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represent the flow speed (Û2+ V̂2)1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2.6. Variation of the steady peripheral pressure drop P̂e with α2 and (a) selected
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This dissertation investigates the fluid–structure dynamics involved in squeeze-film

levitation, in pursuit of a theoretical explanation for the anomalously large, attractive load-bearing

forces observed in recent experiments.

Consider a rigid disk vibrating rapidly along its axis of symmetry near a parallel wall,

inducing oscillatory airflow in the thin film of air separating the disk and the wall as well as

its periphery. Due to the nonlinear effects of fluid inertia and compressibility, the air pressure

within the film varies in time asymmetrically about its ambient value, providing a nonzero

time-averaged pressure force on the disk. Prior studies of this “squeeze-film” effect report that
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the time-averaged force typically repels the disk from the wall, making it a suitable mechanism

for bearing lubrication. The strong attractive forces reported recently thus constitute a radical

departure from this historical norm, expanding the range of possible applications to include

wall-climbing robots and versatile contactless grippers. This dissertation aims to understand

the fluid–structure physics underlying the emergence of strong attraction, through the derivation

of reduced mathematical formulations that may ultimately aid the development of such novel

systems.

Gas-lubricated systems represent an exceptional family of slender fluid flows for which

the effects of compressibility and viscous shear enter simultaneously while maintaining small

values of the Knudsen number, thereby guaranteeing applicability of the continuum hypothesis in

describing the flow. Thus, the classical Navier–Stokes equations are used here to investigate the

gas dynamics in the thin film as well as the effectively incompressible discharge and entrainment

of air across a small region surrounding its edge. An approximate solution obtained using the

method of matched asymptotic expansions indicates that the augmented attractive forces observed

in recent experiments can be attributed to the pronounced dynamic bending of the highly flexible

disks utilized. The theoretical formulation is then generalized to describe two-way fluid–structure

coupling between the undulating disk and the thin-film airflow, thereby yielding predictions of

system behavior that exhibit greatly improved agreement with experimental data. The canonical

problems outlined herein can be readily extended to describe more complex configurations of

practical interest—in particular, those involving transportation of the levitated object.
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Chapter 1

Introduction

1.1 Executive summary

Figure 1.1. Diagram of a typical ‘squeeze-film levitation’ system, involving two objects with
parallel surfaces whose separation distance varies in time due to normal oscillations of, in this
case, the lower object. The blue arrows depict pulsatile airflow between the slender air layer and
the stagnant surroundings.

A typical ‘squeeze-film levitation’ (SFL) system, as depicted in figure 1.1, involves

two objects whose parallel surfaces are separated by a thin layer of air, the so-called ‘squeeze

film’. One of the objects performs high-frequency oscillations along an axis perpendicular to

the surfaces, inducing oscillatory airflow in the slender film and its outer periphery. Since the

dynamics of this airflow is inherently nonlinear, owing to effects of fluid inertia and gaseous

compressibility, the periodic variation with time of the fluid pressure in the film can be expected

to be non-sinusoidal even if the object oscillates sinusoidally. Thus, the cycle-averaged value of

the pressure acting on the film-adjacent surface of each object differs from the ambient value

found in the unperturbed air sufficiently far from the film, providing a time-averaged normal
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force on each object. This force has been observed to be typically repulsive [7], and is referred to

in this dissertation as the steady squeeze-film force (SSF).

It is useful to explore from the perspective of fundamental fluid mechanics the source of

this cycle-averaged overpressure. The asymmetrical rise and drop of pressure within the thin air

film in response to symmetrical oscillations of a bounding surface may be attributed to at least

two factors: (i) the nature of fluid acceleration and (ii) the dependence of gaseous density on

pressure variations. To understand conceptually the first factor, imagine the following thought

experiment. Drop a handful of small, buoyant particles in a tray filled with a viscous fluid such as

syrup, press a plastic card against the surface of the tray and excite the fluid by oscillating the card

back and forth near one of the walls of the tray. Due to the suppression of fluid acceleration by

strong viscous stresses, the motion of the fluid will be primarily dictated by the time-symmetrical

motion of the card. Now repeat the thought experiment with a less viscous fluid such as water,

which would give rise to much more complex flow patterns. Even when the card is momentarily

brought to a stop, the flow continues to evolve. It does so in a manner such that the flow

velocity at any point in the flow field—and, correspondingly, also the associated pressure—varies

asymmetrically during the closing and opening oscillation strokes. As an illustrative example of

the second factor, consider the classical problem of the adiabatic compression and expansion

of a gas in an insulated cylinder by an oscillating piston. For sufficiently low frequencies, i.e.

quasistatic operation, the laws of thermodynamics for an ideal gas state that there is a nonlinear

relationship between the volume and pressure of the gas contained within the cylinder. Thus, the

rise in gas pressure due to a certain inward displacement of the piston is not equal in magnitude

to the drop in pressure due to an equal outward displacement.

While the conceptual arguments outlined above justify the presence of a time-averaged

pressure deviation inside the film, they do not clarify why the resulting force is typically repulsive

and not attractive, warranting a detailed analysis of the relevant aerodynamics. Furthermore,

the assumption of time-symmetrical surface oscillations may be invalid for systems where the

oscillator’s inertia is sufficiently low for its motion to be affected by the very pressure variations

2



Figure 1.2. Contactless (a) transport [1] and (b) rotation [2] of objects levitating above platforms
that are oscillated flexurally by piezoelectric transducers, and (c) attachment below a horizontal
wall of a load-carrying robot equipped with a flexurally oscillating disk [3].

that it generates, warranting additionally the consideration of two-way-coupled fluid–structure

interactions.

The phenomenon of SFL, first implemented within the context of gaseous lubrication

[8–10], has been applied in recent decades to the design of contactless levitators that can suspend

and transport sensitive objects such as microelectronic components and glass substrates [1,11–14].

The three panels of figure 1.2 show illustrative examples of different systems that achieve

contactless levitation by oscillating a flat object along its normal axis in the close vicinity of a

parallel surface. Researchers have also demonstrated that generating traveling-wave oscillations

on the flat object gives rise to steady fluid shear stresses in the air layer, allowing transportation [1]

and manipulation [2] of the levitated object, as depicted respectively in panels 1.2(a) and (b).

Interestingly, under certain operating conditions the time-averaged force has been observed to

transition from repulsion to attraction, allowing attractive suspension of objects several hundred

grams in mass [3], as shown in panel 1.2(c). Elucidating the physics behind this anomalous

emergence of an attractive SSF is the primary objective of the following dissertation.

Provided below in § 1.2 is a brief historical overview of the squeeze-film effect, including

its inception and various relevant applications. Reports of the transition to attractive levitation are

detailed in § 1.3 and motivations for the present work are provided in § 1.4. The present chapter

is concluded in § 1.5 with an itemized overview of the remaining content in this dissertation.
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1.2 History and applications of the squeeze-film effect

The discipline of squeeze-film levitation was largely inspired, albeit unintentionally, by

an experimental investigation of the non-Newtonian properties of air.

In September of 1956, at the 9th International Congress of Applied Mechanics held at

the University of Brussels, Belgium, Professor M. Reiner of the Israel Institute of Technology

presented a demonstration [15] where a disk of diameter 2a = 6.7 centimeters was spun at a

speed of approximately ω = 7000 rotations per minute near a larger, coaxially aligned disk, their

parallel surfaces separated by a thin film of air. The distance between the disk surfaces was

gradually reduced, and a slight decrease in air pressure was observed near the center of the

film. For a distance of ho ≈ 0.5 millimeters, the central gauge pressure was measured to be

∆p ≈ −9.7×10−4 atm (atmospheres). When ho was reduced below a critical value of around

twenty micrometers, the suction disappeared and a sharp rise in pressure was observed. An

immense central overpressure of ∆p ≈ 0.5 atm was reached before physical contact occurred

between the disks!

Since ho/a . 0.015� 1 in this experiment, the thin-film approximation [16] may be

drawn to describe the airflow between the disks, whence transverse variations of pressure across

the air film are negligibly smaller (by a factor of order h2
o/a

2) than radial deviations from the

ambient value found in the unperturbed air outside the film. Since the lubrication Reynolds

number of the flow (≈ 12.4) is of order unity, the magnitude of the radial deviations ∆p may be

approximated using the formulas derived by K. Stewartson [17], which provide ∆p ≈ −1.1×10−3

atm, as explained in [5]. This prediction agrees well, in sign and magnitude, with the reported

suction in Reiner’s experiment, but not with the subsequently observed large overpressures.

Reiner postulated that the anomalous rise in central pressure must be attributed to the

so-called ‘Weissenberg’ effect [18], the tendency of a non-Newtonian fluid to flow toward the axis

of rotation. While this behavior had been conclusively demonstrated for colloidal and polymeric

liquids with high viscosities, the emergence of such viscoelastic behavior in this gaseous shear
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flow would have required that the separation distance ho be of order 4×10−9 m, smaller in fact

than the mean free path of air [5].

In a seminal communication published less than a year following this demonstration,

Sir Geoffrey Taylor and Phillip Saffman [5] proposed that the enormous pressure generated in

the air layer may be completely unrelated to the rotation of the fluid, and may instead owe to

vibrations of the spinning disk arising from dynamic imbalances. Using an appropriately reduced

form of the Navier–Stokes conservation equations for a viscous, variable-density fluid, Taylor

and Saffman proved that sinusoidal perpendicular oscillations with an amplitude of just b = 2.5

micrometers would give rise to a time-averaged central overpressure of 0.31 atm when the gap

width is reduced to ho = 2b = 5 micrometers. This overpressure would continue to grow with the

inverse square of ho as the latter is further reduced.

In the following years, interest grew rapidly in potential applications of this phenomenon of

wall-vibration-induced overpressure in thin, wall-bounded gas layers—the so-called compressible

squeeze-film effect. The most prominent of these applications are discussed below.

1.2.1 Bearing lubrication

Gaseous lubrication involves the generation of super-ambient pressures inside a thin

film of gas between two close surfaces, providing substantial repulsive load capacity while

allowing relative translational motion with remarkably low skin friction. These pressures are

typically generated by (i) using surface translation to shear and channel the gas into a convergent

geometrical region, providing an aerodynamic bearing whose load capacity depends critically on

the translational speed, or (ii) actively pumping gas into the film through an orifice or pores on the

surface(s), providing a so-called aerostatic bearing that acts as a spring-damper even under static

conditions. While the former is best suited for high-speed applications, such as foil bearings in

aeronautical turbomachinery, the latter has been successfully exploited in a variety of avenues

that require precision, ranging from measuring instruments to machine tools [7, 19]. (Further

details regarding the history and applications of gaseous lubrication can be found in [20–22].)
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Such overpressures can also be achieved, as Taylor and Saffman [5] proved, using the

so-called ‘squeeze-film’ effect, i.e. by rapidly oscillating either surface along its normal axis [9].

At sufficiently high frequencies, cyclical compression and expansion of the gas effectively

entrapped in the interior of the film produces a super-ambient time-averaged pressure that

provides a significant, steady, repulsive force on the two bounding objects [5].

When compared to conventional gas-lubricated bearings, these so-called squeeze-film

air bearings (SFABs) have been reported to display superior stability and controllability [7].

Conventional bearings exhibit certain disadvantages due to the high flow speeds required to

achieve practically applicable load capacities using gas, rather than liquid, as the lubricant. For

instance, aerodynamic bearings may experience (i) gradual surface wear due to contact friction

experienced during start-up and stoppage [7] or (ii) self-excited vibrations, such as “whirl” in

rotor-bearing systems, due to hydrodynamic instabilities [23, 24]. On the other hand, externally

pressurized aerostatic bearings may experience (i) so-called “micro-vibrations” of a free bounding

surface, caused by turbulent vortex shedding downstream of the inlet [25], or (ii) a substantial

net reduction in load capacity due to “pressure depression”—the expansion of transonic inflow

to supersonic conditions within the gas film follow by complex shock wave–boundary layer

interactions [26, 27]. Provided that the operating parameters are chosen carefully, SFABs may,

in principle, be able to achieve load capacities comparable to those of conventional bearings

while avoiding the operational issues associated with turbulence, hydrodynamic instability and

transonic airflow, a proposition that must be studied rigorously in the future (see § 6).

Twentieth-century innovations in the generation of high-frequency oscillation—in par-

ticular, piezoelectric actuators—prompted integration of the squeeze-film effect into existing

aerodynamic bearings [7]. According to a dissertation from 1980 [10], such ‘hybrid’ bearings

were of practical interest primarily in “support of gyroscope gimbals and slider bearings for the

computer industry”.
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1.2.2 Levitation and transportation

In the 1990s, the ability to sustain loads with use of gaseous lubrication came into interest

in applications involving the contactless handling of sensitive items, i.e. squeeze-film levitation

(SFL). This technique was initially interpreted as a limiting form of acoustic levitation, which

allows aerial suspension of matter using a non-uniform, time-averaged pressure field generated

by the interaction of sound waves between vibrating and reflecting surfaces [28], although the

underlying physics has been shown to differ fundamentally [29]. When the mean separation

distance between an oscillating ‘radiator’ and a parallel reflector is reduced well below the local

acoustic wavelength, the pressure waves generated by the oscillator travel effectively laterally

outward between the two surfaces, subject to non-negligible viscous attenuation, and the resulting

time-averaged pressure distribution in the squeeze film yields a large, steady, repulsive force that

is felt by both objects [11].

While items suspended using conventional acoustic levitation typically scale centimetri-

cally and weigh a few grams at best [30,31], SFL has been proven to be capable of sustaining

much heavier repulsive loads with substantially larger surface areas. Use of the piezoelectric

‘Bolt-clamped Langevin Transducer’, pictured in figures 1.2(a) and (b), has allowed stable

levitation of objects with masses ranging from a few grams to several kilograms, over planar

surfaces with areas ≈ 50 cm2 [1, 2, 6, 7, 11–14, 19, 32–43]. SFL is not restricted to configurations

that involve planar surfaces; for instance, spherical rotors weighing several hundred grams have

been successfully levitated above a socket-shaped oscillator, while performing several thousand

revolutions per minute (rpm) due to low skin friction [44].

A natural application of this phenomenon—the ability to suspend, manipulate and

transport sensitive objects without physical contact—is assembly line manufacturing. SFL is

particularly preferable for handling microelectronic components, such as surface-mount devices

to be soldered to a circuit board, in place of contact-based, soft grippers that may deposit residual

materials or produce electrostatic adhesion that prevents reliable detachment [6]. Transportation
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of levitated objects has been achieved using, predominantly, two distinct methods: (i) tilting

the levitated object, which yields a steady pressure force with a propulsive component [45],

or (ii) exciting traveling waves on the oscillating platform using multiple vibration sources, to

produce steady, propulsive shear stresses on the levitated object [1, 13, 14]. Using the latter

method, objects with masses of order 10 g have been transported at speeds of order 10 cm/s [1].

Additionally, piezoelectric transducers have been attached to the levitated object itself, to produce

controllable, self-levitating, traveling-wave-driven mobile robots [32–34]. Analogously, annular

oscillators that are (i) fragmented into tilted sections (similar to a tilting-pad thrust bearing) [46]

or (ii) excited to exhibit azimuthal traveling-wave oscillations [1, 2, 35, 47] have been used to

rotate levitated objects at speeds of ≈ 1000 rpm (see figure 1.2(b)).

1.3 Transition from repulsive to attractive forces

Whilemost squeeze-film levitators generate strong repulsive forces, a remarkable transition

to attraction was reported in 2002 [37], albeit producing comparatively weak forces. Only under

a limited range of operating conditions, namely, for surfaces with millimetric characteristic

dimensions and/or oscillation frequencies as low as several hundred Hz, this transition was

observed when the separation distance between the two objects was increased beyond a critical

value [4, 6, 36, 48]. The relatively small attractive forces, corresponding to average stresses

smaller than 1 gf/cm2 (grams-force per square centimeter), have since been of limited practical

interest.

However, as reported in a 2015 U.S. patent [49] by David Colasante, M.D., and confirmed

independently in a 2021 experimental study by the Bioinspired Robotics and Design (BRD) Lab

at the University of California San Diego [3], this minor attractive load capacity may be magnified

a thousandfold if the stiffness of the oscillator is reduced deliberately to provide pronounced

flexural deformations. In illustrating the extent of the magnification seen in [3], it is useful to draw

a comparison against the data reported in the aforementioned, seminal communication from 2002
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where attraction in air was first reported [37]. The two experiments involved comparable operating

parameters, including similar object surface areas and forcing frequencies. The key difference

is that the original experiments [37] involved a 10-mm-thick aluminum cylinder oscillating,

allegedly, with effectively uniform amplitude, while the recent study [3] was conducted using

centrally excited plastic disks, each with a thickness of less than one millimeter, reportedly

undergoing substantial flexure. While the first paper reports a maximum attractive SSF of

approximately 0.52 gf for a 7-cm-diameter surface, well in agreement with other experimental

and computational studies that investigated effectively rigid-body systems [4, 6, 12, 36], the

recent study claims to have achieved forces of over 400 gf using a disk of diameter 4.9 cm. The

primary goal of this dissertation is to investigate the underlying fluid dynamics giving rise to this

thousandfold magnification of attractive load capacity.

Attractive SFL may be of practical interest due not only to the recently improved load

capacity but also to remarkable energy efficiency. In his experiments, by oscillating a 12" x 6",

0.4-mm-thick aluminum plate at 83 Hz using two audio exciters, Dr. Colasante demonstrated

steady attractive levitation of a ≈ 2.6 kg payload (5.72 lb) with just 3 W (watts) of supplied

power [50]. While this force is notably weaker than the repulsive load-bearing forces observed in

the history of SFL, e.g. 11.7 kgf [19], we see a remarkable improvement in energy efficiency.

The cited experiment [19] required 50 W of input, yielding an efficiency (defined here as the

levitated mass per unit power input) of approximately 235 g/W. In contrast, efficiencies of the

order of 1000 and 2000 g/W were achieved respectively in the experiments by Dr. Colasante [51]

and the BRD lab [3]. For context, note that a very efficient multicopter motor [52] equipped with

a 16-inch-diameter propeller produces about 2.1 kgf of thrust while consuming close to 333 W

(≈ 6.3 g/W).

It must be noted here that, in more recent experiments, Dr. Colasante appears to have

achieved much greater attractive load capacities while maintaining the high efficiency. By

oscillating larger metal plates with more powerful audio exciters, he has recorded attractive forces

ranging from ≈ 19 kgf (41 lbf) with 25 W of power [53] to ≈ 200 kgf (440 lbf) with 200 W [54]!
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The BRD lab [3] reports that the light, flexible plastic oscillators utilized in their

experiments were subject to substantial aerodynamic coupling; in other words, the dynamic

deformations of the oscillator were measurably influenced by aerodynamic forces arising from

the oscillatory airflow in the squeeze film. Describing such ‘two-way-coupled’ fluid–structure

interactions can be anticipated to be integral in predicting accurately the attractive levitation

forces generated by SFL systems driven by oscillators with low inertia and structural stiffness.

1.4 Motivation for the present theoretical modeling

Due to the recent developments in squeeze-film levitation outlined above, it may be

envisioned that contemporary SFL devices will exhibit practical utility, for instance, in connection

with wall-climbing robots or assembly line applications such as material-processing equipment

and pick-and-place machinery. Applications involving larger loads can also be envisioned, such

as those emerging in warehouse fulfillment and in-home automation, provided that scalability

issues—such as hydrodynamic instabilities—can be adequately addressed (see § 6).

Pursuant of realizing practical systems that may enable such applications, the principal

objective of the present dissertation is to approach a better understanding of the fundamental

physics underlying repulsive and attractive SFL, by means of developing simplified theoretical

descriptions of the relevant fluid–structure dynamics. Perturbation methods are employed as

the primary tool of investigation, and results are verified either by numerical methods or by

comparison to prior experiments and simulations.

While prior theoretical analyses have deeply investigated the physics surrounding SFL

and inspired substantial practical development, much remains to be understood about SFL before

it can be practically implemented—in a controlled manner—outside of spheres of academic

research. The most advanced analyses to date have involved high-fidelity numerical simulations

that yield accurate, experimentally verified results, albeit incurring large computational costs

and thus affording physical insights only for a restrictively small range of the relevant operating
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parameters. On the other hand, simplified quasi-analytical models that provide a wider view of

the parametric domain have typically relied on assumptions that involve neglecting fundamental

physical factors, such as fluid inertia, gaseous compressibility, pressure variations near the

periphery of the squeeze film, structural deformations of the oscillator and fluid–structure

coupling. (An overview of relevant literature can be found in § 2.2.1.)

The theoretical descriptions outlined in this document constitute in noway a comprehensive

treatment of the complex problems posed by the various contemporary applications of bidirectional

squeeze-film levitation. Rather, they are designed to rigorously address fundamental, previously

unanswered questions that the author believes to be important in an approach to a better

physical understanding of this intriguing phenomenon—one that eludes simplistic, intuitive

characterization.

1.5 Organization of the dissertation

The remainder of this document is divided into five chapters, each of which addresses a

distinct class of questions regarding the fluid dynamics of bidirectional squeeze-film levitation.

Summarized below are the questions asked and the insights gained as part of each chapter.

Chapter 2) Why has the attractive load capacity of squeeze-film levitators been sub-
stantially lower than their repulsive capacity, until very recently? What are the most
significant physical parameters governing the canonical squeeze-film effect, and under
what precise conditions does the transition to attractive forces occur?

The majority of prior experimentation with attractive levitation has been conducted using

bulky oscillators undergoing limited elastic flexure. When attractive forces are produced by

an ideal rigid-body system, the time-averaged pressure is known to drop from a super-ambient

value near the center of the squeeze film to a sub-ambient value of comparable magnitude at

its outer edge, before sharply rising back to the ambient value across a small peripheral region

surrounding the film. In this chapter, the method of matched asymptotic expansions is applied

to rigid-body systems to analyze and relate the flow in the film and the periphery, producing a
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rigorous description of canonical squeeze-film levitation that unifies prior reduced analyses and

agrees quantitatively with the results of recent CFD (computational fluid dynamics) simulations.

The powerful repulsive force generated by rigid oscillators has been known to grow with the

inverse square of the separation distance as the latter is reduced, bounded only by the finiteness

of the oscillation amplitude. The present theory reveals that the transition to attraction occurs for

relatively small values of the product of the oscillation frequency and film surface area, below

which the generated attractive forces are comparatively diminutive. The attractive SSF achieves a

small extremum for a critical value of the separation distance, both of which can be calculated

efficiently using the derived formulae.

Chapter 3) How does the flexibility of an SFL oscillator affect the system’s attractive load
capacity? How do the physical mechanisms governing the transition to attraction differ
between flexural and rigid-body systems?

The objective of this chapter is to explain the physical mechanisms that underly the

thousandfold improvement in attractive load capacity observed in recent experiments involving

thin, highly flexible oscillators. For this purpose, the matched-asymptotic formulation developed

in Chapter 2 is extended here to account for resonant flexural oscillations of a thin disk. In

contrast with the results of prior literature that investigated high-frequency elastic deformations

of thicker oscillators, it is found here that incorporation of resonant, low-frequency thin-plate

dynamics successfully reproduces the observed magnification of attractive load capacity. While

the transition to attraction for rigid-body systems occurs solely due to a drop in steady pressure

near the outer edge of the squeeze film, that for flexural systems is found to stem from valleys of

pressure inside the film that occur near the nodal circles of the standing wave exhibited by the

flexible oscillator. Furthermore, the transition is found to occur for a much wider range of the

critical operating parameters—oscillation frequency and film surface area. Both the extent of this

favorable parametric region and the scale of the associated attractive forces are found to grow

substantially for rising values of the elastic wavenumber, i.e. for disks with increasing flexibility.
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Chapter 4) How do fluid–structure interactions affect the motion of a flexible oscillator,
the associated gas flow in the squeeze film, and the resulting load capacity?

While the results from Chapter 3 successfully reproduced the tremendous scale of

attractive forces observed in the recent experiments, other aspects of the experimental data exhibit

glaring disagreement with the theoretical predictions, primarily due to effects of fluid–structure

coupling. In this chapter, the dynamic Kirchoff–Love equation describing the flexural oscillations

of a thin disk is coupled with the Reynolds equation describing compressible gas flow in the

slender film, yielding a problem involving two-way-coupled fluid–structure interactions. The

formulation allows characterization of the disk motion under the simultaneous action of a

localized, time-harmonic excitation force with a known force amplitude and the reactive forces

caused by structural bending and squeeze-film overpressure. The nonlinear problem is solved

with use of asymptotic methods to provide an analytical expression specifying the attractive

levitation force as a function of the excitation force amplitude. Accounting for two-way coupling

is found to give rise to a distinct dimensionless parameter, C, which measures the degree to

which the dynamic disk flexure is dampened by oscillatory pressure variations in the squeeze

film associated with the viscous gas flow. For increasing values of C, successive resonant modes

of the disk are suppressed by viscous attenuation and, for very large values C � 1, the system

exhibits an interesting universal behavior that gives rise to a parameter-independent levitation

force. Asymptotic predictions for sufficiently large values of C yield promising agreement

with experimental measurements of the levitation force, the causal time-averaged squeeze-film

pressure distribution and the associated time-averaged disk deformation. In particular, increasing

the disk radius beyond a critical value is found to yield no benefit for the attractive load capacity,

justifying the development of large-scale SFL systems with multiple small oscillators. The

chapter ends with suggestions for advanced theoretical formulations that may be developed in the

future to provide greater accuracy in describing practical SFL systems.
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Chapter 5) Can levitation systems that operate using the attractive squeeze-film force be
modified to also provide transportation of the suspended object? Among the techniques
that exist for transporting objects suspended repulsively, which method—or combination
of methods—may be adapted for this purpose?

Considered in this chapter are two prominent methods of squeeze-film transportation: (i)

forcing the oscillator to exhibit laterally asymmetrical dynamic flexure, such as traveling-wave

oscillations, and (ii) simply tilting the oscillated object in the desired direction of motion. A

reduced theoretical description of the relevant flow problem is developed, using the compressible-

flow Reynolds equation, allowing straightforward asymptotic computation of the levitation and

(quasistatic) thrust forces produced in a planar, asymmetrical squeeze-film system. Tilting the

oscillation axis of a rigid-body system provides a substantial thrust force, making it a suitable

transport mechanism for repulsively levitated objects, but reduces significantly the maximum

repulsive load capacity. On the other hand, for flexural oscillation systems, appropriate inclination

is found to increase both the thrust and the associated attractive load capacity, with greater

benefits obtained for flexural oscillation modes that exhibit higher lateral asymmetry.

Chapter 6) Why is the squeeze-film effect not as ubiquitous in real-world applications
as other methods of levitation and gaseous lubrication? Which specific aspects of this
phenomenon require further investigation and/or innovation?

Provided in this final chapter are recommendations for future work in the study of squeeze-

film levitation, split into two main categories: open practical challenges that currently deter

commercial implementation of this technology and viable extensions of the present theoretical

work that may provide improved accuracy, generality and versatility. A third section of this

chapter explores other techniques for vibration-induced attraction found in literature.
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Chapter 2

Viscoacoustic theory of rigid-body squeeze-
film levitation

2.1 Executive summary

In this chapter, we investigate the air flow induced by a rigid circular disk or piston

vibrating harmonically along its axis of symmetry in the immediate vicinity of a parallel surface.

Previous attempts to characterize these so-called “squeeze-film” systems largely relied

on simplifications afforded by neglecting either fluid acceleration or viscous forces inside the

thin enclosed gas layer. The present viscoacoustic analysis employs the asymptotic limit of

small vibration amplitudes to investigate the flow by systematic reduction of the Navier–Stokes

equations in two distinct flow regions, namely, the inner gaseous film where streamlines are

nearly parallel to the confining walls and the near-edge region of non-slender flow that features

gas exchange with the surrounding stagnant atmosphere.

The flow in the gaseous film depends on the relevant Stokes number, defined as the ratio

of the characteristic viscous time across the film to the characteristic oscillation time, and on

a compressibility parameter, defined as the square of the ratio of the acoustic time for radial

pressure equilibration to the oscillation time. A Strouhal number based on the local residence time

emerges as an additional governing parameter for the near-edge region, which is incompressible

at leading order. The method of matched asymptotic expansions is used to describe the solution

in both regions, across which the time-averaged pressure exhibits comparable variations that give
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Figure 2.1. Schematic illustration of the three axisymmetric flow configurations examined
in this study, including (a) a disk or (b) a piston vibrating close to an infinite wall, and (c) a
piston vibrating close to another piston. The curved arrows in each case represent airflow in the
near-edge region, extending over radial distances r − a ∼ ho. The velocity profile pictured inside
the slender inner region a ≥ a− r � ho of the disk–wall configuration in panel (a) corresponds
to the leading-order flow (2.35) generated for a Stokes number of α2 = 300.

opposing contributions to the resulting time-averaged force experienced by the disk or piston. A

diagram structured with the Stokes number and compressibility parameter as coordinates reveals

that this steady squeeze-film force, typically repulsive for small values of the Stokes number,

alternates to attraction across a critical separation contour in the parametric domain that exists

for all Strouhal numbers.

To the best of our knowledge, this analysis provides, for the first time, a unifying

viscoacoustic theory of axisymmetric squeeze films, which yields a reduced parametric description

for the time-averaged repulsion/attraction force that is potentially useful in applications including

non-contact fluid bearings and robot locomotion.

2.2 Introduction

This chapter concerns the fluid motion induced by a rigid circular disk (or piston) of

radius a vibrating along its axis in the vicinity of a stationary parallel surface. The three specific
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geometrical configurations to be analyzed are represented in figure 2.1. The width of the gap

separating the two parallel surfaces is assumed to vary harmonically in time according to

h(t) = ho+ bcos(ωt) (2.1)

or, equivalently,
h(t)
ho
= 1+ ε cos(ωt) , (2.2)

where ho � a is the mean separation distance, ω is the angular frequency, b is the oscillation

amplitude, and ε = b/ho is the relevant relative amplitude. Such slender-flow systems, commonly

referred to as “squeeze-film” systems, are of great interest in the context of gas lubricated bearings

present in high-speed rotary machinery and also in contactless levitation devices used in assembly

line transport of microelectronics [7]. In the former case of squeeze-film air bearings, there is

great demand for predicting the load capacity, while in the latter, referred to as “squeeze-film

levitation” (SFL), the sensitivity of transported items additionally warrants comprehension of

radial pressure departures p(r)− pa from the outer ambient value pa.

It must be noted that, in applications of SFL, the oscillator is typically situated below

the levitated object, in contrast to the illustrations in the figure. In that case, one may question

whether it is appropriate to prescribe the variation of the gap width h(t) since the unconstrained,

levitated object would be free to oscillate in response to the transient overpressures beneath.

However, due to the high forcing frequencies involved in practical applications, such induced

vibrations are seen to be relatively small, and can be virtually eliminated with use of a suitable

damping mechanism [3, 39]. The results derived in this chapter are thus, in principle, applicable

to such configurations as well.

A key aspect of the flow problem is that, although the disk motion is harmonic, the

resulting overpressure p− pa displays, in general, a nonzero time-averaged value at any given

location, that being a consequence of the systemic nonlinearities introduced by convection and
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gaseous compressibility. As a result, the disk or piston experiences a steady perpendicular force,

hereafter referred to as the time-averaged or steady squeeze-film force (SSF). In principle, the

SSF may act to either repel or attract two objects with parallel surfaces, but decades worth of

experiments demonstrate that repulsive forces are typically thousands of times stronger, and occur

for a much wider range of operating conditions [1, 19, 37]. (In recent years, a dramatic increase

in the attractive load capacity of SFL systems has been demonstrated with use of highly flexible

oscillators, a development that is discussed at length in Chapters 3 and 4 of this dissertation).

2.2.1 Modeling considerations

Analysis of the fluid flow induced by the disk oscillations must consider the existence

of two different regions, namely, the slender film separating the disk from the planar wall at

radial distances r in the range a ≥ a− r � ho, where streamlines are aligned with the parallel

surfaces, and the non-slender peripheral region that extends over distances of order ho from the

disk edge, which controls the exchange of fluid with the surrounding stagnant atmosphere and its

associated pressure drop. We shall see that the behavior of the flow in the slender film depends

on the relative magnitude of the characteristic oscillation time ω−1, when compared with the

two principal mechanical timescales, namely, that for viscous diffusion of momentum across

the gas layer tv = h2
o/(µa/ρa), where µa and ρa are the values of the viscosity and density in the

surrounding atmosphere, and the characteristic acoustic timescale for radial pressure equilibration

ta = a/(pa/ρa)
1/2, where (pa/ρa)

1/2 is, aside from a factor γ1/2, the ambient value of the sound

speed, with γ denoting the ratio of specific heats. The analysis that follows assumes all three

times to be comparable, yielding order-unity values of the relevant Stokes number

α2 =
tv
ω−1 =

ωh2
o

µa/ρa
(2.3)
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and of the relevant compressibility parameter

Λ =
( ta
ω−1

)2
=
ω2a2

pa/ρa
. (2.4)

The three length scales present in the problem (i.e. the disk radius a, the mean separation distance

ho, and the oscillation amplitude εho) introduce two additional operational parameters – the

relative oscillation amplitude ε and the slenderness ratio δ = ho/a� 1.

It will be shown in the following analysis that the time-averaged pressure drop across the

slender film, identical for all three geometrical configurations shown in figure 2.1, depends solely

on α2 and Λ, while that across the peripheral region, different for each geometrical configuration,

depends additionally on a third controlling parameter, the local Strouhal number

St =
tc
ω−1 =

δ

ε
, (2.5)

where tc = ho/(εωa) is the characteristic residence time in the pulsatile peripheral flow. (Note

that the characteristic radial flow speed at the film edge induced by disk motion and used to

define tc is (b/ho)ωa, as follows from the conservation of mass in the film.) The majority of

previous analyses of squeeze-film systems δ� 1 have been restricted to specific limiting cases of

the slender gas-film problem, arising for extreme values of α2 and Λ, namely, incompressible

flow for Λ→ 0, inviscid flow for α2 � 1, and lubrication flow for α2 � 1.

A unifying viscoacoustic theory of squeeze-film systems, that embodies all of these specific

cases and accounts for the pressure variation across the peripheral region, is to be developed

here by considering the regime α2 ∼ 1 and Λ ∼ 1 for asymptotically small values of the relative

oscillation amplitude ε = b/ho� 1 and the slenderness ratio δ� 1 in the distinguished limit ε ∼ δ

(or, equivalently, St ∼ 1). While the assumption that ε� 1 inevitably limits the accuracy of the

following theoretical description for gap widths that are comparable to the operating amplitude,

ho ∼ b, it will be shown to allow efficient mathematical reduction of the problem and yield
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practically relevant insights into the physics of rigid-body squeeze-film systems. It must finally be

noted that, since the mean free path is of order ` ∼ (µa/ρa)/(pa/ρa)
1/2, in the limit investigated

here, the relevant Knudsen number in the gas layer is Kn = `/ho ∼ (Λ
1/2/α2)(ho/a) ∼ δ � 1,

thereby guaranteeing applicability of the continuum hypothesis to the description of the flow.

A note on the emergence of compressibility in gaseous lubrication flows

It is natural to question the relevance to squeeze-film levitation of gaseous compressibility,

a phenomenon that is most commonly associated with high-speed aerodynamics and air-breathing

propulsion systems. Experiments conducted in the 1890’s by Albert Kingsbury [55] revealed that

the performance of air-lubricated journal bearings differed distinctly from those lubricated using

liquids, and could not be explained with use of the theory of hydrodynamic lubrication developed

earlier by Osborne Reynolds [56]. Promising agreement with the experimental data was obtained

later in 1913 by W. J. Harrison [57], who generalized the theory of Reynolds to account for

compressibility and integrated numerically the resulting nonlinear differential equation.

In conventional aerodynamics, such as the study of external airflow around a submerged

body, the importance of compressibility—the variability of air density in response to pressure

differences—is determined by the relevant Mach number M = uc/ca, the ratio of the characteristic

flow speed uc to the local ambient sound speed ca. Since variations of pressure p around the body

are dominantly balanced by convective acceleration of the air, the characteristic scale of relative

density variations can be estimated as ∆ρ/ρa = γM2, where we have deduced from the thermal

equation of state the fact that ∆ρ/ρ ∼ ∆p/p. Under the assumption of adiabatic, inviscid flow,

relative density variations will be of order 0.05 for M . 0.3, whence effects of compressibility

can be safely disregarded in a theoretical description of the salient flow dynamics [58].

In contrast, for the wall-bounded slender flow geometries found in lubricated bearings

(see § 1.2), compressibility may arise even at low Mach numbers due to a dominant balance

between pressure forces and strong viscous shear stresses, provided that the relevant Reynolds

number Re is small. For such a layer having characteristic thickness ho and length a, it
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follows that ∆ρ/ρa = γM2/(Re ho/a), whence density variations may be non-negligible if either

Re = ucho/(µa/ρa) or the aspect ratio ho/a is sufficiently small relative to the square of the Mach

number. Note further that the associated Knudsen number in the gas layer scales as Kn = M/Re.

Thus, for slender flows with M � 1, Re ∼ 1 and sufficiently small aspect ratio ho/a, effects of

compressibility and viscous shear may enter simultaneously while preserving small values of Kn,

whence the airflow can be analyzed with use of a conventional continuum description.

Even among such slender-flow systems, squeeze-film lubrication presents an interesting

configuration where compressibility may arise also due to small-amplitude normal oscillations

of the bounding wall. Consider an operating condition where the relevant Stokes number

α2 = ωh2
o/(µa/ρa) is large, i.e. the flow can be considered effectively inviscid outside near-wall

boundary layers, and the oscillation amplitude b is small compared to the mean film width

ho. Pressure variations are then balanced prominently by local acceleration of the air (since

the associated Strouhal number ho/b is large), giving ∆ρ/ρa = γM2ho/b. Even in the case of

low-speed flow M � 1, relative density variations may be non-negligible for sufficiently small

values of the relative amplitude b/ho.

Historical theoretical approaches

The classical lubrication (or Stokes) limit α2 � 1, describing compressible flow with

negligible fluid acceleration, has been widely studied throughout the twentieth century by way of

the isothermal squeeze-film equation [8], a modified form of the well-known Reynolds lubrication

equation [56]. Specific interest in the role of compressibility in the slender gas layer was piqued

by an experiment demonstrated in 1956 at the 9th International Congress of Applied Mechanics

at Brussels [15], where a disk rotating around its axis in close proximity to a parallel wall was

reported to experience a perpendicular suction force that transitioned to growing repulsion as

the gap between the disk and the wall was reduced. In a subsequent clarifying analysis, Taylor

and Saffman [5] proved that the observed repulsive squeeze-film force could be explained by

effects of compressibility arising from imperfections in the operation of the rotor such as off-axis
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rotation or normal vibrations. They demonstrated using perturbation methods that the steady

overpressure resulting from the latter case scales with the square of the dimensionless vibration

amplitude ε and depends on a single parameter—the squeeze number σ = 12Λ/α2. These

results were formalized by [8] with use of the isothermal squeeze-film equation for planar and

axisymmetric geometries. Finite-difference solutions of the axisymmetric squeeze-film equation

were experimentally verified by [9], who noted the presence of a central region dominated by

viscous damping, where the film pressure varies gradually, and a near-edge region where the

pressure drops rapidly toward ambient conditions, the latter of which was treated by [59] as a

mathematical boundary layer of thickness O(σ−1/2). It must be noted that, in the ideal lubrication

limit α2→ 0, the scale of pressure variations across the small peripheral region surrounding the

film edge is sufficiently small such that the steady pressure in the film can be assumed to reach

the ambient value pa immediately at the edge r = a [60].

On the other hand, the limit of large Stokes numbers α2 � 1, where the flow is nearly

inviscid outside thin, near-wall (Stokes) boundary layers, has been treated by some as a limiting

form of acoustic levitation, which conventionally involves the suspension of light objects in the

antinodes of standing pressure waves between a vibrating piston and a reflector plate separated by

an integral multiple of the half-wavelength of sound [7]. When the mean separation distance is

made much smaller than the acoustic wavelength, i.e. ho� a with Λ ∼ 1, the reflector plate itself

experiences an immense, repulsive SFL force. In 1902, Lord Rayleigh presented a foundational

formulation of acoustic radiation inside a cylindrical piston of air undergoing transverse vibrations,

expressing the overpressure in terms of the volumetric energy density [61]. After several years

of disagreement over the application of Rayleigh’s theory to acoustic levitation, [62] detailed

the one-dimensional Rayleigh and Langevin radiation pressures—for flows with and without

circumferential confinement—imposed by a vibrating piston on a perfectly reflecting parallel

surface for arbitrary mean separation width. Clarifications were provided regarding distinctions

between the Eulerian and Lagrangian definitions of the time average, the role played by second-

order acoustic straining in reducing the mean pressure, and the additional hydrostatic pressure
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contributed by flow confinement. Surprisingly, this 1D theory has been shown to exhibit

reasonable agreement with experimental measurements of controlled, ultrasonic squeeze-film

systems for sufficiently large separation distances ho (for which 5 . α2 . 100), where the

generated levitation forces were of order 0.1–1.5 kgf [1, 19].

Recent improvements in theoretical modeling

The two theoretical approaches described above (i.e. nonlinear acoustics and lubrication

theory) break down beyond their respective ranges of validity, defined by the magnitude of

the mean gap width ho relative to the characteristic thickness of the Stokes layers that develop

on the parallel surfaces δSL =
√
µa/(ρaω). For systems where ho � δSL , viscous effects are

confined to thin Stokes layers, so that the 1D inviscid formulation based on nonlinear acoustics

proves to be fairly accurate, although validity is limited in principle by the fact that radial

pressure variations are entirely neglected. In contrast, viscous forces are dominant everywhere

in the opposite limit ho � δSL , in which lubrication theory displays excellent agreement with

experimental observations [19], while the inviscid theory is seen to severely undershoot the

experimentally measured SSF. The predictive capability of lubrication theory deteriorates rapidly

for increasing values of ho, as shown by comparisons with Navier–Stokes computations [63],

the latter revealing that variations of the steady pressure across the peripheral region become

comparable in magnitude to those along the film at sufficiently low oscillation frequencies,

thereby invalidating the aforementioned assumption regarding the value of the edge pressure

(p = pa at r = a). Indeed, in a seminal analysis of the squeeze-film effect in 1970 [64], C. H. T.

Pan concludes that, for finite squeeze numbers σ, “the weakest link in the lubrication theory ... is

the omission of the convective inertia in the edge region”.

Applicability of either theory for real-life squeeze-film levitation systems is further

complicated by the fact that the equilibrium levitation distance ho is typically unknown prior to

operation, yielding uncertainty in the choice of the needed analytical framework. Furthermore,

there exists a non-negligible intermediate range of levitation heights ho ∼ δSL , describing the

23



.

