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Abstract

Understanding the contribution of the host’s genetic background to cancer immunity may lead 

to improved stratification for immunotherapy and to the identification of novel targets. We 

investigated the effect of common and rare germline variants on 139 well-defined immune traits in 

~9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell 

and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 
(STING1), and TMEM108 were associated with differential interferon signaling and variants 

mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic 

variants in BRCA1, and in genes involved in telomere stabilization and Wnt-β-catenin, also acted 

as immune modulators. Our findings provide evidence for the impact of germline genetics on 

the composition and functional orientation of the tumor immune microenvironment. The curated 

datasets, variants and genes identified provide a resource towards further understanding of tumor­

immune interactions.

eTOC

Sayaman, Saad et al. investigate the effect of common and rare germline variants on 139 well­

defined immune traits in ~9000 cancer patients enrolled in TCGA, providing evidence for the 

impact of germline genetics on the composition and functional orientation of the tumor immune 

microenvironment.

Grpahical Abstract
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Introduction:

Immunotherapy with monoclonal antibodies that target immune inhibitory signaling 

(immune checkpoints) (Ishida et al., 1992; Leach et al., 1996) has emerged as the standard 

of care for many solid tumors, with an objective response rate up to ~40% in some cancer 

types (e.g., melanoma) (Chamoto et al., 2020; Sweis and Luke, 2017). However, overall, 

it has been estimated that fewer than ~15% of cancer patients might currently respond to 

such treatments (Haslam and Prasad, 2019). The density, location, and functional orientation 

of tumor infiltrating leukocytes have been associated with prognosis (Galon and Bruni, 

2020), evolution of metastases in space and time (Angelova et al., 2018), and responsiveness 

to immunotherapy (Bruni et al., 2020), especially to checkpoint inhibition (Cristescu et 

al., 2018; Tumeh, 2014). Understanding the mechanisms underlying anti-tumor immune 

response will help stratify patients and may lead to the development of more effective 

therapies.

Cancer-cell intrinsic features such as somatic genetic alterations that activate specific 

oncogenic pathways (Bedognetti et al., 2016; Kalbasi and Ribas, 2020), the mutational 

load (Samstein et al., 2019; Snyder et al., 2014), the presence and degree of microsatellite 

instability (Mandal et al., 2019), and aneuploidy (Davoli et al., 2017) can differentially 

influence cancer immune responsiveness (Roelands et al., 2020; Rooney et al., 2015; 

Thorsson et al., 2018). Modifiable host factors such as the microbiome may also modulate 
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the immune microenvironment and affect response to immunotherapy (Helmink et al., 2019; 

Iida et al., 2013). But host genetic factors have not been explored in depth as modulators of 

cancer immune responsiveness (Bedognetti et al., 2019; Havel et al., 2019).

Genome-wide association studies (GWAS) have identified germline variants that exert 

strong effects on circulating leukocyte counts (Keller et al., 2014) and fractions (Orrù et 

al., 2013), severity of immune-mediated tissue rejection in transplantation (Yang and Sarwal, 

2017) and autoimmune diseases (Ye et al., 2018). Candidate gene studies in patients on 

immunotherapy have reported association between treatment responsiveness and immune­

related genes such as IRF5 (Uccellini et al., 2012) and CCR5 (Bedognetti et al., 2013; 

Ugurel et al., 2008) in the pre-checkpoint inhibition era; and CTLA4 (Queirolo et al., 2017), 

HLA (Chowell et al., 2018), Fc-gamma receptor (Arce Vargas et al., 2018), IL2, and IL21 
(Chat et al., 2019) in the context of CTLA-4 or PD-1 blockade therapy.

The Cancer Genome Atlas (TCGA) project has increased our understanding of cancer 

pathogenesis (Hutter and Zenklusen, 2018). A comprehensive analysis of immune signatures 

in TCGA identified features of the immune response that predict survival across many tumor 

types (Thorsson et al., 2018). Here, we used TCGA to perform a pan-cancer evaluation of 

the contribution of germline variation to anti-tumor immune response. First, we calculated 

genome-wide heritability of immune traits from common variants. Next, we performed 

GWAS for immune traits to identify the loci with the strongest effects. Finally, we examined 

the contribution of rare germline variants in known cancer susceptibility genes to the cancer 

immune microenvironment.

Our findings provide evidence for the impact of the host’s genetic background on the 

composition and functional orientation of the tumor immune microenvironment. The curated 

data- sets herein generated and the list of variants and genes are in- tended to serve 

as a resource for future studies in the field of cancer germline immunogenetics and 

immunotherapy. Results are also presented through the CRI iAtlas portal for interactive 

exploration and visualization (https://www.cri-iatlas.org).

Results:

Overview of the Discovery Approach and Description of the Immune Traits

To examine the contribution of germline genetic variation to the functional orientation of 

the immune microenvironment, we conducted heritability analysis, GWAS (N=9,603), and 

rare variant analysis (N=9,138) across 30 non-hematological cancer types characterized 

by the TCGA (Figure 1 top, and Table S1). Unless otherwise indicated, all analyses 

were adjusted for cancer type, age at diagnosis, sex, and the first seven components from 

principal component analysis (PCA) done on single nucleotide polymorphism (SNP) data, 

which largely capture genetic ancestry (see Methods). We considered 139 well-characterized 

immune traits estimated in the TCGA immune analysis (Thorsson et al., 2018) (Table 

S2, and Figure 1 bottom panel). We divided the traits into six categories based on the 

approach used to derive them and the parameters they intend to measure: (1) leukocyte 

subset enrichment score (ES), which estimates leukocyte subset abundance within the tumor 

based on the coordinated regulation of lineage-specific genes using single sample gene 
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set enrichment analysis (ssGSEA) (Bindea et al., 2013) (2) leukocyte subset proportion 

(%), which estimates the leukocyte subset proportion within infiltrating leukocytes using 

CIBERSORT deconvolution (Gentles et al., 2015) (3) overall proportion, which include 

measures of leukocyte infiltration and stromal contents; (4) adaptive receptor, quantifying T 

cell receptor (TCR) and B cell receptor (BCR) diversity (TCR and BCR Shannon entropy 

and richness); (5) expression signatures, consisting of a collection of annotated functional 

signatures summarizing different immune-related biological processes (e.g., wound healing, 

Interferon (IFN) and Tumor growth factor beta (TGF-β) signaling, antigen-presenting 

machinery etc.); and (6) attractor metagenes, which include co-expression signatures 

(metagene attractors) derived from the whole TCGA dataset (Cheng et al., 2013a, 2013b). 

All of the immune traits were derived from RNA-seq, with the exception of overall 

proportion estimates (which include hematoxylin and eosin (H&E) tissue imaging and DNA 

methylation array data).

The 139 traits were clustered based on their Pearson correlation coefficients, and six 

groups of correlated traits were defined and referred to here as “modules” (Figure S1, 

and Table S2). The first five modules recapitulate the immune modules defined in Thorsson 

et al. (Thorsson et al., 2018), with highly concordant module membership. The largest 

group included traits that were highly correlated with leukocyte fraction and lymphocyte 

infiltration estimates (lymphocyte infiltration module). Traits capturing monocyte-function 

and macrophages infiltration and MHC-related traits formed a second module (monocyte/

macrophage module). Traits capturing IFN signaling were highly correlated and formed a 

third module (IFN response module). The next two modules included traits associated with 

TGF-β signaling (TGF-β response module) and wound healing (wound healing module), 

respectively. The last and previously undescribed module mostly included leukocyte subset 

ES that were excluded from the clustering analysis in Thorsson et al., such as T helper, 

CD8 cytotoxic, and natural killer (NK) cells (T cell/cytotoxic module) (Thorsson et al., 

2018). Although most traits fit within these modules, a subset (N=42) did not cluster within 

any module. In addition, there was substantial correlation between traits across modules, 

particularly between the lymphocyte infiltration and monocyte/macrophage modules, and 

between these and the IFN response modules. A subset of traits clustering within the 

T cell/cytotoxic module were significantly correlated with the IFN response, lymphocyte 

infiltration, and monocyte/macrophage modules.

GWAS were performed on traits that we found to have significant heritability since these 

would be most likely driven by common genetic variants. For rare variant association tests, 

we examined all 139 traits, and focused on well-annotated pathogenic or likely pathogenic 

variants within high penetrance cancer susceptibility genes (Huang et al., 2018).

Genome-wide Heritability of Immune Traits

We performed heritability analysis on 139 traits using a mixed-model approach implemented 

in genome-wide complex trait analysis (GCTA) genomic-relatedness-based restricted 

maximum-likelihood (GREML) method (Yang et al., 2010, 2011) to calculate the proportion 

of immune trait variation that is attributable to common genetic variants (Zaitlen and 

Kraft, 2012). Heritability analyses were conducted separately within each ancestry subgroup 
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(NEuropean=7,813, NAfrican=863, NAsian=570, and NAmerican=209 individuals), which were 

derived from ancestry analysis (Carrot-Zhang et al., 2020) (Figure S2A and S2B).

In the pan-cancer analysis, we found 10 immune traits with significant heritability after 

correction for multiple hypothesis testing (false discovery rate (FDR) p < 0.05), and 23 

other traits with nominally significant heritability (p < 0.05) in at least one ancestry group 

(Figure 2A, Figure S2C, and Table S3). Within the European ancestry group, 28 traits 

had at least nominally significant heritability. The most heritable traits, with ~15–20% 

heritability and FDR p < 0.05, were members of the T cell/cytotoxic module (Figure S1A) 

and represent T cell subsets estimated using ES including CD8 T cells, T helper cells, T 

follicular helper cells (Tfh), T effector memory (Tem) cells, T central memory (Tcm) cells, 

NK cells and eosinophils (Figure 2A). An Antigen Presenting Machinery signature (APM1) 

clustered within the T cell/cytotoxic module (Figure S1A) and was also ~20% heritable 

(FDR p < 0.05). T helper 1 (Th1) cell ES, which were also part of this module (Figure S1), 

showed lower but nominally significant heritability (Figure 2A). The second most heritable 

traits, with ~15% heritability, included highly correlated IFN-related signatures (Interferon 

Cluster 21214954, GP11 Immune IFN, IFN 21978456, module3 IFN score, and IFIT3), and 

activated dendritic cells (aDC), which cluster within the IFN response module (Figure S1A). 

Among these, Interferon Cluster 21214954 and aDC ES were significant after correction for 

multiple hypothesis testing. In addition, we detected nominally significant heritability for T 

helper 2 (Th2) and T helper 17 (Th17) cell ES, proportion of T cells CD8+, memory B cells, 

and eosinophils within leukocytes (Leukocyte Subset %). The CD8+ T cell/CD68+ ratio, a 

B cell metagene score (B cell mg IGJ), macrophage ES, neutrophil ES, and other signatures 

belonging to the macrophage/monocyte module, including major histocompatibility complex 

class-II (MHC2 21978456) and Siglec-regulation (G SIGLEC9), an attractor metagene, 

showed nominally significant heritability.

Despite the limited cohort size, specific immune traits were also heritable in the African 

and Asian ancestry groups at a nominal significance (Figure S2C). In the African ancestry 

group, NK CD56dim ES and cytotoxic cell ES, single gene immune therapy target PDCD1 
expression (PD1 data), and TGF-β immunomodulatory signaling (TGFB PCA 17349583), 

showed nominally significant heritability. In the Asian ancestry group, Tcm cell ES and the 

proportion of NK cells activated (%) showed nominally significant heritability.

