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Mapping coordination and stochasticity of gene regulatory

networks at the single cell level

Min Cheol Kim

Abstract

Differential expression analysis of scRNA-seq data is central for characterizing how

experimental factors affect the distribution of gene expression. However, it remains

challenging to distinguish between biological and technical sources of cell-cell variability and

to assess the statistical significance of quantitative comparisons between cell groups. In this

thesis, we introduce the statistical method memento to address these limitations and enable

statistically robust and computationally efficient differential expression analysis of the mean,

variability, and gene correlation from scRNA-seq. We used memento to analyze 70,000

tracheal epithelial cells to identify interferon response genes with distinct variability and

correlation patterns, 160,000 T cells perturbed with CRISPR-Cas9 to reconstruct

gene-regulatory networks that control T cell activation, 1.2 million PMBCs to map

cell-type-specific cis expression quantitative trait loci (eQTLs), and arbitrary cell groups

within the entire 50 million cell CELLxGENE Discover data corpus. In all cases, memento

identified more significant and reproducible differences in mean expression but also identified

differences in variability and gene correlation that suggest distinct transcriptional regulation

mechanisms imparted by cytokines, genetic perturbations, and natural genetic variation.

These results demonstrate memento as a first-in-class method for the quantitative analysis of

scRNA-seq data, scalable to millions of cells and thousands of samples.
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Chapter 1

Introduction

Gene expression, inherently determined by a cell’s genetic constitution and its environmental

interactions, can exhibit fluctuations due to both intrinsic noise (stemming from mRNA

transcription and degradation) and extrinsic noise related to a cell’s specific state1,2. While

genetics and environmental history significantly contribute to expression variability across a

population of cells, stochastic transcriptional noise has been recognized to profoundly

influence cellular responses to perturbations, as well as cellular development and

differentiation2–4. Characterizing how deterministic and stochastic factors cohesively

influence the distribution of gene expression is central for understanding how transcriptional

control is established, maintained, and may be broken. These insights could, consequently,

spotlight mechanisms underpin phenomena where genotype-phenotype relationships are not

completely explained, such as destabilization3, incomplete penetrance5, and variable

expressivity6.

Historically, the distribution of a gene’s expression across a cellular population has been

described by parameters such as the mean and variance, as well as derivative measures like

the Fano factor and coefficient of variation7. Constitutively expressed genes, such as

housekeeping genes, which undergo transcription and degradation at constant rates, are
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predicted to conform to a Poisson distribution where the mean and variance are equal.

Nonetheless, most genes display over-dispersion, exhibiting higher variability than expected8,

and genes within the same biological pathway are often transcriptionally correlated5. These

observations are consistent with a model of active regulation for multiple related genes

controlled by cis regulatory elements for transcription factors with "on" and "off" states9.

Until recently, studying the distribution of gene expression, in particular the joint

distribution of multiple genes, has been technologically challenging and has been mostly

pursued in model organisms that can be genetically modified10,11.

Single-cell RNA-sequencing (scRNA-seq) has emerged as a systematic and efficient approach

for profiling the transcriptomes of cells across experimental factors including extracellular

stimuli12, genetic perturbations13,14, and natural genetic variation15–18. In theory, the

analysis of scRNA-seq data can decipher how experimental factors and transcriptional noise

together shape the distribution of gene expression. Yet, there remains a need for differential

expression analysis methods that compare distributional parameters between cell groups

including the mean, variability, and gene correlation. To assess differences in mean

expression, it is common practice to apply bulk RNA-seq differential expression analysis

methods to pseudobulk profiles, generated by aggregating transcript counts for cell groups

defined by clustering. While not fully leveraging single cells as repeated measures,

pseudoublk approaches have surprisingly proven to outperform methods that explicitly

model the distribution of observed scRNA-seq data19. Moreover, very few methods exist for

assessing differences in gene expression variability that measure transcriptional noise or

correlation between pairs of genes that measure the coordinated expression of genes that may

participate in the same regulatory network.

Generalized differential expression analysis of scRNA-seq data remains a formidable

challenge due to two pivotal statistical limitations. First, decomposing the overall cell-to-cell

variability in scRNA-seq data into its constituent components - transcriptional and
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measurement noise - remains a substantive obstacle20. This complexity arises due to the

small numbers of molecules required in the biochemical reactions of both gene transcription

and the scRNA-seq sampling process (Fig. 2.1A)21. Most existing methods implement

highly parameterized models designed to account for the higher than expected variability in

the observed sparse transcript counts, attributing it to known experimental and technical

factors (i.e. treatment and batch). However, these models do not explicitly model

measurement noise, a byproduct of the inherent undersampling characteristics of scRNA-seq

workflows22–27. Importantly, generating accurate estimates of biological variability is crucial

for effectively modeling the joint distribution of multiple genes, which is often represented by

the correlation between gene pairs22. Second, establishing the statistical significance of a

specific comparison of mean, variability, or gene correlation between groups of cells, remains

a largely unsolved problem. Many existing methods utilize asymptotic theory for comparison

of means, leading to uncalibrated p-values, demand an exact specification of the parametric

model, or lack the flexibility to incorporate hierarchical structures and continuous covariates

effectively. This is particularly problematic in studies necessitating thousands of

comparisons, as inadequately calibrated p-values violate assumptions for multiple testing

correction. Moreover, while multiplexed workflows inherently accommodate a growing

number of individuals or conditions, thereby naturally generating biological and technical

replicates13,15,28–30, the majority of existing analytical methods do not explicitly account for

such replicates in their models. DESCEND and comparable methods that utilize generalized

linear models are equipped to address this issue. However, they often encounter significant

computational hurdles when modeling the complex hierarchical structure inherent in

scRNA-seq data. Furthermore, these methods are limited to a specific model of cell-cell

variability31, such as the proportion of cells exhibiting zero expression. Indeed, recent studies

spotlight a startling underperformance of scRNA-seq methods relative to pseudobulk

methods when testing mean differences, likely attributable to limitations in both multiple

testing correction and properly accounting for the hierarchical nature of scRNA-seq data19.
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Addressing these statistical and methodological challenges, we present memento, an

end-to-end method that implements a hierarchical model for estimating mean, residual

variance, and gene correlation from scRNA-seq data, and provides a statistical framework for

hypothesis testing of these parameters (Fig. 2.1B). memento employs a novel multivariate

hypergeometric sampling process and leverages the sparsity of scRNA-seq data to implement

an innovative bootstrapping strategy for the efficient statistical comparison of the estimated

parameters between cell groups. Through simulations and analyses of real data, we

demonstrate that memento produces accurate parameter estimates over a range of gene

expression distributions and sampling efficiencies, computes well-calibrated test statistics

suitable for multiple testing correction, and achieves sublinear runtimes. We demonstrate the

broad applicability of memento in four applications aimed at elucidating how experimental

factors modulate the distribution of gene expression in human cells (Fig. 2.1C). First, we

conducted scRNA-seq on 70k tracheal epithelial cells stimulated with extracellular interferons

and investigated how stimulation modulates the variability and correlation of response genes

temporally. Second, we performed Perturb-seq on 160k T cells and mapped gene regulatory

networks that define aspects of broad T cell activation. Third, we reanalyzed 1.2M cells

collected from 250 individuals to identify genetic variants associated with mean, variability,

and gene correlation in specific cell types. Finally, we implemented an approximate

bootstrapping strategy utilizing the Chan Zuckerberg Initiative (CZI) CELLxGENE

Discover Census API, facilitating the deployment of memento for near real-time comparisons

of any arbitrary cell groups within the 50 million cell CELLxGENE data corpus. Across

these diverse applications, memento consistently identified more significant and reproducible

differences in mean expression between experimental groups compared to existing methods

but also identified differences in variability and gene correlation, thereby revealing distinct

transcriptional regulation modes imparted by cytokines, genetic perturbations, and natural

genetic variation. memento is implemented in python, is compatible with scanpy32, and can

be downloaded at https://github.com/yelabucsf/scrna-parameter-estimation.
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Chapter 2

Accurate estimation and inference of distributional

parameters from single cell transcriptomics data

2.1 Novel statistical model of single-cell RNA-sequencing

Since its advent, single-cell RNA-sequencing (scRNA-seq) has yielded sparse data despite

continuous advancements in molecular biology, manifesting in a high degree of cell-to-cell

variability even in genetically identical cells exposed to the same environment (Fig. 2.1A).

The crucial task of decomposing this variability into components of biological versus

measurement noise becomes pivotal for the differential expression analysis of scRNA-seq

data. Notably, measurement noise intrinsic to scRNA-seq can be attributed to inefficiencies

in at least three molecular biology processes common to nearly all workflows: 1) the capture

of only a fraction of expressed transcripts within compartments for reverse transcription

(RT) to cDNA, 2) the amplification of only a fraction of cDNA molecules during each

polymerase chain reaction (PCR) cycle, and 3) the sequencing of only a fraction of the

amplified cDNA. Although the development of Unique Molecular Identifiers (UMIs) has

largely obviated the need to model the noise introduced by PCR33, noise stemming from

imperfect transcript capture for RT and imperfect cDNA sampling during sequencing
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persists, culminating in the observed, attenuated distribution of counts.

Here, we propose a novel statistical framework that models observed scRNA-seq counts as

the result of hypergeometric sampling of the expressed transcripts within a cell. The

motivation to implement the hypergeometric model stems from the observation that the

capture of poly-adenylated mRNA for RT and sequencing of resultant libraries are processes

which sample molecules from each cell without replacement, thereby introducing

measurement noise into the final dataset. Central to our model is the flexibility to

accommodate arbitrary distributions of gene expression within a cell prior to measurement.

Formally, let Xc =
Zc

Nc
denote an m-dimensional random variable representing the normalized

transcript counts of m genes in cell c, where Zc defines a vector of the expressed transcript

counts and Nc the total transcript counts within a cell. We model scRNA-seq as a

multivariate hypergeometric sampling process, wherein the observed transcript counts Yc

originate from Xc: Yc ∼ MultiHG(NcXc, Nc, Ncq). In this representation, q signifies the

overall transcript sampling efficiency of scRNA-seq and is associated with measurement noise

introduced during library preparation and sequencing (see Methods for detailed

exploration). Importantly, we empirically substantiate that the two-step noise process

involving RT capture (hypergeometric) and sequencing (binomial) can be well represented

with a singular step of hypergeometric sampling with the overall q (Fig. S2.1). Across many

simulated values of capture efficiency and sequencing saturation, the single hypergeometric

sampling well approximates the two step process (nonsignificant KS-test, Fig. S2.2).

2.2 Estimating distributional parameters of gene

expression from scRNA-seq

To our knowledge, this is the first use of the hypergeometric sampling process for modeling

scRNA-seq data, a likely result of the complexity in estimating distribution parameters via
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maximum likelihood. Here, we derive method of moment (MoM) estimators for the first

(mean), second (variance), and mixed (covariance) moments of Xc given Yc under the

assumption of hypergeometric sampling (see Methods for derivation and details):

µ̂g,memento =
1∑
c Nc

r∗g , where r∗g is the Good-Turing corrected count of gene g

σ̂2
g,memento =

1

ncells

∑
c

Y 2
cg − Ycg(1− q)

N2
c q

2
− µ̂2

g

σ̂gigj ,memento =
1

ncells

∑
c

YcgiYcgj

N2
c q

2
− µ̂giµ̂gj

While the mean can be directly used to test for differential mean expression (DM), the

variance needs to be adjusted to account for the expected dependence between mean and

variance in count data, thereby enabling the testing for differential expression variability

(DV) independent of DM34,35. To do so, we introduce the residual variance σ̃g as a measure

of expression variability σg(Methods), defined as the variance component unexplained by

the mean (Methods). Consequently, gene correlations are the covariance terms (off diagonal

elements) scaled by the variance terms (diagonal elements) from the variance-covariance

matrix estimated above.