Figure 2.2. Results of direct numerical simulations by Yoshimoto, Shou and Somaya [4],
reproduced with simplifications from figures 10 and 11 in [4]. Displayed are (b) sample profiles
of the steady overpressure in the squeeze film under operating conditions for which an increase
in the mean air-gap width ho causes a transition from repulsive to attractive levitation forces.
The variation of the force with separation distance (a) is strikingly similar to that found for a
Bernoulli gripper, but the causal distribution of pressure (b) is highly different [65].

operating conditions of many practical systems [1, 19], where effects of neither fluid inertia nor

viscous shear can be neglected. Recent efforts to develop more sophisticated formulations have

thus faced two principal challenges: (i) derivation of a comprehensive viscoacoustic theory that

considers simultaneous effects of fluid inertia, viscosity and gaseous compressibility and (ii)

development of an accurate boundary condition for the pressure at the edge of the film.

With regard to the first, inertial corrections to viscous-flow solutions have been proposed,

either through iteration schemes [66] and perturbation methods [67] for small Reynolds numbers

ε(ho/δSL)
2 � 1, or through averaging of the acceleration terms in the Navier–Stokes momentum

equation across the slender film [68]. Both of the cited studies demonstrated greatly improved

agreement with experimental measurements in their respective regimes of validity [66, 68], but

neglected gaseous compressibility. With regard to the question of the edge pressure, some have

correctly argued that, for very large Reynolds numbers, the flow exiting the film is a jet with
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uniform ambient pressure, whereas that entering is entrained due to a quasi-steady decrease in

pressure from the quiescent surroundings to the edge [69]. Turns [70] proposed an empirical

correction to represent this entrance pressure drop while, in a later publication, Li, Cao, Liu and

Ding [68] applied integral conservation laws to an arbitrary control volume in the periphery of

the film, the latter yielding significant agreement with experimental data. Several numerical

studies of the flow in the film [38,63,71] have adopted an artificial “radiation boundary condition”

that minimizes the reflection of acoustic waves at its edge [72, 73]. In a recent study [74],

perturbation theory was applied to reduce the Navier–Stokes equations in both the film and

the peripheral region, the latter of which was assumed to be inviscid, allowing imposition of

an approximate analytical radiation boundary condition [75] for the oscillatory film pressure

in the first approximation. The resulting system of linear, time-independent partial differential

equations was solved computationally, yielding a reduced-order, viscoacoustic, adiabatic model

that demonstrated reasonable accuracy for a fairly wide range of ho [74]. On the other hand,

brute-force numerical simulations have been conducted in expanded spatial domains that explicitly

model the peripheral flow, successfully reproducing the transition to weak, attractive SSFs that

has been experimentally observed [4, 6]. In particular, Yoshimoto, Shou and Somaya [4] provide

numerical results (copied above in figure 2.2) that demonstrate clearly how, under operating

conditions that give rise to attractive levitation forces, spatial variations of the steady pressure

exhibit comparable magnitude along the film and across a smaller region surrounding its edge.

Such models display excellent qualitative agreement with experimental data for substantial ranges

of ho, albeit at the expense of computational speed.

Further details regarding the history of the theoretical modeling of squeeze-film systems

can be found in Da Silva’s dissertation from 1980 [10] and a recent review article [7].

Novelty of the present formulation

The purpose of this chapter is to develop an efficient viscoacoustic theory that synthesizes

rigorous quantification of the time-averaged peripheral pressure variations with analytical
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reduction of the equations governing film flow. Such a formulation is necessary to (i) accurately

predict a priori the levitation characteristics of arbitrary SFL systems and (ii) understand the

physical principles that underly the anomalous transition to weak attractive forces [37]. The limit

Λ ∼ 1, α2 ∼ 1, and ε ∼ δ� 1 addressed below enables the analysis of effects of viscosity, local

acceleration, thermal diffusion, acoustic wave propagation and the nonlinearities introduced by

convection and compressibility, while encompassing the specific cases investigated in the past as

limiting solutions for extreme values of the controlling parameters Λ and α2. The method of

matched asymptotic expansions will be used to relate the solution in the two distinct flow regions,

ultimately providing quantitative information regarding the dependence of the time-averaged

force on the governing parameters Λ, α2 and St = δ/ε, and the specific edge geometry (see figure

2.1). The squeeze-film force will be shown to involve two comparable contributions—the first

accounting for variations of the pressure along the slender gas layer relative to its value at the

edge r = a, and the second involving the relaxation of pressure across the near-edge region from

said value to ambient conditions—the latter of which is found to be responsible for the transition

to attractive forces for rigid-body systems.

2.2.2 Organization of the chapter

The remainder of this chapter is organized as follows. The reduced conservation

equations governing each of the two distinct flow regions are presented in § 2.3 in dimensional

form, accompanied by justificatory discussions of the associated characteristic scales. The

dimensionless conservation equations pertaining to the slender film are written in § 2.4 and their

leading-order time-harmonic solution is presented in § 2.5. Associated first-order corrections

to the film pressure are computed in § 2.6 and used to determine the first contribution to the

time-averaged levitation force, along with simplified expressions of both for limiting values of

the Stokes number and the compressibility parameter. The dimensionless conservation equations

describing flow in the peripheral region of the squeeze film are written in § 2.7, supplemented

by a boundary condition that accounts for the driving radial velocity present at the edge of the
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slender gas film, obtained by asymptotically matching with the leading-order solution from the

film. Numerical computations of the time-averaged pressure drop across the peripheral region

are presented, along with predictions of its behavior for limiting values of the Stokes number

and the peripheral Strouhal number. The dependence on the three governing parameters of the

steady squeeze-film force acting on the oscillating body, which accounts for comparable pressure

contributions from the two distinct flow regions, is discussed in § 2.8 with specific attention

dedicated to the criteria required for a transition between repulsive and attractive forces. The

force predicted by our asymptotic analysis is compared with that determined in recent CFD

(computational fluid dynamics) simulations [6]. Concluding remarks are given in § 2.9, and

finally, explicit expressions needed for the asymptotic computation of the steady film pressure

and squeeze-film force are provided in § 2.10.

Our asymptotic analysis: (i) reveals that the time-averaged pressure drop across the near-

edge region—from the unperturbed, ambient air to the edge of the squeeze-film—is comparable in

magnitude and necessarily opposite in sign to that found along the wall-bounded gas layer—from

its edge to its center; (ii) leads to simplified expressions that expedite the evaluation of the steady

squeeze-film force over a wide range of conditions of practical interest, potentially facilitating the

operation and control of high-frequency systems; (iii) unveils a boundary on the α2–Λ parametric

plane across which the force switches from repulsion to attraction; (iv) demonstrates numerically

that the force is only weakly dependent on the precise geometric configuration of the near-edge

region, under the present assumptions, and (v) compares favorably with recently published

computational results [6].

2.3 Distinct regions and characteristic scales

An asymptotic analysis of the flow induced by the harmonic disk oscillations defined

in (2.2) is to be given for α2 ∼ 1 andΛ∼ 1 in the distinguished double limit ε� 1 and δ = ho/a� 1

with ε ∼ δ. The axisymmetric periodic motion will be described in terms of the radial and axial
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velocity components u(r,y,t) and v(r,y,t), with y and r denoting the axial distance from the wall

and the radial distance from the disk center, as indicated in figure 2.1. The description must

account for the variations of the pressure p, density ρ, and temperature T of the gas from their

ambient values pa, ρa, and Ta. The analysis must consider the existence of two distinct regions,

namely, the slender gas layer separating the disk from the planar wall, where the streamlines

are nearly parallel to the bounding solid surfaces, and the boundary region of non-slender flow

extending over distances of order ho from the disk edge. We shall give below the reduced

conservation equations and the associated scales for the flow in these two regions.

The full compressible Navier–Stokes equations governing the axisymmetric flow inves-

tigated here can be found in [76] in cylindrical form. In the slender gas film separating the

two parallel solid surfaces, where r ∼ a and y ∼ h0 � a, these conservation equations can be

simplified to the boundary-layer form

∂ρ

∂t
+

1
r
∂

∂r
(ρru)+

∂

∂y
(ρv) = 0 , (2.6)

∂p
∂y
= 0 , (2.7)

ρ

(
∂u
∂t
+u

∂u
∂r
+ v

∂u
∂y

)
= −

∂p
∂r
+
∂

∂y

(
µ
∂u
∂y

)
, (2.8)

ρcp

(
∂T
∂t
+u

∂T
∂r
+ v

∂T
∂y

)
−

(
∂p
∂t
+u

∂p
∂r

)
= µ

(
∂u
∂y

)2
+
∂

∂y

(
κ
∂T
∂y

)
. (2.9)

For the slender flow analyzed here, molecular-transport terms involving radial derivatives are

a factor (ho/a)2 = δ2 � 1 smaller than those involving transverse derivatives, so that only

the latter have been retained in writing the viscous force per unit volume in (2.8) and the

heat-conduction and viscous-dissipation terms in (2.9). At the same level of approximation (i.e.

with small relative errors of order δ2 � 1), the analysis neglects the variations of the pressure

across the gas layer, as reflected by the reduced equation (2.7). In the proceeding analysis, the

specific heat at constant pressure cp is assumed to be constant, while the viscosity coefficient

µ and the thermal conductivity κ are assumed to vary from their ambient values according to
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(µ/µa) = (κ/κa) = (T/Ta)
ν with ν ≈ 0.77, an excellent approximation for air [77], for which the

Prandtl number takes the value Pr = cpµ/κ = 0.7 and the ratio of specific heats takes the value

γ = 1.4. The above equations must be supplemented with the equation of state

p
pa
=

ρ

ρa

T
Ta
. (2.10)

In the slender gas layer the axial velocities induced by the displacement rate dh/dt =

−εωho sin(ωt) of the moving surface are of order vc = εωho. The associated radial velocities are

much larger, of order uc = vc/δ = εωa, as follows from the straightforward order-of-magnitude

balance uc/a ∼ vc/ho stemming from (2.6). Since it is assumed that the characteristic time for

the oscillatory motion ω−1 is comparable to the characteristic viscous and heat conduction times

across the gaseous film tv = h2
o/(µa/ρa) and th = Pr tv ∼ tv , viscous stresses and heat conduction

can be expected to have, in principle, a significant effect on the oscillatory flow. In contrast,

convective acceleration has a negligible effect at leading order in the limit ε� 1, because the

associated Strouhal number is ε−1 � 1, as can be seen by comparing the orders of magnitude of

the local acceleration ∂u/∂t ∼ ωuc and the convective acceleration u ∂u/∂r ∼ u2
c/a in (2.8). A

similar order-of-magnitude analysis in the energy equation (2.9) provides (u∂T/∂r)/(∂T/∂t) ∼ ε,

indicating that convective heat transport is also negligible at leading order. Note that, since

the characteristic value of the radial pressure variations p− pa needed to produce velocity

changes of order uc = εωa in times of order ω−1 is ∆p = ρaεω
2a2, as follows from the balance

∂p/∂r ∼ ρ∂u/∂t, the resulting instantaneous levitation force acting on the disk is expected to be

of order 〈FL〉 ∼ ∆pa2 = ρaεω
2a4.

In the limit Λ ∼ 1 considered here, the pressure variations p− pa ∼ ∆p induced in

the gap are small compared with the ambient pressure, as can be seen by writing ∆p/pa ∼

ε(ω2a2)/(pa/ρa) = εΛ. Correspondingly, the relative density and temperature variations from

their respective ambient values are also small, of order (ρ− ρa)/ρa ∼ (T −Ta)/Ta ∼ εΛ, as follows

from the equation of state (2.10). The conservation equations (2.6)–(2.10) at leading order will
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be shown to reduce to a linear problem describing compressible unsteady lubrication flow, which

will be solved analytically in closed-form. The leading-order flow variables will be shown to

vary harmonically with time, thus yielding no time-averaged contributions over a period of the

driving oscillations, with the time-averaging operator formally defined by

〈·〉 =
ω

2π

∫ t+2π/ω

t
·dt . (2.11)

We shall see that, since the pressure distribution at leading order has a zero time-averaged value,

the computation of the time-averaged levitation force 〈FL〉 requires quantification of higher-order

corrections associated with nonlinear convective and compressibility effects, involving time-

averaged pressure differences 〈p− pa〉 of order ρaε
2ω2a2 = ε∆p. The associated time-averaged

levitation force 〈FL〉 ∼ ε∆pa2 = ε2ρaω
2a4 can be expressed conveniently in the dimensionless

form
〈FL〉

ε2ρaω2πa4 =
2
ε

∫ 1

0

〈p− pa〉

∆p
r
a

d
( r
a

)
. (2.12)

The slender gas layer, where the radial velocity is of order u ∼ uc, connects with the

ambient atmosphere through a non-slender near-edge boundary region where r − a ∼ y ∼ ho and

u ∼ v ∼ uc. The flow in this region involves small pressure variations of order (p− pa)/pa ∼ ε
2Λ,

as follows from a balance between the pressure force per unit mass ρ−1∇p ∼ (p− pa)/(ρaho)

and the convective acceleration v · ∇v ∼ u2
c/ho, with v = (u,v) and ∇ = (∂/∂r,∂/∂y). As can be

expected from the equation of state (2.10), the associated density and temperature variations

in this region are also small, of order (ρ− ρa)/ρa ∼ (T −Ta)/Ta ∼ (p− pa)/pa ∼ ε
2Λ, so that at

leading order in the limit ε � 1, the flow is effectively incompressible and features constant

transport properties. Also, since r −a ∼ y ∼ ho� a, the leading-order flow is locally planar, with
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a velocity field determined from the familiar incompressible two-dimensional equations

∇ ·v = 0, (2.13)

∂v
∂t
+u

∂v
∂r
+ v

∂v
∂y
= −
∇p
ρa
+
µa

ρa

(
∂2v
∂r2 +

∂2v
∂y2

)
. (2.14)

Using u ∼ v ∼ uc = εωa in (2.14) provides the orders of magnitude of the local acceleration

∂v/∂t ∼ωuc, convective acceleration v ·∇v∼ u2
c/ho and viscous force per unit mass (µa/ρa)∇

2v∼

(µa/ρa)uc/h2
o, giving values that are comparable in magnitude in the limit α2 ∼ 1 considered

here, so that all terms in (2.14) must, in general, be retained in the description. It will be shown

that the pressure drop across this boundary region, of order p− pa ∼ ρaεω
2aho = δ∆p, contains

a nonzero time-averaged component. In the distinguished limit δ ∼ ε, this local pressure drop is

comparable in magnitude to the time-averaged pressure differences 〈p− pa〉 ∼ ε∆p induced along

the gas film, consistent with the results of [4] (see figure 2.2), and must therefore be accounted

for in computing the steady levitation force, as done in the following.

The asymptotic analysis below will consider separate solutions in the slender gas layer

and in the near-edge region. The scales identified above will be used in defining appropriate

dimensionless variables of order unity in each region. Following standard practice [78], asymptotic

expansions in increasing powers of ε will be introduced for the different flow variables, leading

to a hierarchy of problems that will be solved sequentially with account taken of the matching

conditions arising at each order. To compute the time-averaged levitation force (2.12) with small

relative errors of order ε ∼ δ, the description must consider two terms in the expansions for the

slender region, whereas only the leading-order terms are needed in the near-edge region.
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2.4 Formulation of the problem in the slender gaseous film

The analysis uses the dimensionless time τ = ωt and dimensionless gap width

H =
h
ho
= 1+ ε cos(τ) . (2.15)

Substitution of the appropriate order-unity variables ξ = r/a, Y = y/ho, U = u/uc, V = v/vc,

P = (p−pa)/∆p, R = (ρ− ρa)/(εΛρa) andΘ= (T −Ta)/(εΛTa) into the governing equations (2.6)

and (2.8)–(2.10) gives, with errors of order δ2 ∼ ε2,

Λ
∂R
∂τ
+

1
ξ

∂

∂ξ
[(1+ εΛR)ξU]+

∂

∂Y
[(1+ εΛR)V] = 0, (2.16)

(1+ εΛR)
[
∂U
∂τ
+ ε

(
U
∂U
∂ξ
+V

∂U
∂Y

)]
= −

∂P
∂ξ
+

1
α2

∂

∂Y

[
(1+ εΛΘ)ν

∂U
∂Y

]
, (2.17)

(1+ εΛR)
[
∂Θ

∂τ
+ ε

(
U
∂Θ

∂ξ
+V

∂Θ

∂Y

)]
−

(
γ−1
γ

) (
∂P
∂τ
+ εU

∂P
∂ξ

)
=

ε

(
γ−1
γ

)
(1+ εΛΘ)ν

α2

(
∂U
∂Y

)2
+

1
Pr α2

∂

∂Y

[
(1+ εΛΘ)ν

∂Θ

∂Y

]
, (2.18)

P = R+Θ+ εΛRΘ, (2.19)

while the axial momentum equation (2.7) becomes ∂P/∂Y = 0, whence P = P(ξ,τ). The present

system of equations admits analytic periodic solutions that satisfy isothermal non-slip conditions

at the bounding walls,


U = V = Θ = 0 at Y = 0

U = V + sin(τ) = Θ = 0 at Y = H(τ) ,
(2.20)

together with the regularity condition at the axis of symmetry, which implies that

U =
∂P
∂ξ
=
∂R
∂ξ
=
∂Θ

∂ξ
= 0 at ξ = 0 . (2.21)
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The needed boundary condition for the pressure P at the edge of the gas layer (i.e. at ξ = 1) is to

be obtained from matching with the near-edge solution, as described in the following analysis.

Substitution of the scaled variables into (2.12) yields

〈FL〉 =
2
ε

∫ 1

0
〈P〉ξdξ (2.22)

for the dimensionless levitation force 〈FL〉 = 〈FL〉/(ε
2ρaω

2πa4). For future reference, it is of

interest to note that (2.16) can be integrated across the gas layer to give

Λ
∂

∂τ

(∫ H

0
RdY

)
+

1
ξ

∂

∂ξ

(
ξ

∫ H

0
(1+ εΛR)UdY

)
− sin(τ) = 0, (2.23)

with use made of the well-known Leibniz integral rule to exchange the time derivative and spatial

integral involved in the first term. Computing the time average of (2.23) and integrating the result

in the radial direction gives 〈∫ H

0
(1+ εΛR)UdY

〉
= 0 (2.24)

upon imposing the boundary condition U = 0 at ξ = 0.

2.5 Leading-order solution in the gaseous film

The above problem is to be solved for ε� 1 by substituting the expansions



U =U0+ εU1+ · · ·

V = V0+ εV1+ · · ·

P = P0+ εP1+ · · ·

R = R0+ εR1+ · · ·

Θ = Θ0+ εΘ1+ · · ·

(2.25)
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into (2.16)–(2.19) and solving sequentially the problems that arise at different orders in powers

of ε. Only the first two terms are to be considered in our analysis, consistent with the accuracy

of (2.16)–(2.19) (note that the terms of order δ2 ∼ ε2 and smaller that were neglected in writing

those equations would need to be retained if the analysis were to be carried out to higher orders).

To simplify the development, the axial coordinate Y will be replaced in the conservation

equations (2.16)–(2.18) by its normalized counterpart η = Y/H(τ), with use of the substitutions,

each accurate to order ε,

∂

∂Y
→ (1− ε cosτ)

∂

∂η
and

∂

∂τ
→

∂

∂τ
+ εη sinτ

∂

∂η
. (2.26)

At leading order, the problem reduces to the integration of the linear system of equations

Λ
∂R0
∂τ
+

1
ξ

∂

∂ξ
(ξU0)+

∂V0
∂η
= 0, (2.27)

∂U0
∂τ
= −

∂P0
∂ξ
+

1
α2

∂2U0

∂η2 , (2.28)

∂Θ0
∂τ
−
γ−1
γ

∂P0
∂τ
=

1
Pr α2

∂2Θ0

∂η2 , (2.29)

P0 = R0+Θ0, (2.30)

subject to 
U0 = V0 = Θ0 = 0 at η = 0

U0 = V0+ sin(τ) = Θ0 = 0 at η = 1

U0 =
∂P0
∂ξ
=
∂R0
∂ξ
=
∂Θ0
∂ξ
= 0 at ξ = 0 .

(2.31)

Since the pressure variation across the near-edge region is of order δ∆p, as described in the

paragraph following (2.12), at leading order in the limit ε ∼ δ� 1, the pressure in the gap must

satisfy

P0 = 0 at ξ = 1. (2.32)
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We shall see that the pressure drop across the near-edge region enters when matching with the

following term in the expansion of the inner pressure, producing a nonzero first-order correction

P1 , 0 at ξ = 1 that must be accounted for when computing the time-averaged levitation force.

We begin the solution process by integrating (2.27) in the transverse direction using

V0(η = 0) = 0, yielding

V0(η) = −

∫ η

0

[
Λ
∂R0
∂τ
+

1
ξ

∂

∂ξ
(ξU0)

]
dη , (2.33)

which will be useful later. Evaluating (2.33) at η = 1 gives

∫ 1

0

[
Λ
∂R0
∂τ
+

1
ξ

∂

∂ξ
(ξU0)

]
dη = sinτ , (2.34)

which, along with equations (2.28)–(2.30), forms a closed system from which the four constituent

variables P0,Θ0,R0 and U0 can be fully determined. Since the leading-order problem in the gas

layer (2.27)–(2.30) is linear and driven purely by time-harmonic boundary conditions (2.31),

the five flow variables must necessarily vary harmonically with time. Additionally, it can be

deduced from the discussion below (2.15) that the film pressure at this order does not vary in the

transverse direction, that is, P0 = P0(ξ,τ). Upon consideration of these facts and close inspection

of equations (2.28)–(2.30), we may anticipate that the solution can be expressed using separation

of variables in the form



P0 = Re
[
eiτΠ(ξ)

]
Θ0 =

γ−1
γ

Re
[
eiτΠ(ξ)G′

Θ
(η)

]
R0 = Re

{
eiτΠ(ξ)

[
1−

γ−1
γ
G′
Θ
(η)

]}
U0 = Re

[
ieiτΠ′G′U(η)

]
,

(2.35)
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where the transverse functions G′U(η) = dGU/dη and G′
Θ
(η) = dGΘ/dη have been expressed as

derivatives in anticipation of the integral in (2.33) necessary to determine V0. Substituting (2.35)

into (2.28) and (2.29) gives

−
1
α2i

d3GU

dη3 +
dGU

dη
= 1 and −

1
Prα2i

d3GΘ

dη3 +
dGΘ
dη
= 1 (2.36)

respectively. Since the functions GU(η) and GΘ(η) satisfy identical boundary conditions G′U =

G′
Θ
= 0 at η = 0,1, as follows from (2.31), it is convenient to recast the above equations in the

consolidated form

−
1

4β2
d3G

dη3 +
dG
dη
= 1 , with βU =

α

2
(1+ i)
√

2
and βΘ =

√
Pr
α

2
(1+ i)
√

2
, (2.37)

where the function G′(η; β) = dG/dη describes the transverse variations G′U(η) = G′(η; βU) and

G′
Θ
(η) = G′(η; βΘ) of the radial velocity component and temperature deviation, respectively. The

constant-coefficient ordinary differential equation in (2.37) can be integrated using (2.31) to give

G = η−
sinh[β(2η−1)]+ sinh β

2βcosh β
and G′ = 1−

cosh[β(2η−1)]
cosh β

. (2.38)

To determine the radial function Π(ξ), we substitute (2.35) and (2.38) into (2.34), which yields

the classical Bessel’s equation

1
ξ

d
dξ

(
ξ

dΠ
dξ

)
+

1− γ−1
γ GΘ(1)
GU(1)

ΛΠ = −
1
GU(1)

, (2.39)

which can be integrated using the boundary conditions Π(ξ = 1) = Π′(ξ = 0) = 0, where Π′ =

dΠ/dξ, consistent with (2.31), to give

Π =
J0

(
ξ
√

CΛ
)
/J0

(√
CΛ

)
−1

GU(1)CΛ
and Π

′ = −
J1

(
ξ
√

CΛ
)
/J0

(√
CΛ

)
GU(1)

√
CΛ

, (2.40)
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where J0 and J1 represent the Bessel functions of the first kind of order 0 and 1, respectively, and

the constant C is defined as

C =
1− γ−1

γ GΘ(1)
GU(1)

, with GU(1) = 1−
tanh βU
βU

and GΘ(1) = 1−
tanh βΘ

βΘ
. (2.41)

The final step of the solution process is to substitute the known forms of U0 and R0 into (2.33),

which yields

V0 = Re
{
ieiτ

[
GU(η)

GU(1)
+ΛΠ

(
CGU(η)+

γ−1
γ
GΘ(η)−η

)]}
(2.42)

for the transverse velocity component.

The above results can be used to evaluate the limiting value of the radial velocity at the

outer edge of the gaseous film

U0(ξ = 1,η,τ) = ARe

iei(τ+ϕ)

1−
cosh

[
α(1+i)
2
√

2
(2η−1)

]
cosh

[
α(1+i)
2
√

2

] 
 , (2.43)

where the boundary value of the pressure gradient

Π
′(1) = −

J1

(√
CΛ

)
/J0

(√
CΛ

)
GU(1)

√
CΛ

(2.44)

has been written in terms of its modulus A= |Π′(1)| and argument ϕ = arg[Π′(1)]. Equation (2.43)

will be needed later for computing the flow in the peripheral region (see § 2.7.1). The order-unity

factor A is a measure of the stroke volume driven by the moving disk, as can be seen by writing,

for example,
∫ 2π
π

[∫ 1
0 U0(ξ = 1,η,τ)2π dη

]
dτ = 4πARe

[
eiϕGU(1)

]
. Its value will enter in the

determination of the time-averaged levitation force (see § 2.6.2 and § 2.7.3). The dependence of

A = |Π′(1)| on α and Λ, which can be evaluated using (2.44), is visualized in figure 2.3(a), to be

discussed later.
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Figure 2.3. Variation with α2 and Λ of (a) the stroke volume A = |Π′(1)| evaluated with
use of (2.44) and (b) the inner contribution to the levitation force 〈Fi〉 evaluated from (2.59).
Computations were carried out using ν = 0.77, Pr = 0.7 and γ = 1.4.

2.6 First-order correction for the pressure in the gas film

2.6.1 Time-averaged pressure distribution

Since the solution (2.35) is harmonic, the time-averaged values of all flow variables are

identically zero (i.e. 〈U0〉 = 0, 〈P0〉 = 0, . . . ), so that the pressure at leading order does not

contribute to the steady levitation force 〈FL〉 exerted on the disk. As a result, the computation of

〈FL〉 from (2.22) requires consideration of the time-averaged first-order correction 〈P1〉(ξ) for

the pressure, which yields

〈FL〉 = 2
∫ 1

0
〈P1〉ξdξ , (2.45)

with small relative errors of order ε ∼ δ. To determine the steady pressure distribution 〈P1〉(ξ),

one may begin by noting that the associated time-averaged radial-velocity correction 〈U1〉 must

satisfy ∫ 1

0
〈U1〉dη = −

∫ 1

0
〈cos(τ)U0〉dη−Λ

∫ 1

0
〈R0U0〉dη, (2.46)
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obtained at order ε from (2.24). In addition, time-averaging the equation that results from

collecting terms of order ε in the momentum equation (2.17) provides

f = −
d〈P1〉

dξ
+

1
α2

∂2〈U1〉

∂η2 , (2.47)

where the known function

f (ξ,η) =
〈
ΛR0

∂U0
∂τ
+U0

∂U0
∂ξ
+V0

∂U0
∂η

+η sinτ
∂U0
∂η
+

1
α2

∂

∂η

[
(2cos(τ)− νΛΘ0)

∂U0
∂η

] 〉
(2.48)

can be re-expressed in ‘conservative’ form by adding to it the time average of the left-hand side

of the order-unity continuity equation (2.27), giving

f (ξ,η) =
1
ξ

∂

∂ξ

(
ξ
〈
U2

0
〉)
+
∂

∂η
〈V0U0〉

+η

〈
sin(τ)

∂U0
∂η

〉
+

2
α2

〈
cos(τ)

∂2U0

∂η2

〉
−
Λν

α2
∂

∂η

〈
Θ0

∂U0
∂η

〉
, (2.49)

both of which can be evaluated in terms of the expressions given in (2.35). Note that the terms in

the expressions for f that involve cos(τ) and sin(τ) stem from the change of variables described in

(2.26). Integrating the reduced momentum equation (2.47) with the no-slip conditions 〈U1〉 = 0

at η = 0,1 gives

〈U1〉

α2 = −
d〈P1〉

dξ
(1−η)η

2
+η

∫ η

0
f dη̃−

∫ η

0
f η̃dη̃−η

∫ 1

0
f (1− η̃)dη̃, (2.50)

where η̃ is a dummy integration variable. The associated radial flux,

1
α2

∫ 1

0
〈U1〉dη = −

1
12

d〈P1〉

dξ
−

1
2

∫ 1

0
η(1−η) f dη (2.51)
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can be substituted into (2.46) to give

〈P1〉
′ =

12
α2

[∫ 1

0
〈cos(τ)U0〉dη+Λ

∫ 1

0
〈R0U0〉dη

]
−6

∫ 1

0
η(1−η) f dη (2.52)

for the derivative of the time-averaged pressure 〈P1〉
′ = d〈P1〉/dξ. The above equation can be

readily integrated to give

〈P1〉(ξ)− 〈P1〉(1) = −
∫ 1

ξ
〈P1〉

′ dξ (2.53)

for the pressure variation from the unknown boundary value 〈P1〉(1). The above integral can be

evaluated with use of (2.52) along with the identity

〈
Re

(
eiτA

)
Re

(
eiτB

)〉
=

1
2

Re(AB∗) , (2.54)

which applies to any generic time-independent complex functions A and B, with the asterisk ∗

denoting complex conjugates. The resulting expression can be cast in the form

〈P1〉(ξ)− 〈P1〉(1) = 3Re

{
−

2i
α2 (X

∗
1 +ΛX2)H1+

i(γ−1)Λ
γα2 X2 (2H2+ νH3)

+X3H4+

[
X∗1
GU(1)

+CΛX2

]
H5+ΛX2

(
γ−1
γ
H6−H7

)
− X1H8

}
, (2.55)

involving the complex functions Xi(ξ) and the complex constantsH j (with i = 1−3 and j = 1−8),

whose expressions as functions of Λ and α2 are given in § 2.10.

2.6.2 An expression for the steady squeeze-film force (SSF)

Substitution of (2.53) into (2.45) yields

〈FL〉 = 〈Fi〉+ 〈Fe〉 , (2.56)
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where

〈Fi〉 = 2
∫ 1

0
[〈P1〉 − 〈P1〉(1)]ξ dξ and 〈Fe〉 = 〈P1〉(1) . (2.57a,b)

The first term on the right-hand side of (2.56), to be evaluated with use of

〈Fi〉 = −

∫ 1

0
〈P1〉

′ ξ2 dξ, (2.58)

obtained from (2.57a) using integration by parts, is associated with the pressure increase in the

gas film from its value at the disk edge. The integral in (2.58) can be expressed in the form

〈Fi〉 =3Re

{
−

2i
α2 (X

∗
1 +ΛX2)H1+

i(γ−1)Λ
γα2 X2 (2H2+ νH3)+X3H4

+

[
X∗1
GU(1)

+CΛX2

]
H5+ΛX2

(
γ−1
γ
H6−H7

)
−X1H8

}
, (2.59)

where the complex constants Xi = 2
∫ 1

0 Xi ξdξ (with i = 1−3) are given in § 2.10. The associated

variation of 〈Fi〉 with Λ and α2 is depicted in figure 2.3(b). Limiting expressions for 〈Fi〉 are to

be derived below for the cases Λ� 1, α2 � 1 and α2 � 1.

The second term 〈Fe〉 in (2.56), comparable in magnitude to 〈Fi〉, arises from the departure

of the time-averaged pressure at the disk edge from its ambient value in the surrounding stagnant

gas. The computation of this quantity requires consideration of the flow in the non-slender

near-edge region, a problem to be addressed in § 2.7.

2.6.3 Limiting cases of interest

The spatial variation of steady pressure along the film, 〈P1〉(ξ) − 〈P1〉(1), and its con-

tribution 〈Fi〉 to the levitation force, given respectively in (2.55) and (2.59), admit simplified

forms for limiting values of the two controlling parameters Λ and α2, to be investigated below.

Consistency between each limiting solution and the respective original expression was confirmed

computationally.
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Figure 2.4. Normalized variation of the time-averaged pressure along the slender film with
respect to its value at the edge. Curves are shown for (a) various values of σ = 12Λ/α2 under the
lubrication limit and (b) various values of Λ under the inviscid limit (see § 2.6.3).

The incompressible limit Λ� 1

In the limit Λ� 1, the gas behaves effectively as incompressible, in that the motion is

independent of the density variations, with the leading-order pressure and velocity distributions

reducing to

P0 =
1− ξ2

4
Re

[
eiτ

GU(1)

]
, U0 = −

ξ

2
Re

[
ieiτG

′
U(η)

GU(1)

]
, V0 = Re

[
ieiτGU(η)

GU(1)

]
, (2.60)

as follows from (2.35), whence the dimensionless stroke volume simplifies to

A =
1
2

���� βU
βU − tanh βU

���� . (2.61)

Using these expressions in (2.52) yields the parabolic steady overpressure distribution

〈P1〉(ξ)− 〈P1〉(1) =
3
8

(
ξ2−1

)
Re

[
|G′U |

2−2GUG
∗
U
′′

|GU(1)|2
+

2ηG′′U −4(1−G′U)
GU(1)

]
, (2.62)
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substitution of which in (2.57) gives

〈Fi〉 = Re
{[

30βU tanh βU tan βU −(24β2
U +3) tanh βU

+ (24β2
U −105) tan βU +4β3

U

] / [
128βU(βU − tanh βU)(βU − tan βU)

]}
, (2.63)

which is found to depend purely on the Stokes number through βU = α(1+ i)/
√

8.

The classical lubrication (Stokes) limit α2 � 1

When the Stokes number assumes small values α2 � 1, fluid acceleration driven by disk

oscillations becomes negligibly small relative to viscous diffusion of momentum. To preserve

nontrivial dominant balances in the momentum (2.17) and state (2.19) equations with α2→ 0,

the dimensionless pressure, temperature and density variables must be rescaled appropriately as

P̄
α2P

=
R̄
α2R

=
Θ̄

α2Θ
= 1 , (2.64)

substitution of which into the energy equation (2.18) gives ∂2Θ̄/∂Y2 = 0 for α2→ 0, whence

Θ̄ = 0 due to the isothermal conditions on the bounding surfaces. It follows then from the state

equation that P̄ = R̄, and from the reduced momentum equation ∂P̄/∂ξ = ∂2U/∂Y2 that the

radial velocity component varies across the gas layer in terms of the classical Poiseuille profile

U(ξ,Y,τ) = −
∂P̄
∂ξ

(H −Y )Y
2

, (2.65)

consistent with the non-slip conditions on the walls. Integrating the continuity equation (2.16)

across the gas film using the known expressions for R̄ and U yields

σ
∂(HP̄)
∂τ

−
H3

ξ

∂

∂ξ

[(
1+ ε

σ

12
P̄
)
ξ
∂P̄
∂ξ

]
−12sinτ = 0 , (2.66)
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the relevant isothermal squeeze-film equation, whence the radial pressure distribution can be

determined solely in terms of

σ =
12Λ
α2 =

12µaωa2

pah2
o

, (2.67)

a similarity parameter unique to the lubrication limit known as the squeeze number [8]. Solv-

ing (2.66) using the truncated expansion P̄ = P̄0+ εP̄1 yields

α2 A = 12
���� J1 (βσ)

βσJ0 (βσ)

���� , where βσ =
√
σ
(1+ i)
√

2
, (2.68)

for the characteristic value of the stroke volume and

〈P̄1〉(ξ)− 〈P̄1〉(1) =
3
σ

Re
{[

1−
J0(ξβσ)

J0(βσ)

] [
J0(ξβ

∗
σ)

J0(β
∗
σ)
+5

]}
(2.69)

for the time-averaged pressure distribution, the latter providing

α2〈Fi〉 =
15
σ

Re
[
1−

2J1 (βσ)

βσJ0 (βσ)

]
(2.70)

for the corresponding contribution to the levitation force. The limiting pressure distribution

(2.69) is visualized in figure 2.4(a) for selected values of σ. Since, as shall be proven in § 2.7.4,

the edge pressure 〈P̄1〉(1) is identically zero when α2 = 0, equation (2.69) recovers exactly the

results found by Taylor and Saffman [5], and (2.70) provides the full levitation force 〈FL〉 under

the first approximation of the classical lubrication limit, as can be seen from (2.56) and (2.57b).

In the sub-limit σ� 1, representing gas flow with small density variations, (2.68) and

(2.70) reduce to give

A→ 6/α2 and 〈Fi〉 → (15/4)Λ/α4 , (2.71)

signifying high relative stroke volumes and diminishing repulsive levitation forces. In the opposite

limit σ � 1, the relative stroke volume A assumes diminishing values due to high gaseous

compressibility while the dimensional repulsive force 〈FL〉 grows, in principle, unboundedly.
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This can be seen by rewriting the corresponding limiting expression, α2〈Fi〉 = α
2〈FL〉 → 15/σ,

in the normalized form 〈FL〉/(ε
2paπa2) → 5/4, whence it is apparent that 〈FL〉 grows with the

inverse square of the reducing mean air-gap width ho (recall from (2.2) that ε = b/ho).

The inviscid limit α2 � 1

When α2→∞, viscous diffusion, significantly outpaced by fluid acceleration, is confined

to vanishingly thin near-wall (Stokes) boundary layers. Note that the interference of transverse

acoustic waves in the gas film, of characteristic wavelength λt = ω
−1

√
γpa/ρa, can be neglected

under the limit of slender flow ho/a� 1 because the relevant ‘acoustic wavenumber’ K =
√
Λ/γ

is of order unity (i.e. ho/λt = Kho/a� 1 ). Upon relaxation of the non-slip boundary conditions,

the leading-order solution reduces to

P0 = Π cos(τ) , U0 = −Π
′ sin(τ) , V0 = −η sin(τ) , (2.72)

where the reduced pressure Π and its gradient Π′ have simplified to

Π(ξ) =
J0 (Kξ)

/
J0 (K)−1

K2 and Π
′(ξ) = −

J1 (Kξ)
/

J0 (K)

K
, (2.73)

yielding

A =
���� J1(K)
K J0(K)

����, (2.74)

〈P1〉(ξ)− 〈P1〉(1) =
J2

1 (K)− J2
1 (Kξ)+

[
J2

0 (K)− J2
0 (Kξ)

]2

4K2J2
0 (K)

(2.75)

and

〈Fi〉 =
1

4K2

[
1+

J1 (K)
J0 (K)

(
J1 (K)
J0 (K)

−
2
K

)]
, (2.76)

all of which depend solely on Λ through the acoustic wavenumber K =
√
Λ/γ. The limiting

pressure distribution (2.75) is visualized in figure 2.4(b) for selected values of Λ. Note that the
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predicted values of A and 〈Fi〉 become unbounded for critical values of K that represent resonant

states of inviscid gas dynamics. For example, for the value γ = 1.4 used in generating the results

plotted in figure 2.3, the first singularity develops at Λ = 8.096, symptoms of which are visible in

the form of local maxima of A and 〈Fi〉, observed in the figure near Λ = 6 for α2 = 50.

Unlike previous reduced descriptions of inviscid flow in rigid-body squeeze-film systems

[1, 19], radial pressure variations are not neglected in the limiting solution above.

2.7 Leading-order solution in the peripheral region

2.7.1 Problem formulation

As previously discussed, the non-slender flow at distances of order ho from the disk

edge involves velocities of order u ∼ v ∼ uc = εωa and spatial pressure differences of order

δ∆p ∼ ε∆p = ρau2
c . The description below employs the local rescaled coordinates X = (r −a)/ho

and Y = y/ho. The velocity must match with that found at the edge of the slender gaseous film,

given at leading order in (2.43). To facilitate the matching and reduce the parametric dependence

of the solution, it is convenient to introduce a shifted time variable τ̂ = τ+ϕ and use the local

velocity Auc in the definition of the dimensionless variables V̂ = (Û,V̂) = [u/(Auc),v/(Auc)] and

P̂ = (p− pa)/(ρa A2u2
c). Substitution of these definitions into the reduced local conservation

equations (2.13) and (2.14) gives, with errors of order ε ∼ δ,

∇ · V̂ = 0, (2.77)

Ŝt
∂V̂
∂τ̂
+ V̂ · ∇V̂ = −∇P̂+

Ŝt
α2∇

2V̂, (2.78)

where ∇ = (∂/∂X,∂/∂Y ). As a result of the choice of velocity scale, the Strouhal number enters

above in the normalized form

Ŝt =
ho/(Auc)

ω−1 =
δ/ε

A
. (2.79)
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This additional parameter is of order unity in the distinguished limit ε ∼ δ considered here, with

R̂e = α2/Ŝt = ρa Aucho/µa being the corresponding Reynolds number.

Equations (2.77) and (2.78) must be integrated for each of the three geometric configura-

tions of the edge (see figure 2.1), with the condition that the velocity must be zero on the walls:

V̂ = 0 at



(X ≤ 0,Y = 1) ; Y = 0 ; (X = 0,Y ≥ 1) for piston–wall

(X ≤ 0,Y = 0,1) ; (X = 0,Y ≤ 0 |Y ≥ 1) for piston–piston

(X ≤ 0,Y = 1) ; Y = 0 for disk–wall,

(2.80)

and must vanish in the open atmosphere, where the pressure must correspondingly approach its

ambient value, so that

V̂→ 0 and P̂→ 0 as X2+Y2→∞ . (2.81)

Matching with the velocity found at the edge of the slender gas layer, given at leading

order in (2.43), provides the additional boundary condition (common to all three geometries)

Û −Re

ieiτ̂

1−
cosh

[
α(1+i)
2
√

2
(2Y −1)

]
cosh

[
α(1+i)
2
√

2

] 
 = V̂ = 0 as X→−∞ for 0 ≤ Y ≤ 1, (2.82)

substitution of which into the horizontal component of the momentum equation (2.78) provides

an accompanying pressure distribution of the general form

P̂ = Ŝt cos(τ̂)X + P̂∞(τ̂) as X→−∞ for 0 ≤ Y ≤ 1, (2.83)

involving, as a consequence of integration, a time-dependent pressure offset P̂∞(τ̂). The time

average of this offset, 〈P̂∞〉 = P̂e, will be seen to play a fundamental role in the final step of the

asymptotic matching process required to close the computation of the levitation force.
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Figure 2.5. Streamlines for α2 = 20, Ŝt = 0.5 (R̂e = 40) in the peripheral flow regions of the three
geometric configurations presented in figure 2.1, shaded to represent the flow speed (Û2+ V̂2)1/2.
The images of outflow along the top row (a, b and c) correspond to values of time τ̂ = 2nπ− π/2
and those representing inflow (d, e and f) correspond to τ̂ = 2nπ+ π/2, where n ∈ N.

2.7.2 Selected numerical results

The solution in the near-edge region depends on two parameters, namely, the Strouhal

number Ŝt, which measures unsteady effects in (2.78), and the Stokes number α2, which measures

viscous forces in (2.78) and enters also through the boundary condition (2.82). The numerical

integration was based on the weak formulation of the Navier–Stokes equations (2.77) and (2.78).

