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ECE Department, UCSD
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December 27, 2004

Abstract

We determine the entropy rate of patterns of certain random processes, bound the speed

at which the per-symbol pattern entropy converges to this rate, and show that patterns satisfy

an asymptotic equipartition property. To derive some of these results we upper bound the

probability that the n
′th variable in a random process differs from all preceding ones.

1 Introduction

Most universal-compression applications involve sources, such as text, speech, or image, whose al-

phabets are very large, possibly even infinite. Yet as observed already by Davisson [1], as the

alphabet size increases to infinity, so does the redundancy, the number of bits over the entropy, re-

quired because the distribution is not known in advance. In analyzing this phenomenon, Kieffer [2]

showed that even i.i.d. distributions over infinite alphabets entail an infinite per-symbol redundancy

and established a necessary and sufficient condition for a collection of sources to have a diminishing

per-symbol redundancy.

Two approaches have addressed the high redundancy associated with large alphabets. One line of

work [3]–[5] follows Elias [6] and considers compression of collections that satisfy Kieffer’s condition.

Results in this genre typically describe universal algorithms for such collections or find bounds on

their redundancy. The most recent results [7] show that all collections satisfying Kieffer’s condition

can be compressed with diminishing per-symbol redundancy using grammar-based codes.

A second direction [8, 9] separates the description of strings over large alphabets into two parts:

description of the symbols appearing in the string, and of their pattern, the order in which the

symbols appear. For example, in text compression, this approach may separate the description of

the order of the words from the specification of each word’s binary representation.

Results along this line [10, 11] show that patterns of strings generated by i.i.d. distributions over

any alphabet, even infinite or unknown, can be compressed with diminishing per-symbol redundancy.

These results have also been used [12] to derive asymptotically-optimal solutions for the Good-Turing

probability estimation problem. Related average case results have subsequently been proven [13].

It is therefore natural to consider the entropy of patterns, the number of bits needed to compress

them when the underlying distribution is known. Shamir and Song [14], bounded the entropy of

patterns of i.i.d. distributions in terms of the source entropy and alphabet size.

In this paper we determine the entropy rate of patterns of certain processes, bound the speed

at which the per-symbol pattern entropy converges to this rate, and show that patterns satisfy an
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asymptotic equipartition property. To derive some of these results, we upper bound the probability

that the n′th variable in a random process differs from all preceding ones. We note that related

entropy-rate results were independently derived by Gemelos and Weissman [15, 16].

The next section defines patterns and their entropy. Section 3 outlines the results and some of

their implications. The proofs are provided in Sections 4 to 7.

2 Definitions

Let x = x1, . . . ,xn ∈ An be a sequence of elements. The index ı(x) of x is one more than the number

of distinct symbols preceding x’s first appearance in x. The pattern of x is the concatenation

Ψ(x)
def
= ıx(x1)ıx(x2) . . . ıx(xn),

of all indices. For example, if x = “abracadabra”, ıx(a) = 1, ıx(b) = 2, ıx(r) = 3, ıx(c) = 4, and

ıx(d) = 5, hence

Ψ(abracadabra) = 12314151231.

A distribution can be discrete, defined by a probability mass function, continuous, defined by

a probability density function, or mixed, consisting of discrete and continuous parts. We allow for

all three types of distributions and let q denote the total continuous probability. For example, in

the mixed distribution where the value a occurs with probability 1/3 and with the remaining 2/3

probability a random value in the interval [0, 1] occurs, say uniformly, the continuous probability is

q = 2/3.

Every distribution p induces a distribution over patterns where

p(ψ)
def
= p({x : Ψ(x) = ψ}),

is the probability that a sequence generated according to p has pattern ψ. For example, the i.i.d.

distribution over {a, b} where p(a) = α and p(b) = α induces on length 2 patterns the distribution

p(11) = p({aa, bb}) = α2 + α2,

p(12) = p({ab, ba}) = 2αα,

whereas the mixed distribution described above induces p(11) = p({aa}) = 1/9 and p(12) =

p({xy : x 6= y}) = 8/9.

We denote a random n-symbol sequence by X = X1, . . . ,Xn and its pattern by Ψ = Ψ1, . . . ,Ψn.

The entropy of the sequence is

H(X) =
∑

x

p(x) log
1

p(x)
,

and its entropy rate is the asymptotic per-symbol entropy

HX = lim
n→∞

1

n
H(X).

Similarly, the pattern entropy is

H(Ψ) =
∑

ψ

p(ψ) log
1

p(ψ)
,

and the pattern entropy rate is the asymptotic per-symbol entropy

HΨ = lim
n→∞

1

n
H(Ψ).