We performed extensive simulations to compare memento’s hypergeometric estimators to the

naive plug-in estimators employed by scHOT36, empirical Bayes estimators under the

Poisson approximation introduced by Zhang et al.37 (a special case of the memento estimator

for setting q = 0, and estimates derived from BASiCS27 (see Methods for forms of the naive

and Poisson estimators). Across a range of q values, reported by both low-efficiency (q < 0.2)

droplet-based (e.g., 10X V1, V2 and V3) and high-efficiency (q > 0.3) plate-based

(Smart-Seq338) scRNA-seq workflows, memento’s hypergeometric estimator produced

remarkably accurate estimates of mean (Lin’s concordance correlation coefficient - ρc > 0.98

with 100 cells, > 0.8 with 10 cells), residual variance (ρc > 0.98, 100 cells), and gene

correlation (ρc > 0.98, 100 cells) (Fig. 2.2A). In addition, memento produces stable residual
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variance and gene correlation estimates across qs, outperforming other estimators for both

low- and high-efficiency workflows. To investigate how a gene’s mean expression influence

the accuracy of variance estimation, we compared the true simulated mean with the average

error in variance estimation (Fig. S2.3). We found that all estimators have higher accuracy

for highly expressed genes, but memento outperforms other methods even for lowly expressed

genes. These simulations are based on a single-step sampling approach, which, as

demonstrated above, effectively approximates the two-step sampling process modeling RT

and sequencing.

To further validate the accuracy of memento’s parameter estimates, we reanalyzed a dataset

comprising paired droplet-based scRNA-seq and RNA FISH data39. This data was

previously analyzed using SAVER40, an imputation method that borrows information from

similar genes and cells that has been shown to outperform other approaches including

MAGIC and scImpute for estimating gene correlations (Fig. 2.2B). For genes profiled using

both scRNA-seq and FISH, memento’s mean estimates exhibited modest improvements over

the naive estimator used by SAVER, scHOT, and BASiCs (21 genes considered; ρ = 0.58

and ρ = 0.54, using 100 cells). For residual variance, memento’s estimates were significantly

more correlated with those obtained by FISH (14 genes considered; ρ = 0.71) than the naive

estimator (ρ = 0.56) and BASiCS (ρ = 0.61) using all available 8,498 cells. Finally for gene

correlation, memento (ρ = 0.53) also significantly outperforms the naive estimator (ρ = 0.29),

SAVER (ρ = 38), and scVI (ρ = 23) using all cells. Importantly, memento produces better

estimates of gene correlation without utilizing additional genes required by imputation

methods (e.g., SAVER) and variational inference methods (e.g., SCVI). This advantage

translates not only to computational efficiency in estimation (memento: 17 seconds vs

SAVER: 30 minutes for 14 gene pairs) but also produces estimates that might be better

suited for specific downstream analyses, such as genetic mapping, where imputation could

inadvertently introduce confounding effects by borrowing information across genes and cells.

These results underscore the accuracy of memento’s parameter estimates, demonstrated
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through both simulations and comparative analyses against benchmark FISH data.

2.3 Hypothesis testing using highly efficient

bootstrapping

The goal for hypothesis testing is to determine if an observed difference in estimated

parameters between cell groups, such as mean, variability, and gene correlation, is

statistically significant in comparison to a null hypothesis. Notably, the primary concern

when testing thousands of genes, typical in scRNA-seq experiments profiling the entire

transcriptome, is the multiple testing problem: nominating a feasible set of candidate genes

for experimental follow-up while predicting the expected number of validations.

Consequently, apt calibration of the distribution of test statistics under the null hypothesis,

amenable to multiple testing correction, becomes imperative. Although method of moments

estimates utilizing the hypergeometric model offers simplicity in computation and flexibility

to the true gene expression distribution within cells, establishing statistical significance and

computing confidence intervals (CIs) necessitate bootstrapping the data. Bootstrapping

large numbers of cells using a standard scheme that samples cells with replacement would

require extensive computational resources that are both time and memory prohibitive,

especially for large datasets.

memento implements an innovative scheme, capitalizing on the sparsity and discreteness of

scRNA-seq data, to facilitate fast, memory-efficient, and highly parallelizable bootstrapping.

The key to our scheme resides in recognizing that the number of unique observed transcript

counts is substantially smaller than the number of cells (Fig. S2.5), and this held true even

for unique observed pairs of counts (Fig. S2.6) albeit to a lesser extent. Therefore, each

bootstrap iteration necessitates merely the resampling of K unique transcript counts for each

gene from Multinomial(N, n1

N
...nK

N
), proportional to the observed frequency of each count
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(Fig. S2.4), as opposed to resampling individual cells’ counts from a multinomial

distribution comprising N elements (cells) (Multinomial(N, 1
N
... 1

N
)41). This approach

culminates in fitting a markedly small weighted dataset (K << N) for each resampling

iteration. To accommodate multiplexed experiments, we extend our boostrapping strategy

using a meta-regression framework, considering each replicate as a separate subgroup of the

data, thereby enabling hierarchical resampling. This approach allows us to quantify

uncertainty while respecting the process with which the data was generated, such as

sampling of cells from different individuals. In simulation, memento’s bootstrapping strategy

yields highly accurate estimates of the null distribution for mean, residual variance, and gene

correlation comparable to those obtained with naive bootstrap resampling across a wide

range of genes (Fig. S2.8, Fig. S2.7). Utilizing bootstrap to quantify the CI in parameter

estimates, memento computes well-calibrated empirical p-values for DM, DV, and DC,

suitable for multiple testing correction (Fig. S2.9).

To show that memento produces well-calibrated p-values while maintaining high statistical

power, we simulated a dataset encompassing two distinct cell populations. To maintain

relevance to actual data, parameters extracted from a real dataset of helper T cells pre and

post-stimulation with rIFNB were employed. In the simulation, differences in the mean,

variability, and correlation were retained for 150 genes and removed for the remainder (see

Methods). For the differential mean simulation, we created the dataset with biological

replicates to mimic multiplexed experimental designs17. We show that for DM, DV, and DC,

memento computed well calibrated p-values with the expected number of false positives at a

specified significance cutoff, while achieving the highest power for detecting true differences

(Fig. 2.2C). Especially for DV and DC tasks, memento vastly outperformed competing

methods in power, maintaining a reduced false positive rate at each significance threshold.

Moreover, we observed that established methods for DM are either too liberal (t-test,

Wilcoxon rank-sum test) or far too conservative (edgeR, DESeq2), consistent with results

from19 (Fig. S2.10). Squair et al. previously attributed this to replicate-level heterogeneity
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present in most scRNA-seq datasets, and recommended pseudobulk methods to simplify the

hierarchical structure19. By directly accounting for this structure, memento produced

expected false positive rates at each significance threshold even when varying degrees of

heterogenous effects are present. In addition to simulations, we also benchmarked memento

using paired single-cell and bulk RNA-seq samples, employing datasets used by Squair et

al.19 (Fig. 2.2D left) and an additional dataset from lupus patients (Fig. 2.2D right)42.

In both datasets, memento was able to produce DM results from the scRNA-seq data most

concordant with those obtained from analyses of bulk RNA-seq. Finally, we showed that

memento finds the most concordant DM genes when comparing the effects of IFN-α and

IFN-β on ciliated cells, both of which stimulated the identical type-1 interferon receptor

(Fig. S2.11).

Compared to existing methods for DM, DV, and DC, memento is able to perform hypothesis

testing at computational speeds that are orders of magnitude faster, enabling scalability to

millions of cells (Fig. 2.2F). In a scenario simulating throughput analagous to emerging

scRNA-seq datasets - two groups each containing 106 cells - conducting DM and DV analysis

for 1,000 genes using 10,000 bootstrapping iterations per gene between groups necessitated a

mere 13 minutes using a single CPU. A multicore implementation of memento facilitated the

parallelization of multiple genes, curtailing runtime to 2-3 minutes with 6 CPUs. Particularly

for DV and DC, memento achieves up to 1000x gain in computational speed given the

equivalent compute resources compared to existing methods. These results substantiate that

memento’s bootstrapping strategy yields accurate CI estimates for effect sizes at high

computational efficiency, culminating in well-calibrated test statistics and enabling

hypothesis testing of scRNA-seq data scalable to groups of millions of cells (see Methods

for detailed description of the resampling strategy and hypothesis testing).
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2.4 Figures

Figure 2.1: memento workflow for differential mean, variability, and gene corre-
lation testing (A) Experimental workflow for single cell RNA-sequencing samples RNA
transcripts inside each cell during library preparation and sequencing. (B) memento models
scRNA-seq as a hypergeometric sampling process, estimates expression distribution pa-
rameters (mean, residual variance, and correlation) using method of moments estimators,
implements bootstrapping for estimating confidence intervals, and tests for differences in
expression parameters between two groups of cells. (C) Four applications of memento.
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Figure 2.2: Performance of memento in simulation and real data (A) Concordance
of estimates of mean (left), variability (middle), and gene correlation (right) with simulated
ground truth values (y-axis) for a range of overall transcript capture efficiencies (q) (x-axis).
(B) Correlation of estimates of mean (left), variability (middle), and gene correlation (right)
of DropSeq data against smFISH-derived estimates measured in the same population of
melanoma cells across different numbers of DropSeq cells used. (C) Power (y-axis) vs FDR
(x-axis) comparing existing methods with memento for DM (left), DV (middle), and DC
(right). (D) Concordance AUC (x-axis) of single-cell differential mean analysis to pseuobulk
differential mean analysis using datasets in19 (left) and17. (E) Runtime (y-axis) of three
methods across number of cells (x-axis) for DM/DV.
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2.5 Methods

Modeling scRNA-seq as a hypergeometric sampling process

We model the count data obtained from scRNA-seq with a flexible hierarchical model that

explicitly considers the generative process of the expressed transcript counts and sampling of

mRNA molecules with massively-parallel scRNA-seq methods. As presented in the main

text, our full model of the scRNA-seq sampling process can be summarized as follows:

Zc ∼ PZ , expressed transcript counts in cell c

Nc = 1TZc, total transcript count of cell c

Xc =
Zc

Nc

, normalized transcript counts in cell c

Yc ∼ MultiHG(Zc, Nc, qNc) = MultiHG(XcNc, Nc, qNc), observed transcript counts in cell c

q is the random variable representing the proportion of expressed transcript counts that is

eventually counted as UMIs in the observed scRNA-seq experiment. In our discussion of

sources of noise above as applied to most scRNA-seq workflows, it accounts for both the RT

sampling efficiency as well as the sampling of transcripts from sequencing. In the extreme, if

a library is sequenced to saturation, then q reduces to the RT sampling efficiency; however,

in most experiments, libraries are not sequenced to saturation but up to a known percentage

of unique molecules. Through extensive simulations, we demonstrate that this compound

noise process can be well approximated with a single multivariate hypergeometric process by

using a value for E[q] that is a product of the RT sampling efficiency (available for specific

experimental technologies) and the sequencing sampling efficiency (available from the

preprocessing pipelines such as CellRanger) (Fig. S2.1)43.



15

We then model the mRNA capture process with a multivariate hypergeometric distribution.

