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Abstract

Mental illnesses originate early in life, governed by environmental and genetic factors. Because 

parents are a dominant source of signals to the developing child, parental signals–beginning with 

maternal signals in utero–are primary contributors to children’s mental health. Existing literature 

on maternal signals has focused almost exclusively on their quality and valence (e.g. maternal 

depression, sensitivity). Here we identify a novel dimension of maternal signals: their patterns and 

especially their predictability/unpredictability, as an important determinant of children’s 

neurodevelopment. We find that unpredictable maternal mood and behavior presage risk for child 

and adolescent psychopathology. In experimental models, fragmented/ unpredictable maternal care 

patterns directly induce aberrant synaptic connectivity and disturbed maturation of cognitive and 

emotional brain circuits, with commensurate memory problems and anhedonia-like behaviors. 

Together, our findings across species demonstrate that patterns of maternal signals influence brain 

circuit maturation, promoting resilience or vulnerability to mental illness.

Keywords

brain circuits; maternal care; entropy; neurodevelopment; depression; anhedonia; prenatal; 
postnatal; unpredictability; adversity

1.1. Introduction: Why Parental (Especially Maternal) Signals?

Parental care (particularly that from the mother) is a primary determinant of child survival in 

humans (Pavard et al. 2005; Sear et al. 2002; Willfuhr and Gagnon 2013); so central is this 
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care for the survival of the species, some have argued that the development of parental 

behavior may be one of the primary forces shaping the evolution of the mammalian brain 

(c.f. Hrdy 2000; MacLean 1990). Sensitive periods in early life largely overlap with 

developmental stages in which the child is dependent on the mother, thus providing a 

pathway through which maternal signals shape development (Kuzawa and Quinn 2009). Not 

only does the mother facilitate the survival of her young through the provisioning of 

sustenance and protection, but beginning in the prenatal period, maternal signals influence 

the developing brain, shaping its maturation, with implications for the child’s future 

cognitive and emotional function and trajectory of health or disease. Thus, the influence of 

maternal signals prenatally and postnatally on numerous aspects of brain development has 

far-reaching implications for mental health.

2.1 What Maternal Signals are Salient to Brain Maturation? Current 

Knowledge and Novel Principles

A robust empirical literature indicates that pre and postnatal maternal behaviors and 

emotional states are important determinants of risk for psychiatric disease. For example, 

building on the foundational work of Bowlby, 1950, the importance of a secure attachment 

relationship, which is scaffolded by sensitive maternal behavior, has widespread 

implications for cognitive and emotional development (Belsky and Fearon 2002; Masur, 

Flynn, and Eichorst 2005; NICHD ECCRN, 1999a, 1999b, 2003, 2006; Hane et al. 2010; 

Feldman 2007, 2015). Similarly, the profound adverse consequences of a lack of maternal 

care, and exposures to maternal depression during the pre and postnatal periods are well-

established (Goodman 2007; Gunnar, 2010; Murray et al. 2011; Dawson et al. 2003; 

Feldman et al. 2009; Halligan et al. 2004; Beck 1998; Verbeek et al. 2012; Nelson et al., 

2007). The documented effects on mental health are associated with altered maturation of 

neural circuits, which persists until adulthood (Soe et al. 2018; Wen et al. 2017; Lebel et al. 

2016; Posner et al. 2016; Sandman etal. 2015). The accumulating evidence relating maternal 

behavior and psychological distress during the pre and postnatal periods to risk for mental 

health disorders demands the identification of specific components of maternal signals that 

shape the developing brain. Whereas a clearly identified role for valence of maternal signals- 

empathy, sensitivity, availability, etc., has been established as described above, recent work 

in both humans and animal models highlights the importance of patterns of maternal-derived 

cues to the developing brain in shaping the maturation of brain circuits (Davis et al. 2017; 

Baram et al. 2012; Molet, Heins, et al. 2016; Molet, Maras, et al. 2016; Evans et al. 2005).