A Lagrange-Galerkin second-order temporal finite difference scheme using the rescaled time

variable τ̂/Ŝt was employed along with P2/P1 Taylor-Hood finite elements for velocity and

pressure. The resulting system of partial difference equations was implemented in the open source

software FreeFEM [79] in conjunction with the MUMPS framework (Multifrontal Massively

Parallel sparse direct Solver). Further details regarding the numerical method are available in an
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exemplary analysis by Carpio, Prieto and Vera [80].

Three computational meshes were designed to represent the different geometrical config-

urations of the periphery (see figure 2.1), each consisting of non-slip boundaries representing the

solid surfaces listed in (2.80), an inner boundary at−X = `n� 1 for 0 ≤Y ≤ 1, where the matching

velocity (2.82) was imposed, and a circular-arc outer boundary at (X2+Y2)1/2 = `p � 1 repre-

senting the unperturbed surroundings. The advective boundary condition Ŝt ∂V̂/∂τ+ V̂ · ∇V̂ = 0

was applied along this finite ambient boundary in place of the original condition (2.81) to assist

numerical convergence. To ease constraints on spatial discretization, the disk in the disk–wall

configuration was given a finite relative thickness of 0.1. Each triangulated grid was refined near

the mouth of the gas film X = 0 to allow better characterization of the anticipated shedding of

vorticity into the surroundings. Convergence tests were conducted to verify the validity of each

mesh with regards to the choice of dimensions `n and `p and of spatial and temporal resolution.

Each computation was initialized with stagnant conditions (V̂ = 0, P̂ = 0) and carried out

until a 2π periodic solution was reached, the criterion for convergence being that the relative

difference between the computed values of the constant P̂e (see below (2.83)) be less than

or approximately 0.5% over subsequent cycles. While the number of cycles necessary for

convergence was found to vary weakly with the two governing parameters, the time step required

for stability became restrictively small for large values of the Reynolds number, R̂e =O(100).

Illustrative results obtained for α2 = 20 and Ŝt = 0.5 for the three geometrical configura-

tions (piston–wall, piston–piston and disk–wall) are shown in figure 2.5. The plots represent

distributions of flow speed and associated instantaneous streamlines at selected instants of time

τ̂ differing by a semi-period of the driving oscillations (2.82). The results shown in panels

(a)–(c) are for τ̂ = 2nπ− π/2, corresponding to outflow, while those in panels (d)–(f) are for

τ̂ = 2nπ+ π/2, corresponding to inflow (where n is any positive natural number).

Although the driving velocity (2.82) is time-harmonic, the nonlinearity induced by

convective acceleration in (2.78) yields non-harmonic velocities V̂ and pressures P̂ in the region

of fluid exchange between the gaseous film and the stagnant surroundings. This non-harmonic
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periodicity, clearly noticeable for the Reynolds number R̂e = 40� 1 represented in figure 2.5,

is evidenced by the asymmetry between the streamlines depicting outflow (panels (a)–(c)) and

those depicting inflow (panels (d)–(f)), associated with a nontrivial distribution of the resulting

time-averaged velocity 〈V̂〉. The degree of nonlinearity can also be anticipated to hold strong

correlation with the magnitude of the time-averaged pressure 〈P̂〉, which approaches the limiting

value 〈P̂〉 = P̂e in the gas film as X→−∞, as indicated below (2.83).

2.7.3 Pressure drop across the peripheral region

The constant P̂e, which represents the time-averaged pressure drop across the near-edge

region, was determined as part of the numerical integration. Its value is related to the unknown

boundary value 〈P1〉(1) of the pressure distribution in the gaseous film, which determines the

second contribution 〈Fe〉 = 〈P1〉(1) to the levitation force (2.56). Their relation can be established

by noting that the variables P and P̂ satisfy P = εA2P̂, as follows from their respective definitions.

Substituting into this relation the two-term expansion for the film pressure P = P0+εP1, evaluated

at ξ = 1, and the limiting form of the peripheral pressure distribution for X→−∞ (2.83) provides

the general matching condition

P0

���
ξ=1
+ εP1

���
ξ=1
= εA2 [

Ŝt cos(τ̂)X + P̂∞(τ̂)
]
, (2.84)

valid up to O(ε), whence we can deduce that matching the pressure fields in the slender film

and in the near-edge region requires firstly that P0 = 0 at ξ = 1, which is the boundary condition

already imposed for the inner problem at leading order in (2.32), and additionally that

〈Fe〉 = 〈P1〉(1) = A2P̂e, (2.85)

where A = |Π′(1)|(Λ,α2) is the dimensionless stroke volume represented in figure 2.3(a). The

computation of P̂e is therefore essential to enable the evaluation of the force experienced by the
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Figure 2.6. Variation of the steady peripheral pressure drop P̂e with α2 and (a) selected values
of Ŝt, for the piston–wall configuration, and (b) the three geometrical configurations indicated in
figure 2.1, for Ŝt = 5. The dashed curve in panel (a) corresponds to the asymptotic prediction
given in (2.97) corresponding to α2� 1, while the horizontal dashed lines in panel (b) correspond
to the asymptotic predictions given in (2.101) and (2.106) for α2 � 1 and extreme values of Ŝt.

disk. It is worth noting that the expression for the steady squeeze-film force (2.56), originating

from (2.12), does not account for the variations of 〈P̂〉 from P̂e that occur inside the film at

distances −X ∼ 1 from the edge (i.e. a− r ∼ ho). This higher-order effect, not considered here,

could be incorporated into the analysis to provide a small relative correction, of order δ ∼ ε, to

the steady force 〈FL〉.

The variation of P̂e with α2 corresponding to the piston–wall geometry is represented in

figure 2.6(a) for selected values of Ŝt. As can be seen, P̂e is always negative, indicating that the

time-averaged pressure near the entrance of the gas film is always smaller than the ambient value,

with the magnitude of the pressure drop becoming larger for larger values of Ŝt. The variation of

the curves P̂e(α
2) with Ŝt diminishes rapidly as the latter parameter approaches values of O(5).

In such cases, it may be of practical interest to expedite the computation of P̂e by considering the

limit of large Strouhal numbers Ŝt→∞, as done in § 2.7.6 below.

As demonstrated by the results shown in figure 2.6(b) for Ŝt = 5, the dependence of
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P̂e on the geometrical configuration is fairly weak, well in qualitative accordance with the

experimental observations of [38]. The curves corresponding to the piston–piston and piston–

wall configurations are nearly indistinguishable, while that for the disk–wall geometry exhibits

departures of little over 5% from the other two curves.

It is worth noting that the dependences of P̂e on Ŝt and on the geometrical configuration

entirely disappear as the Stokes number becomes small, where all solution curves adopt an

identical parabolic shape. Also of interest is that, as seen in figure 2.6(b), the variation of P̂e with

α2 is in general non-monotonic, with the magnitude of the pressure drop reaching a maximum at

an intermediate value of α2 before reducing to approach a finite asymptotic value as α2→∞.

The limiting behaviors of the solution for α2� 1 and α2� 1 are to be further investigated below.

2.7.4 Creeping flow for α2� 1

Since airflow in the peripheral region is driven by the radial flow emanating from the

slender film, the analysis of the limit α2 � 1 begins by expressing the driving edge velocity

profile (2.82) as a power-series expansion in terms of the small parameter α2,

Û = α2
[
1
2

Y (Y −1)cos τ̂+α2S1(Y )sin τ̂+α4S2(Y )cos τ̂+ · · ·
]
, (2.86)

where S1(Y ), S2(Y ), · · · are polynomial functions of increasing degree. Since Û ∼ α2 while

P̂ ∼ 1, the latter following from the balance between viscous and pressure forces in (2.78), it

appears convenient to introduce perturbation expansions of the form


V̂ = α2(V̂0+α

2V̂1+α
4V̂2+ · · · )

P̂ = P̂0+α
2P̂1+α

4P̂2+ · · · .

(2.87)

Substituting the above expressions into (2.77) and (2.78) and collecting terms in powers of α2

leads to a hierarchy of problems that can be solved sequentially.
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At leading order, both V̂0 and P̂0 are linearly proportional to cos τ̂. The solution can be

simplified by introduction of the time-independent reduced variables

Ṽ0(X,Y ) = V̂0/cos τ̂ and P̃0(X,Y ) = P̂0/(Ŝt cos τ̂), (2.88)

which satisfy

∇ · Ṽ0 = 0, 0 = −∇P̃0+∇
2Ṽ0, (2.89)

with no-slip boundary conditions (2.80) at the walls, the stagnant-flow condition (2.81) in the

ambient atmosphere, and

Ṽ0→
[ 1

2Y (Y −1),0
]

as X→−∞ for 0 ≤ Y ≤ 1, (2.90)

the latter corresponding to a pressure gradient ∂P̃0/∂X = 1, consistent with the first term in (2.83).

The parameter-free problem defined above, corresponding to steady Stokes flow at the mouth

of a planar channel, was solved numerically to determine the function Ṽ0(X,Y ) for the three

different geometries considered here. Note that the associated pressure P̂0 = Ŝt P̃0(X,Y )cos τ̂ has

a vanishing time-averaged value 〈P̂0〉 = 0, indicating that the pressure drop P̂e is identically zero

at this order.

At the following order (α2), the conservation equations are

∇ · V̂1 = 0,
∂V̂0
∂τ̂
= −

1
Ŝt
∇P̂1+∇

2V̂1, (2.91)

with the first-order correction for the velocity satisfying

V̂1→ [S1(Y )sin τ̂,0] as X→−∞ for 0 ≤ Y ≤ 1. (2.92)

Inspection of the above equations reveals that V̂1 and P̂1 are both linearly proportional to sin τ̂,
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so that their time-averaged values are also identically zero. Hence, the computation of the

pressure drop P̂e requires consideration of the problem that arises at O(α4), which comprises the

conservation equations

∇ · V̂2 = 0, Ŝt
∂V̂1
∂τ̂
+ V̂0 · ∇V̂0 = −∇P̂2+ Ŝt∇2V̂2, (2.93)

with V̂2 satisfying the matching condition

V̂2→ [S2(Y )cos τ̂,0] as X→−∞ for 0 ≤ Y ≤ 1. (2.94)

Since V̂0 = Ṽ0(X,Y )cos τ̂ and 〈cos2 τ̂〉 = 1/2, the nonlinear convective acceleration yields a

nonzero contribution 〈V̂0 · ∇V̂0〉 =
1
2Ṽ0 · ∇Ṽ0 when taking the time average of the above problem,

resulting in a steady-streaming motion with nonzero values of 〈V̂2〉 and 〈P̂2〉. To emphasize

the parameter-free nature of the resulting time-averaged pressure distribution, it is of interest to

incorporate the Strouhal number in the definition of the steady-streaming velocity V̂SS = Ŝt〈V̂2〉,

to be determined, along with the pressure P̂SS = 〈P̂2〉, by integration of

∇ · V̂SS = 0,
1
2

Ṽ0 · ∇Ṽ0 = −∇P̂SS+∇
2V̂SS, (2.95)

with boundary conditions V̂SS = 0 at the solid boundaries, V̂SS = P̂SS = 0 in the surrounding

atmosphere, and

V̂SS→ 0 as X→−∞ for 0 ≤ Y ≤ 1. (2.96)

Numerical integration of the above hierarchy of problems, with use of an advective

condition at the finite outer boundary analogous to that described in § 2.7.2, determines, in

particular, the (negative) value P of P̂SS as X→−∞ for 0 ≤ Y ≤ 1, which yields

P̂e = Pα
4 for α2 � 1. (2.97)
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With Ṽ0 being also independent of Ŝt, the solution depends only on the geometrical configuration.

The resulting values of P were found to be effectively identical for all three configurations, i.e.

P = −(2.67803, 2.67815, 2.67714)×10−3, (2.98)

for the piston–wall, piston–piston, and disk–wall configurations, respectively, indicating that,

for α2 � 1, the pressure drop across the peripheral region is fundamentally related to the flow

between the two parallel surfaces, while the flow outside exerts a lesser influence. To illustrate

the accuracy of the asymptotic results for α2 � 1, the parabolic prediction (2.97) is compared

in figure 2.6(a) with the results of the numerical integrations of the complete incompressible

Navier–Stokes equations (2.77) and (2.78).

2.7.5 Inviscid flow for α2� 1

In the limit of large Stokes numbers, the conservation equations describing peripheral

flow (2.77) and (2.78) reduce to the Euler equations

∇ · V̂ = 0, Ŝt
∂V̂
∂τ̂
+ V̂ · ∇V̂ = −∇P̂, (2.99)

subject to the condition of no penetration along the solid boundaries and the oscillating plug-flow

velocity

V̂→ [−sin τ̂,0] as X→−∞ for 0 ≤ Y ≤ 1, (2.100)

the latter following from (2.82) when α2 � 1. Vorticity is confined to thin layers of relative

thickness α−1, including near-wall (Stokes) boundary layers and a vortex sheet of evolving shape

(two for the piston–piston geometry) originating at the rim of the disk/piston. In this limit

α2 � 1, numerical integration of the associated time-dependent free-boundary problem, needed

to determine the nearly inviscid value P̂i(Ŝt) of P̂e, is a difficult task, not to be pursued below.

Instead, we shall focus on the solutions arising in the two limiting cases Ŝt � 1 and Ŝt � 1,
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which are amenable to an analytical description.

In the quasi-steady limit Ŝt � 1, the local acceleration term in (2.99) can be neglected in

the first approximation, so that the familiar Bernoulli’s equation P̂+ |V̂|2/2 = constant applies

along streamlines. The solution that emerges can be anticipated to be drastically different for

inflow (i.e. 0 < τ̂ < π) and outflow (i.e. π < τ̂ < 2π). During the outflow semi-cycle, the stream

along the gas film separates at the exit section to form a planar jet that discharges with parallel

streamlines surrounded by nearly stagnant ambient fluid. In that case, the pressure along the

film remains equal to the ambient pressure, i.e. P̂ = 0. For inflow, on the other hand, the

ambient gas accelerates from rest along streamlines approaching the film edge from all directions.

Conservation of stagnation pressure P̂+ |V̂|2/2 = 0 yields P̂ = −sin2(τ̂)/2 for the pressure along

the film away from the entrance. Consequently, since P̂ = 0 in the gas film during outflow (i.e.

for π ≤ τ̂ ≤ 2π), the time-averaged pressure drop, obtained by taking the time average of the

gas-film pressure over a period, reduces to

P̂i = −
1

2π

∫ π

0

1
2

sin2 τ̂dτ̂ = −
1
8

for Ŝt � 1. (2.101)

In the opposite case, the nearly acoustic limit of large Strouhal numbers Ŝt � 1, it is

convenient to introduce perturbation expansions in integral powers of the inverse of the Strouhal

number 
V̂ = V̂0+ Ŝt

−1V̂1+ · · ·

P̂ = Ŝt(P̂0+ Ŝt
−1

P̂1+ · · · ) ,

(2.102)

based on the anticipated scales of pressure and velocity. At leading order, we find the linear

equations

∇ · V̂0 = 0,
∂V̂0
∂τ̂
= −∇P̂0, (2.103)
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to be integrated with the boundary condition

V̂0→ [−sin τ̂,0] as X→−∞ for 0 ≤ Y ≤ 1. (2.104)

The associated velocity field is potential (irrotational) and may possibly be determined for each

geometrical configuration with use of conformal mapping techniques [81, 82]. Note that, since

P̂0 ∝ cos τ̂, the time-averaged overpressure is identically zero at this order. The value of P̂i can

be obtained by taking the time-average of the momentum equation that emerges at the following

order,
∂V̂1
∂τ̂
+∇

(
P̂1+
|V̂0 |

2

2

)
= 0, (2.105)

which yields 〈P̂1〉 + 〈|V̂0 |
2〉/2 = constant, which can be evaluated in the ambient gas to give

〈P̂1〉 = −〈|V̂0 |
2〉/2 for the spatial distribution of time-averaged pressure. Upon evaluating 〈P̂1〉

inside the slender film with use of (2.104), we finally obtain the limiting value

P̂i = −
1

2π

∫ 2π

0

1
2

sin2 τ̂dτ̂ = −
1
4

for Ŝt � 1. (2.106)

The asymptotic values (2.101) and (2.106) serve as bounds of the large–α2 asymptotic

behavior of P̂e. Both values are indicated using dashed lines in figure 2.6(b). It should be noted

that these bounds do not apply for finite values of the Stokes number, for which the computation

of P̂e requires numerical integration of the problem formulated in § 2.7.1, yielding values of −P̂e

that may exceed 1/4, as seen in figure 2.6(b).

2.7.6 The bounding unsteady viscous limit Ŝt � 1

As discussed in § 2.7.3, the curves of P̂e displayed in figure 2.6(a) seem to approach

asymptotically a limiting form for increasing values of the rescaled Strouhal number Ŝt. To

accelerate the estimation of the peripheral pressure drop for values of Ŝt greater than approximately

5, it is of interest to solve the governing equations (2.77) and (2.78) in the limit Ŝt � 1.
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Since, in the first approximation (Ŝt
−1
= 0), the associated problem is linear, it is necessary

to express the relevant flow variables as perturbation expansions of the same form given in

(2.102), whence the time-averaged quantities of interest can be found at a higher order. At leading

order, the reduced equations

∇ · V̂0 = 0 and
∂V̂0
∂τ̂
= −∇P̂0+

1
α2∇

2V̂0 (2.107)

must be integrated numerically as described in § 2.7.2, supplemented by the familiar velocity

matching condition (2.82) for X→−∞ and the reduced advective relaxation condition ∂V̂0/∂τ̂ = 0

for X2+Y2→∞. Applying the method of separation of variables and presuming solutions of

the form

V̂0 = Re
{
ieiτ̂ Ṽ0(X,Y )

}
and P̂0 = Re

{
eiτ̂ P̃0(X,Y )

}
(2.108)

eliminates the time dependence in the linear problem above and provides the reduced equations

∇ · Ṽ0 = 0 and − Ṽ0 = −∇P̃0+
1
α2∇Ṽ0 , (2.109)

which must be supplemented by the reduced matching condition

Ṽ0 =

1−
cosh

[
α(1+i)
2
√

2
(2Y −1)

]
cosh

[
α(1+i)
2
√

2

] , 0

 as X→−∞ for 0 ≤ Y ≤ 1 . (2.110)

Since the leading-order flow variables vary harmonically with time and yield no steady

contribution, the reduced leading-order velocity distribution Ṽ0 must be substituted into the

time-averaged equations that emerge at the following order,

∇ · 〈V̂1〉 = 0 and 〈V̂0 · ∇V̂0〉 =
1
2

Re
{
Ṽ0 · ∇Ṽ∗0

}
= −∇〈P̂1〉+

1
α2∇

2〈V̂1〉 , (2.111)

where the identity (2.54) has been used to rewrite the known convective term on the left-hand side
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Figure 2.7. Variation with α2 of the dimensionless steady peripheral pressure drop P̂e for the
“disk–wall” geometrical configuration in the unsteady viscous limit Ŝt � 1 (2.112), compared
with the corresponding solution for Ŝt = 5.

of the momentum equation. Numerical integration of (2.111) using a trivial matching condition

for time-averaged first-order velocity, 〈V̂1〉 = 0 as X→−∞, and the familiar far-field relaxation

conditions provides

P̂e(α
2) = 〈P̂1〉(X→−∞) for Ŝt � 1 , (2.112)

for the dimensionless peripheral pressure drop under the limit of large Strouhal numbers.

The resulting variation of P̂e with α2 is compared in figure 2.7 with that for Ŝt = 5, for

the disk–wall geometry. In light of the similarity between the two curves, it must be mentioned

that the total computational time required to solve the two reduced, time-independent linear

problems (2.107) and (2.111), between 5 and 30 seconds, is substantially lower than that required

to integrate the full nonlinear equations (2.77) and (2.78), between 20 and 30 minutes, with

reasonable accuracy.

Note that, for moderately large values of the Stokes number 0 ≤ α2 . 150, all the curves

shown for finite values of Ŝt in figure 2.6 are bounded below by the curve for Ŝt � 1 shown in

figure 2.7, which effectively denotes the maximum possible drop in the dimensionless steady

pressure 〈P〉 across the peripheral region. The limiting solution above can thus supplement

rapid computation of the greatest possible reduction in the repulsive force 〈FL〉 associated with
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Figure 2.8. The variation with α2 and Λ of the time-averaged force 〈FL〉 defined in (2.56)
and (2.57a,b), for Ŝt = 5 and the "piston–wall" geometric configuration, with repulsive forces
〈FL〉 > 0 colored red and attractive forces 〈FL〉 < 0 colored blue. Computations are carried out
using ν = 0.77, Pr = 0.7 and γ = 1.4 (see § 2.3 for clarification). The dotted curves represent
contours of zero force 〈FL〉 = 0.

pressure relaxation beyond the film edge ξ = 1, if needed, for a given value of α2.

2.8 Discussion: Parametric dependences of the time-
averaged squeeze-film levitation force

As revealed by (2.56), the normalized, time-averaged repulsive force 〈FL〉 generated by an

axisymmetric squeeze-film system has two distinct contributions, 〈Fi〉 and 〈Fe〉, whose definitions

relate closely to the distinct flow regions identified in § 2.3. The first contribution, always positive,

accounts for spatial deviations of the time-averaged pressure 〈p〉 along the gas film from that at

the edge 〈p〉(r = a). Its value, the variation of which is represented in figure 2.3(b) in a parametric

domain spanned by the Stokes number α2 (2.3) and the compressibility parameter Λ (2.4), can be
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evaluated using equation (2.59). The second contribution 〈Fe〉 = A2P̂e, always negative, relates

to the drop of the time-averaged pressure (from the ambient value pa) across the small, peripheral

region surrounding the edge of the squeeze film. Its value can be computed as the product of the

square of the reduced stroke volume displaced by the oscillating disk/piston A = |Π′(1)|, given in

equation (2.44) and plotted in figure 2.3(a) as a function of Λ and α2, and the reduced pressure

drop P̂e, represented in figure 2.6 as a function of α2 and Ŝt. Note that, while 〈Fi〉 and A can be

calculated using the explicit expressions provided in § 2.10, the computation of P̂e requires, in

general, numerical integration of the nonlinear, incompressible Navier–Stokes equations (2.77)

and (2.78).

Since the two competing contributions present in (2.56) have comparable orders of

magnitude, their combined effect may, in principle, result in net forces that are either repulsive

(if 〈FL〉 > 0) or attractive (if 〈FL〉 < 0) depending on the values of the controlling parameters.

The typical dependence of 〈FL〉 on α2 and Λ is exemplified in figure 2.8 for the “piston–wall”

geometry with Ŝt = 5. Positive values of the force, corresponding to repulsion, are colored red,

while negative values, representing attraction, are colored blue, with darker shades signifying

larger magnitudes |〈FL〉| in both cases. The dotted curves, across which 〈FL〉 transitions in sign,

are referred to in the proceeding discussion as “neutral contours”.

It is natural to note from figure 2.8(a) that, under the classical lubrication limit α2→ 0,

which has been the subject of thorough investigation for well over half a century, the steady

squeeze-film force 〈FL〉 is repulsive for all Λ and unaffected by peripheral flow effects, as

discussed in § 2.6.3. Figure 2.9(a) portrays the convergence of the viscoacoustic force, computed

with Ŝt = 1 for the piston–piston edge geometry, to the classical lubrication solution for decreasing

values of α2. The predominance of repulsive forces extends also to order-unity values of α2,

provided that the compressibility parameter remains above a critical value Λc, which rises for

increasing values of α2. The resulting function Λc(α
2) defines a neutral contour C1 that marks a

transition from repulsion to attraction.

Of particular interest is the limiting form of C1 near the origin of the diagram, which
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Figure 2.9. Verification of the predicted steady levitation force (denoted by solid curves) with
(a) the classical limiting lubrication solution obtained from [5] and (b) time-dependent CFD
simulations conducted by [6] (both denoted by dots). For the former case, the dimensionless
force is plotted against the squeeze number and for the latter, the dimensional force is plotted
against the mean gap width.

corresponds to weakly compressible systems operating near the lubrication limit. The associated

behavior of the force 〈FL〉 can be obtained by combining the explicit viscoacoustic forms of the

inner contribution 〈Fi〉(α
2,Λ) and the stroke volume A(Λ,α2) with the relevant limiting form

of the peripheral pressure drop P̂e = −Pα
4, where −P ' 2.68×10−3 for all three geometrical

configurations, as reported earlier below (2.97). The computed force is depicted in figure 2.8(c),

whence it is apparent that C1 approaches the origin as the parabola

Λc = kα4 , with k ≈ 0.01 , (2.113)

represented by the thick yellow line 1. It is remarkable that this fundamental parametric relation,

applicable to squeeze-film systems with relatively low oscillation frequencies ω� (µa/ρa)/(h2
o),

1In the publication where this result was originally communicated [60], the curvature k of the parabola (2.113)
was miscalculated (as k ≈ 0.026) due to the use of the weakly compressible lubrication approximations (2.71) for
the quantities 〈Fi〉 and A, which do not account for departures of the Stokes number α2 from zero. To write an
equation that rigorously defines k, one would need to derive simplified forms of 〈Fi〉 and A in the distinguished
limit Λ/α2 ∼ α2 � 1, whose order of accuracy is consistent with that of the limiting form (2.97) of P̂e, and set the
resulting expression for 〈FL〉 equal to zero.
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is independent of both the Strouhal number and—effectively—the specific geometry that pertain

to the peripheral region. Using (2.113) together with the definitions of α2 (2.3) and Λ (2.4)

provides

hc ≈ 3.162
(aµa/ρa)

1/2

(pa/ρa)
1/4 , (2.114)

for the critical value of the mean gap width at which the force switches from repulsion (for

ho < hc) to attraction (for ho > hc). The above estimate (2.114) reveals that, for such systems, the

conditions required for a transition are effectively independent of the oscillation frequency.

The region of the α2–Λ parametric domain that lies below C1, which encompasses the

strictly incompressible case Λ = 0, consists entirely of weakly attractive forces. Interestingly, the

dimensionless attractive force in the incompressible limit, to be computed from 〈FL〉 = 〈Fi〉+A2P̂e

with use made of (2.63) and (2.61) to evaluate 〈Fi〉 and A2, is seen to approach constant limiting

values for α2 � 1 and α2 � 1. In the former case α2 � 1, with 〈Fi〉 = 33/560, A = 6/α2, and

P̂e = Pα
4, the latter indicated in (2.97), it follows that

〈FL〉 =
33

560
+36P ' −0.0375, (2.115)

whereas in the latter case α2 � 1, with 〈Fi〉 = 1/32, A = 1/2, and P̂e approaching its inviscid

value P̂i(Ŝt), the solution reduces to

〈FL〉 =
1+8P̂i(Ŝt)

32
, (2.116)

a function of the Strouhal number that is necessarily negative since P̂i lies in the range

−1/4 < P̂i < −1/8, bounded by the limiting values given in (2.101) and (2.106). It must be noted

that this limiting solution for Λ = (ωa)2/(pa/ρa) = 0 may be used describe gaseous squeeze-film

systems that operate with relatively low frequencies ω and/or small surface areas ∼ a2, but does

not characterize systems that operate within a liquid [83]. Modeling, for instance, underwater

ultrasonic SFL systems that display the familiar transition between repulsion and attraction [12]
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Figure 2.10. Variation with Λ of (a) the steady squeeze-film force in the inviscid limit (2.117)
for different values of P̂i(Ŝt), computed using γ = 1.4. Represented in the bottom row are (b) the
first zero of the force, which exists for all Ŝt (i.e. any value of P̂i in the range −1/4 < P̂i < −1/8),
and (c,d) subsequent zeros, which emerge for increasing critical values of Ŝt (i.e. decreasing
critical values of P̂i given by P̂i ' −0.2412,−0.2466, · · · ).

requires re-formulation of the flow problem in the film (§ 2.4), perhaps with suitable descriptions

of hydroacoustic wave propagation and cavitation [84], in place of the presently employed

equation of state p/pa = (ρ/ρa)(T/Ta) for ideal gases.

As revealed by figure 2.8(a), the critical value Λc that defines the contour C1 approaches

a limiting value Λ∞ as the Stokes number approaches infinity. Note that Λc denotes the inverse

of the relative acoustic wave speed in the gas film for which the steady pressure variations along

the film and near its edge provide cancelling contributions to the film force. Thus, the observed

asymptotic behavior of Λc for α2→∞ is consistent with the fact that, in the limit of nearly

inviscid flow, the relative wave speed necessary to produce such a cancellation must cease to
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depend on viscosity, effects of which are confined to near-wall Stokes layers of small relative

thickness δSL ∼ α
−1� 1. The region of the parametric domain that lies above C1 consists largely

of repulsive forces, but is interrupted in figure 2.8(a) by a second neutral contour C2, which

encloses a peninsular region of attraction that develops for α2 & 400 and Λ ' 36. To determine

the value of Λ∞ and explain the existence of this additional region of attraction, it is of interest to

evaluate 〈FL〉 = 〈Fi〉+ A2P̂e in the inviscid limit α2→∞. Using (2.74) and (2.76) gives

〈FL〉 =
1

4K2

[
1−

2J1(K)
K J0(K)

]
+

(
P̂i +

1
4

) [
J1(K)

K J0(K)

]2
, (2.117)

where P̂i(Ŝt) is the inviscid value of P̂e, investigated in § 2.7.5, and K =
√
Λ/γ is the relevant

acoustic wavenumber (with γ being the ratio of specific heats). The above expression is plotted

in figure 2.10 for selected values of P̂i. As can be seen, the number of zeros, which determines

the number of parametric regions of attraction, depends on the value of P̂i, which in turn is

a decreasing function of Ŝt that evolves from P̂i = −1/8 for Ŝt � 1 to P̂i = −1/4 for Ŝt � 1.

Regardless of the value of Ŝt (i.e. for all values of P̂i in the range −1/4 < P̂i < −1/8), there

always exists at least one zero, corresponding to the asymptotic value Λ∞ of Λc as α2→∞. As

suggested in figure 2.10(b), this asymptotic value approaches Λ∞ = 0 for Ŝt � 1 and Λ∞ ' 8.096

for Ŝt � 1, the latter coinciding with the location of the first singularity of (2.117), associated

with the first zero of J0(
√
Λ/γ) for γ = 1.4. As a result, the large-α2 behavior of the principal

neutral contour C1 depicted in figure 2.8 can be expected to vary significantly as Ŝt approaches

lower values. Specifically, for Ŝt � 1, the contour will asymptotically approach the horizontal

axisΛ = 0 as α2→∞. In contrast, the shape of C1 for small and moderate Stokes numbers α2 ∼ 1

can be anticipated to vary weakly with Ŝt, as indicated by the discussion surrounding (2.113).

As seen in figure 2.10(c), two more zeros, bounding the second neutral contour C2,

emerge when the value of P̂i decreases below P̂i ' −0.2412. Additional zeros, corresponding

to new regions of attraction, appear for decreasing values of P̂i (i.e. increasing values of Ŝt),

so that, for instance, the existence of a third neutral contour requires P̂i . −0.2466, as revealed
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by figure 2.10(d). The number of zeros diverges as P̂i →−1/4 (i.e. as Ŝt→∞), creating an

infinite cascade of peninsulas of attraction. In this connection, it is worth pointing out that,

while the existence of the primary neutral contour C1 for all relevant values of P̂i (i.e. all finite

Ŝt and all three geometries) is a key finding with important consequences for the operation of

practical systems, the anticipated relevance of the additional neutral contours C2, C3, . . . and the

corresponding regions of attraction is somewhat limited, since they only develop for very large

values of α2 and Λ.

Recently, time-dependent CFD simulations of the piston–piston squeeze-film problem

have been conducted (using the COMSOL ‘Multiphysics’ software) by [6], who found that

assuming adiabatic, constant-viscosity flow (corresponding to Pr → ∞ and ν = 0) yields

reasonable accuracy relative to their experimental data. In their 2D axisymmetric computations,

the dimensional steady squeeze-film force 〈FL〉 was quantified for various mean separation

distances and fluid viscosities, while keeping all other dimensional parameters constant. In

particular, in terms of the dimensionless governing parameters of our formulation, their operating

conditions pertain to the case 0.05 . ε . 0.25, 2 . α2 . 65, Λ ' 0.334 and 0.07 . Ŝt . 5.12.

Displayed in figure 2.9(b) is a comparison of their results with those of the present asymptotic

formulation, the latter computed using Pr = 104 and ν = 0, which demonstrates clearly the

transition from strong repulsion to weak attraction when the mean separation width ho is increased

above its threshold value hc. It must be noted that, although the agreement between our theoretical

results and the numerical results of [6] is generally satisfactory, it deteriorates in the repulsive

regime ho < hc because the relative amplitude ε, the utilized perturbation parameter, is no longer

small, compromising the accuracy of the asymptotic predictions.

2.9 Conclusions

A unifying quasi-analytical model of slender, gas-lubricated bearings was developed

in this study to predict the steady squeeze-film force acting on an axisymmetric rigid body
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undergoing asymptotically small-amplitude time-harmonic axial oscillations in the vicinity of a

parallel surface. Three geometrical configurations involving a disk or a piston as the oscillator

and a piston or an infinite wall as the stationary surface were considered as part of the analysis

(see figure 2.1). The method of matched asymptotic expansions was applied to relate the

Navier–Stokes solutions describing the flow in two distinct regions: a slender region between

the parallel surfaces featuring predominantly radial flow driven by the disk oscillations, and an

asymptotically smaller non-slender peripheral region where the oscillatory gas motion is driven

largely by said radial flow. The problem was solved in the general case in which the oscillation

time is comparable to the three relevant fluid-mechanical times, namely, the characteristic time

for radial acoustic-wave propagation, the characteristic viscous time across the gas layer, and the

characteristic residence time of flow in the peripheral region.

Historically, a major obstacle to computing the viscoacoustic film force has been the

determination of a proper boundary condition for the fluid pressure at the edge of the gas layer.

The present formulation relies on the distinguished double limit ε ∼ δ� 1 defined by comparable

small values of the dimensionless vibration amplitude ε and the aspect ratio δ, whence the

time-averaged spatial pressure variations across the peripheral region are comparable to those

found along the wall-bounded gas layer. The harmonic leading-order flow inside the slender film

was solved analytically, providing a closed-form expression for the radial flow to be used as a

matching boundary condition for the peripheral region. Upon computing first-order corrections,

the radial departures of the time-averaged pressure inside the gas layer from its value at the

edge were found to depend on the Stokes number α2 and a compressibility parameter Λ, two

order-unity parameters that respectively quantify the relative magnitudes of the viscous and

acoustic timescales. Characterizing the peripheral flow required numerical integration of the local

Navier–Stokes equations, shown to reduce to their incompressible, planar form at leading order,

with α2 and a modified local Strouhal number Ŝt entering as relevant controlling parameters.

The dependence on the geometrical configuration was found to be relatively weak, with the

magnitude of the pressure drop being slightly larger for wider angles of the near-edge opening of
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the bounding surfaces.

Our analysis illustrates that the time-averaged pressure decreases across the peripheral

region from its value in the stagnant atmosphere and then principally increases along the air gap

to reach a local maximum at the axis, in agreement with prior numerical results [4]. These two

competing effects determine the sign of the steady dimensionless perpendicular force 〈FL〉 felt

by the oscillating body (and also by the stationary parallel surface), so that both attractive and

repulsive forces can be generated. The resulting value of 〈FL〉 was found to vary strongly with

the Stokes number α2 and the compressibility parameter Λ, but comparatively weakly with the

peripheral Strouhal number and the geometrical configuration. The typical behavior of 〈FL〉 for

a fixed choice of Ŝt and geometry was depicted on a diagram (see figure 2.8) structured with the

principal parameters α2 and Λ as the bounding axes, showing that there is a critical separating

contour C1 in the associated parametric domain across which the steady squeeze-film force

switches from positive to negative values, indicating a transition from repulsion to attraction. The

accuracy of the present asymptotic analysis near this transition region was verified by means of

comparison with the results of a time-dependent CFD simulation conducted recently by [6] (see

figure 2.9(b)). It was proven that the contour C1 exists for all values of Ŝt and different geometrical

configurations, and that its shape near the origin is universal, resulting in an accompanying

prediction (2.114) for the critical gap width hc separating attraction from repulsion for relatively

low-frequency squeeze-film systems. The accuracy of this theoretical prediction must be tested

in future work by means of carefully monitored experiments. Also of interest in connection with

the force diagram is that additional regions of attractive force, in the form of peninsulas, develop

for large values of the Stokes number α2 when the value of Ŝt is sufficiently large.

The explicit expressions provided for the time-averaged pressure distribution in the slender

gas layer and the corresponding integral contribution to the steady force, as well as the reduced

numerical description of the time-averaged pressure drop across the peripheral region surrounding

the layer, both applicable for arbitrary values of the principal governing parameters α2, Λ and

Ŝt, shed light on the fundamental flow physics and expedite the viscoacoustic evaluation of
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the force, potentially supplementing the design and operation of high-frequency squeeze-film

systems that require real-time feedback control. It is worth pointing out that the analysis of

the first-order corrections in the gas film can be readily extended to provide the steady film

temperature 〈Θ1〉 in closed form, if needed in future applications. Simplified expressions of the

pressure distribution and force for limiting values of α2 and Λ were provided in § 2.6.3 and § 2.8

to allow accelerated computation for systems that operate near the lubrication (α2 � 1), inviscid

(α2 � 1) or incompressible (Λ� 1) limit.

The ability to controllably generate and transition between repulsive and attractive forces

using a single squeeze-film system is of significant interest in contemporary applications including

contactless levitation and soft robotics. The construction and assembly line transport of micro-

electronic components would be greatly assisted by levitation devices capable of suspending

sensitive objects from various angles and releasing them on command [6]. A controllable

transition to attraction is also desirable in the context of contactless locomotion of soft robots over

diverse terrains [3]. Gaseous squeeze films may be preferable in this context over other adhesive

mechanisms such as electromagnetic and dry fibrillar attraction due to reasons including weight

requirements, complexity of manufacturing and limitations in the type of operational surface.

The present theoretical study demonstrates that a rigid squeeze-film oscillator can alternate

between repulsion and attraction through control of operational variables such as the oscillation

frequency and the mean separation width. As previously noted, the closed-form expressions

provided in this study may serve to improve the feedback control systems required for the stable

operation of such devices.

Practical applicability of the present analysis is limited by the possibility of elastic

deformations in the oscillating body that may be non-negligible in the analysis of the induced

flow [7]. Of particular interest beyond this study is the characterization of axisymmetric squeeze-

film systems involving radially non-uniform driving oscillations h = h(r,t). In an appendix in

their seminal paper, Taylor and Saffman [5] provided analytical expressions for the mean radial

pressure distribution produced by piece-wise linear oscillations h(r,t) of a squeeze-film system in
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the lubrication limit. Specifically, oscillations of the form h/ho = 1+ ε(1−2r/a)cos(ωt), where

the mid-circle r = a/2 of the disk is fixed and the center r = 0 and edge r = a oscillate out of phase,

were shown to produce weak attractive squeeze-film forces for low frequencies ω, not found

in the lubrication limit for rigid oscillators. Recent experiments [3,49,54] have demonstrated

that highly flexible oscillators can be used to generate substantially stronger attractive forces

that allow the levitation of hundreds and thousands of grams of payload. The physics of such

‘flexural’ squeeze-film systems is explored in Chapters 3 and 4 of this dissertation.
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2.10 Appendix: Auxiliary expressions used in the evaluation
of the gaseous film overpressure and its contribution to
the steady squeeze-film force

The reduced asymptotic expressions provided in (2.55) and (2.59), respectively for

deviations of steady pressure in the film from its value at the edge, 〈P1〉(ξ)− 〈P1〉(1), and the

associated contribution to the steady squeeze-film force, 〈Fi〉, involve the complex functions

X1 =Π(ξ) =
J0

(
ξ
√

CΛ
)
− J0

(√
CΛ

)
���GU(1)

√
CΛ J0

(√
CΛ

) ���2 , (2.118)

X2 =

���J1

(
ξ
√

CΛ
) ���2− ���J1
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) ���2+ ∫ ξ

1
1
ξ J1
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)

J1

(
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CΛ J0

(√
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) ���2 , (2.119)
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√

CΛ
)
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���2 −
∫ ξ

1 J0
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)
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√
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and the complex constants

X1 =
2J1

(√
CΛ

) /
J0

(√
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)
−
√

CΛ

GU(1)(CΛ)3/2
, (2.121)

X2 =
−i���GU(1)CΛJ0

(√
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and

H1 =1−
tan(βU)
βU

, (2.124)

H2 =1−
tan(βU)
βU

−
tanh(βΘ)

βΘ
+
βU tan(βU)+ βΘ tanh(βΘ)

β2
U + β

2
Θ

, (2.125)
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2βU −2tan(βU)
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+
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2
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)
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]
, (2.126)

H4 =
−4β3

U +15 [tan(βU)− tanh(βU)]−6βU tanh(βU) tan(βU)
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+
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H7 =
βU

(
6− β2

U

)
+3

(
β2
U −2

)
tan(βU)

6β3
U

, (2.130)

H8 =

(
β2
U +1

)
tanh(βU)− βU
2β3

U

. (2.131)

The symbols Re, Im, and the asterisk ∗ represent respectively the real part, imaginary part and

conjugate of a complex quantity. The definitions of βU and βΘ are given in (2.37) while those of

C and GU(1) are given in (2.41).

Equations (2.118)–(2.123) were obtained with use of the integrals tabulated in [85]. In

particular, each Xi is available in explicit form, allowing rapid computation of 〈Fi〉 (2.57) 2.

2Equations (2.121)–(2.123) and (2.125) were printed with errors in the original publication of these results [60].
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Chapter 2, in part, has been published in the Journal of Fluid Mechanics under the title

“Viscoacoustic squeeze film force on a rigid disk undergoing small axial oscillations”, by S.

Ramanarayanan, W. Coenen and A. L. Sánchez, 933, A15, (2022). The dissertation author and

his doctoral advisor were the primary authors and investigators of this paper.
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Chapter 3

Enhancement of attractive load capacity
by resonant flexural oscillation

3.1 Executive summary

In this chapter, numerical and asymptotic methods are used to investigate the fluid

dynamics underlying the anomalously large attractive forces that were recently observed in

squeeze-film levitation systems driven by axial vibrations of a flexible oscillator. Namely, in a

recent experimental study, a thin plastic disk driven near one of its natural frequencies attractively

levitated an object weighing several hundred grams. This behavior is in stark contrast with that of

rigid-body systems, which produce attractive forces thousands of times weaker and only within a

limited range of operating conditions. Flexural systems driven by standing-wave deformations

of the oscillator are addressed in this chapter in a unifying matched-asymptotic analysis that

accounts for effects of fluid viscosity, inertia and compressibility, as well as pressure variations

beyond the outer boundary of the squeeze film. While the weak attractive forces produced by

rigid-body systems are known to depend critically on the existence of a net pressure drop across

this peripheral region, the present analysis reveals that the augmented attractive load capacity of

resonant flexural systems is associated instead with local minima of film pressure near the nodal

regions of the standing wave. Furthermore, the flexural wavenumber of the oscillating disk is

found to correlate strongly with the attractive load capacity as well as the range of frequencies

and disk surface areas for which attractive forces can be produced.
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3.2 Introduction

As outlined in Chapter 1 of this dissertation, a typical squeeze-film levitation system

involves two rigid objects whose parallel surfaces are separated by a thin film of air. One of the

objects performs high-frequency time-harmonic oscillations along an axis perpendicular to the

surfaces, perturbing the air in the slender film and its immediate outer periphery. The inherently

nonlinear dynamics of the excited pulsating fluid flow gives rise to a pressure distribution along

the film that varies non-harmonically with time, yielding a time-averaged normal force on the

objects—the steady squeeze-film force (SSF), which is typically repulsive [7].

