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Abstract

Causal Inference, Transportation, and Travel Demand:

A Conceptual Review with

Applications using Observational and

Experimental Data

By

Hassan Obeid

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Joan Walker, Chair

The field of transportation and travel behavior research has long been interested in
answering causal questions. Take the recent COVID-19 pandemic as an example: the
transportation sector in particular was one of the most heavily impacted sectors, and
transportation researchers found themselves with a plethora of questions to answer
regarding the current and future impacts of the pandemic on the transportation system.
Yet, out of roughly 250 pandemic related transportation research papers we reviewed,
only about 10 explicitly reference the causal inference literature and are explicit about
their causal designs, despite the fact that a significantly larger portion of those papers
are trying to answer causal queries. This disconnect is the motivation behind this
dissertation.

It is important to acknowledge that transportation researchers have indeed used and
contributed to several areas of the causal inference literature. Notable contributions
include addressing self-selection bias between residential choice and travel behavior,
addressing omitted variable bias through integrated choice and latent variable models
(ICLVs), and addressing endogeneity between multiple travel outcomes using joint
discrete choice models.
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Despite those contributions, many advances in the causal inference literature have yet
to enter the field of travel demand modeling. There are many reasons for this
disconnect, some of which stem from long-rooted beliefs and practices within the travel
behavior and demand modeling literature on model development, selection, and
validation. For starters, there is a tendency for discrete choice modelers in
transportation to assume their models allow for causal interpretations because they rely
on a behavioral theory of human decision making, like variations of random utility
theory. While this criterion typically entails endogeneity checks between the outcome
and the regressors, it overlooks important nuances about the data generating process
and sources of variation in the exogenous variables. This is further exacerbated by the
heavy reliance in the field of transportation demand modeling on goodness-of-fit
statistics and statistical tests of significance when finalizing modeling specifications,
making them prone to the issue of “bad controls”. For instance, adding post-treatment or
mediator variables that are exogenous to the outcome but endogenous to the treatment
variable of interest, undermines the causal interpretation of the model coefficients, even
if adding those variables results in improved predictive model performance and
goodness-of-fit statistics. Finally, causal identification strategies rarely appear in the
transportation literature. In the causal inference literature, the analyst states the
assumptions before drawing any causal conclusions from the model by explicitly
specifying the source of variation in the treatment of interest. Such assumptions are
referred to as identification strategies: they are assumptions about the data generating
process that, only if true, allow the modeler to interpret the model parameters as causal.
Those strategies are rarely explicitly stated in transportation demand models, even
though those models are often used to evaluate the impact of policy interventions.

To address this gap, this dissertation comprises two parts: 1) a conceptual part, and 2)
an applied part.

The conceptual part consists of Chapter 1, where I elaborate in detail on the disconnect
described above and point to specific examples from the transportation literature where
such misconceptions about causality are most evident. Next, I provide a review of the
key concepts in causal inference, and give an overview of the main causal identification
strategies used in the empirical sections of this dissertation. I also give an overview of
causal graphical models, an alternative causal inference framework to the more
well-known potential outcomes (PO) framework which has been gaining popularity in
recent years. I focus the overview on parts where I believe this framework, and Directed
Acyclic Graphs (DAGs) more specifically, are most useful to transportation researchers.
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The applied part consists of Chapters 2, 3 and 4, where I apply some of the causal
identification strategies presented in Chapter 1 to answer three different empirical
causal research questions in transportation, two of which rely on observational data,
while one involves randomized experiments. Each chapter results in domain-specific
empirical contributions in its respective area. The common theme across all three
chapters is the explicit focus on estimating causal parameters, the clear statement of
the causal identification strategies used to estimate those parameters, and the
transparency about the source of variation in the treatment. This is in contrast to the
common practice in travel behavior modeling where models are specified and estimated
without explicitly stating the assumptions under which the estimated parameters can
have causal interpretations, and can often lead to erroneous conclusions and
misapplications of those models.

In Chapter 2, I quantify the causal effect of telecommuting on travel frequency and
distance traveled. This question is motivated by the unprecedented rise of
telecommuting in the past two years and its likely persistence in a post-pandemic world.
To answer this question, I collected and used five waves of original U.S.-based survey
data combined with passive smartphone Point-of-Interest (POI) data collected over the
course of the pandemic. I quantify the effects of changes in the frequency of
telecommuting on the total number of daily and weekly trips that a telecommuter makes,
as well as their total daily and weekly distance traveled. Crucially, I overcome important
limitations of related work in the literature by controlling for unobserved individual
confounders, a limitation of existing research that predominantly relies on
cross-sectional observational data. I do this by leveraging the longitudinal aspect of the
data and implementing causal quasi-experimental designs like first-differences and
two-way fixed effects regressions with individual, time, and individual by time controls. I
find strong evidence that telecommuting causes the generation of new non-commute
trips. Specifically, I find that individuals make an average of 1 additional non-commute
trip on telecommuting days relative to commute days. This trip is on average shorter
than the two-way commute trips, meaning that the net effect of telecommuting on total
distance traveled is negative. Importantly, I find that this relationship persists at the
weekly level, where I estimate that 1 additional day of telecommuting per week causes
an increase of about 1 additional non-commute trip. This means that the additional
travel on telecommuting days is the result of a newly generated trip, not a trip that has
been shifted from other days of the week. The results are more robust than those in the
existing literature and suggest that the trip reduction effects of telecommuting could be
overestimated if telecommuting-induced new trip generation is not properly accounted
for.
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In Chapter 3, I quantify the causal effect of vaccines on reversing pandemic induced
mobility trends. The question is motivated by the extensive literature analyzing and
forecasting the stickiness of pandemic-induced behavioral and mobility trends in a
post-pandemic world. Using the same data as the one used in Chapter 2, I show how
the pandemic behavioral response of people in the U.S. was heterogeneous: individuals
with low levels of concern about being infected with COVID-19 engaged in riskier
behaviors than those with higher levels of concern, including traveling more, attending
large gatherings, and using public transportation. Then, using difference-in-differences
designs, I show how getting vaccinated affected those behavioral differences.
Specifically, I find that getting vaccinated caused an increase in mobility, with vaccinated
individuals increasing their number of weekly trips by 4.8 trips per week after getting
vaccinated, compared to 1.8 trips for the unvaccinated during the same time period. The
difference-in-differences estimate is 3 trips per week, or 170% of the increase in trips for
the unvaccinated. The collective results provide important insights on human and travel
behavior during the pandemic impact and recovery periods, and how vaccines affect
those behaviors.

The third and final empirical question is answered in Chapter 4, and is on learning and
optimizing user behavior at plug-in electric vehicle (PEV) charging stations. Research
on consumer behavior in the PEV charging context is limited, data is lacking, and
consumer preferences, especially at workplace charging stations, remain poorly
understood. I address this gap by designing and implementing randomized pricing
experiments, the gold standard of causal inference, and quantify key behavioral
quantities like the willingness and required incentives to delay charging, and the
relationship between plug-in duration and hourly prices. I then propose a novel
optimization framework that incorporates those learned behaviors into the optimization
objective and significantly improves the operational efficiency of PEV charging stations.
My analysis shows that incorporating behavioral theory in the optimization framework
results in significantly lower operational costs (up to 17%) and higher net revenues (up
to 50%) for the charging station operator compared to the uncontrolled baseline, without
sacrificing the user experience.

Aside from the conceptual contributions (Chapter 1) and domain-specific empirical
contributions (Chapters 2, 3, and 4), the dissertation also makes data contributions
through the collection of two original datasets that will soon be made publicly available
to the transportation research community. I have participated in those data collection
efforts playing a primary role in designing the surveys, defining the sample, and
implementing randomized pricing experiments. The two datasets are:

● An extensive dataset on a panel of U.S. participants with a comprehensive set of
behavioral questions over the course of the pandemic. The data comprises
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passively collected POI data, as well as five waves of surveys which included
questions regarding respondents’ employment status, travel and telecommuting
behavior, vaccination status, demographic characteristics, and ideological beliefs.
An anonymized and de-identified version of this dataset, along with aggregated
mobility metrics from the POI data will be made publicly available for
transportation researchers.

● An experimental dataset of user behavior at PEV charging stations that includes
exogenous variation in the prices and the resulting real life behavioral responses
of study participants. This dataset fills a critical gap in the human behavior
literature in PEV charging research, where most pricing data are observational
and do not allow for price perturbations. The data will be made publicly available
for academic researchers along with an accompanying data manuscript that
describes it.

Collectively, this dissertation emphasizes the importance of being rigorous about the
design and assumptions under which researchers and modelers can draw causal
conclusions from models, an important task in transportation research. After all, causal
inferences are only valid if their underlying assumptions are correct, yet those
assumptions are rarely discussed and formally stated in transportation models. This
dissertation fills this gap.
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Chapter 1: Introduction

1. Motivation
A common application of travel demand models is to support policy evaluations.
Specifically, we often use behavioral models to evaluate the impact of external
interventions on travel outcomes: How will adding a bike lane affect the mode choice of
commuters in a given neighborhood? How does telecommuting affect a person’s travel
frequency? These evaluations are causal by definition: we are interested in how the
system reacts to external interventions. Yet, when transportation models are developed
or used for the purpose of policy evaluation, a formal discussion of causality and the
assumptions under which the model coefficients can have causal interpretations are
often missing. Furthermore, even when causal concepts are accounted for, the process
is done implicitly without a clear and formal framework. This disconnect is the main topic
and recurring theme of this dissertation.

Before I talk about the disconnect, it is important to acknowledge that transportation
researchers have indeed used and contributed to several aspects of the causal
inference literature. Specifically, the issue of self-selection bias has received
considerable attention in the literature on residential choice and its impacts on travel
behavior (1, 2). Integrated choice and latent variable models (ICLVs), which were first
proposed in the mid-1980s in the econometrics literature (3, 4) but later popularized and
extended by transportation researchers in the early 2000s (5) can also be thought of as
attempting to address omitted variable bias. In addition, joint discrete choice models,
like ones that estimate the joint probability of residential location as well as travel
behavior outcomes (like mode choice, car ownership, etc.) were also proposed to
address the endogeneity and self-selection between travel behavior and residential
choice (6, 7). In fact, endogeneity specifically has explicitly received significant attention
in the literature on travel demand modeling, and continues to be a hot topic of
discussion (8–11), with researchers using methods such as control functions using
instrumental variables, use of proxies, integration of latent variables, and the use of
multiple indicators to address this issue.

My point, however, goes beyond those discussions. I am also not claiming that an
expert, rigorous, and careful travel demand modeler or researcher cannot produce valid
causal inferences without explicitly following the terminology and frameworks from the
causal inference literature. Instead, I am arguing that the field of travel demand
modeling can gain a lot by being explicit about incorporating advances and techniques
from causal inference, and approaching the topic of causality more holistically, rather
than focusing on specific issues that fall under the wide umbrella of causality
individually. This is especially true when the parameters of the model being developed
are interpreted as causal effects and used to forecast the impact of policies (12). In
addition, I believe that there are misconceptions and misunderstandings about causality
that are commonly observed in the field of travel demand modeling and that lead at
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times to erroneous model applications and interpretation of results. I elaborate more
below (see (13) for another discussion of reasons behind this disconnect).