Variation of Heritability of Immune Traits Across Immune Subtypes

Since there was considerable heterogeneity between tumor types, we investigated whether 

heritability varies among tumor immune subtypes previously defined (Thorsson et al., 2018). 

These six distinct immune subtypes include: wound healing (C1), IFN-γ dominant (C2), 

inflammatory (C3), lymphocyte depleted (C4), immunologically quiet (C5), and TGF-β 
dominant (C6) (Figure S1B). These immune subtypes formed larger subsets than any of 

the individual tumor types, facilitating heritability analyses that require large numbers 

(Visscher et al., 2014). We performed statistical interaction analysis using GREML in 

the European ancestry group (Figure 2B). We found 26 immune traits with significant 

variance of genotype-immune subtype interaction effects at FDR p < 0.05, and 18 other 

nominally significant traits (p < 0.05). These interactions suggest that the contribution of 
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genotype to immune traits differs among immune subtypes. We found substantial overlap 

between immune traits with nominally significant heritability and those with interaction 

effects. Eight of the heritable traits from the T cell/cytotoxic module had significant 

interactions with immune subtype including: ES of CD8 T cells, T helper cells, Tfh 

cells, Tem cells, Tcm cells, NK cells, eosinophils and APM1 expression signature. In 

addition, ES of NK CD56 bright cells, B cells, and mast cells showed significant interaction 

effects of genotype-immune subtype. The majority of immune traits with significant and 

nominally significant genotype-immune subtype interaction belonged to the T cell/cytotoxic, 

macrophage/monocyte, overall lymphocyte infiltration, and TGF-β response modules. On 

the other hand, traits that were part of the IFN response module showed no genotype­

immune subtype interaction, suggesting that the genotypic contribution to these traits was 

independent of immune subtypes.

To understand how immune subtype influences heritability of the 44 immune traits with 

at least nominally significant genotype-immune subtype interaction effects, we performed 

heritability analyses stratified by immune subtype. We performed these only in subtypes 

with sufficient sample size: C1 (NC1=1,752), C2 (NC2=1813), and C3 (NC3=1737). We 

found significant heritability estimates (FDR from p < 0.1 to p < 0.001 significance levels) 

largely within the C1 immune subtype, but not within the more immune-active subtypes, C2 

and C3 (Figure 2C).

Genome-wide Association for Variants Affecting Immune Traits—We selected 

the 33 immune traits with nominally significant heritability (p < 0.05) in at least one 

ancestry group to perform GWAS, and tested the association between each of these traits 

and 10,955,441 variants that passed the quality and frequency thresholds. We identified 

598 genome-wide significant (p < 5×10−8) associations at 23 loci for 10 immune traits. 

We also identified an additional 1,196 suggestive (p < 1×10−6) associations for 33 traits 

(Figure 3A, Table S4). Summary statistics for all GWAS analyses are available on Figshare 

(https://doi.org/10.6084/m9.figshare.13077920).

Two of the 23 loci with the strongest associations (p < 1×10−10 to p < 1×10−25) included 

SNPs that map within +/−50 KB (or 1 MB in the case of HLA) of the genes that comprise 

the signature of the associated immune trait. These included SNPs at the HLA locus, which 

are associated with the MHC2 expression signature, and SNPs at the focus of IL17RA locus, 

which makes up the Th17 cell ES. We concluded that these SNP associations represented 

simple expression quantitative trait loci (eQTLs) and we did not consider them further.

In contrast, the remaining 21 loci were not proximal to genes comprising the associated 

signatures; therefore, they likely represent SNPs affecting the overall immune trait. The 

majority of these 21 loci are associated with leukocyte subset enrichment and IFN signaling. 

At these 21 loci, we found 59 genome-wide significant associations with 17 traits, 45 of 

which were represented by unique SNPs, and 10 of which had significant association with 

at least two traits. Excluding the HLA and IL17RA loci, we identified 841 suggestive 

associations, represented by 667 unique SNPs, 70 of which had multiple suggestive hits in at 

least two traits, suggesting pleiotropic associations of significant SNPs (Table S4).
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To examine pleiotropy, we clustered all 33 immune traits (Figure S3A) based on the 

association p values of all significant and suggestive SNPs found to be associated with 

at least one trait (Figure S3B). The results generally recapitulated clustering based on the 

correlation of their phenotypic values, with traits with common associations tending to have 

similar overall expression. (Figure S3A-B). To understand pleiotropic effects at individual 

loci, we visualized the strength of each association between each immune trait and each 

significant and suggestive SNPs across the genome (Figure 3B). SNPs that were associated 

with one of the T cell ES tended to be associated with multiple other T cell subsets. For 

example, significant and suggestive SNPs in chromosome (chr) 17 associated with CD8 T 

and T helper cell ES that were part of the T cell/cytotoxic-dominant cluster (Figure 3B, 

top cluster highlighted in red) showed nominally significant associations (1×10−6 < p < 

1×10−4) across a number of other traits within this cluster, and largely no associations across 

other traits. Similarly, SNPs associated with one of the traits from the IFN response module 

were usually associated with the other traits within the IFN-dominant cluster, but largely 

distinct from traits from other clusters. For example, SNPs at chr 2 were associated with 

traits in the IFN-dominant cluster, but not other traits (Figure 3B, second cluster highlighted 

in purple). However, a few of the top loci were associated with traits from both the IFN 

and T cell/cytotoxic dominant clusters. For example, significant SNPs in chr 3 associated 

with IFN immune traits also showed nominally significant associations with eosinophil, Th1 

cell, and cytotoxic T cell ES within the T cell/cytotoxic module. Finally, the loci for MHC2 

(driven by HLA expression) on chr 6 and Th17 ES (driven by IL17RA expression) on chr 

22 showed largely no association outside of their respective associated traits, consistent with 

being simple eQTLs.

To understand if significant and suggestive SNPs are associated with specific epigenetic 

regulatory regions, we mapped the SNPs to annotated chromatin states using an expanded 

model of 18 chromatin states (Roadmap Epigenomics Consortium et al., 2015), which takes 

into account six chromatin marks across 98 epigenomes, including 25 that are specifically 

immune related (Figure S4A, Table S4). Excluding the HLA and IL17RA loci we found 

a substantial fraction of the genome-wide significant loci to have at least one SNP that 

maps to a potential regulatory site across multiple epigenomes including: weak transcription 

chromatin active states, weak enhancer active states, zinc finger (ZNF) genes/repeats active 

and heterochromatin inactive states, and weak repressed polycomb states (Figure S4B). 

These findings suggest that many of the loci we identified may act directly on gene 

transcription or through alteration of gene regulatory regions, including at distant enhancer 

regions, across multiple epigenomes including immune-related ones.

Genetic Variants and Candidate Genes Associated with IFN Signaling

We found two loci associated with IFN signaling traits (IFN response module), one on chr 

2 and another on chr 3, and a third locus very close to the genome-wide significant cut-off 

on chr 5 (Table S4, Figure 4A). These loci map to IFIH1, TMEM108 and TMEM173, 

respectively (Figure 4C, 4E and 4G). The direction of the effect of these SNPs on the IFN 

traits was consistent across the majority of cancer types (Figure S5A-C).
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Locus 2 (chr 2) is represented by SNPs rs2111485 and rs1990760, which were both 

significantly associated with three of the IFN traits and had suggestive associations with two 

other IFN traits (Table S4). These two SNPs are in high linkage disequilibrium (LD) with 

each other (r2 > 0.8) (Figure 4C) and map to the IFIH1 gene which is induced by IFN and 

acts as an RNA-dependent ATPase (Kang et al., 2002; Yoneyama et al., 2005). Rs2111485 

and rs1990760 have been reported to be associated with a number of autoimmune diseases 

such as psoriasis, vitiligo, systemic lupus erythematosus, ulcerative colitis, Crohn’s disease, 

and type I diabetes mellitus (T1DM) in the GWAS catalog (Buniello et al., 2019) (Figure 

4D). Rs1990760 results in an amino-acid change (A946T). The 946T allele, which was 

associated with higher risk of T1DM and vitiligo but decreased risk of inflammatory bowel 

disease and psoriasis was associated with higher IFN trait values in our analyses. This 

allele has been associated with higher basal and inducible production of type I IFNs in 

human peripheral blood mononuclear cells and enhanced antiviral response in transgenic 

mice (Gorman et al., 2017; Rice et al., 2014). Our analyses identified at least one additional 

suggestive (p < 10−6) association at this locus characterized by rs17716942, a SNP which is 

not in LD with the lead SNPs (r2 < 0.1) and has been associated with psoriasis (Tsoi et al., 

2012).

Locus 4 (chr 3) included six genome-wide significant SNPs associated with four of the 

six IFN signaling traits (Table S4, e.g. Figure 4A and Figure S5D). These SNPs were 

nominally associated with several other cellular signatures including one for aDC and one 

for the fraction of NK cells (Figure 3A). These SNPs map to the TMEM108 gene, which 

overlaps with TMEM108-AS1 Antisense RNA1 gene, and are in high LD with each other 

(r2 > 0.8) (Figure 4E). EQTL and splice quantitative trait loci (sQTL) analysis followed 

by colocalization with eCAVIAR demonstrate that TMEM108, CDV3 and RP11–91K8.5 
all plausibly colocalize in the Genotype-Tissue Expression (GTEx) data with traits of the 

IFN response module (Table S5). In the expanded region analyses (within +/− 1MB for 

eQTL and +/− 500 KB for the sQTL, see Methods) we did not find counter-evidence for 

colocalization for any of these genes (i.e. no SNPs with higher eQTL/sQTL and lower 

GWAS signal; expanded region plots are available at https://figshare.com see Methods). 

Therefore, we considered the evidence of colocalization as strong. Of these three genes, 

we found that TMEM108 (colocalization shown in Figure S5D-E) is also significantly 

associated with the top SNPs in the Dataset of Immune Cell Expression (DICE) (Schmiedel 

et al., 2018), particularly CD8 T cell and regulatory T cell (Treg cell) subsets (Figure 

4F), suggesting it is the most likely causal gene at this locus. The alleles associated with 

increased expression of IFN response module traits in tumors are associated with decreased 

TMEM108 expression (Table S5), implying that it may negatively regulate IFN signaling. 

No other GWAS significant SNPs were associated with eQTL in DICE.

We also identified a third locus including a SNP with a very nearly genome-wide 

significance (p = 8.27×10−8) on chr 5 (Figure 4G). This SNP (rs1131769) is a missense 

variant in TMEM173, causing an Arginine to Histidine substitution at position 232 of 

the STING protein, a major mediator of the innate response against virus and cancer 

cells (Flood et al., 2019; Patel and Jin, 2019). The minor allele T (H232) was associated 

with lower IFN signaling values, as compared to the major allele C (R232) (Table S4). 

The H232 allele results in reduced IFN-α (Kennedy et al., 2020) and IFN-β (Zhang et 
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al., 2013) production following stimuli. The causal association between this variant and 

impaired IFN response has been corroborated by molecular simulations suggesting that the 

ligand-binding loops were more rigid for R232 compared to H232 (Kennedy et al., 2020). 