This phenomenon, first implemented within the context of gaseous lubrication [8, 9], has

been applied in recent decades to design contactless levitation systems that can suspend and

transport sensitive objects such as microelectronic components and glass substrates [1, 11–14].

This so-called “squeeze-film levitation” (SFL) is often preferable to (i) contact-based soft

grippers that may deposit residual materials or produce electrostatic adhesion that prevents

reliable detachment [6] and (ii) pneumatic grippers that require constant fluid pumping and thus

significant electrical energy [86, 87].

The typically repulsive SSF, which enables levitation of several kilograms [19], has been

shown to transition to attraction when the mean distance between the two surfaces is increased

beyond a critical value. Until recently, such a transition had been observed only in systems with

restrictively small oscillation frequencies or object surface areas, precluding aerial attractive

levitation of more than a gram (see table 3.1) [4, 6, 36, 37, 48].

A remarkable patent published in 2015 [49] reported, for the first time, attractive squeeze-

film levitation of over a hundred grams. An experimental study in 2021 levitated attractively

loads of several hundred grams [3]. Another recent communication [54] reports a load of

nearly 200 kilograms, all three studies displaying a substantial increase in energy efficiency over

conventional pneumatic grippers [87]. The oscillators used by [3] were disks made of plastic

shim stock, with small aspect ratios (thickness divided by radius) of order 10−2. The greatest
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Table 3.1. Tabulated below are the maximal attractive steady squeeze-film forces 〈−FL〉

(expressed in units of grams-force) reported in various experimental studies conducted since
1999, along with the operating conditions used by each. The final column of each row lists the
value of the force normalized with the effective area of the squeeze film.

Oscillator Oscillator Squeeze-film Oscillation Oscillation Mean film Dimensional Normalized
description thickness radius frequency amplitude thickness levitation force levitation force

td (mm) a (cm)
ω

2π
(Hz) εho (µm) ho (µm) 〈−FL〉 (gf)

〈−FL〉

πa2

(
gf

cm2

)
aluminum diska [37] 10 3.5 1,600 2.6 220 0.196 5.09 × 10−3

aluminum disk 10 3.5 200 187 760 0.52 13.5 × 10−3

ultrasonic hornb [4] — 0.2 26,630 4 — 7.84×10−3 0.06
ultrasonic horn [36] — 0.15 21,000 4.9 39 0.013 0.18
ultrasonic horn [48] — 0.3 28,000 2.5 50 0.127 0.45
ultrasonic horn [6] — ≈ 0.13c 21,000 10 44 0.031 0.58
ultrasonic horn [12] — 2.5 17,000 1.1 100 45d 2.29
plastic diske [3] 0.254 6.93 200 — ≈ 2,800f 611.6 4.05
plastic disk 0.127 2.45 200 — ≈ 2,200f 407.7 21.62
aluminum plateg [53] 0.79 ≈ 17.20c 15 — — 18.6 × 103 20.01
aluminum plate [54] 1.02 ≈ 34.39c 15 — — 199.4 × 103 53.66
a Driven by an electrodynamic shaker (the EMIC 512A/D compact vibration generator)
b Appended to a bolt-clamped Langevin transducer
c Equivalent radius ae =

√
`w/π of an effectively rectangular squeeze film of length ` and width w

d Exceptional experiment conducted under water
e Driven by a small, centrally mounted eccentric-rotating-mass motor
f Central value ho(0) of the mean distribution of film thickness ho(r) for an oscillator experiencing significant fluid–structure
coupling

g Driven by a powerful, centrally mounted vibration actuator

attractive forces are reported to have occurred at an operating frequency of ≈ 200 Hz, for which

the authors report having observed a nodal circle on the disk, indicative allegedly of resonant

standing-wave oscillations. (This observation is discussed further in Chapter 4 in the context

of fluid–structure interactions.) As an illustrative comparison, these forces are a thousandfold

larger than those reported in a prior experiment conducted under similar operating conditions

(frequency and surface area) but with an effectively rigid oscillator [37] (see the second and ninth

rows of table 3.1).

3.3 Preliminary simulations

To begin investigating the fluidic phenomena underlying this magnification, we performed

preliminary numerical simulations of an axisymmetric squeeze-film system excited by standing-
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Figure 3.1. (a) Schematic of an axisymmetric squeeze-film levitation system involving an
oscillating disk. Shaded below it are waveforms that represent (b) rigid-body and (c)–(e) resonant
flexural oscillations of a disk with a Poisson’s ratio of νd = 0.3, the latter described below equation
(3.4).

wave oscillations of a disk. As depicted in figure 3.1(a), a thin disk of radius a, submerged in a

gas with ambient viscosity µa, density ρa and pressure pa, oscillates near an infinite wall such

that the thickness of the gaseous film separating the two, h, varies with time t as

y = h(r,t) = ho [1+ εS(r/a)cos(ωt)] , (3.1)

where r and y denote the radial and transverse coordinates, ho is the mean film thickness and ε,

S(r/a) and ω represent respectively the relative characteristic amplitude, peak amplitude profile

and angular frequency of the standing wave.

Systems such as those described in table 3.1 generally satisfy the assumption of slenderness,

δ = ho/a� 1, such that axial variations of the local fluid pressure can be neglected, i.e. ∂p/∂y = 0,
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and the repulsive SSF can be computed using the simplified integral

〈FL〉 =

∫ a

0
〈p(r,t)− pa〉 2πr dr , (3.2)

incurring only small relative errors of order δ. The angled brackets in (3.2) denote the cycle-

averaging operator

〈?〉 =
ω

2π

∫ t+2π/ω

t
? dt̄ , (3.3)

where t̄ is a dummy integration variable.

The simulations involved a relevant form of the classical Reynolds equation [8], a partial

differential equation that models viscous, compressible flow in thin films while neglecting fluid

inertia and variations of the edge pressure p(r = a,t) = pa (see also § 3.4.9 for elaboration).

Numerical integration was performed using a standard central-space, forward-Euler finite-

difference scheme [88]. Motivation for considering this Stokes limit was found in the appendix

of a seminal 1957 paper [5], where it is reported that the SSF generated by piece-wise linear

standing-wave oscillations of a disk (S = 1−2r/a) becomes attractive for critically low values

of the so-called squeeze number σ = 12(µa/pa)(ωa2/h2
o), i.e. for sufficiently low frequencies,

small radii and/or large mean film thicknesses.

Here, we consider instead a family of axisymmetric standing waves that are resonant

solutions to the Kirchhoff–Love equation, a linear partial differential equation that models

small-amplitude, low-wavelength oscillations of thin plates [89]. The peak amplitude profile is

given by

SKL(r/a) =
I1(K)J0(Kr/a)− J1(K)I0(Kr/a)

I1(K)− J1(K)
, (3.4)

where J and I are the regular and modified Bessel functions of the first kind, whose order is

indicated by the subscript. Such solutions (3.4) exist only for discrete values of the relevant di-

mensionless wavenumber K (normalized with the inverse radius a−1) that satisfy the characteristic
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Figure 3.2. Variation of the computed steady squeeze-film force with the mean film thickness
ho and angular frequency ω, for a disk of radius a = 7 cm oscillating with central amplitude
εho = 10 µm. Asymptotic predictions (solid curves) are displayed for (a) rigid-body and (b,c)
resonant flexural oscillations (those depicted in figure 3.1), and compared for the latter with
finite-difference solutions of the Reynolds equation (large dots). Vertical dotted lines mark
critical transition thicknesses h∗o calculated using (3.72).

equation

1−
K
2

[
J0(K)
J1(K)

+
I0(K)
I1(K)

]
= νd , (3.5)

where νd is the Poisson’s ratio of the material. For instance, a disk with νd = 0.3 achieves its

first three resonant modes for K ≈ 3.0005,6.2003 and 9.3675. The standing waves associated

with the listed modes are depicted in panels (c)–(e) of figure 3.1, to be considered for the

remainder of this chapter. Note that mode 1, which exhibits a single nodal circle at r/a ≈ 0.68,

is qualitatively representative of the oscillations in the recent experiment [3], although the

latter involved a non-uniform distribution of mean film thickness 〈h〉 = ho(r), symptomatic of

strong fluid–structure coupling. It must finally be noted that these resonant modes occur for

corresponding natural frequencies

ω =
K2

a2

√√
Edt2

d

12(1− ν2
d)ρd

, (3.6)

where td � a is the thickness of the disk and Ed and ρd are its homogenous Young’s modulus

and density.
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Our viscous-flow simulations, selected results of which are displayed in the form of

dots in figures 3.2(b) and (c), appear to predict accurately the magnification of attractive

load capacity that was observed in SFL systems involving pronounced disk flexure [3, 49].

Nevertheless, modeling the wider range of operating conditions used among common squeeze-

film systems—in particular, ultrasonic frequencies (ω/(2π) & 20 kHz), which allow inaudible

vibration—additionally necessitates rigorous quantification of (i) effects of fluid inertia in the thin

gaseous film [90] and (ii) accompanying variations of pressure at its edge p(r = a,t) [63, 68, 74],

as done below.

3.4 Matched-asymptotic viscoacoustic formulation

In Chapter 2 of this dissertation, a theoretical formulation was outlined [60] that uses

the method of matched asymptotic expansions [78] to solve the full viscoacoustic flow problem

for ideal, rigid-body systems (S = 1) that oscillate with small relative amplitudes ε � 1. The

analysis involved solving asymptotically reduced forms of the Navier–Stokes equations in two

distinct flow regions of the squeeze-film system depicted in figure 3.1(a):

(i) a small, non-slender peripheral region extending for distances of order ho in all directions

from the edge r = a, and

(ii) a slender region of nearly unidirectional flow spanning the majority of the slender film but

far removed from this periphery, a ≥ a− r � ho.

Performing a straightforward order-of-magnitude analysis of the reduced equations that describe

fluid flow in each region revealed that (i) the flow speeds in both regions are of comparable

magnitude ∼ εωa, (ii) the instantaneous pressure variations across the periphery are a factor

of order δ = ho/a � 1 smaller than those along the film and (iii) the time-averaged pressure

variations across the periphery differ by a factor of order δ/ε from those along the film. In pursuit

of a formulation that accounts simultaneously for spatial variations of time-averaged pressure

across both regions, the distinguished limit δ ∼ ε� 1 was selected for further analysis.
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In this limit, when the flow variables local to the film are expanded in terms of the selected

perturbation parameter ε,


u(r,y,t) = u0+ εu1+ · · · ,

p(r,t)− pa = (p0− pa)+ ε(p1− pa)+ · · · ,

(3.7)

the leading-order pressure satisfies the straightforward boundary condition p0(r→ a) = pa, but

yields no time-averaged contribution to the levitation force, i.e. 〈p0− pa〉 = 0. This is due to

the fact that, in the limit of small amplitudes, the reduced conservation equations that describe

airflow in the film are linear at leading order and driven by a harmonic boundary condition (3.1).

The required first-order correction 〈p1 − pa〉 was determined using a process of conventional

asymptotic matching: (i) the leading-order radial velocity component near the edge of the film

u0(r→ a,y,t) was used as a boundary condition to drive the pulsating flow in the periphery, (ii)

numerical simulation of the latter provided the condition 〈p1〉(r→ a) needed to determine the

steady first-order pressure distribution in the film 〈p1〉(r) and (iii) substituting 〈p1〉 into equation

(3.2) yielded the SSF with relative errors of order δ ∼ ε� 1.

Three principal governing parameters emerged in the reduced conservation equations:

a Stokes number α2 =
h2

oω

µa/ρa
∼ 1 , (3.8)

an acoustic wavenumber Λ1/2 =
aω√
pa/ρa

∼ 1 (3.9)

and a Strouhal number St =
δ

ε
∼ 1 . (3.10)

These nondimensional parameters represent ratios of the relevant fluidic timescales in the

problem—those of viscous diffusion across the film h2
o/(µa/ρa), pressure equilibration along

the film a/
√

pa/ρa and flow residence in the periphery ho/(εωa), respectively—to the period

of driving oscillations ∼ ω−1. Treating St as order unity is required to satisfy the selected
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distinguished limit δ ∼ ε, and doing the same for α and Λ ensures that fluid inertia and gaseous

compressibility are rigorously taken into account.

We found that the steady levitation force can be expressed in the nondimensional form

〈FL〉

ε2Λpaπa2 = 〈FL〉 = 〈Fi〉+ A2P̂e , (3.11)

involving two distinct contributions, each computed with small relative errors of order δ ∼ ε� 1,

〈Fi〉(α
2,Λ) = 2

∫ 1

0

〈p〉(r)− 〈p〉(a)
ε2Λpa

r
a

d
( r
a

)
(3.12)

and

A2(α2,Λ)P̂e(α
2, Ŝt) =

〈p〉(a)− pa

ε2Λpa
, (3.13)

which account for variations of steady pressure along the film and across the periphery, respectively.

In the expression for the latter, A is a dimensionless measure of the amplitude of the pulsating

volume flux through the circumferential boundary r = a, and P̂e is an appropriately normalized

measure of the steady peripheral pressure drop that depends on a modified Strouhal number

Ŝt = St/A and must be computed numerically. For rigid-body systems, 〈Fi〉 and A2P̂e were

found to be globally positive and negative, respectively, whence a transition to attractive forces

〈FL〉 < 0 required a sufficiently large peripheral pressure drop A2(−P̂e) > 〈Fi〉 and occurred

only for relatively low values of Λ ∝ (ωa)2, consistent with the aforementioned experimental

observations. (Further details of this formulation [60] can be found in Chapter 2.)

The results of this theory demonstrated reasonable agreement with prior CFD simulations

[6], but its practical applicability is severely limited since common squeeze-film levitators are

designed to oscillate at a natural frequency that corresponds to one of their flexural modes [7].

Such resonant operation enables greater amplitudes [13] but also causes noticeable elastic

deformation, even for piston-type oscillators designed to bend minimally under stress [40].

Motivated by the results of our preliminary numerical simulation outlined in § 3.3, we will now
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extend this formulation to account for axisymmetric standing-wave deformations of an oscillator

S(r/a) , 1. A detailed transcript of the modified derivation is provided below, and results are

discussed later in § 3.5.

3.4.1 Foreword to the modified derivation

Prior to following the derivation below, the reader is strongly encouraged to peruse § 2.3

of this dissertation, where they can review further mathematical details of the matched-asymptotic

formulation, including (i) the reduced conservation equations that govern each of the two distinct

flow regions and (ii) corresponding characteristic scales of the local flow properties: velocity

[u,v] and deviations of the thermodynamic variables p, ρ, µ,κ and T (pressure, density, viscosity,

thermal conductivity and temperature) from their respective ambient values pa, ρa, µa, κa and Ta.

The following text mirrors sections 2.4–2.6 in describing the flow inside the slender

squeeze film, in order to derive modified expressions for the dimensionless flux amplitude A

and the inner contribution to the steady squeeze-film force 〈Fi〉. In the explored limit of small

amplitudes, the numerical method for computing the dimensionless steady peripheral pressure

drop P̂e, presented in § 2.7, requires no modification.

3.4.2 Parametrization of flexural oscillations

Consider the flexural axisymmetric squeeze-film system depicted in figure 3.1. A

cylindrically symmetric object has a circular face of radius a that is separated from a nearby

parallel wall by a distance h� a. The object undergoes time-harmonic oscillations along an

axis perpendicular to the wall, deforming axisymmetrically such that the thickness of the air film

separating the two, h, varies as given by the general expression

h(r,t) = ho+Re
{
s(r)eiωt} , (3.14)
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where ho is the mean film thickness and ω is the relevant angular frequency. It must be noted that

the surface of the oscillator may experience radial displacement as well, which will be addressed

shortly.

The appropriate nondimensional form of (3.14) is

H(ξ,τ) =
h
ho
= 1+ εRe

{
S(ξ)eiτ} , where ξ =

r
a
, τ = ωt and S =

s
εho
∼ 1 , (3.15)

with εho specifying the local amplitude of oscillation at a radial location of interest (e.g. the

location where the oscillations are driven).

If S(ξ) is a real function, (3.15) reduces to H(ξ,τ) = 1+ εS(ξ)cosτ, describing standing-

wave surface oscillations. If S = 1, (3.15) reduces to H(τ) = 1+ε cosτ and the case of rigid-body

oscillations is naturally recovered, with the result that each equation in the following development

reduces to its counterpart in the original formulation presented in Chapter 2 [60].

3.4.3 Definition of the steady squeeze-film force

In modifying the original formulation to account for flexural oscillations, we will preserve

the distinguished limit ε ∼ δ � 1, for which the relative amplitude ε and inverse aspect ratio

δ = ho/a are comparably small.

In order to ensure the applicability of slender-flow theory in the gaseous film, the

characteristic wavelength λ associated with the surface waveform s(r) is assumed to be comparable

to the radius of the undeformed oscillator, i.e. λ ∼ a. It then follows that λ� ho, whence the

characteristic transverse flow speed v ∼ εωho is indeed asymptotically smaller by O(δ ∼ ε) than

its radial counterpart u ∼ uc = εωa.

As the oscillator deforms, points on its surface experience radial displacements ∆r whose

magnitude depends on its structural characteristics, i.e. geometry, Young’s modulus, etc. For the

following analysis, we will assume that these time-harmonic, radial surface displacements are at
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most comparable to their transverse counterparts, i.e.

∆r ∼ εho ∼ ε
2a , (3.16)

whence (i) temporal variations of the oscillator radius a and (ii) the radial component of the

oscillator surface velocity u ∼ ∆r/(ω−1) ∼ εuc can be neglected in the following asymptotic

analysis.

Thus, the expression for the repulsive steady squeeze-film force provided in (2.12) for

a rigid oscillator, 〈FL〉 =
∫ a

0 〈p(r)− pa〉2πr dr, can be readily applied here with small, relative

errors of O(ε ∼ δ� 1) [60].

3.4.4 Problem definition in the slender film

Based on the characteristic-scales analysis described in § 2.3, we begin by introducing the

nondimensional variables τ =ωt, ξ = r/a,Y = y/ho,U = u/uc,V = v/(δuc), P = (p−pa)/(εΛpa),

R= (ρ−ρa)/(εΛρa) andΘ= (T−Ta)/(εΛTa). The reducedNavier–Stokes equations that describe

the flow in the slender film, given by (2.6)–(2.10), can then be expressed, with errors ofO(δ2 ∼ ε2),

as

Λ
∂R
∂τ
+

1
ξ

∂

∂ξ
[(1+ εΛR)ξU]+

∂

∂Y
[(1+ εΛR)V] = 0 , (3.17)

∂P
∂Y
= 0 , (3.18)

(1+ εΛR)
[
∂U
∂τ
+ ε

(
U
∂U
∂ξ
+V

∂U
∂Y

)]
= −

∂P
∂ξ
+

1
α2

∂

∂Y

[
(1+ εΛΘ)ν

∂U
∂Y

]
, (3.19)

(1+ εΛR)
[
∂Θ

∂τ
+ ε

(
U
∂Θ

∂ξ
+V

∂Θ

∂Y

)]
−

(
γ−1
γ

) (
∂P
∂τ
+ εU

∂P
∂ξ

)
=

ε

(
γ−1
γ

)
(1+ εΛΘ)ν

α2

(
∂U
∂Y

)2
+

1
Pr α2

∂

∂Y

[
(1+ εΛΘ)ν

∂Θ

∂Y

]
, (3.20)

P = R+Θ+ εΛRΘ , (3.21)
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comprising continuity, momentum conservation in the transverse and radial directions, energy

conservation and the ideal-gas equation of state. In addition to the small relative amplitude ε� 1,

the problem above involves five parameters:

• the primary controlling parameters α2 = h2
oω/(µa/ρa), the Stokes number that quantifies

the relative importance of viscous diffusion, and Λ = (aω)2/(pa/ρa), the squared acoustic

wavenumber that quantifies the relative importance of gaseous compressibility,

• the relevant Prandtl number Pr = cpµa/κa, defined in terms of the specific heat at constant

pressure cp and the ambient viscosity µa and thermal conductivity κa,

• the ratio of specific heats γ = cp/cv, where cv is the specific heat at constant volume

• and the coefficient ν, which describes the linearized variation of viscosity and thermal

conductivity with small changes in temperature, i.e.

µ

µa
=
κ

κa
= 1+ εν

T −Ta

εTa
+O(ε2) , (3.22)

where ν depends on the chosen relation, such as a power law or Sutherland’s law [91].

The values Pr = 0.7, γ = 1.4 and ν = 0.77, suitable approximations for standard air [91, pp.

27,28], were used in generating the sample results shown later in § 3.5.

The system of equations (3.17)–(3.21) is subject to the non-slip, non-penetration and

isothermal boundary conditions


U = V = Θ = 0 at Y = 0

U −O(ε) = V −Re
{
Sieiτ} = Θ = 0 at Y = H(ξ,τ) ,

(3.23)

as well as the regularity condition at the central axis

U =
∂P
∂ξ
=
∂R
∂ξ
=
∂Θ

∂ξ
= 0 at ξ = 0 . (3.24)
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Note that the only modifications to the original formulation (2.16)–(2.21) are the new non-slip

and non-penetration boundary conditions at the oscillator surface [U,V]
��
Y=H .

Integrating the continuity equation (3.17) across the film and applying the well-known

Leibniz integral rule gives, in place of (2.23),

Λ
∂

∂τ

(∫ H

0
R dY

)
+

1
ξ

∂

∂ξ

[
ξ

∫ H

0
(1+ εΛR)U dY

]
+Re

{
Sieiτ} = 0 . (3.25)

Integrating (3.25) in the radial direction and computing the time average yields, with errors of

O(ε2), 〈∫ H

0
(1+ εΛR)UdY

〉
= 0 , (3.26)

which is formally identical to (2.24). To simplify further analytical development, we intro-

duce the normalized transverse coordinate η = Y/H(ξ,τ), using the corresponding derivative

transformations

[
∂

∂ξ
,
∂

∂Y
,
∂

∂τ

]
→

[
∂

∂ξ
− εηRe

{
dS
dξ

eiτ
}
∂

∂η
,
(
1− εRe{Seiτ}

) ∂

∂η
,
∂

∂τ
− εηRe{Sieiτ}

∂

∂η

]
,

(3.27)

in place of (2.26), each with errors of O(ε2). Temporal variations of the oscillator radius a due

to elastic deformation need not be incorporated here as they are second-order corrections (see

(3.16) and below).

The above problem is to be solved using perturbation methods, with the relative amplitude

ε serving as the small parameter, in order to determine the time-averaged levitation force through

the expression

〈FL〉 =
〈FL〉

ε2Λpaπa2 =
2
ε

∫ 1

0
〈P〉 ξdξ , (3.28)

the nondimensionalized form of (3.2). The fluid variables are expressed hereafter as regular
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perturbation expansions of the form

{
U =U0+ εU1+ · · · , V = V0+ εV1+ · · · ,

P = P0+ εP1+ · · · , R = R0+ εR1+ · · · , Θ = Θ0+ εΘ1+ · · · .

(3.29)

3.4.5 Leading-order solution in the slender film

Substituting (3.29) and the coordinate transformation (3.27) into the problem defined

by (3.17)–(3.24) and collecting terms of order unity yields the leading-order linear system of

equations

Λ
∂R0
∂τ
+

1
ξ

∂

∂ξ
(ξU0)+

∂V0
∂η
= 0 , (3.30)

∂P0
∂η
= 0 , (3.31)

∂U0
∂τ
= −

∂P0
∂ξ
+

1
α2

∂2U0

∂η2 , (3.32)

∂Θ0
∂τ
−
γ−1
γ

∂P0
∂τ
=

1
Pr α2

∂2Θ0

∂η2 , (3.33)

P0 = R0+Θ0 , (3.34)

subject to the boundary conditions



U0 = V0 = Θ0 = 0 at η = 0

U0 = V0−Re
{
Sieiτ} = Θ0 = 0 at η = 1

U0 =
∂P0
∂ξ
=
∂R0
∂ξ
=
∂Θ0
∂ξ
= 0 at ξ = 0

P0 = 0 at ξ = 1 ,

(3.35)
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the last of which follows as a direct consequence of the fact that, in the limit δ ∼ ε� 1, pressure

variations across the periphery are of O(ε) smaller than those along the film, as discussed in

section 2.3.

Following the method of separation of variables outlined below (2.32), the leading-order

solution can be written as



U0 = Re
[
ieiτΠ′G′U(η)

]
V0 = Re

{
ieiτ

[
S(ξ)GU (η)

GU (1) +ΛΠ
(
CGU(η)+

γ−1
γ GΘ(η)−η

)]}
P0 = Re

[
eiτΠ(ξ)

]
R0 = Re

{
eiτΠ(ξ)

[
1− γ−1

γ G
′
Θ
(η)

]}
Θ0 =

γ−1
γ Re

[
eiτΠ(ξ)G′

Θ
(η)

]
,

(3.36)

where the constant C in the expression for V0, which replaces (2.42), is defined as

C =
1− γ−1

γ GΘ(1)
GU(1)

. (3.37)

This solution contains two auxiliary transverse functions GU(η) = G(βU ;η) and GΘ(η) = G(βΘ;η)

and their derivatives, given respectively by the consolidated expressions

G(β;η) = η−
sinh[β(2η−1)]+ sinh β

2βcosh β
and G′(β;η) = 1−

cosh[β(2η−1)]
cosh β

, (3.38)

which involve reduced forms of the Stokes and Prandtl numbers

βU =
α

2
(1+ i)
√

2
and βΘ =

√
Pr
α

2
(1+ i)
√

2
, (3.39)

just as outlined below (2.35). The most important modification to the original solution concerns
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the auxiliary function Π(ξ), which carries the radial dependence of the leading-order flow

properties, and is now a solution to the forced Bessel equation

1
ξ

d
dξ

(
ξ

dΠ
dξ

)
+

1− γ−1
γ GΘ(1)
GU(1)

ΛΠ = −
S(ξ)
GU(1)

, (3.40)

in place of (2.39). Upon imposing the regularity condition at the axis Π′(0) = 0 and the relaxation

condition at the edge Π(1) = 0, this differential equation can be solved using the method of

variation of parameters [92, p. 15], in conjunction with Abel’s identity for simplifying the

associated Wronskian [92, pp. 8,9], to yield closed-form expressions for the reduced pressure

Π =
π

2GU(1)

{
J0(ξ
√

CΛ)

[
Y0(
√

CΛ)

J0(
√

CΛ)

∫ 1

0
xS(x)J0(x

√
CΛ)dx−

∫ 1

ξ
xS(x)Y0(x

√
CΛ)dx

]
−Y0(ξ

√
CΛ)

∫ ξ

0
xS(x)J0(x

√
CΛ)dx

}
(3.41)

and its radial derivative

Π
′ =

π
√

CΛ
2GU(1)

{
J1(ξ
√

CΛ)

[
−

Y0(
√

CΛ)

J0(
√

CΛ)

∫ 1

0
xS(x)J0(x

√
CΛ)dx+

∫ 1

ξ
xS(x)Y0(x

√
CΛ)dx

]
+Y1(ξ

√
CΛ)

∫ ξ

0
xS(x)J0(x

√
CΛ)dx

}
, (3.42)

where Ji and Yi refer respectively to the Bessel functions of the first and second kinds, of order i.

It can be shown that (3.41) and (3.42) reduce to the forms given in (2.40) when S = 1. Finally,

the edge value of the reduced pressure gradient is given by

Π
′(1) = −

∫ 1
0 xS(x)J0(x

√
CΛ)dx

GU(1)J0(
√

CΛ)
, (3.43)

in place of (2.44).

Note that the integrals present in (3.41)–(3.43) can be solved explicitly for certain types
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of waveforms S(ξ). Namely, for resonant solutions of the Kirchhoff–Love thin-plate bending

equation (3.4), S involves Bessel functions of its own, allowing analytical integration with use of

known identities [85].

Since the leading-order pressure varies harmonically with time, it yields no time average

(i.e. 〈P0〉 = 0), and determining the steady levitation force (3.28) thus requires computing

first-order corrections.

3.4.6 Undisturbed solution process in the non-slender periphery

The flow in the peripheral region, which extends for distances of O(ho) from the edge of

the film r = a, is driven at leading order by the radial component of the pulsating edge velocity

U0(ξ = 1,η,τ) = Re
[
ieiτ
Π
′(1)G′U(η)

]
= ARe

[
iei(τ+ϕ)G′U(η)

]
, (3.44)

written in terms of the phase shift ϕ = arg[Π′(1)] and the amplitude A = |Π′(1)| of the oscillating

edge pressure gradient given in (3.43). Note that A characterizes the volume flux of radial airflow

due to disk oscillations.

The corresponding transverse component V0(ξ = 1) and the axial displacements of the

oscillator both enter as boundary conditions only at the following order, since the transverse

flow velocities in the non-slender periphery are of O(δ−1 ∼ ε−1) larger than those in the film (see

§ 2.3). Radial deformations of the oscillator u(y = h) ∼ εuc are similarly negligible at leading

order since they are of O(ε) smaller than the radial velocities in the periphery ∼ uc (see below

(3.16) for clarification).

Dependence on the waveform S(ξ) and the compressibility parameter Λ can be factored

out of the peripheral-flow problem by means of a convenient nondimensionalization of the local

flow variables,

P̂(X,Y, τ̂) =
p− pa

ε2Λpa A2 and Û(X,Y, τ̂) =
u

Auc
, (3.45)

which are expressed in terms of the local coordinates τ̂ = τ+ϕ and (X,Y ) = (r − a,y)/ho, as well
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as the local Strouhal number Ŝt = St/A = δ/(εA) ∼ 1. In that case, the only information needed

here from the leading-order solution in the film is the transverse variation G′U(η) of the driving

velocity (3.44), which enters through the appropriate matching condition

lim
X→−∞

Û = Re
[
ieiτ̂G′U(Y )

]
. (3.46)

As described in § 2.7, effects of gaseous compressibility and geometrical curvature do

not enter at leading order in the equations governing peripheral flow, (2.77) and (2.78). However,

viscous shear and local and convective acceleration are present, requiring numerical solution

using conventional finite-element methods. Since the equations are nonlinear, the local pressure

distribution exhibits a nonzero time-averaged component 〈P̂〉(X,Y ), which approaches a limiting

value at the matching boundary

lim
X→−∞

〈P̂〉 = P̂e =
〈P1〉(ξ = 1)

A2 , (3.47)

which will serve as a boundary condition for the first-order problem in the slender film (see

§ 2.7.3 for clarification).

Since the reduced boundary conditions considered here are identical to those developed

in the rigid-body formulation (see § 2.7.1), the numerical solution for P̂e(α
2, Ŝt) that is detailed

in § 2.7.2 needs no modification when S , 1.

3.4.7 First-order corrections in the slender film

Collecting terms of order ε in the integrated time-averaged continuity equation (3.26)

gives ∫ 1

0
〈U1〉 dη = −

∫ 1

0

〈
Re

{
Seiτ}U0

〉
dη−Λ

∫ 1

0
〈R0U0〉 dη , (3.48)
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in place of (2.46). Doing the same for the momentum equations (3.18) and (3.19) and computing

the time average provides

∂〈P1〉

∂η
= 0 and −

d〈P1〉

dξ
+

1
α2

∂2〈U1〉

∂η2 = f (ξ,η) , (3.49)

the latter of which is formally identical to (2.47). The known function f is now defined as

f =
〈
ΛR0

∂U0
∂τ
+U0

∂U0
∂ξ
+V0

∂U0
∂η
−ηRe

{
Sieiτ} ∂U0

∂η

+
1
α2

∂

∂η

[(
2Re

{
Seiτ}− νΛΘ0

) ∂U0
∂η

] 〉
(3.50)

=
1
ξ

∂

∂ξ

(
ξ
〈
U2

0
〉)
+
∂

∂η
〈U0V0〉 −η

〈
Re

{
Sieiτ} ∂U0

∂η

〉
+

2
α2

〈
Re

{
Seiτ} ∂2U0

∂η2

〉
−
νΛ

α2
∂

∂η

〈
Θ0

∂U0
∂η

〉
, (3.51)

expressed in nonconservative and conservative forms, respectively, in place of (2.48) and (2.49).

Note that the waveform S(ξ) now appears in the definition of f due to the modified coordinate

transformations (3.27).

Integrating the radial momentum equation (3.49) thrice in the transverse direction, and

combining the result with (3.48) to eliminate the steady flux
∫ 1

0 〈U1〉 dη, yields the time-averaged

pressure gradient inside the squeeze film

d 〈P1〉

dξ
=

12
α2

[∫ 1

0

〈
Re

{
Seiτ}U0

〉
dη+Λ

∫ 1

0
〈R0U0〉 dη

]
−6

∫ 1

0
η(1−η) f dη , (3.52)

in place of (2.52). Note that the boundary conditions 〈U1〉 = 0 at η = 0,1 were used for the

transverse integration, since, although the radial surface speed U(Y = H) ∼ ε may, in principle,

enter at this order, it varies harmonically with time and therefore yields no time average.
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3.4.8 Time-averaged levitation force

Integrating (3.52) in the radial direction yields the steady pressure distribution

〈P1〉(ξ) = 〈P1〉(1)−
∫ 1

ξ
〈P1〉

′(x)dx , (3.53)

where 〈P1〉
′ = d〈P1〉/dξ. Integrating (3.53) with use of (3.28) gives the steady repulsive force

〈FL〉 = 2
∫ 1

0
〈P1〉(x) xdx . (3.54)

As described below (2.56), it is useful to split the expression of the steady force into two distinct

terms, in the form

〈FL〉 = 〈Fi〉+〈Fe〉 , where

〈Fi〉 = 2
∫ 1

0
[〈P1〉(x)− 〈P1〉(1)] xdx and 〈Fe〉 = 〈P1〉(1) (3.55)

represent, respectively, the value of the force devoid of peripheral flow effects and the steady

pressure drop across the periphery. By design of this matched-asymptotic formulation, both the

steady pressure distribution and the levitation force can be determined in integral form up to the

constant

〈P1〉(1) = A2P̂e , (3.56)

where the flux amplitude A(α2,Λ) = |Π′(1)|, defined below (3.44), can be found using the integral

expression in (3.43). The normalized steady peripheral pressure drop P̂e(α
2, Ŝt = St/A) is thus

the only quantity that must, in general, be found using a time-dependent numerical simulation,

as explained in § 3.4.6. Note that the computation of P̂e can be simplified using asymptotic

reduction for limiting values of α2 and Ŝt, as outlined in § 2.7.4 – § 2.7.6.

Substituting the leading-order solution (3.36) into the expression for the steady pressure
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gradient (3.52) and integrating the result using equations (3.53) and (3.54) yields

〈P1〉(ξ)− 〈P1〉(1) = 3Re
{
−

2i
α2

(
X∗1 +ΛX2

)
H1+

i(γ−1)Λ
γα2 X2(2H2+ νH3)+ X3H4

+

[
X∗1
GU(1)

+CΛX2

]
H5+ΛX2

(
γ−1
γ
H6−H7

)
− X1H8

}
(3.57)

and 〈Fi〉 = 3Re
{
−

2i
α2

(
X∗1 +ΛX2

)
H1+

i(γ−1)Λ
γα2 X2(2H2+ νH3)+X3H4

+

[
X∗1
GU(1)

+CΛX2

]
H5+ΛX2

(
γ−1
γ
H6−H7

)
−X1H8

}
, (3.58)

in place of (2.55) and (2.59), respectively, where a term superscripted with an asterisk is the

conjugate of a complex quantity. The radial integrals involved in the above expressions are

defined as

Xi = −

∫ 1

ξ
gi(ξ)dξ and Xi = 2

∫ 1

0
Xiξdξ = −

∫ 1

0
gi(ξ)ξ

2dξ , (3.59)

for i = 1–3, where

g1 = S∗Π′ , g2 = ΠΠ
′∗ and g3 =

1
ξ

d
dξ
(ξΠ′Π′∗) , (3.60)

in place of (2.118)–(2.123). The axial integralsHi (i = 1–8) remain as defined in (2.124)–(2.131).

3.4.9 The Stokes limit: α2→ 0 with Λ ∼ α2

Since effects of fluid acceleration are absent in the limit of small Stokes numbers α2 � 1,

the onset of time-averaged overpressure in the film will be seen to stem from (i) effects of fluid

compressibility and (ii) interactions between the radial fluid velocity component and the dynamic

flexure of the oscillator H(ξ,τ). We begin by introducing the appropriately rescaled variables

[P̃, R̃,Θ̃] = α2[P,R,Θ] to account for the dominant balance between the pressure gradient and

the viscous diffusion term in the momentum equation (3.19). The energy, state and momentum
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equations respectively yield

Θ̃ = 0 , P̃ = R̃ and U =
∂P̃
∂ξ

Y
2
(Y −H) . (3.61)

When the continuity equation (3.17) is then integrated across the film, we obtain, in place of

(2.66),

σ
∂(HP̃)
∂τ

−
1
ξ

∂

∂ξ

[
ξH3 ∂P̃

∂ξ

(
1+ ε

σ

12
P̃
)]
+12Re

{
Sieiτ} = 0 , (3.62)

a reduced form of the Reynolds equation that features a single fluidic parameter, the squeeze

number σ = 12Λ/α2 defined in (2.67). This partial differential equation was first solved in

1957 using perturbation methods by Taylor and Saffman for the case of rigid-body oscillations

S = 1 [5]. In an appendix of the cited paper, the steady radial pressure distributions for certain

linear piecewise oscillation modes (S = 1− ξ, S = 1−2ξ and S = ξ) are described for limiting

values of σ. Presented below is a perturbative solution for arbitrary oscillation modes, valid for

σ ∼ 1.

Upon introducing the expansion P̃ = P̃0+ εP̃1+ · · · , the above Reynolds equation (3.62)

reduces at leading order to the Bessel equation

Π̃
′′+
Π̃′

ξ
+
σ

i
Π̃ = 12iS(ξ) , subject to Π̃

′(ξ = 0) = Π̃(ξ = 1) = 0 , (3.63)

for the reduced pressure Π̃, which carries the radial dependence of P̃0 = Re{Π̃(ξ)eiτ}. Due to its

similarity with the Bessel equation (3.40) derived in the full viscoacoustic problem above, the

solution to this equation can be obtained by inspection, giving

Π̃ = 6iπ

{
Y0(β

∗
σξ)

∫ ξ

0
xS(x)J0(β

∗
σx)dx

+ J0(β
∗
σξ)

[∫ 1

ξ
xS(x)Y0(β

∗
σx)dx−

Y0(β
∗
σ)

J0(β
∗
σ)

∫ 1

0
xS(x)J0(β

∗
σx)dx

] }
(3.64)
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and

Π̃
′ = −6iπβ∗σ

{
Y1(β

∗
σξ)

∫ ξ

0
xS(x)J0(β

∗
σx)dx

+ J1(β
∗
σξ)

[∫ 1

ξ
xS(x)Y0(β

∗
σx)dx−

Y0(β
∗
σ)

J0(β
∗
σ)

∫ 1

0
xS(x)J0(β

∗
σx)dx

] }
, (3.65)

where βσ = (1+ i)
√
σ/2, as defined in (2.68). The rescaled flux amplitude is then given by

α2 lim
α2→0

A = |Π̃′(1)| =

������12
∫ 1

0 xS(x)J0(β
∗
σx)dx

J0(β
∗
σ)

������ = gA(Λ/α
2) . (3.66)

Collecting terms of order ε in (3.62), we obtain, following straight-forward manipulation, the

rescaled steady pressure gradient,

d〈P̃1〉

dξ
= −

〈
∂P̃0
∂ξ

(
3Re

{
Seiτ}+ σ

12
P̃0

)〉
, (3.67)

whence the rescaled inner contribution to the levitation force,

α2 lim
α2→0
〈Fi〉 = −

1
2

Re
{
3X̃1+

σ

12
X̃2

}
= gF(Λ/α

2) , (3.68)

can be computed using the two integrals

X̃1 = −

∫ 1

0
ξ2S∗Π̃′dξ and X̃2 = −

∫ 1

0
ξ2
Π̃Π̃

′∗dξ . (3.69)

As demonstrated in § 2.7.4, the normalized steady peripheral pressure drop simplifies in

this viscous limit to the expression P̂e→Pα
4, where the constant P ≈ −0.0027 is independent of

the modified Strouhal number Ŝt defined below (3.45), and weakly dependent on the peripheral

geometry. The net levitation force in the classical Stokes limit α2→ 0 can thus be expressed,
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Figure 3.3. Variation with Λ/α2 = σ/12 of rescaled forms of (a) the inner contribution to the
force (3.68), confirmed with finite-difference solutions of the Reynolds equation for ε = 0.1
(dots), and (b) the flux amplitude (3.66), in the Stokes limit α2→ 0.

with small, relative errors of O(ε ∼ δ� 1) and O(α2 � 1), as

〈FL〉

ε2paπa2 = Λ〈FL〉 →
Λ

α2gF . (3.70)

The variation with Λ/α2 = σ/12 of the quantities (Λ/α2)gF and (Λ/α2)g2
A is depicted

in figure 3.3, for rigid-body systems and also for the resonant flexural systems depicted in

figures 3.1(c)–(e). Curves in panel (a) demonstrate that, when operating at a fixed small value of

α2, the greatest repulsive forces occur for relatively large values of Λ, whereas the transition to

attractive forces occurs for relatively small values. Panel (b) demonstrates that the volume-flux

amplitude of resonant flexural systems is smaller than that of rigid-body systems operating under

identical conditions, progressively so for increasing values of the structural (elastic) wavenumber.