These concepts are illustrated by the following examples.
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Example 1. Consider the process X1,X2, . . . where X1 = 1 and for n = 2, 3, . . ., Xn is distributed

uniformly over {Xn−1 + 1, . . . ,Xn−1 + n}. For example, 1,2,3,4 and 1,3,6,10 are two equally-likely

realizations of X1, . . . ,X4. Since X1, . . . ,Xn can assume n! equally likely realizations, the sequence

entropy is

H(X) = log n!,

and its entropy rate is

HX = lim
n→∞

1

n
log n! = ∞.

On the other hand, Xn > Xi for all i = 1, . . . ,n − 1, hence the pattern is always Ψ = 12 . . . n,

implying zero pattern entropy rate,

HΨ = 0. ✷

Example 2. Consider independent Bernoulli-half trialsX1,X2, . . .. As with all i.i.d. distributions,

H(X) = nH(X1),

hence the sequence entropy rate is

HX = H(X1) = 1.

It is easy to verify that the resulting patterns are all 2n−1 sequences over {1, 2} starting with 1.

Each pattern corresponds to two possible trial sequences hence has probability 2−(n−1). If follows

that

H(Ψ) = n− 1,

and the pattern entropy rate is

HΨ = lim
n→∞

n− 1

n
= 1. ✷

Note that in the last example,

HΨ = HX .

One of the results we prove shows that this equality holds for all discrete i.i.d. distributions.

To place the obtained results in context, we briefly mention some existing sequence- and pattern-

redundancy results. We use RX to denote the redundancy rate, the limit of the per-symbol redun-

dancy of distributions in a given class. For more formal redundancy definitions see, e.g., [1].

As mentioned in the introduction, Kieffer [2] showed that i.i.d. distributions over infinite alpha-

bets entail an infinite per-symbol redundancy,

RX = ∞, (1)

while, as shown in [11], the patterns of such processes incur zero per-symbol redundancy,

RΨ = 0. (2)

These results suggest conveying a sequence X by first describing its pattern Ψ and then the

dictionary ∆ that maps {1, . . . ,Ψn} to {X1, . . . ,Xn}. For example, if X =“abracadabra”, we can

convey the pattern Ψ = 12314151231 and the dictionary ∆(1) = a, ∆(2) = b, ∆(3) = r, ∆(4) = c,

and ∆(5) = d.

Since the pattern and dictionary determine the sequence, it is easy to see that

RΨ + R∆|Ψ ≥ RX .

Hence

R∆|Ψ = ∞. (3)

Together, these results imply that for i.i.d. distributions over arbitrary alphabets, not knowing

the underlying distribution results in infinite redundancy (1). Yet all the redundancy is associated

with describing the dictionary (3), and none with the pattern (2). As the current results, outlined

next, show, very different conclusions hold when the underlying distribution is known.
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3 Results

In Section 4 we consider the probability of innovation, the probability νn that the nth element in a

random process differs from all previous elements. We show that for all discrete stationary processes,

νn → 0

and that if, additionally, the process has finite marginal entropy H then

νn ≤ H

log n
(1 + o(1)).

While this bound is not tight for all stationary distributions, for example for an independent

Bernoulli-half source, νn = 1/2n−1, we show that it is tight in the sense that for every positive

H and ǫ there is an (i.i.d.) distribution with entropy H for which

νn ≥ Ω

(

H

(log n)1+ǫ

)

.

In Section 5 we use these results to determine the pattern entropy rate of several distribution

classes. We show that, as in Example 2, for all discrete i.i.d. processes and all discrete finite-entropy

stationary processes, the pattern- and sequence-entropy rates coincide,

HΨ = HX . (4)

For i.i.d. distributions with continuous probability q, we show that the pattern entropy rate equals

the entropy rate of a modified distribution,

HΨ = HX̃ ,

where X̃ is obtained from X by mapping all elements in the continuous part of the support to a

single new discrete element. We note that similar entropy-rate results were independently derived

by Gemelos and Weissman [15, 16].

In Section 6 we consider the speed

ρ
X ,n

def
=

∣

∣

∣

∣

1

n
H(Ψ) −HΨ

∣

∣

∣

∣

at which the per-symbol pattern entropy converges to its rate. For simplicity we consider only

discrete i.i.d. distributions. We show that ρ
X ,n does not diminish uniformly for all processes or even

for all distributions with a given entropy. We then bound ρ
X ,n in terms of

σ2 def
=
∑

pi log2 pi,

the second moment of the self information, showing that

ρ
X ,n ≤ O

(

σ4

log n

)1/3

.

In Section 7 we show that, like the original sequences, patterns of i.i.d. sequences satisfy an

asymptotic equipartition property in that as the blocklength n increases, their probability tends to

2−nHΨ . More precisely, we prove the convergence in probability,

1

n
log

1

p(Ψ)

p→ HΨ.
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Two comparisons between these and existing pattern-compression results are in order. For sim-

plicity, we describe them using discrete i.i.d. distributions.