We performed an in-silico evaluation of the effect of this amino acid substitution on the 

protein by superimposing H232 and R232 STING structures, and found that H232 interacts 

less closely with its ligand cGAMP (Figure 4H), in agreement with its lower activity.

Based on known protein-protein interactions (PPI), as annotated in String database 

(minimum interaction score confidence ≥ 0.7), we found that IFIH1 and TMEM173 formed 

a highly connected PPI network with the majority of genes that define the traits in the 

IFN response module (Figure 4B). In contrast, TMEM108 showed no direct PPI with the 

IFN-associated genes, suggesting an indirect immune modulatory mechanism.

Genetic Variants and Candidate Genes associated with Differential Immune Infiltration

Fourteen of the genome-wide significant loci were associated with eight distinct traits 

derived from ES that cluster within the T cell/cytotoxic module (Figure 3B, red dotted 

boxes, and Figure 5A inset). We show each of the genome-wide significant and suggestive 

SNPs mapping to these 14 loci in a combined Manhattan plot (Figure 5A and Table S4).

Comprehensive eQTL and sQTL analyses and colocalization revealed several candidate 

causal genes at these loci (Figure 5B). The strongest evidence for colocalization was with 

locus 21 (chr 20), which was associated with Tcm cell ES and splicing of RBL1 (eCaviar 

colocalization posterior probability (CLPP) = 0.95) (Figure 5B, S6A, S6B and Table S5). 

The top SNP at this locus (rs140752248) mapped to the region 5’ of RBL1 and two 

additional SNPs in moderate LD with the top SNP mapped to introns of RBL1 (Figure 

5C). This sQTL also displayed consistent evidence for expanded region colocalization as 

there was no evidence for a secondary signal for splicing separate from the signal from the 

association with Tcm cell ES in the expanded range analyses (Figure 5D and Table S5). The 

association of this locus with Tcm cell ES was fairly consistent across cancer subsets (Figure 

S6B). RBL1 has homology with the tumor suppressor RB (Ng et al., 2020), which is also 

involved in immune regulatory functions (Garfin et al., 2013; Jerby-Arnon et al., 2018). We 

also found weaker evidence for colocalization at this locus with sQTLs for RPN2 and SRC, 

but both of these results also had stronger secondary associations with the splicing event, 

with RPN2 having intermediate evidence and SRC having negative evidence in the expanded 

region colocalization. We found strong evidence for colocalization of a SNP on chr 8 (locus 

12, rs71510648) associated with Tfh cell ES and with an sQTL of INTS10 in GTEx and in 

TCGA (Figure 5B, Figure S6C-6F and Table S5). Examining the expanded region evidence 

for colocalization, we found strong evidence in GTEx and intermediate evidence in TCGA 

(Figure 5B). INTS10 has been identified in a GWAS of persistent hepatitis B infection and 

was found to mediate its effect via IRF3, an IFN regulatory transcription factor (Li et al., 

2016).

At locus 19 on chr 17, we identified multiple genome-wide significant and suggestive 

associations with three immune traits associated with T cell subsets: rs112236917, 

rs112262673, rs73316909 and rs138156694 were significantly associated with T helper cell 

ES; rs112236917, rs73316909 and rs138156694 had significant associations with CD8 T 
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cell ES; and rs112236917, rs73316909 and rs138156694 had suggestive associations with 

Tfh cell ES (Figure 5A and Table S4). Colocalization of eQTL and sQTL data in GTEx 

identified an eQTL of P2RX1, and sQTLs of P2RX5 and RP11–235E17.6 as potential 

candidates (Figure 5B and Table S5). Of these, P2RX1 and P2RX5, purigenic receptors 

which function as ATP-gated ion channels, are known to have an effect on multiple cells 

in the immune system, including lymphocytes (Junger, 2011). Colocalization in TCGA 

data identified ATP2A3, C17orf85, ITGAE, and ZZEF1 as additional candidate genes 

(Figure 5B and Table S5). Of these, ITGAE (also known as CD103) is known to have a 

function in T cell homing to epithelial tissue and tumors (Kim et al., 2019). However, only 

rs112262673-ZZEF1 splicing met our criteria for evidence of colocalization in the expanded 

range analyses (see Methods, Table S5). ZZEF1 (ZNF ZZ-Type And EF-Hand Domain 

Containing 1) is involved in calcium ion binding and SNPs at the ZZEF1 locus have been 

associated with adiposity and type 2 diabetes mellitus (Mahajan et al., 2018). However, these 

SNPs, most of which are in LD with each other, are not in LD with rs112262673 (r2<0.05). 

At locus 23 on chr 22, we identified three SNPs with genome-wide significant associations 

including two SNPs, rs73889576 and rs11914148, associated with Tcm cell ES (Table S4 

and Figure 5A). A third SNP, rs572393792, with a suggestive association with Tcm cell ES, 

had a genome-wide significant association with CD8 T cell ES and suggestive association 

with T helper cell ES. EQTL and sQTL analyses coupled with colocalization in TCGA 

identified ARHGAP8, FBLN1, NUP50, PARVG, and PRR5 as possible candidates (Figure 

5B and Table S5). Among them, only NUP50 (associated with CD8 T cell ES), a component 

of the nuclear pore complex interacting with cell cycle regulatory proteins (Ogawa et 

al., 2010), was supported by intermediate evidence in the expanded range colocalization 

analyses.

In addition, we found potential evidence for colocalization with several other genes at CLPP 

> 0.01 (Figure 5B and Table S5). These included some genes with known functional effect 

on the immune system and/or tumor microenvironment such as ID01 (Munn and Mellor, 

2016) on chr 8 (rs16889186, CLPP = 0.036), associated with cytotoxic cell ES. However, 

these results should be interpreted with caution, since the effect on gene expression was also 

modest (Figure 5B). The full list of eQTL and sQTL with FDR p < 0.1 for all suggestive and 

significant SNPs either in TCGA or GTEx, the results of the eCaviar colocalization analysis 

for all of them, and the results of the expanded range analyses for all the significant SNPs 

with CLPP > 0.01 are reported in Table S5.

Associations with Cancer Predisposition Variants

We performed association analyses between germline pathogenic and likely pathogenic 

cancer predisposition variants (referred to here as rare variants) (Huang et al., 2018) in high 

penetrance susceptibility genes, and immune traits and immune subtypes (Figure 6). Since 

mutations in most of the genes were rare, when possible, we collapsed genes into categories 

summarizing different biologic processes or functions (Figure S7A). However, as mutations 

within the homologous recombination repair (HR) genes, BRCA1 and BRCA2, were more 

common (82 and 79 events, respectively), we analyzed these genes separately. Overall, 21 

genotypic variables were used (Figure S7A-B).
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In an analysis across all cancer types, we found significant associations (FDR p < 0.1) 

between at least one immune trait and germline mutations in BRCA1 and genes in Wnt-β­

catenin and telomere-stabilization pathways. We found suggestive associations (p < 0.005, 

FDR p from 0.1 to 0.25) between at least one immune trait and seven other categories: 

cell cycle, collagen, transcription factor, mismatch repair (MMR), protein homeostasis 

ubiquitination, metabolism, and MAPK signaling (Figure 6A-B). These associations were 

only minimally altered by correction for the somatic mutational load (Figure 6A). Mutations 

in genes involved in telomere stabilization were correlated with features associated with 

T cell exclusion, including low abundance of T cell and cytotoxic cells and diminished 

IFN-related signatures (including STAT1), and TCR diversity (TCR richness) (Figure 

6B). Germline mutations of a collagen-related gene (COL7A1) had nominally significant 

associations with increased macrophage infiltration and decreased lymphocyte infiltration 

(Figure 6B). Lastly, we found the Wnt-β-catenin germline mutations to be consistent with 

the presence of an inflammatory phenotype accompanied by counter-regulatory mechanisms 

such as the activation of the PD-L1 signaling and the recruitment of Treg cells (Figure 6B).

We also tested the relation between rare variants and somatic DNA alterations (Table S6 

and Figure S7C-D). However, since germline mutations in MMR genes are known to affect 

the somatic mutation rate, which predicts immunotherapy responsiveness, we performed 

more detailed analyses of these mutations. As expected, MMR germline variants were 

associated with a higher mutational/neoantigen load and a higher microsatellite instability 

score (MANTIS) (Middha et al., 2017) (Figure S7C). These associations were significant in 

colon adenocarcinoma (COAD) and uterine corpus endometrial carcinoma (UCEC). MMR 

germline mutations were associated with higher leukocyte infiltration only in colon cancer 

(Figure 7A and Table S6). Overall, a higher leukocyte fraction and non-silent mutation rate 

in MMR germline mutated samples were confined to tumors with microsatellite instability 

(MSI-H) (Figure 7B). Interestingly, among MSI-H tumors, the ones driven by MMR 

germline mutations tended to have a higher leukocyte infiltration, although this comparison 

was not significant (p > 0.05) (Figure 7B). A similar trend was observed for other immune 

signatures (data not shown). Germline mutations in Fanconi Anemia (FA) and in BRCA1/2 
genes were associated with a higher HR defect score (Figure S7C). However, only mutations 

in BRCA1 were associated with favorable immunologic parameters such as higher values 

of MHC and IFN response module traits including IFN-related signatures and aDC ES. 

These associations were driven by breast invasive carcinoma (BRCA) samples (Figure 6A 

and Figure 7A). When the analysis in BRCA samples was adjusted or stratified for intrinsic 

molecular subtypes (basal-like vs. non-basal-like tumors), these associations were no longer 

significant (Table S6).

Discussion:

We conducted a comprehensive pan-cancer analysis of the germline genetic contribution to 

the tumor immune microenvironment by evaluating common variant heritability, performing 

GWAS paired with colocalization analyses, and assessing the effect of rare variants in cancer 

predisposition genes.
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Heritability analyses revealed that common genetic variants explain up to one fifth of the 

variance of some immune traits. About 25% of the traits (33/139) were heritable. The 

traits most strongly influenced by germline genetics include estimates of the abundance 

of cytotoxic T, NK, Tfh cells (heritability ~ 20%), and IFN signaling (heritability ~ 

15%), which have been associated with favorable prognosis and/or responsiveness to 

immunotherapy (Galon and Bruni, 2020). The magnitude of the heritabilities that we 

identified were similar to the ones observed for complex traits in humans, such as body 

mass index (Shi et al., 2016). The leukocyte subset ES were highly correlated (all part of 

the T cell/cytotoxic modules) and had largely overlapping GWAS loci. However, ES for 

each of these cell types were calculated based on distinct gene sets suggesting that the 

genetic correlations between these traits were unlikely due to traditional eQTLs but rather 

represented similar genetic mechanisms affecting the cellular infiltrates and/or the activation 

states of these cells that likely reflect an overall coordination of the immune response. 

The heritability was partially dependent on immune subtypes that characterize the overall 

patterns of immune response seen in cancer (Thorsson et al., 2018). For instance, in the 

immune traits that showed interactions with immune subtypes, the heritabilities were higher 

in the wound healing subtype, suggesting that the effect of common genetic variants might 

be most pronounced in highly proliferative and poorly immune infiltrated tumors.