Thus, in addition to the well-established roles of maternal mood levels and sensitive 

maternal behavior, patterns of maternal signals seem to influence the maturation and 

organization of brain circuitries. Notably, in both rodent models and humans, the effects of 

patterns and especially of unpredictable, fragmented maternal signals on brain and behavior 

appear to be additional to the quantity and quality of the same signals, underscoring the 

importance of patterns. Below we will illustrate these principles by describing new findings 
in human and experimental model studies, and propose that unpredictable, fragmented 

signals from the mother (FRAG) represent a critical influence on the developing brain with 
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implications for mental health outcomes (Baram et al. 2012; Glynn et al. 2018a; Risbrough 

et al. 2018).

Our work with humans, presented in the following paragraphs, has focused on patterns of 

maternal inputs in two domains: maternal behavior and maternal mood. We find that 

aberrant patterns of these domains influence cognitive and emotional maturation including 

memory, self-control and risk for internalizing disorders in children (Glynn et al. 2018b; 

Davis et al. 2017). Emerging information suggests that the mechanisms involved in such 

behavioral phenotypes include aberrant maturation of the underlying brain circuits (Kopala-

Sibley et al. 2018; Bolton, Molet, et al. 2018; Molet, Maras, et al. 2016; Fareri et al. 2017).

2.1.2 Patterns of Maternal Behavior and their fragmentation and unpredictability (Sensory 
FRAG)

Mental and cognitive capabilities are a result of the development and maturation of 

underlying brain circuits. These, built of neurons and neuronal ensembles connected via 

synapses perform the complex computational tasks underlying specific brain functions 

including memory, decision making, and emotion regulation. During development, these 

circuits are immature, and certain synaptic connections formed early are strengthened to 

become permanent whereas others are eliminated. In sensory circuits such as vision and 

hearing, important neurobiological principles have been established demonstrating the role 

of modality-specific patterns of sensory signals are required for the maturation of the circuit. 

Lack of sensory signals (e.g., sight) or aberrant sensory patterns (auditory) during sensitive 

developmental periods disrupt the sculpting and maturation of visual, somatosensory and 

auditory brain circuits, with commensurate functional deficits (Espinosa and Stryker 2012; 

Khazipov et al. 2004; Singh-Taylor et al. 2015; Wiesel and Hubel 1963; Hackett et al. 2011). 

However, it is not known whether analogous sensory signals and their patterns are important 

for the maturation of cognitive and emotional brain circuits. Because the dominant sensory 

signals to the developing organism are generated by the mother, and because maternal care 

per se has been shown as critical for neurodevelopmental outcomes, we tested the hypothesis 

that patterns of maternal-derived signals might influence the maturation of brain circuits 

underlying cognitive functions such as memory and related circuits underlying pleasure 

reward and affective functioning.

To characterize patterns of sensory signals to the developing human infant, we applied a 

unique behavioral coding scheme to observations of mothers interacting with their infants in 

a prospective longitudinal cohort. Briefly, mothers were video-recorded interacting with 

their infants in a semi-structured 10-minute play episode in which they were given a 

standard set of age-appropriate toys and are instructed to play with their infant as they would 

at home (Davis et al. 2017). Using the Observer XT (Noldus Information Technology, 2008), 

maternal sensory signals were characterized in three domains: auditory (all maternal 

vocalizations, e.g., laughing, talking), tactile (all instances of physical contact, e.g. holding, 

touch) and visual (maternal manipulation of a toy or object while the infant was visually 

attending, Davis et al. 2017). Rather than coding these interactions for quality or valence 

(e.g. positive versus negative regard or sensitive versus intrusive), we classified the behaviors 

by sensory modality (auditory tactile, visual), coding behaviors in these three domains 
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continuously in real time. We then analyzed the patterns of these behaviors, which allows 

the determination of whether for a given mother if specific patterns recur (e.g., holding a toy 

then smiling then putting the toy down) and the degree to which the patterns are random or 

unpredictable. The sequence of behaviors for each mother can be summarized by 

considering how often specific transitions occur; e.g., how many times touch is followed by 

speaking or speaking is following by concurrent touch and visual inputs. This summary 

index, termed sensory FRAG, is derived as follows: we focused on the conditional 

probabilities of transitioning between the visual, auditory and tactile signals. Predictability 

of a given transition from one behavior to another was examined considering all of the 

possible permutations, and quantified through an entropy rate (Vegetabile et al. in press). 

