic tasks rely on 

the ordered tests and their results to quantify the probability of certain patient-centered 

outcomes (such as in-hospital mortality).16 Both tasks have clinical utility, albeit at varying 

levels. Early diagnostic tasks may be able to assist clinicians administer timely interventions 

for a developing condition (eg, early and appropriate antibiotics for sepsis). Within the 

same context, prognostic tasks may help administrators optimize resource allocation for 

patients who are most likely to decompensate or are at risk for other adverse outcomes, 

including mortality.15,17–19 In either case, existing studies investigate such tasks in critical 

care environments because the nature of its routine patient monitoring makes for data-rich 

electronic health records (EHRs) from which models can learn and make predictions.

In this review article, the authors investigate the current challenges of integrating ML 

models into critical care, using studies centered on early sepsis prediction as examples. 

The authors (1) explore clinical challenges with syndrome-based conditions, which are 

commonly diagnosed in the ICU; (2) clarify data science terminology surrounding these 

studies; (3) examine major barriers to generalizability; and (4) illustrate how current-day ML 

models address such obstacles via different methods of learning. The authors conclude with 

a discussion on areas for future research.

CHALLENGES WITH SYNDROMES

A syndrome can be defined as a recognizable complex of findings and symptoms that 

indicate a specific condition with a poorly understood cause.20 A disease refers to a 

condition in which a causative agent or process results in a readily identifiable clinical 

and biological manifestation. Yet, with increased research and study, a condition that 

was formerly best described as a syndrome can be referred to as a disease. Indeed, 

Kawasaki disease was initially known as mucocutaneous lymph node syndrome because 

the underlying pathophysiology was uncertain and clinical manifestations were varied.21 An 

increased understanding of the disease process later described clearly identifiable diagnostic 

features and treatment responses.

Although this distinction between a disease and syndrome is easily understood by 

physicians, syndromic conditions can prove challenging for ML models to identify and 

Le et al. Page 2

Crit Care Clin. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predict. This is particularly true in the ICU because a multitude of prevalent syndromes (ie, 

sepsis and the acute respiratory distress syndrome) share similar physiologic and biological 

derangements. For example, a patient with decompensated heart failure can show vital 

signs and laboratory findings that mimic septic shock. In addition, critically ill patients 

are frequently comorbid for these syndromes. Clinicians use contextual clues, historical 

components, and physical examination findings to help differentiate between possibilities, 

but contemporary ML models struggle because historical context and examination findings 

are oftentimes not readily available14 for such rapidly evolving patients. Complicating this 

further are multiple definitions for any given syndrome in sepsis, the condition can either be 

defined by Sepsis-3,22 Severe Sepsis and Septic Shock Management Bundle (SEP-1),23 or 

the Center for Disease Control and Prevention (CDC)24,25 criteria.

CLARIFYING TERMS

Before we begin our review on generalizability and related ML studies, it is necessary 

to clarify terms and concepts that are commonly used in data science and relevant to 

its application in critically ill patients. Three recently published ML models, Artificial 

Intelligence Sepsis Expert (AISE),11,12 Weight Uncertainty Propagation and Episodic 

Representation Replay (WUPERR),13 and COnformal Multidimensional Prediction Of 

SEpsis Risk (COMPOSER),14 and their respective studies are used as several examples 

throughout this article. Table 1 summarizes definitions and examples of relevant vernacular.

Missingness describes the presence of missing data and how it is handled, reported. This 

can negatively impact the predictive accuracy of a model and decrease its clinical utility.8 

However, not all missing data are created equally. There exist three primary classifications 

of missing data26: Missing Completely At Random (MCAR), Missing At Random (MAR), 

and Missing Not At Random (MNAR). MCAR refers to randomly missing data that does 

not have any distinguishable pattern to it.27–29 MAR refers to randomly missing data that 

may be associated with an underlying pattern.27,30,31 For instance, in a hypothetical case 

where missing Glasgow Coma Scores (GCS) among trauma patients were more likely to be 

observed for older patients,32 the mechanism is MAR. MNAR refers to the likelihood of a 

missing value to seem as a function of the value itself27—following the same hypothetical, 

the mechanism is MNAR if a missing GCS is known to be associated with mild brain 

trauma.32 For prediction models, the MNAR mechanism is typically assumed because they 

use longitudinal data collection, where patterns of missingness are more likely to present 

(eg, healthy patients routinely have fewer tests as they are not indicated). The differences in 

how data go missing are key to understanding their handling,27,31 which are more deeply 

explored in the section Approaches to Data Missingness.