As a result, one may anticipate that the role of the peripheral pressure drop in reducing the

repulsive SSF—and eventually giving rise to attraction—is reduced substantially in flexural SFL

systems. To confirm this conjecture, however, it is imperative to explore the results of the full

viscoacoustic problem for which the Stokes number α2 and the compressibility parameter Λ are

of order unity.
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3.5 Discussion of results

Asymptotic predictions of the dimensional levitation force 〈FL〉 (3.2), obtained using the

viscoacoustic formulation derived above, are exemplified in figure 3.2. As shown in panels 3.2(b)

and (c), reasonable agreement is obtained with finite-difference solutions of the Reynolds equation

for moderately small values of the Stokes number, α2 . 2.75. (Note that accuracy deteriorates as

the mean thickness ho approaches the amplitude εho = 10 µm, since the perturbation parameter ε,

a measure of the relative asymptotic error, grows in magnitude.) It is clear when comparing the

curves in panels 3.2(a)–(c) that the attractive squeeze-film load capacity provided by a rigid-body

oscillator is hundreds of times lower than that enabled by an oscillator undergoing resonant

elastic deformations as defined by Kirchoff–Love theory, operating under otherwise identical

conditions—most importantly, with the same central oscillation amplitude S(0) = 1 (3.1). For

instance, at a frequency of 400 Hz, a rigid oscillator of radius 7 cm is capable of levitating

approximately 1 gram by attraction, while a disk of equal radius (with νd = 0.3) operating at its

first or second resonant bending mode can levitate around 250 or 525 grams, respectively. It

must be noted in this connection that, in order to produce a standing wave with a higher resonant

wavenumber K at the same frequency ω, the flexural rigidity of the disk must be reduced carefully

such that the resonance relation (3.6) remains satisfied. Estimates of 〈FL〉 for a wider range of ω

(omitted from the figure to preserve clarity) reveal that the greatest load that can be attracted

by a given oscillator, max[〈−FL〉(ho)] for ho > b, varies non-monotonically with the frequency,

reaching an extremum for a critical value of ω. It is important to note here that the enhanced

attractive forces provided by standing-wave oscillation are accompanied by a drastic reduction

of the repulsive load-bearing capacity, which can be seen by extrapolating the curves in figure

3.2(a) to small separation distances ≈ 20 µm and comparing with the curves in panels (b) and (c).

It is worth comparing this result with that of Da Silva [10], who found instead that

flexural oscillation near resonance increases the repulsive load capacity. The disparity is readily

explained by considering the fact that Da Silva utilized a bulky piezoelectric transducer to
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excite the oscillating plate, whence the optimal resonant frequencies of the assembly did not

coincide with the native natural frequencies of the plate itself. The deforming oscillator thus

exhibited large local amplitudes near its outer edge relative to the driving amplitude near its

center, unlike the native resonant waveforms considered here, those depicted in figures 3.1(c)–(e).

Note that Da Silva found good agreement between the measured waveforms and those predicted

by Kirchhoff–Love theory for the non-native resonant frequencies utilized. This augmentation of

the repulsive squeeze-film force due to wide flapping of the outer edge was also found in other

studies that involved bulky external vibration sources, such as [93]. Realization of the native

waveforms that afford an accentuated attractive load capacity requires the use of a vibration source

that alters minimally the optimal frequencies of the oscillating assembly. The recent experiment

by [3], which inspired the present investigation, seems to have involved such a configuration; a

disk made of polyester plastic [94] was excited by a haptic feedback motor with mass . 2 g [95].

Figure 3.4. Variation with the Stokes number α2 and the acoustic wavenumber Λ of (a,b) the
dimensionless inner contribution to the levitation force 〈Fi〉 and (c,d) the flux amplitude A, both
discussed below equation (3.11), for (a,c) rigid-body and (b,d) mode-1 flexural oscillations.
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While the transition to attractive forces for rigid-body systems is known to depend heavily

on the peripheral pressure drop [4, 6, 60], as discussed below (3.13), the results of our modified

asymptotic formulation suggest that the transition for flexural systems occurs primarily due

to nonlinear flow dynamics inside the slender film. As seen from figures 3.4(c) and (d), the

amplitude A of the volume rate of airflow through the film edge, whose square serves as a

weightage factor for the peripheral pressure drop A2P̂e, generally exhibits lower values for a

Figure 3.5. Profiles of steady pressure in the squeeze film for α2 = 0.1 (with small relative errors
of order ε ∼ δ� 1) for (a) rigid-body and (b)–(d) resonant flexural oscillations. Dotted lines
mark the nodal locations of the associated standing waves. The middle curve in each panel,
confirmed in (b)–(d) with finite-difference solutions of the Reynolds equation for ε = 0.1 (large
dots), corresponds to 〈FL〉 = 0, and the curves above and below represent states of repulsion and
attraction, respectively.
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flexural oscillator at any given operating condition defined by the Stokes number α2 and the

acoustic wavenumber Λ1/2. This is consistent with the intuitive notion that, while the airflow

excited by a rigid oscillator can be expected to exhibit substantial discharge and entrainment

through the film edge, the precise flow rate being dependent on the degree of compressibility Λ,

the flow induced by flexural oscillations of the type pictured in figures 3.1(c)–(e) would feature

much less edge flux and, instead, predominantly oscillate along the film about the nodal regions.

As seen in figures 3.4(a) and (b), the inner contribution to the time-averaged levitation force

〈Fi〉, globally positive when S = 1, exhibits negative values when S = SKL (3.4) in a substantial

region of the α2–Λ parametric domain, that being a secondary consequence of the nonlinear

dynamics—i.e. the time-asymmetrical nature—of this oscillatory airflow.

This distinction in the cause of attractive forces can be investigated in greater detail by

examining the distribution of time-averaged overpressure along the film, exemplified in figure 3.5.

The curve in each panel with the highest value at the axis r = 0 corresponds to a positive SSF

(steady squeeze-film force), the one with the lowest corresponds to a negative SSF and the middle

curve is computed at the critical condition where 〈FL〉 = 0. The transition to attraction for the

rigid oscillator occurs as a result of an increase in the magnitude of the peripheral pressure drop

pa − 〈p〉(a) relative to the central overpressure 〈p〉(0)− pa. However, that for resonant flexural

systems is seen to correlate to a surge in local minima of film pressure, whose radial locations

seem to coincide with those of the nodal regions of the deforming oscillator (for the small Stokes

number α2 = 0.1 considered in the figure).

As a consequence of this distinction, the parametric region of attraction (〈FL〉 < 0) is

observed to be significantly larger for flexural systems than for rigid-body systems, as illustrated

in figure 3.6. For each resonant flexural mode, this region lies below a separating contour that

displays a linear limiting behavior for small values of the Stokes number. The slope of this line,

(Λ/α2)c, is seen to grow for increasing values of the wavenumber K . As shown in § 3.4.9, in the

corresponding Stokes limit Λ ∼ α2→ 0, the expressions needed to compute the nondimensional
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Figure 3.6. Principal contours in the α2–Λ parametric plane (for Ŝt � 1) across which the
typically repulsive levitation force (above) transitions to attraction (below). Limiting behaviors
of these contours for extreme values of α2 are denoted with dashed lines. The pressure profiles
in figure 3.5 that correspond to 〈FL〉 = 0 are evaluated for limitingly small values of (α2,Λ) that
lie on these prinicipal contours.

levitation force (3.11)–(3.13) reduce in the first approximation to

α2〈Fi〉 → gF

(
Λ/α2

)
∼ 1,

α2 A → gA

(
Λ/α2

)
∼ 1 and (3.71)

α−4P̂e → P ∼ 1 ,

where P < 0 is a constant. The inner contribution 〈Fi〉 effectively depends on the similarity

parameter Λ/α2 ∼ 1, which is, aside from a numerical factor of 12, the aforementioned squeeze

number σ that appears in the Reynolds equation [5]. The peripheral pressure drop A2P̂e is
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asymptotically smaller by a factor of order α2 � 1, such that, for flexural squeeze-film systems

operating near the Stokes limit, the root (Λ/α2)c of the function gF essentially specifies the

critical operating condition for which 〈FL〉 = 0. One may confirm qualitatively that these roots,

visualized in figure 3.3, indeed correspond to the limiting slopes labeled in figure 3.6. As a result,

the critical separation distance h∗o at which the transition to attraction occurs can be written a

priori as

h∗o = a

√
ωµa/pa

(Λ/α2)c
, (3.72)

predictions of which are verified in figures 3.2(b) and (c).

It was shown in Chapter 2 that, for rigid-body systems, in contrast, gF is universally

positive [60]. As discussed in § 2.8, the transition seems to occur instead in the sub-limit

Λ/α2 ∼ α2 → 0, where 〈Fi〉 reduces back to order unity and is cancelled by the peripheral

pressure drop for a critical value of the ratio Λ/α4, as reflected by the pressure profiles in figure

3.5(a). The associated separating contour correspondingly exhibits a parabolic limiting behavior

Λ ∝ (α2)2 as it approaches the origin, as displayed in figure 3.6(a). Therefore, when operating

near the Stokes limit with a given frequency and squeeze-film radius, i.e. a fixed value of Λ� 1,

the transition to attraction occurs at a relatively greater distance h∗o ∝ (α
2)1/2 for rigid-body

systems, beyond which the relative amplitude ε ∝ h−1
o , and thus, the maximal attractive load

capacity 〈−FL〉 ∝ ε
2, are severely reduced, as seen in figure 3.2(a).

It must be noted that, while the separating contours in figure 3.6 display universal

behaviors in the Stokes limit α2→ 0, the values Λi that they approach in the inviscid limit

α2→∞ lower significantly with decreasing values of the modified Strouhal number. As seen in

the figure, for Ŝt � 1, Λi ≈ [8.1, 42.7, 88.8, 177.1] respectively for rigid-body, mode-1, mode-2

and mode-3 oscillations, but for Ŝt � 1, Λi ≈ [0, 6.1, 32.6, 82.8]. Nevertheless, an expansion

of the parametric region where 〈FL〉 < 0 necessarily loosens the restrictions on Λ ∝ (ωa)2

required for a transition from repulsive to attractive forces. In other words, flexural oscillations of

increasing wavenumber allow attractive levitation for a progressively wider range of frequencies
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and/or oscillator surface areas, those for which rigid-body oscillations would not.

3.6 Conclusions

In summary, we have offered in this chapter a theoretical explanation for the unprece-

dentedly strong attractive load capacities observed in recently designed squeeze-film levitation

systems [3,49]. The key innovation introduced in the recent designs seems to be the use of a very

thin oscillator that performs pronounced, flexural oscillations in response to localized excitation

with relatively low frequency, as opposed to the bulky and stiff oscillators operated conventionally

at ultrasonic frequencies. Our mathematical formulation, verified against finite-difference solu-

tions of the classical Reynolds equation, rigorously accounts for effects of fluid inertia, pressure

variations in a small region surrounding the edge of the film and elastic deformations of the

oscillator. While the weak attractive forces produced by rigid-body oscillations are known to

occur purely due to a drop in the time-averaged pressure near the film edge, the much larger forces

enabled by resonant flexural oscillations are found to correlate with local minima of pressure that

emerge within the film. For sufficiently low frequencies, these minima occur at lateral locations

near the nodal regions of the standing elastic wave. Semi-analytical solutions of this formulation

for resonant oscillations, modeled using the Kirchhoff–Love theory of thin-plate bending, reveal

that the maximal attractive load capacity, as well as the range of operating conditions under

which attractive forces can be produced, grows substantially for increasing values of the relevant

flexural wavenumber—that is, for increasingly flexible disks.

The results of this theoretical study pose significant implications for future developments

in squeeze-film levitation. For instance, recently developed ultrasonic pick-and-place devices [6]

could, in principle, suspend objects of greater surface area and mass if the oscillator is modified

carefully to exhibit appropriate elastic deformation. Practical applicability of this formulation

may be further improved by modeling the fluid–structure interactions that may occur for highly

flexible oscillators, symptoms of which have been observed in recent experiments [3].
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Chapter 3 has been published in AIP Advances under the title “On the enhanced attractive

load capacity of resonant flexural squeeze-film levitators”, by S. Ramanarayanan and A. L.

Sánchez, 12(10), 105126, (2022). The dissertation author was the primary investigator and author

of this paper.
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Chapter 4

Effects of fluid–structure coupling in
systems with highly flexible oscillators

4.1 Executive summary

The results of Ch. 3 are extended here to account for two-way-coupling between the

dynamic bending of the oscillator and the pulsatile gas flow in the squeeze film. Accounting

rigorously for such fluid–structure interactions is found to provide improved agreement between

experimental data [3] and theoretical predictions regarding the behavior of a highly flexural

SFL system—in particular, (i) the scale of the attractive levitation force for small separation

distances between the oscillator and opposite wall and (ii) the nature of the time-averaged pressure

distribution within the air layer.

4.2 Introduction

In 2015, Dr. David Colasante communicated an interesting experiment where a thin

plate was oscillated rapidly along its normal axis and brought near a parallel wall, the two being

separating by a thin layer of air [49]. A strong, steady attractive force was seen to emerge, pulling

the oscillating plate toward the wall. In one case the force grew sufficiently large to steadily

levitate a device with a total mass of ≈ 2.6 kg below a horizontal wall [50]. A recently constructed

device of larger scale generated an attractive force of nearly 200 kgf (kilograms-force) with a
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Consider the schematic displayed in figure ?, which represents the basic mechanical14

configuration involved in recent experimental studies that demonstrated strongly attrac-15

tive squeeze-film levitation (SFL) (Weston-Dawkes et al. 2021; Omodia et al. 2022). A16

thin, flexible disk of radius a and uniform thickness td ⌧ a is located near a parallel wall.17

Glued coaxially to the opposite surface of the disk is a rigid, circular cylinder of radius18

rc < a, on top of which a vibration source is a�xed. The source exerts on the cylinder an19

oscillatory force that varies sinusoidally with time with a frequency of !/(2⇡), where !20

denotes the associated angular frequency, causing the disk to undergo dynamic bending.21

As described above in § 1, the nonlinear dynamics of the gas flow excited in the22

air layer separating the disk and the wall, the squeeze film, give rise to an associated23

time-averaged overpressure that—typically—provides a steady levitation force FL > 024

repelling the disk from the wall. Of interest in the present study are operating conditions25

that yield, instead, a suction force FL < 0 that can support an applied pulling load, as26

indicated in the schematic.27

While the cited studies used haptic feedback motors of the eccentric-rotating-mass28

type, which generate forces in all directions orthogonal to the axis of rotation, earlier29

experiments by Colasante (2015, 2016) employed sound exciters that provide a force30

that acts purely along the cylinder axis of symmetry. In pursuit of an elegant theoretical31

description of the fundamental fluid–structure dynamics in SFL, only the latter type is32

considered below. In that case, application of Newton’s second law for the rigid cylinder33

and the central portion of the disk to which it is glued provides34

Fm cos(!t � �) + FL + 2⇡

Z rc

0

(p � pa)rdr + 2⇡rcVc = (⇡r2
c⇢dtd + mc)

@2hc
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2. Problem definition13

Consider the diagram displayed in figure ??(a), which represents the basic mechanical14

configuration involved in recent experimental studies that demonstrated strongly attrac-15

tive squeeze-film levitation (SFL) (Weston-Dawkes et al. 2021; Omodia et al. 2022). A16

thin, flexible disk of radius a and uniform thickness td ⌧ a is located near a parallel wall.17

Glued coaxially to the opposite surface of the disk is a rigid, circular cylinder of radius18

rc < a, on top of which a vibration source is a�xed. The source exerts on the cylinder an19

oscillatory force that varies sinusoidally with time with a frequency of !/(2⇡), where !20

denotes the associated angular frequency, causing the disk to undergo dynamic bending.21

As described above in § 1, the nonlinear dynamics of the gas flow excited in the22

air layer separating the disk and the wall, the squeeze film, give rise to an associated23

time-averaged overpressure that—typically—provides a steady levitation force F` > 024

repelling the disk from the wall. Of interest in the present study are operating conditions25

that yield, instead, a suction force F` < 0 that can support an applied pulling load, as26

indicated in the schematic.27

While the cited studies used haptic feedback motors of the eccentric-rotating-mass28

type, which generate forces in all directions orthogonal to the axis of rotation, earlier29

experiments by Colasante (2015, 2016) employed sound exciters that provide a force30

that acts purely along the cylinder axis of symmetry. In pursuit of an elegant theoretical31

description of the fundamental fluid–structure dynamics in SFL, only the latter type is32

considered below. In that case, application of Newton’s second law for the rigid cylinder33

and the central portion of the disk to which it is glued provides34

Fm cos(!t � �) + F` + 2⇡

Z rc

0

(p � pa)rdr + 2⇡rcVc = (⇡r2
c⇢dtd + mc)

@2hc

@t2
, (2.1)

where t and r denote respectively the time and the radial distance from the axis of35

symmetry, Fm and � quantify the amplitude and an arbitrary phase shift of the harmonic36

excitation force, p(r, t) � pa denotes the distributed gauge pressure acting on the disk37

surface, Vc represents the axial structural stress resultant within the disk at the radius38

of clamping rc, mc quantifies the collective mass of the cylinder and other structures39

involved in the transfer of the vibrational force to the disk, ⇢d denotes the uniform40

density of the disk and hc(t) represents the time-varying separation between the wall41

and the central portion of the disk. In writing (2.1), the gravitational acceleration (of42

magnitude g ⇡ 9.81 m/s2) is assumed to be negligibly small relative to that caused by43

the high-frequency motor vibration. This assumption is substantiated by Weston-Dawkes44

et al. (2021), whose SFL system operated at !/(2⇡) ⇡ 200 Hz with a characteristic disk45

displacement of �hc ⇡ 200 µm, which provides g/(�hc!
2) ⇡ 0.03 ⌧ 1.46

We seek in this study a periodic solution of (2.1) for which the levitation height—the47

mean central disk-to-wall separation—is constant. In general, it is di�cult to determine48

directly from the unsteady applied force the central displacement hc(t), i.e. to deduce49

from the known dynamic boundary condition an appropriate kinematic condition, that50

which is required to compute both the gas motion in the squeeze film and the coupled51

dynamic bending of the disk. The problem is complicated especially because of the52

nonlinear fluid–structure interactions involved, due to which the cylinder motion may53

be anticipated to exhibit multiple harmonics in addition to the applied frequency !. As54

will be shown below, the problem simplifies in the case of small values of the central55

oscillation amplitude relative to the mean levitation height, corresponding to small56

values of the levitation force F` relative to the excitation amplitude Fm. With use of57

classical asymptotic methods, the problem can be formulated under the presumption of58

damper
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Figure 4.1. (a) Cartoon and free-body diagram of a load-bearing squeeze-film-levitation system
enabled by the flexural oscillations of a thin, locally excited disk and (b) a formal schematic of
the axisymmetric system geometry used in the problem definition § 4.3.

supplied power of 200 watts [54]. A similar phenomenon had been demonstrated previously

by [96] and [97], who showed that normal vibration of a standard suction cup improves its

performance by lowering further the sub-ambient air pressure inside the cavity [98]. However,

this method involved physical contact between the cup and the adjacent wall, as evidenced

by an apparent resistance to translational motion and rotation. The levitated devices in the

experiments of Dr. Colasante showed no palpable resistance [99], indicating the presence of a

lubricating air layer. In 2021, [3] appear to have discovered independently the same phenomenon

of vibration-induced gaseous lubrication, designing a load-carrying robotic device capable of

traveling underneath horizontal surfaces and up vertical walls with use of a standard wheel base

and a thin, oscillating plastic disk. The device produced ≈ 610 gf (grams-force) using a power

input of . 0.29 W (watts) [95], thereby achieving an impressive operating efficiency of over

2000 gf/W. Subsequently, [100] designed an upgraded mobile robot that travelled and rotated

beneath a horizontal surface without the use of wheels, eliminating all physical contact. The

required propulsive/rotary aerodynamic shear force/torque on the oscillating plate was achieved

by generating traveling-wave deformations of the plate with use of multiple vibration actuators

excited with appropriate mutual phase shifts.

The phenomenon observed by [49], [3] and [100] is commonly referred to in literature

as ‘squeeze-film levitation’ (SFL) [7], a method of gaseous lubrication discovered seemingly in
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the mid 1950s, whereby the required overpressure inside a wall-bounded gas layer is effectively

provided by relative perpendicular oscillation of the walls [5]. In contrast to aerodynamic

and aerostatic lubrication which directly provide (quasi-)steady overpressure due to relative

translational motion of the walls or external pumping of air, respectively, the unsteady oscillatory

airflow in squeeze-film lubrication provides a cycle-averaged overpressure as a result of the

nonlinear effects of gaseous compressibility and convective fluid acceleration [60, 74]. The

resulting time-averaged pressure difference across the oscillating plate provides an effectively

steady load-bearing capacity. Typical SFL systems involve highly stiff oscillators that are driven

by bulky piezoelectric transducers at ultrasonic frequencies, producing large repulsive forces

that render them suitable for conventional bearing lubrication. For example, [19] measured a

steady, repulsive force of ≈ 11,700 gf by oscillating a cylindrical oscillator of diameter 5 cm at a

frequency of 20,000 Hz (hertz). Prior to the experiment of [49], attractive forces had been found

to occur only under a limited range of operating conditions, the corresponding load capacities

being thousands of times weaker [6, 37, 101]. For example, a maximal attractive force of just

≈ 0.5 gf was measured by [37] using a cylindrical oscillator of diameter 7 cm and frequency 200

Hz. As a result, throughout history, levitation and transportation/rotation systems enabled by

repulsive forces have garnered considerable theoretical attention [2, 7, 19,33–35], while fewer

studies have addressed the emergence of the much weaker attractive forces [4, 6, 60].

A recent study [101] posited that the unprecedented magnification of attractive load

capacity observed in the recent experiments by [49] and [3] can be attributed to the pronounced

elastic deformations experienced by the highly flexible oscillators utilized. With use of a

matched-asymptotic description of the airflow in the slender air layer as well as a small peripheral

region extending beyond its edge, the authors proved that the steady attractive force provided

by resonant flexural oscillations of a thin plate may be thousands of times larger than those

provided by a rigid-body oscillator operating under otherwise identical conditions—specifically,

with the same central displacement amplitude. However, fundamental disagreements remain

between crucial aspects of the theoretical predictions of [101] and the experimental observations
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Figure 4.2. Approximate recreation of selected experimental measurements by [3]: (a) variation
of the applied pulling load with the mean central separation distance and (b) time-averaged radial
distributions of the gauge pressure in the air layer and the accompanying oscillator displacement.
See fig. 4.1 for clarification.

of [3]. On the one hand, the theory predicts the onset of the maximal attractive force for a

mean separation distance of less than 50 µm between the center of the oscillating plate and the

opposite wall, while the data shows a gradual rise of the force to its maximal value that occurs

at much larger distances of order 1–3 mm, as exemplified in figure 4.2(a). On the other hand,

the predicted distribution of the time-averaged pressure within the air layer differs substantially

from that measured, the latter depicted in figure 4.2(b); in particular, the predicted central gauge

pressure is always positive.

We argue in this chapter that these differences may be attributed to the neglect of two-

way-coupled fluid–structure interactions whereby the motion of the flexible oscillator is affected

non-negligibly by the overpressure generated in the thin air layer. The effects of coupling are

demonstrably negligible in the case of the much stiffer oscillators used in earlier studies [93]. In

contrast, they are palpable in the experiments of [3], as evidenced by the observed time-averaged

deformation of the oscillating disk, shown in figure 4.2(b), which correlates closely with the

pictured pressure distribution. Two-way coupling has been explored before in repulsive SFL

configurations where a rigid body is levitated above an oscillating plate/piston. The influence of

film pressure on the Newtonian dynamics of the levitated body has been studied in the case of

rigid oscillators [102] and those undergoing prescribed standing-wave deformations [103]. [104]
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additionally explored effects of coupling on the displacement amplitude of a rigid oscillator. [105]

and [106] elucidated the damping effect of viscous squeeze-film airflow on the resonant dynamic

bending of a compliant plate. To the best of our knowledge, a theoretical investigation is yet to

be conducted into the effects of two-way coupling on the time-averaged repulsive/attractive load

capacity of an SFL system equipped with a flexible oscillator, that being the objective of the

present study.

We formulate below in § 4.3 a reduced mathematical description of the compressible

gas flow in a squeeze-film system driven by the flexural oscillation of a compliant plate, by

application of the nonlinear theory of elastohydrodynamic lubrication [107–111]. The equations

governing the fluid–structure dynamics are coupled with a statement of Newton’s second law

involving the sinusoidal excitation force exerted by the vibration actuator. The resulting system

of equations is solved approximately in § 4.4 under the asymptotic limit of small oscillations,

allowing explicit relation of the known excitation amplitude and the consequent displacement

amplitude of material points on the oscillating plate. The nonlinear problem that emerges at the

following asymptotic order is solved in § 4.5 to provide a concise analytical expression for the

operating efficiency of a flexural squeeze-film system: the ratio of the generated time-averaged

levitation force to the supplied excitation amplitude. The asymptotic solution is verified in § 4.6

by comparison to finite-difference computations, and shown to provide improved agreement

with salient aspects of the experimental data provided by [3]. Finally, recommendations are

provided in § 4.7 for theoretical research that may inspire, inform and supplement future practical

innovations that exploit this emerging technology.

4.3 Problem definition

Consider the diagram displayed in figure 4.1(a), which represents the basic mechanical

configuration involved in recent experimental studies that demonstrated strongly attractive

squeeze-film levitation (SFL) [3, 112]. A thin, flexible disk of radius a and uniform thickness
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td � a is located near a parallel wall. Glued coaxially to the opposite surface of the disk is a rigid,

circular cylinder of radius rc < a, on top of which a vibration actuator is affixed. The actuator

exerts on the cylinder an oscillatory force that varies sinusoidally with time with a frequency of

ω/(2π), where ω denotes the associated angular frequency, causing the disk to undergo dynamic

bending. The nonlinear dynamics of the oscillatory gas flow excited in the air layer separating the

disk and the wall [60], the ‘squeeze film’, gives rise to an associated cycle-averaged pressure field

that provides a steady force attracting the disk toward the wall. Under appropriate conditions,

this attractive time-averaged pressure force can support the application of a steady pulling load,

as pictured.

While the cited studies used haptic feedback motors of the eccentric-rotating-mass (ERM)

type, which generate forces in all directions orthogonal to the axis of rotation, earlier experiments

by [49, 50] employed sound exciters that provide a force that acts purely along the cylinder axis

of symmetry. In pursuit of an elegant theoretical description of the fluid–structure dynamics in

SFL, purely axial oscillations are considered below. In that case, application of Newton’s second

law for the rigid cylinder and the central portion of the disk to which it is glued provides

〈FL〉+Fm cos(ωt +φ)+2π
∫ rc

0
(p− pa)rdr +2πrcVc = (πr2

c ρdtd +mc)
∂2hc

∂t2 , (4.1)

where t and r denote respectively the time and the radial distance from the axis of symmetry,

〈FL〉 is the constant pulling force (steadied by a vibration damper at the point of application),

Fm denotes the amplitude of the sinusoidal excitation force, p(r,t)− pa denotes the distributed

gauge pressure acting on the disk surface (with pa denoting the ambient pressure),Vc represents

the axial structural stress resultant within the disk at the critical radius rc, mc quantifies the

collective mass of the cylinder and other structures involved in the transfer of the vibrational

force to the disk, ρd denotes the uniform density of the disk and hc(t) represents the time-varying

distance between the wall and the central portion of the disk. (The phase shift φ included in the

argument of the excitation force is introduced to facilitate the analysis, and will be discussed
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later.) In writing (4.1), the gravitational acceleration (of magnitude g ≈ 9.81 m/s2) is assumed to

be negligibly small relative to that induced by the high-frequency actuator. This assumption is

substantiated by [3], whose SFL system operated at ω/(2π) ≈ 200 Hz with a characteristic disk

displacement of∆hc ≈ 200 µm, which provides g/(∆hcω
2) ≈ 0.03� 1. Also of importance below

is to note that the weight of the oscillating device in the experiment, Wd = (mc+πa2ρdtd)g ≈ 12.6

gf (grams-force), was negligibly small relative to the applied pulling loads 〈FL〉 ≈ 500 gf, i.e.

Wd/〈FL〉 ≈ 0.025� 1.

Experimental data suggests that the central separation distance hc fluctuates periodically

about a constant mean value ho if the imposed load 〈FL〉 is steady. This effective ‘levitation

height’ ho grows as the load is quasi-statically increased, till a critical value is reached beyond

which the attractive force becomes insufficient and the disk detaches abruptly from the wall,

as depicted in figure 4.2(a) [3]. It is of great interest to devise a solution of (4.1) that allows

prediction of the ‘load capacity’ of an SFL system, the maximal pulling force max[〈FL〉(ho)]

beyond which it experiences such failure. In practical applications, known quantities are limited

to structural properties of the oscillator, thermodynamic properties of the operating fluid and the

amplitude Fm and angular frequency ω of the excitation force; for instance, those of an ERM

motor can be calculated using the mass, eccentric radius and expected rotational speed of the

spinning head for a given applied voltage [113]. Solution of (4.1) thus requires determining

simultaneously the evolving height hc(t) of the oscillating central assembly and the reactive

aerodynamic and structural forces affecting its dynamics. The problem is complicated especially

because of the nonlinear fluid–structure interactions involved, due to which the periodic cylinder

motion may exhibit multiple harmonics in addition to the excitation frequency ω.

As shown in the following derivation, the problem simplifies in the case of small axial

displacements of the disk relative to the levitation height, allowing approximate solution of (4.1)

with use of classical perturbation methods. Under the limit of a small relative amplitude, the

rigid cylinder may be assumed in the first approximation to oscillate sinusoidally along its axis of

symmetry with a given amplitude b� ho and an angular frequency equal to that of the vibration
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actuator, ω, so that

hc = ho+ bcos(ωt). (4.2)

Secondary frequencies arising from weak nonlinear dynamics will enter as asymptotic corrections

of order (b/ho)
2 � 1 and smaller, to be discussed later. The cylinder displacement (4.2) can be

expected to exhibit a phase lag φ—with respect to the sinusoidal excitation—that is affected

non-negligibly by elastohydrodynamic damping, the combined dissipative effects of viscous

stresses in the gas layer and material friction within the disk [114]. This phase lag has been

accounted for when writing in (4.1) the forcing term Fm cos(ωt +φ).

In general, we may express the width h(r,t) of the thin film of air separating the disk and

wall, depicted in figure 4.1(b), in terms of the function

w(r,t) = h− ho , (4.3)

which denotes the evolving position of the film-adjacent disk surface. Since the central portion

of the disk is affixed to the cylinder, it follows from (4.2) that, in the first approximation,

w = bcos(ωt) for 0 ≤ r ≤ rc . (4.4)

In pursuit of quantifying the reactive aerodynamic and structural forces that modulate the

value of b, we introduce below a reduced theoretical description of the relevant fluid–structure

dynamics, which couples the Reynolds lubrication equation governing the variation of air pressure

p in the squeeze film with the Kirchhoff–Love equation governing the dynamic displacement w

of the flexible annular portion of the disk rc ≤ r ≤ a. We show that, when b/ho � 1, the coupled

equations can be solved with use of (4.4) as the driving kinematic boundary condition to provide

analytical expressions for the reactive forces in terms of b. Substituting these expressions in (4.1)

allows straightforward computation of the value of b with relative errors of O(b/ho� 1). Solving

the nonlinear system of equations that emerges at the following asymptotic order provides an
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analytical expression for the load 〈FL〉 with the same level of accuracy.

This asymptotic formulation will be shown below to allow efficient characterization of

the dynamics and performance of highly flexural SFL systems, and provide promising agreement

with experimental measurements of the pull-off curve 〈FL〉(ho), the steady overpressure 〈p〉 − pa

in the squeeze film and the accompanying steady deformation of the disk 〈w〉(r) (see figures

4.1(b) and 4.2 for clarification), both expressed here with use of the cycle-averaging operator

〈∗〉 = (2π/ω)−1
∫ 2π/ω

t ∗dt.

4.3.1 Description of the squeeze-film gas dynamics

In modeling the gas flow, it will be assumed that the squeeze film is slender, ho � a, that

the characteristic wavelength λ of disk undulation is comparable to the disk radius a, and that the

levitation height is sufficiently small—i.e. h2
o � µa/ρa/ω, where µa and ρa denote respectively

the ambient dynamic viscosity and density of the gas—for the flow to be dominated by viscous

forces with negligible effects of fluid inertia. Since the Prandtl number of air at room temperature

is about 0.71 [115, p. 2.4], the assumption of small Stokes numbers α2 = h2
o/(µa/ρa/ω) � 1

implies that transverse heat conduction dominates the energy balance, so that, in the first

approximation, one can neglect the departures of the gas temperature in the film from the value

found on both bounding surfaces, assumed here to be equal to the ambient gas temperature [60].

In the associated limit of classical, isothermal lubrication theory [8], the compressible flow of an

ideal gas is governed, with small relative errors of orders (ho/λ)
2 ∼ (ho/a)2 � 1 and α2 � 1, by

the equations

∂ρ

∂t
+

1
r
∂(ρru)
∂r

+
∂(ρv)

∂y
= 0 ,

∂p
∂r
= µa

∂2u
∂y2 ,

∂p
∂y
= 0 , and

p
ρ
=

pa

ρa
, (4.5a–d)

representing the conservation of mass, the conservation of momentum in the radial and transverse

directions, respectively, and the isothermal equation of state. In the above equations, y is the

normal distance to the wall, u and v denote respectively the radial and axial components of the
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flow velocity, and ρ and p denote respectively the variable gas density and pressure, the subscript

“a” denoting ambient values found in the unperturbed surroundings. (Note that convective

acceleration is neglected in the radial momentum balance since the Strouhal number of the flow,

ho/b, is always greater than unity.)

The velocity in the gas film must satisfy the non-slip and non-penetration conditions at

the bounding surfaces


u = v = 0 at y = 0

u = v− ∂w/∂t = 0 at y = h = ho+w(r,t) ,

(4.6)

where the condition u = 0 at y = h ignores the negligibly small radial displacements of material

points on the disk, which are of order (b/ho)
2(ho/a)2a� a.

The gas pressure must satisfy the conditions of regularity at the axis of symmetry and

relaxation at the film edge, 
∂p/∂r = 0 at r = 0

p = pa at r = a .

(4.7)

the latter of which implicitly neglects the pressure variations p− pa existing across the small

peripheral region of gas flow that extends for distances of order ho in all directions from

the film edge r = a. These variations, which have been shown to provide a non-negligible

contribution to the levitation force in configurations with order-unity Stokes numbers α2 =

ωh2
o/(µa/ρa) ∼ 1 [4, 60], can be neglected in the lubrication limit α2 � 1 considered here. For a

proof, we begin by noting that the disk oscillations induce radial flow of characteristic speed

u ∼ uc = (b/ho)ωa in the film, as follows from the balance of volumetric dilation rates in the

continuity equation (4.5a). A similar analysis of the radial momentum equation (4.5b) then

provides (p− pa) ∼ (∆p) f = (b/ho)(µaωa2)/(pah2
o) for the characteristic value of the pressure

variations along the film. The nature of the flow induced in the small, non-slender periphery
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depends on the local Reynolds number Rep = ρaucho/µa = α
2/Stp, defined here in terms of

the associated Strouhal number Stp = h2
o/(ba). One the one hand, though the flow in the film

is dominated by viscous forces since α2 � 1, inertial forces can dominate in the periphery if

Stp � α2. In that case, the associated pressure drop across the periphery (p− pa) ∼ (∆p)p can be

expected to scale with the dynamic pressure (∆p)p = ρau2
c , which is negligibly small compared

with the pressure variations along the film, i.e. (∆p)p/(∆p) f = α2(b/ho) � 1. On the other hand,

in the opposite limit Rep � 1, the peripheral flow is also dominated by viscous forces, whence

(∆p)p = µauc/ho, such that (∆p)p/(∆p) f = ho/a� 1. Thus, regardless of the value of Rep, the

pressure drop across the periphery can be neglected when analyzing the flow in the film.

The lubrication problem defined in (4.5a–d)–(4.7) affords reduction to a single differential

equation involving the pressure p(r,t), independent of y as follows from (4.5c), and the

disk deformation w(r,t). The derivation begins by substituting ρ = ρa(p/pa), obtained by

rearranging the equation of state (4.5d), into the continuity equation (4.5a) and integrating

the result across the film with use of the non-penetration conditions given in (4.6) to provide

∂(hp)/∂t+ (1/r)∂(rp
∫ h

0 u dy)/∂r = 0, after use is made of the Leibniz integral rule. Substituting

into this equation the Poiseuille radial velocity u = −(∂p/∂r)y(h− y)/(2µa), which follows from

integration of the radial momentum equation (4.5b) with the non-slip conditions given in (4.6),

yields the relevant form of the Reynolds lubrication equation [8]

∂

∂t
[(ho+w)p]−

1
12µar

∂

∂r

[
(ho+w)

3pr
∂p
∂r

]
= 0 , (4.8)

where we have subsituted for the film thickness h(r,t) the expression ho+w(r,t), consistent with

(4.3). The evolving pressure in the gas film p(r,t) is to be obtained by integration of the above

equation with the boundary conditions given in (4.7). The solution depends on the disk position

w, whose value for 0 ≤ r ≤ rc is determined by the prescribed cylinder motion, as stated in (4.4),

while its unknown value for rc < r ≤ a is to be determined from an analysis of the structural

dynamics, as described below.
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4.3.2 Description of the disk structural dynamics

In analyzing the oscillations of the annular portion of the disk rc ≤ r ≤ a, it will be

assumed that the disk is made of a homogeneous, isotropic material, and that its axial deflections,

comparable in magnitude to the central amplitude b, are much smaller than its uniform thickness

td , which in turn is much smaller than its radius a, i.e. b� td � a. The excitation frequency

is assumed to be sufficiently low for the characteristic flexural wavelength λ of the disk to be

comparable to the disk radius a, consistent with the slender-flow assumption drawn in § 4.3.1.

Under these conditions the disk can be assumed to undergo pure bending [116, pp. 47–49],

whence its dynamic deformations, influenced non-negligibly by the squeeze-film overpressure

p(r,t)− pa, can be described with use of the Kirchhoff–Love equation [117,118]

D∇̄4w+ ρdtd
∂2w

∂t2 = p− pa , where D =
Edt3

d

12(1− ν2
d)
, (4.9)

involving the axisymmetric Laplacian operator ∇̄2 = [∂2/∂r2 + (1/r)∂/∂r] and the flexural

rigidity D of the disk, the latter defined in terms of the disk Young’s modulus Ed , mass density

ρd and Poisson’s ratio νd . Correspondingly, the axial stress resultantVc affecting the dynamics

of the central assembly (4.1) can be expressed as

Vc = −D
[
∂(∇̄2w)/∂r

]
r=rc

. (4.10)

Note that the displacement of the neutral plane of the disk has been substituted in (4.9)

and (4.10) with that of its film-adjacent surface w (4.3), introducing negligible relative errors

of order (b/ho)(td ho/a2) � 1. Also, in-plane stresses induced due to fluid shear acting on this

surface [116, pp. 378–380] are smaller than the expected overpressure by a factor of order

(b/ho)(ho/a)2 � 1 [119, 120] and, hence, neglected when writing (4.9).
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Equation (4.9) must be integrated for rc ≤ r ≤ a with the four boundary conditions


w− bcos(ωt) =

∂w

∂r
= 0 at r = rc(

∂2

∂r2 +
νd

r
∂

∂r

)
w =

∂

∂r
(
∇̄2w

)
= 0 at r = a ,

(4.11)

which state that the annular portion of the disk is cantilevered at its inner edge r = rc, where

it follows the driving motion of the cylinder (4.4), and that neither bending moments nor

axisymmetric axial stresses are supported at its free outer edge r = a ( [116, pp. 83–84]; [89,

pp. 840–841]).

4.3.3 The case of central forcing and a universal measure of efficiency

Of particular interest from a theoretical perspective is the canonical configuration of

a disk that is forced dynamically at its center, i.e. rc = 0. In principle, the reactive structural

stresses that develop within such a disk grow unboundedly (∝ r−1) near its axis of symmetry.

Interestingly, an explicit theoretical solution can be found for the case of a disk under static

central loading while supported at its edge [117], where the disk displacement near the axis r = 0

varies as w ∝ r2 ln(r). Since this solution relies on the assumption of pure bending, it is prone to

inaccuracy for radial distances comparable to the plate thickness r ∼ td , for which the precise

stress distribution in the locality of the axis must be considered carefully [116, pp. 67–78].

Contrary to the case of static loading, the singular case of a disk subject to dynamic

forcing with prescribed amplitude at its center r = 0 does not have a straightforward solution.

As shown by [121], one can treat this limiting case by considering instead a disk with a small

central cavity able to support finite stresses. An expression for the disk flexure can be obtained

simply by considering the limit of a vanishing cavity. Similarly, for the present fluid–structure

problem, the ideal case of central forcing rc = 0 presents a singular limit that is unamenable to

straightforward solution. The general formulation to be developed here for rc ∼ a can, however,

be exploited to derive a limiting solution that describes systems with a vanishing clamp radius
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rc � a, as done below following the strategy devised by [121]. Note that the primary equation of

motion (4.1) simplifies in this limit, the terms describing system inertia, aerodynamic pressure

and structural shear vanishing with the square of rc. The simplified equation will be shown below

to allow straightforward computation of the ratio 〈FL〉/Fm, a metric that can be used to compare

readily the levitation ‘efficiency’ of SFL systems (for which rc � a) with arbitrary displacement

amplitudes b.

4.3.4 Dimensionless formulation and governing parameters

In pursuit of a rigorous understanding of the fluid–structure system described by the

two equations (4.8) and (4.9) and their respective boundary conditions (4.7) and (4.11), it is of

interest to reformulate the mathematical problem in terms of appropriate dimensionless variables,

beginning with the independent temporal and spatial variables τ = ωt and ξ = r/a. The disk

deformation is scaled with the central amplitude b to give W(ξ,τ) = w/b. It follows then from

(4.3) that h/ho = 1+ εW , where

ε = b/ho (4.12)

defines the relative central oscillation amplitude. With this definition, it follows from (4.4) that

W = cosτ for ξ ≤ ξc, where

ξc = rc/a (4.13)

is the dimensionless radial distance up to which the disk is clamped to the cylinder. The

characteristic value (∆p) f of the overpressure p− pa in the squeeze film, deduced below (4.7), is

used to define the dimensionless variable P = 12(p− pa)/(εσpa), where

σ =
12µaωa2

pah2
o

(4.14)

is the classical ‘squeeze number’, a dimensionless parameter that quantifies the degree of gaseous

compressibility in the squeeze film due to viscous retardation of radial airflow [8, p. 143].
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In terms of the dimensionless variables listed above, theReynolds lubrication equation (4.8)

can be written in the form

σ
∂

∂τ
[(1+ εW)P]−

1
ξ

∂

∂ξ

[
(1+ εW)3

(
1+

εσ

12
P
)
ξ
∂P
∂ξ

]
+12

∂W
∂τ
= 0 , (4.15)

while the Kirchhoff–Love equation (4.9) takes the form

∇4W +K4 ∂
2W
∂τ2 = C

6P , (4.16)

involving the dimensionless axisymmetric Laplacian operator∇2 = [∂2/∂ξ2+(1/ξ)∂/∂ξ]. As can

be seen in (4.16), consideration of the disk dynamics introduces the two additional dimensionless

parameters K and C, with

K4 = a4ω2 12ρd(1− ν2
d)

Edt2
d

and C6 = a6 12µaω(1− ν2
d)

Ed(td ho)
3 (4.17a,b)

representing the characteristic magnitudes of the disk inertia and the squeeze-film overpressure,

respectively, relative to that of the axial structural stresses. Note that C quantifies in (4.16)

the degree to which the dynamic flexure of the annular portion of the disk is affected by the

squeeze-film overpressure, and K represents the elastic wavenumber characterizing the bending

of the isolated disk, i.e. for C = 0 [101].