The entropy rate measures the randomness and unpredictability of the distribution of 

transitions with higher values indicating less predictable maternal signals (i.e., more sensory 

FRAG).

An initial examination of unpredictable maternal behavior was conducted in a prospective 

longitudinal study of 128 mother-child pairs in which sensory FRAG was assessed at 1-year 

year and cognitive development through six years of age (Davis et al. 2017). Children who 

were exposed to higher sensory FRAG during the first year of life exhibited less optimal 

cognitive development at 2-years of age (r = −.34; p < .01) and evidence of poorer 

performance on a hippocampus-dependent memory task at 6 years of age (r = −.27; p < .05). 

Importantly, these associations were independent of the quantity of sensory signals (i.e., the 

number of transitions) and persisted after consideration of possible third variable 

explanations including: maternal sensitivity, postpartum depression, duration of 

breastfeeding and family socioeconomic status. Additional analyses tested the hypothesis 

that sensory FRAG might partially mediate the relation between a more global observational 

measure of quality of maternal care (the widely used assessment of maternal sensitivity 

developed by the NICHD Study of Early Child Care and Youth Development (NICHD 

ECCRN 1999a). These analyses revealed that sensory FRAG might partially mediate the 

relation between maternal sensitivity and child cognitive function. Taken together, our 

findings provide evidence that predictability of maternal sensory signals evaluated on short 

time scales is associated with cognitive development and raise the possibility that sensory 

FRAG might also represent a more proximal process by which some previously established 

indicators of quality of maternal care may shape development.

2.1.3 Patterns of Maternal Mood (Mood FRAG)

The valence of maternal mood (e.g. depression), is clearly a critical determinant of 

children’s mental health. However, it is likely that variability or unpredictability of maternal 

mood influences children’s emotional and cognitive development, in addition to the effects 

of mood levels. Therefore, we have begun to examine patterns or predictability of maternal 

mood. Additional support for the premise of this approach is derived from work in the fields 

of emotion and personality psychology emphasizing the importance of intra-individual 

variability in mood (independent from level or valence) as a central component of affective 

experience (Wessman and Ricks 1966; Larsen and Diener 1987; Mischel and Shoda 1995; 

Fiske and Rice 1955) and from documented links between mood variability and mental 

health (Depue et al. 1981; Bonsall et al. 2012; Kuppens et al. 2007; Thompson, Berenbaum, 
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and Bredemeier 2011). Interestingly, despite increasing interest in the role of emotion 

regulation and patterns of mood for mental health (c.f. Aldao, Nolen-Hoeksema, and 

Schweizer 2010; Fernandez, Jazaieri, and Gross 2016; Kring and Sloan 2010), the potential 

impact of this domain of maternal affective function and hence signals to her child—on 

cognitive and emotional development has received little attention.

When studying emotion dynamics it is possible to examine patterns over time (e.g. across 

days or weeks) or to focus on the dynamics at a single point in time, capturing a snapshot of 

emotional experience (Kuppens and Verduyn 2015). We chose the latter approach and 

quantified fragmentation and unpredictability of the item-by-item responses to standardized 

assessments of mood states (mood FRAG). Specifically, our measure of mood FRAG 

comprises an application of Shannon’s entropy to the distribution of responses on mood 

questionnaires (Cover and Thomas 2006). The responses at a single assessment of mood 

states (e.g. the Center for Epidemiologic Studies Depression Scale or the Profile of Mood 

States) were tabulated over the items within each scale into probability distributions based 

on the relative frequency of each response choice, and these distributions represent empirical 

estimates of the propensity of a participant to respond across items in a consistent way. In 

this sense, mood FRAG quantifies the degree of predictability or unpredictability of the 

item-specific response, with higher values denoting less predictability. As shown in Table 1, 

a participant who generally reports “never worried” or “always secure” on a state anxiety 

scale, for example, would be considered very predictable and thus have a very low entropy 

score (low mood FRAG), whereas a participant who completes the anxiety items entirely at 

random would have a very high entropy score (high mood FRAG). We have tested the 

convergent validity of mood FRAG by examining its association with affective instability, a 

time-based, momentary measure of mood variability. Importantly, we have shown that the 

measure of mood FRAG is positively associated with variability in mood as assessed in real 

time across hours and days with the use of ecological momentary assessments (r = .42; p < .