First, while the original sequence and its pattern have the same (asymptotic per-symbol) en-

tropy (4), the (asymptotic per-symbol) redundancy of the sequence is infinite (1) whereas that of

the pattern is zero (2). Hence, when the distribution is known, describing the sequence and its

pattern require the same number of bits, but when the distribution is not known, the sequence may

require infinitely many additional bits whereas the pattern requires none.

Additionally, since (a) X determines Ψ, and (b) given Ψ there is a 1-1 correspondence between

X and ∆, we obtain

H(X)
(a)
= H(Ψ) +H(X|Ψ)

(b)
= H(Ψ) +H(∆|Ψ).

It follows that

H∆|Ψ
def
= lim

n→∞

1

n
H(∆|Ψ) = lim

n→∞

1

n
H(X) − lim

n→∞

1

n
H(Ψ) = HX −HΨ = 0. (5)

Hence, while when the distribution is not known, essentially all the redundancy in describing a

sequence derives from describing the dictionary (3) and none from the pattern (2), when the distri-

bution is known, essentially all the bits go towards describing the pattern (4), and none towards the

dictionary (5).

4 The probability of innovation

The essential difference between a sequence and its pattern is that the latter groups all hitherto

unseen symbols into a single new element. For symbols that have been observed, the symbols and

their indices in the pattern have 1-1 correspondence given the past sequence. To relate sequence

and pattern entropy, we therefore show that for any discrete stationary distribution the probability

of observing new elements decreases to zero with time. We begin with some definitions.

For n ≥ 1, let xn−1 = x1, . . . ,xn−1 and let A(xn−1) = {x1, . . . ,xn−1} be the set of elements

observed in xn−1. For a random process X1,X2, . . ., let

In =

{

1 Xn 6∈ A(Xn−1),

0 otherwise.

indicate whether the n′th symbol is new, and let

Mn
def
= |A(Xn)| =

n
∑

i=1

Ii,

be the number of distinct symbols in X1, . . . ,Xn. Finally. the innovation probability of the process

at time n is

νn
def
= p(In = 1) = EIn,

the probability that the nth symbol differs from all previous ones.

Since this section concerns only discrete distributions, assume without loss of generality that

these strings are drawn from N = {1, 2, . . .}. For a stationary distribution, let pj
def
= p(Xn = j)

denote the marginal probability that the nth random variable is j. The distribution’s marginal

entropy,

H
def
=

∞
∑

j=1

pj log
1

pj

is the entropy of each Xn.

The next lemma shows that for any stationary distribution the expected number of symbols grows

sublinearly with n and provides a stronger bound for distributions with finite marginal entropy.
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Lemma 1. For all discrete stationary distributions,

EMn = o(n)

and if, in addition, the distribution has finite marginal entropy H, then,

EMn ≤ nH

log n
(1 + o(1)).

Proof For j ∈ N, let

In,j =

{

1 Xn = j 6∈ A(Xn−1)

0 else,

indicate whether Xn is new and equals j. Then,

In =
∞
∑

j=1

In,j .

For any function kn of n,

Mn =

n
∑

i=1

kn
∑

j=1

Ii,j +

n
∑

i=1

∞
∑

j=kn+1

Ii,j .

Since any element j can be new at most once,

n
∑

i=1

kn
∑

j=1

Ii,j =

kn
∑

j=1

n
∑

i=1

Ii,j ≤
kn
∑

j=1

1 = kn,

and, since pj denotes the probability that Xn = j,

E





n
∑

i=1

∞
∑

j=kn

Ii,j



 =
n
∑

i=1

∞
∑

j=kn+1

p(Xn = j, In = 1) ≤
n
∑

i=1

∞
∑

j=kn+1

pj = n ·
∞
∑

j=kn+1

pj .

Letting kn increase to infinity as o(n), we obtain

EMn ≤ kn + n ·
∞
∑

j=kn+1

pj = o(n),

where the equality follows since
∑∞
j=kn+1 pj = o(1).

To prove the second part of the lemma, assume without loss of generality that the probabilities

pj are non-increasing. Then pj ≤ 1
j for all j ≥ 1, and

∞
∑

j=kn+1

pj <
1

log kn
·

∞
∑

j=kn+1

pj log j ≤ 1

log kn
·

∞
∑

j=kn+1

pj log
1

pj
≤ H

log kn
.

Hence

EMn ≤ kn + n · H

log kn
,

and the lemma follows by letting

kn =
nH

log2(nH)
. ✷

In Corollary 3, we apply this lemma to show that the innovation probability of any stationary

distribution diminishes with time, a result used in the next section to determine the entropy rate

of patterns. We first show that the innovation probability of any stationary process decreases

monotonically.
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Lemma 2. For any stationary process,

νn ≥ νn+1.