At its core, ML consists of a set of parameters that are initialized with random weights. 

Training then takes place, where the model is exposed to a development cohort (eg, 

retrospective clinical data at Hospital A). This induces key changes in the weights of 

different rules. The idea is to give more bearing on the final output to rules that are 

mathematically determined to be “more important.” Prediction error (or the difference 

between the predicted outcome and the true patient outcome) will tell the model when it 

produces a correct or incorrect output, prompting changes to these rule weights, a process 
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known as supervised learning.33 As it is exposed to a validation cohort (eg, retrospective 

clinical data at Hospital B), performance usually degrades because differences in the 

underlying data often necessitates different weights being given to different rules; this is 

the basis of the barriers to generalizability.5

ONE SIZE DOES NOT FIT ALL: THE GENERALIZABILITY PROBLEM

Generalizability was previously described as the ability for an ML model to perform 

similarly well on both development and validation cohorts within a well-defined intended 

use population. It would ideally maintain this high level of performance as it is applied to 

additional institutions that fit its “conditions for use.” However, in order to do so, we must 

acknowledge the challenges it faces at different locales. These include explicit differences 

between institutions and missing clinical data. The following sections detail these problems 

in addition to potential methods that ML models might use to overcome them.

Heterogeneity in Health Care—Despite all its regulations, health care remains an area 

of great heterogeneity at various levels. Shashikumar and colleagues describe these levels 

in a recent Behind the Paper5 on Nature Portfolio Health Community, starting with EHRs: 

different EHR vendors currently encode information in non-standardized formats which 

reduce their interoperability. The data are recorded using clinical instruments from different 

vendors which often use proprietary data processing methods with varying necessity 

for clinician verification. Local guidelines vary in their frequency for specific clinical 

measurements to be taken, but this should not be confused with the predictive value 

that missing data itself can offer (see Approaches to Data Missingness). For diagnostic 

records, differences in clinical inclusion and exclusion criteria between institutions can 

introduce label noise and give way to label bias.34 Shifting criteria also lay the foundation 

for the difficulties in managing syndrome-based conditions, which were discussed in 

Challenges with syndromes. Temporal changes in data might occur as care and monitoring 

processes transform, including the disruption of existing clinical workflows resulting 

from implementing ML models. Taken together, these “systemic factors” all increase the 

heterogeneity of a clinical dataset which can confound predictive accuracy of a model 

not trained to recognize and correct for them (see Machine learning-based solutions, for 

an introduction to such methods). Regular updates to models are necessary as institutions 

evolve in these respects.

Differences in patient demographics between institutions can further add to the previously 

described data heterogeneity. However, this aspect is more difficult to handle due to 

the simultaneous potential for demographics to confound and improve impact predictive 

accuracy. Consider the following example, recent facial recognition35 and hiring and 

recruitment36 models were found to unintentionally perpetuate discriminatory harm as a 

result from overrepresentation of specific racial and ethnic groups during development and 

validation. Although the ML models themselves were independent of any explicit racial or 

ethnic bias, a biased data distribution contributed to the skewed outcomes37; this is one of 

many identified mechanisms behind “unfair” models.34 In health care, large datasets may 

not be representative of traditionally underrepresented minorities,38 which may similarly 

lead to bias. However, a demographic-specific biological susceptibility/response might also 
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contribute to unequal distributions of patients,39,40 and this could help improve prediction. 

Recent data evaluating clinical use of ML models suggest that a significant number of them 

did not have any evaluation of racial bias,41 as there is currently no standardized process 

to do so. Of the exceptions, studies designed to predict mortality or sepsis in critically ill 

patients were shown to be free of any bias.42 Further investigation into this field is therefore 

indicated, and careful attention must be given to precisely delineate between the two effects 

and their degrees of impact on patient data.

Approaches to Data Missingness—A common theme to the obstacles of 

generalizability thus far is data heterogeneity.8 Missingness similarly contributes another 

dimension to the data, increasing its heterogeneity. Several methods have been proposed and 

implemented in the clinical prediction models to handle this challenge, including omission, 

imputation, and physiology-focused solutions. These are applied depending on the type of 

missingness that is present in each problem. It should also be noted that existing studies on 

the clinical uses of ML do not agree on a universal practice, even for the same missingness 

mechanism. Our goal for this section is to therefore present the prominent techniques for 

handling missingness to provide clarity to the existing literature.

