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Control of Magnetic Bearings for
Rotor Unbalance With Plug-In
Time-Varying Resonators
Rotor unbalance, common phenomenon of rotational systems, manifests itself as a peri-
odic disturbance synchronized with the rotor’s angular velocity. In active magnetic bear-
ing (AMB) systems, feedback control is required to stabilize the open-loop unstable
electromagnetic levitation. Further, feedback action can be added to suppress the repeat-
able runout but maintain closed-loop stability. In this paper, a plug-in time-varying reso-
nator is designed by inverting cascaded notch filters. This formulation allows flexibility
in designing the internal model for appropriate disturbance rejection. The plug-in struc-
ture ensures that stability can be maintained for varying rotor speeds. Experimental
results of an AMB–rotor system are presented. [DOI: 10.1115/1.4031575]

1 Introduction

A well-known problem affecting spinning rotors is that of rotor
unbalance [1]. Mass imperfections in the shaft results in a periodic
disturbance force synchronous to the rotor’s angular velocity. In
traditional rotor systems, the rotor is supported by journal bear-
ings which are fit snugly over the outer diameter of the rotor. The
unbalance force causes mechanical wear in the bearings as well as
the force to be transmitted into the rotor housing.

AMBs are a commonly used replacement due to their mechani-
cal benefits. AMBs are electromagnets arranged in a ring configu-
ration levitating the rotor at the center of the stator. This magnetic
levitation allows the bearing to be contact-less, which eliminates
the issue of mechanical wear, friction, and thus eliminates the
need for lubricants [2]. AMBs are, however, open-loop unstable
requiring the need for robust feedback controls [1]. Furthermore,
because AMBs do not rigidly support the rotor, they are suscepti-
ble to runout or radial vibrations excited by rotor unbalance. Still,
they have successfully been implemented in such systems as
power generation [3], flywheels [4], mills [5], and even on the
impeller of an artificial heart [6].

In AMB–rotor systems, one important control design criterion is
the stability of the system. Closed-loop stability exists as a criterion
due to safety concerns during high rotor speed operations. These
strategies must also be effective as the rotor speed changes over the
entire operating range. Many approaches exist in this regard includ-
ing feedforward compensation where the system matrices for a num-
ber of rotation speeds were determined offline to generate the proper
compensation signal scheduled by rotor speed [7]. In Ref. [8], H1
controllers were designed for segments of the operational speed
range. These approaches could prove cumbersome to implement for
large rotor speed ranges. Linear quadratic Gaussian was imple-
mented on a steam turbine for stable levitation while the speed
ramped through resonant modes [9]. Though stable, the presence of
runout or radial oscillation of the turbine was not addressed.

This presents an additional design criterion of reducing and
eliminating the sinusoidal disturbance caused by rotor unbalance.
A classic method is to utilize the internal model principle and
include a model of the disturbance in the feedback path for as-
ymptotic rejection [10]. A sinusoidal internal model was used for
sinusoidal tracking of current [11]. However, with a time-varying
disturbance, system stability will be difficult to maintain as the in-
ternal model is updated. To simultaneously satisfy both stability
and rejection criteria, sinusoidal internal models in the form of

peak filters were implemented in a parallel loop to reduce vibra-
tions in hard disks [12,13]. In Ref. [14], this was done by design-
ing an internal model through the Youla-parameterization while
also updating the controller adaptively. In Ref. [15], a generalized
notch filter was cascaded with a prestabilized system to maintain
closed-loop stability. However, the coordinate transformation may
be cumbersome to include multiple disturbance frequencies.

Repetitive control is another internal model principle-type con-
troller widely used for harmonic rejection. In the prototype repeti-
tive controller (PRC), integer delays are used to generate the
internal model at the disturbance’s fundamental frequency as well
as all its harmonics to the Nyquist frequency [16]. The reduction of
the closed-loop sensitivity in so many bands causes amplification in
the spectrum at other frequencies; per the Bode sensitivity or so-
called “waterbed effect.” To provide robustness, a low-pass filter is
integrated to reduce the effects of the higher harmonics in the con-
troller [17]. As proven as it is, PRC does exhibit some limitations.
First, there is a rather course design tradeoff between stability and
performance. The low-pass filter, which protects against modeling
uncertainty, also limits the control gains in the pass band. Second,
the periodic disturbances PRC is able to affect integer harmonics of
the fundamental frequency. For disturbances with nonharmonic
makeup, repetitive control is less helpful. Additionally, when using
delays, the lengths must be integer valued. In rotor applications,
this results in a limited set of speeds disturbance rejection which
will be effective. For time-varying disturbance periods, interpola-
tion of delays was proposed in Refs. [18–20].