Proof For every stationary process and every n,

νn = p
(

Xn /∈ A({X1, . . . ,Xn−1}
)

= p
(

Xn+1 /∈ A({X2, . . . ,Xn})
)

≥ p
(

Xn+1 /∈ A({X1, . . . ,Xn})
)

= νn+1. ✷

Corollary 3. For any discrete stationary process,

lim
n→∞

νn = 0,

and if, in addition, the distribution has finite marginal entropy H, then for all n,

νn ≤ H

log n
(1 + o(1)).

Proof From Lemmas 1 and 2,

nνn ≤
n
∑

i=1

νi =

n
∑

i=1

EIi = E

n
∑

i=1

Ii = EMn = o(n),

and if the distribution has finite marginal entropy H, then

nνn ≤ EMn ≤ nH

log n
(1 + o(1)). ✷

For i.i.d. distributions, the last bound can be slightly improved.

Lemma 4. For all discrete i.i.d. distributions with finite entropy H and all n,

νn ≤ H

log n
.

Proof For every 0 < p < 1 and n ≥ 1, the Taylor series expansion of ln(1 − x) yields

ln
1

p
= − ln(1 − (1 − p)) ≥

n−1
∑

i=1

(1 − p)i

i
≥ (1 − p)n−1

n−1
∑

i=1

1

i
≥ (1 − p)n−1 lnn.

Therefore,

νn =
∑

x∈A

p(x)(1 − p(x))n−1 ≤ 1

log n

∑

x∈A

p(x) log
1

p(x)
=

H

log n
. ✷

Note that while this bound is not tight for all i.i.d. distributions, for example the independent

Bernoulli-half process has νn = H/2n−1, it is tight in the following sense.

Lemma 5. For all positive H and ǫ there is a distribution with entropy H and innovation

probability

νn = Ω

(

1

(log n)1+ǫ

)

.

Proof We first show that for any ǫ > 0, there is a finite entropy distribution with νn = Ω
(

1
(logn)1+ǫ

)

.

Define the probability distribution (p2, p3, . . .) by

pi =
1

S i (log i)2+ǫ
,
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where

S =
∑

i≥2

1

i(log i)2+ǫ
<∞ (6)

is a normalization factor. The distribution’s entropy is

Hǫ =
∑

i≥2

log i+ (2 + ǫ) log log i+ logS

S i(log i)2+ǫ
<∞, (7)

and, observing that S > 1/2, we obtain that for all n ≥ 4,

νn >
∑

i≥2

(1 − (n− 1)pi)pi

=
∑

i≥n

1

S i(log i)2+ǫ
−
∑

i≥n

n− 1

S2 i2(log i)4+2ǫ

>
∑

i≥n

1

S i(log i)2+ǫ
−
∑

i≥n

1

2S i(log i)2+ǫ

= Θ

(

1

(log n)1+ǫ

)

.

The distribution therefore has the desired innovation probability, and we now modify it to also

have the required entropy H. The modification depends on whether H is larger or smaller than Hǫ.

If H > Hǫ, consider the distribution (p′2, p
′
3, . . .) defined by

p′i =
1

S i (log i)2+δ

where 0 < δ ≤ ǫ and S is a normalization factor defined as before. Its entropy can be made arbitrarily

large by decreasing δ and its innovation is

νn = Ω

(

1

(log n)1+δ

)

= Ω

(

1

(log n)1+ǫ

)

.

If H < Hǫ, consider the distribution (p′′1 , p
′′
2 , . . .) with p′′1 = 1 − q for some 0 < q < 1 and

p′′i =
q

S i (log i)2+ǫ

for i ≥ 2, where S is defined by (6). Its entropy is

h(q) + qHǫ,

where Hǫ is defined in (7). This entropy can be made equal to any value 0 < H < Hǫ by an

appropriate choice of q. Clearly the new distribution also satisfies

νn = Ω

(

1

(log n)1+ǫ

)

. ✷

5 The entropy rate of patterns

We determine the entropy rate of patterns of certain processes. We observe that when the alphabet

is finite, the entropy rates of the process and its pattern coincide, and extend this result to all

discrete processes that are either i.i.d., or finite-entropy stationary. For i.i.d. distributions with

a continuous component we show that the pattern entropy rate equals that of a modified process
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where the continuous probability is assigned to a new discrete element. We note that similar results

were independently obtained by Gemelos and Weissman [15, 16].

It is easy to see that whenever the alphabet A is finite, the process and pattern entropy rates

coincide. Observe that

H(X) − log |A|! ≤ H(Ψ) ≤ H(X), (8)

where the upper bound follows as the sequence determines the pattern, and the lower bound follows

as, for the same reason,

H(X) = H(Ψ) +H(X|Ψ) (9)

and every pattern can derive from at most |A|! sequences, hence

H(X|Ψ) ≤ log |A|!.

