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Abstract A system-level understanding of the regulation and coordination mechanisms of gene expression is essential for
studying the complexity of biological processes in health and disease. With the rapid development of single-cell RNA
sequencing technologies, it is now possible to investigate gene interactions in a cell type-specific manner. Here we propose
the scLink method, which uses statistical network modeling to understand the co-expression relationships among genes and
construct sparse gene co-expression networks from single-cell gene expression data. We use both simulation and real data
studies to demonstrate the advantages of scLink and its ability to improve single-cell gene network analysis. The scLink R
package is available at https://github.com/Vivianstats/scLink.

KEYWORDS Gene co-expression network; Single-cell RNA sequencing; Network modeling; Robust correlation

Introduction

Biological systems often involve tens of thousands of genes
tightly regulated in complex and dynamic networks, which
could change substantially among different tissue types,
developmental stages, or cell states [1,2]. Therefore, elu-
cidating gene interactions in a network manner is crucial for
understanding complex biological processes in human
physiology and pathology. Identifying abnormal gene in-
teractions in disease states makes it possible to reveal the
biological and biochemical pathways relevant to disease
mechanisms and therapeutic targets [3]. For instance,
transcriptional dysregulation revealed by disease-associated
gene interactions has been reported in various diseases in-
cluding cancer [4], neurological disorders [5], and psy-

chiatric disorders [6], leading to functional insights of
transcriptome organization in disease progression.

In network analysis, genes are represented by nodes, and
their relationships are depicted by directed or undirected
edges between the nodes. The gene networks constructed
from bulk tissue RNA sequencing (RNA-seq) data have
played a key role in identifying genes responsible for si-
milar biological functions, targets of transcriptional
regulation, and regulators of disease-associated biological
pathways [7–9]. However, the tissue-level networks can
only describe the average gene-gene relationships across
multiple biological samples, with the assumption that cells
maintain the same regulatory mechanisms across diverse
cell types [10]. Rapid advances of single-cell RNA se-
quencing (scRNA-seq) technologies have now made it
possible to investigate gene networks across individual cells
in a cell type-specific manner [11]. Functional networks
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constructed from scRNA-seq data have provided novel
insights into the transcriptional regulation mechanisms un-
derlying various biological processes, including cancer
progression [12], immune system response [13], and em-
bryonic development [14]. These studies have demonstrated
the power of scRNA-seq analysis to reveal gene covariance
structures in distinct cell types, identify genetic variants that
can alter gene co-expression, and infer gene regulatory
networks that can govern lineage decisions.

Even though exploratory analyses demonstrated the
possibilities of constructing functional gene networks
across single cells, both technical and biological compli-
cations present challenges to the genome-wide inference of
gene dependencies from scRNA-seq data [15]. Due to
technical molecular inefficiencies, a truly expressed gene
may not be detected by scRNA-seq in some cells, and thus
is represented by a false zero expression [16]. Meanwhile,
stochastic gene expression process can also lead to zero
expression representing biological variation. Therefore,
scRNA-seq data are often much sparser than the bulk RNA-
seq data, requiring new statistical and computational tools
that could tackle the modeling challenges given the ex-
cessive zero counts. In bulk RNA-seq data analysis, gene
network studies mostly rely on the Pearson or Spearman’s
correlation coefficients to characterize the gene co-
expression strength [17,18]. However, these two measures
cannot provide a robust estimation of gene co-expression
given the sparse scRNA-seq data with substantial technical
noises and biological heterogeneity [19,20].

In light of the aforementioned problem, Iacono et al. [18]
used the correlation between two genes’ differential ex-
pression patterns across cell types instead of gene expres-
sion levels to study gene regulatory network plasticity.
However, most reconstruction methods of gene networks do
not explicitly account for the sparsity issue. For example,
PIDC uses partial information decomposition based on the
multivariate information theory to quantify the statistical
dependencies between genes and infer gene networks from
scRNA-seq data [21]. GENIE3 decomposes the prediction
of a gene network between p genes into p different re-
gression problems, and uses tree-based ensemble methods
to infer the edges between genes [22]. It has been shown to
have a competitive performance on bulk data [23] and has
also been applied to single-cell data for gene network in-
ference [24]. In addition to methods that are purely based on
gene expression data, there are also single-cell methods
developed to infer direct gene regulatory relationships in-
stead of statistical dependencies [25]. To infer the direct
gene interactions, these methods typically require external
information, such as time points or pseudo-time order of the
cells [26,27] and known transcription factors (TFs) [24].

Despite being an active research area, accurate inference
of functional gene networks from single-cell gene

expression data remains a challenge [15,25]. In this study,
we propose a new method named scLink to better char-
acterize the statistical dependencies between genes in single
cells and improve the construction of gene co-expression
networks based on a new co-expression measure. In sum-
mary, scLink has the following key features and advantages.
First, it proposes a robust estimator for measuring gene co-
expression strength, built upon our previous work on im-
proving the quality of single-cell gene expression data [28].
Instead of using all the observed read counts to measure the
association between two genes, scLink relies on the cells in
which both genes are accurately measured with high con-
fidence. Second, scLink adapts the Gaussian graphical
model [29] to distinguish direct associations between genes
from indirect ones and leads to sparse networks. Under this
framework, the absence of an edge between two genes in-
dicates the independence of these two genes conditioned on
all other genes. Gaussian graphical models have been
widely used to infer biological networks from genomic data.
They have revealed cancer type-specific gene interactions
that potentially contribute to cancer development and pro-
gression [30–32]. Third, scLink uses a penalized likelihood
approach to identify relatively sparse gene networks in a
data-adaptive manner, adjusting the penalty strength on
each edge based on the observed co-expression strength in
single cells. Our approach is a modified version of the
graphical lasso method [33] to improve the identification of
edges using single-cell data. Fourth, scLink provides a uni-
que method to construct sparse gene co-expression net-
works, increasing the interpretability of single-cell network
analysis. We show that by combining the aforementioned
features, scLink could enable more robust quantification of
gene co-expression relationships, more accurate construc-
tion of gene co-expression networks, and better identifica-
tion of functional gene modules which provide insights into
cell type-specific transcriptional regulatory mechanisms
and molecular pathways.

Method

Overview of the scLink method

To improve the construction of gene co-expression net-
works for single cells, we propose the scLink method to
calculate the correlation between gene pairs, and then use a
penalized and data-adaptive likelihood method to learn
sparse dependencies between genes and construct sparse
gene co-expression networks. One motivation of scLink is
that the conventional Pearson and Spearman’s correlation
coefficients do not provide an efficient approach to re-
presenting and interpreting gene associations given the high
sparsity of single-cell gene expression data. For instance,
we calculated the Pearson and Spearman’s correlation for a
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gene expression dataset of 109 immune B cells [12]
(Figure S1), after normalization and log transformation as
described in the next subsection. We only used 410 genes
with at least a 10% detection rate, and the proportion of zero
counts in the expression matrix is 71.2%. As an example,
there are 886 gene pairs with a Pearson correlation in the
range of [−0.15, −0.14], and 1302 gene pairs with a Spear-
man’s correlation in [0.14, 0.15], but their association varies
in a much larger range when we recalculated the correlation
only using the cells in which both genes were detected
(Figure 1A and B). To more accurately infer gene co-
expression networks that can capture functional gene mod-
ules, scLink has two major steps (Figure 1C). The first step
is to calculate a robust co-expression matrix from the gene
expression data to accurately represent the co-expression
relationships among the genes. The second step is to identify
a sparse gene network from the co-expression matrix using a
penalized and data-adaptive likelihood approach.