Let me start by talking about some misconceptions I see when the topic of causality is
discussed in the travel demand modeling literature. I believe that the word “causal” in
this literature is used loosely at best, and misused at worst. Take the following
statement from a recently published discussion paper in the Journal of Choice Modeling
as an example:

● “The theory-driven discrete choice models [...] are also understood as causal
models. As a result of their causal structure, they are generally deemed suitable
to make predictions – e.g. for policy interventions – beyond the support of the
observed data, or for counterfactual analysis.” (14)

By theory driven, the authors mean some variation of utility theory, like utility
maximization or regret minimization. While being theory driven in this way is extremely
important, especially as it allows the modeler to estimate useful parameters like
willingness-to-pay and quantify trade-offs that individuals make for certain features,
theory-driven models in this sense do not guarantee causality like the statement
asserts. For starters, what does it mean that the models are “understood as causal?”
Generally speaking, and in most cases, causal models can estimate the causal effect of
one variable at a time (a notable exception is when the data is coming from a
randomized experiment designed specifically for multiple treatments and treatment
effect estimation, which is rarely the case in transportation research). This is because
the modeling decisions needed to estimate the causal effect of one variable often
conflict with those needed to estimate the effect of another. However, when discrete
choice models are used for policy evaluation, multiple of the model parameters are
interpreted causally at the same time, in-line with the assumption that discrete choice
models are “generally understood as causal.” Statements like these emphasize a
general misunderstanding among transportation demand modelers of what causality
means. This misconception also manifests in another common theme: transportation
demand modelers very often make the case that discrete choice models are
advantageous over machine learning models when evaluating the impact of policies
because of their reliance on sound behavioral theory. I believe this is a strawman
argument. Indeed, just like discrete choice models, there is nothing prohibiting machine
learning models from estimating causal quantities if they are applied within a valid
causal identification framework. This is evident in fact that, over the last decade, there
has been a resurgence in machine learning research to leverage the power and
flexibility of machine learning models in causal applications, which led to many
important contributions to the causal inference literature (15–21). What machine
learning researchers have leveraged is the high predictive accuracy of their models and
ability to learn complex relationships1. This higher accuracy can be (and has been) used

1 A common critique to machine learning models’ high predictive accuracy is that it comes at the extent of
interpretability. But when the goal is to remove bad variation, interpretability is not important as long as
the models are estimated properly. Another critique is usually the tendency of machine learning models to
overfit the data, but this is easily mitigated in a multitude of ways, from cross-validation, to regularization.
A perfect example is the double/de-biased machine learning algorithm.
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to isolate bad variation in the treatment and the outcome by building predictive models
of each as a function of the controls, partialling out the portion of the variation that can
be predicted by those controls, and using the remaining “good variation” to estimate the
causal effects.

Additionally, in discussions of endogeneity, transportation researchers have not
distinguished between confounders and mediators, something that the causal inference
literature explicitly addresses. These two types of variables have different implications
on endogeneity and their inclusion or exclusion from a model affects the causal
interpretation of the model parameters in different ways. Take the following statements
from a review paper assessing methods to correct for endogeneity in discrete choice
models, published in Transportation Research Part A: Policy and Practice.

● “Endogeneity occurs when some explanatory variables are correlated with the
error term of an econometric model due to, among other things, omitted
attributes, measurement or specification errors, simultaneous determination or
self-selection. [...] For example, in a mode choice model between public and
private urban transportation, it is likely that the perceived level of discomfort (due
to e.g. crowding) will grow with travel time. Since the perceived level of
discomfort is relevant for the decision maker, but very difficult to measure by the
researcher, its omission will cause endogeneity. This omission will make the
model useless for assessing policies that enhance comfort, such as providing air
conditioning, or redesigning the vehicle’s layout. Besides, this omission will result
in poor forecasting capabilities and in an overestimation of the value of travel
time savings, which will be confounded with the improvements in comfort
[emphasis added].” (10)

While it is true that omitting the perceived level of discomfort will make the model
incapable of assessing policies that enhance comfort, such omission does not result in
“poor forecasting capabilities and overestimation of the value of travel time savings.”
This is because the level of discomfort in this hypothetical example is a mediator
through which travel time affects the utility of public transportation, not a confounder of
travel time. In fact, controlling for the perceived level of discomfort by including it in the
model will underestimate the total causal effect of travel time savings. This can be
proven mathematically. First, under this hypothetical example, travel time, which I
denote by , is assumed to affect the perceived level of discomfort positively, and both𝑇 𝐶

and affect the utility of public urban transportation, . These relationships can be𝑇 𝐶 𝑈
summarized with the following data generating process:

(eq-I.1)𝑇 =  ϵ
1

(eq-I.2)𝐶 =  α
0

+ β
0

* 𝑇 + ϵ
2

(eq-I.3)𝑈 =  α
1

+ β
1

* 𝑇 +  γ
1

* 𝐶 + ϵ
3

Substituting (eq-I.2) in (eq-I.3), we get:
𝑈 =  α

1
+ β

1
* 𝑇 +  γ

1
* (α

0
+ β

0
* 𝑇 + ϵ

2
) + ϵ

3

3
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Rearranging the terms, we get:
𝑈 =  α

1
+ γ

1
* α

0
+ (β

1
+ γ

1
* β

0
) * 𝑇 + γ

1
* ϵ

2
+ ϵ

3

Now, if we define:
, α

1
+ γ

1
* α

0
= α

, and(β
1

+  γ
1

* β
0
) = β

, we get:γ
1

* ϵ
2

+ ϵ
3

= ϵ
(eq-I.4)𝑈 =  α + β * 𝑇 + ϵ

In eq-I.4 and under this data generating process, , which is a function of , , andβ β
1

 γ
1

 β
0
,

can be interpreted as the total causal effect of travel time on the utility of public
transportation, which includes the direct effect of travel time, as well as its effect through
the perceived level of discomfort. Note also that the error term in eq-I.4, which omits ,ϵ 𝐶
is in fact independent of , since it does not contain any terms that are dependent on .𝑇 𝑇
Consequently, no endogeneity issues exist by omitting the perceived level of discomfort,

, when estimating the total causal effect of travel time, , on mode choice. In fact, if we𝐶 𝑇
were to control for by specifying the model as shown in eq-I.3 (assuming we can𝐶
actually measure ), we will actually be estimating , which is not the total causal effect𝐶 β

1
of travel time. can be interpreted as the partial effect of travel time while holding theβ

1
level of discomfort constant, which, in my opinion, is less meaningful: if a policy
intervention were to reduce travel time, the true effect of such intervention will be β
(multiplied by the change in travel time due to the intervention), not . The easiest wayβ

1
to estimate would be to simply exclude level of discomfort from the model andβ
estimate the reduced model specification in eq-I.4. All of this to say, just because is𝐶
correlated with does not mean that excluding it will cause endogeneity or omitted𝑇
variable bias if the goal is to estimate the total causal effect of travel time. For that to
happen, needs to cause (and ), making it a confounder of , and not vice versa. In𝐶 𝑇 𝑈 𝑇
eq-I.1 and eq-I.2, if was a function of instead of the opposite, then would be a𝑇 𝐶 𝐶
confounder of and omitting it from the specification will indeed cause endogeneity, and𝑇
the coefficient of estimated in a reduced form model like in eq-I.4 will not estimate the𝑇
true causal effect (this can be shown using a similar proof to the one above). The
example emphasizes the importance of the data generating process when thinking
about causality, and that misinterpretations can happen when assumptions about the
data generating process are not clearly stated or accounted for. Again, it is important to
emphasize that the misinterpretation only arises when eq-I.3 is estimated and isβ

1
interpreted as the true causal effect of travel time. Wooldridge provides an excellent
in-depth discussion of those issues in (22). There, a classical example that Wooldridge
uses is one where a modeler is interested in the causal effect of a beer tax on alcohol
related traffic fatalities. Should the modeler control for beer consumption in a regression
of fatalities on beer tax? Like the transportation example above, beer tax is correlated
with beer consumption, but is not a confounder of it. Instead, beer consumption is the

4
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mediator through which the beer tax affects traffic fatalities. So, if the modeler controls
for beer consumption, the coefficient on beer tax will greatly underestimate its causal
effect on fatalities. Of course, there is nothing wrong with running that regression, i.e. a
regression that includes beer consumption and beer tax in its regressors, as long as its
parameters are interpreted correctly. In fact, that regression will likely have more
predictive power than one which includes beer tax only, so if the purpose is better
predictive accuracy, then it may be more appropriate. The problem only arises when the
parameters of that equation are interpreted causally.

For another example, consider again the case of determining the effect of adding a bike
lane on mode choice in a given neighborhood. A common practice in travel demand
modeling is to use the coefficient on a variable in a model to quantify its marginal effect
on the outcome. These coefficients are interpreted as marginal utilities, and are
generally assumed to have causal interpretation (14). So, in this example, it is very
common to interpret the coefficient on the bike lane dummy variable in a mode choice
model as the causal effect of adding a bike lane on the utility of biking (23). Even in the
ideal case where all the variables that affect an individual's mode choice are observed
and present in the model (i.e., no omitted variable or self-selection bias), this approach
can still be problematic if certain variables that are affected by the bike lane are
included in the model specification. Similar to the previous example, these
post-treatment or mediator variables (24) should not be controlled for if the purpose is to
estimate the treatment effect of biking. For example, it is common for such models to
contain variables like bike travel time, as well as the bicycle infrastructure attributes (like
type of bike facilities). If the objective is to estimate the true effect of bike travel time,
then one should control for the type of bicycle infrastructure, which could affect bike
travel time as well as mode choice (in other words, bike infrastructure is a confounder of
bike travel time and mode choice). However, if the objective is to estimate the effect of
the bike infrastructure itself by interpreting its coefficient as causal, then any mediating
variables (like bike travel time) should be excluded from the model in order to correctly
interpret the model parameters causally, similar to the previous example on level of
discomfort from (10). I delve more into this topic in the Selection on Observables
section, where I explain this phenomenon more clearly using Directed Acyclic Graphs
(DAGs). DAGs can provide an intuitive representation of the data generation process
that is often clearer and more intuitive than the more common econometric
representations using structural equations like the ones shown in equations (1-4).

To be clear, though, I want to emphasize again that there is nothing inherently wrong
with the way those models are developed, and indeed, they can be appropriate for the
right applications. As the famous George Box’s saying goes, “All models are wrong, but
some are useful,” so claiming for example that certain models are particularly wrong
would be, ironically, wrong. Instead, the focus should be on whether a given modeling
framework is the right one for the objective at hand. As I argued in the previous
paragraphs, if the objective of a demand model is indeed to estimate causal parameters
or to be used for policy evaluation, then the modeler should be aware of the issues
discussed here, and should be clear about presenting their assumptions about the
causal mechanisms through which those effects manifest by explicitly stating the

5

https://paperpile.com/c/VnS5xl/onrRp
https://paperpile.com/c/VnS5xl/IWMo9
https://paperpile.com/c/VnS5xl/3bckW
https://paperpile.com/c/VnS5xl/ly1wT


assumed data generating process before drawing any causal conclusions. This will
greatly help a practitioner, or whoever uses the model for policy evaluations, to be
informed about how to interpret the model parameters. The problem in my view is that
demand models are in fact very often used to evaluate the impact of policies, yet if one
looks at the Federal Highway Administration (FHWA)’s travel model improvement
programs (TMIP) over the last two decades, the focus is mostly on predictive validity
and accuracy, with little mention of causality issues during model development.

The rest of this chapter is organized as follows. In Section 2, I discuss issues of
identification as treated in the transportation choice modeling literature and the causal
inference literatures, and argue that causal identification is rarely discussed in the
transportation literature. In Section 3, I give an overview of some causal identification
strategies used in the empirical sections of the dissertation. In the overview, I focus on
the identifying assumptions of those strategies, as opposed to specific estimation
techniques. Indeed, identification and estimation of causal effects are two separate
tasks in causal inference research, and there are usually a plethora of estimation
techniques for any given identification strategy. In the Selection on Observables
identification strategy section, I also introduce and illustrate Directed Acyclic Graphs, a
powerful tool that transportation researchers can leverage to encode their assumptions
and reason about the correct model specification that allows for estimation of causal
parameters. In Section 4, I conclude this chapter with a summary and an outline of the
rest of this dissertation, which consists of three empirical transportation questions that I
answer by designing and implementing causal identification strategies.