The probability mass function (PMF) of the multivariate hypergeometric distribution given

(Z1, Z2, Z3, ...ZG) components (i.e. genes), total count N =
∑c

i=1 Zi, and number of samples

n ∈ 0, 1, ..., N is given by:

pMultiHG(Y;Z1, Z2, ..., ZG, N, n) =

G∏
i=1

(
Zi

Yi

)
(
N
n

) (2.1)

In previous works37, the full hypergeometric treatment was simplified by a series of

approximations, starting from the hypergeometric model to the Poisson model:

Yc ∼ MultiHG(Zc, Nc, qNc), observed transcript counts

Yc ∼ Multinomial

(
Zc

Nc

, qNc

)
, observed transcript counts

Ycg ∼ Bn

(
Zcg

Nc

, qNc

)
, observed transcript counts

Ycg ∼ Poi

(
Zcg

Nc

qNc

)
, observed transcript counts

Ycg ∼ Poi (qZcg) , observed transcript counts

Ycg is a single element in the vector Yc, as the Poisson model considers the sampling of each

gene to be independent. As we discuss in the following sections, the full hypergeometric

treatment and the Poisson simplification result in very similar estimators when q is very

small (close to 0), but become more different as the value of q increases, as scRNA-seq

experimental workflow improves.
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Method of moments estimation of expressed transcript counts

We will start this section by reviewing the derivation of the Poisson estimators first

presented in37 in the context of determining optimal sequencing depth for scRNA-seq

experiments. First, recall the previously presented Poisson sampling model for scRNA-seq

where Nc represents the total expressed transcripts for each cell, q is the overall sampling

efficiency, and Xcg is the true relative mRNA expression Ycg ∼ Poi (qNcXcg).

For a Poisson variable A ∼ Poi(λ), the moments of A are E[A] = λ and E[A2] = λ2 + λ.

Similarly, for our model, we can write down the equations for the moments of Ycg given the

other variables, q, Nc, and Xc.

E[Ycg|Xcg, N, q] = XcgNcq

E[Y 2
cg|Xcg, N, q] = X2

cgN
2
c q

2
c +XcgqcNc

E[YcgiYcgj |Xcgi , Xcgj , N, q] = E[XcgiXcgjN
2
c q

2|Xcgi , Xcgj , N, q] = XcgiXcgjN
2
c q

2

(2.2)

Substituting the first moment equation into the second, we get:

E[Y 2
cg − Ycg|Xcg, N, q] = X2

cgN
2
c q

2 (2.3)

These equations lead to an estimator for µ̂g,Poi, σ̂2
g,Poi, and σ̂gigj ,Poi, the mean, variance, and

covariance of Xcg by averaging the moments over all cells:
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µ̂g,Poi = Ê[Xcg] =
1

ncells

∑
c

Ycg

Ncq

σ̂2
g,Poi = Ê[X2

cg]− Ê[Xcg]
2 =

1

ncells

∑
c

Y 2
cg − Ycg

N2
c q

2
−

(
1

ncells

∑
c

Ycg

Ncq

)2

σ̂gigj ,Poi = Ê[XcgiXcgj ]− Ê[Xcgi ]Ê[Xcgj ] =
1

ncells

∑
c

YcgiYcgj

N2
c q

2

−

(
1

ncells

∑
c

Ycgi

Ncq

)(
1

ncells

∑
c

Ycgj

Ncq

)
(2.4)

Now, let us consider the full multivariate hypergeometric model,

Yc ∼= MultiHG(XcNc, Nc, qNc). For a random vector A ∼ MultiHG(K, N, n), the

moments of A are:

E[Ai] = n
Ki

N

E[A2
i ] = n

N − n

N − 1

Ki

N

(
1− Ki

N

)
+ n2K

2
i

N2

E[AiAj] = −n
N − n

N − 1

KiKj

N2
+ n2KiKj

N2

(2.5)

We can again write down the moment equations, this time for the multivariate

hypergeometric model.
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E[Ycg|Xcg, Nc, q] = qNc
XcgNc

Nc

= XcgNcq

E[Y 2
cg|Xcg, Nc, q] = qNc

Nc − qNc

Nc − 1

XcgNc

Nc

(
1− XcgNc

Nc

)
+ q2N2

c

X2
cgN

2
c

N2
c

≈ qNc(1− q)Xcg(1−Xcg) + q2N2
cX

2
cg

= X2
cgN

2
c q

2 +XcgqNc(1− q)−X2
cgqNc(1− q)

= X2
cg

(
N2

c q
2 −Ncq(1− q)

)
+XcgNcq(1− q)

E[YcgiYcgj |Xcgi , Xcgj , N, q] = −qNc
Nc − qNc

Nc − 1

XcgiXcgjN
2
c

N2
c

+ q2N2
c

XcgiXcgjN
2
c

N2
c

≈ q2N2
cXcgiXcgj − q(1− q)NcXcgiXcgj

= XcgiXcgj

(
N2

c q
2 −Ncq(1− q)

)

(2.6)

Substituting the first moment equation into the second, we get:

E[Y 2
cg − (1− q)Ycg|Xcg, N, qc] = X2

cg

(
N2

c q
2 −Ncq(1− q)

)
(2.7)

The approximation used in the derivation for the second and first pairwise moment assumes

that Nc >> 1. For most mammalian cells with expressed transcript counts on the order of

105, these approximation should hold. Similar to estimators based on the Poisson model, we

can derive estimators based on these moment equations from the full multivariate

hypergeometric model:
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µ̂g,HG = Ê[Xcg] =
1

ncells

∑
c

Ycg

Ncq

σ̂2
g,HG = Ê[X2

cg]− Ê[Xcg]
2

=
1

ncells

∑
c

Y 2
cg − Ycg(1− q)

N2
c q

2 −Ncq(1− q)
−

(
1

ncells

∑
c

Ycg

Ncq

)2

≈ 1

ncells

∑
c

Y 2
cg − Ycg(1− q)

N2
c q

2
−

(
1

ncells

∑
c

Ycg

Ncq

)2

σ̂gigj ,HG = Ê[XcgiXcgj ]− Ê[Xcgi ]Ê[Xcgj ]

=
1

ncells

∑
c

YcgiYcgj

N2
c q

2 −Ncq(1− q)
−

(
1

ncells

∑
c

Ycgi

Ncq

)(
1

ncells

∑
c

Ycgj

Ncq

)

≈ 1

ncells

∑
c

YcgiYcgj

N2
c q

2
−

(
1

ncells

∑
c

Ycgi

Ncq

)(
1

ncells

∑
c

Ycgj

Ncq

)

(2.8)

Last, we write the naive estimators for mean, variance and covariance for completeness.

µ̂g,naive = Ê[Xcg] =
1

ncells

∑
c

Ycg

Ncq

σ̂2
g,naive = Ê[X2

cg]− Ê[Xcg]
2 =

1

ncells

∑
c

Y 2
cg

N2
c q

2
−

(
1

ncells

∑
c

Ycg

Ncq

)2

σ̂gigj ,naive = Ê[XcgiXcgj ]− Ê[Xcgi ]Ê[Xcgj ] =
1

ncells

∑
c

YcgiYcgj

N2
c q

2

−

(
1

ncells

∑
c

Ycgi

Ncq

)(
1

ncells

∑
c

Ycgj

Ncq

)
(2.9)

So far, the estimators for the mean and covariance is identical between the naive, Poisson

and HG estimators. However, the estimator for the variance, which contributes to the

measurement of residual variance and correlation, is the key difference between the three sets

of estimators. Importantly, it is straightforward to see that the HG estimator for the

variance includes the naive and Poisson estimators:
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lim
q→0

σ̂2
g,HG = σ̂2

g,Poi

lim
q→1

σ̂2
g,HG = σ̂2

g,naive

(2.10)

These results imply that when q, the overall sampling efficiency, is small, the HG estimators

behave very similar to the Poisson estimators. When q approaches 1, a hypothetical scenario

where the scRNA-seq workflow is perfect and we capture all expressed transcripts, the HG

estimators converge to the naive estimator, as there is no noise process. As scRNA-seq

workflows improve and q becomes larger, HG estimators serve as a generalization of the

estimators presented by Zhang et al. to account for different types of experimental workflows

with different values of q.

We also discuss here the case where q is not constant across cells. One of the assumptions

used in deriving our estimators above is that q is a known constant, and we do not need to

estimate it for each and every cell. However, it is plausible that for certain scRNA-seq

technologies and when sequencing is not saturated, q is actually a distribution around its

mean, E[q]. Experimentally, we can mitigate this issue by using spike-in RNA control to

actually measure the value of q for each and every cell. Because q does not appear in the

Poisson estimators, it is not possible to explicitly account for the variability in q even if its

value can be measured for each cell. With the hypergeometric estimators derived here, we

can simply substitute the measured values of qc for each cell in place of q above.

Improving mean estimation with Good-Turing method

Our derivations in the section show different naive, Poisson and hypergeometric estimators

for variance and correlation, but the mean estimator were identical. We sought to further

improve the mean estimation especially for small population of cells, which can occur in

experiments with combinations of many biological samples and perturbations. Keeping our

hypergeometric model, we take inspiration from the Good-Turing frequency estimation,
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which can be used to estimate the frequency of previously unseen species44. Good-Turing

estimation states that given a transcripts belonging to gene i is found r times in a pool of

transcripts containing a total of N transcripts and the number of genes that are found r

times is nr, we should estimate the frequency of gene A as:

1

N
(r + 1)

nr+1

nr

(2.11)

We apply this equation to single-cell data at the biological sample level, bringing us to the

final mean estimator:

rg =
∑
c

Ycg, count of gene g in the sample

nr =
∑
g

⊮(rg = r), number of genes with count r

r∗g = (rg + 1)
nrg+1

nrg

µ̂g,memento = Ê[Xcg] =
1∑
c Nc

r∗g

(2.12)

Estimating cell sizes by trimming variable genes

The Ncqc values that appear in the HG estimator equations above refer to the cell size, which

serves as a normalization factor for each cell. These constants serve to ensure that even if

the proportions of transcripts captured vary across cells, the estimates would not be affected

by this technical source of noise. We can decompose Ncqc into two components: a constant

numi and γc so that Ncqc = numiγc. The simplest way of estimating γc is to first compute

numi =
1

ncells

∑
c 1

TYc, and setting γc =
1

numi
1TYc , performing a total count normalization.

This is how the Poisson estimators presented in Zhang et al.’s work estimated the cell sizes.

In memento, we provide an alternate method by first computing residual variances across all
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cells in a dataset with total count normalization, and trimming off genes that exhibit high

variability. This approach assumes that most genes in the dataset should not be differentially

expressed, and the least variable genes are appropriate to be used in normalization. This

idea of using non-DE genes have been used in other methods, such as45–47. By default,

memento uses 10% of the least variable genes. After gene set G∗ is formed by trimming

variable genes, we compute γc with:

γc =
δ +

∑
g∈G∗ Ycg

δ + 1
ncells

∑
c

∑
g∈G∗ Ycg

The δ value here serves as a regularization factor in estimating cell sizes; when this value is

high, it would indicate the dataset does not need a size factor normalization (sampling is

truly constant across cells, such as when sequencing to saturation). By default, memento uses

median(
∑

g∈G∗ Ycg) over cells c as the δ value.

It is important to note that there are more sophisticated normalization methods that exist in

literature48. memento can readily incorporate these alternative methods of computing cell

sizes into its pipeline.