An internal model principle-based controller using plug-in archi-
tecture addresses the AMB–rotor controller design challenges
[21,22]. The plug-in structure allows disturbance rejection of spe-
cific harmonic frequencies with minimal effect to the stability of
the system. The internal model is generated through inversion of
cascaded second-order notch filters, providing greater flexibility in
tuning performance of the controller while being easily amenable
to rotor speed changes. Including notch filters for only those rele-
vant frequencies, coupled with the ability to tune the bandwidth of
those notches, greatly reduces the waterbed effect while rejecting
multiple frequencies. Furthermore, the frequency location of each
notch filter is easily amenable and independent of one another,
making this controller attractive to changing rotor speeds as well as
more complex harmonic disturbances.

An equally important aspect of this application is to determine
the disturbance period accurately. The internal model controller
can only be effective if placed at the correct frequency. For sys-
tems without reliable sensors, online frequency estimation meth-
ods can be applied. Some previous work includes an adaptive
algorithm to update an internal model [23]. An adaptive phase-
locked loop was used to directly estimate the disturbance
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frequency [24]. A recursive integer period estimation was pro-
posed for adaptive repetitive control [25].

The remainder of this paper is organized as follows: A discus-
sion of the experimental system and its modeling are found in
Sec. 2. Section 3 presents the plug-in resonator controller and
some of the filter design choices explored. Analysis in perform-
ance and stability will be presented. Experimental results and sub-
sequent discussion are presented in Sec. 4. Section 5 summarizes
the results of this work.

2 Description of Experimental System

Experimental results were obtained on the MBC500 Turbo, an
AMB–rotor system developed by LaunchPoint Technologies.
The system consists of a rotor of 303-stainless steel supported at
each end by electromagnets. Hall Effect sensors, collocated at
each end, measure the gap distance to the rotor and provide posi-
tional feedback [26]. The Turbo edition features a shortened
shaft specifically designed to push the resonant modes of the sys-
tem past the maximum rotor speed (Table 1). In Fig. 1, the con-
figuration and coordinate convention of the experimental system
are shown. The AMB/sensor pair at each end of the rotor (side-1
or side-2) actuates and senses in the X-plane (horizontal) and the
orthogonal Y-plane (vertical). As labeled in the figure, these
coordinates are referred to as x1 and y1 on one side and x2 and y2

on the other. It is apparent that the system is a 4x4 multi-input
multi-output (MIMO) system. The axial direction, z, is con-
strained passively and assumed to have no effect on the dynam-
ics of the system.

2.1 Plant Model. For controller design and analysis, a gray-
box model obtained by combining analytical white-box modeling
principles with a black-box closed-loop system identification pro-
cess was used [27].

As discussed in Ref. [27], through the first principles approach,
a coordinate transformation is motivated from physical intuition.
First, the X-plane and Y-plane motions are assumed to be
decoupled. Furthermore, shown in Fig. 2, interplanar coordinates
are decoupled from the rotor-end frame into a pure translation and
pure rotation of the geometric center of the rotor
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To better capture the other non-negligible components (e.g., elec-
tromagnets, A/D), a system identification procedure was per-
formed [27]. Because the system is open-loop unstable, a closed-
loop identification process was used. A digital signal analyzer per-
formed the sine-sweep to generate the frequency response data
from each input to every output. The decoupling procedure is
used on the acquired data to produce the four continuous-time
single-input single-output systems ½XT XR YT YR�; corresponding
to the translational and rotational systems of the geometric cen-
ter of mass in the X- and Y-planes.