2. Identification: Causal vs. Statistical
Identification is a broad and general concept in statistics, with pioneers like Manski
being among the first people to formalize this concept. Put simply, a model is said to be
identifiable if its parameters can be uniquely learned with an infinite number of
observations (25, 26). A key notion in this definition is the uniqueness of the model
parameters, which effectively means that different values of the model parameters must
result in a different distribution of the observable variables and outcomes. Given this
definition, it is easy to see why identification is an important issue of statistical learning:
no statistical inferences are possible on the model parameters if those parameters
cannot be uniquely identified with infinite data, since statistical inference revolves
around estimating standard errors that require the asymptotic convergence of the
parameter of interest. Causal identification, on the other hand, refers to the problem of
whether the estimated model parameters actually estimate a causal quantity. In this
section, I briefly describe the identification problem as predominantly treated in the
discrete choice modeling literature and used in transportation research, and contrast it
with causal identification, which receives little to no attention by transportation demand
modelers.
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2.1. Identification as treated in the Discrete Choice Modeling literature
Train succinctly summarizes the identification issue in discrete choice modeling with the
following two statements (27):

● “Only differences in utility matter”
● “The scale of utility is arbitrary”

The identifying assumptions are rooted in the behavioral theory underlying the decision
making process. This is reflected in the two statements above. The first statement is
mathematically equivalent to the fact that increasing or decreasing the utility of all the
alternatives by a constant does not affect the final choice of the decision maker, as the
ranking and relative appeal of those alternatives remain the same. The second
statement similarly implies that multiplying or dividing the utility of all alternatives by the
same constant does not affect the choice of alternatives either.

Those two statements have important mathematical implications, and they result in
assumptions on model specifications that are necessary for the statistical identifiability
of those models. Consider a discrete mode choice model with J choice alternatives: the
fact that one of the model’s alternative specific constants (ASC) is fixed to a certain
arbitrary number (often set to zero) is because there are infinite combinations of J ASCs
that result in the same differences in alternative utility, since there are only J-1 such
differences. Setting one of the ASCs to zero (or another number) is thus a necessary
condition under which the remaining ASCs can be uniquely identified and estimated.
Similarly, the fact that the absolute scale of the utility is arbitrary requires other modeling
decisions on the error terms in order to uniquely estimate the parameters of the model,
which is often accomplished by normalizing the variances of those error terms. Refer to
Section 2.5 of (27) for a more detailed discussion.

Beyond the concepts above, the issue of statistical identification and its necessary
conditions in discrete choice modeling has received a lot of attention in the
transportation literature (see for example (28, 29) for dealing with identification in
extended discrete choice models). For the purposes of this chapter, however, it is
sufficient to understand that the type of identification issues that are typically dealt with
in the travel demand modeling literature refers strictly to the set of assumptions that
provably result in an identified model, i.e. a model in which all parameters can be
uniquely estimated given enough data. In the next subsection, I discuss the issue of
causal identification and how it is different from the identification issues discussed in this
section.

2.2. Identification in Causal Inference
The concept of identification in causal inference goes beyond the statistical identifiability
of parameters and the specification issues that are dealt with within the travel demand
modeling literature. Indeed, a model can be correctly specified to ensure that its
parameters are identifiable in the statistical sense (i.e., uniquely estimable given the
data), yet those parameters can still be void of any causal meaning. For a parameter to
be causal, a certain set of assumptions need to be made about the data generating
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process under which the value estimated can have a causal interpretation. Those
assumptions are often untestable due to the unobservability of counterfactuals, a
problem often referred to as the fundamental problem of causal inference. In the
transportation literature, the closest concepts to causal identification are the concepts of
unbiasedness or consistency of the model parameters, which are typically used to refer
to the ability of the model to recover the “true” population parameters asymptotically,
where true is generally understood as causal. Those concepts are not discussed with a
formal causal framework, however, which can lead to mistakes, as shown in the
Motivation subsection earlier in this chapter.

To make this concept clearer, let’s start by introducing some notation. Denote by a𝐷
𝑖

treatment variable representing the treatment status of individual i. For simplicity, let’s
assume that is a binary treatment with values 0 (which means individual i did not𝐷
receive a treatment and is part of the control group) or 1 (which means individual i is in
the treatment group). Also denote by the outcome of interest. An important notion in𝑌

𝑖
the Rubin Causal Model (RCM) is the notion of potential outcomes (for a thorough
introduction to this framework, refer to (30)). More specifically, the potential outcome of
individual under treatment , , is the outcome that unit will have if they are𝑖 𝐷 𝑌

𝑖
(𝐷) 𝑖

exposed to treatment status . Consequently, in the binary treatment case, the causal𝐷
effect of treatment for individual is simply the difference in the potential outcomes𝐷 𝑖
corresponding to the two levels of treatment status (treatment and control):

(eq-I.5)τ
𝑖

= 𝑌
𝑖
(1) − 𝑌

𝑖
(0)

Embedded in eq-I.5 above is the fundamental problem of causal inference. The
equation shows that the causal effect of the treatment for individual depends on the𝑖
potential outcomes under both the treatment and control, but an individual can only be
assigned to one group at a time, and never to both. This means that we only observe
one of the potential outcomes, and it is impossible to observe both potential outcomes
for a given individual or unit at the same time. The fact that we never fully observe all
the quantities necessary to estimate the causal effect of the treatment is the source of
identification problems in causality. As a result, causal identification assumptions must
be made in order to make inferences about the causal effects. The plausibility of those
assumptions determines whether or not the estimated effects can have a causal
interpretation. Loosely speaking, those assumptions allow the modeler to estimate what
the counterfactuals would have been if the units were subjected to the other treatment
level (i.e., if the control units were subjected to the treatment, and the treatment units
were subjected to the control). In the next paragraph, I make this notion mathematically
clear.

First, notice that in eq-I.5 is the individual treatment effect for unit . In mostτ
𝑖

𝑖
applications, we are interested in the expected value of the treatment effect across a
given population, or the average treatment effect (ATE), instead of the individual effects
(we are sometimes interested in the conditional average treatment effect (CATE) when
heterogeneity is important, but this can still be thought of as the ATE for a specific
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sub-population or group, so I do not address it separately). The ATE can be expressed
as follows:

𝐴𝑇𝐸 = 𝐸(τ
𝑖
) = 𝐸[𝑌

𝑖
(1) − 𝑌

𝑖
(0)] = 𝐸[𝑌

𝑖
(1)] − 𝐸[𝑌

𝑖
(0)]

𝐴𝑇𝐸 = π * { 𝐸[𝑌
𝑖
(1)|𝐷

𝑖
= 1] − 𝐸[𝑌

𝑖
(0)|𝐷

𝑖
= 1]}

(eq-I.6)+ (1 − π) * { 𝐸[𝑌
𝑖
(1)|𝐷

𝑖
= 0] − 𝐸[𝑌

𝑖
(0)|𝐷

𝑖
= 0]}

where is the fraction of individuals who received the treatment. Note that the ATEπ
defined in eq-I.6 includes terms that are unobserved. Specifically, the expected value of
the potential outcome under treatment, , is only observed for those who𝐸[𝑌

𝑖
(1)]

received the treatment, . Similarly, the expected value of the potential𝐸[𝑌
𝑖
(1)|𝐷

𝑖
= 1]

outcome under control, , is only observed for those who are in the control group,𝐸[𝑌
𝑖
(0)]

. We do not observe the potential outcome under treatment for control𝐸[𝑌
𝑖
(0)|𝐷

𝑖
= 0]

units, , nor the potential outcome under control for the treated units,𝐸[𝑌
𝑖
(1)|𝐷

𝑖
= 0]

. The fact that we can never observe those quantities irrespective of how𝐸[𝑌
𝑖
(0)|𝐷

𝑖
= 1]

much data we collect is the source of the causal identification problem. The
identification strategies explained in the next section are in essence a set of
assumptions about those counterfactuals that allow us to estimate the ATE when some
of its components are not observable2. Keele provides an excellent review of causal
identification strategies for readers interested in a more comprehensive discussion (31).

3. Causal Identification Strategies: A Review
In this section, I give an overview of some of the identification strategies used in the
empirical sections of this dissertation. The focus here is on the necessary conditions
needed to estimate causal effects using the data, and I do not cover the specific
estimation techniques that can be used under each strategy. Indeed, there exist many
estimation techniques and models that can be used under each identification strategy,
but the underlying assumptions of each of those models remain unchanged. If the
assumptions do not hold, however, no degree of modeling sophistication or complexity
can overcome those issues and produce valid causal estimates.

3.1. Randomized Control Trial
The first and perhaps most well known identification strategy is the randomized
experiment or randomized control trial (RCT). I use this identification strategy in Chapter
4, where I design and implement randomized pricing experiments to estimate the

2 Note that I do not talk about additional identifying assumptions in this chapter, since the purpose is not to
be comprehensive. One major assumption that is often necessary on top of the identification strategies
explained in this chapter is the Stable Unit Treatment Value Assumption (SUTVA), which assumes that
one’s potential outcome is unaffected by other people’s treatment status. The unfortunate name aside, the
assumption simply means no interaction effects between study units.
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relationship between prices and the choice of Electric Vehicle charging options, as well
as the relationship between hourly prices and charging duration.

Referred to as the gold standard of causal inference, in randomized experiments,
subjects are randomly assigned to treatment and control groups. This offers many
advantages when estimating causal effects: in short, randomization helps achieve the
ignorability assumption3, which means that the treatment assignment, , is independent𝐷

𝑖
of the potential outcomes, . In other words, it means that there are no differences𝑌

𝑖
(𝐷

𝑖
)

in the potential outcomes of treated and control units, and selection into the treatment
(or the control) does not happen based on those potential outcomes. To see why this is
important, note the following equalities that follow when the potential outcomes, ,𝑌

𝑖
(𝐷

𝑖
)

are independent of treatment assignment, (i.e. when the ignorability assumption is𝐷
𝑖

satisfied):
𝐸[𝑌

𝑖
(1)|𝐷

𝑖
= 1] = 𝐸[𝑌

𝑖
(1)|𝐷

𝑖
= 0] = 𝐸[𝑌

𝑖
(1)]

𝐸[𝑌
𝑖
(0)|𝐷

𝑖
= 0] = 𝐸[𝑌

𝑖
(0)|𝐷

𝑖
= 1] = 𝐸[𝑌

𝑖
(0)]

Thus, to identify the ATE, eq-I.6 becomes:
𝐴𝑇𝐸 = 𝐸[𝑌

𝑖
(1)] − 𝐸[𝑌

𝑖
(0)] = 𝐸[𝑌

𝑖
(1)|𝐷

𝑖
= 1] − 𝐸[𝑌

𝑖
(0)|𝐷

𝑖
= 0]

Note how all the elements in eq-I.6 are observed and can be estimated from the
sample. Again, the key identification strategy here is that treatment assignment is
independent of the potential outcomes, and the randomization of , if done correctly,𝐷

𝑖
ensures the validity and credibility of this strategy. Thus, to identify the ATE in a
randomized experiment, it suffices to compute the difference in means between the
treatment and control groups.

A few additional things to note regarding randomized experiments:
● Randomized experiments ensure internal validity of the treatment effect, meaning

that the estimate of the treatment effect is valid for the study sample. Additional
assumptions and steps need to be taken to ensure external validity of those
estimates, i.e. that the estimates generalize to a broader population. For
example, random sampling is required to ensure external validity. External
validity is typically checked by comparing the marginal and joint distributions of
pre-treatment variables (in most cases, these are demographic variables)
between the study participants and the larger population of interests.

● Issues of attrition and non-compliance are also important for randomized
experiments. It is important that individuals do not drop out from the study, or if
they do drop out, it happens randomly and is not correlated with the potential

3 It is called the ignorability assumption because the treatment assignment is ignorable, i.e. we do not

need to worry about it in the analysis, when it is not correlated with the potential outcomes of the study

units
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outcomes. Checking for non-compliance is done by ensuring that the people in
the control group are not exposed to the treatment, and that people in the
treatment group are complying with the treatment rules. See (32) for a thorough
discussion of those issues and a detailed introduction to the topic of randomized
experiments.

● Finally, note that there are many variations of the randomized experiment
described here. Often, it is not possible to perform randomization of the treatment
at the individual level. In those cases, cluster randomization, or time
randomization, can be more feasible. For a detailed review of those variations,
please refer to (32).