Computing the residual variance

Mean and variance in scRNA-seq data is generally highly correlated and measuring

variability of expression must account for this correlation. BASiCs accounts for this

dependence by performing nonlinear regression with many components between the fitted

mean and ovedispersion parameters27. Instead of fitting a negative binomial distribution

then regressing out the mean from the overdispersion parameter, we simply take the

estimated true mean and variances and fit a simple polynomial regression. We use a single

fitted polynomial (default degree 2) for all genes of a given group of cells, defined by cell

type, experimental condition, or batch. We find that even this simple regression is able to
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largely remove the mean-variance dependence present in scRNA-seq data.

Efficient bootstrapping by exploiting data sparsity

Typically, generating confidence intervals and computing p-values for hypothesis testing

make certain assumptions on both the distribution of the data as well as the estimator itself.

For example, to compute p-values for the coefficients of a linear regression model, we

typically assume that the data is normally distributed and the sampling distribution of the

coefficients are also normal. In the setting of scRNA-seq, our estimators allow for

measurement of the average, variability, and gene correlation without making any

assumptions about the distribution of expressed transcript counts. However, it is difficult to

compute analytical confidence intervals for our estimators without assuming anything about

the data itself and the sampling distributions of our estimates.

Bootstrapping is a procedure for estimating the sampling distribution of any arbitrary

statistic without making large assumptions on the data generating processs41. In memento,

we propose a strategy to perform bootstrapping in scRNA-seq data in an extremely efficient

manner. Specifically, in a dataset for a single gene with N cells x1, x2, x3, ...xN , we can

model the number of appearance of each observation as a multinomial distribution with

Multinomial(N, 1
N
... 1

N
). If there are K unique counts with nk cells each, we can re-write the

resampling distribution as Multinomial(N, n1

N
...nK

N
).

When considering normalized transcript abundances, we must account for the total number

of transcripts in each cell (Nc). While this would technically create a different Nc for each

cell and make our scheme less useful, a strategy binning Ncs across cells into a small number

of discrete bins well-approximates the true bootstrap distribution of parameters. Through

simulations, we show that as the number of bins increase, we show that the true bootstrap

distribution and the approximate bootstrap distributions are nearly identical (Fig. S2.7).
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Hypothesis testing and extension to account for replicates in

multiplexed scRNA-seq experiments

Consider a scenario with two groups of cells A and B, and we computed the parameter of

interest t for each group and computed ∆t as their difference. t would depend on the type of

test we would like to perform; we would compute the mean, residual variance, and

correlation to test for differences in the averages, variability, and coexpression respectively.

We then perform bootstrapping with B iterations to generate a sampling distribution for the

test statistic ∆t, from ∆t1 to ∆tB. If we wished to test for the alternative hypothesis of H1:

∆t ̸= 0 against the null H0: ∆t = 0, we first generate the null distribution by subtracting ∆t

from ∆t1, ...,∆tB to form ∆t∗1, ...,∆t∗B, similar to the strategy laid out in41. We can then

compute the achieved significance level (ASL) for that test as

ASL =


2
B

∑B
i=1⊮(∆t > ∆t∗i ) if ∆t ≥ 0

2
B

∑B
i=1⊮(∆t < ∆t∗i ) if ∆t < 0

There has been an increasing trend to generate scRNA-seq data with replicates (e.g.

different individuals), especially with multiplexed workflows. Consider an experiment with

two conditions and n replicates. Then, we propose a meta-analysis framework where we first

group the cells into 2n groups and perform a meta-regression with 2n observations:



lnµ1

lnµ2

...

lnµ2n−1

lnµ2n


,



ln σ̃1

ln σ̃2

...

ln σ̃2n−1

ln σ̃2n


,



ρ1

ρ2
...

ρ2n−1

ρ2n


∼ β



W1

W2

...

W2n−1

W2n


+ α



1

1

...

1

1


(2.13)
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where µi, σ̃i, and ρi refer to the estimated mean, residual variance, and correlation computed

in the ith replicate and Wi refers to the condition. Then, we can bootstrap the regression

coefficients B times to yield the original statistic β̂ and bootstrap statistics β̂1, ..., β̂B. Then,

similar to the non-replicated case, we can generate the null distribution β̂∗
1 , ..., β̂

∗
B by

subtracting β̂ from β̂1, ..., β̂B. We can further compute the ASL with:

ASL =


2
B

∑B
i=1⊮(β̂ > β̂∗

i ) if β̂ ≥ 0

2
B

∑B
i=1⊮(β̂ < β̂∗

i ) if β̂ < 0

Alternatively, the null distribution β̂∗
i can be approximated as a normal distribution

N(0, σ∗2), and the significance level can be calculated as 2(1− Φ(| ˆbeta|/σ∗)).

This framework can easily extended to incorporating many covariates, including batch

variables and interactions between variables of interest by introducing additional covariates

into the model in equation 2.13, by providing additional columns aside from the treatment

variables W . Information at the level of groups of cells, such as age, sex, genotypes can be

incorporated similar to how they would be incorporated into a generalized linear model.

Incorporating covariates at the single cell level is currently not handled by memento.

As a technical aside, we note that this procedure for computing the ASL assumes that the

sampling distribution of the test statistic of interest is translation invariant41. Through

extensive simulations, we confirm that for the test statistics we consider in memento, this

procedure yields well-calibrated results under the null hypothesis (Fig. S2.10). If custom

test statistics are used, it is important to check for the calibration of hypothesis test results.

memento also has the option to compute p-values assuming that the sampling distribution of

the effect size is normal with unknown variance that is estimated using the bootstrap, useful

for speeding up hypothesis tests. For this work, this approximation was only used for

analyzing the effect of natural variation (Fig. 3.3).
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Pre-processing the rIFNB1 PBMC dataset

We used the original clustering and tSNE visualization of the rIFNB1 dataset15 from the

data deposited in the Gene Expression Omnibus under the accession number GSE96583.

Further details on the pre-processing of this dataset can be found in the original paper15.

For all analysis, we selected genes where the mean observed expression E[Ycg] = 0.07, which

was the reliability limit for this experiment. More details on the reliability limit can be found

in37. This value was computed from the reported UMI capture efficiency of 10X Chromium

V1 and well as the sequencing saturation of this experiment, which was around 90%15.

Extracting mean and variance from scRNA-seq data for simulation

We used the PBMC dataset15 to serve as a basis for the simulation. We wanted to simulate

single cell RNA profiles that have a distribution of means and variances that are within the

realistic regime of scRNA-seq. To accomplish this, we estimated the mean, variance, and

correlation of 5000 highest expressed genes using the memento estimators from the CD4+ T

cells. These values were then set as the ground truth parameters for the simulation. We used

two sets of ground truth parameters - one estimated from cells without stimulation (munstim,

vunstim), and one from cells stimulated with IFN-B (mstim, vstim).

Simulating transcriptomes with given means, variances, and

gene-gene correlations

Given a vector of desired means (m) and variances (v), we first calculated the dispersion by

using moment calculations dispersion = v−m
m2 . To generate transcriptomes with ground truth

correlations, we took the following steps:

1. Generating correlated zero mean, unit variance Gaussian samples using the ground

truth correlation parameter
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2. Computing the copula by taking the inverse Gaussian CDF of each point

3. Generating the marginal distribution by taking evaluating the negative binomial point

percent point function with the specified mean and dispersion vectors previously

calculated.

This process implements a Gaussian copula method for generating multivariate samples from

a joint distribution with a specified correlation matrix and negative binomial marginal

distributions. Note that memento does not make any assumptions about the underlying

distribution, and the negative binomial was used here to be consistent with past strategies

for simulating scRNA-seq data27.

After the "true" transcriptomes are simulated, we sample the transcripts with the

hypergeometric distribution with a overall capture efficiency q (combining sampling from

library preparation and sequencing).

Comparing memento, BASiCS, and scHOT for estimation

To generate Figure 2.22A, we generated transcriptomes using munstim, vunstim estimated

above from a real scRNA-seq dataset, and a correlation matrix C sampled from make_psd

function from the scikit-learn package, while varying the overall capture efficiency qreal. We

estimated the means and correlations from memento (hypergeometric), memento (q=0), naïve

estimators. We estimated the variances using memento (hypergeometric), memento (q=0),

naïve, and BASiCS estimators. We calculated the variance using the dispersion estimates

from BASiCS output by using the mean-variance relationship for the negative binomial

distribution. Because we cannot directly compute the residual variance in the smFISH data,

we used the coefficient of variation in place of residual variance for this analysis. This

process was repeated 20 times for each value of overall capture efficiency to generate

confidence intervals. We used simulations of 10 cells for the mean and 100 cells for variability
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and gene correlation.

Simulating genes with differential mean, variability, and coexpression

To compare the performance of memento for differential expression against other methods in

a realistic, complex experimental settings, we used a hierarchical simulation with hierarchical

generation.

For differential mean, we first computed ∆m = log(mstim)− log(munstim). To designate

ground truth DM genes, we set any elements of ∆m lower than 0.1 to 0. We simulated data

with 2 replicates, creating 4 total groups of cells: unstimulated replicate 1, stimulated

replicate 1, unstimulated replicate 2, unstimulated replicate 2. We generated the four sets of

mean vectors as:
m1,unstim = N(munstim, 0.25)

m2,unstim = N(munstim, 0.25)

m1,stim = m1,unstim +∆m+N(0, 0.25)

m2,stim = m2,unstim +∆m+N(0.25)

These mean vectors represent baseline variations that exist across replicates (such as

individuals) and heterogenous treatment effects (cells from different replicates may not

respond in an identical way). We then simulated varying numbers of cells (1000, 1000, 1100,

1100) to emulate varying sample sizes from each replicate using the procedure described in

Simulating transcriptomes with given means, variances, and gene-gene correlations. For

differential mean simulations, we set all variances as vunstim and induced no correlations

between genes.

For differential variability, we first computed ∆v = log(vstim)− log(vunstim). To designate

ground truth DV genes, we set any elements of ∆v lower than 0.1 to 0. We simulated data

with 2 replicates, creating 4 total groups of cells: unstimulated replicate 1, stimulated
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replicate 1, unstimulated replicate 2, unstimulated replicate 2. We generated the four sets of

variance vectors as:
v1,unstim = N(vunstim, 0.25)

v2,unstim = N(vunstim, 0.25)

v1,stim = v1,unstim +∆v +N(0, 0.25)

v2,stim = v2,unstim +∆v +N(0.25)

These variance vectors represent baseline variations that exist across replicates (such as

individuals) and heterogeneous treatment effects (cells from different replicates may not

respond in an identical way). We then simulated varying numbers of cells (500, 500, 700,

700) to emulate varying sample sizes from each replicate using the procedure described in

Simulating transcriptomes with given means, variances, and gene-gene correlations. For

differential variability simulations, we set the mean vectors in the same way as simulated

differential mean.

For differential correlation, we followed an similar approach as differential mean and

variability, but we generated ∆corr by subtracting two random correlation matrices

generated with make_psd function in the scikit-learn model.

Similar to the simulations performed to compare estimation performance, we sample the

"true" transcriptome’s transcripts with the hypergeometric distribution with a overall

capture efficiency q (combining sampling from library preparation and sequencing).

Comparing DE methods, BASiCS, and scHOT for differential mean,

variability, and correlation

For comparing memento to established differential mean expression methods, we used the

same parameters used by Squair et al (2022). For BASiCS, we ran the method with the

no-spike in mode and the regression modes. For scHOT, we used the default parameters
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with binary mask for the “pseudotime” to compute parameters across.

We performed 20 repeated simulations at each cell count across varying cell counts to

generate Figure 2.22C.