Figure 3 shows the decoupled frequency response data (magni-
tude only for brevity) and their respective low-order fitted models

PXT ¼
266:9 s2 þ 2126sþ 5:47� 106ð Þ
sþ 2479ð Þ sþ 442:8ð Þ s� 460:9ð Þ

PXR ¼
298:8 s2 þ 942:2sþ 2:46� 106ð Þ
sþ 2240ð Þ sþ 394:6ð Þ s� 392:7ð Þ

PYT ¼
�632:6 s� 1720ð Þ sþ 1252ð Þ

sþ 3602ð Þ sþ 401:6ð Þ s� 396:2ð Þ

PYR ¼
�583:6 s� 2639ð Þ sþ 1694ð Þ

sþ 4196ð Þ sþ 438:3ð Þ s� 447:8ð Þ

(2)

The third-order transfer functions of Eq. (2) are more appropriate
for control design. The collected data were also used to generate
higher-order models, useful for simulation and controller
verification.

A couple characteristics of the system drive some design deci-
sions. First, in each of the identified Y-plane systems, there exists
one nonminimum phase zero. In subsequent filter development,
this detail will prove significant. Another issue to note is the pres-
ence of a resonant peak, representing the first bending mode, sig-
nificant in the two translational axes but not in the two rotational
axes due to symmetry. The peak occurs at 2.4 kHz and is not cap-
tured by the low-order transfer function. However, it is accounted
for and will be motivated by subsequent analysis.

2.2 Stabilizing Controller. AMB systems are open-loop
unstable and require a feedback controller for operation. The
MBC500 Turbo system is equipped with four analog proportional-
derivative controllers. They were, however, replaced with linear-
quadratic Gaussian control with integral action (LQGi), C1, to
provide stable and robust levitation of the rotor at the center of the
stator over the entire operating speed range.

Though designing feedback control strategies can be effective,
one purpose of this work is to demonstrate the benefits and per-
formance achievable implementing a plug-in control module. This
is motivated by the fact that in most systems, some feedback con-
troller will already be designed and implemented. An effective
complimentary controller can be designed without disturbing the
prestabilized system.

2.3 Rotor Speed Measure and Control. The rotor shaft is
fitted with turbine blades and a two-way servo valve to spin the
rotor. Regulating the speed of the rotor is an important aspect of

Table 1 Measurements of rotor shaft for MBC500 turbo

Length 0.147 m
Diameter 0.012 m
First mode 2.4 kHz

Fig. 1 Actuator–sensor placement of MBC500 turbo

Fig. 2 X-plane coordinates (Y-plane identical)
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the experiment to the extent that repeatability of the process is
required. More importantly, an accurate measure of the rotor
speed is required for the controller to perform correctly. The
pulses of the onboard encoder are used to trigger a high clock rate
(20 MHz) counter card to determine the speed of the rotor. The
measured speed is used to close the loop on a proportional-
integral-derivative controller for servo valve command.

Stiction was observed to cause hunting of the speed set point,
preventing the rotor from reaching any useful constant speed. To
counteract stiction in the servo valve, a high-frequency zero-mean
dither signal was added to the valve command.

The effectiveness of the proposed control strategy is hinged on
the identified disturbance period. The encoder measurement is
used to provide an accurate measure.

2.4 Hardware Implementation. Data acquisition and control
were implemented using the Mathworks xPC Target platform at a
sampling frequency of 10 kHz (Fig. 4). National Instruments

PCI-6052e cards were used for data acquisition and command
while the PCI-6601 counter card interpreted the encoder.

3 Plug-In Harmonic Resonator

In regulation of the rotor end at the center of the stator, a key
disturbance is a result of rotor unbalance. This can be detected as a
sinusoidal oscillation of the rotor, otherwise known as runout. A
special kind of internal model-based controller for rejecting multi-
ple harmonics was introduced in Ref. [21] and its implementation
on the MBC500 was first reported in Ref. [22]. The controller has
a unique feature of introducing multiple notches at specified fre-
quencies while minimally perturbing other frequencies on the sen-
sitivity (error rejection). Its design flexibilities make it attractive in
addressing the subtleties of rotor operations. The underlying notch
filter design provides direct control over the characteristics of the
notch. Parameters directly control the depth and bandwidth of the
notches which give intuitive handles on the stability and perform-
ance of the controller. Furthermore, stability in AMB–rotor appli-
cation is paramount. To that end, the harmonic resonator is
employed as a plug-in unit to a pre-existing feedback loop (Fig. 5).
The controller C1 can be used to provide stability or satisfy other
design criteria (e.g., LQGi), while the plug-in controller Cr sup-
plies targeted control effort.

