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ABSTRACT Accurate load forecasting is critical for reliable and efficient planning and operation of
electric power grids. In this paper, we propose a unifying deep learning framework for load forecasting,
which includes time-varying feature weighting, hierarchical temporal attention, and feature-reinforced
error correction. Our framework adopts a modular design with good generalization capability. First, the
feature-weighting mechanism assigns input features with temporal weights. Second, a recurrent encoder-
decoder structure with hierarchical attention is developed as a load predictor. The hierarchical attention
enables a similar day selection, which re-evaluates the importance of historical information at each time step.
Third, we develop an error correction module that explores the errors and learned feature hidden information
to further improve the model’s forecasting performance. Experimental results demonstrate that our proposed
framework outperforms existing methods on two public datasets and performance metrics, with the feature
weighting mechanism and error correction module being critical to achieving superior performance. Our
framework provides an effective solution to the electric load forecasting problem, which can be further
adapted to many other forecasting tasks.

INDEX TERMS Short-term load forecasting, feature weighting, attention mechanism, error correction.

I. INTRODUCTION
Load forecasting refers to the prediction of the future load
behavior, which can be derived from the historical load pat-
tern and its relevant features. Based on different forecast
horizons, load forecasting can be divided into three categories
short-term (one hour to a week), medium-term (one week to a
year), and long-term (one to twenty years) forecasting. Each
of them benefits various applications and business needs.
Long-term forecasting is mainly used in power system plan-
ning such as generation and transmission expansion planning.
Medium-term forecasting plays a crucial role in maintenance
scheduling. Short-term load forecasting (STLF) is indispens-
able for day-ahead unit commitment, market clearing, spin-
ning reserve plans, energy bidding, as well as economic load
dispatch [1].

As the forecasting time span shrinks, the requirement for
forecasting accuracy increases. In addition, wide applications
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of renewable energy generations, energy storage systems,
and electric vehicles in recent years have had a huge impact
on users’ load behavior. This poses significant challenges
in forecasting load demand [2]. Various approaches have
been proposed to improve the STLF accuracy. They can be
roughly categorized into three classes: (i) time series analysis,
(ii) classical machine learning algorithms, and (iii) deep
learning models.

Time series analysis has been widely used in many appli-
cations. Various versions of autoregressive integrated moving
average (ARIMA) models were used for STLF [3]. These
methods are easily implemented and interpreted. However,
they often require meticulous preprocessing to make a time
series stationary [4]. Moreover, time series approaches are
sensitive to irrelevant features and may fail to capture a long-
term dependency.

With the vigorous development of classical machine learn-
ing theory, researchers began to explore its application in
STLF. Ceperic et al. proposed a support vector regression
machines (SVR) approach for STLF, which minimizes the

51606
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-7889-2676
https://orcid.org/0000-0002-4964-6609


J. Xiong, Y. Zhang: Unifying Framework of Attention-Based Neural Load Forecasting

user interaction requirement by an adaptive model building
strategy [5]. A random forest (RF) model was used to deal
with non-stationarity, heteroscedasticity, trend, and multiple
seasonal cycles in load data [6]. In order to avoid information
loss, Cheng et al. used different feature sets to construct an
ensemble random forest-based model [7]. Taieb et al. imple-
mented component-wise gradient boosting models (GBM)
for each hour for multi-step STLF [8]. These classic machine
learning models, which are more robust to tolerate irrelevant
features, are capable of capturing nonlinear behaviors of
electricity load. However, most of them use predetermined
nonlinear models, which may prevent them from effectively
learning the true underlying mappings [9].