3.2. Difference-in-Differences and Longitudinal Models
Another common and widely used strategy to identify treatment effects is leveraging
longitudinal data. Arguably, using longitudinal data is the second best thing to
randomized experiments4 when trying to identify causal effects.

As mentioned earlier, a challenge in estimating causal effects stems from the difficulty of
identifying good exogenous variation in the treatment. In cross-sectional observational
data, this is hard due to selection bias (often referred to as endogeneity in transportation
demand modeling): treatment assignment is not random and is often correlated with the
potential outcome of the study units, and individuals with different observed and
unobserved characteristics can self-select into the treatment and control groups. A
famous example in transportation is that individuals who live near a bike lane may be
inherently more likely to bike to work than others: in other words, their treatment status
(having a bike lane), is correlated with their potential outcomes (whether or not they bike
to work). When panel data are available, however, we can use within-individual variation
in the treatment status over time to identify treatment effects. When using the
within-individual variation in the treatment, we are effectively controlling for any
individual confounders that are fixed over time. In the same bike lane example, if we
observe the same individuals before and after installing the bike lane, then we can
control for their inherent preferences for biking using, for example, fixed effects models.

Many empirical designs are used when working with longitudinal data. The simplest
design is the Differences design, also known as a before/after study. Under this design,
the treatment effect estimate is the difference in means of the study units before and
after the treatment is implemented. The identification assumption in such design is that
the before/after differences in the outcome would have been zero if it weren’t for the
treatment. This is a strong assumption, as there are often underlying time trends that
could cause such differences, or there may be other factors that have changed over the
same time as the treatment that could explain away the differences in the outcome. As
a result, the Differences design is a weak design due to its reliance on strict and unlikely
identification assumptions, and is rarely considered a reliable causal design.

4 An argument can be made for valid natural experiments where treatment is close to randomly assigned.
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A very popular extension of the Differences design is the Difference-in-differences
(diff-in-diffs) design (33, 34). This design is the most common research design used to
estimate the impact of policies with longitudinal data. The design extends the
Differences design by including a control group that has not been exposed to the
treatment, and as the name suggests, the treatment effect is estimated as the difference
in the before/after differences between the control and the treatment group. The key
identification strategy in the diff-in-diffs design is the parallel trend assumption, which
asserts that the treatment and control groups would have trended similarly if it weren’t
for the treatment. In other words, the strategy assumes that the difference in the
outcome between the control and treatment groups in the pre-treatment period would
have remained the same in the post-treatment period had the treatment not been
administered. As a result, if the difference between the control and treatment groups
increases in the post-treatment period, the treatment is assumed to have a positive
effect, and vice versa. In the bike lane example mentioned earlier, if we observe two
group of individuals over multiple points in time, where one group gets a bike lane
installed on their path to work and one does not, then we can look at the difference
between the rates of biking before and after the installment of the bike lane for each of
the two groups, and then compare how those differences changed before and after
installing the bike lane (i.e. compute the difference-in-differences). This would be the
estimate of the average causal effect of the bike lane.

To provide evidence for the plausibility of this assumption, the analyst will typically try to
find multiple pre-treatment data points for the treatment and control groups and show
that the differences in the outcomes between those two groups remained constant over
time before the treatment was assigned. I do this in Chapter 3, where I estimate the
effect of getting vaccinated on the number of weekly trips that individuals make. There, I
show that the number of weekly trips for vaccinated and unvaccinated individuals
trended similarly before vaccines became available, so the change in the difference in
the number of weekly trips before and after the treatment group gets vaccinated can be
causally attributed to the vaccine.

There are many variations and extensions of the diff-in-diffs design, and many
estimation techniques that can be used to implement it. In Chapter 3, I implement a
canonical diff-in-diffs when estimating the effect of getting vaccinated on the number of
weekly trips that individuals make, and the effect of getting vaccinated on the frequency
of using transit. In Chapter 2, I implement a variation of the diff-in-diffs design called
First Differences, where I use multiple observations over the same individual to quantify
the effect of telecommuting on the number of non-commute trips that individuals make.
Refer to those respective chapters for additional details about those designs.

3.3. Selection on Observables
As the name suggests, selection on observables is an identification strategy which
assumes that selection into the treatment group happens based on observable
characteristics. In other words, even though people self-select into the treatment group,
we observe all the factors that determine (i.e. predict) this selection process. Under this
assumption, once we condition on those factors, treatment assignment becomes as
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good as random. This is a strong assumption in observational studies, but is often
implied in cross-sectional regression models that interpret the coefficients as causal
effects.

Mathematically, the identification assumption under the selection on observables
strategy is that treatment assignment is independent of the potential outcomes once we
condition on a set of covariates, :𝑋
{𝑌

𝑖
(0),  𝑌

𝑖
(1)} ⊥ 𝐷

𝑖
|𝑋

𝑖

The above assumption is also known as the conditional ignorability or
unconfoundedness assumption. Again, it is very important to emphasize that the key
concept in this strategy is that we observe all the factors that affect both the treatment𝑋
and the potential outcomes. Any violation of this assumption would lead to arbitrarily
biased treatment effects.

When it comes to estimating treatment effects under this assumption, plenty of
statistical techniques are available. In fact, this is an area that has received a lot of
attention in the last few years from the machine learning literature as well, despite the
common critique that machine learning models receive as being unable to handle
non-predictive objectives. Going over the specific estimation techniques is beyond the
scope of this chapter, but interested readers can research the terms regression
adjustment, propensity score methods (weighting, matching, and blocking), Meta
learners ( -learner, -learner), Double/De-biased machine learning, Causal forests, etc.𝑇 𝑋
What these methods have in common is that they use the covariates to partial out any𝑋
covariation in the treatment, , and the outcome, , that are induced by . In other𝐷 𝑌 𝑋
words, all those techniques seek to partial out bad variation in and – i.e., variation𝐷 𝑌
that can be explained by – and use only the good variation – i.e., exogenous variation𝑋
– in to estimate its effect on .𝐷 𝑌

The selection on observables strategy is what is implicitly assumed in transportation
discrete choice models estimated on cross-sectional data and where the model
parameters are given a causal interpretation, or in any cross-sectional regression model
where the parameters are interpreted causally. Even more advanced discrete choice
models, like latent class choice models and mixed logit models, still fall under selection
on observables – those extensions address unobserved heterogeneity in taste
parameters, but still assume that all confounders are observed and controlled for in the
model. The exception is integrated choice and latent variable models (ICLVs), which
adjust for latent variables (typically attitudinal) in the utility equations of the choice
alternatives. However, one may argue that even ICLVs fall under selection on
observables, since the latent variables are themselves typically assumed to be a
function of observable characteristics in the vast majority of applications, and one needs
to collect (i.e. observe) additional data in the form of survey questions in order to
estimate the latent variables.

While more often than not it is hard to justify the selection on observables assumption in
observational data, the fact remains that it is used very frequently in practice. The main
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task in those designs is to find a set of regressors that satisfies the ignorability𝑋
assumption, but are there any restrictions on which variables can go in the model if the
purpose is to estimate treatment effects? In other words, is there any harm in including
the most comprehensive set of controls in the model? The answer to both those
questions is yes: including the wrong controls, or bad controls, in the model can
significantly undermine the causal interpretation of its parameters. This is an issue that
is commonly observed in transportation models, since if the modeler is not careful, they
risk adding post-treatment or mediator variables into the specification equations. In the
next subsection, I give an overview of DAGs, a powerful tool for visualizing and thinking
about how to specify models (i.e., how to select a set of controls that satisfies the𝑋
conditional ignorability assumption) when the objective is to identify causal parameters,
and present a common example where demand modelers fall into the trap of
conditioning on bad controls. For a crash course in good and bad controls, refer to
these excellent papers that offer intuitive explanations and a more comprehensive
overview (35, 36).

3.3.1. Directed Acyclic Graphs
Causal diagrams and causal graphical models were introduced by Pearl in 1995 as a
powerful tool for causal inference, especially in observational studies (37). In my view,
the most important and useful feature of causal graphs and its added value to
transportation demand modeling is the clear representation of the causal relationships
between the regressors. In this section, I focus specifically on illustrating the power of
DAGs to represent and encode causal relationships between variables in an intuitive
and clear manner, and how that can help the modeler decide what they should and
should not control for. Specifically, I illustrate the main causal structures that a modeler
should pay attention to, and give an example from transportation where those structures
are often present. Interested readers can refer to (36, 37) for a deeper dive into causal
graphical models and the topic of good and bad controls in more complicated
structures.

Before I delve more into DAGs, I believe it is important to give a word of caution.
Despite the fact that Pearl describes DAGs and causal graphical models as
revolutionizing the field of causal inference (and in some lectures, he goes as far as
claiming DAGs “solve” causal inference), in my view (and that of notable economists
(38)), their main contribution is a better, more intuitive, and explicit representation of
assumptions about the data generating process, which result in (theoretically) testable
implications. They allow a modeler, given a causal model in the form of a DAG, to
algorithmically determine a set of good controls that allow for causal estimation. The key
notion here though is that the correctness of the results and the causal estimates
depend heavily on the correctness of the DAG. In the ideal case, a transportation
modeler should use an identification strategy that does not make so many assumptions
about the relationship between variables, like instrumental variables (IV), diff-in-diffs,
regression discontinuity, etc. When that is not possible, which is often the case in
transportation research where good instruments, randomization, or panel data are not
available, this is where DAGs become useful. They force the modeler to be clear and
transparent about their assumptions when specifying models, and they allow the reader
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to think about the validity of those assumptions when they are judging the validity of the
results.

Another limitation of DAGs worth noting is their inability to handle cyclical structures. In
those situations, which arise in cases where two variables cause each other. As their
name suggests, the kind of relationships where DAGs are most useful are acyclic,
meaning that the direction of causality flows strictly from one variable to another. This
makes them unfit to handle problems where the treatment and the outcome may have a
simultaneous relationship: for example, telecommuting may cause people to move
farther from work, but living farther from work causes people to telecommute more as
well. These kinds of problems are best handled using longitudinal data, and DAGs are
not necessarily more intuitive if a time dimension is added. I face a similar situation in
Chapter 2, where I quantify the causal effect of telecommuting on distance traveled.
There, I do not use DAGs, and instead use variations of diff-in-diffs designs and
longitudinal fixed effects models to quantify the causal impact of telecommuting on
travel frequency.

Main Causal Structures in DAGs
There are three main structures that form the fundamental building blocks of any DAG,
all shown in Figure I-1.

a) X is a confounder with
respect to D

b) X is a mediator variable
with respect to D and Y

c) X is a collider variable with
respect to D

Figure I-1: The building blocks of Directed Acyclic Graphs

In all three structures, suppose that we are interested in estimating the causal effect of
on . Figure I-1-a shows the common confounding structure, also known as the fork𝐷 𝑌

structure. In this example, in order to adjust for confounding from , we should condition𝑋
on (aka control for) . Under this data generating process, induces “bad variation” in𝑋 𝑋
both and and should be adjusted for. This is the graphical equivalent of the𝑌 𝐷
conditional ignorability assumption in selection on observables. Figure I-1-b shows the
mediating structure, in which part of the causal effect of on is channeled through .𝐷 𝑌 𝑋
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If our goal is to estimate the causal effect of on , then controlling for will bias our𝐷 𝑌 𝑋
estimate, since the mediated effect of on will be consumed by the coefficient on .𝐷 𝑌 𝑋
Thus, one should not control for in this case in a regression of on . Figure I-1-c is𝑋 𝐷 𝑌
the less common case of colliders. Colliders are also referred to as common effects
since they are caused by the treatment of interest as well as other variables. In this
case, conditioning on the collider will induce non-causal association between and ,𝑋 𝐷 𝑈
an unobserved confounder that also affects , causing bias that would not otherwise𝑌
occur if we do not condition on . Thus, we should not control for the collider in a𝑋 𝑋
regression to estimate the causal effect of on . This case rarely appears in practice𝐷 𝑌
but is theoretically possible, so modelers need to keep an eye out for such situations
when specifying their models.