The closed-loop system can be written as G ¼ ðPC1=ð1þ PC1ÞÞ
for simplification. Subsequent design of the plug-in controller is
performed on G.

Fig. 3 SysID data versus model fit of decoupled open-loop systems

Fig. 4 System hardware

Fig. 5 Addition of plug-in controller C to feedback system
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The plug-in controller ðCrÞ is composed of two filters

Cr ¼ D � F (3)

the internal model (D) and a stable inversion (F).

3.1 Internal Model Design. The internal model principle
requires a model of the disturbance to be placed in the feedback
path [10]. Ideally, a filter L is designed to satisfy the criteria

L ¼ LðejxÞ ¼ 1 if x ¼ xk¼1;2;:::p

LðejxÞ � 0 if x 6¼ xk

�
(4)

where the filter reaches unity at a p-number of frequencies. Then,
by placing L in a positive-feedback loop, the output of the loop
will produce infinite control gain at the specified frequencies and
zero elsewhere.

In this paper, filter L is realized by first designing a p-number
of cascaded second-order notch filters defined by

H z�1ð Þ ¼
Yp

k¼1

1� 2bk cos xkz�1 þ b2
kz�2

1� 2qk cos xkz�1 þ q2
kz�2

(5)

This formulation makes specifying key parameters of the internal
model straightforward. The parameter xk in Eq. (5) represents the
location of the notch in the Nyquist band and it is quite apparent
that any frequency can be specified, including noninteger speeds.
In comparison, repetitive control has a limited set of allowable
rotor disturbance periods since the delay lengths are required to be
integer valued. Even with fractional delay solutions, these are
approximations which reduce performance.

Though repetitive controllers generate control at all the over-
tones of the disturbance period, in general, the Fourier compo-
nents of the disturbance signal may not necessarily share any
relative relationship among them (e.g., integer harmonics). There
may also only exist a small number of relevant components in the
signal. In these cases, repetitive control could be both over- and
underdesigned for the disturbance at hand. By cascading notch fil-
ters, Eq. (5) can provide compensation at the appropriate frequen-
cies with the freedom of independently selecting these
frequencies.

Furthermore, by using this second-order notch filter as the ba-
sis, we can take advantage of the direct control over the character-
istic of each notch. Parameters of the filter, q and b, shape the
depth and bandwidth. They can be tuned independently for each
kth frequency. The two factors are chosen to satisfy the relation-
ship 0� q < b � 1. For the notch filter, b¼ 1 places the zeros
on the unit circle producing zero filter output. Once it is inverted,
the peak is at unity and will produce infinite gain in the feedback
loop. The parameter q controls radius of the poles of H. As
q! 1, the filter becomes more ideal in that frequencies away
from the notch are less affected while q < 1 is maintained to keep
the poles inside the unit circle to produce a stable filter.

The relationship between the two factors can be used to approx-
imate the �3 dB bandwidth through the expression

BWHz �
p bk � qkð Þ

2pTs
(6)

where Ts is the sample time of the discrete time system. A wider
notch provides faster convergence as well as robustness to mis-
matches between the disturbance and controller frequencies. This
must be balanced by the so-called waterbed effect, which
describes the resulting amplification in another part of the spec-
trum resulting in a loss of performance and stability.

The peak filter is made by inverting the notch filter

Lðz�1Þ ¼ 1� Hðz�1Þ (7)

Additionally, constructing the peak filter through this notch-
filter-inversion process allows the “tails” of the peaks to fall to
zero, instead of unity, further satisfying Eq. (4).

In Fig. 6, the internal model is generated by wrapping the peak
filter in a positive-feedback loop

D z�1ð Þ ¼ L z�1ð Þ
1� L z�1ð Þ (8)

3.2 Stability Condition and Inversion Filter F. Filter F is
included to satisfy a stability condition derived from the Nyquist
stability criterion. A detailed discussion can be found in Ref. [21].
The stability condition can be derived from Fig. 5

jjLð1� FGÞjj1 < 1 (9)

where G is the prestabilized system. This is easily satisfied in the
majority of the spectrum by the design of L from Eq. (4). Where
L¼ 1 by design, the condition is met by choosing the filter which
satisfies FðejxÞ � G�1ðejxÞ.