In the last decade, deep neural networks have demonstrated
remarkable capabilities in uncovering complex input-output
relationships in various fields, such as natural language pro-
cessing and computer vision. The Deep Belief Network
(DBN) is a prevalent model for time-series forecasting tasks.
To improve the forecasting accuracy, rough set theory was
introduced in [10] to enhance the feature extraction capabil-
ity of the restricted Boltzmann machine (RBM) within the
DBN. Furthermore, interval probability distribution learn-
ing (IPDL) in [11] uses deep generative neural networks
to learn the input data distribution and provide uncertainty
intervals for wind speed forecasting. Recurrent neural net-
works (RNNs) are commonly used with proven efficacy
for sequence-to-sequence (seq2seq) learning and time-series
forecasting tasks. However, the vanilla RNNs suffer from
the gradient vanishing issue that limits their performance.
To address this issue, Hochreiter and Schmidhuber proposed
long short-term memory networks (LSTM), which use a
gating technique to control information flows. LSTM uses
three gates (input/forget/output) to retain relevant information
for long-term memory while discarding the other informa-
tion [12]. In 2014, Cho et al. proposed gated recurrent units
(GRUs) which is another gating mechanism-based RNN.
GRUs reduce the number of gates with fewer parameters to
train; see details in [13].

Seq2seq learning solves the mapping between the sequen-
tial inputs and outputs of the task, which shares various
similarities with time-series learning problems [14]. The
encoder-decoder structure usually serves as the backbone
for most seq2seq models [15], [16]. Specifically, in time-
series tasks, the encoder encodes the historical input feature
sequence into a single fixed-length vector based on which the
decoder yields the output. However, coping with long input
sequences can be challenging. To mitigate this drawback,
the attention mechanism was introduced to search for a set
of positions in historical time steps where the most relevant
information can be concentrated [17]. For this new paradigm,
a context vector is designed to bridge the encoder and the
decoder, which is filtered for each output time step.

It is often challenging to deal with various conditions in
real data by using single-module approaches. To further
improve the prediction accuracy, hybrid models combining

the advantages of all added modules have been developed.
When it comes to the STLF, feature engineering [18] and
error correction modules play an important role. Traditional
feature selection approaches, such as filters, wrappers and
embedding methods, aim at selecting the smallest subset of
features that contribute the most to the output. A two-stage
hybrid model for STLF is proposed in [19]. Based on the
mutual information criterion, the selected features are fed into
a forecast engine that is implemented via Ridgelet and Elman
neural networks.

Rather than selecting a subset of features, feature weight-
ing attempts to weight each feature based on their importance
or relevance with the output [20]. Utilizing the feature
weights given by the random forest, Xuan proposed a
multi-model fusion based deep neural network to forecast the
load demand [21]. Qin et al. proposed an input attention layer
as feature weighting that can be trained simultaneously with
the model [9]. However, their scheme is based only on the
past information which cannot capture all the information of
the entire input sequence. Moreover, the feature weighting
part is embedded in the encoder, which makes it hard to
be adopted for other basic structures; e.g. the convolutional
neural network (CNN).

The prediction error generally comes from two parts: the
learning capability of the original model and the newly
emerging unknown data. To further improve the prediction
accuracy, error correction module can learn useful hidden
information from the error values. In this context, Deng et al.
proposed a hybrid model which includes a decomposition
module, a forecastingmodule, and an error correctionmodule
for wind speed forecasting [22]. Leveraging the dynamic
mode decomposition (DMD) method in fluid dynamics,
Kong et al. captured the spatio-temporal dynamics of error
series in STLF [2]. This algorithm first constructs the error
Hankel matrix and then does the pattern decomposition of the
error. Existing approaches for the error correction are based
on either a completely new model such as ARIMA [22], [23]
or extreme learning machine [24]. However, the design of a
new model will increase the learning cost. Model selection
and hyperparameter tuning are necessary, which may greatly
affect the sampling complexity and training time. In addition,
the useful knowledge learned by the predictive model will be
lost in the new model.

Transfer learning was proposed to deal with the aforemen-
tioned issues. The motivation is to use previously acquired
domain knowledge to solve new problems faster, or yield
better solutions [25]. In recent years, transfer learning
has been successfully used for supervised and unsupervised
learning. In load forecasting, researchers have also explored
this technique, where the knowledge is transferred from one
region/household to another one [26]. In this case, the source
and target domains are the same, which is load and relative
features while the task is also the same. The key challenge for
applying transfer learning in error correction is incorporating
the error information into the target domain without changing
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FIGURE 1. The architecture of the proposed framework. The left side is
the load forecasting module with an input feature-weighting mechanism
designed to weigh the different input features. The right side is the error
correction module transferred from the left side model to further
enhance forecasting ability. The detailed structures of feature-weighting
mechanism and load forecasting module are shown in Fig. 2 and Fig. 3.

the input dimensionwhile capitalizing on previously acquired
feature knowledge.