Taking limits in (8) we see that for all distributions over finite alphabets,

HΨ = lim
n→∞

1

n
H(Ψ) = lim

n→∞

1

n
H(X) = HX . (10)

Note that for i.i.d. processes, bounds similar to (8) appeared in [14]. The lower bound therein

is somewhat weaker than that in (8) while the upper bound is somewhat stronger when |A| = o(n)

and all probabilities are at least 1/n1+ǫ for some ǫ > 0. The upper bound was further improved

in [17].

The rest of the section extends (10) to distributions over infinite alphabets. We use the following

lemma relating conditional pattern entropy and the pattern entropy rate.

Lemma 6. For any process, if

H(Ψn|Ψn−1) ≥ hn.

and

lim
n→∞

hn = HX ,

then

HΨ = HX .

Proof Since Xn determines Ψn and H(Ψn) =
∑n
i=1H(Ψi|Ψi−1),

1

n
H(Xn) ≥ 1

n
H(Ψn) ≥ 1

n

n
∑

i=1

hi.

Taking limits as n→ ∞, the lemma follows because Cesáro’s mean theorem implies that

lim
n→∞

1

n

n
∑

j=1

hj = HX . ✷

We begin with i.i.d. distributions, and among them start with those over discrete alphabets. We

show that a random sequence is likely to contain all high-probability elements, and that when this

happens, the conditional entropy of the pattern approaches that of the sequence.

As in Section 4 we assume without loss of generality that the alphabet is N = {1, 2, . . .} and let

pi
def
= p(Xn = i). For ǫ ≥ 0, we let

Aǫ
def
= {i : pi > ǫ}

be the set of all elements whose probability exceeds ǫ.

9



Theorem 7. For all discrete i.i.d. distributions,

HΨ = HX .

Proof We first show that a random sequence is likely to contain all elements of sufficiently high

probability. More precisely, recall that A(Xn) is the set of all elements in Xn, and that A ln n
n

is the

set of all elements whose probability exceeds lnn
n . Clearly, |A ln n

n
| ≤ n

lnn , hence

p
(

A ln n
n

⊆ A(Xn)
)

> 1 − n

lnn

(

1 − lnn

n

)n

> 1 − 1

lnn
.

Let

Jn =

{

1 A ln n
n

⊆ A(Xn)

0 otherwise

indicate whether Xn contains all high-probability elements. Then

H(Ψn+1|Ψn) ≥ H(Ψn+1|Xn)

≥ H(Ψn+1|Xn, Jn)

≥ p(Jn = 1)H(Ψn+1|Xn, Jn = 1)

≥
(

1 − 1

lnn

)

∑

i∈A ln n
n

pi log
1

pi

def
=

(

1 − 1

lnn

)

H(A ln n
n

).

The theorem follows from Lemma 6 as

lim
n→∞

H(A ln n
n

) = HX . ✷

For mixed i.i.d. distributions we show that the entropy rate of the pattern equals that of a

slightly modified process. Let X be a random variable drawn from a mixed distribution p with

discrete support A0 and continuous probability q. Define X̃ to be the discrete random variable

obtained from X by replacing all elements in the continuous support with a single new discrete

element. Then

HX̃ =
∑

i∈A0

pi log
1

pi
+ q log

1

q
= H(A0) + q log

1

q
.

Theorem 8. For all i.i.d. distributions,

HΨ = HX̃ .

Proof Since X̃n too determines Ψn, we proceed as in Theorem 7. Recall the definitions of Jn,

A ln n
n

, and H(A ln n
n

), and let A(x)c denote the set of symbols not in x,

H(Ψn+1|Ψn) ≥ p(Jn = 1)H(Ψn+1|X̃n, Jn = 1)

≥
(

1 − 1

lnn

)

(

H(A ln n
n

) + min
x:A ln n

n

⊆A(x)
p(A(x)c) log

1

p(A(x)c)

)

.

The theorem follows by applying Lemma 6 to X̃n as

lim
n→∞

H(A ln n
n

) = H(A0),

and

lim
n→∞

min
x:A ln n

n

⊆A(x)
p(A(x)c) = q. ✷
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We now address stationary processes. Note that while Theorem 7 shows that HΨ = HX for all

discrete i.i.d. processes, even those with infinite entropy, as the next example indicates, this equality

cannot hold for all discrete stationary processes with infinite entropy.

Example 3. Consider the constant stationary process X1 = X2 = . . . defined by

pj = p(Xn = j) =
1

S

1

j log2 j
,

where S is a normalization factor. Then,

H(X1) =

∞
∑

j=1

pj log
1

pj
= ∞,

hence

HX = ∞.