3.2.1 Zero-Phase Error Inversion Filter. Taking into account,
the nonminimum phase systems of the Y-plane, one possible
method of satisfying Eq. (9) is the zero-phase error controller
(ZPEC) [28]. It is a useful approximate inversion method for plants
with nonminimum phase zeros since a direct inversion would pro-
duce an unstable filter. For a factorization of the stable system

G z�1ð Þ ¼ z�dBþ z�1ð ÞB� z�1ð Þ
A z�1ð Þ (10)

d represents the relative system order, and A;Bþ; and B– are the
poles, stable zeros, and unstable zeros, respectively. The ZPEC
inversion is defined as

FZPEC z�1ð Þ ¼ A z�1ð Þ B� z�1ð Þ½ �	

cz�dBþ z�1ð Þ (11)

where ½B�ðz�1Þ�	 is the complex conjugate of the unstable
zeros. This produces the cascaded system FZPECG ¼
½ðB�ðz�1Þ½B�ðz�1Þ�	Þ=c�, which has zero phase since the zeros are
complex conjugates of one another.

Depending on the locations of the unstable zeros, the corre-
sponding magnitude response may be unfavorable. Nonminimum
phase zeros near the unit circle result in a filter which generates
high gains near the Nyquist frequency [29]. To maintain stability,
the constant c ¼ ½B�ðejxÞ�½B�ðe�jxÞ� is used to scale the magni-
tude of the filter output to unity at the prescribed frequency
(Fig. 7, dashed-dot).

Despite the idealized design of L in Eq. (4), the high pass mag-
nitude response of ZPEC was found to excite the resonant modes
of the translational systems found in Fig. 3. A notch was designed
to filter out the control component at 2.4 kHz. As the feedback
controller itself did not excite this mode, and to emphasize the
utility of the plug-in approach on an inherited closed-loop system,
the notch was placed in series with ZPEC in the plug-in controller
(Fig. 7). Subsequent analysis and experiments will reference this
filter design.

Fig. 6 Components of harmonic resonator ðCr Þ
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3.2.2 Zero Magnitude Error Inversion Filter. To counteract
the magnitude amplification at high frequencies, another model
inversion filter with more favorable magnitude characteristics is
considered. The zero magnitude error control (ZMEC) is a similar
approximate model inversion technique, when faced with nonmi-
nimum phase zeros, will invert the magnitude rather than the
phase [30]. The filter is defined as

FZMEC z�1ð Þ ¼ A z�1ð Þ
z�dBþ z�1ð Þ B� z�1ð Þ½ �	 (12)

and produces FZMECG ¼ ½B�ðz�1Þ=ð½B�ðz�1Þ�	Þ� which is essen-
tially an all-pass filter with unit magnitude. The magnitude
response is thus more favorable as compared to ZPEC. The phase,
however, must be compensated similar to the role of c in ZPEC.
Generally, an additional all-pass filter Fap

Fap z�1ð Þ ¼
r2 � 2 cos xapð Þz�1 þ z�2

1� 2 cos xapð Þz�1 þ r2z�2
(13)

is designed and cascaded to adjust the phase. The corner fre-
quency xap determines where the phase is �p and the parameter r
affects the sharpness of the transition. By first determining the
phase of FZMECGðejxÞ, the necessary phase compensation can be
determined and an appropriate xap can be calculated to provide
compensation (Fig. 7, dashed).

3.2.3 Causal Implementation. For strictly proper systems and/
or those with nonminimum phase zeros, the resulting inversions
will be noncausal. They must be provided with enough “look-
ahead” or “preview” steps to form a causal filter. Separating into a
causal filter and noncausal previews

zm1 FZPEC;caus ¼ zm1
A z�1ð Þ B� z�1ð Þ½ �	

cz dþ2nuð ÞBþ z�1ð Þ (14)

zm2 FZMEC;caus ¼ zm2
A z�1ð Þ

zdBþ z�1ð Þ B� z�1ð Þ½ �	 � Fap (15)

where nu is the number of unstable zeros and m1 ¼ d þ nu and
m2 ¼ d represent the preview requirement for each respective filter.