2.6 Supplementary figures
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Figure S2.1: Single step of hypergeometric sampling well approximates the compound
sampling process from capture and sequencing.
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Figure S2.2: Characterizing the effect of approximating the two-step sampling in a single
hypergeometric sampling step. (A) Heatmap of Wasserstein distance between distributions
resulting from various capture efficiency and sequencing saturation. (B) Histogram of the
two different sampling processes at a single capture efficiency and sequencing saturation (one
of the tiles in panel A).
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Figure S2.3: Each point represents a gene in simulation. Y-axis is error of variance
estimation (|ln(vtrue)− ln(vestimated)| and x-axis is the gene’s true simulated mean.
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Figure S2.4: Conceptual diagram for resampling frequencies rather than expression counts.
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Figure S2.5: Number of unique transcript counts (y-axis) against the number of cells present
in the dataset (x-axis)
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Figure S2.6: Number of unique pairs of genes for randomly selected pairs in the IFN-B
dataset.
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Figure S2.7: Efficient bootstrap in memento vs full bootstrap. The sample distributions
of log(mean), log(residual variance) and correlation for a representative gene and a pair of
genes, respectively.
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Figure S2.8: Comprehensive comparison of memento’s bootstrap with the naive bootstrap.
Y-axis is KS-test P-value from comparing the memento versus naive bootstrap distributions
for the mean (top), residual variance (middle), and correlation (bottom). X-axis is the gene’s
mean expression quantile.
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Figure S2.9: Representative example of P-values computed from memento
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Figure S2.10: False discovery rates in simulation for lowly and highly expressed genes
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Figure S2.11: Concordance of DE genes between IFN-A and IFN-B across various methods
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Chapter 3

Generalized differential expression across natural variation

and experimental conditions

3.1 Differential variability and gene correlation in

response to exogenous interferon

Interferons, while being potent cytokines that promote antiviral immunity, also play a part in

the pathogenesis of inflammatory and autoimmune diseases49. Their action - inducing gene

expression via autocrine and paracrine signaling - is well-documented, yet the heterogeneity

of transcriptomic responses in stimulated cells remain unexplored. Using memento, we

investigated the impact of interferon stimulation on the distribution of gene expression in

human tracheal epithelial cells (HTECs). We used multiplexed single-cell RNA-sequencing to

analyze 69,958 HTECs from two healthy donors, exploring conditions including unstimulated

control and stimulation with various interferons: type-1 (IFN-α, IFN-β), type-2 (IFN-γ),

and type-3 (IFN-λ). Analyses were conducted at several post-stimulation timepoints: 3, 6, 9,

24, and 48 hours. Dimensionality reduction, nearest neighbor identification, and Leiden

clustering yielded 7 identifiable cell types, visualized using uniform manifold approximation



42

and projection (UMAP): neuroendocrine cells, iononcytes, tuft cells, basal cells, basal/club

cells, goblet cells, and ciliated cells (Fig. 3.1A). Our subsequent analysis focused solely on

cilated cells, which are known to be the primary target of viral infections including

SARS-CoV2 and are recognized for their robust interferon response50–52.

We identified 5,018 genes exhibiting differential mean expression (DMGs, FDR < 0.01)

between unstimulated ciliated cells and those stimulated by any of four interferons at 6

hours. A comparative analysis revealed that IFN-α shares similar mean expression changes

with IFN-β and IFN-λ in differential mean expression (ρ = 0.96). In contrast, comparing to

IFN-γ highlighted distinctions in differential mean expression for both type-1 and type-2

interferon-specific genes (ρ = 0.70, Fig. 3.1B). Herein, we define genes that are upregulated

in response to any interferon as interferon-stimulated genes (ISGs). Hierarchical clustering of

the ISGs at the 6-hour timepoint revealed a dynamic transcriptomic response, shared across

interferons, that included the early induction of MHC class II genes and a distinct gene

cluster, comprising PLAAT2, BTN3A1, and DUOX2 (Fig. 3.1C). Furthermore, we

identified patterns specific to each interferon, exemplified by a subset of canonical ISGs

(IFI2, IFITM2, and ISG15 ) that not only exhibited continual increase in response to IFN-λ

but also sustained elevated levels throughout the experimental timeline for type-1 interferons

(Fig. 3.1C). Interestingly, some genes that were more strongly expressed in one of the

interferons (e.g., the MHC class II genes and IFN-γ) showed similar temporal behavior

across the other interferons, suggesting both unique and shared regulatory mechanisms.

While the analysis of differential mean expression revealed the induction of canonical and

non-canonical ISGs, it did not decipher whether these genes were subject to the same

transcriptional regulatory control. To delineate the interferon gene correlation network and

its subcomponents, we used memento to compare correlations between ISG pairs across

various stimulations and timepoints (Fig. 3.1D). Agglomerative clustering of the resulting

gene correlation matrix revealed distinct ISG subsets in response to IFN-β, forming clusters
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in unstimulated cells, stimulated cells, or both-distinctions that were not discernible through

differential mean analysis alone. For example, canonical ISGs including MX1, OAS1, and

IFI6, maintained high correlation even without exogenous interferon presence (Fig. 3.1D,

cyan nodes). Upon IFN-β stimulation, the correlation network, initially consisting of

canonical ISGs, expanded to include non-canonical ISGs, such as the MHC Class I molecules

and other genes associated with antigen presentation, which were not correlated in

unstimulated cells (Fig. 3.1D, magenta nodes). Remarkably, more differentially correlated

gene pairs (DCGs, FDR < 0.1) were found among non-canonical ISGs (860 DCGs, 34% of

total pairs) than canonical ISGs (421 DCGs, 16% of total pairs). In addition, we found that

the increase in correlation was not explained by the increase in the mean expression of those

genes (Fig. S3.1).

We hypothesized that canonical ISGs display correlation in unstimulated cells due to the

sensing of tonic interferon and the coordinated induction of ISGs within a select group of

cells. Tonic interferon signaling has been described to induce a natural gradient of ISG

expression across cells53,54, and plays and important role in viral defense54, immune cell

homeostasis, and autoimmunity53. Within our dataset, canonical ISGs exhibited greater

variability compared to non-canonical ISGs in unstimulated cells (Fig. 3.1E), aligning with

previously documented differences in expression variability between cytokines and

non-cytokines (Fig. S3.2)55. Out of the 761 differentially variable genes (DVGs, FDR <

0.1) identified using memento between unstimulated ciliated cells and those stimulated by

any of the four interferons at 6 hours, 394 were highly variable in unstimulated cells (FDR <

0.005) and were enriched for ISGs (GSEA Interferon alpha/beta signaling Adjusted

P = 3.35× 10−12), including IFIT1, IFIT3, and MX1.

We next compared the tonic sensitivity of each canonical and non-canonical ISGs, estimated

as the fold-change (FC) in gene expression between macrophages from IFNAR knockout and

wild-type mice without exogenous interferon56. This analysis revealed that canonical ISGs
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are significantly more sensitive to tonic interferon than non-canonical ISGs (P < 2.73 x

10-10), Fig. 3.1F). Notably, upon stimulation with IFN-β (and, to a lesser extent with

IFN-γ), the variability of substantial proportion of canonical ISGs diminished (78% and 39%,

respectively) (Fig. 3.1G, FDR < 0.1), implying that exogenous stimulation might

homogenize the cellular environment, removing the effects of heterogeneous response to tonic

interferon.

Our findings demonstrate the applicability of memento for the comparison of gene expression

distributions to reveal novel transcriptional regulatory modalities influenced by extracellular

interferon. Within HTECs, our discoveries encompass: 1) a core network of canonical ISGs,

exhibiting highly variable and correlated gene expression in unstimulated cells, attrributable

to tonic interferon signaling; 2) the homogenization of canonical ISGs upon exogenous

interferon exposure, leading to diminished variability; and 3) a network of non-canonical

ISGs, which are exclusively modulated in response to exogenous and not tonic interferon.

3.2 Differential expression analysis of perturbed CD4+ T

cells maps gene regulatory networks in T cell

activation

Integrating CRISPR-Cas9-mediated genomic perturbations with scRNA-seq profiling creates

new opportunities for conducting forward genetics screens in diverse in vitro systems.

Utilizing memento, we analyzed 173,000 CRISPR-Cas9 perturbed CD4+ T cells to map

transcriptional regulatory networks modulating the activation and polarization of human

CD4+ T cells. Cells were perturbed using pooled sgRNA lentiviral infection with Cas9

protein electroporation (SLICE)57, followed by multiplexed single-cell RNA-sequencing

(mux-seq). Utilizing a set of 280 sgRNAs, we targeted 140 transcriptional regulators (TRs),

chosen for their high expression (within the top quartile from bulk RNA-seq) or the
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differential accessibility of their binding sites (as detected by bulk ATAC-seq) in activated

CD4+ T cells58 (Fig. 3.2A). After Cas9 electroporation, and multiple rounds of selection

and proliferation, activated CD4+ T cells from 9 donors were profiled using mux-seq.

To evaluate the cutting efficiency of each sgRNA, we conducted targeted amplification

sequencing of 268 out of 280 loci in both the sgRNA pool and the DNA of edited cells from

each donor. The mean cutting efficiency across 268 sgRNAs, defined as the fraction the

coverage of edited cells at the target locus to the coverage of its respective sgRNA in the

pool, was established at 21%, with a standard deviation of 15% (Fig. S3.3). Fourteen

sgRNAs, exhibiting cutting efficiencies below 2.0% (standard deviation 1.7%; z-score, P <

0.05), were designated as uncut negative controls (WT). The robustness and efficacy of our

screen were substantiated through two quality control analyses. First, we utilized memento

to confirm a significant downregulation of target genes in cells transduced with the

respective sgRNA (Fig. 3.2B). Second, a higher correlation in average gene expression was

observed between either WT cells (ρ = 0.50) or cells transduced with sgRNAs targeting

identical genes (ρ = 0.44), as compared to cells transduced with sgRNAs targeting two

distinct genes (ρ = 0; KS-test P < 2.2 x 10−16 for both; Fig. S3.4).

Utilizing memento, we identified 7,641 genes (FDR < 0.05) with differential mean expression

(DMGs) when contrasting WT cells against cells perturbed by at least one sgRNA.

Hierarchical clustering revealed groups of sgRNAs exerting similar transcriptomic effects and

gene groupings similarly responsive to such perturbations (Fig. 3.2C). We identified five

clusters of DMGs distinctly associated with ribosomes (FDR < 5.35 x 10−24), cytotoxicity

(FDR < 0.014), antigen presentation (FDR < 0.0011), and proliferation (FDR < 0.001).

Moreover, the pairwise correlation matrix of DMGs, as computed using memento, revealed

additional sub-clusters within each of the initial five DMG clusters, persisting in both WT

and perturbed cells (Fig. 3.2C). Intriguingly, while antigen processing genes’ mean

expression is modulated by a shared set of transcriptional regulators, a subset of MHC class
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II genes-namely HLA-DPA1, HLA-DRA, HLA-DRB1, and HLA-DPB1 -exhibited strong

correlation, suggesting that their expression may be controlled by additional trans regulators.

In exploring the utility of memento for detecting alterations in gene correlations, we

hypothesized that identification of genetic interactions between transcriptional regulators

might be achievable without necessitating combinatorial perturbations. To test this

hypothesis, we performed a genetic interaction analysis focused on pairs consisting of DMGs

and their transcriptional regulators, referred to as transcriptional regulator-DMGs

(TR-DMGs, see Methods). Specifically, we focused on regulators that, when knocked out,

lead to decreased expression of the DMGs. Consistent with our expectations, TR-DMGs

typically show a positive correlation with each other within wild-type (WT) cells (Binomial

test, P < 0.00668, Fig. 4D).