Finally, an important thing to note about the assumptions encoded in a causal graph are
conditional independence assumptions. For example, consider the graph shown in
Figure I-1-c), and focus on the variables , , and . The path formed by these𝑌 𝑋 𝑈
variables is of the form ← → , with no direct path from to . What such a𝑋 𝑈 𝑌 𝑋 𝑌
structure implies is that and are conditionally independent given . The construction𝑋 𝑌 𝑈
of DAGs can thus be viewed as encoding the modeler’s conditional independence
assumptions. Those assumptions can theoretically be tested using data-driven
statistical tests, but those tests are typically low powered. Personally, I believe those
assumptions are best checked using subject matter expertise and discussions between
researchers. In that sense, DAGs would facilitate such discussions since the
assumptions will be explicitly and intuitively stated, rather than being implicit or buried in
(sometimes intimidating) mathematical notations. Even if agreement on those
assumptions may never be universal, at the very least, being explicit about them in the
form of DAGs will allow the readers and applied practitioners to judge for themselves
the validity of those assumptions and whether they are plausible for the specific
application at hand.

Examples from Transportation
Next, I give a transportation example to better illustrate how these causal structures
appear in typical travel demand modeling applications, and how they may undermine
the causal inferences that people associate with the model parameters if not accounted
for properly. Recall the example at the beginning of this chapter about quantifying the
effect of adding a bike lane on mode shares in a given neighborhood. As mentioned
earlier, a very common practice within the discrete choice modeling literature in
transportation is to use the coefficient on a bike lane dummy variable as the causal
effect of the bike lane on the utility of biking. As I alluded to in the previous subsections,
this approach is problematic. Let’s start by thinking about a plausible causal graph that
captures the true data generating process. If the data are observational, a possible
causal graph is shown in Figure I-2. Note that I only focus on the parts that involve the
bike lane, and do not present a full causal graph of all the variables that could be
involved in such a problem. The graph also assumes no selection bias into the bike lane
treatment, meaning that people who live near a bike lane are similar in their potential
outcomes to those who do not. This is obviously a simplifying assumption unlikely to
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hold in practice but is a useful one to make the point of good and bad controls. I give a
more realistic graph in Figure I-3.

Figure I-2: DAG for the relationship between travel time, bike lane, and mode choice

What does the DAG in Figure I-2 tell us? For starters, it makes it clear that it is not
possible to correctly estimate the causal effects of bike travel time and bike lane in the
same model. Stated differently, if they are all included in the discrete choice model, the
coefficients on the bike lane and the bike travel time cannot all be interpreted causally
under this data generating process. Below, I elaborate on why that is the case.

The bike lane variable is a confounder to bike travel time, but bike travel time is a
mediator for the bike lane variable. Thus, to estimate the effect of bike travel time on the
mode choice, one must control for the confounding bike lane variable. However, if the
goal is to estimate the causal effect of a bike lane on mode choice, then the travel time
variables (for both bikes and cars) cannot be included in the model. If included, those
mediators will absorb a significant portion of the effect of the bike lane, leading to
significantly underestimating it. This again highlights the invalidity of general statements
like “[...] choice models are generally understood as causal.” A choice model that
includes all three variables can be interpreted causally for the travel time variables, but
not for the bike lane variable. Yet, in the transportation literature, it is typical for all three
parameters to be interpreted causally (see (39) for an example).

So what’s the solution? As always, it depends on the modeling objective. Below are a
few scenarios:

● If the modeler is only interested in the causal effect of travel time on the mode
share, then modeling specifications that include all variables are correct.

● If the modeler is only interested in the total causal effect of the bike lane, then the
modeler must exclude the travel time variables from the model.

● If the modeler is interested in the causal effect of the bike lane, but is also
interested in quantifying the channels of causation through the travel time
variables (i.e., the modeler is interested in how much of the causal effect of a
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bike is due to the effect on travel time), then the modeler will need to resort to
structural equation modeling, where a model quantifying the effect of a bike lane
on bike and car travel times will need to be developed. These techniques have
been applied in transportation before, and have been used in other fields like
psychology. The downside of such models, however, is that the final estimate of
the effect of the bike lane will ultimately depend on the correctness of the
functional form assumptions of all the structural models.

The example in Figure I-2 may have been simplistic to clearly distinguish between
confounders and mediators. Now consider a less straightforward example of a more
plausible data generating process as shown in Figure I-3.

Figure I-3: DAG for the factors affecting biking utility. * means unobserved variable

In Figure I-3, suppose again we are interested in the effect of a bike lane on the utility of
biking. Here, we do not assume that there is no self-selection bias of the bike lane
variable. Instead, the presence of a bike lane is confounded with demographic
characteristics, as well as travel distance. Like the previous example, however, bike
travel time is not a confounder of the bike lane. So, to estimate the causal effect of the
bike lane on the utility of biking, the modeler should adjust for the confounders
(demographics, travel distance), but exclude the mediators (bike travel time in this
case).

There is another important point I am making in Figure I-3. Namely, the DAG as shown
assumes that there is another unobserved factor, preference for active mobility, that
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also indirectly confounds the bike lane variable. However, in my DAG, I assume that the
effect of the unobserved preference for active mobility on the bike lane variable
happens entirely through the travel distance variable, and there is no direct path of the
preference for active transportation to the bike lane variable. For example, those who
have this preference live in areas denser areas closer to their work location (so shorter
travel distance to work), and those areas, because they are more dense, are more likely
to have a bike lane. Under this assumption (that there is no direct path from the
unobserved preferences to the bike lane variable), controlling for the confounding effect
of travel distance is enough to adjust for those unobserved preferences. Of course,
another modeler or practitioner may disagree with this assumption. For example, they
may assume that people with a preference for active transportation may choose to live
specifically in areas with bicycle infrastructure. In other words, they may assume that
there is a direct arrow from the preference for active mobility variable to the bike lane
variables. Under this assumption, not adjusting for the preference for active mobility will
result in confounding (aka omitted variable) bias. What is good about presenting those
assumptions in the form of DAG, however, is they encourage more productive
discussions about the validity of the data generating process under which the model is
estimated, and they allow the modeler and practitioner to correctly interpret the model
parameters, reason about their validity, and hypothesize about the direction of bias. This
will, hopefully, greatly reduce misapplications of the model and misinterpretations of its
parameters. The other good thing about DAGs is that algorithms exist that determine
the set of control variables that result in unbiased estimation of causal effects. So, as
the complexity of the problem increases, the modeler can rely on those algorithms to
figure out which controls should be included, and which should be excluded, from the
final model specifications. Those algorithms are based on the theory developed in (37).

4. Summary and Dissertation Outline
In this section, I discussed the disconnect between the causal inference and
transportation demand modeling literature, misconceptions leading up to it, and some
erroneous modeling practices that undermine the causal interpretation of modeling
parameters. I also explained the difference between statistical identification as treated in
the transportation choice modeling literature, and causal identification which received
little to no attention in travel demand modeling. Then, I went over some common causal
identification strategies that I use in the subsequent empirical sections of the
dissertation and explained the assumptions underlying them. Finally, I gave an overview
of DAGs as a powerful tool to illustrate a modeler’s assumptions and allow them to
determine the correct specification of their models if the objective is to identify causal
parameters.

In the following chapters, I essentially practice what I preach. I answer three empirical
causal transportation questions using the causal inference techniques and identification
strategies I reviewed in this chapter. Those chapters are independent manuscripts that
have either been submitted or in the process of being submitted to refereed
transportation journals. In Chapter 2, I quantify the causal effect of telecommuting on
travel frequency and distance traveled. In Chapter 3, I quantify the causal effect of
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vaccines on reversing pandemic induced mobility trends. In Chapter 4, I design and
implement randomized pricing experiments to study the charging behavior of electric
vehicles’ owners at plug-in electric vehicle charging stations. I conclude in Chapter 5,
where I summarize the contributions of this dissertation and propose future research
directions.
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Chapter 2: Does telecommuting reduce trip-making?
Evidence from a U.S. panel during the COVID-19
impact and recovery periods

Executive Summary
Telecommuting has risen to unprecedented levels in the past two years and remains
one of the most disrupted aspects of transportation behavior during the COVID-19
pandemic. In this paper, we investigate the transport impacts of telecommuting. We use
a combination of passively collected Point of Interest (POI) data between January 2020
and December 2021 and five waves of actively collected surveys on a panel of
participants to quantify the effects of changes in the frequency of telecommuting on the
total number of daily and weekly trips that a telecommuter makes, as well as their total
daily and weekly distance traveled. We overcome important limitations of related work in
the literature by controlling for unobserved individual confounders as well as various
demographic and temporal variables. Doing so, we find evidence that telecommuting
results in the generation of new non-commute trips that offset a significant portion of the
reduction in commute trips. We show that telecommuters make an average of roughly
one additional non-commute trip on telecommute days relative to commute days. The
additional trip is on average shorter than the commute trip, as we find that the total
distance traveled on telecommute days is significantly shorter than on commute days
for employees in our panel. At the weekly level, we also find that one additional day of
telecommuting results in one additional non-commute trip. This suggests that the
additional non-commute trip on telecommuting days is a newly generated trip, not a trip
that has been shifted from other days of the week. Our results suggest that the trip
reduction effects of telecommuting could be overestimated if telecommuting-induced
new trip generation is not properly accounted for. We discuss the implications of our
findings on policy-making and the literature on the transport impacts of telecommuting.

1. Introduction

The early phases of the COVID-19 pandemic has forced several sectors of the
economy to shift to either a hybrid or full telecommuting model. Following this shift,
researchers found that workers wanted to maintain their ability to telecommute, at least
partly, after the pandemic is no longer a threat; research conducted by the Pew
Research Center shows that, for individuals whose work responsibilities can be
completed from home, the fraction of telecommuters increased from 20% pre-pandemic
to 71% during the pandemic. Furthermore, half of those individuals expressed their
desire to continue telecommuting post-pandemic, suggesting a continuation of the
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pandemic-induced telecommuting trend (53). Other research showed that the fraction of
workers who expected to telecommute at least a few times a week post-pandemic is
26%, double that of pre-pandemic levels (54), and that vaccination does not seem to
play a significant role in encouraging people to return to offices (cite our vaccine work).
These historically high telecommuting rates provide a unique opportunity to study their
transport impacts, and the likely persistence of high telecommuting rates in the future
makes this topic timely and critical to understand, especially given its potential to affect
transportation policymaking.

Generally speaking, telecommuting is widely believed to be an effective travel demand
management strategy for reducing vehicle miles traveled (VMT) (71). The most tangible
and direct impact of telecommuting is the elimination of commute trips, which often
occur during peak travel periods. The reduction in commute trips, however, leads to
savings on travel costs, both temporal and monetary. This freed-up time and money can
potentially be used for other trips. The degree to which those two competing transport
impacts offset one another has long been a subject of researchers’ interests, with
studies often providing conflicting findings (see section 2 for a review of the literature).
Earlier studies generally argue that telecommuting leads to a significant reduction in
both commute and non-commute trips. Methodologically, these studies relied on stated
responses and self reported travel diaries of a small number of participants, and over a
limited number of days. They consequently suffer from the generalizability concerns and
self reporting biases that are typical to these types of analyses. More recent work tries
to overcome previous research limitations by using significantly larger samples like
household travel surveys, and find that a significant portion of the reduction in commute
trips is offset by new trip generation. However, those studies mostly use cross-sectional
observational data, and consequently suffer from other limitations like self-selection bias
and unobserved confounding. For example, telecommuters in a sample may travel
significantly more (or less) than non-telecommuters regardless of whether or not they
telecommute, possibly due to the nature of their jobs, home locations, or other
unobserved factors. These differences are hard to control for and could result in biased
estimates of the impact of telecommuting on transport outcomes.