A property of the peak filter formulation can be exploited in
that L is a relative order of one. This allows the internal model to
absorb a preview step. To compensate n-step previews, the notch
filter can be up-sampled to

Hn z�1ð Þ ¼
Yp

k¼1

1� 2bk cos nxkz�n þ b2
kz�2n

1� 2qk cos nxkz�n þ q2
kz�2n

(16)

Then, Eq. (7) would produce a peak filter with n-relative order.
Thus, an n-step preview requirement can be compensated by the
up-sampled filter and Lnzn will remain proper. However, directly
applying Eq. (7) to produce Lm will cause ðm� 1Þ aliased peaks
to show up in the band at locations

xk;i ¼
���� xk6

2pi

m

� �
mod 2pð Þ

���� (17)

where i 2 Z between 0 � i � bm=2c. The aliased peaks are
removed while maintaining the correct filter order by combining
two filters such that for an m-step preview requirement

Lmðz�1Þ ¼ L1Lðm�1Þ (18)

For a given system, FZMEC will require less lifting of L (i.e., only
for relative order) and yield comparatively wider notches.

3.3 Sensitivity and Stability Analysis. Analysis of the sensi-
tivity function can be insightful as a measure of performance. The
block diagram of Fig. 5 can be simplified to produce

Fig. 7 FG comparison for various F designs at 200 Hz
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Fig. 8 Sensitivity function of plug-in resonators

Fig. 9 Stability criterion (Eq. (9)) of Y-plane systems
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Fig. 10 Robust stability of plug-in resonator

Fig. 11 Rotor displacement—plug-in resonator using ZPEC and ZMEC inversion
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S ¼ SC1 � SCr
¼ 1

1þ PC1

� 1

1þ GCr
(19)

where G is the closed-loop transfer function. This factorization
highlights the property of the plug-in structure where the sensitiv-
ity of the underlying prestabilized loop ðSC1Þ is narrowly altered
by the addition of the new controller. Plug-in controller Cr is
designed using the closed-loop plant G.

Figure 8 compares the sensitivity functions for plug-in control-
lers designed using the inversion methods described. The sensitiv-
ity of the prestabilized plant SC1

is included in blue. It may be
noted that in much of the spectrum, the transfer functions overlap
greatly. As expected from Eq. (19), the sensitivity function of the
closed-loop system is modified only at the designed frequencies.
The insets plot in each respective subplot highlights the effect of
the peak resonator in reducing the sensitivity to disturbances in
that band.

To ensure a fair comparison, the parameters of peak and inversion
were chosen identically where appropriate. This is verified by the
identical controllers for the X-plane systems. Since these systems
are minimum phase systems, both inversions yield the same filter.

The differences in the Y-plane systems are a result of how each
algorithm handles the unstable zero. Because the ZPEC method
will always require more lifting, the resulting peak filter construc-
tion in Eq. (18) effectively narrows the bandwidth for the same
notch parameters. For a notch filter, the convergence can be deter-
mined by the parameter q, where a smaller q yields faster

convergence [20]. In other words, a wider notch bandwidth con-
verges faster, as well as being more robust to a mismatch in the
identified disturbance frequency. Consequently, a wider notch
means more pronounced ripples in the spectrum. This is evident
in the inset plots of the Y-plane system in Fig. 8. The notch formed
by ZMEC (green) is wider than ZPEC (red), while suffering from
larger amplification (ripple) in the regions near the notch.

It should be noted that it is also more challenging to design a
satisfactory ZMEC filter. Since the all-pass filter for frequency
compensation must be designed to correct the phase at each tar-
geted frequency, multiple all-pass sections may be required. The
addition of each filter will affect the phase of the previously com-
pensated regions. This leaves an iterative design process for multi-
ple targeted frequencies. This also makes the time-varying rotor
condition challenging to implement.

Stability is especially critical to rotor operations as it directly
equates to safety. As one measure of stability, the criterion in
Eq. (9) is verified. Nominally, a complete inversion of the X-plane
plants can be found resulting in the left-hand side of Eq. (9) evalu-
ating to 0. Thus, only the nontrivial results for the Y-plane systems
are shown in Fig. 9.