A robust estimator for measuring gene co-expression
strength

Accurate and robust estimation of gene co-expression

strength is the key to reliable inference of gene co-
expression networks. Since single-cell gene expression data
contain a high proportion of zero and inaccurate low counts
due to both technical and biological variabilities [28,34], the
conventional Pearson or Spearman’s correlation coeffi-
cients are often not reliable for single-cell gene expression
data, especially for genes whose expression values are
highly sparse (Figure 1). In our previous work, we proposed
a statistical method, scImpute, to address the excess zeros in
scRNA-seq data [28]. Based on scImpute’s idea to identify
the highly likely outliers (gene expression values that are
not accurately measured), we propose a robust estimator for
gene co-expression strength and use it to improve the in-
ference of sparse gene co-expression networks.

Suppose the scRNA-seq data of a certain cell type (de-
termined using marker genes or computational tools) are
summarized as a read count matrix, with rows representing
n cells and columns representing p genes. We normalize the
count matrix by the library size of each cell, such that all
cells have M reads after normalization. Typical choices for
M include the median library size or a predetermined
constant (e.g., 105) [16]. Denoting the normalized matrix as
C , we apply log10 transformation to the count matrix to

Figure 1 The motivation and workflow of the scLink method
A. Example gene pairs with similar Pearson correlation coefficients in B cells. B. Example gene pairs with similar Spearman’s correlation coefficients in B
cells. The scatter plots show the log10-transformed gene expression levels. The Pearson or Spearman’s correlation coefficients calculated using only cells in
which both genes were detected are marked in the scatter plots. C. The workflow of the scLink method. In the first step, scLink calculates a robust co-
expression matrix from the gene expression data. In the second step, scLink identifies a sparse gene network from the co-expression matrix using a
penalized and data-adaptive likelihood approach.
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prevent a few large observations from being extremely in-
fluential. The resulting matrix is denoted as Y , with

( )Y C= log + 1.01ij ij10 i n j p( = 1, 2, … , ; = 1, 2, … , ). The
pseudo-count 0.01 is added to avoid infinite values in
parameter estimation.

We denote the log-transformed gene expression matrix
without the pseudo-count as X , where ( )X C= log + 1ij ij10

i n j p( = 1, 2, … , ; = 1, 2, … , ). In conventional methods,
pairwise correlation coefficients are calculated using X to
obtain the sample correlation matrix, based on which gene
networks are constructed. In the scLink method, however,
we add a filtering step to identify the accurately measured
read counts, and rely on these counts in network inference,
by adapting a mixture model used in scImpute. Similar
mixture models have been shown to effectively capture the
bimodal characteristic of single-cell gene expression data
[34–36]. Specifically, for gene j , we assume its expression
level is a random variable Yj following a Gamma-Normal
mixture distribution, with a density function

( ) ( )f y y y µ( ) = Gamma ; , + 1 Normal( ; , ) (1)Y j j j j j jj

where j is gene j’s non-detection rate, j and j are the
shape and rate parameters in the Gamma distribution, re-
spectively, and µj and j are the mean and standard devia-
tion in the Normal distribution, respectively. The Gamma
distribution models the observed gene expression when the
sequencing experiments fail to accurately capture gene j’s
transcripts, while the Normal distribution models the actual
gene expression levels.

Given the Gamma-Normal mixture distribution, the log-
likelihood of gene j’s expression levels across all cells can
be calculated as

( ) ( )l µ f y µ, , , , = log ; , , , , .j j j j j i
n

Y ij j j j j j=1 j
We

designed an Expectation-Maximization algorithm to esti-
mate the parameters in the model presented in Equation (1)
by maximizing the log-likelihood, and these estimates are
denoted as j, j, j, µj, and j, respectively. We can then
filter the gene expression values based on the non-detection
probability of gene j in cell i, which is estimated as

( )
( ) ( ) ( )d

Y

Y Y µ
=

Gamma ; ,

Gamma ; , + 1 Normal ; ,
(2)ij

j ij j j

j ij j j j ij j j

Since d (0, 1)ij and a smaller dij indicates greater con-
fidence on the observed gene expression Yij, we can filter
expression values by selecting a threshold t. Gene expression
values with d t<ij are considered to be accurately measured
with high confidence, while expression values with d tij are
treated as missing values. We set t = 0.5 in our analysis, as

we have previously demonstrated that the selection of this
threshold only impacts a tiny proportion of genes [28].

Given the identified accurate expression values and
missing values, our robust estimator for measuring gene co-
expression strength is defined as the pairwise-complete
Pearson correlation coefficient. scLink then calculates the
co-expression strength from gene expression matrix X ,
where ( )X C= log + 1ij ij10 i n j p( = 1, 2, … , ; = 1, 2, … , ). For

genes j1 and j2, their robust correlation is calculated as

I I{ } { }( )( )
r

X X X X d t d t

a b
=

< <
(3)j j

i
n

ij j ij j ij ij

j j j j

=1

1 2

1 1 2 2 1 2

1 2 1 2

where X n X= 1
j i

n

ij=11 1
, X n X= 1

j i

n

ij=12 2
, and

I I( ) { } { }a X X d t d t= < < (4)j j i
n

ij j ij ij=1

2

1 2 1 1 1 2

I I( ) { } { }b X X d t d t= < < (5)j j i

n

ij j ij ij=1

2

1 2 2 2 2 2

The pairwise robust correlation coefficients are used by
scLink to construct gene co-expression networks as de-
scribed in the next subsection. To improve the robustness of
scLink, if the sample size for calculating correlation be-

tween genes j1 and j2 ( I I{ } { }d t d t< <i
n

ij ij=1 1 2
) is

smaller than 10, we instead use the Pearson correlation
coefficient for this pair of genes.

The scLink method for gene network inference

To construct sparse gene co-expression networks from
single-cell gene expression data, our scLink method adapts
the Gaussian graphical model [29] and the penalized like-
lihood method [33,37], which uses the principle of parsi-
mony to select the simplest graphical model that adequately
explains the expression data. We assume the actual gene
expression values in each cell, without missing values being
present due to technology limitations, to be a p-dimensional

random vector ( )Z Z Z= , … , p
T

1 following a multivariate

distribution N µ( , ). Note that Z denotes the actual gene
expression on the log10 scale and is a hidden variable not
directly observable. We wish to estimate the concentration
matrix = 1, where a zero entry = 0j j1 2

indicates the
conditional independence between the two genes j1 and j2
given all other genes. In other words, if we consider an
undirected graph G V E= ( , ), where V contains p vertices
corresponding to the p genes and the edges are denoted as

{ }E e= j j
j j p11 2
1 2

. The edge between genes j1 and j2 is

absent if and only if = 0j j1 2
.
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Given a random sample (n cells) of Z , a commonly used
lasso-type estimator [33] takes the form

S= argmaxlogdet( ) tr( ) (6)^

0
1

where Slogdet( ) tr( ) is proportional to the log-like-
lihood of (ignoring a constant not depending on ) [37]

and = ( > 0)
j j

p

j j1
1 2

1 2
is a penalty term

adding a constraint on the number of non-zero elements in
the concentration matrix. S denotes the estimated covar-
iance matrix.