In this work, we have two main research objectives. First, we want to determine
whether workers engage in more non-commute travel on telecommuting days, relative
to commute days. Second, we want to determine whether this difference in
non-commute travel activity between telecommuting and commute days is the result of
newly generated trips, or of people shifting their existing travel from other days of the
week to telecommuting days. Methodologically, we implement empirical causal designs
and use individual-level variation in telecommuting days to robustly estimate the travel
effects of telecommuting, leveraging a unique longitudinal dataset of passively collected
POI data combined with five waves of survey data on a panel of U.S. smartphone user.
In doing so, we overcome many of the methodological and sample size limitations of the
existing literature that predominantly either relies on large cross-sectional data, or small
self-reported travel diaries data. The longitudinal aspect of our data allows us to control
for many observed and unobserved confounders, and the POI data allow us to
overcome the self-reporting biases that are likely to be present when individuals
self-report their travel activities. We implement quasi-experimental designs to quantify
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the causal effect of telecommuting on: 1) the number of trips, and 2) distance traveled
by employed participants, both at the daily and weekly levels. At the daily level, we run
fixed-effects regressions that allow us to control for unobserved individual and time fixed
effects, as well as unobserved individual effects that vary monthly. At the weekly level,
we implement a first-difference (FD) design to estimate the effect of a change in the
weekly telecommuting frequency on the weekly number of trips and distance traveled,
which allows us to assert whether the daily effects of telecommuting are additive or
substitutional. Owing to our causal designs and longitudinal data, our findings are more
robust and provide stronger evidence on the transport impacts of telecommuting than
previous studies in the literature.

2. Literature

Researchers have proposed multiple theories on the mechanisms through which
telecommuting affects travel (see, e.g., (72, 73) for a discussion). A review of the early
literature by Nilles (1988) finds that commute trip savings due to home-based
telecommuting are not completely offset by the generation of new trips (74). Mokhtarian
(1998) also finds that when 1.5% of the population commutes on a given day, the
resulting reduction in VMT is 1% (75). More recent studies, however, report even
smaller reductions in travel as a result of telecommuting. One study found that while
telecommuting partially reduces commuting trips, it increases non-commute trips for
households with one vehicle per employed member (76), effectively offsetting the
reduction in work travel due to telecommuting. Other work using data from the 2006
Household Travel Survey in South Korea found that the commute trip reduction effect of
telecommuting is substantially offset by new trip generation (77). The study found that
the rebound effect in a household’s travel (additional telecommuting-induced
non-commute trips) becomes larger than the average one-way commute distance as
telecommuting becomes more regular for that household. Similar findings were reported
in (78, 79), where the authors found that telecommuting increases one-way commute
distance, daily total work trips, and daily total non-commute trips. Another study,
analyzing whether telecommuting causes people to move farther from their work
location, adopts a path analysis and finds that, rather than telecommuting being a
determinant of home location choice, the decision to telecommute is determined by the
workers’ job location (80). The study also finds that telecommuting positively affects
non-commute travel distance for telecommuters and their households, and argues that
this increase in travel is not due to location change. Other work in England found that
telecommuters make significantly more non-commute trips than non-telecommuters, but
the study did not look at travel distance (81). Other studies, also in England and using
cross-sectional data from the English National Travel Survey from 2005-2012, find that
teleworking is associated with additional travel, owing to both longer commute distance
for teleworkers relative to non-teleworkers and additional non-commute trips by
teleworkers (82, 83). A more recent study builds on the previous two studies by
extending their dataset until 2019, and finds that teleworkers travel father each week
than non-teleworkers, that the total household weekly travel is larger in households with
one member teleworking, and that teleworkers travel farther for business compared to
non-teleworkers (84).
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The literature summarized above, in addition to many other studies, suffer from
significant limitations. Indeed, the literature is largely inconclusive, with studies often
offering conflicting conclusions on the impact of telecommuting on travel. A recent
systematic review of the energy and climate impacts of teleworking found that only five
out of the 15 reviewed telecommuting studies concluded that teleworking increases
non-commute travel. The conflicting conclusions are likely largely due to unobserved
confounding that is hard to control for in cross-sectional observational analyses, an
issue that multiple studies acknowledge as a key limitation (76, 80, 82, 84).
Nevertheless, some studies have attempted to use econometric and quasi-experimental
techniques to control for unobserved confounding when looking at the relationship
between telecommuting and travel outcomes. For example, (79) uses an instrumental
variables approach to address the endogeneity of commute distance and individual’s
telecommuting decision, using “internet use at home” and “total number of phones” as
instruments for telecommuting decision. The choice of instruments, however, is
questionable and likely violates the necessary conditions for valid instrumental variable
designs. For example, the “internet use at home” and “total number of phones”
instruments may themselves be endogenous to commute distance in the same way the
decision to telecommute is. Additionally, even if we ignore the issue of endogeneity of
the instruments and the outcome, there are also endogeneity issues between the
instruments and the treatment: the direction of causality between internet use at home
and telecommuting is more likely to be from telecommuting to internet use at home:
telecommuting causes the increase in internet use, not the other way around. (82)
attempts to overcome the selection bias when investigating the effect of telecommuting
on commute distance by adopting a propensity score matching approach, but such an
approach can only adjust for selection bias on the observable characteristics used in the
propensity score model, and does not solve the unobserved confounding problem. Our
work addresses these gaps in the literature and overcomes the limitation of unobserved
confounding by using a panel dataset and controlling for fixed and time-variant
confounders.

Another contribution of our work is leveraging the natural experiment that occurred due
to the COVID-19 pandemic, which caused telecommuting rates across many sectors to
increase dramatically. This reduced the systematic differences between telecommuters
and non-telecommuters present in pre-pandemic cross-sectional studies, when
telecommuting rates were significantly lower. Research exploring the effects of
telecommuting during the pandemic mostly focused on the environmental impacts of
reduced peak-hour congestion, the shifting in energy load patterns due to working from
home, or hypothesized about the long-term effects of the increased telecommuting rates
on future residential location ((85), (86), (87)), but did not try to quantify the effect of
telecommuting on non-commute trips or distance traveled. We fill this gap and leverage
the high telecommuting rates to provide more robust and generalizable results on the
transport impacts of telecommuting.
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3. Data and Methods

3.1. Data Collection
We used a combination of data collection methods to develop a database that enables
a broad understanding of how COVID-19 has affected people’s travel behavior. This
analysis uses a panel dataset consisting of five waves of surveys and a total of 1,962
unique respondents. To construct our sample, we began with a geographically
representative panel of approximately 100,000 smartphone users tracked by Embee
Mobile/Similarweb. We recruited from a random sample stratified by U.S. region of
approximately 15,000 members of this panel to conduct five waves of surveys (August
2020, September 2020, December 2020, April 2021, July 2021). Our surveys included
questions regarding respondents’ employment status, travel and telecommuting
behavior, vaccination status, demographic characteristics, and ideological beliefs. In the
first wave, 1,321 individuals responded to the survey — a response rate of about 9%.
We then targeted those same respondents in the subsequent survey waves, and
supplemented our sample from the original pool of 15,000 members to account for
drop-outs while maintaining a sample size of approximately 1,000 participants in each
survey wave.

A key advantage of our dataset is the ability to link the individual survey responses with
individual POI tracking data. This allowed us to supplement the stated responses of the
study participants with their observed travel behavior, and to compute mobility metrics at
different temporal aggregation levels (e.g., number of daily and weekly trips, total daily
and weekly distance traveled). We also tracked stay-at-home and shelter-in-place
policies across the states and counties of the study participants. An overview of the
study timeline is shown in Figure III-1. The POI data is available from January 2020.
The survey data collection started in early August 2020 and collected data in five total
survey waves (August 2020, October 2020, December 2020, March 2021, June 2021).
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Figure III-1: Study and data timeline
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3.2. Demographic summary
Table III-1 summarizes the demographic characteristics of full time workers from our
survey respondents and compares those characteristics to those of full-time workers in
the U.S., using the 2020 U.S. census data. In terms of gender, our respondents
oversample females and undersample males. Our data also overrepresents individuals
within the 25 to 59 age range compared to the U.S. census. In terms of income, our
sample over-represents individuals with household incomes between $25,000 and
$99,000 compared to the rest of the U.S. population, and under-represents high-income
households with incomes above $100,000. Additionally, we over-represent racial and
ethnic minorities and under-represent Caucasian workers. We also over-represent
workers with a university or college degree, and under-represent those with less than a
high-school education. On the other hand, statistics on household vehicle ownership
closely track those of the U.S. population.

Despite some statistically significant differences between our sample means and the
population means, the magnitudes of the differences are modest, and we do not have
demographic categories that are missing completely. The biggest difference is in
household income, which we control for in our models. This similarity in the
characteristics of workers between our sample and workers in the U.S. suggests that
our estimates of the travel impact of telecommuting are likely to generalize well to the
U.S. population.

Table III-1 - Demographic Characteristics of Study Participants Compared to the
U.S. Census

Category
Sample (%)
(N=809) Population (%)

Gender
Male 47.5 52.66

Female 52.5 47.34

Age
19 years and under 0.9 3.39

20 to 24 years 6.4 9.28

25 to 34 years 27.3 22.68

35 to 44 years 30.8 21.01

45 to 54 years 22.6^ 20.77

55 to 59 years 5.7 9.75

60 to 64 years 4.0 7.25

65 years and over 1.4 5.89

Household Income
$0 - $24,999 USD 13.3 7.20

$25,000 - $49,999 USD 34.5 15.54
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$50,000 - $99,999 USD 37.7 33.47

$100,000 - $149,999 USD 10.3 21.55

$150,000 - $199,999 USD 1.9 10.70

$200,000 USD or more 2.3 11.54

Race/Ethnicity
White/Caucasian 50.7 72.11

Black/African American 19.3 11.65

Native American/Alaskan Native 2.2 0.69

Asian or Pacific Islander 11.0 6.21

Other 6.6^ 5.06

Mixed race 7.3 4.27

Hispanic Status
Hispanic or Latino 20.0^ 17.34

Not Hispanic or Latino 76.0 82.66

Education
Less than High School 1.5 8.88

High School 38.3 46.31

University/College 51.2 31.56

Postgraduate Education 9 13.25

Household Vehicles
0 7.3 8.6

1 38.2 32.7

2 33.5 37.2

3 or More 20.7^ 21.4

^indicates the sample mean is not statistically different from the population mean at the 5% significance
level.

3.3. Modeling framework and quasi-experimental designs
Our research objectives are twofold. First, we want to determine whether workers
engage in more non-commute travel (in terms of number trips and travel distance) on
telecommuting days, relative to commute days. Second, we want to determine whether
this difference in non-commute travel activity (if it exists) between telecommuting and
commute days is additive or substitutional; in other words, are those daily differences
the result of newly generated trips, or of people shifting their existing travel from other
days of the week to telecommuting days.

While similar questions have been studied before (see Section 2), our
quasi-experimental designs and rich panel dataset allow us to overcome key limitations
of selection bias and unobserved confounding to which previous studies in the literature
have been prone. With repeated observations of the same individuals, often over the

28



course of many weeks, we can control for individual unobserved differences using fixed
effects models. Effectively, this means that we sweep out all cross-sectional variation in
outcomes and telecommuting status, removing any factors that vary across individuals
but are fixed over time, when testing hypotheses about the effect of telecommuting on
travel. This stands in contrast to the vast majority of studies in the literature that
leverage variation in telecommuting and outcomes across individuals. Our
methodological approach and causal designs have been acknowledged and
recommended in the transportation literature as being advantageous for estimating
causal effects (1, 2).

To determine how non-commute travel changes on telecommute days — the first
research objective — we look at full-time employees in our sample and use the
passively collected GPS data to compute the following metrics for each individual on
every day that they were observed in the data: their total number of daily non-commute
trips, their total daily distance traveled, and whether or not they commuted to work on
that day. We then regress the number of daily non-commute trips and the total daily
distance traveled by a person on an indicator variable denoting whether or not the
person commuted to work on that day, as well as a list of control variables. Crucially, we
control for individual fixed effects, which allows us to control for unobserved but fixed
confounders that affect the mobility outcomes for each individual. We also control for
time-variant unobserved individual confounders by interacting the individual fixed effects
with the monthly fixed effects; these controls eliminate any individual-specific factors
that are trending over time. Finally, we control for various demographic variables (like
household income, age, gender, race, and education level), and time fixed effects (for
week of year, and day of week). The model specification is explicitly shown in Section
4.2.1.