Considering the limitations of the aforementioned prior
works, in this paper we propose a novel deep learning
framework that incorporates a dynamic feature weighting
mechanism and a transferred learning based error correction
module. The main contributions of our work are listed as
follows:

1) The proposed framework offers a modular and plug-
and-play functionality that can be adapted to different
types of data and setups in STLF.

2) Compared with classic feature weighting methods, our
attention-based time-varying feature weighting mech-
anism can assign different levels of importance to
each feature at each time step, which allows for more
dynamic and adaptive feature selection.

3) The hierarchical temporal attention layer captures the
similar day and similar hour information, which is a
critical factor for accurate STLF.

4) The proposed error correction module leverages trans-
fer learning. This eliminates the need for a new model
design and inherits the learned feature knowledge.

5) Extensive experimental results corroborate the merits
of our approach, which outperforms existing methods
based on various performance metrics.

The remainder of the paper is organized as follows.
Section II presents the overall framework with all proposed
modules. The simulation setup and results are reported in
Section III and IV, respectively. Finally, Section V summa-
rizes this work.

II. THE PROPOSED LOAD FORECASTING FRAMEWORK
In the following section, we introduce the overall load
forecasting framework structure as shown in Fig. 1. The

FIGURE 2. The feature-weighting mechanism structure with two linear
layers.

framework mainly consists of three modules: (i) the feature-
weighting mechanism, (ii) the short-term load forecasting
module, and (iii) the error correction module.

A. FEATURE EMBEDDING AND FEATURE-WEIGHTING
MECHANISM
Input features can generally be divided into two categories:
numeric features and categorical features. As the model
requires numeric input, a categorical feature would be trans-
formed into a numeric vector. For STLF, the inputs can con-
tain meteorological conditions (e.g., temperature, humidity,
wind speed and direction, etc), time-related features (e.g.,
indicators of holidays, seasons, etc), and utility discount
programs. For those categorical features, we use one-hot
encoding in this work. After the embedding, all input features
X = (x1, x2, . . . , xn) ∈ R(Th+Tf )×n are the concatenation
of encoded categorical features and continuous numeric fea-
tures. Each row of X, denoted as xt = (x1t , x

2
t , . . . , x

n
t ),

represents all features at time t .
Feature selection plays a crucial role in machine learning

methods [18]. Irrelevant features can significantly affect the
model’s performance. Instead of making a hard feature selec-
tion which is a special case of feature weighting mechanism,
the proposed model is able to adaptively weigh different
features and give more attention to features that contribute
more to the target values. In [27], the feature selection layer
is entangled in the encoder. Therefore, it is hard to transfer
to other load forecasting modules. In order to modularize the
proposed framework, we separate the feature selection layer
from the encoder, and the weight αkt of each feature k at time
t is calculated via the softmax operator:

αkt =
exp

(
hkt

)∑n
i=1 exp

(
hit

) , k = 1, 2, . . . , n, (1)

where hkt is the k-th entry of the vector ht =

Vα tanh
(
Wαx⊤t

)
∈ Rn.

The weight matrices Vα ∈ Rn×d fwh and Wα ∈ Rd fwh ×n are
trained jointly with the proposed model. d fwh is the number of
neurons in the hidden layer and it’s a hyper-parameter to tune.
We omit the bias term for succinctness. Then, the weighted
feature input is given by x̃t = αt ⊙ xt , where ⊙ denotes
the element-wisemultiplication. The detailed structure for the
feature weighting mechanism is shown in Fig. 2.
The encoder’s inputs are the concatenation of embedded

categorical features, continuous numeric features, and histor-
ical target values (active power demand) at each time step
t ∈ [t−Th+1, t]. The decoder’s inputs are the concatenation
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FIGURE 3. The network architecture of the load forecasting model. The
hierarchical temporal attention in the decoder focuses on the temporal
similarity to incorporate similar day information.

of embedded categorical features and continuous numeric
features at each time step t ∈ [t + 1, t + Tf ]. Th and Tf are
the window size of historical and future data, respectively.