In GWAS analyses, we found two significant loci for IFN-gamma signatures. One locus 

at chr 2 included SNPs within the IFIH1 gene, previously associated with multiple 

autoimmune disorders (Buniello et al., 2019; Rice et al., 2014), demonstrating a link 

between autoimmunity and the immune response to cancer. Since IFN signatures have 

been associated with responsiveness to immunotherapy (Ayers et al., 2017; Cristescu et 

al., 2018), these SNPs may also be associated with efficacy among patients receiving 

immunotherapy, which is consistent with preliminary data in melanoma patients receiving 

checkpoint inhibitors (Chat et al., 2019).

Our analyses also identified an IFN-associated cluster of SNPs on chr 3 near TMEM108. 

TMEM108 is not known to have an effect on IFN signaling, but may signal through 

the Wnt-β-catenin pathway (Yu et al., 2019). Our eQTL and sQTL analyses found 

colocalization with TMEM108 in GTEx, and DICE, but not in TCGA, suggesting that the 

mechanism of action is via expression on either the immune infiltrating cells and/or normal 

tissue surrounding the tumor. In addition, we observed a near genome-wide significant 

association between IFN signaling and a well-characterized, functional missense variant 

of TMEM173 (rs1131769), which encodes for STING protein. Since STING is a key 

modulator of IFN-mediated response against viruses and cancer cells, the association with 

IFN signaling traits is consistent with expectation. STING pathway agonists are in early 

clinical trials and show promising results (Flood et al., 2019). Our results suggest that 

patients’ responsiveness to these agents might differ according to the TMEM173 genotype. 

STING genotypes may also affect immune checkpoint blockade (Wang et al., 2017) and 

radiotherapy-induced tumor immunogenicity (Vanpouille-Box et al., 2017) as mice models 

suggest that STING activation is necessary for their efficacy.

We also found 14 genomic loci significantly associated with traits that are part of the T 

cell/cytotoxic module. Of these, we found the strongest evidence for colocalization between 
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splicing with RBL1 and a locus associated with Tcm cell ES. RBL1 has homology with the 

well-known tumor suppressor RB, and may also act as a tumor suppressor (Ng et al., 2020). 

RB and RBL1 affect DNA repair through non-homologous end-joining (Cook et al., 2015), 

and thus the effect we detected may be an indirect effect of this splice variant on DNA repair 

in tumors. However, the RB family of genes may also have direct effects on the immune 

system (Garfin et al., 2013) by controlling proliferation of T lymphocytes (Mulligan et al., 

1998), and expression of Toll-like receptors (Taura et al., 2012). Moreover, RB1 has been 

implicated in T cell exclusion and immune checkpoint resistance (Jerby-Arnon et al., 2018).

Another study also performed GWAS of immune traits in TCGA (Shahamatdar et al., 2020), 

but only analyzed a limited number of traits (N=17) and focused on European ancestry 

subjects (N=5,788). In addition to the association between IL17RA locus and Th17 cell 

ES which we determined is likely an eQTL, the study also identified another locus, with 

lead SNP rs3366, associated with Tfh cell proportion, inferred by CIBERSORT. This trait 

was not included in our GWAS because it was not significantly heritable. Shahamatdar et 

al. also found a relationship between polygenic risk for autoimmune disorders and immune 

infiltration into tumors (Shahamatdar et al., 2020). Our findings also support the overlap 

between autoimmunity and cancer immune response, specifically, with the identification of 

the IFIH1 locus.

Rare variant analyses demonstrated intriguing associations between genetic variants related 

to cancer development and intratumoral immune response. Among HR gene categories, 

only BRCA1 mutations were associated with higher levels of favorable immune parameters. 

These effects were restricted to BRCA samples and driven by the higher rate of basal-like 

phenotype among BRCA1 mutation carriers. Triple negative/basal-like BRCA samples 

have previously been shown to be more likely to have a more robust immune infiltration 

compared with other breast cancer subtypes (Hendrickx et al., 2017; Jézéquel et al., 2015; 

Miller et al., 2016), and our analyses suggest that BRCA1 may mediate its tissue-restricted 

effect on immune response by uniquely modulating oncogenic pathways captured by the 

intrinsic molecular subtype classification. We also found that mutations in genes in the 

MMR pathway were associated with a more robust immune response. MMR deficiency is 

a strong predictor of response to checkpoint inhibitors (Le et al., 2017) and is one of the 

FDA indications for treatment with these agents regardless of tissue of origin (Marcus et al., 

2019). However, the observation that tumors from patients with germline MMR mutations 

have, overall, a strong immune infiltration only when they display a MSI-H phenotype 

suggests that MMR germline mutations, alone, might not be sufficient to accurately predict 

response to immunotherapy.

Patients with germline mutations in telomere-stabilization genes (DKC1 and POT1) 

had lower lymphocytic infiltration. This could be the effect of a reduced lymphocyte 

proliferative capacity following antigen recognition due to a low telomere length (Rosenberg 

et al., 2011). However, this interpretation should be taken with caution since lower telomere 

length has been only demonstrated for mutations in DKC1 (Aubert and Lansdorp, 2008; 

Calado and Young, 2009) and not in POT1 (Rice et al., 2017).
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The associations between germline mutations of genes in the Wnt-β-catenin pathways and 

increased levels of T cell and counter-regulatory mechanisms (PD-L1 and Treg cells), 

support the critical role of this pathway in modulating anti-tumor immunity (Luke et 

al., 2019; Spranger et al., 2015). While deleterious germline mutations of Wnt-β-catenin 

negative regulators, APC and PTCH1, might predict pathway activation, it is possible that 

such alterations induce the pathway’s downregulation at the somatic level by triggering 

compensatory mechanisms.

In summary, our analysis demonstrated that both common and rare germline genetic variants 

can shape the functional orientation of the tumor microenvironment and identified potential 

modulatory genes and mechanisms involved in this process. The extended and curated list 

of variants, candidate genes, and pipelines provided here as a resource for the scientific 

community, might be exploited in the context of immunotherapy, spurring studies that could 

lead to the development of personalized therapeutic strategies.

Limitations of the Study

While our cohort was large, it is composed of 30 tumor types, which may lead to a loss of 

true signals due to heterogeneity. Larger studies focusing on specific cancers could expand 

and refine our observations. Our heritability analyses only used common variants which 

likely underestimates heritability (Shi et al., 2016), and heritability using whole-genome 

sequencing will be likely higher. Many of the traits we analyzed were highly correlated, 

thus the number of effectively independent immune features is fewer than the sum of the 

individual traits. However, this correlation reflects a natural feature of the immune system 

(Orrù et al., 2013). Our fine mapping efforts focused on gene expression, which only 

explains ~15% of heritability (Yao et al., 2020). The remainder of non-coding variants 

associated with complex traits may mediate their effects via conditional effects on gene 

expression, or via effects on a specific cell lineage that would not be detectable in bulk tissue 

analyses. Future studies of these loci in larger datasets of homogeneous cell types and in 

studies using single cell sequencing may identify more candidate genes, and mechanistic 

experiments might further elucidate their function.

STAR Methods:

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Rosalyn Sayaman (rwsayaman@gmail.com). This study did not generate 

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects: A total of 11,521 genotype files from participants across 33 different 

cancer types included in TCGA were downloaded (Downloaded May 30, 2018 from https://

portal.gdc.cancer.gov/legacy-archive). The TCGA dataset has previously been described 

(Liu et al., 2018; Thorsson et al., 2018). We excluded all participants with hematological 

malignancies (diffuse large B cell lymphoma, and acute myeloid leukemia) and thymoma 

since these could not be characterized for immune cell infiltration based on gene expression 
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analyses. We included all participants who had genotype data from Affymetrix array on at 

least one normal sample (peripheral blood or matched normal tissue). After data cleaning 

(see below), the dataset for imputation included 10,128 individuals (Table S1). Further 

removal of samples based genetic relatedness, availability of immune traits and covariate 

data resulted in a dataset of 9,603 individuals. Of these individuals, there were a total of 

4,585 men and 5,018 women based on self-reported sex. The participants’ age ranged from 

11yr to 90y with a median age of 61yr. Self-reported race and ethnicity were available 

from 8,510 samples, of whom 7,073, 825, 583, 20, and 9 samples were reported to be 

White/Caucasian, Black/African American, Asian, American Indian or Alaska Native, and 

Native Hawaiian/Pacific Islander, respectively. Self-reported ethnicity was reported on 7,351 

samples, of whom 295 and 7056 samples were reported to be Hispanic/Latino, or Not 

Hispanic/Latino, respectively. Of these samples, 8,204 were typed on blood-derived normal, 

1,397 on solid tissue normal and 2 on buccal cell normal tissue. Institutional review boards 

at each of the sites that provided samples and data reviewed the consent forms and approved 

the use of samples.

Germline genotype data: Germline genotype data for common variants used in 

heritability analysis and GWAS were obtained from Affymetrix Genome Wide SNP 

6.0 arrays (TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive). Birdseed 

genotyping files representing 905,600 variants for 11,521 samples were downloaded.

Whole exome sequencing data: Germline genotype data for rare variants were based 

on whole exome sequencing data (TCGA archive https://portal.gdc.cancer.gov/). Processed 

whole exome sequencing data for pathogenic or likely-pathogenic variants from Huang et 

al., 2018 were considered for rare variant analysis representing 10,389 individuals of which 

9,138 had all of the phenotype and covariate information for analysis (Table S1).

Immune traits: Immune traits considered for analysis were merged from two sources 

from (Thorsson et al., 2018): the Feature Matrix (56 immune related features selected, 

Table S1) and the scores for 160 genes signatures in tumor samples (160 features, 

Scores_160_Signatures.tsv) across 9,769 individuals (GDC manuscript publication page 

https://gdc.cancer.gov/about-data/publications/panimmune).

METHOD DETAILS

Affymetrix Genome-Wide SNP 6.0 Quality Control: Birdseed files were read in 

R v3.5.0 using the Affymetrix SNP Array 6.0 (release 35) annotation file, and 905,422 

variants were successfully loaded and analyzed in PLINK version 1.9. Samples were cross­

referenced against previously included genotyping samples (Thorsson et al., 2018). Based 

on established TCGA barcode identifiers, samples annotated with Analyte code “G” (Whole 

Genome Amplification) were further excluded. A final set of 10,946 included samples with 

Analyte code “D” (DNA) were retained for quality assessment.

Stringent quality control measures were applied to the SNP genotyping data (Figure 1, top 

QC panel). SNPs and individuals with greater than 5% missingness were excluded; leaving a 

total of 861,351 variants and 10,917 samples for subsequent analysis.
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Initial PCA ancestry analysis was performed to facilitate heterozygosity calculations. 

PCA without LD pruning was performed in PLINK 1.9 (Chang et al., 2015), and visual 

examination of the concordance of the principal component plots with the self-reported 

race and ethnicity annotations revealed that the first 3–4 PCs captured population structure 

information, while PCs 5–6 captured outliers. PCA initial ancestry clusters were determined 

by performing both k-means and partition around medoids (PAM) clustering on either 

the first three or first four PCs as previously described (Carrot-Zhang et al., 2020). We 

computed gap statistics and average silhouette widths iteratively for the number of clusters, 

k=1 to 10 for k-means and PAM methods respectively to find the optimal number of clusters 

for each method. We found PAM using the three PCs yielding 4 optimal clusters to show 

high concordance with self-reported race/ethnicity (ancestry cluster 1 = European, cluster 2 

= Asian, cluster 3 = African, cluster 4 = American). Based on the initial ancestry cluster 

assignments, heterozygosity was calculated in PLINK 1.9 within each initial PCA-based 

ancestry cluster and a total of 250 samples with heterozygosity >3*SD above the ancestry 

mean were removed.