To test whether non-commute trips on telecommute days are additive or simply shifted
from other days — the second research objective — we use the survey data to
determine the number of days that each full time employee has worked from home on
the week that they took the survey. We use the survey data to infer this information,
rather than the passive POI data, because the survey data allow us to explicitly
distinguish between days worked at home and vacation or sick days. The downside of
the survey data is that we only have this information for one week per wave, or a total of
five weeks for individuals who took every survey wave, so the sample size is
significantly smaller than the one used to investigate the first research objective.

To quantify the effect of one additional day of telecommuting on the total number of
weekly trips, we again use the within-individual variation in the number of days worked
from home across successive waves, and correlate that with the change in their total
number of weekly trips on those same weeks. Specifically, we implement a
first-differences design where we regress the individual differences in the total number
of weekly trips taken on weeks corresponding to successive survey waves on the same
individual differences in the number of days worked from home. The benefit of this
approach is that we only assume that the individual fixed effects remain constant
between successive waves, which are roughly three months apart on average.
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Alternatively, a possible approach could be to include individual differences on
non-successive waves in the regression. The downside of the latter approach is that it
makes a stricter assumption that the individual fixed effects remain the same across all
waves (from August 2020 till August 2021). By adopting the first-differences approach,
we make less strict assumptions but sacrifice some statistical power due to excluding
data points from non-successive waves. In Section 4.2.2, we show that the confidence
intervals on the estimated model coefficients are sufficiently tight, so the loss of power
due to adopting the first-differences approach is not problematic.

4. Results

4.1. Telecommuting during the COVID-19 pandemic
While our data show that the share of full-time workers in our sample who are back to
commuting fully to their offices has increased in 2021 (Figure III-2), from a low of 51% in
December 2020 to a high of 58% in July 2021 (p-value < 0.001), the fraction of people
who telecommute at least once a week remains at unprecedented levels. These
numbers suggest that partial telecommuting continues to be an option for a significant
portion of workers, and this could remain the norm in a post-pandemic world. This trend
will have significant implications on congestion and traffic during what was traditionally
thought of as peak hour commute. A recent study by the Pew Research Center
supports these findings and gives more insights into the factors affecting the decision to
work from home (88). Interestingly, safety does not appear to be the main reason
affecting people’s decision to telecommute [cite our Vaccine paper], which further
suggests that high telecommuting rates may persist in the long term, even as safety
concerns continue to decrease in the general public.
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Figure III-2. The frequency of commuting and telecommuting to work for fully employed
panelists. We define fully employed as those who report working at least 5 days a week
in the past week. The sample size is between 402 and 477 individuals depending on
the wave, except for the third wave in December 2021, when the number drops to 328
(likely due to vacation time).

Hybrid telecommuting schedule coordination could have important implications on the
degree to which peak hour congestion decreases. For example, if all telecommuters
choose to commute to work on Wednesday, then Wednesday peak hour congestion and
emissions will be significantly higher than on other days of the week. On the other hand,
if telecommuters hypothetically had perfect information about the choices of other
telecommuters and were indifferent about which days they telecommuted, then an
“equilibrium” could emerge in which the distribution of peak hour travel time is uniform
over the days of the week.

Interestingly, our data show that in August 2021 (our most recent wave of survey data),
Wednesdays are the most popular commute days within telecommuters (about 18% of
telecommuters’ commute days). On the other hand, Mondays and Fridays are the least
popular weekdays for commuting to work (13% and 14.5% of all telecommuters’
commute days), and about 10% of commute days happen on Saturday and Sunday.
These findings suggest that there will be significant differences in peak hour traffic on
different weekdays, and that the differences will be larger as more people telecommute.

Aside from schedule coordination, in the next section, we investigate other transport
impacts of telecommuting by quantifying the net effects of telecommuting on trip
generation and distance traveled.
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Figure III-3. Weekly distribution of commute days for telecommuters in August 2021.

4.2. Transport impacts of telecommuting

With hybrid work models persisting, we next study the effects of telecommuting on key
transport outcomes. This section is split into two subsections: 1) The effect of
telecommuting on the number of daily non-commute trips and the total daily distance
traveled, and 2) The effect of telecommuting on the number of weekly non-commute
trips and the total weekly distance traveled. We implement two different causal empirical
designs to answer those questions, the details of which are presented below.

4.2.1. Effect of telecommuting on daily mobility

In this subsection we quantify the effect of telecommuting on the number of daily
non-commute trips and the total daily distance traveled on telecommuting days relative
to regular commute days. Section 3.3 describes the modeling approach and identifying
assumptions in greater detail. Our regression model is shown in equation 1:

𝑌
𝑖𝑡

= α
𝑖
 

+ ζ
𝑡

+ γ
𝑖𝑡

(eq. 1)+ β * 𝐼(𝑡 = 𝑡𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑡𝑒 𝑑𝑎𝑦)
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In other words, we assume that the outcome (i.e.: the number of daily non-commute𝑌
𝑖𝑡

trips, and the total daily distance traveled) for individual i on day t is a function of
individual fixed effects ( ), time fixed effects ( ), individual effects that vary with time (α

𝑖
ζ

𝑡
), and most importantly the effect of telecommuting ( ), which is our parameter ofγ

𝑖𝑡
β

interest. To control for time and seasonal trends, we use year and week of year indicator
variables. To control for individual fixed effects, we use individual indicators, and to
control for individual effects that vary with time, we interact the individual indicator with
year and month of year indicators. In other words, we control for fixed unobserved
confounders as well as unobserved confounders that could change monthly. This allows
for our estimate of the effect of telecommuting ( ) to be more robust than others in theβ
literature that use cross-sectional datasets. For the estimation technique, the final model
estimated and presented below is a linear regression model with pooled standard errors
to account for the correlation structure among observations coming from the same
individual. Since the outcome is not continuous and is strictly positive, we also
estimated negative binomial regressions and found that the results for the treatment
effects (after performing the necessary transformations on the coefficients) were very
close to, and not significantly different from, the ones estimated via linear regression.
Because of this similarity, the final results presented below are the results of the linear
regression since they are more intuitively interpreted than the exponentiated negative
binomial coefficients.

Our null hypothesis is that full-time workers make the same non-commute trips on
telecommute and commute days. Under this null hypothesis, our estimates of the effect
of telecommuting ( ) on the mobility outcomes of interest should be equal to zero. Whileβ
our estimates should be interpreted as the effect of telecommuting for telecommuters,
due to the historically high rates of telecommuting during the pandemic and the
similarity between the characteristics of our sample and the broader full-time workers
population in the U.S. (see Section 3.2.), it is likely that our estimates will generalize to
most workers, since workers of various backgrounds, industries, and characteristics
have been forced to telecommute during the pandemic, reducing the systematic
differences between telecommuters and non-telecommuters that have existed in
pre-pandemic datasets.

We estimate the models described in this section for four different time periods:
Pre-pandemic (January and February 2020), Pandemic pre-vaccine (March 2020 to
December 2020), Early vaccination period (January 2021 to May 2021), and
Widespread vaccination period (June 2021 to December 2021). We conduct our
estimation in this manner to investigate whether our estimates are: 1) consistent, and 2)
have stabilized since the onset of the pandemic. Indeed, during the early phases of the
pandemic when lockdowns and restrictions were prevalent, one can reasonably assume
that effects on telecommuting-induced non-commute trips are attenuated.

Tables III-3 and III-4 present the estimates of the effect of telecommuting on
non-commute trips and total distance traveled, respectively. The results show clearly
that telecommuting has a positive relationship with the number of non-commute trips
that employees make, with an average of about one additional non-commute trip in the
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second half of 2021. When it comes to total distance traveled, our estimates show that
people travel between 0.12 and 9.8 kilometers more on commute days relative to
telecommute days, depending on the analyzed time period. In the pre-pandemic period
and the late 2021 pandemic period, the reduction in total daily distance traveled is
insignificant, suggesting that the additional non-commute trip’s distance is close to the
commute distance. During the pandemic, however, the reduction in total distance
traveled on telecommuting days is significantly different than zero, suggesting that the
additional non-commute trip on telecommute days is shorter than the displaced
commute trips, resulting in a net reduction in total distance traveled. This suggests that
as the pandemic restrictions started easing and vaccines became more widely
available, people started returning to their previous travel behaviors on telecommute
days.

Table III-3: Effect of telecommuting on total daily non-commute trips

Time Period Estimate for
(in trips)β

Standard error p-value

Pre-pandemic 0.90 0.042 <0.001

Pandemic
pre-vaccine
(Mar-Dec 2020)

0.85 0.024 <0.001

Early vaccination
period
(Jan-Jun 2021)

0.97 0.028 <0.001

Widespread
vaccination period
(Jun-Dec 2021)

1.03 0.051 <0.001
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Table III-4: Effect of telecommuting on total daily distance traveled

Time Period Estimate for
(in km)β

Standard error p-value

Pre-pandemic -0.12 2.8 0.89

Pandemic
pre-vaccine
(Mar-Dec 2020)

-9.8 0.9 <0.001

Early vaccination
period
(Jan-Jun 2021)

-6.4 1.4 <0.001

Widespread
vaccination period
(Jun-Dec 2021)

-3.5 2.7 0.20

4.2.2. Effect of telecommuting on weekly mobility

To investigate whether the increase in the number of non-commute trips on
telecommute days is the result of employees shifting existing trips from other days of
the week to telecommuting days, in this section we quantify the effect of one additional
day of telecommuting per week on the total number of weekly non-commute trips. If
employees are only shifting their non-commute trips to telecommuting days instead of
engaging in additional activities, then the number of weekly non-commute trips should
not change in response to an increase in weekly telecommuting days. Consequently,
our null hypothesis is that one day of extra telecommuting results in no additional
weekly non-commute trips.

Equation 2 presents our model to estimate the effect of an additional day of
telecommuting per week on the number of weekly trips (refer to Section 3.3 for more
details on the identification strategy):

𝑌
𝑖𝑡

= α
𝑖

       + γ
𝑡
      

(eq. 2)+ β
𝑒

*  # 𝑡𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑡𝑒 𝑑𝑎𝑦𝑠
𝑖𝑡

 

Where Yit is the outcome (the number of weekly trips or the total weekly distance
traveled for employee i at survey wave t (t = 1, 2, 3, 4, 5)), is the individual fixed effectα

𝑖
for individual i, is the time fixed effect at wave t, and is the effect of one additional γ

𝑡
β

𝑒
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day of telecommuting. Stated differently, we assume that the number of trips that an
employee makes on a given week and their total weekly distance traveled are a function
of fixed individual specific characteristics that do not vary with time, fixed time effects
that do not vary across individuals, and the individual’s number of weekly telecommute
days. As mentioned in Section 3.3, one way to estimate is through a regression usingβ

𝑒
the full set of observations, i.e. using all employees’ data across all survey waves.
However, this approach makes the strong assumption that individual fixed effects ( )β

𝑖
are unchanged across all survey waves, from August 2020 through August 2021. To
avoid making this assumption, we instead take the first differences of the regressor and
outcome of interest (i.e. the differences in and ) for successive𝑌

𝑖𝑡
# 𝑡𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑡𝑒 𝑑𝑎𝑦𝑠

𝑖𝑡
waves only, and regress the first differences in on the first differences in𝑌

𝑖𝑡
, while controlling for time fixed effects. By doing so, we instead # 𝑡𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑡𝑒 𝑑𝑎𝑦𝑠

𝑖𝑡
assume that the individual fixed effects remain unchanged only between successive
waves, but can vary between non-successive waves. The simplified regression equation
that we estimate is shown in equation 3:

Δ𝑌
𝑖𝑡

= β
0

* 𝐼( 𝑊𝑎𝑣𝑒 2 < 𝑡 <  𝑊𝑎𝑣𝑒 1)