B. SHORT-TERM LOAD FORECASTING MODEL
1) ENCODER-DECODER STRUCTURE
The encoder-decoder structure is a workhorse in state-of-the-
art deep neural networks. For time series forecasting, the
encoder maps historical input features xt and output yh,t at
each time step to a hidden vector ht that is passed to the
decoder. Then, the decoder uses the last step hidden state
of the encoder as its initial hidden state, and outputs future
target values based on future feature inputs. In this work, a
bi-directional recurrent layer (RL) is used for both encoder
and decoder. We abbreviate the formulation for bi-directional
RL as ht = BiRL(·), where RL can be chosen as recurrent
neural network (RNN), LSTM or gated recurrent unit (GRU).

The BiRL consists of two sub-layers in opposite directions
which can capture the complete information of the entire
input sequence at each time step. Let hft , hbt ∈ Rhs denote
the hidden state of forward and backward recurrent layer at
time t , respectively. Given a sequence of historical weighted
feature and target value pairs (x̃t , yt ), the encoder’s hidden
states are updated from time t − Th + 1 to t as

hft = RLf (hft−1, [x̃t ; yt ]
⊤), (2a)

hbt = RLb(hbt+1, [x̃t ; yt ]
⊤), (2b)

het =
[
hft
⊤

;hbt
⊤
]⊤

, (2c)

where [a;b] denotes the concatenation of vectors a and b.
Using future weighted feature x̃t and context vector of

hierarchical temporal attention at (see next subsection) as
inputs, the decoder updates the hidden state iteratively from
time t + 1 to t + Tf with initial state het . Hence, we have

hdt = BiRL(het , [x̃t ; a
⊤
t ]) with the detailed steps as

hft = RLf (hft−1, [x̃t ; a
⊤
t ]), (3a)

hbt = RLb(hbt+1, [x̃t ; a
⊤
t ]), (3b)

hdt =
[
hft
⊤

;hbt
⊤
]⊤

. (3c)

Finally, a fully connected layer with the rectified linear unit
(ReLU) activation function is used to transform the hidden
information to the forecast output from time t + 1 to t + Tf :

yf ,t = VyReLU(Wyhdt ), (4)

where Vy ∈ R1×doh andWy ∈ Rdoh×2hs are weight matrices.

2) HIERARCHICAL TEMPORAL ATTENTION MECHANISM
Incorporating the information of similar days and hours has
been considered in the literature for load forecasting; see
e.g., [28] and [29]. However, such information is often treated
as additional input features or used to generate separate mod-
els. This paper uses a novel hierarchical temporal attention
layer designed from our previous work [27], which incorpo-
rates a similar day soft selection to re-evaluate the importance
of historical information at each time step t .

Consider using previous M days of historical data to fore-
cast the hourly loads for the next day, where each day includes
td = 24 data points. Thus, we have Th = M × td and
Tf = td . Let Xi = (x1i , x

2
i , . . . , x

n
i ) ∈ Rtd×n and Xf =

(x1f , x
2
f , . . . , x

n
f ) ∈ Rtd×n collect the historical features for the

day i and the future features of the next day.We use the sum of
feature-by-feature dissimilarities D(Xi,Xf ) =

∑n
k=1 ∥x

k
i −

xkf ∥2 to quantify the distance between all features of those
two days. Then, the similar day weight γi is calculated as the
softmax of the reciprocal of the distance:

γi =
exp

(
D−1(Xi,Xf )

)∑M
i=1 exp

(
D−1(Xi,Xf )

) , i = 1, 2, . . . ,M . (5)

When forecasting load at time t , not all historical data
contribute equally to the model’s output. Hence, the attention
mechanism facilitates the extraction of historical information
that is more important to the current forecast value. Let
subscript i denote the i-th day and j for j-th hour. Then, the
attention weight βi,j,t is given by