Selection of a representative sample for each individual was then conducted. Individuals 

represented by more than one sample, blood-derived normal samples were preferentially 

selected; for those with more than one blood-derived samples, samples with higher call 

rates were retained. After these steps, a total of 10,128 unique individuals remained for 

subsequent analysis.

Final filtering steps for SNPs were conducted across the 10,128 unique individuals and 

restricted to autosomal chrs. Hardy-Weinberg Equilibrium (HWE) was calculated in PLINK 

1.9 across individuals within the largest ancestry cluster (European ancestry cluster 1). 

SNPs that deviated from the expectation under HWE (p < 1×10−6) within the European 

ancestry cluster were excluded with the exception of SNPs previously associated with any 

cancer as reported in the GWAS catalog (p < 5×10−8) (Rashkin et al., 2019) since they may 

deviate from HWE in cancer patients. Minor allele frequency (MAF) was calculated and 

variants with MAF < 0.005 were excluded. Finally, duplicate SNPs with identical genomic 

first position were removed. A total of 838,948 autosomal chr variants for 10,128 unique 

individuals passed after the aforementioned QC steps.

Stranding and Reference Panel Imputation: The quality-controlled genotyping file 

was stranded and imputed against the Haplotype Reference Consortium (HRC) (Loh 

et al., 2016a) (McCarthy et al., 2016). Prior to HRC stranding, all palindromic SNPs 

(A/T or G/C) were removed. Stranding was then performed using the McCarthy Group 

tools (HRC-1000G-check-bim-v4.29), which compares our data genotyping alleles to the 

corresponding SNP alleles from HRC (v1.1 HRC.r1–1.GRCh37.wgs.mac5.sites.tab), leaving 

680,389 correctly matched variants for imputation.

Phasing and imputation were performed using a standard pipeline on the Michigan 

Imputation Server (MIS). Phasing was performed using Eagle version v2.3 (Loh et al., 

2016b) on the variant call file (VCF). To reduce the run time, the VCF file was divided 

into 22 files corresponding to individual autosomal chrs. By default, Eagle restricts analysis 

to bi-allelic variants that exist in both the target and reference data. Minimac3 was used 
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to run the imputation. For each of the 22 VCF files, the MIS breaks the dataset into non­

overlapping chunks prior to imputation. For HRC imputation, the HRC r1.1.2016 reference 

panel was selected using mixed population for QC, with a total of 39,127,678 SNPs returned 

after imputation.

Final Ancestry Calls: PCA was performed on the final quality-controlled genotyping 

file and final PAM-based ancestry clusters were computed as previously described (Carrot­

Zhang et al., 2020) for the 10,128 individuals for optimal k = 4. We found very high 

concordance of initial and final ancestry assignments (99.98% matching, the 2 samples 

varying between initial and final ancestry cluster computation assigned to NA).

The four ancestry cluster are as follows: (1) PAM ancestry cluster 1 is concordant with 

European ancestry, capturing 97.27% of individuals self-reporting as White, as well as 

82.16% of individuals with self-reported non-Hispanic/non-Latino ancestry and 45.96% 

with self-reported Hispanic/Latino ancestry; (2) ancestry cluster 2 with African ancestry, 

capturing of 97.53% of individuals self-reporting as Black/African-American race; (3) 

ancestry cluster 3 with Asian ancestry, capturing 90.88% of individuals self-reporting as 

Asian and 88.89% self-reporting as Native Hawaiian/Pacific Islander; and (4) ancestry 

cluster 4 with a subgroup of individuals with American ancestry capturing 60% of 

individuals self-reporting as American Indian /Alaska Native and 47.2% with self-reported 

Hispanic/Latino ethnicity (GDC Publication Page Figure S1-B, https://gdc.cancer.gov/about­

data/publications/CCG-AIM-2020).

PC1–7 showed further population sub-structure in the Asian and European ancestry 

clusters (GDC Publication Page Figure S2, https://gdc.cancer.gov/about-data/publications/

CCG-AIM-2020). PAM ancestry sub-clusters were computed using PC1–7 for individuals 

within the Asian ancestry cluster which yielded two optimal sub-clusters (GDC Publication 

Page Figure S2-A), and within the European ancestry cluster which yielded three optimal 

sub-clusters (GDC Publication Page Figure S2-B). Of note, 72.46% of European sub-cluster 

3 self-reports as Asian (15.94% have no race reported). Ancestry clusters, sub-clusters, 

self-reported race and ethnicity and PC1–7 are provided for each individual (Table S1).

Feature Selection for Analysis: Immune traits considered for analysis were merged 

from two sources in Thorsson et al. (Thorsson et al., 2018): the Feature Matrix (56 

immune related features selected) and the scores for 160 genes signatures in tumor 

samples (160 features, Scores_160_Signatures.tsv on GDC manuscript publication page 

https://gdc.cancer.gov/about-data/publications/panimmune)

The 216 features were then filtered at three levels: (i) Level 1 filtering removed redundant 

features based on overlap of the feature matrix and the 160 signature feature set; (ii) Level 

2 filtering removed features with limited interpretability; (iii) Level 3 filtering removed 

features with highly skewed distributions, which would not be amenable to subsequent 

analyses. A final set of 139 features was used in subsequent germline analysis. Table S2 lists 

all 216 previously well-characterized immune traits, and the final 139 immune traits selected 

(Figure 1, bottom Immune Traits panel). These selected immune phenotypes encompass six 

broadly-defined immune trait phenotype categories: (1) Leukocyte subset ES, which include 
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24 immune cell-specific activation scores as captured by single-sample ssGSEA (Bindea et 

al., 2013); (2) Leukocyte Subset Percentages (%), which include 26 immune cell relative 

proportion measures (22 individual cells and 4 aggregates, as estimated by CIBERSORT) 

Cibersort and four aggregates values)(Gentles et al., 2015; Thorsson et al., 2018); (3) 

Overall Proportion, which includes three measures, namely leukocyte fraction, stromal 

fraction and tumor infiltrating leukocyte (TIL) regional fraction; (4) Adaptive Receptor, 

which includes four scores related to TCR and BCR Shannon diversity and richness; (5) 

Expression Signature, which includes four ssGSEA scores specific to lymphatic vessels 

(Bindea et al., 2013), antigen-presenting machinery (APM1 and APM2) (Şenbabaoğlu et 

al., 2016), and angiogenesis (Şenbabaoğlu et al., 2016), a collection of 68 gene signatures 

related to immunomodulatory signaling including IFN signaling, TGF-β, wound healing, 

(core serum response) and T/B cell response catalogued from earlier studies (Amara et 

al., 2016) (Wolf et al., 2014), and an Immunologic Constant of Rejection (ICR) signature 

summarizing a Th1/cytotoxic polarization of the tumor microenvironment associated with 

favorable prognosis and responsiveness to immunotherapy (Galon et al., 2013; Hendrickx et 

al., 2017; Roelands et al., 2020; Rozenblit et al., 2019); and (6) Attractor Metagene, which 

includes nine TCGA-based co-expression signatures (metagene attractors) (Cheng et al., 

2013a, 2013b) (Table S2). Eight immune traits are represented by single genes: Treg cells 

(FOXP3), CD68, CD8A, PD1 data (PDCD1), PDL1 data (CD274), CTLA4 data (CTLA4), 

TREM1 data (TREM1), and DAP12 data (TYROBP).

We used the term immune trait “categories” to describe the methodological origin of the 

immune trait measures including the six categories above, e.g. 1. Leukocyte subset ES 

(ssGSEA), 2. Leukocyte Subset Percentages (%), etc. We used the term “module” to 

describe the grouping of immune traits that were generated based on clustering (Figure 

S1). We used the term “immune subtype” to describe the immune grouping of samples 

previously characterized by Thorsson et al., (Thorsson et al., 2018) and used the same 

sample assignments used in that report.

Covariate selection: For each analysis we included age, sex, cancer types and genetic 

ancestry from the PCA (PC1–7) as covariates. Self-reported age (age at diagnosis in years) 

from clinical data and PC1–7 were used as continuous covariates. Cancer type based on 

TCGA study assignment and curated genotype-imputed sex assignments were used as 

categorical covariates. Due to missing self-reported sex, and discrepancy in self-reported and 

genotype-type based sex in the data, we carefully curated sex assignments. We recovered 

sex information by using X chr homozygosity estimate (XHE) after removal of the pseudo­

autosomal region of the X chr. For those with missing sex information, individuals with 

XHE < 0.2 were assigned as females and individuals with XHE > 0.8 were assigned 

as males (N=21 males, N=28 females). Self-reported sex assignments were curated with 

individuals self-reporting as males with XHE < 0.2 reassigned as female (N=20 reassigned 

as females), and individuals self-reporting as females with XHE > 0.8 reassigned as males 

(N=6 reassigned as males). For brevity in the remainder of the manuscript, we refer to 

curated genotype-imputed sex assignments simply as sex. For a subset of analyses, we also 

included immune subtype as a covariate, as indicated in the text.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Immune Trait Correlations and Clustering: We calculated Pearson’s correlation 

coefficients across all pairs of the 139 immune traits from 9,769 individuals. We then used 

hierarchical clustering, using 1-correlation as distance metric and complete agglomerative 

clustering method (R heatmap.2 function in gplots package), to identify modules of the 

immune traits.

Immune Trait Normalization for Heritability, GWAS and Rare Variant 
Analysis: For immune phenotypes that appeared approximately normally distributed 

or normally distributed after correction for immune subtype, we calculated heritability 

using the immune phenotype without any transformation/normalization. For immune 

phenotypes that were highly skewed we applied a log10 transformation, and those that were 

approximately normally distributed after transformation were analyzed as log-transformed 

values. For immune phenotypes that could not be normalized with log10 transformation 

(usually due to a large number of 0 values), we dichotomized them at the median (i.e., 

higher and lower than median). These phenotypes were treated as binary variables in 

subsequent analysis. Traits that underwent transformation and dichotomization are indicated 

in Table S2.

Germline Analysis: To examine the contribution of germline genetic variation to 

the functional orientation of the immune microenvironment, we conducted three types 

of analyses: (1) parallel heritability analysis (NEUR=7,813, NAFR=863, NASIAN=570, 

NAMR=209 individuals), (2) GWAS (N=9,603), and (3) rare variant analysis (N=9,138) 

across 30 different non-hematological cancer types in TCGA (Figure 1, middle Analysis 

panel). Number of individuals, N, for each analysis type represented the maximum number 

of samples, however analyses per immune trait proceeded using fewer samples if NA values 

for specific individuals were present in a given immune trait.