As follows from (4.7) and (4.11), equation (4.15) must be integrated with the boundary

conditions

∂P/∂ξ = 0 at ξ = 0 and P = 0 at ξ = 1, (4.18)

while (4.16) must be integrated with


W − cosτ = ∂W/∂ξ = 0 at ξ = ξc(
∂2

∂ξ2 +
νd

ξ

∂

∂ξ

)
W =

∂

∂ξ

(
∇2W

)
= 0 at ξ = 1 .

(4.19)
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The system of equations comprising (4.15) and (4.16) and their respective boundary

conditions (4.18) and (4.19) determines the evolution of the film pressure P for 0 ≤ ξ ≤ 1 together

with the coupled deflection W of the annular portion of the flexible disk ξc < ξ ≤ 1. The problem

is to be addressed below for order-unity values of the dimensionless parameters ξc, σ, K, C

and νd , with use of asymptotic methods that exploit the presence of small relative oscillation

amplitudes ε = b/ho � 1.

4.4 Leading-order solution for small relative amplitudes

We begin by expressing the dimensionless pressure and disk displacement as expansions

in increasing integer powers of the perturbation parameter ε� 1:


W =W0+ εW1+ · · ·

P = P0+ εP1+ · · · .

(4.20)

Substituting (4.20) into the governing equations (4.15) and (4.16) and their boundary conditions

(4.18) and (4.19) and collecting terms of order unity provides the leading-order system of

equations

∂

∂τ
(σP0+12W0)−∇

2P0 = 0


ξ = 0 : ∂P0/∂ξ = 0

ξ = 1 : P0 = 0
(4.21)

and

∇4W0+K4 ∂
2W0

∂τ2 = C
6P0


ξ = ξc : W0− cosτ = ∂W0/∂ξ = 0

ξ = 1 :
(
∂2

∂ξ2 +
νd

ξ

∂

∂ξ

)
W0 =

∂

∂ξ

(
∇2W0

)
= 0 .

(4.22)

Since the motion of the central portion of the disk is prescribed by the sinusoidal function

W = cosτ, as per (4.4), in seeking time-periodic solutions of the above equations it is convenient
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to consider separately the pressure fields existing for 0 ≤ ξ ≤ ξc and ξc ≤ ξ ≤ 1 with use of the

ansatz 
P0 = Re{Π̄(ξ)eiτ} and W0 = Re{eiτ} for 0 ≤ ξ ≤ ξc

P0 = Re{Π(ξ)eiτ} and W0 = Re{Ω(ξ)eiτ} for ξc ≤ ξ ≤ 1 ,
(4.23)

where the complex spatial functions Π̄, Π, and Ω are to be determined below.

In the central portion of the disk, where W0 = Re{eiτ}, the Reynolds equation (4.21)

reduces to the inhomogeneous Bessel equation

Π̄
′′+

1
ξ
Π̄
′+

σ

i
Π̄ = 12i , for 0 ≤ ξ ≤ ξc , (4.24)

where a prime superscript denotes the derivative of a radial function, i.e. f ′(ξ) = d f /dξ.

Integrating the above equation subject to the regularity condition Π̄′(0) = 0 leads to

Π̄ =
12i
ς2

[
1+ ĀJ0(ςξ)

]
, with ς = (1− i)

√
σ

2
, (4.25)

where J0 represents the Bessel function of the first kind of zeroth order and ς and Ā are complex

coefficients, the latter to be determined from patching [122, pp. 335–336] with the pressure

distribution in the surrounding annular region.

To determine the solution in the annular outer region ξc ≤ ξ ≤ 1, we begin by using (4.22)

and (4.23) to write

Π = C−6
(
∇4−K4

)
Ω . (4.26)

Substituting this result into (4.21) yields the sixth-order homogeneous equation

∇6
Ω−σi∇4

Ω−K4∇2
Ω+ i(σK4−12C6)Ω = 0 , (4.27)

the relevant ‘thin-film’ equation of elastohydrodynamic lubrication [110, 123], which can be
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alternatively written in the factorized form

(
∇2+γ2

1

) (
∇2+γ2

2

) (
∇2+γ2

3

)
Ω = 0 , (4.28)

involving the constant roots γ2
1,γ

2
2 and γ2

3 , defined collectively by

γ2
n = −

i
3

[
σ+ e2iπ(n−1)/3Q1/3+

(
σ2−3K4

)
e2iπ(1−n)/3Q−1/3

]
, for n = 1 : 3 , (4.29)

where

Q = σ3+9σK4−162C6−3
[
3K4

(
σ2+K4

)2
+36C6

(
81C6−9σK4−σ3

)]1/2
. (4.30)

The general solution to (4.28) can be written as a linear combination of Bessel functions of the

first and second kinds of zeroth order, i.e.

Ω =

3∑
n=1
[AnJ0(γnξ)+BnY0(γnξ)], (4.31)

whence the reduced pressure (4.26) assumes the form

Π =
1
C6

3∑
n=1

(
γ4

n −K4
)
[AnJ0(γnξ)+BnY0(γnξ)] . (4.32)

The expressions (4.25), (4.31) and (4.32) involve seven complex constants, Ā and An and

Bn for n = 1 : 3, which must be determined by application of the five reduced boundary conditions


Ω−1 =Ω′ = 0 at ξ = ξc

Π =Ω′′+ νdΩ
′ =Ω′′′+Ω′′−Ω′ = 0 at ξ = 1 ,

(4.33)
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consistent with those stated in (4.21) and (4.22), and the two additional conditions

Π̄−Π = Π̄′−Π′ = 0 at ξ = ξc , (4.34)

which enforce continuity of the pressure and its gradient, respectively, at ξ = ξc. The last condition

is needed to satisfy continuity of the radial flow velocity, defined above (4.8), and involves the

reduced pressure gradients in the central and annular regions,

Π̄
′ = −

12i
ς

ĀJ1(ςξ) and Π
′ =

3∑
n=1

γn
(
K4−γ4

n
)

C6 [AnJ1(γnξ)+BnY1(γnξ)], (4.35a,b)

respectively. The solution of the system of linear equations displayed in (4.33) and (4.34) can be

expressed in the compact form

[
Ā A1 B1 A2 B2 A3 B3

]
=

[
1 0 12iC6/ς2 0 0 0 0

]
M−1, (4.36)

M−1 representing the inverse of the square matrix

M =

0 0
12C6J0(ςξc)

iς2
12iC6J1(ςξc)

ς
0 0 0

J0(γ1ξc) γ1J1(γ1ξc) ΦJ(γ1,ξc) ΨJ(γ1,ξc) ΦJ(γ1,1) ΘJ(γ1,1) γ3
1 J1(γ1)

Y0(γ1ξc) γ1Y1(γ1ξc) ΦY(γ1,ξc) ΨY(γ1,ξc) ΦY(γ1,1) ΘY(γ1,1) γ3
1Y1(γ1)

J0(γ2ξc) γ2J1(γ2ξc) ΦJ(γ2,ξc) ΨJ(γ2,ξc) ΦJ(γ2,1) ΘJ(γ2,1) γ3
2 J1(γ2)

Y0(γ2ξc) γ2Y1(γ2ξc) ΦY(γ2,ξc) ΨY(γ2,ξc) ΦY(γ2,1) ΘY(γ2,1) γ3
2Y1(γ2)

J0(γ3ξc) γ3J1(γ3ξc) ΦJ(γ3,ξc) ΨJ(γ3,ξc) ΦJ(γ3,1) ΘJ(γ3,1) γ3
3 J1(γ3)

Y0(γ3ξc) γ3Y1(γ3ξc) ΦY(γ3,ξc) ΨY(γ3,ξc) ΦY(γ3,1) ΘY(γ3,1) γ3
3Y1(γ3)



,

(4.37)
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where the auxiliary functions Φ,Ψ and Θ are defined respectively by

ΦB(γn,ξ) =
(
γ4

n −K4
)
B0(γnξ) ,

ΨB(γn,ξ) =
∂ΦB
∂ξ
= γn

(
K4−γ4

n

)
B1(γnξ) and (4.38)

ΘB(γn,ξ) = γ
2
n

[
B0(γnξ)−

1− νd

γnξ
B1(γnξ)

]
,

with Bm representing a Bessel function of the first or second kind (Jm or Ym) of mth order.

4.4.1 The limit ξc→ 0

As mentioned in § 4.3.3, it is of interest to investigate the nature of the solution for small

values of the dimensionless clamp radius ξc. For ξc = 0, the singular Bessel functions Y0(γnξ) in

the expressions for the disk motion and pressure distribution (4.23) must be eliminated in pursuit

of a physically valid description, and solutions can exist only for specific eigen-wavenumbers

γn for which the relevant matrix, analogous to (4.37), has a zero determinant. For the one-way-

coupled problem where C = 0, these solutions represent states of structural resonance of the

disk, but for any finite value of C, representing aerodynamically damped oscillations, γn is a

null set and no solutions exist. However, progress can be made by considering the limit of a

vanishing clamp radius ξc→ 0. The reduced leading-order pressure in the annular region Π(ξ)

exhibits a vanishing gradient at ξ = ξc, consistent with a central pressure gradient (4.35a) that

grows linearly for small radial distances ξ � 1. Upon applying the familiar boundary conditions

(4.33)—which govern the disk motion and impose relaxation of pressure at the film edge—in

conjuction with a modified regularity condition Π′(ξc � 1) = 0, the latter in place of (4.34), the

constant coefficients that determine at leading order the annular pressure distribution (4.32) and

disk flexure (4.31) can be expressed as

lim
ξc→0

[
A1 B1 A2 B2 A3 B3

]
=

[
1 0 0 0 0 0

]
M−1

0 , (4.39)
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M−1
0 representing the inverse of the reduced square matrix

M0 =



1 0 0 ΦJ(γ1,1) ΘJ(γ1,1) γ3
1 J1(γ1)

2ln(γ1)/π 1 γ4
1 ΦY(γ1,1) ΘY(γ1,1) γ3

1Y1(γ1)

1 0 0 ΦJ(γ2,1) ΘJ(γ2,1) γ3
2 J1(γ2)

2ln(γ2)/π 1 γ4
2 ΦY(γ2,1) ΘY(γ2,1) γ3

2Y1(γ2)

1 0 0 ΦJ(γ3,1) ΘJ(γ3,1) γ3
3 J1(γ3)

2ln(γ3)/π 1 γ4
3 ΦY(γ3,1) ΘY(γ3,1) γ3

3Y1(γ3)



, (4.40)

where the small-argument behaviors of the Bessel functions [124] have been employed to

eliminate ξc.

4.4.2 Solving for the presumed displacement amplitude b

Based on the leading-order solution derived above, the reactive aerodynamic and structural

forces affecting the dynamics of the oscillating central assembly can be expressed, with relative

errors of O(ε� 1), in the respective dimensionless forms∫ rc
0 (p− pa)rdr

εpaa2 = −Re
{
Fc eiτ} , where Fc = ξc

[
ξc

2
+

Ā
ς

J1 (ςξc)

]
, (4.41)

and

rcVc

Db/a2 = −Re
{
Vc eiτ} , where Vc = ξc

3∑
n=1

γ3
n [AnJ1(γnξc)+BnY1(γnξc)] . (4.42)

Substituting into the governing equation of motion (4.1) the presumed central displacement (4.4),

the central pressure force (4.41) and the structural impedance (4.42) reveals a linear relationship

between the unknown displacement amplitude b and the (generally) known excitation amplitude
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Fm, given by

b
Fm
= |X|−1 , where X = 2π

(
a2

ho
paFc +

D

a2 Vc

)
−ω2

(
mc + πr2

c ρdtd

)
. (4.43)

The associated phase lag, defined below (4.2), is given by φ = arg(X). Note that this estimate for

the value of b, accurate with relative errors of order ε� 1, does not require knowledge of the

pulling load 〈FL〉 which enters in (4.1) only as a higher-order correction.

In the limit of a vanishing clamp radius ξc→ 0 (and, correspondingly, a massless central

assembly mc = 0), (4.1) reduces at leading order to a balance between the applied excitation and

the reactive structural impedance, i.e. Fm cos(ωt +φ)+2πrcVc = 0, whence the dimensionless

impedance amplitude |Vc | can be expressed in the limiting form

lim
ξc→0
|Vc | = lim

ξc→0

Fm

2πDb/a2 =
2
π

3∑
n=1

Bnγ
2
n . (4.44)

Correspondingly, the central displacement amplitude b = Fm/|X| and phase lag φ = arg(X) can

be computed using the limiting form limξc→0X = −4(D/a2)
∑3

n=1 Bnγ
2
n of the complex constant

X defined in (4.43).

4.5 Nonlinear interactions at first order

W0, the displacement of the disk at leading order, and P0, the associated pressure

distribution in the thin film, are both sinusoidal functions of time and thus exhibit a zero time

average, i.e. 〈W0〉 = 〈P0〉 = 0. Determination of the steady pressure distribution and the steady

deformation of the disk thus requires solving the problem that emerges at the following asymptotic

order. Collecting terms of order ε in the expanded forms of the governing equations (4.15) and

(4.16) and their boundary conditions (4.18) and (4.19), and computing the time average thereof,
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provides the nonlinear system of equations

∂

∂ξ

[
ξ

(
3
〈
W0

∂P0
∂ξ

〉
+
σ

24
∂〈P2

0〉

∂ξ
+
∂〈P1〉

∂ξ

)]
= 0


ξ = 0 : ∂〈P1〉/∂ξ = 0

ξ = 1 : 〈P1〉 = 0
(4.45)

and

∇4〈W1〉 = C
6〈P1〉


ξ = ξc : 〈W1〉 = d〈W1〉/dξ = 0

ξ = 1 :
(

d2

dξ2 +
νd

ξ

d
dξ

)
〈W1〉 =

d
dξ

(
∇2〈W1〉

)
= 0 ,

(4.46)

where the value of 〈W1〉 vanishes at the clamp radius ξ = ξc since the driving motion of the

cylinder is periodic in time, as elaborated below (4.1). In this connection, note from (4.45) and

(4.46) that any secondary frequencies exhibited by W1(ξ,τ) due to the nonlinear interactions at

first order are irrelevant for the purpose of determining the time-averaged quantities of present

interest, 〈W1〉(ξ) and 〈P1〉(ξ).

It must be noted that the relaxation condition provided in (4.45) for the steady, first-order

overpressure 〈P1〉 at the film edge follows from a rigorous comparison of the characteristic pressure

variation along the film, (∆p) f , with that occurring across a small, peripheral region surrounding

the film edge, (∆p)p, their ratio being dependent on the local Reynolds number Rep characterizing

the peripheral flow, as explained below (4.7). For Rep � 1, (∆p)p/(∆p) f ∼ εωh2
o/(µa/ρa), so

that, in the lubrication limit α2 = ωh2
o/(µa/ρa) � 1 considered here, the peripheral pressure

variations can be neglected when analyzing both the leading-order solution and its first-order

corrections in the film. On the other hand, in the viscous limit Rep� 1, the flow in the periphery

involves small spatial pressure variations satisfying (∆p)p/(∆p) f ∼ ho/a� 1, which can clearly

be neglected when analyzing the leading-order solution in the film, as done in (4.21). The

associated variations of density are relatively small, i.e., (ρ− ρa)/ρa ∼ (∆p)p/pa ∼ εσ(ho/a),

such that the nonlinear effects of gaseous compressibility on the peripheral flow are negligible
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in the first approximation. Since for Rep � 1 the problem in either flow region is thus linear at

leading order, the time-averaged pressure drop, obtained by considering higher-order corrections,

exhibits characteristic values that are of order ε(∆p) f and ε(∆p)p along the film and across the

periphery, respectively, their ratio remaining therefore of order ho/a� 1. As a result, regardless

of the value of Rep, use of the steady relaxation condition 〈P1〉(ξ = 1) = 0 introduces asymptotic

errors consistent with those involved in the general formulation outlined in § 4.3.1. For a detailed

treatment of this matter, the interested reader is referred to [60].

4.5.1 Time-averaged squeeze-film overpressure and disk deformation

The steady pressure distribution 〈P1〉(ξ), independent of the steady disk deformation

〈W1〉(ξ) under the present perturbative formulation, can be determined by straightforward

integration of (4.45) to give

〈P1〉(ξ) = 3
∫ 1

ξ

〈
W0

∂P0
∂ξ

〉
(x)dx−

σ

24
〈P2

0〉 , (4.47)

where x serves as a dummy integration variable. Substitution of the expressions given in (4.23)

provides

〈P1〉 =


1
2

Re
{
3
[
Π̄(ξc)− Π̄(ξ)+

∫ 1
ξc
Π′∗(ξ̃)Ω(ξ̃)dξ̃

]
−
σ

24
Π̄Π̄∗

}
, 0 ≤ ξ ≤ ξc

1
2

Re
{
3
∫ 1
ξ
Π′∗(ξ̃)Ω(ξ̃)dξ̃ −

σ

24
ΠΠ∗

}
, ξc ≤ ξ ≤ 1 ,

(4.48)

having made use of the identity
〈
Re{Geiτ}Re{Heiτ}

〉
= Re{G∗H}/2, where G and H are

complex spatial functions and an asterisk denotes a complex conjugate. Note that, in the limit

ξc → 0, the second branch of the piecewise-defined equation (4.48) can be readily used to

compute the steady pressure everywhere in the film except the axis of symmetry, i.e. for positive

radial distances 0 < ξ ≤ 1.
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Integration of (4.46) provides the accompanying time-averaged deformation of the disk,

〈W1〉 = C
6
(
I1(ξc) ln

(
ξc

ξ

)
+

1
64

∫ ξ

ξc

x4[4ln(x)−5]〈P1〉
′(x)dx−

ln(ξ)
16

∫ ξ

ξc

x4〈P1〉
′(x)dx

+I2(ξ)

����ξ
ξc

+
ξc

2 [1+2ln(ξ/ξc)]− ξ
2

2
[
ξc

2−1+2/(1− νd)
] [
I1(ξc)+

1
16

∫ 1

ξc

x4〈P1〉
′(x)dx

] )
, (4.49)

expressed here in terms of the radial pressure gradient

〈P1〉
′ =

d〈P1〉

dξ
=


−

1
2

Re
{
Π̄′∗

(
3+

σ

12
Π̄

)}
, 0 ≤ ξ ≤ ξc

−
1
2

Re
{
Π′∗

(
3Ω+

σ

12
Π

)}
, ξc ≤ ξ ≤ 1

(4.50)

and the auxiliary integral functions


I1(ξ) =

ξ2

4

[
ξ2

4
〈P1〉+ ln(ξ)

∫ 1
ξ

x2〈P1〉
′(x)dx−

∫ 1
ξ

x2 ln(x)〈P1〉
′(x)dx

]
I2(ξ) =

ξ2

16

[
ξ2

4
〈P1〉+ [2ln(ξ)−1]

∫ 1
ξ

x2〈P1〉
′(x)dx−2

∫ 1
ξ

x2 ln(x)〈P1〉
′(x)dx

]
.

(4.51)

The general expression for the disk deformation (4.49) is seen to simplify in the limit of small

clamp radii to give

lim
ξc→0
〈W1〉 = C

6
(

1
64

∫ ξ

0
x4[4ln(x)−5]〈P1〉

′(x)dx−
ln(ξ)
16

∫ ξ

0
x4〈P1〉

′(x)dx

+I2(ξ)−
ξ2(1− νd)

32(1+ νd)

∫ 1

0
x4〈P1〉

′(x)dx
)
. (4.52)

4.5.2 An analytical expression for the levitation force

Consistent with the simplified description of gas dynamics presented in § 4.3.1, the

attractive levitation force that supports the applied pulling load is given by the expression

〈FL〉 = −2π
∫ a

0
〈p− pa〉 rdr , (4.53)
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which follows from a cycle-averaged statement of Newton’s 2nd law for the periodically oscillating

system shown in figure 4.1(a), comprising both the central assembly and the annular portion of

the disk. This definition may also be obtained by integrating the Kirchhoff–Love equation (4.9)

across the annular portion of the disk rc ≤ r ≤ a, substituting the resulting expression for the

stress resultantVc (4.10) into the equation of motion (4.1) and taking the time average thereof.

The force (4.53) can be expressed in the suitable dimensionless form

〈FL〉 =
〈FL〉

ε2(σ/12)paπa2 = −2
∫ 1

0
〈P1〉ξdξ , (4.54)

based on the scalings introduced in § 4.3.4. Integration by parts to yield the alternative expression

〈FL〉 =
∫ 1

0 ξ2 (d〈P1〉/dξ
)
dξ, followed by substitution of the steady pressure gradient (4.50), finally

provides

〈FL〉 = −
1
2

Re
{

12
σ

Ā∗
(
2ξc

ς∗
[2J1(ς

∗ξc)− ς
∗ξc J0(ς

∗ξc)]− ς
∗ ĀIJJ(ς,ς∗,ξc)

)
+

3∑
n=1

3∑
m=1

γ∗n

(
K4−γ∗n

4
)

C6

[
3+

σ
(
γ4

m−K4)
12C6

]
IL(ξ)

����1
ξc

}
, (4.55)

involving the auxiliary function

IL(ξ) = Am A∗nIJJ(γm,γ
∗
n,ξ)+ AmB∗nIJY(γm,γ

∗
n,ξ)

+Bm A∗nIYJ(γm,γ
∗
n,ξ)+BmB∗nIYY(γm,γ

∗
n,ξ) , (4.56)

where the governing parameters σ,K and C are defined respectively in (4.14), (4.17a) and

(4.17b), the coefficients Ā, An and Bn (for n = 1 : 3) are defined compactly in (4.36), the complex

constants ς and γn are given respectively in (4.25) and (4.29), and the four integral operators
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IJJ,IJY,IYJ and IYY are defined collectively by

IFG(α,β,ξ) =

∫ ξ

ξ̃2F0(αξ̃)G1(βξ̃)dξ̃

=
2βξ(

α2− β2)2 [βF0(αξ)G1(βξ)−αF1(αξ)G0(βξ)]

+
ξ2

α2− β2 [βF0(αξ)G0(βξ)+αF1(αξ)G1(βξ)], (4.57)

where Fm and Gm each represents a Bessel function of the first or second kind (Jm or Ym) of mth

order [85, p. 301]. Note that, as before, an asterisk denotes a complex conjugate. The effective

operating efficiency 〈FL〉/Fm of an SFL system can thus be expressed here in the appropriately

normalized form 〈FL〉/(εFm) = πµaωa4〈FL〉/(h3
o |X|), involving the complex constant X defined

in (4.43).

For a vanishing clamp radius ξc→ 0, the expression for the steady levitation force (4.55)

simplifies to

lim
ξc→0
〈FL〉 = −

1
2

Re
{ 3∑

n=1

3∑
m=1

γ∗n

(
K4−γ∗n

4
)

C6

[
3+

σ
(
γ4

m−K4)
12C6

]
[IL(1)−Ic]

}
, (4.58)

where

Ic = lim
ξc→0
IL(ξc) =

4/π
γ2

m−γ
∗
n

2

[
γ∗n(Bm A∗n− AmB∗n)

γ2
m−γ

∗
n

2 +
BmB∗n
πγ∗n

(
1−

2ln(γm/γ
∗
n)

(γm/γ
∗
n)

2−1

)]
. (4.59)

Combining (4.58) with the reduced expression (4.44) for the structural impedance amplitude |Vc |

yields a simple formula for the quantity

lim
ξc→0

〈FL〉

εFm
=
C6

2
limξc→0〈FL〉

limξc→0 |Vc |
, (4.60)

a dimensionless measure of the efficiency of an SFL system for which ξc = rc/a� 1.
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4.6 Discussion of results

The fluid–structure problem addressed above involves five principal dimensionless

parameters, as defined in § 4.3.4: the small perturbation parameter ε = b/ho � 1, which

compares the central displacement amplitude of the oscillating disk with the time-averaged

central width of the gas layer, the relative clamp radius ξc = rc/a, which specifies the radial

distance rc beyond which the disk is allowed to undergo flexure (see figure 4.1(b) for clarification),

the squeeze number σ, which quantifies the strength of viscous wall friction retarding airflow in

the thin layer and give rise to compressibility, an elastic wavenumber K , which measures the disk

inertia relative to its flexural rigidity, and a coupling parameter C, which controls the degree of

influence of aerodynamic forcing on the disk bending. In the asymptotic limit ε� 1 considered

here the perturbation parameter ε does not appear explicitly in the formulation. It enters only

as a scale factor for the pressure in the gas layer. Variability of the clamp radius ξc lends this

formulation applicable to a wide range of practical configurations, as exemplified by the sample

calculations to be carried out in section 4.6.4. Of greatest interest here are the final parameters σ,

K and C which govern the fundamental fluid–structure dynamics, to be investigated below by

focusing mainly on centrally excited configurations (i.e. ξc→ 0).

The variation with σ ∝ ωa2/h2
o and K of the typically repulsive, steady pressure force

generated by SFL systems has been explored thoroughly in prior literature. In particular,

an increase in σ ∝ h−2
o , realized typically by reducing the mean central distance ho between

the oscillating disk and the opposite surface, results in a magnification of the repulsive force

proportionally with the inverse square of ho [5, 19]. This growth of repulsion is found to occur

for sufficiently small distances ho regardless of the flexibility of the oscillator [93], the latter

quantified by the parameter K . Defined with use of both the forcing frequency of vibration ω and

the stiffness of the disk based on its geometric and material properties, the parameter K denotes

the relevant elastic wavenumber, i.e. the characteristic wavelength of flexure scales as aK−1 for a

disk of radius a. A transition to attractive forces is found to occur for systems with sufficiently
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low frequency ω [37] and/or oscillator size a [4, 6]. For these systems, attraction emerges only

beyond a critical distance ho, i.e. below a critical value of σ ∝ ωa2/h2
o.

The range of operating conditions ω and a for which attraction can be found, as well as

the resulting attractive load capacity, is found to depend critically on the waveform exhibited

by the oscillating disk [101]. In the case of an infinitely stiff oscillator, for which K = 0, the

disk/piston moves as a rigid body and produces repulsive forces for nearly all values of σ [19]. In

contrast, for critical values of K that correspond to the natural frequencies of a thin oscillator, the

disk performs resonant flexural oscillations, such as those depicted in figure 4.3(a), and produces

powerful attractive forces for a substantial range of values of σ [101]. The precise values of

these critical elastic wavenumbers K , weakly dependent on the Poisson’s ratio νd of the disk

material, are exemplified in table 4.1 of Appendix 4.8 for νd = 0.3, the value selected to produce

the dimensionless results presented below. It must be mentioned here that rigid-body oscillation

can provide attraction as well under a limited range of operating conditions, characterization

of which requires consideration of fluid inertia [4, 60] which is neglected in the lubrication

limit considered in the present study. However, the corresponding load capacities are severely

limited in comparison to those enabled by resonant flexural oscillation—a thousandfold smaller

in practical systems [101]. It is also worth noting the great importance of the precise excitation

method. Excitation of the oscillator with use of a bulky external transducer may alter substantially

the natural frequencies of the oscillating assembly, resulting in modified resonant waveforms that

feature large local relative amplitudes w(r)/w(rc) near the outer edge of the oscillator r = a [10].

The overall magnification of the peak amplitude profile due to this near-edge ‘flapping’ is found

only to increase the repulsive load capacity of the system [93]. Of interest here, instead, are

systems excited with use of light, localized excitation sources that alter minimally the natural

frequencies of a thin oscillator and thus give rise to significant attractive forces [3, 49].

Motion of a centrally excited disk (ξc → 0) at its second resonant mode (K = 6.2) is

visualized in figure 4.3(a) for a value of the squeeze number σ = 20 that gives rise to an attractive

force. The coupling parameter C is assigned a value of zero to represent the limit of one way
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Figure 4.3. Behavior of a two-way-coupled SFL system operating with an elastic wavenumber
of K = 6.2 and a squeeze number of σ = 20. Represented in panels (a)–(c) are the flexural disk
oscillations for increasing values of the coupling parameter C, and shown below (d)–(f) are the
associated radial distributions of time-averaged pressure and disk displacement.

coupling, a state for which the disk motion is unaffected by the airflow that it excites in the

squeeze film (see Appendix 4.8 for mathematical details). As seen from the blue curve in

figure 4.3(d), the distribution of steady pressure along the gas layer features two local minima

whose radial locations correspond closely with those of the two nodal circles in the standing

flexural wave, r/a ≈ 0.4 and 0.8. In the absence of aerodynamic forcing, the disk oscillates

sinusoidally about an undeformed mean position, as indicate by the red line in figure 4.3(d). This

one-way-coupled description has been shown in prior literature [101] to successfully predict

the large attractive load capacities observed in flexural SFL systems [3, 49], but fails to capture

certain salient aspects of the underlying physics. In particular, experimental measurements of

the mean pressure distribution show no signs of such near-nodal minima and instead display

a drop of pressure from its ambient value at the edge of the air layer to a lower value at its

central axis, as depicted in figure 4.2(b). As shown in the same figure, the disk correspondingly

exhibits a measurable time-averaged deformation that features a valley at a critical radial location
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r/a ≈ 0.2 [3]. Accounting for two-way fluid–structure coupling by considering nonzero values

of C yields greatly improved agreement with these observations, as described below.

Increasing the value of the coupling parameter to C = 3 yields but minor modifications to

the one-way-coupled results, as seen in figures 4.3(b) and 4.3(e). Namely, the two nodal points

are slightly disturbed and give way to localized regions of minimal amplitude, symptomatic

of a damped oscillator [125]. The corresponding pressure distribution is slightly skewed, and

the disk oscillates about a deformed mean shape that slopes monotonically toward the wall for

increasing radial distances. As suggested above, pressure variations in the squeeze film arising

from highly viscous gas flow serve to dampen the disk oscillations when C > 0, although the

degree of damping seems to be limited for an operating condition where C = 3 and K = 6.2.

When the strength of aerodynamic damping is further increased, by setting C = 5.25, the centrally

excited disk appears to undergo traveling-wave-type oscillations whose amplitude is severely

restricted for r/a & 0.3, as shown in figure 4.3(c). As shown below in 4.3(f), under such strongly

coupled conditions, the steady overpressure assumes a negative value at the central axis r = 0 and

the steady disk deformation varies non-monotonically with radial distance, both in qualitative

congruence with the recent experimental measurements by [3]. Furthermore, the apparent

absence of the first nodal region in the predicted disk waveform suggests that the collection of

sand observed at r/a ≈ 0.3 does not constitute a classical Chladni pattern and owes instead to

the gravity-driven transport of particles toward the valley formed by the mean disk deformation.

In this connection, it is worth noting that the sand pattern formed in the experiment for smaller

mean separation distances ho is markedly non-axisymmetric, indicative of eccentric excitation.

For each of the three cases considered above, asymptotic predictions of the time-averaged

pressure distribution and disk deformation are confirmed with use of a finite-difference solution

of the governing equations (4.15) and (4.16), results of which are visualized in the form of dots

and circles in figures 4.3(d)–(f). As can be seen, for the moderately small relative amplitude

ε = 0.1 used in the integration, the numerical solutions display satisfactory agreement with the

asymptotic predictions. The governing equations were discretized with use of second-order
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central-space finite-difference approximations and marched in time asynchronously, the Reynolds

equation with a forward-Euler scheme and the Kirchhoff–Love equation with use of a second-order

central-difference scheme [88, 126]. Initializing the system with uniform disk displacement

w(r) = b and zero velocity ∂w/∂t = 0 was found to yield convergent results, except for the case of

one-way coupling, which required substituting the uniform initial displacement with the known

analytical expression for the anticipated peak amplitude profile (see appendix 4.8). This is

due to the absence of damping for C = 0 that prevents the dissipation of secondary frequency

content that may arise in the initial stages of oscillation. Accurate characterization of the disk

motion for C , 0 required a sufficiently fine spatial discretization ∆ξ = ∆r/a and, in turn, stable

convergence to periodicity of the film pressure required a sufficiently small time step ∆τ = ω∆t.

For instance, the solution for C = 3 represented in figure 4.3(e) was obtained using ∆ξ = 0.01

and ∆τ = 6.3×10−4. The restriction on the time step for numerical stability generally loosens

when increasing the degree of damping; for instance, the solution for C = 5.25 represented in

figure 4.3(f) was obtained using ∆τ = 8.4×10−4. Note finally that the precise shape of the steady

disk deformation 〈W〉 continued to fluctuate noticeably even after the associated levitation force

had converged with a convergence ratio of less than 0.5%.

Motivated by the preliminary results presented above, the following discussion explores

the influence of aerodynamic damping on the performance of a flexural squeeze-film system—in

particular, the attractive load capacity max(〈FL〉) that is enabled by a sinusoidal excitation force

of given amplitude Fm.

4.6.1 Parametric dependence of the levitation force

Visualized in figures 4.4(a)–(c) is the variation with the principal governing parameters—

the squeeze number σ, the elastic wavenumber K and the coupling parameter C—of the levitation

force produced by a centrally excited disk (ξc→ 0). The force is computed in the dimensionless

form 〈FL〉/(ε
2paπa2), normalized with the square of the relative central displacement amplitude

ε = b/ho. In practical systems, the value of K is typically determined by the selection of an
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Figure 4.4. Variation with the squeeze number σ and coupling parameter C of the dimensionless
levitation force (a)–(c) and (d)–(f) the associated efficiency for three values of the elastic
wavenumber K .

oscillator and an optimal operating frequency, while those of σ ∝ h−2
o and C ∝ h−1/2

o are subject

to strong dependence on the separation distance ho, which varies during the pull-off process

as explained in section 4.3. The curves shown in each panel of figures 4.4(a)–(c) may thus be

interpreted to represent the variation of the attractive force with separation distance, for a disk

with given structural properties oscillating at a fixed frequency. The wavenumbers K = 3 and

6.2 represented respectively in panels 4.4(a) and (c) correspond to the first and second natural

frequencies of an undamped disk with νd = 0.3, while the intermediate wavenumber K = 4.1

represented in panel (b) corresponds to a non-modal frequency. The broken curve in each panel

represents the one-way-coupled solution where C = 0 [101]. For all curves shown, attraction

persists till a critical value of σ is reached, beyond which the force transitions to growing
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Figure 4.5. Variation with the elastic wavenumber K and the squeeze number σ of the
dimensionless amplitude of the forces resisting disk oscillation. Curves are shown for three
values of the coupling parameter C.

repulsion, as explained earlier. Inside the parametric domain of attraction, the dimensionless

force achieves a maximum that varies strongly with the degree of coupling. For K = 3 and 4.1,

the greatest load capacity appears to occur when C = 0, and for K = 6.2, when C ≈ 3.5. In

the limit of highly damped oscillations C � 1, the normalized levitation force 〈FL〉/(ε
2paπa2)

diminishes toward zero.

Among the elastic wavenumbers K represented in figures 4.4(a)–(c), the dimensionless

force clearly exhibits the greatest values for K = 4.1, owing to an anomalous magnification of

local relative amplitudes w(r)/b as seen from the shaded waveforms. However, this apparent

magnification is accompanied by the cost of augmented resistance to the disk oscillation arising

from internal bending forces. In practical SFL systems, the structural resistance under such

off-resonant operating conditions reduces substantially the central displacement amplitude b and

thus also the energy efficiency [93]. In the present case of central forcing, the simplified formula

(4.44) can be used to compute a dimensionless amplitude |Vc | of the time-periodic structural

impedance, which is influenced non-negligibly by the squeeze-film overpressure when C > 0.
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Represented in figures 4.5(a) and 4.5(b) by the broken curve is the variation of |Vc | with K for

one-way-coupled systems. The curves for σ = 1 and 500 are identical due to the absence of

fluidic damping for C = 0, and exhibit roots for values of the wavenumber K ≈ 3.0, 6.2, 9.4, · · ·

that represent the natural frequencies of the disk (beside the non-resonant rigid-body mode

K = 0). As shown in panel 4.5(a), increasing the value of C homogenizes the impedance for a

range of wavenumbers K , washing out the first few resonant modes. The affected range of K and

the number of suppressed modes grow with the value of C. For sufficiently large values of K

that satisfy K4 ∼ C6, the variation of impedance with K gradually returns, in accordance with

a restored three-term balance in the Kirchhoff–Love equation (4.16). Noting that K4/C6 ∝ ω,

this result agrees well with the observed decrease of the effective damping ratio of a flexural

squeeze-film bearing for increasing values of the near-resonant operating frequency ω [106].

It must be emphasized here that, although |Vc | exhibits local minima of decreasing value as K

grows, it never becomes identically zero for C > 0—the presence of damping, however weak,

precludes the onset of ideal resonance. Finally, the curves in panel 4.5(b) reveal that an increase

in the squeeze number σ mitigates modal suppression, but the reappearing minima of |Vc | are

substantially shifted along the frequency spectrum, the latter in agreement with the findings

of [105]. Interestingly, the non-resonant ‘zeroth’ mode K = C = 0 is shifted to K ≈ 2 when C = 3.

4.6.2 A measure of efficiency of levitation

As discussed earlier, the levitation force represented in figures 4.4(a)–(c) is computed for

a constant value of the relative displacement amplitude ε = b/ho, with no account taken of the

required amplitude Fm of the excitation force. For a centrally forced disk, Fm can be deduced

directly from the impedance amplitude |Vc | as explained in section 4.4.2, allowing straightforward

computation of the ratio 〈FL〉/(εFm), a measure of the efficiency of an SFL system, as defined

in (4.60). The parametric dependences of this levitation efficiency are represented in figures

4.4(d)–(f), illustrating the conditional benefit of operating near a natural frequency. Note first

that the efficiency, which scales with C6 as per (4.60), vanishes in the limit of one-way coupling
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C = 0 for all values of K and σ. However, for any order-unity value of the coupling parameter

C, representing a moderate level of viscous aerodynamic damping, the maximal efficiency of

attractive levitation obtained by varying the squeeze number σ is substantially lower for the

non-modal wavenumber K = 4.1 than for the resonant wavenumbers K = 3 and 6.2. Interestingly,

this advantage of near-resonant operation disappears in the case of strong coupling C � 1. For

C = 20, the variation with σ is weak and nearly identical for all three values of K , well in

agreement with the phenomenon of modal suppression found in figure 4.5. In contrast with the

results shown in figures 4.4(a)–(c), accounting for the required excitation force Fm reveals that

the levitation force 〈FL〉 does not collapse under strong damping—in fact, the maximal attractive

load enabled by a given excitation force is substantial and appears to be independent of the elastic

wavenumber K and the squeeze number σ.

Upon inspection of the curves in figure 4.4(d), it is apparent that the peak efficiency

Figure 4.6. Variation with the elastic wavenumber K of (a) the observed local maximum in
efficiency and (c) the order-unity values of the squeeze number σ̄ and the coupling parameter C̄
for which it occurs. Depicted in panels (b) and (d) are the periodic disk deformations and steady
pressure distribution, respectively, in the limit of strong coupling C � 1.
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exhibits a non-monotonic dependence on C, first increasing from zero to 0.4 as C rises from zero

to 1, then halving when C = 2. This indicates the presence of a local maximum in efficiency that

occurs for a critical operating condition defined by σ = σ̄ and C = C̄ ∼ 1. Represented in figure

4.6(a) by the solid curve is the value of this local maximum, max(ε−1〈FL〉/Fm), for wavenumbers

K up to 15. Displayed below in panel 4.6(c) are the associated critical parametric values σ̄

and C̄ ∼ 1. For wavenumbers K . 8.3, such as those represented in figures 4.4(d)–(f), the local

maximum appears to be generally lower than the universal peak efficiency of ≈ 0.65 approached

in the limit of strong coupling C � 1, the latter indicated by a dashed horizontal line in figure

4.6(a). This behavior is found to reverse, however, for larger values of K & 8.3 representing

disks with lower stiffness and/or oscillations with higher excitation frequency. More importantly,

the sensitivity of the local maximum to the wavenumber K , and thus the degree of advantage

earned by near-resonant operation, appears to diminish as K increases. Subsequent peaks of

efficiency which appear for increasing critical values of K , indicated by dots on the curve, are

less accentuated. As discussed earlier, these critical values of K are noticeably displaced from

the corresponding resonant wavenumbers of the undamped disk (for which C = 0), the latter

represented in panel 4.6(a) by grey vertical lines.

4.6.3 Universal limiting behavior for strong coupling

It was shown earlier that, for large values of the coupling parameter C, asymptotic

predictions of the time-averaged pressure in the air layer and the associated steady disk deformation

exhibit improved agreement with the recent experimental observations of [3]. The performance

of an SFL system for such states of strong fluid–structure coupling was found in figures 4.6(d)–(f)

to exhibit a diminishing dependence on the squeeze number and the elastic wavenumber. We

explore below the formal limit C � 1 with σ ∼ K ∼ 1, mathematical details of which are included

in Appendix 4.8. Most notably, the problem in this limit is found to be independent of the

parameters σ and K and of the Poisson’s ratio νd , due to which the appropriately rescaled limiting

expressions describing the disk motion (4.69a) and the steady film pressure (4.72) are universal
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(i.e. parameter-free).

For large values of C, the disk motion is greatly suppressed by aerodynamic damping

beyond a small radial distance, as shown in figure 4.3(c). Furthermore, while for states of weak

or moderate coupling C . 1, the disk oscillations resemble a standing wave as seen in figures

4.3(a) and 4.3(b), under the action of strong viscous damping with C � 1, the disk undergoes

pronounced traveling-wave deformations. The limiting curves depicted in figure 4.6(b) represent

the components of this wave that are in phase (solid) and out of phase (broken) with the driving

oscillations. The rapid disk undulations exhibit a large flexural wavenumber that scales linearly

with C � 1, in place of the elastic wavenumber K found for C of order unity.

The associated time-averaged overpressure in the squeeze film assumes a diminishing

value that scales as C−2� 1 for a constant relative amplitude ε = b/ho, explaining the collapsing

levitation forces seen in figures 4.4(a)–(c) for large values of C. As shown in figure 4.6(d), the

steady pressure in the limit C � 1 drops monotonically from the film edge to its center. As

observed by [3] during pull-off tests, decreasing the degree of coupling widens the apparent

region of radial pressure relaxation 0 ≤ r/a . 5C−1. The associated efficiency of levitation (4.60),

which normalizes the levitation force 〈FL〉 with the needed excitation amplitude Fm, converges

in this limit to a constant value of 〈FL〉/(εFm) ≈ 0.6495, in accordance with the weakly varying

curves for C = 20 drawn in figures 4.4(d)–(f).

An interesting consequence of this universal behavior for C � 1 is that, for strongly

coupled systems, one may anticipate a diminishing dependence of system behavior on the size

of the oscillator. If the disk radius a is sufficiently large such that C6 � K4, increasing a

further while preserving all other operating parameters will not increase the load capacity. This

anomalous conclusion is exemplified below by way of sample calculations for a practical SFL

system.
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Figure 4.7. Variation with separation distance of (a) the attractive force and (b) the amplitude and
phase lag of central disk displacement, and (c,d) variation with disk radius of the load capacity
and its ratio to disk area, the latter compared with measurements by [3].