Of the methods that can handle missing data, omission is the simplest and least 

computationally demanding, an important consideration for processing large health care 

datasets.43 The most reported process of omission for studies of prediction models that use 

ML is complete case analysis (CCA).6 As its name suggests, CCA only includes patient 

cases that are not missing any data on the variables of interest.44,45 However, its use is 

limited to datasets with MCAR data, as applying CCA to MAR or MNAR studies can 

introduce bias from nonrandom deletion of patients.46–48 Consider a dataset with MAR data, 

younger diabetic patients have a higher rate of missing self-reported blood sugar data versus 

older diabetic patients as a result from only beginning the recording regimen. If CCA is 

applied here, we will disproportionately delete data from younger patients, so an ML model 

trained on this data will be biased toward making predictions for older diabetic patients. 

Nevertheless, even if CCA is correctly used for MCAR data, it still suffers from decreasing 

statistical power,49 a flaw inherent to data omission.

More complex than methods of omission are those of imputation. Unlike omission, 

imputation requires added computation to produce more complete datasets, typically with 

less bias.50 Three broad subtypes of imputation can achieve this with varying degrees of 

success: simple, hot deck, and multiple imputation.45 Simple imputation replaces all missing 

values of a particular parameter with a single value computed from the present data. Hot 

deck imputation replaces a patient’s missing value with one computed from a subset of 

patients with similar characteristics. This is repeated for each patient with missing data. 

Multiple imputation involves multiple rounds of simple imputation with minor changes; for 

a missing patient value, one is computed from a random subset of the existing dataset. 

Additional values are then computed from different random subsets, resulting in multiple 

possible replacement values. An aggregate of these values is taken (eg, mean), which 

ultimately replaces the missing one. Although imputation usually results in decreased bias 

of the dataset when compared with methods of omission on MAR or MNAR data, simple 

imputation may increase bias.27 Specifically, for a large subset of missing data, imputation 
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with a single value can artificially decrease the variability of the dataset. Models trained on 

such data may subsequently have decreased generalizability to patient data from external 

cohorts. Hot deck and multiple imputations do not share this immediate weakness and 

generally result in more balanced datasets. Yet unlike simple imputation, they are more 

computationally expensive to perform.

Simple, hot deck, and multiple imputation methods provide a collective foundation for 

increasingly sophisticated variations of imputation. These should be thoughtfully used for 

predictive tasks because careless estimation of missing values can introduce artifacts that 

impact model accuracy. Specific factors that influence the type of imputation method used 

include study objectives, importance of missing data to these objectives, the amount of 

missing data, and the learning method used in an ML model.51 As such, Table 2 summarizes 

major studies of ML use in clinical contexts and their imputation and learning methods.

We have thus far discussed statistical methods of handling classic mechanisms of 

missingness. Although these are useful for completing datasets with minimal bias,44 

predictive models may actually find additional physiologic value in the missing data itself, 

a process known as the missing indicator method (MIM).55,56 A critical distinction must be 

made here, as omission and imputation methods are advantageous at completing datasets 

with minimal bias, they optimize for parameter estimation.57 Alternatively, MIM may be 

more suitable for clinical prediction because it encompasses implicit factors that may be 

relevant to patient outcomes.58,59 To clarify this concept, consider a dataset where all 

patients had a white blood count (WBC) ordered but at different times (4 AM and 4 PM). 

Agniel and colleagues demonstrated that patients with a normal 4 AM WBC were associated 

with a greater mortality rate than those with an abnormally high or low 4 PM WBC. Here, 

missingness of the 4 AM WBC is associated with an improved patient outcome, which is 

likely due to the fact that higher acuity patients require closer monitoring throughout the 

day and night.16 As this example demonstrates, the type of missing data should be factored 

into its missingness pattern because the frequency of clinical and laboratory measurements 

are dictated by different guidelines and indications—not all missing data are of equal 

importance. Importantly, caution should be used with MIM approaches as this relies heavily 

on local practices and behaviors and this may lead to poor generalizability. Although MIM 

might introduce bias in estimation of causal relationships,60 this can effectively improve 

predictive performance, a phenomenon termed “Stein’s Paradox.”7,61

When it comes to missingness, the prediction models benefit from statistical methods and 

MIM. MIM can provide additional insight into the state of the patient. However, it may 

decrease model generalizability because it strongly assumes that both the validation and 

development cohorts exhibit the same missingness mechanism. This is likely not the case, 

as missingness can be highly dependent on context. Over-reliance on MIM also limits the 

utility of a model as it considers information encoded in ordering clinical tests; they are 

consequently geared toward quantifying physician thinking instead of suggesting previously 

unconsidered diagnoses.15 On the other hand, causal information in predictive models 

permits counterfactual prediction, a crucial component of models that provide the basis 

of a clinical decision.62 How a prediction model handles missingness accordingly depends 

on its purpose. A focus on generalizability and counterfactual prediction should prioritize 
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statistical methods (ie, omission/imputation), and attention to a specific environment and 

risk assessment should prioritize MIM.63,64 Being that each method has its own use case, 

many studied models use a combination of the two rather than complete reliance on either. 