01; Glynn et al. 2018b).

Employing this instrument, we examined the predictive utility of the mood FRAG index in 

two independent, prospectively studied cohorts of mothers and children (N’s = 227 and 180, 

Glynn et al. 2018b). Risk for internalizing disorders was assessed by maternal report of 

fearful temperament (a prodromal risk factor for the development of internalizing disorders) 

at 1, 2 and 7 years and by child report of his or her own anxiety symptoms at 10 years of age 

and depressive symptoms at 13 years of age. Higher prenatal maternal mood FRAG 

predicted increased child negative affectivity at 12-months (r = .36; p < .01). The positive 

association was also observed at 24 months (r =.31, p < .01) and at 7 years of age (r =.32, p 

< .01). Consistent with these maternal reports, higher prenatal mood FRAG predicted 

increased child self-report of anxiety symptoms at age 10 (r = .24, p < 01) and depressive 

symptoms at 13 (r = .29; p < .01). It is important to note that all of these effects persisted 

after statistical adjustment for both pre and postnatal mood levels (e.g., depressive 
symptoms), as well as after adjusting for other established indicators of early life adversity 

including gestational age at birth, socioeconomic status, cohabitation with the child’s father. 

A further point worth underscoring (Glynn et al. 2018b), is that these effects are specific to 

mood FRAG – we calculated an entropy score from answers given on a non-mood related 

questionnaire (one related to physical activity) and these entropy scores did not predict child 
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outcomes at any age. Additionally, both pre and postnatal mood FRAG were independent 

and statistically significant predictors of risk for anxiety and depression, suggesting that 

exposures to mood FRAG in both periods may meaningfully influence emotional 

development. Thus, in a prospective sample followed for 13 years from pregnancy through 

early adolescence, unpredictable maternal mood was associated with internalizing problems 

during infancy and childhood and symptoms of anxiety and depression in adolescence.

The mechanisms through which unpredictable patterns of maternal signals (sensory and 

mood FRAG) lead to alterations in children’s cognitive and emotional phenotypes have yet 

to be established and these types of mechanistic studies are challenging in human cohorts. 

An exciting aspect of our findings in infants and children are the robust parallels with 

observations in controlled experimental systems. In these rodent models, we can design 

studies that allow detailed probing of both causality and mechanisms, providing a strong 

translational system in which to further our understanding of the role of early life 

unpredictability and fragmentation of maternal-derived signals in brain maturation.

3.1. How Do Maternal Signals Influence the Developing Brain?: Insight 

from Experimental Models

Brain maturation spans prenatal and early postnatal (infancy) periods, and the sculpting of a 

number of important brain circuits continues to adulthood. Processes involved in brain 

circuit-maturation include axonal and dendritic growth, synaptic formation, stabilization and 

pruning (Garey 1984; Speh and Moore 1993; Hoeijmakers, Lucassen, and Korosi 2014; Woo 

et al. 1997; Maras and Baram 2012; Neniskyte and Gross 2017). The perinatal period 

therefore represents a critical stage of development, rendering the brain particularly 

vulnerable environmental influences (Chen and Baram 2016). Environmental signals 

critically contribute to the evolution of brain circuits. Thus, light and visual patterns, and 

sound and tones are required for the establishment and refinement of visual and auditory 

circuits, respectively (Espinosa and Stryker 2012; Sun et al. 2018). However, the 

environmental signals that might drive the maturation of ‘cognitive’ and ‘emotional’ circuits 

remain unknown.