βi,j,t =
exp(di,j,t )∑M

i=1
∑td

j=1 exp(di,j,t )
, (6)

where di,j,t is the (i × td + j)-th element of vector dt =
(d1t , d

2
t , . . . , d

Th
t )⊤ ∈ RTh , which is given as

dt = Vd tanh
(
Wd

[
hdt−1

⊤
; xt

]⊤)
. (7)

The two weight matrices Vd ∈ RTh×datth and Wd ∈

Rdatth ×(2hs+n) are trained jointly with the proposed model.
hdt−1 is the hidden vector of the decoder BiLSTM at time t−1.

To this end, let hi,j denote the historical hidden state for
the j-th hour in the i-th day from the encoder. The context
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Algorithm 1 Training Procedure of the Framework
Input : Forecasting module training set

Dl = {X, yh, yf },
Error correction module training set
De = {Xe, ye,h, ye,f },
Number of epochs Nl and Ne,
Feature weighting module fl ,
Load forecasting module gl

Output: Trained model {fl, gl, ge}
1 Initialize model parameters;
2 for epoch = 1 to Nl do
3 for batch of {X, yh, yf } ∈ Dl do
4 X̃← fl(X);
5 ŷf ← gl(X̃, yh);
6 Compute training loss LLF;
7 Compute the gradient of loss;
8 Update parameters in gl(·) and fl(·);
9 end

10 end
11 ŷe,f ← gl(fl(Xe), ye,h);
12 e← ye,f − ŷe,f ;
13 Set feature weighting module fe(·) = fl(·);
14 Set error correction module ge(·) = gl(·);
15 Fixing the feature weighting layer, and train all other

layers in the error correction module as follows:
16 for epoch = 1 to Ne do
17 for batch of {Xe, eh, ef } do
18 X̃← fl(X);
19 êf ← ge(X̃, eh);
20 Compute training loss LEC;
21 Compute the gradient of loss;
22 Update model parameter of ge(·);
23 end
24 end
25 Return trained model {fl, gl, ge}.

vector of hierarchical temporal attention is calculated as at =∑M
i=1

∑td
j=1 γiβi,j,thi,j.

C. ERROR CORRECTION MODULE
Traditional error correction systems often involve creating
a new model to forecast errors, resulting in higher learning
costs and the potential loss of learnt knowledge obtained
by the original predictive model. To overcome these short-
comings, a transfer-learning-based error correction module
is proposed. Transfer learning utilizes previously acquired
domain knowledge to solve new problems more efficiently
yielding better results. In recent years, transfer learning has
succeeded in supervised and unsupervised learning, including
load forecasting, where knowledge is transferred between
regions or households. However, transferring knowledge in
error correction requires incorporating the error information
into the target domain without changing the input dimension

while leveraging previously learned feature knowledge. The
proposed error correction module addresses this challenge
and aims to improve prediction accuracy by extracting valu-
able information from error values with the help of learned
hidden features.

The error correction module is trained after the load fore-
casting module, which is first trained on dataset Dl . Then,
based on the error correction dataset De, we compute the
forecasting error as e = ye,f − ŷe,f , where ye,f is the real
output value and ŷe,f is the predicted value obtained by the
forecasting model. The feature weighting module and error
correction module are initialized by the forecasting model,
with the feature weighting layer fixed and the other layers to
be trained. To train the error correction module, a new dataset
with feature input and forecasting error is generated and
randomly split into training and validation sets. The algorithm
computes the training loss and its gradient to update the error
correction module via backpropagation. Upon completing
the training of the error correction module, it can be used
to correct forecast errors and improve forecasting accuracy.
The final output is obtained as ȳ = ŷ + ê, as shown in
Fig. 1. The overall training procedure of the framework is
summarized in Algorithm 1. The proposed transfer learning
based model has several advantages including no need for
hyper-parameter tuning and the ability to train with limited
data. It also reuses existing knowledge learned by the original
model, which results in a faster learning rate.