Still, recent reviews of ML models have frequently demonstrated an insufficient or ignored 

method of handling missing data.65–70

MACHINE LEARNING-BASED SOLUTIONS

There exist various ML methods which may improve generalizability of predictive models 

for commonly encountered syndromic conditions in the ICU. They factor in the systemic 

differences between institutions described in Heterogeneity in Health Care. We focus 

on three approaches which critical care physicians may encounter when evaluating an 

ML model: transfer learning, continual learning, and conformal prediction. Each of these 

approaches has distinct methodologies and benefits which can yield improved performance 

under various situations.

Transfer Learning—Transfer learning is a technique in ML which has seen select use in 

health care. The current applications have been largely limited to oncology71 and medical 

imaging,72 with only recent applications into critical care. Conceptually, understanding 

transfer learning can be illustrated as follows: a prediction model (eg, to predict delayed 

septic shock) is developed and validated at a single institution. Although it can immediately 

be applied to a second institution, subtle differences between the locales (see Heterogeneity 

in Health Care) often dictate that the ML model’s performance will be inferior to that 

of the original development institution. The initial development and validation of the ML 

model on a larger dataset may alleviate this drop in predictive ability, but this is not always 

possible. Transfer learning offers a solution to these subtle differences by using a small and 

representative dataset from the new location to optimize model parameters for it73 (Fig. 

1). Importantly, this bypasses the significant cost and data required for development and 

validation of a novel ML model per distinct institution to achieve similar performance. The 

utilization of a smaller dataset for retraining and fine-tuning of the original model is more 

computationally efficient and allows smaller hospitals to use such tools. However, being 

that the model must undergo retraining at each unique location, regulatory concerns arise 

as novel variants of the original model accumulate on a large scale. Nevertheless, examples 

of transfer learning applications in critical care include (1) fine-tuning a tracheal intubation 

prediction model for patients with COVID-19 pneumonia,74 (2) adapting a delayed septic 

shock prediction model for use at various external institutions,11 (3) predicting mortality 

in patients with end-stage renal disease,75 (4) predicting acute kidney injury,76 and (5) 

predicting acute respiratory distress syndrome on radiographs.77 Test characteristics in these 

scenarios were significantly improved with the use of transfer learning.

Continual Learning—Continual learning (also referred to as lifelong learning, 

incremental learning, or sequential learning) describes a model that continuously learns 

and evolves based on increasing data, fed over time, with retention of previously gained 

knowledge.78–81 In this way, it is intuitively appealing and like human cognition. One well-

known use of continual learning is found in recommender systems of companies such as 

Amazon and Netflix—the model is continually updated with labeled data from interactions 
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with the end-user to reflect changes in personal preference over time.82 Yet unlike 

transfer learning, research into its clinical applications has been meager in the critical care 

domain, and no implementations currently exist83 because of the considerable potential for 

“catastrophic forgetting.” This describes a phenomenon in which new information interferes 

with previously learned patterns, resulting in a paradoxic decrease in model performance. 

There also exist privacy concerns as the single model is continuously fed sensitive clinical 

data from various institutions. Observational data suggest this approach may improve 

predictive models over time, such as in the early prediction of sepsis,84 medication dosing,85 

or augmentation of imaging studies performed in critically ill patients.86 Nevertheless, these 

have not yet been translated into clinical tools.

Conformal Prediction—Conformal prediction refers to a model’s assessment of the 

uncertainty of a prediction based on the past experience. Intuitively, when a model 

encounters a scenario like its training dataset, the confidence in prediction is high. 

However, when a model encounters a scenario where input data are significantly different 

(non-conformal) from training data, the utility and confidence of the prediction are 

uncertain. Conformal prediction is therefore a mathematical approach that quantifies the 

uncertainty of an ML prediction. In effect, this allows the model to say “I don’t know” 

for inputs that are foreign from training data.87–90 Applications of conformal prediction 

have been used in various nonmedical fields, including facial recognition, financial risk, and 

language recognition. In health care, it has been used to augment breast cancer diagnosis91 

and prediction assessment of stroke risk,92 albeit primarily under research applications. 