Heritability Analysis: Estimates of genome-wide heritability of the 139 described 

immune traits were calculated using GCTA GREML approach implemented in GCTA 

1.91.2beta, which simultaneously models the effect of all genetic variants (MAF > 0.01) 

(Yang et al., 2010, 2011). GREML calculates a genetic relatedness matrix (GRM) as a 

measure of the genetic similarity of unrelated individuals (GRM < 0.05) and compares 

it to the similarity of the measured immunological traits to calculate the total narrow­

sense contribution of genotypic variance to overall phenotypic variance, V(Genotype)/

V(Phenotype) (Yang et al., 2010, 2011). All GREML analyses used the default average 

information (AI) algorithm to run REML iterations.

Since calculation of the GRM results in biased relatedness estimates for pairs of individuals 

who have different ancestry, we restricted heritability analysis primarily within the 

European ancestry group (NEUR=7,813, M=701,189 SNPs, K=32,292,666 GRM elements), 

which constitutes the largest ancestry population; secondary analysis is performed in the 

smaller African (NAFR=863, M=791,989, K=409,060), Asian (NASIAN=570, M=649,768, 

K=183,315), and American (NAMR=209, M=751,507, K=24,753) ancestry groups. The 

four genetic ancestry groups were derived from optimal partition around medoids (PAM) 
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clustering (Figure S2A) of individuals in principal components 1–3 based on their 

genotyping data (Figure S2B).

Heritability analyses are generally only well-powered for sample sizes of >1000; therefore, 

only the European ancestry subgroup was adequately powered and were presented in the 

main results. However, since we have previously seen associations between several of 

these immune parameters with various ancestral populations (Thorsson et al., 2018), we 

performed the heritability analyses separately in African, Asian, and American ancestral 

populations and present these in the supplementary results. To reduce bias in the heritability 

estimates, we removed one of each pair of related individuals with Ajk > 0.05 (calculated 

from SNPs with MAF > 0.01) prior to running GREML. We calculated heritability using 

an unconstrained approach (allowing heritability to be < 0). Constraining the heritability to 

a range of 0–1 may lead to an upwards bias of the low heritability values, which is likely 

to be worse in smaller datasets. We used the likelihood ratio test (LRT) implemented in 

GREML to test if heritability is different than zero for each of the immune traits analyzed 

and used Benjamini-Hochberg adjustment (Benjamini and Hochberg, 1995) to calculate the 

FDR. We present both FDR adjusted p values and unadjusted p values in the manuscript. 

All heritability analyses were run with age, tumor type, sex and PC 1–7 as covariates unless 

otherwise indicated.

We also used GREML to determine whether there are any contextual factors that interact 

with genome-wide common variant effects, including the major immune subtypes as 

determined by Thorsson et al and somatic mutations (divided into tertiles and dichotomized 

at 10 MB). We implemented the gene x environment (GxE) feature calculation in the 

European in GREML. For those immune traits for which we found nominally significant 

(p < 0.05) interactions, we calculated heritability in each stratified subset, as well as 

with immune subtype as an additional covariate. For GxE calculations, the LRT tests the 

significance of the variance of GxE interaction effects.

Genome-Wide Association Studies (GWAS): We selected each of the immune 

phenotypes that demonstrated nominally significant genome-wide heritability (N=33) for 

GWAS. GWAS was conducted on all of the genotyped SNPs that passed QC and all of 

the imputed SNPs that had imputation R2 > 0.5 and minor allele frequency > 0.005 in 

the 9,603 unrelated individuals (PLINK 1.9 identity by descent, IBD, pihat < 0.25). Minor 

allele frequencies were recalculated post-imputation for only the subset of 9,603 individuals 

(PLINK 1.9). Of the 39,127,678 SNPs available after imputation, 10,955,441 passed both 

imputation quality and frequency thresholds and thus were included in the association 

analysis.

GWAS was performed using PLINK 1.9. Immune phenotypes that were approximately 

normally distributed or normally distributed after stratification by covariates were tested 

for association with SNPs using linear regression with age, tumor type, sex and PC1–7 as 

covariates. Immune traits that were dichotomized for heritability analyses were analyzed 

using logistic regression models, with the same covariates. For each GWAS we also 

calculated the genome-wide inflation coefficient (lambda). We used the traditional cutoff 

of p < 5×10−8 as a cutoff for genome-wide significance and p < 1×10−6 to denote 
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suggestive loci. Since we only selected the subset of phenotypes that was heritable and 

since many of the phenotypes were highly correlated, we did not correct the GWAS for the 

number of phenotypes analyzed. SNPs were annotated based on spanned genomic ranges 

(R v3.5.0, Bioconductor package GenomicRanges_1.32.6) with rsIDs (R v3.5.0, R package 

snplist_0.18.1, Bioconductor package SNPlocs.Hsapiens.dbSNP144.GRCh37_0.99.20) and 

with genes within +/− 50KB, +/− 500KB, and +/− 1MB of the SNP (R v3.5.0, Bioconductor 

package biomaRt_2.36.1 using grch37.ensembl.org as host). Variant annotations for all 

genome-wide and suggestive SNPs were determined using the web interface of the Ensembl 

Variant Effect Predictor (VEP, https://grch37.ensembl.org/info/docs/tools/vep/index.html. 

All annotations were based on Homo sapiens (human) genome assembly GRCh37 (hg19) 

from Genome Reference Consortium. All association statistics for the GWAS are available 

at Figshare https://doi.org/10.6084/m9.figshare.13077920.

To plot the individual locus results we used LocusZoom (Pruim et al., 2010), which shows 

LD estimates (r2 color map) and recombination rates (blue line) around the genome-wide 

significant loci. The online version of LocusZoom did not plot the LD information for 

TMEM173; therefore, we downloaded a standalone version and ran it locally using LD 

information computed in TCGA data.

Within cancer association tests for forest plots were run with age, sex and PC1–7 as 

covariates, except in CESC, OV, PRAD, TGCT, UCEC and UCS where only age and 

PC1–7 were used. The 30 cancer types included in our analyses are abbreviated as 

follows: ACC: Adrenocortical Carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA: 

Breast Invasive Carcinoma; CESC: Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon Adenocarcinoma; ESCA: 

Esophageal Carcinoma; GBM: Glioblastoma; HNSC: Head and Neck Squamous Cell 

Carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney Renal Clear Cell Carcinoma; 

KIRP: Kidney Renal Papillary Cell Carcinoma; LGG: Low Grade Glioma; LIHC: Liver 

Hepatocellular Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell 

Carcinoma; MESO: Mesothelioma; OV: Ovarian Serous Cystadenocarcinoma; PAAD: 

Pancreatic Adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: 

Prostate Adenocarcinoma; READ: Rectum Adenocarcinoma; SARC: Sarcoma; SKCM: 

Skin Cutaneous Melanoma; STAD: Stomach Adenocarcinoma; TGCT: Testicular Germ Cell 

Tumors; THCA: Thyroid Carcinoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: 

Uterine carcinosarcoma; UVM Uveal Melanoma.

Rare Variant Analyses: For rare variant analysis, we focused on well-annotated, 

germline pathogenic or likely pathogenic cancer predisposition variants as previously 

defined (allele frequency in 1000 Genomes and ExAC (release r0.3.1) < 0.05%) (Huang 

et al., 2018).

Exome files related to samples for which all the covariates (age, imputed sex, PC 1–7, 

and cancer type) and at least one immune trait was available were retained (N = 9,138). 

There were 832 pathogenic/likely pathogenic SNPs/Indels events with at least one copy of 

rare allele in the whole exome sequencing data, corresponding to 586 distinct pathogenic 

SNPs/Indels mapping to 99 genes.
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We performed a pathway burden analysis using selected pre-defined biological pathways 

such as DNA damage repair and oncogenic processes, pan-cancer and per cancer (Bailey 

et al., 2018; Huang et al., 2018; Knijnenburg et al., 2018). These pathways were manually 

curated to generate a list of mutually exclusive pathways. The only genes that were not 

collapsed into pathways were BRCA1 and BRCA2 for which a sufficient number of events 

across cancers exist. Overall, 21 genotypic variables were used for analyses (Figure S7A). 

In the pan-cancer analysis, we only included genes or pathways with number of events 

(mutations) greater than 4 across cancers, including a total of 90 genes. In the per-cancer 

analysis, we only included genes or pathways with at least 3 events in the analyses. For 

each pathway, variants that fall within its selected set of genes were collapsed based on the 

presence or absence of any rare variant (i.e., 0 if no rare variant was present and 1 if there 

is at least one variant). We conducted regression analyses (linear or logistic, as done for 

GWAS) to assess the association between the pathways’ burden of rare variants and immune 

traits. Traits assessed in these analyses were the same as the ones used for heritability 

analyses, with the addition of the immune subtypes (C1, C2, etc.), DNA-alteration related 

metrics such as the mutational load, the neoantigen load, the degree of copy number 

alterations (Thorsson et al., 2018) and the MANTIS score (threshold = 0.4, Middha et 

al., 2017) (full list in Table S2). All pan-cancer regression models included the following 

covariates: age, sex, cancer type, and PC1–7. The same covariates were used for per-cancer 

regression analyses, except for CESC, OV, PRAD, TGCT, UCEC and UCS where only age 

and PC1–7 were used.

To check whether the results were driven by the mutational load, we ran regression models 

that include this variable as a covariate in the regression model. Additionally, in the BRCA 

cohort, additional analyses were performed stratifying for basal-like and non-basal-like 

subtypes and adding the molecular subtype (basal-like and non-basal like) as a covariate (see 

Table S6).

In the pan-cancer analysis, we used a Benjamini-Hochberg FDR (Benjamini and Hochberg, 

1995) to correct for multiple hypothesis testing, accounting for all 21 genes and pathways 

tested and 154 phenotypes (139 immune traits, 9 DNA related metrics, and 6 immune 

subtypes). We used a cutoff of FDR p < 0.1 to identify significant gene/pathway-immune 

trait associations and a threshold of nominal p < 0.005 (FDR p ≤ 0.25) to identify suggestive 

associations. We used a more permissive cut-off in these analyses than the ones used in the 

heritability and GWAS to reduce type II error due to the low number of events (germline 

mutations). In addition, leukocyte fraction and non-silent mutation rate were compared 

by categories defined by combining germline mutation status across MMR genes (MMR 

mutated vs MMR wild-type) and somatic MSI status (MSI-H vs MSS, as identified by 

MANTIS score, threshold = 0.4, (Middha et al., 2017)). For such comparisons, regression 

analyses were adjusted for sex, age, and PC1–7. All rare variant analyses were performed 

using R (http://www.R-project.org/).

Epigenome chromatin states: Mnemonic bed files for the Expanded-18-state model, 

which takes into account six chromatin marks from ChIP-seq datasets (H3K4me3, 

H3K4me1, H3K36me3, H3K27me3, H3K9me3, H3K27ac) (Roadmap Epigenomics 

Consortium et al., 2015), were downloaded for 98 annotated epigenomes (https://
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egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state). We identified 25 

of these epigenomes to be specifically immune-related, including those associated 

with primary immune cells, as well as bone marrow-derived mesenchymal cells, 

leukemia-associated cells, thymus and spleen (Table S4). The first 12 states were 

defined to be active states associated with expressed genes, while the last six states 

were defined to be inactive or repressed states. Epigenome IDs were mapped to 

corresponding Standardized Epigenome Names (https://docs.google.com/spreadsheets/d/

1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15). The chromatin 

state at each significant and suggestive SNP was extracted based on positional overlaps 

with each epigenome.