D. LOSS FUNCTION
For the load forecasting module, we choose the mean squared
error (MSE) loss and introduce ℓ1 regularizer to encourage
sparsity. The formulation is given as:

LLF =
1
N

N∑
i=1

(yi − ŷi)2 + λ ∥α∥1 , (8)

where λ is the weighting parameter balancing the data fitting
loss and the sparsity-promoting ℓ1 penalty.

For the error correction module, we drop the ℓ1 regulariza-
tion term because the feature weighting layer is fixed. Hence,
the loss function for training this module becomes

LEC =
1
N

N∑
i=1

(ei − êi)2. (9)

III. EXPERIMENT SETUP
A. DATA DESCRIPTION
The proposed framework is evaluated using two public
datasets: the ISO New England (ISO-NE) dataset1 and the
North-American Utility (NAU) dataset.2 ISO-NE annually
releases reports that provide hourly historical demand and
electricity pricing data for its control area and eight load
zones. This paper focuses solely on the control area dataset

1Available at https://www.iso-ne.com/isoexpress/web/reports/load-and-
demand/-/tree/dmnd

2Available at https://class.ece.uw.edu/555/el-sharkawi/index.htm
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FIGURE 4. Illustration of the sliding window step for data processing.

TABLE 1. Time-related features of the ISO-NE dataset.

and ignores the price-related features. The input features
include day-ahead demand, dry bulb and dew point tem-
peratures (in Fahrenheit), and time-related features. Data
from 2015 to 2017 are used to train the forecasting module
while 80% of 2018’s data are randomly selected to train the
error correction module. The remaining 20% data of 2018 are
used for validation. The year 2019 is reserved for testing. The
NAU dataset provides electricity load, temperature, and time
information from January 1, 1985 to October 12, 1992. In our
study, temperature and time-related features are considered.
We use the data from 1987 to 1989 for training the forecasting
model and randomly select 80% of 1990’s data to train the
error correction module. The remaining 20% of 1990 is for
validation while the year 1991 is for testing.

B. DATA PREPARATION
The missing values in the datasets are filled by linear interpo-
lation.We incorporate time-related features such as indicators
of weekends and holidays, seasons, hour of day, day of week,
andmonth of year.We embed categorical features via one-hot
encoding and standardize numerical features by subtracting
their means and dividing by their standard deviations. The
framework forecasts next 24 hours load demands using the
previous seven days load and features. The next 24 hours
features are assumed to be available as model’s input. For
hourly data, we have Th = 168 and Tf = 24. As shown
in Fig. 4, the sliding window size is set to be 1 and 24 for
training the forecasting module and error correction module,
respectively. We list the model inputs from the ISO and NAU
datasets in Tables 1 and 2.

TABLE 2. Time-related features of the NAU dataset.

C. BASELINE MODELS AND HYPERPARAMETERS
To verify the effectiveness of our proposed framework,
we compare four different types of models: classic machine
learning models, DBN-based models, RNN-based models,
and Transformer-based models. Details are given in below.

• Classic machine learning model: We test SVR [5],
RF [6], and GBM [8] using Scikit-Learn 0.23.2. Inputs
to the model are historical and feature features and his-
torical load that are flattened as a 1-D vector.

• DBN-based model: DBNs [30] are generative neural
networks composed of multiple layers of RBMs. Each
RBM layer is pre-trained in an unsupervised manner
using the contrastive divergence algorithm, and the over-
all model is fine-tuned using supervised learning. Rough
autoencoder combines rough set theory with DBNs
which can effectively handle uncertain and noisy data
and learn complex patterns [10].

• RNN-based model: The CNN-LSTM [31] combines the
advantages of both CNN and LSTM layers to improve
forecasting accuracy. Attention-based load forecasting
(ANLF) [27] is based on the encoder-decoder biLSTM
architecture and utilizes a dynamic feature selection
layer within the encoder. These models have shown
promising results in load forecasting and can be used as
effective baselines for future research in this field.

• Transformer-based model: Informer is a transformer-
based model designed for time-series forecasting as pro-
posed in the 2021 AAAI Best Paper [32]. Unlike the
RNN-based model, transformer can handle sequential
data in parallel to reduce training time.