Conformal prediction has more recently been described to assist in sepsis prediction, as 

shown in Fig. 2.14 In this example, potential sepsis cases in which an ML model had low 

certainty in prediction were identified and resulted in a significant decrease in false alarms. 

The ideal application of conformal prediction in the ICU would follow a similar pattern: 

alerting clinicians to scenarios in which a predictive model has low certainty of a prediction 

may increase their trust in ML predictive scores.

DISCUSSION

ML models have the potential to significantly improve care of critically ill patients by 

leveraging the data-rich nature of the ICU. However, despite promising research, their 

real-world implementations in critical care are presently scant; this unfortunately growing 

chasm between what has been developed and what has been implemented is a phenomenon 

referred to as the “implementation gap.”93 Although there are various reasons behind this 

discrepancy, inherent challenges with generalizability in a syndrome-based, heterogeneous 

patient landscape have significantly limited the utility of ML models in critical care. 

Our review explores many of these obstacles. Various syndrome-based conditions with 

overlapping clinical characteristics are difficult for ML models to delineate due to a critical 

delay in patient information availability and ambiguity in syndrome diagnosis. These effects 

are especially pronounced in the ICU, where syndrome-based conditions are common, 

and patients rapidly evolve. Compounding the challenge is heterogeneity in health care 

data itself. Data recording and storage, local health care guidelines, and temporal shifts 

in data necessitate correction in models themselves. Although patient demographics and 
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missing data can further contribute heterogenous dimensions, they can also convey valuable 

information that might help improve prediction model accuracy.

Prevailing research on ML models use novel methods of learning to overcome these 

challenges and ultimately maximize external validity: transfer learning, continual learning, 

and conformal prediction.11–14 Transfer learning involves retraining a model with limited 

data at a new deployment site so that it learns the specific nuances of that particular 

location.73 Continual learning describes a central model that constantly adjusts its set of 

rules as it is applied to more data all while maintaining acceptable performance on prior 

applications.79–81 Conformal prediction will only allow the model to predict from data that 

it deems “conformant” with the training data—that is, if it detects dissimilar data that may 

result in poor performance, it will refrain from making predictions.87–90

It is important to note that although we primarily demonstrate these in the context of 

sepsis prediction, ML models have been similarly studied for a variety of other prediction 

tasks, including respiratory failure in COVID-19 patients,74,94–96 complications for critically 

ill patients,76,77,97–99 and in-hospital mortality risk.75,100–105 Other uses for clinical ML 

models outside of predictive tasks include identification of health factors related to patient 

outcomes, novel intervention design, and allocation of resources.106 Future research into the 

applications of ML for critically ill patients should focus on prospective implementations 

across multiple centers to demonstrate clinical value. Many studies thus far are retrospective, 

and only a few of them undergo prospective validation; an even fewer number undertake 

randomized ML trials.107 Indeed, many clinical ML models are currently developed and 

validated to collect dust only then in the “model graveyard.”93 Other deployed models, 

such as the Epic Sepsis Score (ESS), paint a cautionary tale to hospital systems that 

fail to perform rigorous testing and optimization during development: researchers at the 

University of Michigan described a significant performance drop and increased rate of 

false alarms of the ESS when implemented at their institution.108 To conduct the multi-

center trials necessary for demonstrating clinical value, models may therefore undergo 

local optimization. This can be accomplished via transfer learning or continual learning 

and further improved through conformal prediction or similar methods. Such approaches 

may help alleviate the problem of generalizability and improve test characteristics. To our 

knowledge, this has not yet been done and should thus be emphasized in future trial designs 

involving prospective validation of ML models.

SUMMARY

We believe that clinicians must understand the basics of ML and its major challenges to 

evaluate current and future models. This is a vital step for their successful implementation 

into clinical practice. Likewise, we believe that data scientists interested in the health 

care applications of ML must understand its unique clinical challenges; the barriers to 

generalizability can presently be overcome with solutions offered by transfer learning, 

continual learning, and conformal prediction. With increased attention, we are optimistic 

that a future with accurate and fair ML-based clinical aids is not far.
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KEY POINTS

• Barriers to the use of machine learning in critically ill patients include 

challenges with recognition of syndromic conditions, data missingness, and 

the underlying heterogeneity of health care systems which may limit the 

generalizability of machine-learning algorithms.