In mammals, including humans, monkeys and rodents, maternal input has perhaps the most 

significant influence on the type of environment experienced during development (Rincon-

Cortes and Sullivan 2014; Baram et al. 2012; Bowlby 1950; Sanchez, McCormack, and 

Howell 2015; Kundakovic and Champagne 2015; Seay, Hansen, and Harlow 1962). The role 

of parental and especially maternal care in influencing offspring outcome has been a topic of 

intense study in humans (Gunnar 2010; Nelson et al. 2007; Heim and Binder 2012), 

primates (Drury, Sanchez, and Gonzalez 2016; Seay, Hansen, and Harlow 1962) and rodents 

(Malter Cohen et al. 2013; Raineki et al. 2012; Dalle Molle et al. 2012; Rice et al. 2008; 

Champagne et al. 2003). Specifically, a compelling existing body of work has linked the 

presence (Gunnar 2010; Nelson et al. 2007) and certain features of maternal care (Rilling 

and Young 2014) to emotional outcome in both children and rodents. Thus, it is tempting to 

consider that maternal signals might contribute to the maturation of emotional and cognitive 

brain circuits. However, the fundamental properties of maternal signals that are perceived by 
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the developing brain and influence the developing limbic networks to promote advantageous 

versus pathological outcomes remain enigmatic (Bale et al. 2010; Baram et al. 2012; 

Champagne et al. 2003; Heim and Binder 2012; NIMH Workgroup 2009). Our recent 

findings in experimental models support a direct causal and relation of maternal signals and 

their patterns in the maturation of cognitive and emotional brain circuits (Ivy et al. 2010; 

Molet, Heins, et al. 2016; Molet, Maras, etal. 2016; Bolton, Molet, etal. 2018; Bolton, Ruiz, 

etal. 2018).

We have employed a paradigm rearing mice or rats for one postnatal week in ‘simulated 

poverty’, using cages with limited bedding and nesting, and observed both maternal 

behaviors and the outcomes of the pups (Molet et al. 2014; Molet, Heins, et al. 2016; Rice et 

al. 2008; Ivy et al. 2008). To analyze dam behavior we assessed the durations of maternal 

nurturing behaviors as well as several qualitative aspects of dam behavior known to 

influence outcome (Champagne et al. 2003). In addition, we analyzed the patterns and 

sequences of maternal care and examined their predictability and fragmentation. We 

employed analyses of entropy rates similar to those reported above for human sensory 

FRAG.

Surprisingly, the quantity and several typical qualitative measures of maternal nurturing 

behaviors (e.g. arched-back nursing; Champagne et al. 2003) did not predict emotional 

outcome in the pups. However, novel analyses of the patterns of maternal behavior revealed 

that individual nurtuing events were short and fragmented, and the sequences of distinct 

behaviors were unpredictable in the limited-beding cages (Molet, Heins, et al. 2016).These 

aberrant patterns were quantified using entropy rates as described for human behaviors 

(Molet, Heins, et al. 2016). Notably, these aberrant patterns of maternal caring behaviors- 

i.e., the major source of sensory input to the pups- led to abnormal emotional outcome in the 

pups as they reached adolescence Specifically, a reduced capacity to experience pleasure 

(anhedonia) was observed (Bolton, Ruiz, et al. 2018; Molet, Heins, et al. 2016). More 

recently, aberrant maturation of the pleasure-reward circuitry in these ‘graduates’ of 

unpredictable maternal care has been identified (Bolton, Molet, et al. 2018). Thus, it appears 

that at least one crucial brain circuit is directly modulated by the patterns of maternal–origin 

sensory signals during sensitive early-life periods.

The mechanisms by which environmental signals modulate circuit formation and refinement 

involve, in part, activity-dependent strengthening of engaged synapses and pruning of others 

(Woo et al. 1997; Neniskyte and Gross 2017; Paolicelli et al. 2011; Schafer et al. 2012; 

Comery et al. 1997). It is not yet known of synaptic development or pruning are affected in 

the reward circuitry of pups exposed to unpredictable (high entropy) maternal care. 