On the other hand, the pattern is always 11 . . . 1, hence

HΨ = 0. ✷

To prove that HΨ = HX for all discrete stationary processes with finite entropy, we use the inno-

vation results of Section 4. We show that the probability that Xn is new, hence more “informative”

than Ψn, is low for likely Xn−1, and that when Xn is not new, the conditional entropy of the pattern

is roughly HX .

Theorem 9. For all finite-entropy discrete stationary processes,

HΨ = HX .

Proof As before, we lower bound the conditional pattern entropy with a term that approaches

HX . We show that

H(Ψn|Ψn−1) ≥ H(Xn|Xn−1) − o(1),

and the theorem will follow from Lemma 6 as for all finite-entropy stationary processes,

lim
n→∞

H(Xn|Xn−1) = HX .

Recall that for n ≥ 1, In indicates whether Xn is new, hence

H(Xn|Xn−1) = H(Xn, In|Xn−1)

= H(In|Xn−1) +H(Xn|Xn−1, In)

= H(In|Xn−1) +H(Xn|Xn−1, In = 0)p(In = 0) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(In|Xn−1) +H(Ψn|Xn−1, In) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(Ψn, In|Xn−1) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(Ψn|Xn−1) +H(Xn|Xn−1, In = 1)p(In = 1)

≤ H(Ψn|Ψn−1) +H(Xn|In = 1)p(In = 1)

We now use Corollary 3 to show that

H(Xn|In = 1)p(In = 1) = o(1).

Recall that pj = p(Xn = j), that

Aνn
= {j : pj > νn}

11



is the set of all elements whose probability exceeds νn, that νn = p(In = 1), and that In,j indicates

whether Xn is new and equals j. Define

νn,j
def
= p(In,j = 1) =

∑

xn−1:j /∈xn−1

p(xn−1, xn = j),

so that νn =
∑∞
j=1 νn,j . Then

H(Xn|In = 1)p(In = 1) =

∞
∑

j=1

νn,j log
νn
νn,j

= νn log νn +
∑

j∈Aνn

νn,j log
1

νn,j
+
∑

j /∈Aνn

νn,j log
1

νn,j

(a)

≤ νn log (|Aνn
| + 1) +

∑

j /∈Aνn

νn,j log
1

νn,j

(b)

≤ νn log

(

1

νn
+ 1

)

+
∑

j /∈Aνn

pj log
1

pj

(c)
= o(1),

where (a) follows because

∑

j∈Aνn

νn,j log
1

νn,j
≤
∑

j∈Aνn

νn,j log
1

νn,j
+ (νn −

∑

j∈Aνn

νn,j) log
1

νn −∑j∈Aνn
νn,j

≤ νn log (|Aνn
| + 1) + νn log

1

νn
,

(b) follows as |Aνn
| < 1

νn
and νn,j ≤ pj ≤ νn, which for sufficiently large n is smaller than 1

e , and

(c) follows as Corollary 3 implies that νn → 0, and HX < ∞ implies that the marginal entropy is

finite, hence

lim
n→∞

∑

j /∈Aνn

pj log
1

pj
= 0. ✷

6 The rate of convergence

In the previous section we determined the pattern entropy rate—the limit of the per-symbol pattern

entropy—of i.i.d. and certain related distributions. We now address the convergence rate

ρ
X ,n

def
=

∣

∣

∣

∣

1

n
H(Ψ) −HΨ

∣

∣

∣

∣

at which this limit is attained. For simplicity we consider only discrete i.i.d. distributions. Then

ρ
X ,n =

1

n
(H(X) −H(Ψ)) =

1

n
H(X|Ψ),

where the first equality follows from Theorem 7, and the second from (9).

We first show that ρ
X ,n does not diminish uniformly for all distributions, or even for all dis-

tributions with a given entropy. We then bound ρ
X ,n in terms of the second moment of the self

information.

To show that ρ
X ,n does not diminish uniformly, the next example shows that it can be made

arbitrarily high for all n.

12



Example 4. The i.i.d. process X1,X2, . . . , where each Xi is distributed uniformly over {1, . . . ,k},
has

ρ
X ,n =

1

n
H(X|Ψ) ≥ 1

n
H(X1|Ψ) =

log k

n
,

which can be made arbitrarily high by choosing a sufficiently large k. ✷

While the example shows that ρ
X ,n does not diminish uniformly for all i.i.d. distributions (and

in fact is unbounded), the processes it uses have unbounded entropy themselves. It is natural to ask

whether ρ
X ,n diminishes uniformly for all i.i.d. processes with a given entropy. The next example

answers this question in the negative, showing that for all n, ρ
X ,n can be made arbitrarily close to

the process entropy.

Example 5. For every k, let pk = (1 − q, q/k, . . . ,q/k) be the distribution over k + 1 elements

where one element has probability 1 − q and each of the remaining k elements has probability q/k.