• Recent advances in machine-learning applications, such as transfer learning 

and conformal prediction, can overcome barriers to improve generalizability 

across various institutions.

• Future studies are required to confirm the benefit of these strategies in both 

experimental and routine clinical care.
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CLINICS CARE POINTS

• Syndromic conditions in the ICU are easy for clinicians to grasp, but many 

challenges exist for machine-learning models, which has thus far limited 

generalizability.

• Recent advances in machine-learning approaches may alleviate these 

concerns, although we still lack large, prospective trials demonstrating benefit 

in critically ill patients.
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Fig. 1. 
Example of applying transfer learning to a delayed septic shock prediction model. The 

initial ML model was fine-tuned using data at a second site. The use of transfer learning 

significantly increased test characteristics (AUCroc) of the delayed septic shock model at the 

validation site. AUCroc, area under the curve of the receiver operating characteristic curve. 

(From Wardi, G. et al Predicting Progression to Septic Shock in the Emergency Department 

Using an Externally Generalizable Machine-Learning Algorithm. Ann. Emerg. Med. 77, 

395–406 (2021); with permission.)
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Fig. 2. 
Example of applying conformal prediction to a sepsis prediction model. If the model does 

not recognize the input data from a patient, the conformal prediction layer “rejects” the 

data, and the sepsis prediction layer alerts the end-user that there exists a high degree of 

uncertainty. This resulted in a significant decrease in false alarms. (From Shashikumar SP, 

Wardi G, Malhotra A, Nemati S. Artificial intelligence sepsis prediction algorithm learns 

to say “I don’t know”. NPJ Digit Med. 2021;4(1):134. Published 2021 Sep 9. doi:10.1038/

s41746–021-00504–6.)
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Table 1

Definitions and examples of common terms used in data science

Term Definition Example

Development 
cohort

The dataset on which an ML model was trained AISE11,12 was trained on data from the Emory Healthcare System, 
also known as the development cohort.

Validation cohort The dataset on which an ML model must 
perform a task for the first time

AISE11,12 was validated on data from the MIMIC-III cohort 
collected from the Beth Israel Deaconess Medical Center in Boston, 
also known as the validation cohort.

Generalizability The extent to which an ML model can achieve 
similar performance on external validation tasks 
vs internal validation tasks

AISE11,12 WUPERR,13 and COMPOSER14 demonstrated 
comparable performance at their respective validation hospitals, on 
par with their performance at their respective development hospitals.

Dimension A characteristic of data and/or a dataset, relating 
to the number of variables included

EHR data are multidimensional because it includes heart rate, blood 
pressure, temperature, laboratory values, and so forth.

Missingness The presence of missing clinical variables and 
how this is handled/reported

During Patient A’s 10-d ICU stay, he/she may not have regular blood 
pressure measurements recorded every 4 h due to movements for 
scans, tests, and so forth.

Omission A method of handling missingness where 
patients and/or characteristics with missing data 
are deleted from the dataset

As Patient A is missing blood pressure data, he/she is excluded from 
analysis of the dataset, which uses blood pressure.

Imputation A method of handling missingness that 
determines a single or multiple value(s) to 
replace all missing values for a specific variable

Patient A’s missing blood pressure measurements are estimated by 
averaging blood pressure values of other patients in the ICU taken at 
the same time (single imputation).

They are summarized here to provide clarity to the following sections.
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Table 2

Major studies of clinical applications of machine learning, method of imputation for handling missingness and 

learning method used

Study Missingness Method Used
Learning Method 
Used

Development and validation of an ICU mortality prediction model 
(Davoodi et al, 2018)52

Gaussian Imputation by Chained 
Equation

Deep rule-based fuzzy 
model

Development and validation of an in-hospital mortality prediction model 
for AKI (Lin et al, 2019)53

Mean Imputation Random forest

Derivation and validation of novel sepsis phenotypes (Seymour et al, 
2019)54

Multiple Imputation with Chained 
Equations

Latent class analysis

Development and validation of a volume responsiveness prediction 
model in oliguric AKI (Zhang et al, 2019)97

Multivariate Imputation by Chained 
Equation

XGBoost

Sepsis predictive model designed to identify instances of ML prediction 
uncertainty (Shashikumar, et al 2021)14

Mean Imputation and Sample-and-Hold 
with a weighted input layer to learn the 
“hold” duration

Conformal prediction

Abbreviation: AKI, acute kidney injury.
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