The computing environment is a machine with 3.7 GHz
Intel Core i7-8700K Six-Core and NVIDIA GeForce
GTX 1080 Ti (11GBGDDR5X). Deep learning basedmodels
are trained by using Adam optimizer and implemented with
PyTorch 1.6.0. The initial learning rate is 0.001 which decays
by 0.1 times for every 30 epochs. Early stopping criteria is
set with patience 30. All models share the same training,
validation, and testing data samples and input features for fair
comparisons. We perform a grid search to identify the best
hyper-parameter set based on the validation data. The grid
search is commonly used for hyper-parameter tuning, which
involves setting a range of values for each hyper-parameter
and testing all possible combinations. The details of the grid
search are given in Table 3.
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TABLE 3. The ranges of hyper-parameter tuning. Bold and italic fonts
indicate the best values for the ISO-NE and the NAU datasets, respectively.

D. PERFORMANCE METRICS
The mean absolute error (MAE) and mean absolute per-
centage error (MAPE) are used to evaluate the forecasting
accuracy. They are defined as follows:

MAE =
1
n

n∑
i=1

∣∣yi − ŷi∣∣ , (10a)

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (10b)

where yi and ŷi are the i-th true and predicted outputs. n is the
number of points in the testing horizon.

IV. SIMULATION RESULTS
In this section, three case studies are carried out to show the
effectiveness of the proposed framework. Case 1 shows the

FIGURE 5. Two-day feature weight visualization for the NAU dataset with
different approaches: (a) mutual information, (b) random forest, and
(c) the proposed feature weighting attention.

ablation study results. Case 2 compares the baselinemodels in
section III-C and our proposed model. Case 3 shows the gen-
eralization capability, for which we add the feature weighting
mechanism and error correction module to the Informer.

A. CASE 1: ABLATION STUDY AND DISCUSSION
An ablation study is conducted based on the NAU dataset.
Table 4 presents the MAE and MAPE results. The first row
shows the performance of the backbone encoder-decoder
based BiLSTM model. We then compare three differ-
ent approaches of feature weighting: mutual information
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FIGURE 6. Forecasting curve and relative error for the ISO-NE dataset (3 days).

(MI) [19], random forest (RF) [21], and our proposed fea-
ture weighting attention (FW). In addition, we evaluate the
performance of the backbone model with two types of tem-
poral attention mechanisms: single layer temporal atten-
tion (TA) and the proposed hierarchical temporal attention,
which incorporates similar day information (SDA). Finally,
we include the results for two error correction methods:
the baseline ARIMA model (BL) [23] and our proposed
feature reinforced error correction model (EC). The results
show that the proposed feature weighting and error correction
outperform the existing methods. Each individual module
improves the accuracy of the backbone model. Moreover, the
combination of these modules further enhances the perfor-
mance. Compared with the other competing alternatives, our
proposed framework achieves a significant improvement in
accuracy.

The interpretability of the performance improvements can
be visualized in Fig 5. First, the proposed weighting atten-
tion can identify feature importance in the time domain.
Fig 5(c) shows that our method adds time-varying weights on
different features while mutual information approach exerts
time-invariant weights shown in Fig 5(a). Second, ourmethod
puts more accurate weights on each feature compared with
RF. Our weight assignments are sparser, with higher weights
on temperature and hour [cf. Fig. 5(c)]. In contrast, RF yields
similar features weights at approximately 0.02 [cf. Fig. 5(b)].
Third, our approach shows a good response to the input
changes while RF is ignorant of different input data. Finally,

TABLE 4. NAU dataset: Ablation study for the proposed framework.
Acronyms: MI (mutual information feature weight), RF (random forest
feature weight), FW (feature weighting attention), TA (temporal
attention), SDA (similar day attention), BL (baseline ARIMA error
correction) and EC (the proposed error correction).

the clear pattern of feature weights in Fig. 5(c) shows that
the temperature from 9 AM to 4 PM is a more critical factor,
which reflects the reality.