Given H > 0, for any k ≥ 2H there is a q such that the H(pk) = h(q) + q log k = H, and as k

increases to infinity, q tends to zero, hence q log k → H.

Let each of X1,X2, . . . be distributed independently according to pk. For any fixed blocklength

n, as k tends to infinity, the probability that any element of probability q/k appears more than once

decreases to 0, hence with high probability there is a 1-1 correspondence between the pattern and

the set of locations where the element of probability 1 − q appears. Consequently H(Ψ) → nh(q).

It follows that for any fixed n, as k increases,

ρ
X ,n =

1

n
H(X|Ψ) =

1

n

(

H(X) −H(Ψ)
)

→ q log k → H. ✷

In the preceding examples we increased ρ
X ,n by constructing successively flatter distributions,

raising the possibility that ρ
X ,n will diminish when the distribution p1, p2, . . . diminishes to 0 suffi-

ciently quickly. In Theorem 11 and Corollary 12 we bound ρ
X ,n in terms of the second moment of

the self information

σ2 def
=
∑

i≥1

pi log2 1

pi
.

To do so, we first prove the following technical lemma.

Lemma 10. For any discrete distribution p, and all I ≥ 1,

∑

i≥I

pi log
1

pi
≤ σ

√

∑

i≥I

pi.

Proof Using the Cauchy-Schwartz Inequality,

∑

i≥I

pi log
1

pi
=
∑

i≥I

√

pi · pi log2 1

pi
≤





∑

i≥I

pi





1/2



∑

i≥I

pi log2 1

pi





1/2

. ✷

Theorem 11. For all discrete i.i.d. distributions with entropy H,

H

(

1 − Θ

(

σ2

H log n

)1/3
)

≤ 1

n
H(Ψ) ≤ H.

Proof Let

ǫn
def
=

(

2H2

σ log n

)2/3

13



and

Tn
def
=







xn−1 : p(In = 1|xn−1) =
∑

x/∈A(x)

p(x) ≤ ǫn







,

be the set of strings whose missing mass is at most ǫn. From Lemma 10,

min
xn−1∈Tn

H(Ψn|xn−1) ≥ H − σ
√
ǫn = H

(

1 − 2

(

σ2

4H log n

)1/3
)

def
= H(1 − 2δn).

Note that EXn−1p(In = 1|Xn−1) = p(In = 1) = νn, hence from Markov’s inequality and Lemma 4,

p(Tn) ≥ 1 − H

ǫn log n
= 1 −

(

σ2

4H log n

)1/3

= 1 − δn.

It follows that for n ≥ 2,

H(Ψn|Ψn−1) ≥ H(Ψn|Xn−1) ≥
∑

xn−1∈Tn

p(xn−1)H(Ψn|xn−1) ≥ H(1 − 3δn).

Hence
1

n
H(Ψn) ≥ n− 1

n
H − 3

n
H

n
∑

i=2

δi = H − Θ(Hδn) = H − Θ

(

σ2H2

log n

)1/3

. ✷

Lemma 10 implies that

H ≤ σ,

hence the rate of convergence of pattern entropy can be bounded as follows.

Corollary 12. For all discrete i.i.d. distributions,

ρ
X ,n ≤ O

(

σ4

log n

)1/3

. ✷

7 Asymptotic equipartition of patterns

Shannon [18] showed that strings generated by i.i.d. distributions over finite alphabets satisfy an

asymptotic equipartition property. Chung [19] generalized this result to infinite alphabets. We prove

an equivalent property for patterns of such strings. Specifically, we show that

1

n
log

1

p(Ψ)

p→ 1

n
E log

1

p(Ψ)
, (11)

where the convergence is in probability, uniformly over all i.i.d. distributions, see Theorem 16. Since

by definition,
1

n
E log

1

p(Ψ)
→ HΨ,

we obtain
1

n
log

1

p(Ψ)

p→ HΨ,

though here, the results of the last section show that we cannot have uniform convergence over all

i.i.d. distributions. To prove (11) we use profiles of patterns, defined next.

The multiplicity of ψ ∈ Z
+ in a pattern ψ is

µψ
def
= |{1 ≤ i ≤ |ψ| : ψi = ψ}|,
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the number of times ψ appears in ψ. The prevalence of a multiplicity µ ∈ N in ψ is

ϕµ
def
= |{ψ : µψ = µ}|,

the number of symbols appearing µ times in ψ. The profile of ψ is

ϕ
def
=
(

ϕ1, . . . ,ϕ|ψ|
)

the vector of prevalences of all possible multiplicities for 1 ≤ µ ≤ |ψ|. For example, the pattern

ψ = 12131 has multiplicities µ1 = 3, µ2 = µ3 = 1, and µψ = 0 for all other ψ ∈ Z
+. Hence its

prevalences are ϕ1 = 2, ϕ2 = 0, ϕ3 = 1, ϕ4 = ϕ5 = 0, and its profile is ϕ(ψ) = (2, 0, 1, 0, 0).