In scenarios void of an interaction, two transcriptional regulators (R1 and R2) would

independently regulate the target gene (G); therefore, a knockout of one regulator should

ostensibly not impair the functionality of the other (Fig. 3.2E). Constrastingly, should an

interaction be present, a knockout of one regulator (e.g., R1) could impact R2’s regulatory

capacity over G. This effect could be detected as a change in the gene correlation between

R2 and G, when R1 is perturbed (Fig. 3.2F). Employing this strategy, we identified 564

genetic interactions amidst 432 unique regulator pairs (FDR < 0.1, Fig. 3.2F). Validating

these interactions, analyses incorporating ChIP-seq data from ENCODE59 show that

interacting TR pairs are more likely to have co-localized binding sites proximal to the

transcription start site (TSS) of target genes than non-interaction pairs (Fig. 3.2G).

As an example, we identified that IRF1 regulates LGALS3PB (evident from differential

mean expression analysis) and retains a strong correlation with it in WT cells (ρWT = 0.28).

A knockout of PRDM1 precipitated a significant decrease in the correlation between IRF1

and LGALS3PB (∆ρ = -0.38), implying a potential interaction between PRDM1 and IRF1

in the regulation of LGALS3PB. Consistent with these observations, LGALS3BP has



47

binding sites for both IRF1 and PRDMB1 in the immediate vicinity of its TSS (Fig. 3.2H).

These results demonstrate the capability of correlation analysis via memento, especially when

applied to forward-genetic screens such as Perturb-seq, to delineate gene sets sharing

regulatory elements-albeit participating in diverse pathways-and to reconstruct the genetic

interactions of trans regulators orchestrating T cell activation.

3.3 Genetic analysis of population-scale single-cell

RNA-sequencing

The growing availability of scRNA-seq datasets on a population scale has paved the way for

mapping genetic variants associated with changes in the expression distribution of proximal

genes (cis) in specific cell types. Prevailing studies predominantly utilize pseudobulk

methods, such as Matrix eQTL, to identify cis expression quantitative trait loci (cis-eQTLs)

impacting mean expression. While linear mixed models have been recently applied to map

cis-eQTLs in scRNA-seq data, they are hampered by computationally inefficiency, a

restrcited focus on mean comparisons, and susceptibility to misspecification in the

underlying parametric model60. We posit that, in comparison to pseudobulk methods,

memento’s superior parameter estimation accuracy and capacity to account for intra- and

inter-individual variation will result in increased power to detect cis-eQTLs and the

discovery of novel variability and correlation QTLs (vQTL and cQTL, respectively).

Moreover, the implementation of a highly efficient hierarchical bootstrapping strategy

promises applicability to expansive, population-scale scRNA-seq datasets, which could be

computationally insurmountable for parametric linear mixed models. To demonstrate, we

applied memento to reanalyze a pre-existing scRNA-seq dataset, comprising 1.2M PBMCs

derived from 160 SLE patients and 90 healthy donors.

The data was analyzed separately for each of the reported cell types: CD4 T cells (T4), CD8
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T cells (T8), natural killer cells (NK), classical monocytes (cM), and non-classical monocytes

(ncM)17. Individuals of East Asian and European ancestries were separately analyzed, with

subsequent comparisons enabling a replication analysis between these populations. For every

distinct cell type and ancestry group, memento mapped cis genetic variants-specifically, those

within 100kB from the TSS-associated with expression mean, variability, and gene

correlation, producing well-calibrated p-values (Fig. 3.3A).

A comparative analysis between the power and false positive rate (FPR) of memento and

Matrix eQTL in detecting cis-eQTLs was established against benchmarks provided by the

OneK1K study, which comprised of 1000 non-overlapping individuals18. Notably in both

East Asian and European cohorts, memento exhibited higher power in identifying cis-eQTLs

(AUC=0.85), surpassing Matrix eQTL (AUC=0.81), while maintaining equivalent FPR (Fig.

3.3A,B). Overall, memento outperformed Matrix eQTL in both populations, replicating

1,606 vs 855 cis-eQTLs across cell types in East Asians and, similarly, 1,778 vs 958 in

Europeans. Moreover, spanning a range of cohort sizes common for multiplexed scRNA-seq

experiments, memento achieved an average power gain of 15% for 80 individuals-a metric that

increased to 32% for 50 individuals, given an average of 440 cells per individual (Fig. 3.3C).

We subsequently explored whether the increased number of cis-eQTLs detected by memento

also improves the enrichment within regions of open chromatin and associations with disease.

In the East Asian cohort, cis-eQTLs identified by memento within specific cell types were

more enriched for cell type-specific regions of open chromatin, as annotated by an unrelated

study that conducted ATAC-seq on bulk sorted immune cells (p-values for matched

cell-types, B 9.0x10−9 vs 0.04; T4 9.3x10−4 vs 0.11; T8 0.03 vs 0.58; NK 6.67x10−8 vs 0.03;

cM 2.1x10−11 vs 0.67; ncM 1.0x10−6 vs 0.46, Fig. 3.3D,E). Similar gains in enrichment

were observed in the European cohort (Fig. S3.5). Further analysis, utilizing LD score

regression, found that cis-eQTL identified by memento also were more enriched for GWAS

associations to immune-mediated diseases, thereby suggesting improved fine-mapping
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performance (Fig. S3.6).

In addition to mapping cis-eQTLs, memento enables the identification of genetic variants

associated with expression variability and gene correlation, offering insights into alternative

mechanisms by which genetic variants might influence gene expression. Utilizing memento,

we identified 10,607 expression variability QTLs (vQTLs) impacting 733 genes across all cell

types. For instance, the variability in HLA-C expression differed amongst genotypes of

6:31326612 (Fig. 3.3F), with the A allele amplifying the expression variability of HLA-C

without notably affecting its mean (Fig. 3.3G). For mapping correlation QTLs (cQTLs), we

focused on testing the correlation between genes possessing at least one significant cis-eQTL

and known transcription factors, thereby specifically testing the hypothesis that genetic

variants might modulate the effect of transcription factors on gene expression. We mapped

3,726 cQTLs for 238 gene pairs across all cell types. For example, the SNP at 12:69688073 is

associated not only with the mean expression of LYZ, but also the the correlation between

JUNB and LYZ. Intringuinly, a JUNB binding site exists within 1kbp of the SNP, suggesting

that JUNB may serve as a trans regulator for LYZ, with the regulatory strength being

influenced by the genotype at this SNP.

These findings underscore memento as a scalable approach for genetic analyses of

population-scale scRNA-seq data, delivering higher statistical power for identifying

cis-eQTLs and introducing the capability for mapping vQTLs and cQTLs. These advances

not only improve the fine mapping of disease associations but also unveils novel mechanisms

whereby genetic variants may modulate gene expression.
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3.4 Census-scale differential expression analysis across

cell types, individuals, and disease states

The above applications showcased the broad applicability of memento for generalized

differential expression analysis across a diverse set of individual datasets, including the

analysis of the temporal response of tracheal epithelial cells stimulated by IFN, the mapping

of gene regulatory networks from Peturb-seq data of CD4+ T cells, and large-scale genetic

analysis of gene expression across single cells. Through these applications and simulations,

we showed that memento consistently outperforms existing methods, delivers a unique

feature set to compare variances and covariation in addition to the mean, and is extremely

efficient enabling scaling to a million cells and tens of replicates.

The emergence of massive repositories of single-cell data across the world has raised novel

needs for computational techniques that can efficiently compare datasets while ensuring

properly calibrated statistical behavior. As of November 2023, CELLxGENE Discover

includes 50 million unique cells across 1,102 datasets, with over thousands of individuals

represented, with its Census API providing access to most of these data61. Unlike a

scRNA-seq dataset generated by a single research project with a focused hypothesis, users of

CELLxGENE Discover access this resource with a diverse array of comparative analyses in

mind. For example, one user may be interested in differences in expression between the same

cell types residing in different organ systems. Another user may be interested in differences in

expression between the same cell types across individuals with different disease status. In any

scRNA-seq dataset with labeled cell types, there is a large number of possible comparisons

between cell groups (Fig. 3.4AB). Furthermore, multiple datasets may be combined to

improve the power of comparisons between the same cell groups that exist across datasets.

Differential expression methods powering queries within the census need to efficiently

perform accurate, well-calibrated comparisons between user-defined cell groups across
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datasets, delivering results near real-time speed for web portal integration. Although

memento demonstrates excellent scalability with increasing cell numbers, as shown in Fig.

2.2F, its real-time result delivery is constrained by the necessity of performing bootstrap

operations for each comparison, a limitation that becomes more pronounced when subsets

contain multiple biological and technical replicates. To extend the broad applicability of

memento, we collaborated with the CZI to utilize the CELLxGENE Discover Census API to

perform bootstrap operations and quantify uncertainty for predefined cell groups across the

entire corpus (see Methods). This extension allows for the precomputation of standard

errors, which are then utilized to enable near real-time differential expression analysis via

weighted least squares. Consequently, the standard errors derived from this precomputed

mode provide an effective approximation of the bootstrap method employed in the full mode,

streamlining the analysis process.

To evaluate the agreement between memento in its precomputed mode and the full mode, we

conducted a differential expression analysis comparing CD4 T cells and classical monocytes

from a single donor in the lupus dataset (referenced in Fig. 3.3), also included in the

CELLxGENE Discover. Given that the analysis involved the same underlying data, we

anticipated highly similar results. The primary difference would be attributed to the two

memento versions, with the precomputed mode utilizing estimated cell sizes from the entire

CELLxGENE Discover dataset. This anticipation was confirmed by observing a robust

correlation in the effect size estimates (Fig. S3.7) between the full and approximate,

precomputed modes. A similarly strong correlation was noted in the significance levels,

indicated by −log10(P − value) (Fig. 3.4CD). Remarkably, the computation time for

determining effect size and P-value was significantly reduced compared to executing memento

in full mode for various cell group comparisons (Fig. 3.4E).