Recall that we summarize the observed gene expression
matrix as X , where ( )X C= log + 1ij ij10

i n j p( = 1, 2, … , ; = 1, 2, … , ) . If we directly consider each
matrix column X X, … , j1 as a realization of Z , the covaria-
nce matrix could be estimated using the sample covariance
matrix. However, due to limited detection capacity in
scRNA-seq technologies as we have discussed above, the
observed gene expression vectors (X X, … , j1 ) cannot be
directly treated as a sample of Z , and sample covariance
matrix is not an ideal estimator of the covariance matrix .
In scLink, we estimate using a robust estimator S , which
is constructed with the robust correlation estimator in-
troduced in the previous subsection. The elements in S are
calculated as
S r= (7)j j j j j j1 2 1 2 1 2

where rj j1 2
is the robust correlation in Equation (3), and j1

and j2
are respectively the estimated standard deviation of

genes j1 and j2 from the model presented in Equation (1).
This idea of robust covariance estimation is motivated by a
general framework for robust covariance calculation of
high-dimensional data [38], and implemented with careful
consideration of single-cell data characteristics.

In addition to proposing the robust estimator of covaria-
nce matrix, another feature of scLink is the formulation of a
data-adaptive penalty term. We expect the penalty to be
stronger on j j1 2

if the robust correlation between genes j1
and j2 is weaker, and vice versa. Therefore, we propose a

weighted penalty term ( )r1
j j

p

j j j j
1 2

1 2 1 2
( > 0) to

incorporate gene pair-specific information when adding the
sparsity constraint.

In summary, the scLink estimator of the concentration
matrix takes the form

( )
( )S

r

= argmaxlogdet( ) tr

1
(8)

p

j j
p

j j j j

^
scLink

0

1 2 1 2 1 2

where > 0 and Sp is a positive semidefinite approxi-

mation of S . In detail, { }S S I= + | min 0, |p , where is the
smallest eigen value of S and I is an identity matrix [38].
There are multiple algorithms that can be implemented to
solve the model presented in Equation (8), and scLink uses
the QUIC algorithm [39] since its computational cost is
O p( ) and has a superlinear convergence rate. After we ob-

tain the estimated ^ , it follows that E = 1j j1 2
if 0j j1 2

and E = 0j j1 2
if = 0j j1 2

.

Selection of the regularization parameter

In the model presented in Equation (8), the value of the
regularization parameter would influence the sparsity le-
vel of the estimated concentration matrix and therefore the
constructed gene network. Here we discuss two approaches
that can be used to guide the selection of . The first ap-
proach is based on the Bayesian information criterion (BIC)
[40]. For a particular value of , the BIC is calculated as

( )n S n m nBIC( ) = tr logdet( ) + log (9)p
^ ^

where m is the total number of edges in the gene co-
expression network. We can apply the model presented in
Equation (8) on single-cell gene expression data with a
sequence of regularization parameters, and select the value
of that leads to the smallest BIC value. The second ap-
proach is to directly select based on the sparsity level of
the constructed gene network. Suppose there is prior
knowledge (e.g., biological network databases) on the
sparsity level, we can select the parameter that achieves the
expected sparsity level of the gene co-expression network.

Simulation of synthetic gene networks and expression
data

We adapted the procedures in Mestres et al. [41] to simulate
network structures. In each simulation setting, we first gen-
erated a block diagonal connectivity matrix Ep p× , where each
block had a hub-based or power-law topology, and the whole
matrix also contained a fixed number of random connections
between blocks. In the connectivity matrix, E| | = 1j j1 2

if

there was an edge between genes j1 and j2, and E = 0j j1 2
if

there was no edge between the two genes. This process was
assisted with the R package ldstatsHD v1.0.1 [41]. Given the
connectivity matrix, a partial correlation matrix was simu-
lated by the following procedure:

E

E

E
= =

Unif(0.4,0.7) if = 1;

Unif( 0.7, 0.4) if = 1;

0  if = 0.
j j j j

j j

j j

j j

1 2 1 2

1 2

1 2

1 2

In case that Λ was not positive definite, we applied the
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transformation I= + min{0, }p , where was the
smallest eigen value of and I was the identity matrix. We
then calculated the corresponding correlation matrix R, and
used it together with the gene expression mean and standard
deviation estimated from a real scRNA-seq dataset [42] to
simulate the synthetic gene expression matrix X 0 from a
multivariate Gaussian distribution. The estimation of the
gene expression parameters followed the procedures de-
scribed in the previous subsection (A robust estimator for
measuring gene co-expression strength). Next, we in-
troduced zero counts to the gene expression matrix to mimic
the observed zeros. Since the possibility of observing zero
counts for a gene is negatively correlated with this gene’s
mean expression in real data [28,34], we calculated a
probability for each entry in the gene expression matrix:

p X= exp( ( ) )ij ij
0 2 , where was a parameter controlling

the dependence between non-detection probability and gene
expression. Then, pij was the probability of observing a
zero count for gene j in cell i. A binary indicator was
sampled for each entry: I pBernoulli( )ij ij , with I = 1ij

indicating that the corresponding entry would be replaced
by 0. Therefore, the final gene expression matrix was de-
fined as X , where I{ }X X I= = 0ij ij ij

0 . Repeating the afore-
mentioned procedures with different values of , we could
generate synthetic single-cell gene expression matrices with
known network topologies and different levels of sparsity.
In our study, we used four different values of : 0.07, 0.10,
0.13, and 0.16.

Calculation of the robustness score

We used scLink as an example to describe how the ro-
bustness score was calculated. The robustness of the other
two gene network inference methods, PIDC and GENIE3,
was calculated using the same approach. For a selected cell
number (nr) and gene number (p), by randomly sampling nr
cells from a given cell type for L times (L = 10 in our
analysis), we obtained L gene adjacency networks by

scLink: E l L( {1, 2, … , })l( ) , where E = 1j j
l( )
1 2

if the two

genes j1 and j2 had an edge in the l-th gene co-expression

network; otherwise, E = 0j j
l( )
1 2

. To simplify the notation, we

denoted E E=s
l

L
l

=1
( ). The robustness of scLink was then

calculated as

I

I{ }
{ }l E l

L E
RS=

( 1) =

( 1) > 0
(10)j

p
j j
p

l
L

j j
s

j
p

j j
p

j j
s

=1

1

= +1 =1

=1

1

= +1

1 2 1 1 2

1 2 1 1 2

For example, RS = 1 if the L inferred adjacency networks
were exactly the same; RS = 0 if the L gene networks did not

have any overlap.