If p is an i.i.d. distribution, then all length-n patterns ψ with profile ϕ, have the same probability,

p(ψ) =
p(ϕ)

N(ϕ)
,

where

N(ϕ) =
n!

∏

µ µ!ϕµϕµ!

is the number of patterns with profile ϕ. Therefore

log
1

p(ψ)
= log

1

p(ϕ)
+ logN(ϕ).

Let Φ denote the profile of a random sequence X . The following bound by McDiarmid can be

used to show that logN(Φ) concentrates around its mean.

Lemma 13. [McDiarmid [20]] Let X = X1, . . . ,Xn be independent random variables and let the

function f(x1, . . . ,xn) be such that any change in a single xi changes f(x1, . . . ,xn) by at most η.

Then,

p







∣

∣f(X) −Ef(X)
∣

∣ > η

√

n ln 2
δ

2







< δ. ✷

Corollary 14. For all α > 0,

p
{

∣

∣logN(Φ) − E logN(Φ)
∣

∣ > 3n
1+α

2 log n
}

<
2

e2nα .

Proof Let f(x1, . . . ,xn) = logN(ϕ). A change in xi can change log
∏

ϕµ! by at most 2 log n, and

log
∏

µ!ϕµ by at most log n. The corollary follows by setting δ = 2
e2nα in Lemma 13. ✷

We now show that with high probability, the profile self-information deviates from its expectation

by at most roughly n
1+α

2 log n.

Lemma 15. For all α > 0,

p

{∣

∣

∣

∣

∣

log
1

p(Φ)
−H(Φ)

∣

∣

∣

∣

∣

≥
(

π

√

2

3
log e

)

n
1+α

2 log n

}

≤
exp

(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) .

Proof Let ρ(n) be the number of profiles of length-n patterns. Then the entropy of Φ can be

bounded by

E log
1

p(Φ)
= H(Φ) ≤ log ρ(n) ≤

(

π

√

2

3
log e

)

√
n.
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where the second inequality follows as ρ(n) is, see e.g., [11], the number of integer partitions of n,

which has been computed by Hardy and Ramanujan [21].

Let ℓ =
(

π
√

2
3 log e

)

n
1+α

2 log n. Since ℓ ≥ H(Φ),

∣

∣

∣

∣

log
1

p(Φ)
−H(Φ)

∣

∣

∣

∣

≥ ℓ⇒ log
1

p(Φ)
≥ ℓ,

hence

p

{∣

∣

∣

∣

log
1

p(Φ)
−H(Φ)

∣

∣

∣

∣

≥ ℓ

}

≤ p

{

log
1

p(Φ)
≥ ℓ

}

≤
exp

(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) ,

where the last inequality follows as the probability of any profile with self-information ≥ ℓ is at most

2−ℓ and there can be at most ρ(n) ≤ exp
(

π
√

2n
3

)

such profiles. ✷

Corollary 14 and Lemma 15 imply the asymptotic equipartition property. Note that the conver-

gence bound is uniform for all i.i.d. distributions.

Theorem 16. For all δ > 0,

p

{

1

n

∣

∣

∣

∣

log
1

p(Ψ)
−H(Ψ)

∣

∣

∣

∣

≥ δ

}

= exp

(

−Ω

(

nδ2

log2 n

))

.

Proof Observe that H(Ψ) = E log 1
p(Ψ)

, and that

p

{

1

n

∣

∣

∣

∣

log
1

p(Ψ)
− E log

1

p(Ψ)

∣

∣

∣

∣

≤ δ

}

≥ p

{

1

n

∣

∣

∣

∣

logN(Φ)−E logN(Φ)

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

log
1

p(Φ)
−E log

1

p(Φ)

∣

∣

∣

∣

≤ δ

}

≥ p

{

{

1

n

∣

∣

∣

∣

logN(Φ) − E logN(Φ)

∣

∣

∣

∣

≤ 3n
α−1

2 log n

}

⋂

{

1

n

∣

∣

∣

∣

log
1

p(Φ)
− E log

1

p(Φ)

∣

∣

∣

∣

≤
(

π

√

2

3
log e

)

n
α−1

2 log n

}}

≥ 1 − 2

e2nα −
exp

(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) ,

where for sufficiently large n, 0 < α ≤ 1, is the solution of
(

3 + π

√

2

3
log e

)

n
α−1

2 log n = δ.

The last inequality follows from Lemmas 14 and 15. Clearly,

nα =
n δ2

(

3 + π
√

2
3 log e

)2

log2 n

,

and the theorem follows by observing that the 2e−2nα

term dominates. ✷
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