In Silico Analysis of Non-synonymous amino acid substitutions: We used 

Chimera 1.14 to display the structure of the STING protein with the H232 and R232 alleles 

and to align these to the ligand (Pettersen et al., 2004). We aligned the A chains of the 

structures from the PDB files 4LOH (containing the H232 allele) and 6DNK (containing the 

R232 allele) using the Matchmaker function from Chimera.

Gene expression and splice quantitative trait locus analysis, and 
Colocalization: We performed eQTL and sQTL analyses in TCGA and used summary 

statistics from the GTEx datasets to search for potential candidate genes. We excluded the 

HLA and IL17RA loci since SNPs at these loci are known eQTLs for genes that are part 

of the immune trait. For the significant and suggestive SNPs, we tested all genes within +/− 

1MB for eQTL and all transcipts within +/− 500KB for sQTL. We used a shorter range 

for sQTLs with the assumption that SNPs affecting splicing are likely to act at a shorter 

distance.

TCGA dataset: RNA-seq gene expression and splicing data were downloaded from the 

NIH Genomics Data Commons (https://gdc.cancer.gov/about-data/publications/pancanatlas 

and https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018 (Kahles et 

al., 2018). For the sQTL analysis, we considered the following splicing categories: 3’, 

5’, exome skipping, intron retention, and mutually exclusive exon events quantified by the 

Percent Spliced In (PSI) (Kahles et al., 2018). Only splicing events with more than 800 

non-missing observations (~10% of the total data) were considered. Association analyses 

between either gene expression or PSI and the imputed SNPs were performed using linear 

regression using age, sex, PC1–7, and cancer type as covariates. We calculated FDR for 

each SNP separately, under the assumption that the SNP was already either significant or 

suggestive, and thus we had to correct for each of the genes at the locus but not all of the 

other SNPs (Table S5). We then selected the SNP-gene expression (eQTL) or SNP-gene 

splicing (sQTL) pairs with FDR p < 0.1 for further colocalization analysis.

GTEx dataset: We downloaded all summary statistics for expression quantitative 

loci (eQTL - GTEx_Analysis_v8_eQTL_all_associations), and splicing quantitative 

loci (sQTL - GTEx_Analysis_v8_sQTL_all_associations) from GTEx project (https://

console.cloud.google.com/storage/browser/gtex-resources) using the results from the latest 

version of the GTEx database (Version 8). For each SNP that had a genome-wide significant 
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or suggestive association with one of the 33 immune traits by GWAS, we extracted all of 

the association statistics from the summary statistics for eQTL within +/− 1MB and for 

sQTLs within +/− 500 KB from all tissues in the GTEx summary statistics dataset. We 

then calculated FDR for each SNP, correcting for all of the genes at the locus across all 

tissues as we did for TCGA. For eQTL and/or sQTLs that had FDR p < 0.1, we pursued 

colocalization as below. TCGA GWAS summary statistics are annotated in Build 37, GTEx 

QTL summary stats are annotated in Build 38, when appropriate, liftover from Build 38 to 

37 are provided using R/Bionconductor packages AnnotationHub (v2.12.1) (AH14150 chain 

file) and rtracklayer (v1.40.6). In the GTEx summary file (Tale S5) we annotated both Build 

37 and Build 38 positions.

Colocalization analysis: We performed colocalization analysis using eCAVIAR 

(Hormozdiari et al., 2016) on both TCGA and GTEx results. eCAVIAR computes a posterior 

probability of causality based on association data and LD structure for the eQTL/sQTL and 

the trait GWAS and then calculates the joint probability of both of these being causal. It 

requires both summary statistics from GWAS and from the eQTL/sQTL analysis and the 

LD matrix of SNPs used in both analyses. For TCGA, we began with all SNPs that had 

FDR p < 0.1 with at least one gene and/or transcript and computed the eQTL and sQTL 

associations for the surrounding SNPs from the index SNP for that same gene/transcript 

using the same approach as outlined above. For GTEx, we began with SNP-gene expression 

or SNP-gene splicing pairs that met our FDR p < 0.1 criteria and extracted the eQTL 

and sQTL results for the surrounding SNPs from the summary results. For the GWAS 

and TCGA analyses, we calculated the genotype correlation (r) at each locus from the 

genotype data. For the GTEx analysis, we downloaded the individual genotype data from 

dbGAP for GTEx participants (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000424.v8.p2) and calculated genotypic correlation between SNPs in R. We 

then ran eCAVIAR separately for each FDR p < 0.1 eQTL and sQTL association from 

TCGA and GTEx, considering models at each locus that assume one or two causal variants. 

For each SNP-gene expression or SNP-gene splicing category pair, 200 SNPs (+/− 100 

SNPs) around the index SNP were included in colocalization analysis. The CLPP of each 

SNP being causal was calculated, and also a regional CLPP by summing all 201 SNP 

CLPPs. We used a posterior probability of > 0.01 to consider plausible colocalization, 

including both the 1 and 2 locus model and considering the sum of the posterior probability 

SNPs in the colocalization results.

Expanded region criteria for colocalization: Since eCAVIAR identified multiple 

genes at the same locus for many loci that have plausible colocalization within a +/− 

100 SNP boundary, we sought stronger evidence for colocalization at the loci where 

eCAVIAR found colocalization by examining an expanded region. We reasoned that a gene 

or transcript that is causal for the immune trait should not be more strongly associated with 

another SNP in the region that has little or no evidence of association with the immune trait. 

Therefore, for each gene or splice variant that had plausible colocalization by eCAVIAR, 

we performed an expanded region search (+/− 1MB for eQTLs and +/− 500KB for sQTLs) 

to see if we can identify one or more SNPs that had a stronger effect in the eQTL/sQTL 

analysis in the same tissue/dataset, which we called “counter-evidence” SNPs. If eCAVIAR 
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produced plausible evidence of colocalization (posterior prob>0.01) and we could find no 

SNPs that met our counter-evidence criteria in the expanded region, we considered the 

expanded region evidence for colocalization as strong. If we did find SNPs that met our 

counter-evidence criteria in the expanded region, then we compared the significance level 

for the eQTL/sQTL association of the counter-evidence SNP vs. the eQTL/sQTL association 

with index SNP (associated with the immune trait). If the counter-evidence SNP association 

with eQTL or sQTL had a neg log10 p value that was less or equal than 1.5 higher than the 

index SNP (GWAS significant SNP for the immune trait), then we considered the expanded 

region evidence as intermediate. If the difference in -log10 p values was >1.5, we considered 

the expanded region analysis to be negative.

To visualize the colocalization in the expanded region, we generated plots that show the 

-log10 p QTL vs. -log10 p GWAS for all of the GWAS significant SNPs with CLPP > 

0.01. The plots included the association p values for all of the SNPs at +/− 1MB for 

eQTL and at +/− 500KB for sQTL from the gene which had a CLPP > 0.01. These plots 

are available at Figshare (GTEX expanded region analysis plots: https://doi.org/10.6084/

m9.figshare.13089341; TCGA expanded region analysis plots: https://doi.org/10.6084/

m9.figshare.13090031. We color-coded these plots with the LD, based on the LD matrix 

from the TCGA. Counter-SNPs are found in the top left corner of these plots (i.e. strong 

association with the eQTL or sQTL but no association with the immune trait). Conversely if 

there were no counter-SNPs, then the strongest SNPs for association with the immune trait 

were also the strongest SNPs for the association with the eQTL/sQTL.

DATA AND CODE AVAILABILITY

The TCGA Genome Wide SNP 6.0 birdseed genotyping data and clinical data can be 

found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/legacy-archive). 

Access to the TCGA original birdseed and pre-processed quality controlled genotyping 

data imputed to HRC generated in the current manuscript (“Sayaman et al TCGA QC 

HRC Imputed Genotyping Data”) requires GDC controlled access permission approval. The 

quality controlled and HRC imputed genotyping data were contributed towards ancestry 

analyses (Carrot-Zhang et al., 2020) and are accessible at the GDC publication page (https://

gdc.cancer.gov/about-data/publications/CCG-AIM-2020). Please cite the current manuscript 

(Sayaman, Saad et al., Immunity 2021) when using the quality controlled and HRC 

imputed genotyping data. The summary statistics from the GWAS have been deposited 

to FigShare (https://doi.org/10.6084/m9.figshare.13077920). Details for software availability 

are in the Key Resources Table. The code generated during this study has been deposited 

to github (https://github.com/rwsayaman/TCGA_PanCancer_Immune_Genetics). Interactive 

visualization is available at CRI iAtlas (https://www.cri-iatlas.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. 15–20% of intratumoral variation of interferon signaling and cytotoxic cells is 

heritable

2. Common variants of IFIH1, STING1, and TMEM108 affect cancer IFN 

signaling

3. Common variants of RBL1 are associated with differential T cell infiltration

4. Rare cancer predisposition variants affect different immunomodulatory 

properties
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Figure 1. Overview of the Discovery Approach.
Flowchart showing analytic workflows, source of genetic germline data, quality control 

filtering, and immune traits used in the analysis. See also Figure S1 and Tables S1-S2.
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Figure 2. Genome-wide Heritability of Immune Traits.
GCTA GREML estimates of the percentage of phenotypic variance explained by all 

common variants. Error bars represent the standard errors and all p values are derived 

from likelihood ratio tests (LRT). (A) Twenty-eight of 139 immune traits analyzed in the 

European ancestry group (N=7,813) showed nominally significant level of genome-wide 

heritability (V(Genotype)/Vp) (LRT p < 0.05), 10 traits (FDR p < 0.05) and 15 traits 

(FDR p < 0.1) showed significant heritability after correction for multiple hypothesis 

testing. (B) Percentage of variance of immune traits accounted for by interaction between 
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germline genotypes and immune subtypes (V(GxImmune Subtype)/Vp). In the subset 

of individuals with immune subtype information (n = 6,586), 44 immune traits showed 

nominally significant heritability of interaction effects (p < 0.05), and 26 traits showed 

significant heritability of interaction effects (FDR p < 0.05). Heritability estimates with 

standard errors are shown in (A) and (B) for each of the 59 immune traits identified with 

immune trait categories and corresponding immune trait modules annotated. (C) Immune 

subtype-specific heritability analysis conducted for immune traits with significant G x 

Immune Subtype interaction. Heritability was calculated in three of the six immune subtype 

groups with sufficient cohort size: C1 (N=1,752), C2 (N=1,813), and C3 (N=1,737), as well 

as with immune subtype as an additional covariate. Stratified analysis of the 44 traits with 

at least nominally significant G x Immune Subtype interaction effects showed 16 traits with 

significant V(G)/Vp heritability in at least one of the immune subtypes or with immune 

subtype as a covariate (FDR p < 0.1). GREML analyses were performed with covariates as 

described in Methods. See also Figure S2 and Table S3.
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Figure 3. Genome-wide Associations for Variants Affecting Immune Traits.
GWAS performed on the 33 immune traits with genome-wide heritability in the ancestry 

clusters identify 23 loci with 598 genome-wide significant associations between single 

SNPs and immune disposition in 10 immune traits (p < 5×10−8), and an additional 1,196 

suggestive associations in 33 traits (p < 1×10−6). (A) Combined Manhattan plot representing 