Availability of scRNA-seq data

The Tabula Muris dataset [43] is available at https://tabula-
muris.ds.czbiohub.org/. The gene expression dataset of
immune cells from breast cancer patients is available at
Gene Expression Omnibus (GEO: GSE114727; https://
www.ncbi.nlm.nih.gov/geo/) [12]. The gene expression
dataset of definitive endoderm (DE) differentiation is
available at GEO (GEO: GSE75748; https://www.ncbi.nlm.
nih.gov/geo/) [44].

Results

scLink demonstrates efficiency in simulation studies

Our motivations for using simulated scRNA-seq data based
on synthetic networks are two-fold. First, since the actual
gene networks underlying real single-cell gene expression
data are unknown, synthetic networks provide ground truth
for comparing computational methods in a systematic and
unbiased manner. Second, using simulated data, we can
evaluate the performance of gene network inference metho-
ds given diverse network architectures and experimental
settings. These results can help us investigate the ad-
vantages of each method in different scenarios.

In our simulation, we considered two types of network
topology: power-law networks and hub-based networks [41].
The power-law networks (Figure 2A) assume that the dis-
tribution of the node degrees (i.e., the total number of edges
of a node) follows a power law [45]. That is,
a k k( ) = / ( ), where a k( ) denotes the fraction of nodes
with degree k , is a positive constant, and ( ) is the Rie-
mann zeta function. In contrast, in the hub-based networks
(Figure 2B), a few nodes have a much higher degree than the
rest nodes, and these high-degree nodes represent hub genes
with critical functions in biological networks [17]. Using a
carefully designed simulation framework (see Method), we
generated synthetic single-cell gene expression matrices
with known network topologies and different levels of
sparsity. Therefore, we could evaluate the accuracy of a
computationally inferred gene network by comparing it
with the ground truth network.

We compared scLink with five alternative methods on
the synthetic data to evaluate their accuracy in constructing
gene co-expression networks. Among these five methods,
PIDC infers genes’ dependencies in single cells based on
the multivariate information theory [21]. GENIE3 was first
developed to infer regulatory networks from bulk expres-
sion data [22], and was recently applied to single-cell ex-
pression data [24]. These two methods were demonstrated
to have leading performance on simulated and real scRNA-
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seq data in a recent comparison [15]. In addition, we in-
cluded glasso, a generic statistical method for estimating
sparse networks [33], and its variants have been used to
address different challenges in gene network construction
[30,46]. Finally, we also considered gene networks con-
structed by thresholding the Pearson or Spearman’s corre-
lation coefficients, as these are commonly used statistical
measures for constructing gene co-expression networks [17].

Since the gene networks are expected to be sparse, we
used area under the precision–recall curve (AUPRC) as the
primary criterion and area under the receiver operating
characteristic curve (AUROC) as the secondary criterion, to
achieve a fair and comprehensive comparison of the
methods. The accuracy of scLink and glasso was obtained

by evaluating them with different values of the regulariza-
tion parameter (see Method). The accuracy of PIDC and
GENIE3 was obtained by thresholding the estimated edge
weights at different values. The accuracy of Pearson and
Spearman’s correlation-based networks was obtained by
thresholding the absolute values of correlation coefficients.
For each type of network topology, we simulated synthetic
single-cell gene expression data with 100, 200, and 300
genes. By changing the simulation parameters, we genera-
ted gene expression data with different sparsity levels. In
each parameter setting, the simulation was independently
repeated 50 times.

Our comparison results showed that for both power-law
and hub-based network topologies, scLink had the best

Figure 2 Comparison of scLink and the other gene network inference methods on synthetic single-cell gene expression data
A. An example 100-gene network with the power-law topology. B. An example 100-gene network with the hub-based topology. C. AUPRC and AUROC
scores of scLink and the other five methods given gene expression data generated from the power-law networks. D. AUPRC and AUROC scores of scLink
and the other five methods given gene expression data generated from the hub-based networks. The gene expression matrices have varying number of
genes (100, 200, or 300) and proportion of zero counts. AUPRC, area under the precision–recall curve; AUROC, area under the receiver operating
characteristic curve.
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AUPRC and AUROC scores, outperforming glasso, PIDC,
GENIE3, and the two correlation measures (Figure 2C and
D). scLink demonstrated higher accuracy because it ex-
plicitly models the zero or low counts in single-cell data,
providing a more robust estimator for gene co-expression
strength to be used in the network inference step. Evaluating
the performance of glasso, we found that it had a similar or
even slightly lower accuracy compared with directly
thresholding the Pearson correlation coefficients. This
suggests that the generic penalized Gaussian graphical
model is not very efficient for single-cell data. However, by
incorporating improved co-expression measures and adding
data-adaptive penalties to the gene–gene edges, scLink
largely improved the accuracy of the graphical model. We
also observed that most methods, including scLink, had
increasing accuracy on less sparse gene expression data. A
primary reason is that these data provide a larger effective
sample size for network inference and contain fewer noises
that could lead to false discoveries. This result suggests that
it could be advantageous to filter out lowly expressed genes
before network inference for real single-cell gene expres-
sion data. In addition, given the same sparsity level in
single-cell data, most methods tended to have better per-
formance on the power-law networks than the hub-based
networks. A possible reason is that when multiple genes are
simultaneously interacting with the same hub gene, it is
very challenging to precisely distinguish the direct de-
pendencies from the indirect ones among these genes only
using the gene expression data.

As a proof-of-concept study, we also compared two
modified versions of glasso with scLink on the simulated
data. The first method, glasso-r, refers to the glasso method
based on scLink’s robust correlation measure. It is the same
as scLink except that it uses a constant weight of 1 instead
of the adaptive weights in the penalty term. In other words,

the penalty term is replaced with
j j

p

j j
1 2

1 2
in glasso-r.

The second method, glasso-f, refers to the combination of
glasso and a filtering procedure. It filters out cells with
greater than 70% of zero counts before applying the glasso
approach. This reflects the practice to filter out low-quality
cells in real practice. Our results based on both power-law
and hub-based networks showed that glasso-f did not ef-
fectively improve the network construction accuracy com-
pared with glasso (Figure S2). In addition, scLink achieved
higher AUPRC and slightly lower AUROC than glasso-r,
suggesting the additional benefit of using adaptive penalty
for constructing single-cell gene networks. Furthermore, as
a control study, we also compared scLink with the other five
methods on simulated data without introducing an extra
level of sparsity (Figure S3). In this control study, the
synthetic data were generated as described in Method,
except that the step of introducing zero counts was skipped.