4.6.4 Prediction of load capacity for practical systems

In figure 4.4, variation of the levitation force 〈FL〉 with the mean central separation

distance ho was studied by investigating a dimensionless parametric domain spanned by the

squeeze number σ and the coupling parameter C. While these two parameters are formally

independent in the present theoretical formulation, in practical SFL systems they evolve together

as dictated by their respective dependences on the distance: σ ∝ h−2
o and C ∝ h−1/2

o . Thus, the

actual load capacity max[〈FL〉(ho)]may fall short of the idealistic value predicted in figure 4.6(a),

warranting a system-specific calculation as done below.

Displayed in figure 4.7(a) is the predicted pull-off curve 〈FL〉(ho), computed using the

asymptotic formulation derived in § 4.3–§ 4.5, for an SFL system operating under conditions

similar to those used in the recent experiment by [3]. A motor with a forcing amplitude of

Fm = 74.5 gf and frequency of ω/(2π) = 200 Hz is mounted to a cylinder of radius rc = 10 mm.

The oscillating assembly, weighing mc = 10 g, is mounted concentrically to a disk of variable
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radius a and fixed thickness td = 150 µm. The disk is made of polyester plastic with Young’s

modulus Ed = 3.65 GPa, mass density ρd = 1.38 g/cm3 and Poisson’s ratio νd = 0.48 [94, 127].

The system operates in standard air with ambient pressure pa = 101325 pa, density ρa = 1.225

kg/m3 and viscosity µa = 1.81×10−5 kg/(m·s). The separation distance ho is varied from 15 to

185 µm.

The attractive levitation force is seen to initially increase, reaching a maximal value

max(〈FL〉) for a critical distance ho = h̄o beyond which it decays gradually. Note that, in practical

systems, displacing the disk beyond h̄o requires exerting a force greater than the maximal load

capacity, yielding instead an abrupt failure of levitation [3]. In principle, use of the present

asymptotic formulation introduces in the computation relative errors that scale with b/ho, ho/a

and h2
o/(µa/ρa/ω), the latter of which is of order unity when ho & 75 µm. Nevertheless, the scale

of forces 〈FL〉 seen in the rising portion of the curves ho . 75 µm compares favorably with that

reported in the experiment [3] for small distances of order 100 µm, as seen from figure 4.2(a), in

stark contrast with the theoretical predictions produced previously with use of a one-way coupled

formulation [101]. It can be anticipated that description of the observed gradual rise of 〈FL〉

to larger values ≈ 500 gf at greater distances ho ≈ 2500 µm requires generalizing the present

formulation to account for effects of fluid inertia that are non-negligible when h2
o ∼ µa/ρa/ω.

On the other hand, when the separation distance is reduced, the attractive levitation force is

found to collapse toward zero, in contrast with the transition to dramatically large repulsive forces

observed in experiments with much stiffer oscillators [6, 37]. While in such cases the oscillator

may be subject to negligible aerodynamic coupling, in the present example the augmented degree

of coupling C ∝ 1/
√

ho at small distances ho results in the substantial suppression of disk motion,

as revealed by figure 4.7(b). Depicted in panel (b) is the variation with ho of the amplitude b

and phase lag φ of the driving cylinder oscillations. As the disk is pulled away from the wall, b

generally increases due to a weakening of the viscous aerodynamic impedance and φ approaches

180◦, as expected for a forced harmonic oscillator [114].

The dependence of the load capacity max(〈FL〉) on the disk radius a is elaborated in
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figure 4.7(c), showing rapid variation for small values of a ∼ rc but converging asymptotically for

larger radii, just as predicted in § 4.6.3. As a result, the associated value of the area-normalized

load capacity max(〈FL〉)/(πa2) collapses beyond a ≈ 20 mm, as shown in figure 4.7(d). As seen

from the inset in panel 4.7(d), this prediction agrees well with the observations of [3], who

alluded to the possible benefit of increasing the number of oscillators rather than their size when

upscaling an SFL system.

4.7 Conclusions and recommendations for future work

Developed in this chapter is a reduced theoretical description of the pulsatile airflow

excited in a slender air layer by the normal oscillations of a compliant bounding surface. The

associated problem of elastohydrodynamic lubrication is relevant to the study of squeeze-film

levitation (SFL) systems that are driven by highly flexible oscillators, which were shown in recent

experiments to exhibit steady attractive load-bearing capacities a thousandfold larger than those

driven by stiffer oscillators. Consideration of two-way-coupled fluid–structure interactions is

found in this study to provide significantly improved accuracy in the theoretical characterization

of such highly flexural SFL systems.

The present theory constitutes an extension of prior work that addressed the airflow

excited by prescribed modal oscillations of a disk, a one-way-coupled problem that is governed

by two distinct parameters—an elastic wavenumber K characterizing the flexibility of the disk

and the squeeze number σ measuring the level of gaseous compressibility induced due to viscous

wall friction [101]. Identified here is a third parameter of importance, C, which quantifies the

degree to which the disk oscillations are dampened by the coupled pressure variations in the film.

While the prior theory, for which C = 0, successfully predicted the scale of the time-averaged

attractive forces seen in experiments by [3], it failed to capture accurately the causal distribution

of pressure in the air layer and the measured deformations of the disk, those which are closely

reproduced in the present solution for sufficiently large values of C. The solution exhibits a
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universal behavior in the limit C � 1 describing a state of strong coupling, whence we find that

the load capacity provided by an oscillating disk fails to grow when the disk radius is increased

beyond a critical value, just as observed by [3].

Further observations by the BRD lab [3] and Dr. Colasante [49] motivate generalization of

the present formulation to describe (i) large deformations of the oscillator that are comparable to

its thickness [116, 128], (ii) possible contact between a highly flexible oscillator and the opposite

wall for small separation distances [3, 96,129], (iii) nonlinear effects of fluid inertia in the gas

layer and its periphery that are no longer negligible under the large separation distances for which

the highest attractive forces are measured [60,74,101], (iv) possible aerodynamic instabilities

for large-scale systems [54], (v) dissipative effects of structural damping that may be important

in describing near-resonant oscillation [125], (vi) oscillators made of non-homogeneous and

anisotropic materials [129] and (vii) hysteresis in the pull-off process due to abrupt application

of the pulling load. The development of high- and multi-fidelity models that address these effects

and thus predict system behavior accurately for a wide range of operating conditions would

greatly assist the design and realization of robust SFL devices—for example, by supplementing

active control mechanisms that mitigate the substantial stochasticity observed in devices driven

by highly flexible oscillators [3]. The avenues of future research recommended above apply also

for non-axisymmetric SFL configurations that are found in emerging applications such as mobile

robots and contactless grippers [99, 100].

4.8 Appendix: Limiting behavior for extreme values of the
coupling parameter C

4.8.1 One-way coupling C = 0 for arbitrary clamp radius 0 < ξc < 1

We begin by noting that computation of the levitation force 〈FL〉 with use of the integral

identity (4.57) may yield unreliable, divergent results for critically small values of C. In such

cases, it is recommended to confirm the computed value of 〈FL〉 with use of direct numerical
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integration in (4.55) (or, for vanishingly small clamp radii, (4.58)). Fortunately, such numerical

issues are seen to arise only after the computed value effectively converges to the limiting solution

corresponding to C = 0. The associated limiting problem of one-way coupling, considered earlier

for the case ξc = 0 [101], is described below for arbitrary clamp radii 0 < ξc < 1.

When C = 0, the disk motion is unaffected by the aerodynamic force, whence the function

W can be found by integrating the unforced Kirchhoff–Love equation

(
∂2

∂ξ2 +
1
ξ

∂

∂ξ

)2

W +K4 ∂
2W
∂τ2 = 0 , (4.61)

obtained by setting C = 0 in (4.16). The solution to (4.61) that satisfies the appropriate boundary

conditions (4.19) can be written in the form W = S(ξ)cosτ, with

S =


1 , 0 ≤ ξ ≤ ξc

J0(Kξ)+C1Y0(Kξ)+C2I0(Kξ)+C3K0(Kξ)
J0(Kξc)+C1Y0(Kξc)+C2I0(Kξc)+C3K0(Kξc)

, ξc ≤ ξ ≤ 1 ,
(4.62)

where Im and Km represent respectively the mth-order modified Bessel functions of the first and

second kinds, and the three constant coefficients Ci (i = 1 : 3) can be written in the compact

vectorial form 

C1

C2

C3


= −



Y1(Kξc) −I1(Kξc) K1(Kξc)

Y1(K) I1(K) −K1(K)

Ξ−Y (K) −Ξ−I (K) −Ξ
+
K(K)



−1 

J1(Kξc)

J1(K)

Ξ−J (K)


, (4.63)

involving the auxiliary function

Ξ
±
B(x) = B0(x)±

1− νd

x
B1(x) , (4.64)

where Bm represents a Bessel/modified Bessel function of order m.

The solution W = S cosτ can now be substituted into the Reynolds equation (4.15),
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Table 4.1. The first four resonant wavenumbers K (n) (n = 1 : 4) of an annular plate that is clamped
at its oscillating inner radius ξc = rc/a < 1, found using (4.65), for select values of ξc.

ξc K (1) K (2) K (3) K (4)

0 3.0005 6.2003 9.3675 12.5227
0.1 3.0702 6.4563 9.8732 13.3126
0.3 3.5944 7.9699 12.4189 16.8871
0.5 4.8155 11.0314 17.3008 23.5778

integration of which provides the squeeze-film pressure P(ξ,τ). Expressions for the steady

pressure distribution 〈P1〉 and the levitation force 〈FL〉 provided by arbitrary standing-wave

oscillations S(ξ) can be found using the general formulas provided by [101]. Curves labeled

‘C = 0’ in figures 4.3–4.5 of the main text were verified using this method.

When the disk described above oscillates at a natural frequency, the driving cylinder

experiences no structural resistance to its motion, i.e. the transverse stress vanishes at the clamp

radius ξc = rc/a [121]. Upon imposing this additional boundary condition, the critical elastic

wavenumbers K that specify these resonant frequencies can be found by solving the equation

det
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J1(Kξc) Y1(Kξc) −I1(Kξc) K1(Kξc)

J1(K) Y1(K) I1(K) −K1(K)

Ξ−J (K) Ξ−Y (K) −Ξ−I (K) −Ξ+K(K)

J1(Kξc) Y1(Kξc) I1(Kξc) −K1(Kξc)



ª®®®®®®®®®®®®¬
= 0 . (4.65)

Note that the resonant wavenumbers and mode shapes for a circular disk [89,101] can be recovered

respectively from (4.65) and (4.62) by taking the limit of a vanishing clamp radius ξc→ 0. The

first few critical wavenumbers K for select values of ξc are exemplified in table 4.1 for a disk

with Poisson’s ratio νd = 0.3. The precise values of the critical K vary weakly with νd in the

range of interest—for most plastic and metallic materials, 0.3 . νd . 0.5 [130, 131].
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4.8.2 Strong fluid–structure coupling C � 1

The limit of strong fluid–structure coupling C � 1 is considered below for the canonical

case of a vanishing clamp radius ξc→ 0. For values of C much larger than unity, the disk bends

with a small characteristic wavelength that scales with the inverse of C, as can be seen from

an order-of-magnitude analysis of the dominant terms in (4.27). Correspondingly, the scale of

pressure variations in the air layer reduces by an order C2, as follows from the balance of radial

momentum (4.5b). When C � 1, the Kirchhoff–Love equation (4.16) reduces to

∇̂4W = P̂ , with ∇̂2 =
∂2

∂X2 +
1
X

∂

∂X
, (4.66)

where X = Cξ is the appropriately rescaled spatial variable that accounts for the high-wavenumber

disk undulations and P̂ = C2P represents the correspondingly rescaled overpressure, and the

Reynolds equation (4.15) reduces to

−
1
X

∂

∂X

[
(1+ εW)3X

∂P̂
∂X

]
+12

∂W
∂τ
= 0 . (4.67)

Substituting into (4.66) and (4.67) the familiar truncated perturbation expansion for the disk

displacement W =W0+εW1 and that for the newly rescaled pressure P̂ = P̂0+εP̂1, and collecting

terms of order unity provides ∇̂4W0 = P̂0 and ∇̂2P̂0 = 12∂W0/∂τ, respectively. Introducing an

ansatz of the form W0 = Re{Ω̂eiτ} and P̂0 = Re{Π̂eiτ}, and combining the two reduced governing

equations provides (∇̂2+ γ̂2
1)(∇̂

2+ γ̂2
2)(∇̂

2+ γ̂2
3)Ω̂ = 0, involving the rescaled wavenumbers

γ̂n = lim
C�1
C−1γn =

(
21/3

) (
31/6

)
ei[π/4+(n−1)π/3] for n = 1 : 3 , (4.68)

which can also be obtained directly by taking the limit C � 1 in (4.29). The spatial variations of

disk displacement and squeeze-film pressure at leading order can then be expressed respectively
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as

Ω̂ =

3∑
n=1
[AnJ0(γ̂nX)+BnY0(γ̂nX)] and Π̂ =

3∑
n=1

γ̂4
n [AnJ0(γ̂nX)+BnY0(γ̂nX)], (4.69a,b)

where the six coefficients An and Bn are to be determined by application of appropriate

boundary conditions, analogous to those listed in (4.21) and (4.22), those at the disk edge

ξ = 1 now being imposed correspondingly for X → ∞. Use of the limiting forms of the

Bessel (and Hankel) functions for large complex arguments [124, pp. 355–389] provides[
A1 B1 A2 B2 A3 B3

]
=

[
1 0 0 0 0 0

]
M−1
∞ , where

M∞ =



1 0 0 γ̂
3/2
1 γ̂

5/2
1 γ̂

7/2
1

2/π ln(γ̂1) 1 γ̂4
1 iγ̂3/2

1 iγ̂5/2
1 iγ̂7/2

1

1 0 0 γ̂
3/2
2 γ̂

5/2
2 γ̂

7/2
2

2/π ln(γ̂2) 1 γ̂4
2 iγ̂3/2

2 iγ̂5/2
2 iγ̂7/2

2

1 0 0 γ̂
3/2
3 γ̂

5/2
3 γ̂

7/2
3

2/π ln(γ̂3) 1 γ̂4
3 iγ̂3/2

3 iγ̂5/2
3 iγ̂7/2

3



. (4.70)

Note that the problem is thus fundamentally parameter-free in the limit of large C, with σ, K

and the disk Poisson’s ratio νd—the latter of which enters for order-unity C through a free-edge

boundary condition in (4.22)—all being absent in the solution.

The amplitude of the disk structural impedance at the rescaled, vanishing clamp radius

X = Xc = Cξc � 1 scales in this limit with the square of C, as follows from the definitions given

in (4.42) and (4.44). The appropriately rescaled amplitude is found to approach the constant

value C−2 |Vc | → (2/π)
��∑3

n=1 Bnγ̂
2
n

�� ≈ 3.7867.
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Collecting terms of order ε in (4.67) and calculating the time average thereof provides

d
dX

[
X

(
d〈P̂1〉

dX
+3

〈
W0

∂P̂0
∂X

〉)]
= 0 . (4.71)

Integrating this equation twice with application of the modified regularity conditions ∂P̂0/∂X =

∂P̂1/∂X = 0 at the vanishing clamp radius Xc � 1 provides the rescaled, time-averaged squeeze-

film pressure distribution

〈P̂1〉(X) = −
∫ ∞

X

d〈P̂1〉

dX
dX , (4.72)

valid for X > 0 and expressed in terms of the associated steady pressure gradient d〈P̂1〉/dX =

−(3/2)Re{Ω̂dΠ̂∗/dX}. The characteristic scale of the corresponding levitation force reduces

in this limit by a factor of C4, as can be deduced from the original definition (4.54), and

the appropriately rescaled force is found to converge to the constant value C4〈FL〉 ≈ 4.919.

Interestingly, the associated efficiency of levitation (4.60) reduces in this limit to a constant value

〈FL〉/(εFm) ≈ 4.919/3.7867/2 = 0.6495.

Chapter 4 is currently being prepared for submission for publication along with A. L.

Sánchez, under the title “The role of fluid–structure coupling in the generation of attractive

squeeze-film forces”. The dissertation author was the primary investigator and author of this

draft.
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Chapter 5

Transportation of levitated objects using
asymmetrical flexural oscillations

5.1 Executive summary

Developed in this chapter is a theoretical description of the fluid flow involved in

contactless transport systems that operate using squeeze-film levitation. Regular perturbation

methods are employed to solve the appropriate Reynolds equation that governs the viscous,

compressible flow of air in the slender film separating the oscillator and the opposite surface.

The reduced mathematical formulation allows efficient computation of the time-averaged

levitation force and moment induced by the gas overpressure in the squeeze film, as well as the

accompanying quasistatic thrust force that accounts additionally for shear stresses. Investigated,

in particular, is the possibility of combining two distinct methods of thrust generation that have

been experimentally demonstrated in previous studies—(i) inclination of the levitated body and

(ii) generation of asymmetrical flexural deformations, such as traveling waves, on the oscillator

surface—the latter of which is shown to allow a transition from the typically repulsive levitation

force to one that is attractive. Computations reveal that systematic control of the inclination angle

can provide significant performance benefits for squeeze-film transport systems. In the case of

attractive levitation, the amount of improvement that can be obtained appears to correlate closely

with the degree of lateral asymmetry exhibited by the flexural oscillations.

Contactless transportation using squeeze-film levitation is potentially of great use in
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Figure 5.1. (a) A conventional squeeze-film levitation system can be modified to generate thrust
by (b) excitation of propagating-wave surface deformations or (c) inclination of the oscillator
surface.

Figure 5.2. Proposed applications of squeeze-film transport: (a) contactless assembly line
conveyance using both repulsion (red) and attraction (blue), and (b) soft-robotic locomotion over
complex terrain.

applications such as the assembly line handling of touch-sensitive objects and soft-robotic

locomotion over complex terrain. Achieving lateral mobility in levitation systems has typically

required incorporation of multiple oscillation sources, which consume substantial energy while

generating thrust forces and transport speeds that are inadequate for large-scale, practical

application. The results of the present analysis demonstrate that much greater thrust can be

generated by controlling systematically the inclination angle of an object levitated by repulsive

or attractive pressure forces, for instance, through active control of the center of mass of

a self-levitating robot. The generality and computational efficiency of this mathematical

formulation make it a versatile tool for guiding the design, optimization and closed-loop control

of next-generation squeeze-film transport systems.

5.2 Introduction

A typical squeeze-film levitation (SFL) system, as cartooned in figure 5.1(a), consists of

two rigid objects with parallel surfaces that are separated by a slender layer of air, the ‘squeeze
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film’. High-frequency oscillation of either object along an axis perpendicular to the surfaces

generates pulsating airflow in the film that yields a strong, steady, repulsive pressure force between

the two objects. This phenomenon has been exploited to design gas-lubricated bearings [7,9] and

levitation devices that exhibit large load capacities, as demonstrated, for example, by Zhao [19],

who used an ultrasonic oscillator with a small surface diameter of 5 cm to generate 115 N (≈

11.7 kgf) of repulsion.

SFL systems are typically operated at a frequency that corresponds to one of the resonant

bending modes of the oscillating assembly. Active feedback control of the excitation signal

has been implemented to account for slight, unpredictable drifts of the natural frequency [132].

The drastic increase in the amplitude of oscillations near resonance magnifies substantially the

repulsive levitation force [10, 40, 93]. The effective flexural amplitude can be improved by

reducing the stiffness of the oscillator through careful selection of material(s) [133, 134] and

geometry [135].

Under a limited range of operating conditions—namely, for surfaces with millimetric

characteristic dimensions or oscillation frequencies as low as several hundred hertz—this steady

force has been observed to transition from strong repulsion to weak attraction of less than

1 gf [4, 6, 36, 37]. Recent experiments have shown that this minor attractive load capacity

is magnified a thousand fold when the stiffness of the oscillator is reduced substantially to

provide pronounced flexural deformations that may be subject to non-negligible fluid–structure

coupling [3, 49]. A preliminary theoretical analysis [101] (see Ch. 3) indicated that the range of

operating conditions under which attraction occurs, as well as the magnitude of the resulting

forces, grows substantially with the wavenumber of oscillation—or, practically speaking, with

the degree of flexibility of the oscillator.

Proposed applications of SFL include, primarily, assembly line handling and transport of

touch-sensitive items, such as surface-mount devices for circuit boards [6] and glass substrates to

be installed in liquid-crystal displays [12], and load-carrying ‘soft’ robots that can travel over

multifarious terrains [3]; see figure 5.2 for a rudimentary visualization of each. Pursuant of these
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applications, a number of methods have been proposed to modify the basic SFL configuration to

produce also lateral forces, as reviewed in the following paragraphs.

The earliest of these is the excitation of traveling-wave deformations of the oscillator, as

diagrammed in figure 5.1(b), which generates steady, asymmetrical fluid shear on the bounding

surfaces of the squeeze film. This method has been applied to develop rail-transport systems that

levitate repulsively objects with masses of order 10−100 grams and displace them with speeds of

order 10 cm/s [14, 37, 136]. Experimenters have also designed self-levitating mobile robots with

comparable masses that can produce thrust forces of order 10 mN [32,33]. The wave-generation

methods employed in these experiments involve two spatially separated oscillators attached

to a platform [137]. Of great concern has been the purity of the traveling wave generated

on the finite platform—which is limited practically by wave reflection at free boundaries and

points of attachment, since the resulting interference may critically reduce the thrust force [33].

Ameliorative solutions include ‘impedance matching’, where one of the oscillators acts as a

passive absorber through piezoelectric energy dissipation [37,138], and ‘two-mode excitation’,

where the two oscillators operate out of phase at a critical frequency that results in a favorable

superposition of two consecutive resonant bending modes of the platform [13, 139]. Active

feedback control using the latter method has been claimed to provide nearly perfect traveling

waves [140,141].

Three prominent alternative methods of transport have been proposed in recent years. The

first relies on the steady shear force caused by the asymmetrical fluid streaming that occurs when

a levitated object is misaligned with a finite parallel surface [142]. This so-called ‘restoring force’

is exploited by assembling an array of oscillators and controlling carefully the amplitude of each

such that fluid shear conveys a levitated object along the array. (Note that a propulsive pressure

force resulting from tilting of the levitated object with respect to the oscillating platforms, as

described in a later paragraph, may also be involved in this method.) Notable limitations of this

method include the need for multiple oscillators, whose number and/or size must grow with the

desired transport distance, and the apparent inapplicability to robotic locomotion.
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[34] proposed a remarkable method more amenable to such robotic applications:

simultaneous generation of linear and rotational oscillations of a platform using a pair of

independently excited piezoelectric elements, the resonant frequencies of the two oscillation

modes matched using computer-aided design. In principle, if the modes are driven exactly out of

phase, the oscillations should resemble a traveling wave with very large wavelength. The authors

report an optimal phase shift of ≈ 25◦, which allowed a roughly 20-gram robot to travel at 2.25

cm/s and generate 30 mN of static thrust.

The third and most recent alternative, proposed by [45], involves inclination of the

levitated object, as exemplified in figure 5.1(c), which would tilt the levitative steady pressure

force to provide a relatively small lateral component. This method seems particularly attractive for

implementation on mobile robots, simply through active control of the on-board mass distribution.

Although the robustness and stability of steady-state transport are yet to be investigated rigorously

for this method, [45] claims that it may yield substantial improvement in versatility, load capacity

and controllability.

A unifying factor among the literature cited above is the focus on repulsive levitation.

To the best of our knowledge, controlled transportation using attraction is yet to be studied

theoretically. (Following the publication of the contents in this chapter, an experimental

demonstration of transport and rotation with attractive levitation was communicated by the

Bioinspired Robotics and Design Lab at UC San Diego [100].) Explored in this chapter

is the prospect of combining the distinct thrust-generation mechanisms of (i) traveling-wave

deformations and (ii) controlled surface inclination. Results of a rigorous fluid-flow analysis

indicate that, while thrust-generating inclination reduces the maximal repulsive load capacity, the

attractive load capacity of flexural SFL systems can be improved substantially through methodical

adjustment of the tilting angle.

The remainder of this chapter is organized as follows. Outlined in Section 5.3 is the

proposed fluid-dynamic problem that represents a generic squeeze-film system involving arbitrary

flexural oscillations and a variable tilt angle. The reduced conservation equations governing fluid
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Figure 5.3. A generic squeeze-film transport system: a levitated plate undergoing flexural
oscillation is tilted at an angle θ with respect to a nearby wall and propelled to the right by fluid
stresses beneath.

flow in the slender air layer are presented, followed by the introduction of appropriately rescaled

dimensionless variables. An asymptotic solution is derived in § 5.4 and integral expressions are

provided for the steady thrust force, the levitation force and the associated center of pressure.

These levitation metrics are visualized in § 5.5 for a variety of relevant transport configurations.

The chapter concludes with a discussion of possible applications of the developed formulation in

system design, optimization and control.

5.3 Problem definition

5.3.1 Preliminary considerations

Consider, as a relevant canonical configuration, the planar SFL system represented in

figure 5.3, where a plate of undeformed length 2a levitates and translates above an infinitely long

horizontal wall. In its undeformed state, the plate is tilted at an angle θ with respect to the wall,

and its center is separated from the wall by a time-averaged distance ho. The plate undergoes

time-harmonic, flexural oscillations that are described by the equation y∗ = bRe{W(x∗/a)eiωt},

where (x∗,y∗) specifies the depicted rotated coordinate system attached to the plate center, b and

ω denote, respectively, the characteristic amplitude and angular frequency of oscillation, and W is

a dimensionless function that defines the waveform. For instance, the cases W = cos(2πx∗/a) and

W = exp(−2iπx∗/a) represent, respectively, standing and forward-traveling waves of wavelength

a.
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The local pressure, temperature, density and viscosity of the oscillating gas inside the

film are denoted respectively by p,T, ρ and µ. The corresponding values of those properties in

the unperturbed surroundings are denoted with the subscript ‘a’; for instance, pa denotes the

ambient pressure.

In pursuit of modeling typical SFL systems [4, 19, 40], it is assumed here that

(i) the squeeze film is slender, ho � a, whence the tilt angle is small: θ ∼ ho/a� 1,

(ii) the characteristic wavelength of the flexural oscillations is comparable to a, whence

(iii) any lateral displacement ∆x∗ of points on the deforming plate surface is negligible, and

(iv) the transport speed ut is negligibly small [136] compared to the characteristic speed us of

steady gaseous streaming in the film: ut � us ∼ (b/ho)
2ωa [60].

Assumptions (i) and (ii) allow application of the slender-flow approximation [60] to model gas

flow in the film. Due to (iii) and (iv), the only nontrivial boundary condition to be imposed

for the flow velocity stems from the transverse motion of the plate surface, which can now be

expressed with use of the simplified equation

y = h(x,t) = ho− xθ + bRe
{
W(x/a)eiωt} , for − a ≤ x ≤ a , (5.1)

where (x,y) denotes a coordinate system whose origin travels along the wall (see figure 5.3),

with x coincident to the wall and y denoting the perpendicular distance to the plate center. The

assumption of small angles θ � 1 introduces relative errors of order θ2 for the terms in (5.1)

representing steady tilt and unsteady flexure.

The levitation force, defined as the vertical component of the time-averaged aerodynamic

force acting on the plate (per unit length perpendicular to the plane of motion), can then be

expressed as

〈FL〉 =

∫ a

−a
〈p− pa〉dx , (5.2)
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and the associated thrust force—the horizontal component—can be expressed as

〈FT 〉 =

∫ a

−a

(
〈p− pa〉θ − 〈µ∂u/∂y〉

��
y=h

)
dx , (5.3)

both with relative errors of order (ho/a)2 ∼ θ2. The angled brackets in the definitions above

denote the time average of a time-dependent quantity over one period of oscillation, 〈?〉 =

(ω/2π)
∫ t∗+2π/ω

t∗ ?dt.

In addition, the levitation moment about the plate center and the associated center of

steady pressure can be expressed as

〈M〉 =

∫ a

−a
〈p− pa〉xdx and xcsp =

〈M〉

〈FL〉
, (5.4)

with the same level of accuracy. Note that, due to the simplifications employed, the general

quasistatic transport problem defined above also describes systems such as those depicted in

figure 5.2(a), where a rigid object with a flat surface (of length 2a) is transported over a flexurally

oscillating rail.

5.3.2 The lubrication approximation

As shown by [74] and later by [60], the flow dynamics in the thin air layer of a squeeze-film

system is characterized by three principal timescales—that of the driving oscillations to = ω−1,

viscous diffusion across the film tv = h2
o/(µa/ρa), and acoustic pressure equilibration along the

film ta = a/
√

pa/ρa—which enter in the theoretical description through two nondimensional

parameters: the relevant Stokes number α2 = tv/to (or, equivalently, the associated Womersley

number α) and a compressibility numberΛ = ta/to. As shown by G.I. Taylor and P.G. Saffman [5],

the description simplifies in configurations for which tv � to, where inertial forces are negligibly

weak compared to viscous shear. In the associated lubrication limit α2 � 1, the three timescales
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are found to enter through a single parameter

σ =
12Λ
α2 =

12t2
a

totv
=

12µaωa2

pah2
o
∼ 1 , (5.5)

where the factor of 12 is included for consistency with the classical definition. Often referred to

as the ‘squeeze number’, σ effectively represents the combined effects of gaseous compressibility

and viscous shear within the film. Solution for the case of parallel walls (θ = 0) with uniform

oscillation amplitude (W = 1) has revealed that the air near the center of the film is entrapped

due to viscous resistance, and its nonlinear response to sinusoidal compression and expansion

provides the steady repulsive pressure force 〈FL〉 [8, 9]. The extent of this central region and,

hence, the magnitude of the force, grows monotonically with increasing values of σ. On the

other hand, as σ→ 0 and the system becomes weakly nonlinear, the force vanishes, proportional

to σ2 [60].

While quantifying the effects of local and convective fluid acceleration affords higher

accuracy in the computation of the levitation force for a wider range of operating parameters

[63, 68,74], the lubrication approximation has been shown to provide excellent agreement with

experimental measurements for systems with small mean distances ho �
√
µa/(ρaω), those

that satisfy tv � to [9, 19]. In the following analysis, the classical compressible lubrication

limit (tv/to ∼ t2
a/t

2
o � 1) will be employed to describe rigorously the family of transport systems

schematized in figure 5.3. The mathematical formulation derived below may be readily extended

in the future to address the general viscoacoustic limit (tv/to ∼ ta/to ∼ 1) by following the methods

of [60], although quantification of inertial effects would severely limit the degree of analytical

development possible.

The fluid flow in asymmetrical SFL systems has been studied previously for two limiting

cases that correspond to the canonical transport mechanisms drawn in figures 5.1(b) and (c).

For the latter case, where W = 1 and θ , 0, [59] outlined an asymptotic computation of the

time-dependent film pressure under the assumption of a known, non-negligible transport speed. A
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verified numerical model developed by [45] using the ANSYS CFX software provided preliminary

insights regarding the contribution to the thrust force from steady shear stresses acting on the

levitating body, those arising from streaming in the air layer bounded by non-parallel surfaces.

For the former case, where θ = 0 andW =W(ξ), [143] computed analytically the quasistatic thrust

force generated by pure traveling-wave oscillations with variable wavenumber. [33] presented a

numerical investigation of the problem for imperfect traveling waves, demonstrating the adverse

effect of impurity on the thrust force. The utilized model accounted rigorously for effects of local

fluid acceleration and estimated the additional drag force induced by fluid shear on the exposed

plate surface.

Two notable treatments of the generic problem depicted in figure 5.3 must be mentioned

here. [144] presented a formulation similar to that of [33] but computed additionally the

contribution of steady overpressure to the thrust in the presence of inclination, quantifying

the adverse effect of the impurity of traveling waves on the terminal transport velocity. [145]

addressed the stability of transport systems to disturbances in the tilt angle θ, using a model that

accounts for fluid inertia but neglects the fundamental role of gaseous compressibility. They

discovered a steady restoring moment that increases in magnitude with the inclination angle.

However, (i) systematic modulation of thrust by controlling the inclination and (ii) achievement

of transport with attractive levitation were beyond the scopes of these studies, and are explored

below.

5.3.3 Conservation equations governing airflow in the squeeze film

Under the limit tv � to, the Navier–Stokes equations (continuity and conservation of

momentum in the lateral and transverse directions) and the thermal equation of state for an ideal

gas reduce respectively to

∂ρ

∂t
+
∂(ρu)
∂x
+
∂(ρv)

∂y
= 0 , µa

∂2u
∂y2 =

∂p
∂x

,
∂p
∂y
= 0 , and

p
pa
=

ρ

ρa
, (5.6)
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with relative errors of order (ho/a)2. In deriving the above equations, it has been assumed for

simplicity that both the plate and wall surfaces are held at the ambient temperature Ta, whence

the conservation of energy for viscous flow implies that T = Ta everywhere in the film [60]. As

a result, the dynamic viscosity can be considered uniform as well, µ(T) = µa [77]. Detailed

discussions of these equations, which comprise the isothermal compressible lubrication limit,

are presented by [5], [8] and [60].

In pursuit of a reduced dimensionless formulation of the problem, we introduce the

appropriately rescaled flow variables ξ = x/a,Y = y/ho, τ =ωt,U = u/(εωa),V = v/(εωho), and

P = (p− pa)/(εσpa/12) = (ρ− ρa)/(εσρa/12), where the quantity σ is defined in (5.5). Note

that the characteristic scales for the variations of pressure and density follow from straightforward

order-of-magnitude analyses of the lateral momentum equation and the equation of state,

respectively. Upon defining additionally a rescaled inclination angle ϕ = θ/(ho/a), the plate

position (5.1) can be rewritten as

h
ho
= H(ξ,τ) = 1−ϕξ + εRe

{
W(ξ)eiτ} , where

����ϕ = θ

ho/a

���� ≤ 1− ε , (5.7)

with relative errors of order θ2 and εθ2 stemming respectively from the terms describing tilt and

flexure.

Substituting these definitions into the lateral momentum and continuity equations provides

∂2U
∂Y2 =

∂P
∂ξ

and
σ

12
∂P
∂τ
+
∂

∂ξ

[(
1+ ε

σ

12
P
)

U
]
+
∂

∂Y

[(
1+ ε

σ

12
P
)

V
]
= 0 , (5.8)

respectively, where P = P(ξ,τ) due to the transverse momentum equation. The above system of

equations is subject to non-slip and non-penetration conditions on the bounding walls,

U = V = 0 at Y = 0 and U = V − ε−1∂H/∂τ = 0 at Y = H , (5.9)
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expressed here with errors of order θ2. Upon integrating the lateral momentum equation twice in

the Y direction and applying the conditions U(Y = 0) =U(Y = H) = 0, we obtain the quasisteady

Poiseuille velocity profile

U(ξ,Y,τ) =
1
2
∂P
∂ξ

Y (Y −H) , (5.10)

involving the time-varying lateral pressure gradient ∂P/∂ξ. Substituting this result into the

continuity equation, integrating across the film, applying the conditions V(Y = 0) = V(Y =

H)−Re
{
W(ξ)ieiτ} = 0 and simplifying with use of the Leibniz integral rule yields the relevant

Reynolds equation [8]

σ
∂(PH)
∂τ

−
∂

∂ξ

[
H3

(
1+ ε

σ

12
P
) ∂P
∂ξ

]
+12Re

{
W(ξ)ieiτ} = 0 . (5.11)

Two boundary conditions for P(ξ,τ) are required to close the problem defined by (5.7), (5.10)

and (5.11).

Previous studies have shown that the pressure in the squeeze film relaxes to its ambient

value across small, non-slender peripheral regions that extend distances |∆x| of order ho � a

beyond the edges ξ = ±1 [4,60]. Due to the associated disparity of spatial scales, the characteristic

variations of pressure across these peripheries are smaller than those along the film by a factor of

order ho/a. For arbitrary order-unity values of the relative amplitude ε . 1, equation (5.11) can

therefore be readily solved using numerical methods when supplemented by the simple boundary

conditions P(ξ = ±1) = 0, which introduce small relative errors of O(ho/a� 1). Finite-difference

solutions of the strongly nonlinear Reynolds equation have displayed excellent agreement with

experimental results for operating conditions that fall under the lubrication limit tv � to [9, 19].

In the present study, numerical integration of (5.11) was performed using a straightforward

central-space, forward-Euler scheme for the purpose of verifying the asymptotic solution derived

below. Instructions for implementing the algorithm, as well as discussions regarding its stability,

accuracy and computational efficiency, are provided by [88].
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5.4 Asymptotic solution

To allow efficient analytical reduction of the problem at hand, it will be assumed that the

oscillation amplitude ∆y∗ = b is small relative to the mean thickness of the air layer, i.e. b� ho,

which allows asymptotic solution using the relative amplitude

ε =
b
ho
� 1 (5.12)

as the small perturbation parameter. Despite operating near resonance, typical SFL systems

exhibit diminutive amplitudes of order b = 10 µm [6,19,136], whence an asymptotic solution

can provide reasonable accuracy as long as the film thickness ho is relatively large [101]. On

the other hand, the strongly repulsive forces that are generated at close range (ho & b) are best

quantified using a numerical solution of the Reynolds equation [19], as described in § 5.3.3, or a

computational simulation using the full Navier–Stokes equations [4, 6].

Under the limit of small relative amplitudes ε � 1, the required boundary conditions

for the fluid pressure at the film edges must be developed carefully. We begin by introducing

perturbation expansions for the pressure and lateral flow velocity component,


P = P0+ εP1+ · · ·

U =U0+ εU1+ · · · .

(5.13)

As shall be shown in § 5.4, substitution of this expansion into (5.11) leads to an equation

that is linear at leading order. Thus, the first term in each expansion varies sinusoidally with

time and yields no contribution to the time-averaged levitation forces and moment, whose

evaluation consequently requires the computation of first-order corrections. Due to the disparity

of spatial scales between the slender film and the small non-slender regions surrounding its

edges, discussed below (5.11), the leading-order pressure accepts simple relaxation conditions:

P0(ξ = ±1) = 0. However, determining the corresponding conditions for P1 requires, in principle,
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establishing a formal asymptotic relationship between the two small parameters ε and ho/a, and

systematically matching [78] with the local asymptotic expansions for the pressure in the two

non-slender peripheries [60]. Fortunately, for ε � 1, the reduced conservation equations that

govern the peripheral flow under the lubrication limit are linear in the first approximation [60].

The peripheral pressure variations at leading order thus exhibit a zero time average, whence

relaxation conditions can be imposed for the time-averaged first-order pressure at the film edge,

〈P1〉(ξ = ±1) = 0. While these conditions do not allow computation of the time dependence of

P1(ξ,τ), they are sufficient to solve for the desired steady levitation metrics (5.2)–(5.4).

Substituting the expression for H(ξ,τ) given in (5.7) along with the first two terms of the

pressure expansion (5.13) into the Reynolds equation (5.11) yields

σ
∂

∂τ

[
(P0+ εP1)

(
1−ϕξ + εRe

{
Weiτ})] +12Re

{
W ieiτ}

−
∂

∂ξ

[(
1−ϕξ + εRe

{
Weiτ})3 [

1+ ε
σ

12
(P0+ εP1)

] ∂

∂ξ
(P0+ εP1)

]
= 0 , (5.14)

which is to be solved to determine P(ξ,τ) with small errors of O(ε2) and O(h2
o/a

2 ∼ θ2).

The horizontal velocity distribution U(ξ,Y,τ) can, in turn, be found with the same level

of accuracy using the expanded form of (5.10),

U0+ εU1 =
1
2
∂

∂ξ
(P0+ εP1)Y

[
Y −

(
1−ϕξ + εRe

{
Weiτ})] . (5.15)

5.4.1 Leading-order solution

Collecting terms of order unity in (5.14) leads to the linear equation

σ(1−ϕξ)
∂P0
∂τ
−
∂

∂ξ

[
(1−ϕξ)3

∂P0
∂ξ

]
+12Re

{
W(ξ)ieiτ} = 0 , (5.16)
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which can be solved using the method of separation of variables. Upon substituting the ansatz

P0 = Re
{
Π(ξ)eiτ} , (5.17)

equation (5.16) reduces to the equidimensional ordinary differential equation

d2Π

dξ2 −
3ϕ

1−ϕξ
dΠ
dξ
−

σi
(1−ϕξ)2

Π = 12i
W(ξ)
(1−ϕξ)3

, with Π(ξ = ±1) = 0 . (5.18)

Solution by the method of variation of parameters gives the reduced pressure distribution

Π(ξ) =
6i

ζϕ(1−ϕξ)

[
L(ξ)−

1−[(1+ϕ)/(1−ϕξ)]2ζ

1−[(1+ϕ)/(1−ϕ)]2ζ

(
1−ϕξ
1−ϕ

) ζ
L(1)

]
, (5.19)

expressed in terms of the parameter

ζ =

√
1+

σi
ϕ2 , (5.20)

and the integral operator

L(ξ) =

∫ ξ

−1 W(ξ̃)(1−ϕξ̃)ζ−1 dξ̃
(1−ϕξ)ζ

−(1−ϕξ)ζ
∫ ξ

−1

W(ξ̃)
(1−ϕξ̃)ζ+1

dξ̃ , (5.21)

where ξ̃ is a dummy integration variable. The reduced pressure gradient Π′ = dΠ/dξ is given by

Π
′(ξ) =

6i
ζϕ(1−ϕξ)2

[
L̃(ξ)+

1− ζ −(1+ ζ)[(1+ϕ)/(1−ϕξ)]2ζ

1−[(1+ϕ)/(1−ϕ)]2ζ

(
1−ϕξ
1−ϕ

) ζ
L(1)

]
, (5.22)

involving the additional integral operator

L̃(ξ) = (1− ζ)(1−ϕξ)ζ
∫ ξ

−1

W(ξ̃)
(1−ϕξ̃)ζ+1

dξ̃ −(1+ ζ)

∫ ξ

−1 W(ξ̃)(1−ϕξ̃)ζ−1 dξ̃
(1−ϕξ)ζ

. (5.23)
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Finally, collecting terms of order unity in (5.15) gives the leading-order horizontal velocity

distribution

U0 =
∂P0
∂ξ

Y (Y −1+ϕξ)
2

, (5.24)

expressed here in terms of the gradient of the known leading-order pressure P0, given in (5.17).

Since P0 varies sinusoidally with time and thus exhibits a zero time average, i.e.

〈P0〉 = 0, evaluation of the steady levitation metrics (5.2)–(5.4) requires computation of first-

order corrections.