-log10 p of the significant and suggestive GWAS hits by chromosomal position across the 

33 immune traits encompassing four phenotypic categories. (B) Heatmap demonstrating 

pleiotropy of the top associations across 33 immune traits. The heatmap is facetted by chr 
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and shows the GWAS - log10 p of the significant and suggestive SNPs across each of the 33 

immune traits. Immune traits are clustered based on the Pearson correlation of the GWAS 

-log10 p, and immune trait categories and modules are annotated. The SNPs at the HLA loci 

are shown condensed. GWAS were performed by regression analyses using covariates as 

described in Methods. The T cell/cytotoxic-dominant cluster and an example locus on chr 17 

is indicated by dotted lines in red; the IFN-dominant cluster and example loci on chr 2 and 

chr 3 are indicated by purple dotted lines. See also Figures S3-S4 and Table S4.
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Figure 4. Genetic Variants and Candidate genes Associated with Differential IFN Signaling.
GWAS identified 17 associations between seven SNPs and five IFN signatures reaching 

genome-wide significance (p < 5×10−8), and additional 152 suggestive associations between 

29 SNPs and 6 IFN expression signatures (p < 1×10−6). (A) Manhattan plot (left) of 

GWAS -log10 p for a representative IFN signature, IFN 21978456, shows three main 

peaks on chr 2, 3, and 5, and related QQ plot (right) showing deviation of the observed 

p value from the expected distribution from a theoretical χ2 distribution. The red dotted 

line represents the threshold of genome-wide significance (p < 5×10−8). Genomic inflation 
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factor, lambda, is calculated. (B) Protein-protein interaction network (String-db minimum 

interaction score confidence ≥ 0.7, PPI enrichment p < 1.0×10−16) between the 69 genes 

comprising the 6 IFN-related signatures, and IFIH1 and TMEM108 and TMEM173. (C) 

LocusZoom plot of the association results maps the genomic location of the two significant 

and two suggestive SNPs on chr 2 to the IFIH1-GCA-KCNH7 locus, with the two most 

significant SNPs (rs2111485 and rs1990760) annotated. All LocusZoom plots show linkage 

disequilibrium estimates (r2 color map) and recombination rates (blue line) around the 

genome-wide significant loci. (D) Three of the SNPs in the IFIH1-GCA-KCNH7 locus 

were mapped to 13 traits which are predominantly autoimmune-related in 26 independent 

studies in the GWAS Catalog (Buniello et al., 2019). (E) LocusZoom plot maps the genomic 

location of significant and suggestive SNPs on chr 3 to the TMEM108 locus, with the 

most significant SNP (rs35356925) annotated. (F) Box plots of TMEM108 gene expression 

according to rs35356925 genotype in two T cell subsets, retrieved from DICE (Schmiedel et 

al., 2018); p values were retrieved from DICE and were derived from regression models and 

permutations. (G) LocusZoom plot maps the genomic location of the two suggestive SNPs 

on chr 5 to the TMEM173 locus, with the most significant SNP (rs1131769) annotated. (H) 

Overlay of the crystal structure of the R232 monomer (dark blue and red) with one of the 

chains of the rs1131769 H232 monomer (cyan and yellow). The R232 allele (red) interacts 

much more directly with the cGAMP ligand (in green) than the H232 allele (yellow). In the 

zoom-in panel part of the protein is removed in order to make the ligand more visible. See 

also Figure S5 and Tables S4-S5.
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Figure 5. Genetic Variants and Candidate Genes Associated with T Cell Subset ES.
Clustering of GWAS -log10 p identified highly correlated associations of SNPs across 

13 immune traits predominantly associated with T cell subset ES in the T cell/cytotoxic 

module (inset). (A) Combined Manhattan plot showing 14 distinct loci and 26 genome-wide 

significant associations (p < 5×10−8) between 22 SNPs and eight immune traits within the T 

cell subset-dominant cluster: T helper, CD8 T, Tfh, Tcm, cytotoxic, and NK cells, eosinophil 

ES and APM1 expression signature. Of these, 13 loci have multiple significant or suggestive 

(p < 1×10−6) hits, and 10 have hits in the same region in more than one immune trait. 
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(B) Colocalization analysis in GTEx and TCGA for the SNPs associated with T cell ES 

(max CLPP > 0.01). Plot of the maximum CLPP (left) either assuming one causal SNP, two 

causal SNPs, or the regional CLPP in GTEx and TCGA. For each eQTL, the gene-SNP pair 

with the highest CLPP is represented. For each sQTL, the SNP-splicing event pair with the 

highest CLPP is represented. For GTEx, results from the tissue with the highest max CLPP 

is represented. Plot of the eQTL and sQTL -log10 p (right). For each SNP-gene expression 

or SNP-gene splicing category pair, 200 SNPs (+/− 100 SNPs) around the index SNP were 

included in the analysis. Evidence for the expanded range analysis (+/− 1MB for eQTL and 

+/− 500KB for sQTL) is labeled as intermediate (*) or strong (**). Pseudogenes are not 

shown. (C) LocusZoom plot of the association results for Tcm cell ES maps the genomic 

location of a significant SNP (rs140752248) on chr 20 to the MROH8-RBL1-RPN2 locus. 

(D) 3-level plots displaying colocalization of rs140752248 with RBL1 splicing in TCGA. 

The plots show the GWAS -log10 p for Tcm cell ES in TCGA, the sQTL -log10 p for RBL1 
splicing in TCGA, and the CLPP assuming one causal SNP; the index SNP rs140752248 

and the nearest 100 upstream and 100 downstream SNPs are represented. See also Figure S6 

and Tables S4-S5.
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Figure 6. Cancer Predisposition Variants Modulating Immune Traits.
(A) Suggestive associations (p ≤ 0.005 and FDR p < 0.25) between germline pathogenic or 

likely pathogenic cancer predisposition variants (rare variants) extracted from whole-exome 

data (Huang et al., 2018) grouped by curated mutually exclusive functional categories 

(left nodes) and immune traits (right nodes) as identified in pan-cancer regression models 

adjusted for standard covariates. Significant associations (p < 0.005 and FDR p < 0.1) are 

highlighted with blue dots. The adjusted-p for the non-silent mutation rate is also shown. 

Beta coefficients and significance level are visualized pan-cancer and per cancer (right side). 
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The Beta coefficient is shown irrespectively of the significance and number of events. The 

Beta coefficient is shown irrespectively of the significance and number of events. (B) Values 

of representative immune traits (mean centered by cancer type, (MC), to visually reflect the 

cancer-type covariate used in the model) are displayed across samples with mutations in 

genes related to the defined functional categories. Regression analyses were performed with 

covariates as described in Methods. See Methods for cancer type abbreviations. See also 

Figure S7 and Table S6.
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Figure 7. Representative Immune Traits Modulated by Cancer Predisposition Variants in 
Specific Cancers.
(A) Representative associations between pathogenic or likely pathogenic variants, grouped 

by functional categories, and representative immune traits within COAD and BRCA. (B) 

Leukocyte fraction and non-silent mutation rate (mean centered by cancer type, (MC)) by 

combined germline mutation status across MMR genes and somatic MSI status: (MSI High 

(MSI-H) vs. microsatellite stable (MSS)), as identified by MANTIS score (threshold = 0.4, 

(Middha et al., 2017). MSI ND: MSI status not determined. Samples are colored by cancer 
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type. (B) Significance p < 0.05 are annotated from regression analyses using covariates as 

described in the Methods. See Methods for cancer type abbreviations. See also Figure S7 

and Table S6.

Sayaman et al. Page 48

Immunity. Author manuscript; available in PMC 2022 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sayaman et al. Page 49

Key Resources Table:

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Tumor Samples Primary tumor samples See experimental methods for additional details.

Normal Samples Whole blood or 
surrounding normal 
tissue

See experimental methods for additional details.

Processed Data

Germline Genotype Data: Affymetrix 6.0 
array genotype type 
processed via Birdseed

https://portal.gdc.cancer.gov/

Germline Genotype Data: Whole exome 
sequencing data

https://portal.gdc.cancer.gov/

Gene expression data RNA-seq data https://portal.gdc.cancer.gov/

MANTIS score Middha et al., 2017 https://github.com/OSU-SRLab/MANTIS

Immune traits Thorsson et a.l, 2018

Haplotype reference consortium Haplotype Reference 
Consortium, 2016

http://www.haplotype-reference-consortium.org/

SNP annotations Ensembl Variant Effect 
Predictor

https://grch37.ensembl.org/info/docs/tools/vep/
index.html

GTEx Version 8 summary statistics GTEx website https://www.gtexportal.org

GTEx Version 8 genotypes dbGAP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000424.v8.p2

TCGA Splicing data Percent Spliced In 
(PSI)

https://portal.gdc.cancer.gov/

DICE Database of Immune 
Cell Expression, 
Expression quantitative 
trait loci (eQTLs) and 
Epigenomics

https://dice-database.org

Crystal structure of hSTING (H232) in complex with 
ligand

RCSB PDB (Gao et al., 
2013)

PDB: 4LOH

Crystal structure of hSTING (R232) in complex with 
ligand

RCSB PDB (Ergun et 
al., 2019)

PDB: 6DNK

Software

PLINK 1.9 Chang et al., 2015
http://zzz.bwh.harvard.edu/plink/
https://www.cog-genomics.org/plink/

McCarthy Group tools (HRC-1000G-check-bim-v4.29) – 
Stranding (V1.1 HRC.r1–1.GRCh37.wgs.mac5.sites.tab)

https://wwwlwell.ox.ac.uk/~wrayner/tools/

Eagle v2.3 Loh et al., 2016 https://data.broadinstitute.org/alkesgroup/Eagle/
downloads/

Minimac3 (HRC r1.1.2016 reference panel)
Fuchsberger et al., 
2015
Howie et al., 2012

https://genome.sph.umich.edu/wiki/Minimac3

GCTA GREML 1.91.2beta Yang et al., 2011 https://cnsgenomics.com/software/gcta/#Download

R 3.5.0 https://www.r-project.org/

R package: snplist_0.18.1 Yi et al., 2017 https://cran.r-project.org/web/packages/snplist/
index.html
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https://cran.r-project.org/web/packages/snplist/index.html
https://cran.r-project.org/web/packages/snplist/index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bioconductor package: 
SNPlocs.Hsapiens.dbSNP144.GRCh37_0.99.20

Pagès, 2017 https://bioconductor.org/packages/
release/data/annotation/html/
SNPlocs.Hsapiens.dbSNP144.GRCh37.html

Bioconductor package: biomaRt_2.36.1 (Host: 
grch37.ensembl.org)

Durinck et al., 2005, 
2009

https://bioconductor.org/packages/release/bioc/html/
biomaRt.html

Bioconductor package: GenomicRanges_1.32.6 Lawrence et al., 2013 https://bioconductor.org/packages/release/bioc/html/
GenomicRanges.html

LocusZoom (Genome Build/LD Population: hg19/100 
Genomes Nov 2014 EUR)

Pruim et al., 2010 http://locuszoom.org/

eCAVIAR Hormozdiari et al., 
2016

http://zarlab.cs.ucla.edu/tag/ecaviar/

Chimera 1.14 Pettersen et al., 2014 https://www.cgl.ucsf.edu/chimera/
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