As expected, all the methods, especially the two methods
based on Pearson and Spearman’s correlation, had im-
proved accuracy compared with the performance on sparse
gene expression data. This study demonstrates the unique
challenge presented by the high level of sparsity in single-
cell gene expression data, and the need to develop specific
methods accounting for these data characteristics in the
modeling step.

scLink identifies cell type-specific gene networks from
the Tabula Muris data

To evaluate scLink’s performance on real single-cell data
and demonstrate its application to construct cell type-
specific gene networks, we applied scLink to gene expres-
sion data derived from Smart-seq2 RNA-seq libraries [47].
This dataset from the Tabula Muris database includes
53,760 cells of 20 different tissues from 8 mice [43], pro-
viding a valuable opportunity to perform the analysis in a
cell type-specific manner. We applied scLink to gene ex-
pression datasets of 59 cell types (each with at least 100
cells), using the top 500 highly expressed genes in each
dataset. The proportion of zero counts in the 59 gene ex-
pression matrices ranged between 1.0% and 40.5%, and had
a mean of 12.4%. The regularization parameters in scLink
were selected as the smallest value from {1, 0.95, ... , 0.05}
such that the resulting networks had no more than 5% edges
(6237 edges). After constructing the cell type-specific gene
co-expression networks, we summarized the gene degrees,
number of network communities (identified by the Louvain
algorithm [48]), and community sizes in Figure S4.

Since the true underlying gene networks were unknown
for real gene expression data, we investigated the identified
edges between genes and known TFs. For each cell type, we
calculated the number of identified edges connected to
known TFs in scLink’s results, and assessed their overlap
with the TF–target edges discovered in previous ChIP-seq
experiments [49–51]. Since the ChIP-seq experiments were
performed using bulk data from human or mouse tissues
instead of single cells, we pooled the TF–target pairs from
the ChIP-seq experiments for the comparison, resulting in a
database of 310 TFs. We used this database as a reference to
investigate scLink’s performance, but we note that it’s not
appropriate to treat this database as the ground truth. Our
results showed that a substantial proportion of the identified
TF–gene edges by scLink were previously discovered in
ChIP-seq experiments (Figure 3A). This proportion ranged
from 15.6% to 89.5% among different cell types with a
median of 59.3%. Especially, scLink’s results had relatively
high consistency with the ChIP-seq database in the epithe-
lial, mesenchymal, pancreatic, epidermal, and muscle cell
types, with a median overlapping proportion of 65.5%,
69.8%, 64.1%, 61.0%, and 65.4%, respectively (Figure 3A).
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As a comparison, we also applied five alternative network
construction methods (described in the simulation studies)
to the Tabula Muris data: Pearson correlation, Spearman’s
correlation, PIDC, glasso-f, and glasso-r (Table S1). For
these methods, the median proportions of identified TF–
gene edges that were previously discovered in ChIP-seq
experiments were 53.0%, 53.6%, 63.5%, 56.4%, and
58.1%, respectively. We found that scLink and PIDC gene-
rally lead to a higher consistency with the bulk tissue ChIP-
seq database.

Since some TF–gene edges identified by scLink were not

previously observed from ChIP-seq experiments, we per-
formed a motif analysis using HOMER [52] to study if the
genes connected to the same TF by scLink shared common
motifs in their promoter regions. Our motif analysis identi-
fied both known and novel motifs for a group of TFs, in-
cluding Cebpb, Cebpd, Irf8, Jun, Klf4, Rela, and Stat3
(Figure 3B). The motif analysis showed that genes connected
to the same TF did have shared sequence features in their
regulatory sequences and were likely to be co-expressed.In
summary, the aforementioned analyses demonstrate that, by
estimating the single-cell gene networks, scLink is able to

Figure 3 Performance of scLink on the Tabula Muris dataset
A. The numbers of TF–gene edges identified only by scLink and by both scLink and ChIP-seq experiments. B. Known and novel motifs of seven TFs
identified from the promoter regions of genes connected to these TFs by scLink. C. Enriched GO terms in the two largest gene modules identified from
pancreatic cell types. D. Enriched GO terms in the two largest gene modules identified from immune cell types. E. Enriched GO terms in the two largest
gene modules identified from epithelial cell types. FDR-adjusted P values are shown in the heatmaps, and P values greater than 0.1 are shown in gray. TF,
transcription factor; FDR, false discovery rate.
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identify edges between TFs and their potential target genes,
even though scLink does not rely on any prior information
of known TFs.

To further validate the biological functions of gene co-
expression networks estimated by scLink, we investigated
gene modules in the networks for the pancreatic, immune,
and epithelial cell types. These modules were supposed to
represent groups of highly co-expressed genes that shared
similar biological functions or pathways in the corre-
sponding cell types. For each cell type, we calculated the
partial correlation matrix of the genes based on the esti-
mated concentration matrix ^ by scLink (see Method).
Then, we performed hierarchical clustering using
(1−|partial correlation|) as the distance measure. Next, we
divided the genes into separate modules by cutting the
dendrogram at a height of 0.85. Finally, we performed the
Gene Ontolo-gy (GO) enrichment analysis on the gene
modules.

The enriched GO terms in the two largest gene modules
of each cell type are displayed in Figure 3C–E. For the
pancreatic cells (Figure 3C), we found that GO terms re-
lated to protein transportation and digestive system process
were enriched in gene modules of exocrine cells (acinar and
ductal cells), while terms related to glycogen metabolic
process, glucose homeostasis, and cellular response to
hormone stimulus were enriched in gene modules of en-
docrine cells (alpha, beta, and delta cells). In addition,
“regulation of insulin receptor signaling pathway” was only
enriched in a gene module of beta cells, which has a critical
role in insulin regulation. In contrast, “regulation of steroid
hormone biosynthetic process” was only enriched in a gene
module of delta cells, which secretes the hormone soma-
tostatin. For the immune cells (Figure 3D), we found that
GO terms related to B cell activation or proliferation were
enriched in the largest gene module of B cells, and the terms
related to B cell receptor signaling pathway and antigen
processing were enriched in the second-largest module of B
cells. In contrast, GO terms enriched in monocyte gene
modules were related to monocyte extravasation and
monocyte immune complex clearance. For the epithelial
cells (Figure 3E), the enriched GO terms in gene modules
also demonstrated cell type-specific biological functions.