Though the unstable zeros result in high magnitudes for the
ZPEC formulation, by using c to scale crossing, the L filter works
in tandem to satisfy the criteria. Likewise, the ZMEC formulation
satisfies the stability criterion. In the transition between the two
filters, the magnitude increase is caused by the imperfect phase
compensation in the transition band of the all-pass filter.

Table 2 Root-Mean-Square (RMS) of steady-state displacement—plug-in resonator using ZPEC and ZMEC inversion

LQGi (200 Hz) ZPEC (200 Hz) ZMEC (200 Hz) Levitate only Sensor noise

XT (lm) 5.71 0.66 0.65 0.59 0.57
XR (lrad) 1509.6 95.09 95.21 88.25 85.55
YT (lm) 11.20 0.98 1.01 0.84 0.75
YR (lrad) 2770.3 121.31 124.44 111.76 103.01

Fig. 12 Rotor displacement spectrum—plug-in resonator using ZPEC and ZMEC
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The robustness of the system is also a useful analysis to per-
form. The robust stability criterion can be defined as

T ¼ C1P 1þ DFð Þ
1þ C1P 1þ DFð Þ (20)

���� C1P 1þ DFð Þ
1þ C1P 1þ DFð Þ

���� � 1

jDj (21)

where the multiplicative modeling error, D, of the open-loop sys-
tems was produced in Ref. [27]. The results of Fig. 10 validate the
designs. The robustness of the feedback controller is mainly pre-
served with the addition of the plug-in resonator.

For the ZPEC controller, the dip at 2.4 kHz indicates the
designed notch filter ensuring that the resonant mode is not excited.

4 Experimental Results

In the experiments presented, the plug-in resonator is used to
reject sinusoidal disturbances on the MBC500 Turbo. Steady-state
and time-varying rotor speed conditions are examined as well as
controller design configurations. The internal model is updated
using the encoder measurements at the control loop rate of
10 kHz.

4.1 Transient Performance of Resonator. The plug-in reso-
nators designed in Sec. 3 were applied to the MBC500 Turbo for a
constant speed condition. In the time trace of Fig. 11, the rotor is
spun to the desired speed (200 Hz) under feedback control only.
The peak resonator is connected at t ¼ 20s and the resulting tran-
sient performance can be observed. Disturbance rejection occurs

Fig. 13 General rotor speed profile

Fig. 14 Rotor displacement—three-peak plug-in resonator for varying speeds
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quickly as the displacements of the four systems reach their
steady-state value in less than 0:1 s in all four axes.

Both ZPEC and ZMEC inversion methods are implemented and
compared. The X-plane systems produce identical traces since
these methods yield the same inversion filter. The narrower sensi-
tivity notches of ZPEC (Fig. 8) reduce the convergence rate com-
pared to ZMEC.

The RMS of the displacement is organized in Table 2. The dis-
placements are shown in the decoupled transformed coordinates.
The translational systems are measured in microns, while the rota-
tional systems are in microradians. Column “LQGi” represents
the stable levitation of the rotor during constant rotational veloc-
ity. The RMS is clearly larger due to the strong disturbance caused
by rotor unbalance. Implementing the plug-in resonator with both
ZPEC and ZMEC inversion techniques shows large reductions
indicating the rotor is spinning tighter about its geometric axis
and appropriate rejection is taking place. Since b¼ 1 in both peak
filter designs, the steady-state performance is identical.

Two additional rotor conditions are included. With the LQGi
loop closed, the rotor is regulated at the center of the stator. With-
out any angular velocity, “levitate only” represents a best-case in
terms of disturbance rejection. For completeness, the “sensor
noise” is also provided to quantify the noise floor of the system.
No control action is applied and the rotor is resting against the sta-
tor. After removing the bias from this signal, the resulting RMS
provides a baseline reading.

Both plug-in resonator designs, containing one-peak in the in-
ternal model, nearly achieve the ideal rejection mark. The radial
vibration in rotor unbalance primarily consists of the primary har-
monic at the rotor speed. Thus, designing the filter to target this
frequency yields the most significant rejection performance.
Though additional performance can be gained by designing more
peaks in the internal model, the diminishing returns on effort can
also be considered.