A unique application of memento on large-scale census data lies in its improved power to

compare cell groups, particularly beneficial for those that are rare in individual datasets. To
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illustrate this, we utilized memento in its precomputed mode to identify DM genes between

conventional and plasmacytoid dendritic cells. These cell types constitute 5.8% and 4.0%,

respectively, of the scRNA-seq datasets of immune cells within the CELLxGENE Discover

(Fig. 3.4F). In analyzing 23 separate datasets in the CELLxGENE Discover, encompassing

362,619 total cells, we found that a joint analysis across these datasets significantly increased

the statistical power compared to analyses of any single dataset (Fig. 3.4G). These results

underscore that the efficiency of memento’s moment estimators and the adaptability of its

bootstrap approach enable its effective application in expansive census repositories.
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3.5 Figures

Figure 3.1: Mapping transcriptional response of human bronchial epithelial cells to
extracellular interferon using memento. (A) UMAPs of the entire HBEC dataset colored
by identified cell types (left), zoomed in ciliated cells colored by stimulation (center), and time
labels (right). (B) Log fold-change (LFC) of mean expression in response to IFN-α (x-axis)
against LFC in response to IFN-β (left), IFN-γ (middle), and IFN-λ (right) after 6 hours.
(C) Hierarchically clustered heatmaps of LFC in response to the four types of interferons
(columns within each heatmap) across 5 timepoints. (D) Gene coexpression network over
time where magenta nodes depict canonical ISGs and cyan nodes depict noncanonical ISGs.
(E) Baseline expression variability (y-axis) versus mean (x-axis) in ciliated cells. (F) Tonic
sensitivity (y-axis) for canonical and non-canonical ISGs (x-axis). *** indicates P < 0.001.
(G) Change in variability (y-axis) against the change in the mean (x-axis) in response to
IFN-β (left) and IFN-γ (right). Blue dots represent canonical ISGs.
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Figure 3.2: Reconstructing gene regulatory networks of T cell activation using
Perturb-seq and memento. (A) Selection criteria for perturbed regulators in this study. (B)
Heatmap of average gene expression for each gene across cells perturbed by the corresponding
sgRNA. (C) Left: Heatmap of average gene expression for DMGs across cells perturbed by
the corresponding sgRNA. Right: Gene-gene correlation matrix for the same DMGs estimated
from WT cells. (D) Correlation between each regulator and its downstream genes in WT
cells. (E) Bipartite gene regulatory network that do not account for interaction between
regulators. (F) Gene regulatory network including genetic interactions between regulators.
(G) Number of genes with binding sites for pairs of interacting or non-interacting regulators
across varying windows of the TSS. (H) Chromosomal location of LGALS3BP and binding
sites for IRF1 and PRDM1, predicted to interact using DM and DC analysis.
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Figure 3.3: Mapping of mean QTL, variability QTL, and correlation QTL using
memento. (A) Quantile-quantile (QQ) plots for expected p-values (y-axis) computed by
memento versus theoretical p-values (x-axis). For mean QTLs, QQ-plot of p-values from
pseudobulk approach (Matrix eQTL) is overlayed. (B) ROC curve for recovery of mean QTLs.
(C) Power of eQTL recovery (y-axis) of memento and pseudobulk method across different
numbers of individuals. (D) Enrichment of cell-type specific eQTLs in cell-type specific
ATAC-peaks. (E) Enrichment of eQTLs detected in each cell type for cell-type-specific
ATAC-peaks. (F) An example of a variability QTL. (G) Histogram showing distribution
of HLA-C expression for a representative individual of each genotype. (H) An example
of a correlation QTL. (I) Scatterplot of expression of LYZ (y-axis) against the expression
of JUNB (x-axis) across single cells from all donors (grey) and a representative individual
(black).



56

Figure 3.4: Extending memento for near real-time differential expression analysis
within CZI CELLxGENE Discover. (A) UMAP of the SLE PBMC dataset within
CELLxGENE. (B) Enumeration of different comparisons that can be made within and
between groups of cells. Comparisons of significance (P-value) between the precomputed and
full modes for (C) differential mean and (D) differential variability analyses. (D) Runtime
as a function of number of comparisons made, at query time (excluding precomputation).
(F) Schematic of multiple datasets analyzed with CELLxGENE identifying DMGs between
pDCs and cDCs. (G) QQ-plot of P-values from comparing pDCs and cDCs combining many
datasets (cyan) and using each dataset alone (grey).
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3.6 Methods

HTEC interferon stimulation experiment

Human tracheal epithelial cells were harvested from deceased organ donors according to

established protocols (PMID: 1616056). Frozen cell aliquots were reactivated and cultured in

epithelial growth media (EGM) [3:1 (v/v) F-12 Nutrient Mixture (Gibco)–Dulbecco’s

modified Eagle’s medium (Invitrogen), 5% fetal bovine serum (Gibco), 0.4 ug/mL

hydrocortisone (Sigma-Aldrich), 5 ug/mL insulin (Sigma-Aldrich), 8.4 ng/mL cholera toxin

(Sigma-Aldrich), 10 ng/mL epidermal growth factor (Invitrogen), 24 ug/mL adenine

(Sigma-Aldrich), and 10 uM Y-27632 (Enzo Life Sciences)] on 10 mm dishes coated with rat

tail collagen (Sigma-Aldrich). EGM was changed three times a week until dishes were

confluent, at which point the cells were passaged with 0.25% trypsin for 30 minutes. For air

liquid interface culture, expanded basal cells were plated at 50,000 cells per 6.5 mm transwell

insert (Corning 3470) coated with human placental collagen (Sigma-Aldrich) and cultured

with Pneumacult ALI (StemCell) for 21-28 days according to the manufacturer’s instructions.

Starting on day 27, interferon stimulation (IFN-β: 10 ng/ml, IFN-α2: 10 ng/ml, IFN-γ: 10

ng/ml, IFN-λ2: 10 ng/ml) was added at hours 0, 24, 39, 42, and 45 prior to harvesting (For

final timepoints 3, 6, 9, 24, and 48 hours). On the day of harvest, basal media was aspirated

and both basal and apical chambers were rinsed twice with PBS. Following two washes,

trypsin-EDTA (0.25% Fisher cat. 25200072) was added to both the basal and apical

chambers (300 ul basal, 100 ul apical) and incubated for 30 minutes at 37°C while pipette

mixing every 10 minutes. Trypsinization was quenched with 300 ul of maintenance media and

transferred to a 1.5ml eppendorf tube (eppendorf cat. 022431021) and centrifuged at 350xg

for 5 minutes at 4°C. Cells were resuspended in 94 ul of cell staining buffer (Biolegend cat.

420201) and blocked with 5 ul of TruStain FcX (Biolegend cat. 422302) for 10 minutes on ice.

Blocked cells were stained with 1 ul of Biolegend Totalseq-B hashtags (Biolegend Totalseq-B

hashtags 1-11) for 30 minutes on ice. Staining was quenched with 1 ml of cell staining buffer
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and spun at 300xg for 5 minutes at 4°C prior to two more washes with 1 ml of cell staining

buffer. Cells were resuspended in 100 ul of 0.05% BSA in PBS and counted via Countess II

(Fisher cat. A27977). Counted cells were pooled equally into two pools and spun at 300xg for

5 minutes at 4°C. Cells were strained through a 100 µM filter (Corning cat. 431752) prior to

a final count and each pool was loaded onto two 10x 3’v3 lanes. Libraries were prepared as

described in the 10x 3’v3 user guide. Samples were sequenced on three lanes of NovaSeq S4.

Clustering the HTEC transcriptomes

We performed filtering, normalization, and clustering with the scanpy32 suite of tools using

the default values. Cell types were manually identified based on previously known marker

genes for HTECs52.

Similar to the rIFNB1 dataset, we selected genes where the mean observed expression

E[Ycg] = 0.07, which was the reliability limit for this experiment.

Clustering the correlation matrices for genes with differential mean

expression

DMGs in ciliated cells were identified by using memento by comparing each stimulation and

timepoint to the unstimulated control. The correlation between the DMGs were computed

using memento for each timepoint in IFN-β stimulation condition. This correlation matrix at

timepoint 6hr was then clustered using the AgglomerativeClustering function in sklearn

python package. Top 4 clusters in terms of gene number were chosen for plotting.

Identifying highly variable genes at baseline

We used memento in the one-sample mode to compute the donor-averaged expression mean

and variability for each gene in the transcriptome that had greater than 0.07 mean UMI

count. We then performed gene set enrichment analysis using EnrichR to get the
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significantly enriched gene sets.

Study subjects and genotyping for Perturb-seq

Our samples were enrolled in PhenoGenetic study (age 18 to 56, average 29.9), as part of the

Immvar cohort(20), which were recruited in the Greater Boston Area. Each donor gave

written consent to participate and were healthy, without any history of inflammatory disease,

autoimmune disease, chronic metabolic disorders or chronic infectious disorders. We

genotyped 56 caucasian samples on the OmniExpressExome54 chip, and excluded 2080 SNPs

with a call rate < 90% (0.22% of total), 1521 SNPs with Hardy Weinberg P < 0.0001

(0.16%) and 259,860 SNPs with MAF < 0.1 (27.04%) out of the total 960,919 SNPs profiled.

The Michigan Imputation Server was used to impute these genotypes with the Haplotype

Reference Consortium Panel Version r1.1. After genotype imputation had 5,324,560 SNPs,

which were then subsetted for our nine donors.

Regulator target identification and CROP-seq library generation

Our library contained targeted 140 regulators (transcription factors and RNA-binding

proteins) with 2 sgRNAs each. Each regulator was unbiasedly chosen using gene expression

and accessibility data from activated CD4+ T cells in 95 and 105 healthy donors(18). To get

the highly expressed regulators using RNA-seq data, we performed a TMM normalization

and took the upper quartile of highly expressed genes and subsetted those that were

regulators. To get the regulators with highly accessible binding sites using ATAC-seq data,

we enriched for all binding sites on the HOMER database(71) in activated accessible

chromatin regions. We took the union of the highly expressed regulators and accessible

binding sites, for a total of 140 regulators (Fig. 1B).

The backbone plasmid used to clone the CROP-Seq library was CROPseq-Guide-Puro(28),

purchased from Addgene (Addgene. Plasmid #86708). We used two sgRNAs oligo sequences
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from the Brunello library(88) for each of our chosen 140 regulators. Oligos for the sgRNA

library were purchased from Integrated DNA Technologies (IDT) and cloned into the

CROPseq plasmid backbone using the methods described by Datlinger et al.13. Lentivirus

was produced using the UCSF ViraCore.

SLICE experiment and sequencing

Primary human CD4+ T cells were isolated from peripheral blood mononuclear cells

(PBMCs) by magnetic negative selection using the EasySep Human CD4+ T Cell Isolation

Kit (STEMCELL, Cat #17952). Cells were cultured in X-Vivo media, consisting of

X-Vivo15 medium (Lonza, Cat #04- 418Q) with 5% Fetal Calf Serum, 50mM

2-mercaptoethanol, and 10mM N-Acetyl L-Cysteine. On the day of isolation (Day 1), cells

were rested in media without stimulation for 24 hours. The day after isolation (Day 2), cells

were stimulated with ImmunoCult Human CD3/CD28 T Cell Activator (STEMCELL, Cat

#10971) and IL-2 at 50U/mL. 24 hours post stimulation (Day 3), 1 uL of lentivirus was

added directly to cultured T cells and gently mixed. Following 24 hours (Day 4), cells were

collected, pelleted, and washed in PBS twice. Then, cells were resuspended in Lonza

electroporation buffer P3 (Lonza, Cat #V4XP-3032). Cas9 protein (MacroLab, Berkeley,

40mM stock) was added to the cell suspension at a 1:10 v/v ratio. Cells were transferred to a

96 well electroporation cuvette plate (Lonza, cat #VVPA-1002) for nucleofection using the

Lonza Nucleofector 96-well Shuttle System and pulse code EH115 (Lonza, cat #VVPA-1002).

Immediately after electroporation, pre-warmed media was added to each electroporation well,

and 96-well plate was placed at 37 degrees for 20 minutes. Cells were then transferred to

culture vessels in X-Vivo media containing 50U/mL IL-2 at 1e6 cells /mL in appropriate

tissue culture vessels. Two days later, 1.5ug/mL Puromycin was added in culture media for

selection. Cells were expanded every two days, adding fresh media with IL-2 at 50U/mL.

Cells were maintained at a cell density of 1e6 cells /mL. On the final day (Day 13) of the

experiment, cells from each of the nine donors were counted using Vi-CELL XR and pooled
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at equal numbers to obtain a final 180,000 cells in 60 uL of PBS. The pooled cells were then

processed by UCSF Institute for Human Genetics (IHG) Genomics Core using 16 wells of

10X Chromium Single Cell v2 (PN-120237), as per manufacturer’s protocol, with each well

being separately index. The final library was sequenced on two lanes on the Nova-seq for a

total of 6.7B reads. To maximize the probability of detecting sgRNAs in cells, we further

amplified and sequenced the sgRNA transcripts %from the 10X cDNA library to near

saturation as previously described62 (98%).