To investigate if the edges identified by scLink could
improve the identification of molecular pathways and
functional gene modules, we studied the inferred gene
networks in T cells, skeletal muscle satellite stem cells, and
pancreatic beta cells as three examples. In each scLink
network, we focused on the largest connected component
supported by known protein interactions in the STRING
database [53]. We found that scLink could identify gene
interactions that would be missed using a conventional
approach with the Pearson or Spearman’s correlation
(File S1). In T cells (Figure 4A), the inferred network by

scLink contained four modules corresponding to gene sets
of different functions, but these modules were not reported
in correlation-based networks with the same sparsity level.
Genes in the cell adhesion/receptor module are involved in
the pathways of cell adhesion, cell surface interactions, and
cell surface receptors; genes in the antigen processing
module are responsible for antigen processing and pre-
sentation and immunoregulatory interactions [54]. In addi-
tion, the smallest module contained three genes associated
with protein serine/threonine phosphatase complex, which
has been shown to be a requisite of T cells’ functions [55].
In the muscle stem cells (Figure 4B), the inferred network
contained a module of 11 genes playing key roles in os-
teoclast differentiation [56]. In this module, three edges
were only identified by scLink. In addition, the network also
contained a four-gene module involved in muscle re-
generation and a five-gene module with roles in myoblast
differentiation, both of which were also missed by the
conventional correlation approach. In the pancreatic beta
cells (Figure 4C), the inferred network identified a module
of 15 genes responsible for oxidative phosphorylation,
which plays an important role in beta cells’ proliferation,
survival, and response to rising blood glucose. The afore-
mentioned results demonstrate scLink’s ability to identify
edges between genes with direct interactions or similar
biological functions. We also investigated the largest con-
nected components supported by known protein interac-
tions in the gene networks based on Pearson or Spearman’s
correlation, PIDC, glasso-f, and glasso-r (File S1). The
largest gene modules in these networks were enriched with
genes coding for ribosomal proteins (Table S2) and/or GO
terms of biosynthetic and metabolic processes (Tables S3–
S7). These results show that the gene modules identified by
these methods capture less cell type-specific information
and functional relevance than those gene modules identified
by scLink.

scLink identifies gene network changes in breast cancer

We next applied scLink to a single-cell dataset of breast
cancer to study if scLink can help construct and compare
gene co-expression networks in healthy and disease states.
We downloaded the gene expression data of immune cells in
the tumor (656 cells) and matched breast tissue (211 cells)
from the same patient [12]. These data were obtained using
the inDrop platform [57]. We separately applied scLink to
data from the normal and tumor tissues, using the top 500
highly expressed genes in the normal tissue. The propor-
tions of zero counts in the normal and tumor expression
matrices were 49.0% and 66.0%, respectively. The regu-
larization parameters in scLink were selected as the smallest
value in {1.2, 1.1, ... , 0.5} such that the inferred network
had no more than 5% edges (6237 edges). In the identified
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gene network for the normal sample, the gene degree ranged
from 2 to 103 with an average of 24.6. The 89 communities
determined by the Louvain algorithm had an average size of
5.6. In the tumor sample, the gene degree ranged from 2 to
137 with an average of 26.2. The 63 communities de-
termined by the Louvain algorithm had an average size of
7.9.

Comparing the two inferred gene co-expression net-
works, we found 453 differential edges with a greater than
0.5 change in scLink’s correlation and only present in the
normal sample but not in the tumor sample (Figure S5A).
We assessed the statistical significance of scLink’s corre-
lation for the 453 edges using a bootstrap approach (File
S1), and 84.5% edges had a P value < 0.05 after adjusting
for the false discovery rate (FDR) (Figure S6A). For exam-
ple, in the normal sample, FNBP1 was co-expressed with
MGP, whose down-regulation is associated with better
survival in breast cancer [58] (scLink’s correlation = 0.77,
adjustedP = 0) (Figure 5A). However, they were expressed
in an independent manner in the tumor sample (scLink’s
correlation = −0.03). As another example, scLink identified
an edge between EGR1 and NUDT3 in the normal sample
(scLink’s correlation = −0.48, adjustedP = 0.004) but not in
the tumor sample (scLink’s correlation = 0.35), and both
genes were reported to have regulatory roles in breast

cancer (Figure 5A) [54,59].
Meanwhile, we identified 1384 differential edges with a

greater than 0.5 change in scLink’s correlation and only
present in the tumor sample but not the normal sample
(Figure S5B). We also assessed the statistical significance
of scLink’s correlation for these edges in the tumor condi-
tion, and 90.0% edges had a FDR-adjusted P value < 0.05
(Figure S6B). For instance, EGR1 and USF2 were highly
co-expressed in the tumor sample (scLink’s correlation =
0.77, P = 0.01) but not in the normal sample (Figure 5B). A
similar expression pattern was observed between CD63 and
BIRC3 (scLink’s correlation = 0.58, adjusted P = 0 in the
tumor sample). In addition to EGR1, CD63 and BIRC3were
also found to be associated with breast cancer [60,61], while
USF2’s role in breast cancer has not been clearly in-
vestigated. The aforementioned results demonstrate that, by
comparing co-expression changes between healthy and
disease states, it is possible to 1) identify new genes that are
associated with a specific disease; and 2) investigate how
co-expression and co-regulation of genes impact cell
functions [12]. In contrast, the aforementioned co-
expression changes could not be captured by the Pearson
correlation coefficients (Figure 5A and B). Actually, the
Pearson correlation changed by no more than 0.2 for 97.0%
of the edges between the normal and tumor conditions

Figure 4 Gene networks inferred by scLink overlap with functional protein interaction networks
A. Edges inferred by scLink only or both scLink and correlation approaches for T cells. B. Edges inferred by scLink only or both scLink and correlation
approaches for skeletal muscle satellite stem cells. C. Edges inferred by scLink only or both scLink and correlation approaches for pancreatic beta cells.
Edges inferred only by scLink are displayed in red. Edges that were identified by both scLink and correlation approaches are displayed in blue. All the
displayed edges are consistent with known protein interactions in the STRING database. Functional gene modules are grouped by the shaded area.
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(Figure S5C), suggesting its insensitivity in identifying
important co-expression changes in single cells. For a more
systematic comparison, we constructed Pearson correlation
networks with the same level of sparsity. We then in-
vestigated the biological functions of the 50 genes with the
largest degree changes between the normal and breast
cancer conditions, using the gene networks constructed by
scLink and Pearson correlation. We found that the top en-
riched GO terms in the 50 genes identified by scLink were
related to immune responses of myeloid cells, leukocytes,
and neutrophils. In comparison, GO terms enriched in the 50
genes identified by Pearson correlation were related to more
general protein regu-lation processes and humoral immune
response (Table S8).

By comparing the tight gene modules in the normal and
tumor samples, we could observe a dramatic change in the
global network structure in addition to the change in in-
dividual edges. By performing hierarchical clustering
using the partial correlation matrix estimated by scLink,

we identified 12 modules with at least ten genes in the
normal breast tissue (Figure S7). Similarly, we identified
11 modu-les with at least ten genes in the tumor tissue
(Figure S8). However, the two sets of module assignments
only had an adjusted Rand index of 0.10 and a normalized
mutual information of 0.49, implying widespread rewiring
of gene networks in breast cancer. For example, a 15-gene
module identified from the normal samples was much less
densely connected in the tumor sample (Figure S9). In this
module, three genes (COL3A1, COL1A2, and JCHAIN)
had opposite co-expression relationships with the other
genes between the two conditions (Figure 5C), and these
genes are involved in the regulation of immune response.
Since the COL3A1 and COL1A2 genes are both in the
pathway of scavenging by class A receptors, which are
important regu-lators of immune responses to cancer [62],
their co-expression changes in the tumor tissue may help
us better understand the immune response processes in
breast cancer.