Predictable sequences of events engage the dopaminergic reward system (Berns et al. 2001) 

that is not fully mature until the third postnatal week in rodents (Voorn et al. 1988) and is 

sensitive to the influence of early-life experiences (Pena et al. 2014; Ventura et al. 2013). 

Thus, we propose that predictable sensory-signals may be critical for the maturation of these 

circuits (Singh-Taylor et al. 2015; Singh-Taylor et al. 2018), and unpredictable early-life 

sensory signals may disrupt these developmental processes, provoking anhedonia (Molet, 

Heins, et al. 2016).
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In addition to anhedonia, and congruent with findings described above in children, impaired 

memory was observed in graduates of the unpredictable maternal behaviors (Ivy et al. 2010; 

Molet, Maras, et al. 2016; Davis et al. 2017), associated with aberrantl maturation of 

hippocampal / limbic circuit organization (Molet, Maras, et al. 2016; Ivy et al. 2010). 

Further, there is also evidence that highly predictable maternal signals influence synaptic 

growth and persistence in brain circuits subserving stress-resilience (Singh-Taylor et al. 

2018). Thus, there is converging evidence that patterns of maternal-derived sensory signals 

to the developing rodent brain influence synapse stabilization and circuit maturation in 

limbic and cognitive brain networks, with consequent cognitive and emotional sequelae. 

Importantly, these effects on brain and behavior are additional to those related to the quantity 
and quality of the maternal signals, underscoring the importance of patterns of 

unpredictability in shaping the immature brain.

4.1 Conclusions and Therapeutic Opportunities

Cognitive and emotional health, as well as vulnerability to cognitive and emotional 

disorders, derive from interactions between genes and environment, especially during 

sensitive developmental periods. We have limited control over genetic susceptibility. Thus, 

an emphasis on understanding and mitigating early-life environmental factors is warranted.

There is compelling evidence for broad and persisting consequences on mental health 

outcomes of exposure to early life adversity. Many of the circumstances of early-life 

adversity (war, displacement, poverty, discrimination) are difficult to modify. Here we 

identify aberrant patterns of sensory input from the mother as an important and potentially 

modifiable factor, and hence a feasible target for intervention. Future work will be required 

to assess and delineate the precise critical periods of vulnerability to unpredictable maternal 

signals, and to the crafting of interventions aimed to enhance patterns promoting optimal 

brain maturation and mental health outcomes.
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• Mothers provide signals to the developing brain pre-and postnatally

• Parental signals profoundly influence a child’s mental and cognitive outcomes

• Patterns-specifically predictability-of these signals influence 

neurodevelopment

• Aberrant maternal signal patterns disrupt brain circuit maturation in rodents

• In humans, unpredictable maternal signals are linked to child mental illness 

risk
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Table 1.

Item responses for three hypothetical respondents on a standardized mood scale demonstrating the concept of 

mood FRAG.

1 2 3 4 5 6 7 8 9 10

Participant 1 a a a a a a a a a a

Participant 2 b a a c b a b d c c

Participant 3 d c c d d d d c d c

Note: Suppose that a mood scale has a set of possible responses given by the letters a, b, c and d. This table shows simulated outcomes for three 
hypothetical respondents on such a scale. These participant responses are tabulated over items into probability distributions based on the relative 
frequency of each choice (i.e., the relative frequency of endorsing a, b, c or d), and we view these distributions as empirical estimates of the 
propensity of a participant to respond to mood items in a particular way. For example, if this were a state anxiety scale, a respondent who reports 
“never worried,” and “always secure” (similar to Participant 1) may be said to respond particularly consistently across items, while a respondent 
who reports “never worried”, “sometimes calm,” and “rarely secure” (similar to Participant 2) responds less consistently. Shannon’s entropy of 
these probability distributions are then calculated for each respondent and normalized to provide an index of mood FRAG. In our hypothetical 
example, Participant 1 would have a normalized entropy score of 0 (low mood FRAG), Participant 2 would have a normalized entropy score of .95 
(high mood FRAG) and Participant 3 would be assigned a score of .49 (moderate mood FRAG).
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