5.4.2 First-order corrections

Collecting terms of order ε in (5.14) and taking the time average gives

3(1−ϕξ)2
〈
Re

{
Weiτ} ∂P0

∂ξ

〉
+
σ

12
(1−ϕξ)3

〈
P0
∂P0
∂ξ

〉
+ (1−ϕξ)3

〈
∂P1
∂ξ

〉
= 0 , (5.25)

which can be integrated subject to the boundary conditions 〈P1〉(ξ = ±1) = 0 to give

〈P1〉(ξ) =
(1−ϕ)2

4ϕ

[(
1+ϕ

1−ϕξ

)2
−1

] ∫ 1

−1
G(ξ)dξ −

∫ ξ

−1
G(ξ̃)dξ̃ , (5.26)

where

G(ξ) =
〈
∂P0
∂ξ

(
3

1−ϕξ
Re{Weiτ}+

σ

12
P0

)〉
. (5.27)

Upon substituting the definition of the leading-order pressure (5.17) and applying the identity

〈
Re

{
A(ξ)eiτ} Re

{
B(ξ)eiτ}〉 = Re{A∗B}

2
, (5.28)

where A and B are complex spatial functions and the asterisk denotes a complex conjugate, the

function G can be rewritten as

G(ξ) =
1
2

Re
{
Π
′∗

(
3W

1−ϕξ
+
σ

12
Π

)}
, (5.29)
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in terms of the reduced leading-order pressure Π and its gradient Π′, given respectively in (5.19)

and (5.22). Straightforward differentiation of (5.26) yields

d〈P1〉

dξ
=
(1−ϕ2)2

2(1−ϕξ)3

∫ 1

−1
G(ξ)dξ −G(ξ) , (5.30)

for the time-averaged pressure gradient. Finally, collecting terms of order ε in (5.15) and taking

the time average gives the steady horizontal velocity

〈U1〉 =
d〈P1〉

dξ
Y (Y −1+ϕξ)

2
−

Y
4

Re {Π′∗W} , (5.31)

where the identity (5.28) has been employed to simplify the second term.

5.4.3 Nondimensionalized levitation metrics

Once P0, 〈P1〉 and 〈U1〉 are determined, the time-averaged aerodynamic forces and

moment can be expressed in the following rescaled forms, each with small asymptotic errors of

O(ε,ho/a ∼ θ). Using integration by parts, one can rewrite the steady levitation force (5.2) as

〈FL〉 =
12〈FL〉

ε2σpaa
=

∫ 1

−1
〈P1〉 dξ = −

∫ 1

−1
ξ

d〈P1〉

dξ
dξ , (5.32)

and the steady moment about the plate center (5.4) as

〈M〉 =
12〈M〉
ε2σpaa2 =

∫ 1

−1
ξ〈P1〉dξ = −

1
2

∫ 1

−1
ξ2 d〈P1〉

dξ
dξ , (5.33)

both expressed in terms of the steady pressure gradient d〈P1〉/dξ. Substituting the definition of

the latter, given in (5.30), one may rewrite these expressions as

〈FL〉 =

∫ 1

−1
ξG(ξ)dξ −ϕ

∫ 1

−1
G(ξ)dξ (5.34)
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and

〈M〉 =

[
1

2ϕ2 −1+
1
ϕ

(
1−ϕ2

2ϕ

)2

ln
(
1−ϕ
1+ϕ

)] ∫ 1

−1
G(ξ)dξ +

1
2

∫ 1

−1
ξ2G(ξ)dξ , (5.35)

in terms of the known function G (5.29), with the associated dimensionless center of pressure

given by

ξcsp =
xcsp

a
=
〈M〉
〈FL〉

. (5.36)

The thrust force (5.3) can be expressed in the normalized form

〈FT 〉 =
12〈FT 〉

ε2σpaho
= 〈FT 〉P + 〈FT 〉S , (5.37)

as the sum of the distinct contributions of pressure and shear stress,

〈FT 〉P =

∫ 1

−1
ϕ〈P1〉 dξ = ϕ〈FL〉 and 〈FT 〉S = −

∫ 1

−1

∂〈U1〉

∂Y

����
Y=H

dξ , (5.38)

respectively. Substituting the definition of 〈U1〉, given in (5.31), provides

〈FT 〉S = −
ϕ

2
〈FL〉 −

1
4

Re
{∫ 1

−1
Π
′∗W dξ

}
, (5.39)

where (5.32) has been used in rewriting the first term, which leads to

〈FT 〉 =
ϕ

2
〈FL〉 −

1
4

Re
{∫ 1

−1
Π
′∗W dξ

}
(5.40)

for the thrust, upon addition to the first equation in (5.38). Note that, while the sign of 〈FT 〉P is

determined strictly by the direction of levitation, effects of tilt and flexure compete to determine

the sign of 〈FT 〉S and thus also that of 〈FT 〉.
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5.4.4 Limiting cases of interest

For SFL systems with nonparallel surfaces undergoing arbitrary flexural oscillations,

the integrals required to compute the steady pressure distribution (5.26), levitation force (5.34),

moment (5.35) and thrust force (5.40), must be solved numerically. Results for this general

problem are presented later, obtained using vectorized global adaptive quadrature [146] by way

of the “integral” function built into the MATLAB software [147].

Discussed below are three special cases that allow analytical determination of the levitation

metrics, namely, systems that involve (I) parallel rigid surfaces, (II) parallel surfaces undergoing

a specific class of flexural oscillations and (III) nonparallel rigid surfaces. Note that these three

cases correspond to the simplified levitation systems represented in figures 5.1(a), (b) and (c),

respectively.

Case I) ϕ = 0 , W = 1

For an SFL system with parallel surfaces that undergo no elastic deformation, i.e.

H(τ) = 1+ ε cosτ, the reduced leading-order pressure is given by

Π(ξ) =
12i
β2

[
cosh(βξ)

cosh β
−1

]
, where β =

√
σ

1+ i
√

2
. (5.41)

The steady pressure distribution and levitation force are given respectively by

〈P1〉(ξ) =
3
σ

[
5−

����cosh(βξ)
cosh β

����2−4Re
{

cosh(βξ)
cosh β

}]
and 〈FL〉 =

30
σ

(
1−Re

{
tanh β
β

})
,

(5.42)

the latter of which is demonstrably identical to the solution found by [143].

Due to the lateral symmetry of H (about ξ = 0), the thrust and levitation moment

vanish, and the center of steady pressure is correspondingly located at the plate center, i.e.

〈FT 〉 = 〈M〉 = ξcsp = 0.
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Case II) ϕ = 0 , W(ξ) =
∑

i Ciξ
niemiξ

{
Ci,mi ∈ C , ni ∈ Z≥0

}
For systems with parallel surfaces undergoing flexural oscillation, where H(ξ,τ) =

1+ εRe{W(ξ)eiτ},

Π(ξ) =
6i
β

[
L(ξ)−

sinh[β(1+ ξ)]
sinh(2β)

L(1)
]
, where β =

√
σ

1+ i
√

2
, (5.43)

and the integral function L is defined as

L(ξ) = eβξ
∫ ξ

−1
W(ξ̃)e−βξ̃ dξ̃ − e−βξ

∫ ξ

−1
W(ξ̃)eβξ̃ dξ̃ . (5.44)

The steady pressure distribution is then given by

〈P1〉(ξ) =
1+ ξ

2

∫ 1

−1
G(ξ)dξ −

∫ ξ

−1
G(ξ̃)dξ̃ , where G =

1
2

Re
{
Π
′∗

(
3W +

σ

12
Π

)}
, (5.45)

and the levitation force and moment are defined respectively by the simplified integrals

〈FL〉 =

∫ 1

−1
ξG(ξ)dξ and 〈M〉 =

1
2

∫ 1

−1
ξ2G(ξ)dξ −

1
6

∫ 1

−1
G(ξ)dξ . (5.46)

First-order corrections to the pressure give no contribution to the thrust force due to the absence

of tilt (ϕ = 0), whence 〈FT 〉P = 0 and 〈FT 〉S = 〈FT 〉 = −(1/4)Re
{∫ 1
−1Π

′∗(ξ)W(ξ)dξ
}
.

In their asymptotic study, [143] computed 〈FT 〉 analytically for the case of pure traveling-

wave oscillations, and utilized finite-difference methods for computing first-order pressure

corrections. The generalized formulation above provides integral expressions for the thrust, as

well as the accompanying levitation force and moment, for arbitrary waveforms W(ξ). Fully

analytical computation is possible for waves of the type W(ξ) =
∑

i Ciξ
niemiξ , where each Ci and

mi are complex numbers and each ni is a whole number, which allow explicit integration in (5.44)–

(5.46). Such waves can be found, for instance, in the form of solutions to the Euler–Bernoulli

equation which governs the dynamic bending of beams [89, 125].
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Case III) ϕ , 0 , W = 1

For rigid-body systems with non-parallel surfaces, where W = 1 and H(ξ,τ) = 1−ϕξ +

ε cosτ, the reduced leading-order pressure assumes the form

Π(ξ) =
12i
ϕ2ζ2

1
1−ϕξ

[
(1−ϕ2)ζ (1−ϕξ)−ζ + (1−ϕξ)ζ

(1+ϕ)ζ + (1−ϕ)ζ
−1

]
, (5.47)

with ζ defined in (5.20). Analytical expressions for the steady levitation metrics can be found

through tedious but straightforward algebra. Most notably, the contribution to the thrust

force from shear stresses is opposite in direction and half in magnitude relative to that from

film pressure. This can be shown simply by substituting W = 1 into (5.39), which gives

〈FT 〉S = −ϕ〈FL〉/2 = −〈FT 〉P/2. The net thrust force is thus given simply by 〈FT 〉 = ϕ〈FL〉/2.

Of practical interest is the behavior of the solution for very small separation distances

ho, for which the greatest repulsive levitation forces are found to occur [19]. In the associated

limit σ→∞, the steady overpressure distribution simplifies to 〈P1〉(ξ) = 15/
[
σ(1−ϕξ)2

]
, not

accounting for the rapid relaxation of pressure to its ambient value at the film edges ξ = ±1 [59].

The corresponding levitation force and moment assume the simplified forms

lim
σ→∞
〈FL〉 =

30
σ(1−ϕ2)

and lim
σ→∞
〈M〉 =

15
σϕ2

[
ln

(
1−ϕ
1+ϕ

)
+

2ϕ
1−ϕ2

]
. (5.48)

5.5 Discussion of results

5.5.1 Time-averaged squeeze-film pressure

Exemplified in figure 5.4 are normalized distributions of the time-averaged first-order film

pressure 〈P1〉(ξ) for the three limiting cases discussed above and represented in figures 5.1(a)–(c):

(a) a rigid oscillator, (b) an oscillator undergoing traveling-wave deformations of the form

W = exp(−2iπξ) and (c) a tilted, rigid oscillator with an inclination angle ϕ = θ/(ho/a) = 0.2. For
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Figure 5.4. Sample profiles of the normalized time-averaged film pressure for SFL systems with
(a) zero flexure and zero tilt, (b) pure traveling-wave flexure and (c) nonzero tilt. Asymptotic
results (continuous and dotted curves) are verified with numerical solutions of (5.11) for ε = 0.01
(dots and circles).

all three cases displayed, 〈P1〉(ξ) depends strongly on the squeeze number σ = 12µaωa2/(pah2
o).

In particular, when σ� 1 and effects of gaseous compressibility are correspondingly augmented,

as discussed below (5.5), the overpressure varies gradually within the film and relaxes sharply

near its edges, in agreement with prior results [9, 59, 60].

For a flexible plate undergoing traveling-wave deformations, the steady overpressure

distribution becomes largely negative for critically small values of σ, in agreement with prior

results that demonstrate a strong correlation between flexural oscillations and the emergence

of attractive SFL forces (L < 0) [101]. It is of interest to understand the behavior of such

systems because of their ability to provide controlled transportation with attractive levitation, a

phenomenon that was only recently demonstrated practically [100].

For a rigid plate with a positive inclination angle, the steady pressure distribution is skewed

such that 〈P1〉 assumes larger values near the lowered leading edge ξ = 1. Correspondingly,

while the steady film pressure yields a positive contribution ϕ〈FL〉 to the thrust, the steady shear

force caused by first-order streaming acts in the opposite direction, reducing 〈FT 〉 by a factor of

two, as noted below (5.47).
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5.5.2 Visualization of levitation metrics

In pursuit of a practical understanding of the generic SFL transport system outlined

in figure 5.3, it is of interest to delineate clearly—i.e. in a manner amenable to physical

interpretation—the parametric dependences of the steady levitation metrics on the tilt ratio

ϕ = θ/(ho/a), flexural waveform W(ξ) and squeeze number σ = 12µaωa2/(pah2
o).

Although these three governing parameters are considered to be independent under the

present formulation, variations in σ can, in practice, affect W . In particular, since SFL oscillators

typically operate near resonance [132], altering their excitation frequency ω or length 2a may

disturb substantially the amplitude b and wavelength of their flexural deformations. Therefore, it

seems most appropriate to interpret the variation with σ of the levitation forces and moment as a

variation with the levitation height ho. The latter is typically a ‘dependent’ variable that responds

freely to changes in the applied load 〈FL〉, such as the change in apparent weight of a mobile

robot as it travels along a curved path as in figure 5.2(b) [3]. (Note that, for oscillators with

sufficiently low mass or flexural rigidity, b and W may be affected significantly by variations in ho

and the tilt angle θ [3, 103]; such consequences of two-way-coupled fluid–structure interactions

are not considered below.)

Correspondingly, in representing the present asymptotic results, it is convenient to

renormalize the steady levitation and thrust forces according to

L =
( σ
12

)2
〈FL〉 =

〈FL〉

b2p2
a/(µaωa)

and T =
( σ
12

)3/2
〈FT 〉 =

〈FT 〉

b2p3/2
a

/ (
a
√
µaω

) , (5.49)

where multiplication by an appropriate power of σ has eliminated ho. Upon introducing also a

normalized height

h̄o =
1
√
σ
=

ho

2a
√

3µaω/pa
, (5.50)

the dimensionless functions L(h̄o) and T(h̄o) can be interpreted to represent the variations of

the levitation and thrust forces with the mean levitation height, for a given tilt ratio and flexural
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Figure 5.5. Variation with the normalized levitation height h̄o (5.50) of the dimensionless (a)
levitation and (b) thrust forces (5.49) and (c) the center of steady pressure (5.36), for a traveling-
wave-driven system with varying wavenumber K . Curves labeled ‘impure’ are computed for a
wave purity of P = 0.5 (5.51).

waveform.

Displayed in figures 5.5 and 5.6 are the variations with h̄o of L, T and the center of steady

pressure ξcsp for the canonical transport systems pictured in figures 5.1(b) and (c), respectively. It

may be readily noted from both figures that the limiting behaviors of L for small and large values

of h̄o = 1/
√
σ are consistent with prior knowledge concerning the role of gaseous compressibility

in SFL systems, the latter elucidated below (5.5). The behavior of the solution for intermediate

levitation heights h̄o ∼ 1, however, differs substantially between the two cases and will be

discussed below.

5.5.3 Transport by traveling-wave oscillations

The solid curves in figure 5.5 represent the levitation metrics for systems with parallel

surfaces (ϕ = 0) driven by pure traveling-wave deformations of the form W = e−iKξ , where K is

the relevant flexural wavenumber that has been normalized with the inverse of the semi-length a.

As seen respectively in panels (a) and (b), the levitation force is significantly reduced by

flexure within the displayed range of heights h̄o, and the thrust force exhibits a finite maximum at

a critical height that varies with K . Investigation of the limit h̄o→ 0 (or, equivalently, σ→∞)
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reveals that curves of L for all values of K eventually converge in the case of pure traveling

waves, in agreement with the findings of [143], who noted that optimization of these systems

for repulsive operation warrants compromising between a levitation force that increases for

decreasing values of h̄o and a thrust force that varies non-monotonically.

Furthermore, as seen in panel 5.5(c), the center of steady pressure ξcsp varies strongly

with h̄o, indicative of a high sensitivity to levitation height that must be taken into account when

designing and controlling a mobile robot or a rail-transport system. Interestingly, ξcsp exhibits a

singularity at a critical height that corresponds to a state of zero levitation. Beyond this critical

height, L assumes negative values, corresponding to attractive levitation (see the associated

distribution of steady film pressure exemplified in figure 5.4(c)). Both the attractive load capacity

and the maximum thrust rise with increasing values of the wavenumber K .

As noted previously, generation of pure traveling-wave deformations of a finite body

is hindered by the reflection of propagating waves at open boundaries and points of actuation.

The resulting impure traveling waves can be modeled approximately with use of the modified

waveform

W = cos(Kξ)− iP sin(Kξ) , with 0 ≤ P ≤ 1 , (5.51)

where P constitutes a coefficient of purity. Namely, when P = 1, W parametrizes the classical

traveling wave e−iKξ , and when P = 0, a perfect standing wave of equal wavenumber and

amplitude [33, 144]. Note that the inverse of P is often referred to in literature as the ‘standing-

wave ratio’. As exemplified by the dotted curves in figures 5.5(a) and (b), introduction of impurity

in a traveling-wave-driven SFL system seems to improve the attractive load capacity, but reduces

drastically the maximum thrust force that can be produced.

5.5.4 Effects of surface inclination

Represented in figure 5.6 are the levitation metrics for a rigid-body system (W = 1) with

various tilt ratios ϕ = θ/(ho/a). Recall that ϕ is a dimensionless representation of the amount of
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Figure 5.6. Variation with the normalized levitation height h̄o of the dimensionless (a) levitation
and (b) thrust forces and (c) the center of steady pressure ξcsp for a rigid-body SFL system, for
various values of the tilt ratio ϕ (5.7). Limiting values of ξcsp for h̄o→ 0 (broken lines) are found
using (5.36) and (5.48).

tilt where, for any given levitation height ho, ϕ = 0 denotes parallel surfaces and ϕ = ±(1− ε)

denotes maximum tilt in either direction—i.e. the leading or trailing edge of the plate comes into

contact with the opposite wall during the closing stroke of each oscillation cycle.

It is clear from panels 5.6(a) and (b) that tilting the plate about its center substantially

increases the levitation and thrust forces produced at any given central levitation height h̄o. Both

appear to increase unboundedly as h̄o→ 0, assuming substantially greater values than those

produced by flexure-driven systems for the range of h̄o displayed. Indeed, in the associated limit

of large σ (5.48), L becomes proportional to the inverse square of the levitation height h̄−2
o , well

in agreement with prior research [5], and T ∝ h̄−1
o . Of course, both are physically limited since

ho cannot decrease below the oscillation amplitude b [19]. Finally, panel 5.6(c) demonstrates

that the center of steady pressure ξcsp moves toward the leading edge with increasing forward

tilt and varies rather weakly with h̄o. The associated steady moment acts to reduce the angle of

inclination, in agreement with the restoring moment found by [145].

A note on load and thrust capacities

A cautionary note must be provided here regarding the effect of tilt on the load and thrust

capacities of an SFL system. Tilting about the center increases both L and T for any given
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levitation height ho ∝ h̄o, as noted previously, but also limits the minimum possible ho physically

attainable by the system for a given amplitude b (such that neither edge of the plate makes contact

with the wall). It is then unclear from figures 5.6(a) and (b) alone whether tilting increases or

decreases the maximum possible levitation and thrust forces producible by an SFL system.

This question can be addressed by considering, for simplicity, the large-σ (small-ho)

behavior of the problem under an appropriate reformulation—shifting the spatial domain from

−1 ≤ ξ ≤ 1 to −2 ≤ ξ ≤ 0. Under this reference frame, the leading edge of the plate is the point

of rotation ho, whence the minimum possible levitation height ho = b is constant for all positive

tilt angles θ > 0. The spatial pressure variation along the squeeze-film is then given at leading

order by

Π(ξ) =
12i
ϕ2ζ2

1
1−ϕξ

(
(1+2ϕ)ζ −1
(1+2ϕ)2ζ −1

[
(1−ϕξ)ζ +

(
1+2ϕ
1−ϕξ

) ζ ]
−1

)
, (5.52)

in place of (5.47), and the steady pressure variation at first order can be computed as

〈P1〉(ξ) =

∫ 0

ξ
G(ξ̃)dξ̃ −

(1−ϕξ)−2−1
(1+2ϕ)−2−1

∫ 0

−2
G(ξ̃)dξ̃ , (5.53)

where the auxiliary functionG, defined originally in (5.29), is given here byG = 1/2Re{Π′(σΠ∗/12+

3/(1−ϕξ))}. (Recall that an asterisk denotes a complex conjugate.) It can be shown by plotting

(5.53) that the steady pressure everywhere inside the film (−2 < ξ < 0) reduces when the plate is

tilted forward (ϕ > 0) about its leading edge. It is then obvious that inclination actually reduces

the repulsive load capacity, but the effect on the maximal thrust is unclear a priori.

In the limit of large σ, (5.53) reduces to the same expression given above (5.48),

whence the levitation and thrust forces simplify respectively to σ〈FL〉 = 30/(1+ 2ϕ) and

σ〈FT 〉 = 15ϕ/(1+2ϕ). Fortunately, the thrust T = (σ/12)3/2〈FT 〉 for any large value of σ does

grow monotonically with ϕ, approaching an asymptotic value of 3−3/2(15/16)
√
σ as ϕ→∞.

Thus, for practical SFL systems, increasing inclination provides greater lateral forces

while reducing the repulsive load capacity. For instance, tilting by an amount ϕ = θ/(ho/a) = 1/2
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provides a thrust capacity equal to half the asymptotic value approached for ϕ→∞, but at the

cost of reducing the repulsive load capacity by 50% from its value for zero tilt. Note finally

that this question of capacities is of lesser concern for flexural systems performing attractive

levitation, for which the maximal forces are achieved for finite critical levitation heights ho, as

elaborated below 1.

It is of interest to investigate the effects of surface inclination on systems with nonuniform

oscillations, for which dW/dξ , 0. We begin by noting, based on the curves shown in figure

5.5(c), that the sensitivity of ξcsp to perturbations in the levitation height ho can be expected to

increase in the presence of oscillator flexure, accompanying a possible transition to attractive

levitation forces [101]. For systems with lateral symmetry, i.e. whenW(−ξ) =W(ξ) for 0 < ξ ≤ 1,

inclination in either direction is expected to (i) provide significant thrust and (ii) increase

substantially the existing repulsive levitation force for a given levitation height, based on the

results shown in figure 5.6. Systems undergoing asymmetrical oscillations require further

investigation.

Visualized using solid curves in figure 5.7, for example, are the levitation metrics of a

system driven by pure traveling-wave oscillations, for various values of the tilt ratio ϕ. As seen

in panel (a), positive and negative inclination increase substantially the repulsive and attractive

levitation forces, respectively. Displayed in panel (c) are the aptly rescaled steady pressure

distributions that correspond to the state of maximal attraction for ϕ = θ/(ho/a) = 0 and −0.5,

indicated in panel (a) by the solid triangles. Panel (b) reveals that inclination in either direction

increases also the thrust force T for a wide range of levitation heights h̄o, due to the combined

contributions of fluid shear (stemming from wave propagation) and pressure (from surface tilt).

The dotted curves in panels (a)–(c) indicate, however, that the degree of purity of the traveling

wave significantly impacts the extent to which these benefits may be realized practically. Panel

(d), where only pure traveling waves are considered for purposes of visual clarity, confirms

1This nuance was not adequately addressed in the original publication where the results of this chapter were
communicated [148].
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Figure 5.7. Variation with the normalized levitation height h̄o (5.50) of the rescaled (a) levitation
force (5.49), (b) thrust and (d) center of steady pressure (5.36), for a flexural system with
wavenumber K = 2π. Curves are shown for various tilt ratios ϕ (5.7) and wave purities P (5.51);
curves labeled ‘impure’ are computed for P = 0.5. Plotted in (c), and verified numerically for
ε = 0.01 (dots and circles), are profiles of steady pressure for states where the system produces
maximal attraction, marked with triangles in (a) and (b).

the anticipated high sensitivity of ξcsp to ho that accompanies the transition from repulsion to

attraction for flexural systems.

5.5.5 Optimization of traveling-wave-driven systems with variable
inclination

Based on the preliminary results above, it appears that controllability of the inclination

angle of the levitated object can improve the effectiveness of transport systems driven by traveling-

wave deformations of the oscillator, for purposes of both repulsive and attractive squeeze-film

levitation. To quantify precisely the extent of improvement that may be gained, we conclude this

182



chapter with a rigorous investigation of the associated generalized problem (ϕ , 0, 0 ≤ P ≤ 1).

As discussed in § 5.2, the purity P of a traveling wave is limited by the effectiveness of the

wave-generation method, and the wavenumber K is typically determined by the chosen natural

frequency and geometric properties of the oscillator. Active feedback control is often employed to

ensure that the resulting waveformW remains constant during operation. In contrast, the levitation

height h̄o and tilt ratio ϕ are free to respond to (i) perturbation by external forces and/or (ii) active

adjustments to the mass or center of mass of the levitated object. In pursuit of quantifying the

maximal capabilities of traveling-wave-driven SFL systems that feature controllable inclination,

we therefore explore the parametric domain spanned by h̄o and ϕ, for a fixed wavenumber K = 2π

and select values of P.

Two important distinctions must be drawn at this point between the mobile robot depicted

in figure 5.2(b) and the rail-transport system schematized in figure 5.2(a). In the case of the

former, the oscillator is attached to the levitated object, such that the waveform W is invariant as

the object travels. In contrast, for rail-transport systems, the wave is subject to a phase shift that

evolves as the object translates, whence stationary components in the wave can cause fluctuations

in the levitation forces and moment. The resulting operational instabilities may be especially

pronounced for traveling waves with lower purity P and relative wavenumber K [37,149,150].

Secondly, the mass distribution of a self-levitating mobile robot may be adjusted actively to

control the inclination ϕ, but that of a levitated object in a rail-transport system is typically fixed.

Both of these distinctions must be considered carefully when interpreting and applying practically

the following results.

The performance objective(s) for an SFL system will vary with the desired transportation

path, for instance, translation (i) above a horizontal surface, (ii) below a horizontal surface,

(iii) upward or downward along a vertical surface, or otherwise (see figure 5.2 for clarificatory

illustrations).

For transport above a horizontal surface, a possible objective may be maximizing the

thrust T while incurring the least possible loss of repulsive load capacity L. Based on the
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Figure 5.8. Variation with the tilt ratio ϕ of (a) the normalized critical levitation height at which
a traveling-wave-driven system with wavenumber K = 2π generates maximal attraction, and the
corresponding values of (b) the levitation force L and (c) the thrust T , for three values of the wave
purity P (5.51). For the case P = 0.5, L and T are verified with numerical solutions computed
for ε = 0.01 (circles).

discussion provided in § 5.5.4 and the results shown in figures 5.5–5.7, it is clearly beneficial to

increase the traveling wave purity as much as physically possible while modulating carefully

the inclination angle to balance the required gain in thrust with the inevitable, accompanying

reduction in load capacity.

For transport below a horizontal surface, it may be of interest to maximize the attractive

levitation force (−L) and/or the thrust T . As seen for example in figures 5.5 and 5.7, L may

exhibit a negative global minimum for a critical levitation height h̄o = h̄∗o. Plotted in figure 5.8 are

the non-monotonic variations with ϕ of this maximal attractive force L(h̄∗o) and the corresponding

thrust T(h̄∗o) for various values of P, demonstrating that there is a critical range of tilt ratios

for which the performance of such a system is maximized. For instance, when P = 0.5, an

inclination of −0.45 . ϕ . −0.2 is most desirable. Note that the benefits of controlled inclination

are greater for purer traveling waves. Of practical concern is the fact that systems operating at

this critical height are unstable to positive perturbations in h̄o, i.e. ∂L/∂ h̄o > 0 for h̄o > h̄∗o. For

this reason, operating below the maximum capacity, at a height h̄o < h̄∗o, is recommended for

avoiding catastrophic failure during attractive levitation.

Finally, for vertical transport along an upright surface, the thrust force must be maximized
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Figure 5.9. Variation with the tilt ratio ϕ of (a) the normalized critical levitation height at which
a traveling-wave-driven system with wavenumber K = 2π generates zero levitation force and (b)
the corresponding value of the thrust force T , for three values of the wave purity P (5.51). For
the case P = 0.5, asymptotic results for T are verified with numerical solutions computed for
ε = 0.01 (circles).

while the levitation force L must be identically zero. As seen for example in figures 5.5 and

5.7, the function L(h̄o) may vanish at a critical height h̄′o, corresponding to a transition from

repulsive to attractive levitation. A system that operates at this height is necessarily stable to

positive and negative perturbations in h̄o, i.e. ∂L/∂ h̄o < 0 for h̄o = h̄′o. Plotted in figure 5.9 is

the variation with the tilt ratio ϕ of the corresponding thrust force T(h̄′o) for various values of

the wave purity P. Once again, there appears to be a desirable range of tilt ratios for which

performance is maximized, with greater benefits obtained for purer oscillations.

These analyses may be readily extended to address more complex design problems,

those that may require inclined transport paths and involve performance criteria that concern

simultaneously the levitation force 〈FL〉, thrust 〈FT 〉 and stability to perturbations in the tilt angle

θ.

5.6 Conclusions

Developed in this chapter is a theoretical description of the planar, viscous, compressible

airflow in contactless transport systems that operate using squeeze-film levitation. The reduced

asymptotic formulation, which addresses the flexural oscillation of a plate near a non-parallel

surface, provides fundamental insights into the fluidic mechanisms that underlie thrust generation
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in squeeze-film systems, and enables rapid computation of their performance characteristics

using integral expressions.

Particular attention is dedicated to studying the effects of inclination of the levitated body

for transport systems that are driven by impure traveling-wave deformations of the oscillator (see

figures 5.2 and 5.3 and equation (5.51) for clarification). Results demonstrate that controlled

modulation of the tilting angle can improve substantially the maximal load capacity as well as the

associated thrust force generated by systems that operate using attractive levitation. The amount

of improvement that can be gained is found to depend strongly on the purity of the traveling wave

or, more generally, presumably on the degree of lateral asymmetry in the flexural oscillations.

This is in stark contrast to the behavior of repulsive levitation systems, for which inclination to

provide thrust necessarily reduces the maximal load capacity.

Sample computations are provided to display the potential of the present formulation in

serving as an efficient tool to supplement the design, optimization and active control of mobile

robots. The accuracy and versatility of this theoretical model must be improved in the future by

modeling appropriately the effects of non-negligible transport speeds [59], free vibrations of the

levitated object [39,103], fluid–structure coupling by which the flexural waveform of the oscillator

may alter in response to changes in levitation height and tilt angle [3], fluid inertia and the

accompanying variations of steady pressure beyond the boundaries of the squeeze film [60], and

surface roughness which can substantially reduce the levitation force and transport speed [3, 34].

Chapter 5 has been published in Flow under the title “Benefits of controlled inclination

for contactless transport by squeeze-film levitation”, by S. Ramanarayanan and A. L. Sánchez, 3,

E26, (2023). The dissertation author was the primary investigator and author of this paper.
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Chapter 6

Suggested future work

Provided below are recommendations for specific avenues of theoretical and experimental

research that, together, may further enhance our understanding of vibration-driven squeeze-film

(SF) systems and bring them closer to the point of practical application.

6.1 Open practical challenges

(i) Sensitivity to surface roughness: The most limiting feature of contemporary SF systems

seems to be the need for smooth bounding surfaces [34], with complete failure of levitation

observed when using materials such as stone, bricks and open-cell foam [3]. Despite their

high energy efficiency, SF levitators are inferior in this respect to Bernoulli grippers, which

can lift objects with a wide range of surface texture and structural compliance. An elegant

but revolutionary development is required in solving this problem, presumably with the

aid of theoretical modeling of surface asperities to investigate in detail the fundamental

cause(s) of failure [151,152].

(ii) Systemic stochasticity: In a recent study of squeeze-film levitation with highly flexible

oscillators [3], the experimenters report having observed “large variation across trials” when

measuring the maximal attractive load capacity, and state that such variability is expected

due to the “randomness inherent in a vibration-based actuation method”. This element of

operational stochasticity may owe in large part to the substantial flexibility of the oscillator,
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which is needed to produce strong attraction (see Chapter 3). Active control techniques

must be developed to improve the reliability and robustness of such flexural SF systems.

(iii) Sound levels: The first studies of highly flexural SF systems [3, 49] utilized sound exciters

and eccentric-rotating-mass motors, resulting in non-negligible levels of sound emanating

from both the vibration source and the flapping oscillator. A more recent study [100] utilized

linear resonant actuators, which provided nearly silent operation but also a substantial

reduction in attractive load capacity due to a weak forcing amplitude. Langevin transducers

driven by piezoelectric ceramics readily enable ultrasonic frequencies which are inaudible to

humans, but such high frequencies do not appear to be amenable to the generation of strong

attraction, based on the results presented in Chapter 3. Development of low-frequency,

low-noise, large-amplitude vibration actuators may render flexural SF systems more readily

applicable commercially, especially for devices meant to operate in homes, office spaces,

etc.

(iv) Non-planar surfaces of attachment: The three main surface geometries studied in the

history of repulsive force generation are planar, cylindrical and spherical, with the latter two

requiring cambered oscillators. It may be of interest to design cambered flexural oscillators

that produce strong attractive forces for non-planar surface geometries. If realized, such

systems may compete with modified Bernoulli grippers that have been designed with

deformable lifting surfaces [153], for instance, in applications involving the contactless

handling of food items to avoid contamination. Note that attractive levitation of compliant

oscillators beneath slightly curved surfaces has been demonstrated successfully [3].

(v) Bidirectional levitation: Assembly-line transport of sensitive items such as silicon wafers

or glass substrates (used in the design of digital displays) is an important proposed

application of SF levitation. The ability to transition reliably between repulsive and

attractive levitation would render SF devices highly suitable for this task and enable complex

handling procedures. The salient limitation of SF systems in this respect is that their
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maximal load capacity in either direction depends critically on the operating frequency and

oscillator stiffness: lower frequency and stiffness provide weaker repulsion and stronger

attraction, in general (see Ch. 3). The ability to modulate either parameter—without

adversely affecting the oscillation amplitude—may provide for a versatile gripper with

high bidirectional load capacity. For example, one may develop an oscillator that is

specially designed to enable active alteration of its flexural rigidity, possibly through control

of its internal structure. It must be noted in this connection that, in previous studies a

‘holding force’ has been observed that stabilizes the levitated object to lateral perturbation

(displacement perpendicular to the oscillation axis) [4]. This restorative, time-averaged

aerodynamic force can be enhanced by utilizing multiple oscillators oriented in different

directions around the levitated object [154–156]. It may be benificial to integrate into such

configurations highly flexible oscillators that can provide strong attractive levitation forces.

6.2 Possible theoretical investigations

(i) Hysteresis during pull-off: In this dissertation, the attractive load capacity of an SF system

was computed by seeking a unique, periodic solution to the relevant differential equation(s)

governing the fluid–structure dynamics. Such an analysis does not account for possible

hysteresis in the pull-off process whereby the system performance at any given stage of

the process may depend on its operating conditions at a previous stage. Hysteresis may be

caused by (i) physical contact between the oscillator and the opposite surface during early

stages of pull-off, akin to a suction cup [96], and (ii) abrupt application of the pulling load

over a small timescale that is comparable to the period of the sinusoidal excitation. For a

discussion of the former, see § 6.3. As evidence of the latter, [3] demonstrated the ability

of a robot levitating underneath a horizontal surface to remain suspended when a heavy

payload was attached impulsively. It is of great interest to investigate rigorously the effects

of these factors on the pull-off force—the maximal attractive force supported by the system.
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(ii) Other mechanical configurations: It may be of practical interest to extend the results

derived herein to describe squeeze-film systems with more complex configurations, such

as those involving non-circular oscillators and/or non-planar surfaces of attachment, and

those requiring transportation of a levitated object/device. In particular, the formulations

developed in Chapters 4 and 5 must be combined to assess the impact of fluid–structure

coupling (and structural impedance to localized excitation) on the general conclusion

drawn in Ch. 5—that controlled modulation of the tilting angle of an attractively levitated

object/device can improve its transport performance.

(iii) Multi-fidelity computation: While the reduced theoretical descriptions presented in

this dissertation provide new insights into the physical dynamics of SF systems, their

quantitative accuracy is fundamentally limited by the various enabling approximations

drawn. Computational simulations must be conducted for appropriately generalized fluid–

structure problems in order to provide greater accuracy for specific design purposes. The

distinct advantages of the two approaches—the speed of reduced mathematical formulae

and the precision of computational solutions—may be synthesized with use of multi-fidelity

modeling to supplement design optimization and feedback control for future SF systems.

(iv) Flow stability analysis: The theoretical analyses in this dissertation assume laminar flow,

in congruence with the asymptotic limit of small oscillator displacement. However, in

practical systems the local Reynolds number, which rises linearly with radial distance

along the air layer (for an axisymmetric geometry), may grow sufficiently large to induce

a transition to turbulence that may affect the performance of larger-scale systems, such

as those developed by Dr. Colasante (see § 1.3). In this connection, the stability of an

oscillatory base flow in a squeeze film must be studied rigorously. It may be of use to

additionally consider the effects of a compliant bounding surface [157,158], in pursuit of

explaining the systemic stochasticity observed in the case of highly flexible oscillators [3].
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6.3 Other instances of vibration-induced attraction

(i) Underwater squeeze-film effect: The first study of SF levitation to report attractive forces

seems to be from 1999 [12], where 45 grams of force were supported under water by a

piston of diameter 2a = 5 cm oscillating at a frequency of f = 17 kHz. The results of this

dissertation clearly indicate that there is a critical maximum frequency fc beyond which an

SF system cannot generate attraction, and that the value of fc grows with the flexibility of

the oscillator. Nevertheless, a frequency of 17,000 Hz is several orders of magnitude larger

than those for which such strong attractive forces have been found in air (see table 3.1),

warranting dedicated exploration of the unique dynamics of underwater SF operation. Two

recent theoretical studies notably investigated hydrodynamic SF lubrication [83, 159], the

latter of which claims that effects of compressibility are non-negligible. (This claim may be

relevant with respect to the 1999 experiment due to the fact that, for an approximate value of

cw = 1500 m/s for the underwater acoustic wave speed [160], the anticipated timescale for

lateral pressure equilibration, a/cw ≈ 17 µs, is not too small relative to that of the driving

oscillations, 1/ f ≈ 59 µs.) However, neither study explained the observed transition to

attractive forces, characterization of which may require a rigorous theoretical description of

hydroacoustic wave propagation [84] (and, possibly, cavitation [161]).

(ii) Alternating-flow Bernoulli gripper: The large attractive SF levitation forces enabled by

highly flexible oscillators seems to have been first observed by Dr. David Colasante [49].

In earlier experiments, he explored a related method for contactless attractive levitation,

namely, an alternating-flow Bernoulli gripper (or aerostatic bearing). A standard Bernoulli

gripper blows a jet of air on a nearby object, creating a local overpressure. The air diverges

through the slender film between the gripper and the object, creating an area of low pressure

that can provide a net attractive force under appropriate conditions [87]. Dr. Colasante

replaced the continuous air pump with a speaker whose diaphragm oscillated at about 65

Hz and provided oscillatory airflow. His device levitated an object weighing 126 grams,
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with a power input of about 50 watts [162]. As Bernoulli grippers are already utilized

commercially, there is great practical interest to compare by means of a unified fluid-flow

analysis the performance of continuous- and alternating-flow grippers. The aerodynamics

giving rise to the attractive force in the latter configuration may be related in some respects

to the problem of rigid-body SF levitation explored in Chapter 2 of this dissertation.

(iii) Vibrating suction cup and the effects of physical contact: A technique closely related to

flexural SF levitation has been investigated before, namely, vibration-induced enhancement

of suction cup attachment. In the communication where this technique was first introduced

[96], a wall-climbing robotic device equipped with six suction cups, each with a diameter of

2.5 cm, was oscillated by a powerful eccentric-rotating-mass motor at a very low frequency

of 8 Hz. The device attached successfully to a rough vertical surface whose asperities

prevented regular (non-oscillatory) attachment. Unlike ideal SF levitation, this technique

seems to involve physical contact between the oscillator and wall, as evidenced by the

observed resistance to translational and rotational motion. The maximal pulling force,

translational force and twisting moment supported by the cup increase substantially when

it is axially oscillated [97]. This method inspired the later development of ‘biomimetic’

wall-climbing robots [163, 164] with various configurations.

Note in this connection that, while the analyses of SF levitation contained in this dissertation

assume the presence of a complete lubrication layer, i.e. h > 0 for 0 ≤ r ≤ a, it appears

based on the experiments of [3] and [129] that a highly flexible oscillator performing

attractive SF levitation may come into contact with the opposite surface when the applied

pulling load—and, correspondingly, the separation distance h(r,t)—is sufficiently small

(as noted from personal communication with the authors of both references). The onset of

physical contact is evidenced by (i) an increased resistance to translational motion shown by

the oscillator and (ii) an increased operational sound level due to the transfer of mechanical

vibrations to the opposite surface.

192



Figure 6.1. (a) An eccentric-rotating-mass motor (6 x 12 mm, rated for: 3 V, 85 mA, 12000
rpm) is affixed to a 0.007-inch-thick polyester plastic plate. (b) The device is hung by the motor
wires, (c) the motor is activated, (d) the device is pressed against a wall and (e) clings to the wall
until the motor is deactivated.

To illustrate these potentially adverse effects of physical contact in attractive SF levitation,

consider the simple, inexpensive experiment1 depicted in figure 6.1. The experiment

requires (i) a small vibration actuator such as a sound exciter, a linear resonant actuator or

an eccentric-rotating-mass motor, and (ii) a small rectangular plate cut out of a business

card, a Manilla folder, polyester plastic, posterboard, or a similarly flexible material.

Mount the motor near the center of the plate with a strong glue joint that allows efficient

transfer of vibrations. Activate the motor and note the noise level of the device. Hold the

device without touching the oscillating plate, and bring the plate close to a parallel glass

window, a whiteboard, a piece of sheet metal or plexiglass, or a similarly smooth surface.

Press the device against the surface. When you remove your hand from the device, it should

cling to the surface and possibly drift around slowly. Note that the noise may have increased

due to surface vibrations. Try using surfaces with various orientations: vertical, horizontal

and inclined. Performance may vary based on the strength of the motor, the flexibility

of the plate and the cumulative mass of the device and wires. Repeat this process with

the motor turned off, to confirm that there is no natural adhesion and insufficient vacuum

generation between the static plate and the opposite surface.

1A video recording of the experiment is available through the following link: https://youtu.be/9XWjjLyw9_o
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If you pull on the device as it clings to the wall, you should feel a slight resistance before it

detaches, indicative of the attractive squeeze-film force. If you nudge the device laterally,

you should feel a strong resistive force. In the case of levitation below a horizontal surface,

the magnitude of this resistive lateral force may vary based on the weight of the levitating

device, i.e. the effective pulling load. It is very important to note here that such lateral

resistance was not observed in the similar experiments conducted by Dr. Colasante [49]

and the BRD lab [3] when the device weight—i.e the effective pulling load—was increased

to several hundred or thousand grams-force.

In pursuit of characterizing accurately and thoroughly the ‘pull-off’ process in attractive

SF levitation, it is of great interest to formulate a theoretical description of squeeze-film

lubrication that considers the possibility of physical contact between parts of the deforming

oscillator and the opposite surface, that which may occur in the initial stages of the process

where the applied pulling load is small. The required theory may involve aspects of the

viscoacoustic description of flexural SF levitation presented in Chapter 3 of this dissertation

as well as the fluid–structure formulation describing ‘elastohydrodynamic lubrication’

outlined in Ch. 4. Based on the results of [96–98], one may choose to account additionally

for the presence of a significantly cambered oscillator, a correspondingly non-slender air

layer and possible surface roughness.
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