Figure 5 scLink identifies differential co-expression relationships between normal and breast cancer tissues
A. The log10-transformed expression of two gene pairs (NUDT3 and EGR1; FNBP1 and MGP) which were connected in the scLink network in immune
cells of the normal tissue but not in the tumor tissue. Both scLink’s and Pearson correlation coefficients are displayed. B. The log10-transformed expression
of two gene pairs (CD63 and BIRC3; EGR1 and USF2) which were connected in the scLink network in immune cells of the tumor tissue but not in the
normal tissue. C. The correlation matrices (in the normal and tumor tissues) of a 15-gene module identified by scLink from the immune cells in the normal
tissue. Genes showing opposite co-expression relationships with the other genes between the two conditions are highlighted in bold.
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scLink identifies gene network changes from time
course data

To further demonstrate scLink’s ability to quantify gene co-
expression strength and infer gene networks in single cells
under different conditions, we applied scLink to 758 single
cells profiled by the Fluidigm C1 platform at 0 h, 12 h, 24 h,
36 h, 72 h, and 96 h of definitive endoderm (DE) differen-
tiation [44]. We first compared scLink’s correlation between
51 lineage-specific marker genes [44] at different time
points. Among the 1275 marker gene pairs, 240 pairs had a
correlation change > 0.5 during DE differentiation (Figure
S10A). For example, NANOG and PECAM1 were weakly
associated at the early time points (0 h, 12 h, and 24 h), but
moderately associated at the late time points (36 h and 72 h)
(Figure 6A); MT1X and SOX17 did not demonstrate asso-
ciation at the early time points, but became negatively as-
sociated at 36 h and 72 h (Figure 6B). These findings are
consistent with previous observations in DE differentiation
studies [63,64], but our results provide a detailed view of
the association changes across the time points. These results
may be used to interpret how these genes jointly regulate
cell fate decisions in DE differentiation. In contrast, the
Pearson correlation coefficients between these gene pairs

were constantly low at almost all time points (Figure S10B),
making it difficult to identify and interpret the genes’ as-
sociation changes.

Next, we applied scLink to the gene expression levels
from 0 h and 96 h data, using the top 1000 highly expressed
genes in the whole dataset. The proportions of zero counts in
the two expression matrices were 1.8% and 2.1%, respec-
tively. The gene-level zero proportions were 0%–98.9% at
0 h and 0%–46.8% at 96 h. The regularization parameters
were selected as the smallest value in {0.2, 0.19, ... , 0.01}
such that the inferred network had no more than 1% edges
(4995 edges). In the 0 h gene network, the gene degree
ranged from 2 to 274 with an average of 11.9, and the 188
communities identified by the Louvain algorithm had an
average size of 5.3. In the 96 h gene network, the gene
degree ranged from 2 to 136 with an average of 11.8, and
the 296 communities identified by the Louvain algorithm
had an average size of 3.4. By comparing the gene networks
identified for the two time points, we found 595 differential
edges whose corresponding gene pairs had a greater than
0.5 change in their co-expression (Figure S11).

To compare the differences in hub genes between the two
time points, we assessed the change of gene degrees be-
tween the 0 h and 96 h networks. We found that genes with

Figure 6 scLink identifies gene network changes along the time course of definitive endoderm differentiation
A. The log10-transformed expression of PECAM1 and NANOG at different time points in the differentiation process of definitive endoderms. B. The log10-
transformed expression of MT1X and SOX17 at different time points in the differentiation process of definitive endoderms. Displayed numbers are
correlation measures calculated by scLink. C. For genes whose degree changes are greater than 25 between 0 h and 96 h, their degrees at both time points
are displayed. Labeled genes have degree changes greater than 100. D. scLink’s correlation matrices of genes with degree changes greater than 100
between 0 h and 96 h.
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higher degrees at 0 h were enriched with GO terms relevant
to mitosis, cell cycle, and chromosome separation, while
genes with higher degrees at 96 h were enriched with GO
terms relevant to regulation of cell differentiation and or-
ganismal development (Figure S12). Among genes with the
largest degree changes, we observed three lineage-specific
marker genes, LHX1, HAPLN1, and GNG11 (Figure 6C). In
addition, among genes with larger degrees at 0 h than at
96 h, we observed CYP26A1, CDK6, VIM, and ITGA5
(Figure 6C), which have been shown to have regulatory
roles in cell proliferation and/or cell differentiation [65–67].
In addition, we observed two tight gene modules at 96 h but
only one such module at 0 h (Figure 6D), implying that joint
expression of a gene set, including COL5A2, LEPREL1,
VIM, NTS, ITGA5, and GNG11, may be critical to the dif-
ferentiation of embryonic stem cells. The aforementioned
results show that the gene co-expression networks identified
by scLink from different time points provide important
clues regarding transcriptional changes in the differentiation
process of DE. In contrast, we also constructed Pearson
correlation networks with the same level of sparsity, and
investigated the biological functions of genes with high
degrees at 0 h and 96 h. We found that 30.9% of the 1000
genes had the same direction of degree change in the scLink
and Pearson correlation networks (Figure S13A). Unlike the
scLink networks, genes with higher degrees at 0 h in the
Pearson correlation network were enriched with GO terms
of translation processes, while genes with higher degrees at
96 h were enriched with GO terms relevant to apoptosis
(Figure S13).

scLink demonstrates computational efficiency and ro-
bustness

To evaluate the computational efficiency and robustness of
gene network construction, we compared the performance
of scLink with PIDC and GENIE3 based on scRNA-seq
data from two protocols, Smart-seq2 [47] and 10X Geno-
mics [68]. For the Smart-seq2 protocol, we selected four
cell types, late pro-B cells, bladder urothelial cells, myeloid
cells, and microglial cells, from the Tabula Muris dataset.
The cell numbers of the four cell types were 306, 684, 1208,
and 4394, respectively. For each cell type, we selected 100,
200, and 500 highly expressed genes for network con-
struction. In order to assess the robustness of the three
methods given random variation, for each cell type, we
randomly selected half of the cells for network construction
and independently repeated the procedure ten times. The
robustness score of each method was calculated based on
the consistency between the ten inferred networks of the
same cell type (see Method). For each method, the sum-
marized computation time and memory usage were avera-
ged across the ten repeated experiments. Our results showed

that scLink achieved higher robustness than PIDC and
GENIE3 while requiring much less computation time and
memory usage (Figure S14). For the 10X Genomics pro-
tocol, we evaluated scLink and PIDC based on scRNA-seq
data of 10,085 B cells [68]. Since the computation time of
GENIE3 for Smart-seq2 data exceeded 105 s (2.8 h) when
500 genes and 2197 cells were used, we did not test it on the
large-scale 10X data. For the B cells, we selected the 500
and 1000 highly expressed genes for network construction.
In order to assess the robustness, we randomly selected
5000 or 8000 B cells for network construction and in-
dependently repeated the procedure ten times. scLink again
achieved higher computational efficiency and robustness
than PIDC (Figure S15). In addition, scLink finished the
computation in fewer than 100 s to construct a co-
expression network of 1000 genes using 8000 cells. We also
noticed that the best robustness score achieved by scLink
was around 0.5, and this could be explained by two major
reasons. First, the correlation calculation and network in-
ference were inevitably affected by the random variation in
single-cell gene expression data, leading to variation of
identified edges for randomly sampled cells of the same cell
type. Second, since the cell types in real scRNA-seq data
were also computationally inferred, there might exist cell
subtypes that had biologically different gene co-expression
networks. The aforementioned experiments were performed
using a Ubuntu 16.04.5 system and two 8-core CPUs of
Intel Xeon CPU E5-2670 at 2.60GHz.