Estimation of cutting efficiency

The cutting efficiencies are estimated as the the proportion of DNA in bulk that contained a

specific indel (by readcount) normalized by the relative proportion of cells with a specific

sgRNA found in the experiment.

It is important to note that while neither the denominator or the numerator cannot be a

number larger than 1, our estimate of the proportion of cells with a specific guide used for

normalization contains error, leading to a handful of guides with a cutting efficiency > 1.

Visualizing gene regulatory networks

To generate the GRNs in 3.2E, we first used a list of pairs of regulator to their

differential-mean expressed genes to define a bipartite graph, which was then visualized in

Cytoscape. We then added the connections between the interacting pairs of regulators

discovered by differentially correlated genes (DCGs) in the same previously visualized

network (3.2F).

Identifying candidate interactions for differential correlation analysis

For a transcriptional regulator TR, we first identified all of the DMGs where the TR acts as

a transcriptional activator, with the DM coefficient less than 0 across the KO. We then
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computed the correlation between each TR-DMG pair in WT cells, and constructed the final

set of TR-DMG pairs by selected those that had a significant correlation in WT (ρ > 0.1).

For each of these TR-DMG pairs, we tested for differential correlation across various sgRNAs

targeting transcriptional regulators other than TR. The final set of interactions were called

by filtering for FDR < 0.1.

Counting genes with shared TFBS for pairs of transcription factors

For a pair of transcriptional factors TF1 and TF2, we first identified their transcription

binding sites (TFBSs) during the ChIP-seq data in the ENCODE datasets. We then took

the locations of known gene transcriptional start sites (TSSs) and measured the distance of

the nearest TFBS for each TF for each TSS. We then counted the number of genes that have

TFBSs of both TF1 and TF2 within a series of window sizes near the TSS, ranging from 10

base pairs to 100K basepairs. We performed this procedure for pairs of TFs chosen at

random and also pairs of TFs identified as interacting using differential correlation analysis.

Assessing the tonic sensitivity of ISGs

We used tonic sensitivty measurements from Gough et al. where the authors compared the

expression of ISGs in IFNAR1-KO and WT macrophages53. The fold-change between those

two groups were defined as the tonic sensitivity, which is the number we use in Fig. 3.1D.

eQTL discovery using pseudobulk approach and memento

We used the single cell dataset generated by Perez et al. that profiled peripheral blood

mononuclear cells in individuals with systemic lupus erythematosis (SLE) and healthy

controls. We maintained the same cell type classifications used in that study.

To identify eQTLs using the psedubulk approach, we first created pseuobulks at the cell-type

and individual level by normalizing each cell expression with total UMI count per cell, taking
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the average for each gene across all individuals, and computing log(x+ 1) for each mean. We

filtered genes that had a lower than 0.01 mean UMI counts in the single cell dataset.

We ran Matrix eQTL for each of the Asian and European populations separately, using the

same set of genotypes and covariates used by Perez et al.17. For memento, we also performed

the test separately for the two populations, using the same genotypes and covariates. We

used the hierarchial resampling mode for memento.

Enrichment of eQTLs in ATAC peaks

We used the same set of ATAC peaks used by Perez et al.17. For each SNP, we labeled

whether that a cell type specific ATAC peak covered the location of the SNP. We then

compared the p-values of the eQTL candidates in a cell-type peak to those of the candidates

outside of ATAC peaks using the Wilcoxon Rank Sum test.

Comparison of eQTLs with OneK1K cohort

To compute the ROC curve and perform power analysis in 3.3, we compared the eQTLs we

discovered using the two approaches to the eQTLs reported by Yazar et al.18. We used this

much larger dataset as the gold standard to compare methodologies applied to the SLE

dataset. Specifically, we calculated power as the proportion of Onek1k hits we were able to

replicate with the smaller dataset. We calculated false positive rate by shuffling the

genotypes of individuals (while keeping individual-cell assignments intact) and calculating

the proportion of SNP-gene pairs with P < 0.05.

Precomputation of estimates and standard errors in the

CELLxGENE Discover database

The CELLxGENE Census database provides RNA expression counts as an MxN matrix

comprised of M cells and N genes. Each cell is annotated with metadata specifying its cell
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type, dataset, tissue, assay type, donor, disease, sex, development stage, ethnicity and

suspension type. The Census data is sparse, in that if the measured expression of a given

gene for a given cell is not positive, it is not explicitly stored.

From these Census data, we grouped the cells by their annotation values for cell type,

dataset, tissue, assay type, donor, disease, sex, development stage, ethnicity and suspension

type. Then, for every group of cells and every expressed gene within a given cell group, we

computed the logs of the mean, standard error of the mean, variance, and standard error of

the variance using the same estimator and resampling strategy outlined above.

These precomputed values are then saved so that repeated differential expression analyses

can be efficiently performed without recomputing these estimators. A Census data

comprising 30M cells is reduced to 140K cell groups, and is therefore 2 orders of magnitude

smaller in size.

Hypothesis testing using precomputed standard errors

To compute differential expression between two distinct groups of cells that differ by a

specified treatment, two subsets of the precomputed data can be retrieved by filtering the

precomputed data by two distinct values of a specified cell annotation. All of the remaining

cell annotations are then treated as covariates when computing differential expression.

For the cell type comparisons presented in the paper, we used basic weighted least squares

(WLS) to incorporate the precomputed mean and residual variance estimates (as response

variable) along with their standard errors (as weights). To perform DE across all 23 datasets

in (Figure 3.4), we used the donor covariates as one-hot encoded variables as well as their

interaction terms with the cell type one-hot encoded variable.
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3.7 Supplementary figures

Figure S3.1: Change in correlation between two genes (y-axis) vs the product of the changes
in mean (x-axis).
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Figure S3.2: Gene expression variability (y-axis) for each class of genes across cell types.
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Figure S3.3: We estimated the average sgRNA KO efficiency (x-axis) per sgRNA (y-axis).
Each point represents the average KO efficiency and error bars are the standard deviations
across donors.
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Figure S3.4: Distribution of transcriptome correlations for WT guides, guides targeting the
same gene, and random pairs of guides.
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Figure S3.5: Enrichment of eQTLs in cell-type specific ATAC peaks (Europeans).
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Figure S3.6: LDSC-score regression enrichment for diseases using eGenes found via memento
and the pseudobulk method.
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Figure S3.7: Comparison of effect sizes computed using full and precomputed versions of
memento



72

Chapter 4

Discussion and conclusion

Fueled by the development of scalable workflows, there is an emergence of scRNA-seq

datasets where the quantitative comparison of gene expression distributions between groups

of cells is a critical task. These include endeavors to compare single-cell expression profiles

between experimental conditions12, disparate genetic perturbations induced by genome

editing14,63, and individuals inheriting different alleles16–18. Initial observations that

experimental and genetic perturbations predominantly induce subtle shifts in gene expression

rather than unequivocal cell states have necessitated the need for methods adept at

comparing gene expression distributions. However, scalable computational methods that

facilitate hypothesis testing over large numbers of cells and an extensive array of covariates

(e.g. hundreds of in vitro perturbations or millions of genetic polymorphisms) are still scarce.

Moreover, even fewer methods currently test for differences in the variability of gene

expression and gene correlations, unique parameters captured by single cell RNA-sequencing.

Here, we introduced memento, an end-to-end method for the quantitative analysis of

scRNA-seq data theoretically scalable to millions of cells. memento is developed with two

pivotal innovations: method of moments estimators modeling scRNA-seq via a

hypergeometric sampling process and an efficient bootstrapping strategy to construct precise
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confidence intervals around parameter estimates, exploiting the sparsity of scRNA-seq data.

The utilization of method of moments estimators imparts twofold advantages over other

approaches. First, our approach delineates biological and technical sources of noise, enabling

the accurate characterization of biological variation. This feature of memento addresses

recent calls for hierarchical parametric modeling of the measurement noise of scRNA-seq

while only considering biological variation for estimation and inference22. Second, our

approach circumvents the need to repetitively compute overall likelihood, enabling

instantaneous computation of the pertinent parameters. The multinomial approximation of

hypergeometric sampling has been used to theoretically derive the baseline noise in

scRNA-seq34 and to design dimensionality reduction techniques for count data64. The

Poisson approximation of the binomial (which in turn approximates the hypergeometric), has

been used to derive empirical Bayes estimators to inform the optimal design of scRNA-seq

experiments37. While our estimators are derived focusing on scRNA-seq workflows where

cell-to-cell differences in transcript sampling frequencies q are small, the hypergeometric

formulation is amenable to models where q varies significantly between compartments (e.g.

sci-rna-seq30), provided that Nc and q can be estimated separately. Because of the modular

and flexible nature of memento, we further anticipate that our modeling framework could be

extended to alternative scRNA-seq workflows that use hybridization instead of reverse

transcription65 and spatial transcriptomics data66. Analyses of emerging multimodal

workflows (e.g., ATAC-seq and CITE-seq) should also be possible by modifying the

method-of-moments estimators to correctly capture sources of technical variation unique to

each assay.

The implementation of method of moments estimators for hierarchical models universally

contends with the challenge of establishing confidence intervals via resampling, given that

incorporating the sampling process into deriving analytical confidence intervals and p-values

can materialize as exceedingly complex without further assumptions. Although resampling

can be computationally prohibitive, particularly when cell numbers are large, our
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employment of the approximate bootstrap resamples the number of unique counts as

opposed to the number of single cells. In various cell count subsamples, the number of

unique counts increased sub-linearly with the number of cells (Fig. S2.5), and this was true

even when considering unique counts for pairs of genes (Fig. S2.6). Through extensive

simulations, we demonstrated that memento is able to produce accurate confidence intervals

for the moment estimates and well-calibrated p-values testing for their differences across

groups of cells. Because our hypothesis testing framework utilizes approximate

bootstrapping, it should in theory be compatible with existing parametric models and other

types of estimators to enable better estimates of empirical p-values for a variety of single-cell

sequencing analysis methods. For example, one could design an estimator for experiments

where the mRNA sampling process cannot be approximated as a single step, and requires a

more in-depth treatment. In addition, we also demonstrated that the principles behind

memento can be extended to perform differential expression combining multiple datasets in

an extremely efficient manner by frontloading expensive calculations, giving researchers

better tools to interact with massive resources such as CELLxGENE Discover.

Through the application across four proof-of-principle settings, we demonstrate memento

having increased power to detect differentially expressed genes across a range of studies. We

show that our mean estimator is particularly more accurate at lower cell counts, and our

inference is more concordant with results from bulk RNA-seq experiments. Moreover, we

demonstrate that differential variability and correlation analysis can identify novel gene

regulatory relationships that are not detected using differential mean analysis. In human

tracheal epithelial cells, memento identified unexpected correlation of canonical ISGs at

baseline, hinting at an extracellular gradient of tonic interferon and expanding the interferon

response transcription regulatory network post-extracellular stimulation to encompass

non-canonical ISGs. In a CD4+ T cell dataset perturbed genetically by CRISPR-Cas9,

memento analyses using genetic perturbations as causal anchors revealed genetic interactions

of regulators in controlling the expression of target genes. When applied to a
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population-scale scRNA-seq dataset, memento improved the statistical power and resolution

for mapping cis-eQTLs, mapping additional loci impacting gene expression variability and

gene correlation. Finally, we demonstrated the compatibility of the memento framework with

the CELLxGENE Discover to power arbitrary differential expression analysis between groups

of cells. Demonstrated across diverse datasets, memento emerges as a highly adaptable and

scalable method for the quantitative analyses of large scRNA-seq datasets containing many

replicates and experimental conditions.
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