B. CASE 2: LOAD FORECASTING MODEL COMPARISON
Besides our proposedmodel (FW+TA+SDA in Table 4) with
LSTM (PM-LSTM) and GRU (PM-GRU) implementations,
we test eight baseline models. To have a fair comparison,
the error correction module is deactivated because it is not
directly applicable to those classic machine learning algo-
rithms such as SVR, RF and GBM. Table 5 and Table 6 show
the forecasting error for the two datasets.

Among the three classic machine learning methods, GBM
performs the best for the ISO-NE dataset, while SVR
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TABLE 5. Forecasting errors over the year 2019 for the ISO-NE dataset.

TABLE 6. Forecasting errors over the year 1991 for the NAU dataset.

FIGURE 7. Forecasting curve and relative error for the NAU dataset (3 days).

stands out for the NAU dataset. DBN-based models attain
results that are comparable to CNN-LSTM for both datasets.
Notably, our proposed models PM-LSTM/GRU consistently
outperform all the other models for both datasets with
the smallest forecasting errors. Moreover, comparing the
ANLF model with the proposed ones, extracting the feature
weighting layer further improves the accuracy and increases
the model’s generalization capability. Overall, these find-
ings highlight the effectiveness of our proposed approach.
The detailed forecasting performance over three days are
given in Fig. 6 and Fig. 7, where the relative error (RE)
between the forecast value ŷ and the true value y is defined
as

RE =
|y− ŷ|
y
× 100%. (11)

C. CASE 3: GENERALIZATION CAPABILITY
To further show the generalization capability of the proposed
framework, we apply both the feature weighting and error
correction to the transformer-based Informer. The result is
reported in Table 7 for the ISO-NE dataset. We compare the
model itself with the model having feature weighting and/or
error correction. The forecasting curves and relative errors are
shown in Fig. 8. By the ablation study, the model with our
proposed feature weighting and error correction mechanisms
performs the best. This verifies the merit of integrating the
feature weighting to provide more informative features and
error correction to further improve the accuracy.

D. CASE 4: COMPUTATIONAL COMPLEXITY
In this section, we provide the big-O computational com-
plexity analysis for the proposed framework. The feature
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TABLE 7. ISO-NE dataset: Ablation study for Informer with feature
reinforced error correction (EC) and/or feature weighting attention (FW).

FIGURE 8. ISO-NE dataset: The forecasting curves and relative errors for
Informer, Informer with error correction, Informer with feature weighting,
and Informer with both feature weighting and error correction (for
2 days).

weighting module has a computational complexity of
O(nd fwh ). The load forecasting model consists of the encoder
and decoder BiLSTM whose complexity is O(Thhs(hs + n))
andO(Tf hs(hs+n)), respectively [33]. The hierarchical tem-
poral attention that forms an additional input to the decoder
BiLSTM has a complexity of O(Thdatth + d

att
h (hs + n)). The

output layer is in the O(dohhs). Considering all these compo-
nents, the overall complexity of the load forecasting model is
O(Thhs(hs+n)+Tf hs(hs+n+Thdatth +d

att
h (hs+n))+dohhs).

If d fwh = datth = doh =: dh, then we have the overall computa-
tional complexity O(Thhs(hs + n)+ Tf hsdh(Th + hs + n)).

V. CONCLUSION
This paper develops a unifying deep learning framework for
multi-horizon STLF. Three interactive modules are devel-
oped with high generalization capability, which includes
the feature weighting mechanism, STLF model and error
correction module. In the proposed framework, the feature
weighting mechanism is designed to provide informative
input features for both historical and future time horizons.
The STLF model with a hierarchical temporal attention layer
decodes the next-day load with the future input features

and similar temporal information. The hierarchical temporal
attention layer provides a natural way to incorporate similar
day information. In addition, the error correction module
is developed based on transfer learning. It can reuse the
learned hidden feature extraction to reduce the training cost.
The modular design of our framework facilitates customiza-
tion and independent modification. The extensive simula-
tion results tested on the two datasets corroborate the merits
of our framework. The codes of this work are available at
https://github.com/jxiong22/STLF_framework.
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