Discussion

In this work, we develop a method called scLink to improve
the construction of sparse gene co-expression networks
based on single-cell gene expression data. We first propose
a new correlation measure for gene co-expression re-
lationships to account for the sparsity feature of single-cell
gene expression data. Next, relying on the more robust
correlation measure, scLink identifies gene co-expression
networks using a penalized and data-adaptive likelihood
model. Our simulation studies show that scLink has the best
accuracy in gene network construction compared with five
other state-of-the-art methods, given different network
topologies (hub-based or power-law), gene numbers, and
sparsity levels of gene expression. Our results based on the
Tabula Muris database show that scLink is able to identify
cell type-specific networks and functional gene modules,
and the edges inferred by scLink can capture regulatory
relationships between gene pairs. Our real data studies also
demonstrate scLink’s ability to help identify co-expression
changes and gene network rewiring between healthy and
disease states. In addition, scLink is also demonstrated to
reveal network differences and critical hub genes in time
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course data, such as those from the DE differentiation
process.

To demonstrate the applications of scLink and dis-
seminate the research findings in our real data studies, we
develop a web application of scLink (https://rutgersbiostat.
shinyapps.io/sclink/). This application provides an interac-
tive platform for users to subset and visualize the cell type-
specific correlation matrices and gene networks constructed
by scLink (Figure S16). For easy application of scLink to
additional single-cell gene expression datasets, we also
implement the methods in the R package scLink (https://
github.com/Vivianstats/scLink).

In the simulated and real data studies, we construct gene
networks with 100–1000 genes. In actual applications of
scLink, we also suggest a gene filtering step based on the
gene detection rates or the mean expression levels [15].
Instead of selecting an arbitrary number of genes to be re-
tained, researchers can also set a threshold such that genes
of particular interest will be included. The rationale for
implementing this filtering step is that genes with small
detection rates and expression levels often have low bio-
logical relevance and do not provide sufficient information
for co-expression estimation. Including these genes might
increase false edges in the gene networks. For example, our
simulation studies demonstrate that the accuracy of network
construction decreases with increasing level of sparsity in
single-cell data, regardless of the method being used (Figure
2). Given the relatively high sparsity level of data generated
by droplet-based scRNA-seq protocols [69], this filtering
step is especially necessary on gene expression data from
these protocols. When it is of interest to construct a network
of thousands of genes, it is still possible to directly apply
scLink, but the likelihood optimization step would be more
time-consuming because it involves large-scale matrix ope-
rations. An alternative approach is to first divide the genes
into a few major modules based on scLink’s correlation, and
then separately apply scLink to each module to identify co-
expression networks.

Since the first step of scLink is partially motivated by our
scImpute method [28] and additional imputation methods
for single-cell gene expression data have also become
available, an alternative approach to constructing gene co-
expression networks is to apply conventional network in-
ference methods to imputed gene expression data. However,
we would like to discuss two potential issues with this ap-
proach. First, previous studies have shown that imputed
data may still be much sparser than bulk data, even though
containing fewer zero counts than the observed single-cell
data [28,70]. Therefore, conventional network construction
methods designed for bulk data may still have poor per-
formance even when applied to imputed single-cell data.
Second, imputation of gene expression could be a time-
consuming step depending on the cell number of the data.

By skipping the imputation step and directly accounting for
the sparsity issue in co-expression calculation, scLink can
achieve better computational efficiency.

Even though our simulation and real data studies de-
monstrate the great potential of scLink on different types of
single-cell gene expression data, we need to interpret the
results with caution, since the edges identified by scLink are
based on statistical dependencies and do not have direc-
tions. These edges may capture the actual regulatory re-
lationships, such as those between TFs and their target
genes. However, the inferred edges may also represent co-
regulatory relationships of genes regulated by common TFs.
In addition, we may also identify edges between genes that
are responsible for similar biological functions and de-
monstrate coordinated expression patterns. It is not feasible
to directly distinguish the aforementioned different types of
edges using only gene expression data, but scLink’s results
provide good candidates for further computational and/or
experimental validations. For example, single-cell ChIP-seq
experiments could be designed and prioritized based on
scLink’s identified TF–gene pairs [71]. It is also possible to
take advantage of existing databases of TFs and protein–
protein interactions at the validation step, but the knowledge
derived from previous bulk tissue research does not ne-
cessarily reflect the true scenario in single cells [25].

As discussed in several recent methods, it is possible to
more directly infer gene regulatory relationships instead of co-
expression relationships if temporal information is available
for the single cells. Some of these methods take pseudo-time
orders estimated by computational methods [26,72], while
others assume that actual time course data are available [73].
In real practice, as most scRNA-seq experiments are not
performed along a time course, only pseudo-time orders may
be available for the majority of datasets. However, since
pseudo-time orders are only point estimates of physical time
orders, it is important to consider how to quantify pseudo-time
uncertainty and propagate this into the construction of gene
regulatory networks. Aside from temporal information, ad-
ditional experimental data, such as ATAC-seq or ChIP-seq
data, have also been shown to assist the inference of gene
regulatory networks in bulk tissue studies [74]. As single-cell
multi-omics technologies and data integration methods
continue to emerge and evolve [75], it will become possible
to modify and extend existing bulk-tissue methods for sin-
gle-cell data. The penalized likelihood approach used in
scLink can incorporate the aforementioned additional in-
formation with flexibility. For instance, we can extend the
penalty terms in scLink to apply different levels of reg-
ularization on each gene pair based on the epigenetic or
chromatin accessibility information. This extension will be
particularly helpful to more accurately infer the co-
expression patterns among genes with low-to-mediate ex-
pression levels. Another future direction is to construct
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differential gene networks between biological conditions
from scRNA-seq data. In our real data studies, we used a
straightforward approach to identify differential edges
based on the differences in scLink’s correlation strength.
However, it is possible to extend the likelihood model to
directly identify differential networks using scRNA-seq
data from both conditions, as previously done for bulk tis-
sue RNA-seq data [32,76]. With the ongoing efforts of
single-cell atlases such as the Human Cell Atlas [77] to
better define cell types, states, and lineages, it will also
become possible to investigate how gene co-expression and
interactions differ in related tissue and cell types. In sum-
mary, we expect scLink to be a useful tool for inferring
functional gene networks from single-cell gene expression
data, with the potential to incorporate other omics data types
as single-cell technologies continue to develop.

Data availability

The scLink R package is available at https://github.com/
Vivianstats/scLink. The corresponding web application is
accessible through https://rutgersbiostat.shinyapps.io/
sclink/.
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