The spectral components of the displacement can be examined
for additional insight into control performance. From Fig. 12, when
only LQGi is used to stabilize the rotor, the largest spectral compo-
nent is clearly the shaft speed of 200 Hz, though harmonics of the
disturbance are also clearly present. In comparison, the plug-in con-
trollers achieve complete rejection of the designed frequency. The
peaks at the second and third harmonics of the rotor speed are unal-
tered, along with the rest of the spectrum which remains unchanged.

4.2 Disturbance Rejection for Varying Rotational Speeds.
In this experiment, the plug-in resonator for disturbance rejection
under time-varying rotor speeds is examined. The velocity profile
in Fig. 13 was applied, though achieving this trajectory is less im-
portant than measuring the actual instantaneous velocity of the
rotor and placing the peaks at the correct frequencies. The encoder
measurement updates the peak filter frequency, at the control loop
rate, to place the internal model at the correct position.

From examining the initial power spectral density (PSD) in Fig.
12, the second and third harmonics of the rotor speed also contribute
to the disturbance and are natural extensions of the controller. The
ZPEC inversion is used to ensure phase compensation over the rotor
speed range. The gain c can be scheduled easily according to the
measured rotor speed and provides some stability against the high
magnitude of ZPEC. Though ZMEC would produce an ideal magni-
tude response, the phase compensation aspect made implementation
for multiple peaks/time-varying rotor speed difficult.

In these subsequent results, the plug-in resonator is designed to
compensate the three harmonic disturbances (three-peak) and uses
the ZPEC inversion.

Table 3 RMS of decoupled output—three-peak plug-in for
varying speeds

LQGi Three-peak
Three-peak

w/notch Levitate only

XT (lm) 5.23 1.17 0.60 0.59
XR (lrad) 1231.6 97.27 95.05 88.25
YT (lm) 9.60 1.60 0.97 0.84
YR (lrad) 2182.4 135.57 129.75 111.76

Fig. 15 Rotor displacement spectrum—three-peak plug-in resonator at 36 £ t £ 41 s
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This profile represents a general velocity change in rotor sys-
tems between various set points. The profile was selected to
emphasize the various capabilities of the plug-in harmonic resona-
tor. The velocity set points are specified to 200 Hz, 100 Hz, and
149.4 Hz to demonstrate the flexibility of disturbance rejection.
The rates of acceleration and deceleration are also selected with
similar intent.

The plug-in resonator is connected throughout the entire run to
reduce runout at all rotor speeds. Figure 14 compares the meas-
ured displacements with and without the plug-in controller. Addi-
tionally, the inversion methods for ZPEC with and without the
notch filter (Fig. 7) are implemented. The plug-in controller
reduces the large amplitude displacements, though there is per-
formance degradation in the translational systems when using the
three-peak resonator. This is explained by the resonant mode exci-
tation alluded to from Fig. 3. When utilizing the control notch
approach (w/Notch), more consistent disturbance rejection per-
formance throughout the run is observed. The RMS of the dis-
placements is compared in Table 3 over the entire run.

Figure 15 shows the PSD during 36 s � t � 41 s corresponding
to a rotor speed of 149.4 Hz. This section was chosen to demon-
strate performance when the disturbance period is not integer val-
ued nor a multiple of the sample period. Note the excitation of the
2.4 kHz mode in the translational systems when using the standard
three-peak-ZPEC controller. The fact that LQGi does not excite
this mode indicates that this stems from the plug-in controller.
The three-peak-w/Notch controller addresses this issue and the
bending mode remains unexcited.

5 Conclusion

In this paper, a plug-in resonator based on the internal model
principle was applied to reject harmonic disturbances in an
AMB–rotor system. The internal model is realized through cas-
caded notch filters, which allows for the rejection of multiple, eas-
ily updated frequencies, making this controller attractive and
effective for time-varying disturbance periods. The plug-in struc-
ture minimally disturbs the stability of the prestabilized closed-
loop system. Results presented show effective disturbance rejec-
tion performance that regulates outputs to near sensor-noise levels.
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