       + β
1

* 𝐼(𝑊𝑎𝑣𝑒 3 < 𝑡 <  𝑊𝑎𝑣𝑒 2)      

       + β
2

* 𝐼( 𝑊𝑎𝑣𝑒 4 < 𝑡 <  𝑊𝑎𝑣𝑒 3)      

       + β
3

* 𝐼( 𝑊𝑎𝑣𝑒 5 < 𝑡 <  𝑊𝑎𝑣𝑒 4)      

(eq. 3)+ β
𝑒

*  Δ # 𝑡𝑒𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑡𝑒 𝑑𝑎𝑦𝑠
𝑖𝑡

 

where is the difference in the number of weekly trips taken (or the total weeklyΔ𝑌
𝑖𝑡

distance traveled) by individual i between two successive waves. Note that the
individual fixed effects cancel out, and only four time effects are estimated,
corresponding to the first differences in the five survey waves. Table III-5 presents the
results of the model estimation for , which quantifies the effect of an additional day ofβ

𝑒
telecommuting per week on the number of weekly non-commute trips or the weekly
distance traveled. The results show that each additional day of telecommuting is
associated with an average increase of 1.07 weekly trips. More importantly, the estimate
is precise enough to rule out the possibility that telecommuting induces no additional
trips: the 95% confidence interval on the coefficient excludes zero, leading to a rejection
of our null hypothesis. These results confirm that the additional trips on telecommuting
days are not trips the individuals would have made regardless of whether or not they
telecommuted, and instead are newly generated trips.
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The results also show that an additional day of telecommuting results in an average
reduction of 15.5 kilometers in total weekly traveled distance. While our estimate’s
confidence interval is wide, the estimate is significantly different from zero, which
suggests that the additional telecommuting induced trip is shorter than the commute
trip, and the added non-commute travel distance does not fully offset the reduction in
commute distance associated with telecommuting.

Table III-5: Effect of one day of telecommuting on total weekly non-commute trips and
total weekly distance traveled
Parameter Estimate Standard error 95% Confidence

interval

(for number ofβ
𝑒

weekly trips)
1.07 0.33 [0.42, 1.73]

(for total weeklyβ
𝑒

distance traveled)
-15.50 4.90 [-25.1, -5.9]

5. Conclusion

In this work, we contribute to the literature on the transport impacts of telecommuting
and provide insights on their effects on inducing travel. We leveraged a unique dataset
of passive POI data and five waves of actively collected stated preference survey data
on a panel of individuals in the U.S., and implemented empirical quasi-experimental
designs to quantify the causal effects of telecommuting on daily and weekly trips and
travel distance. Our data and designs allow us to control for individual unobserved fixed
and time-variant confounders by leveraging within-individual variation in telecommuting
and trip-making frequency over several weeks in 2020 and 2021. Our results can be
summarized by the following key takeaways:

● Individuals who telecommute make an average of about one non-commute trip
on telecommuting days. The additional distance traveled on this trip is however
shorter than the two-way commute distance, as individuals travel significantly
shorter distances on telecommuting days relative to commute days.

● The additional non-commute trip that individuals make on telecommuting days is
a newly generated trip, not a trip that has been shifted from other days of the
week. The net effect of one additional day of telecommuting per week on weekly
distance traveled is also negative, confirming that the newly generated
non-commute travel distance does not fully offset the reduction in the two-way
commute distance.
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Our work confirms previous findings that telecommuting-induced trip generation
partially offsets the reduction in commute trips (76, 77), and that the travel reduction
effects of telecommuting will be overestimated if the new trip-generation is not taken
into account. Nevertheless, the net effect of telecommuting on total distance traveled
remains negative, meaning that the additional distance traveled during the newly
generated trip is shorter than the two-way commute distance. Our findings are more
robust and provide stronger evidence on the travel-inducing impacts of telecommuting
than previous studies in the literature, by overcoming the unobserved confounding
limitations that are often present in cross-sectional observational studies, and which
have been acknowledged by previous studies (84).

In future extensions, researchers should further investigate any modal differences
between telecommuting-induced non-commute trips and commute trips in order to more
accurately determine the environmental impacts of telecommuting. Comparing the
different timing of those trips will also prove important in determining their environmental
footprints: trips made during peak congestion hours are more environmentally costly
than off-peak trips. Finally, researchers should extend the existing literature on the
relationship between telecommuting and home-to-work distance. The COVID-19
pandemic has resulted in a natural experiment where telecommuting rates have
increased across the board: this presents an opportunity to deal with the endogeneity
between telecommuting decisions and home location / distance from work. Researchers
can take advantage of this emerging context to shed light on this long-standing question
in transportation research.
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Chapter 3: Early pandemic behaviors and the role of
vaccines in reversing pandemic mobility trends:
Evidence from a U.S. panel

Executive Summary
The COVID-19 pandemic has disrupted travel behavior and resulted in the emergence
of new mobility trends. In this paper, we study the degree to which vaccines played a
role in reversing pandemic-induced travel behaviors and contributing to a
“return-to-normal”. Using five waves of original U.S.-based survey data combined with
passive smartphone tracking data, we show that in the early phases of the pandemic,
the behavioral response of people in the U.S. was heterogeneous: individuals with low
levels of concern about being infected with COVID-19 engaged in riskier behaviors than
those with higher levels of concern, such as traveling more, eschewing masks,
attending large gatherings, and using public transportation. These differences in
behaviors persisted throughout 2020, prior to widespread vaccine availability. Once
vaccines became available in early 2021, many of the behaviors changed. We find that
getting vaccinated significantly reduced concern about contracting and spreading the
disease, and significantly increased mobility and travel frequency. We also show that
getting at least partially vaccinated increases the frequency of using public
transportation. When it comes to working from home, we find that telecommuting at
least once a week remained high in 2021, despite the significant decrease in the
fraction of full-time employees that work from home every day compared to 2020 during
the peak of the pandemic. Unlike our findings for mobility and transit, getting vaccinated
did not have a significant effect on employees’ decisions to return to office, which
suggests that the decision to return to in-person work is not primarily driven by
employees’ safety concerns, and is instead a function of employers' expectations and
their decisions to reopen their offices. We discuss the implications of our findings on
understanding travel behavior during the pandemic impact and recovery periods.

1. Introduction

The COVID-19 pandemic has caused unprecedented disruptions to many aspects of
everyday life. Prior to the development of vaccines, government and public officials
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relied on non-pharmaceutical interventions (NPIs) and health recommendations to
control the disease’s spread, including recommending or mandating mask-wearing,
avoiding large gatherings, reducing travel, and sheltering in place. Along with
widespread office closures and businesses transitioning to working from home, these
measures resulted in significant impacts on the transportation system. Despite the
extensive literature on the changes in travel behavior during the pandemic, research on
whether vaccination changes pandemic-induced mobility behaviors has been limited in
scope. Our work fills this gap in scholarship and makes several contributions.

First, we examine the question of whether travel behavior and compliance with public
health recommendations in the early phases of the pandemic are heterogeneous. Using
five waves of original U.S.-based survey data, we analyze individuals’ reported degree
of compliance with mask-wearing recommendations and avoidance of large gatherings
in the early phases of the pandemic preceding vaccine availability. We also use
passively collected Point of Interest (POI) data of our panelists and examine whether
compliance with public health measures is correlated with the frequency of travel. We
then examine whether concern about contracting COVID-19 determines compliance
with public health measures and reduces travel activity. Next, using a series of
difference-in-difference designs, we examine the role of vaccines in reducing concern
about contracting COVID-19 and reversing pandemic-induced travel behaviors. We
focus on three main questions: whether getting vaccinated increases individuals' travel
frequency, increases public transportation use, and encourages a return to in-person
work. Our analysis contributes important insights on understanding human behavior and
mobility during pandemic impact and recovery periods.

The rest of this manuscript is organized as follows: Section 2 contains a review of the
literature to which we contribute. Section 3 introduces the data we used in this analysis.
We present our findings in Section 4, which contains two subsections: 1) early
pandemic compliance behaviors, and 2) the effects of vaccination on personal mobility,
transit use, and telecommuting. We finish with a conclusion and discussion of the policy
implications of our findings in Section 5.

2. Mobility and human behavior during the COVID-19 pandemic

Prior to the development and availability of vaccines, public health officials focused on
non-pharmaceutical strategies to manage the spread of COVID-19. Multiple studies
have examined the effectiveness of NPIs in reducing the risk of contracting COVID-19
and the severity of symptoms. Early evidence from China showed that NPIs effectively
reduced the serial interval of SARS-CoV-2, the virus that causes COVID-19, allowing for
quicker identification and isolation of cases(40). Another study attempted to rank the
effectiveness of NPIs and found that banning public gatherings, closing entertainment
centers, and shutting down citywide public transport were the most effective at slowing
the early spread in China(41). Other work found that reducing the number of daily
contacts from 14-20 down to 2 contacts per person effectively reduced the reproduction
number below the epidemic threshold(42), and that adherence to NPIs and behavioral
mitigation measures strongly predicts mortality(43). Despite this evidence, public
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opinion remained divided on the appropriateness of public health recommendations. In
the U.S., agreement with and support of public health measures has been highly
politicized, with multiple studies showing that political ideology is a strong predictor of
policy preferences related to NPIs(44, 45). This has led to varying levels of compliance
and adherence to public health recommendations(46). Our work joins the literature on
the heterogeneity of compliance with NPIs and examines its implications on the
transportation system.

We also contribute to the literature on the travel behavior impacts of the pandemic and
the role that vaccines played in reversing some of the pandemic-induced mobility
trends. Multiple studies have examined the initial impacts of COVID-19 on travel
behavior(47–50). Other work proposed and illustrated an approach for policy making in
a post-pandemic world that accounts for future public health threats(51). Some
research, relying upon individuals’ reported expectations about their post-pandemic
behavior, has argued that the increase in telecommuting, decrease in public transit use,
and decrease in travel are likely to persist in a post-pandemic world(52).

On the telecommuting front, researchers found that workers would like to maintain their
ability to telecommute after the pandemic is no longer a threat. Research conducted by
the Pew Research Center shows that, for individuals whose work responsibilities can be
completed from home, the fraction of telecommuters increased from 20% pre-pandemic
to 71% during the pandemic. Perhaps more interestingly, half of those individuals
expressed their desire to continue telecommuting post-pandemic, suggesting a
continuation of the pandemic-induced telecommuting trend(53). Another study showed
that the fraction of workers who expected to telecommute at least a few times a week
post-pandemic was 26%, double that of pre-pandemic levels(54). To the best of our
knowledge, no study has attempted to investigate whether getting vaccinated had an
effect on encouraging employees to return to in-person work. We fill this gap.

Like telecommuting, public transportation has been highly affected by COVID-19 and is
the most heavily impacted transport mode during the pandemic. For example, public
transit ridership plummeted by more than 90% in New York City in March 2020(55), and
similar declines have been observed throughout the U.S. and globally. A study in
Sweden found that transit ridership decreased by 40-60% even when transit service
reductions were minor(56). In Japan, a study found larger decreases in public transit
mode use relative to car travel in three out of four studied cities(57). Some studies
found that the higher fear of infection and overcrowding on public transit are key drivers
of the reduction in demand, with those who perceive public transit as having a higher
infection risk being less likely to use it(58, 59). One study suggested that the impact on
the public transportation system is likely to persist until confidence in those modes is
restored(60).

Despite the extensive literature on pandemic mobility, research on whether vaccination
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changes pandemic-induced mobility behaviors remains limited in scope. A study in
Israel found that for tourism related travel, vaccines did not necessarily affect
individuals’ desire to travel(61). The study has limitations, however: it relies on stated
intentions to travel in the future, and used three waves of independent cross-sectional
data, meaning that participants varied significantly between different waves. Another
study focusing on the tourism industry found that getting vaccinated increases the
probability of taking a holiday trip by 8.3 percentage points in the general population and
11.3 percentage points for vaccinated individuals(62). While the study attempted to
provide causal evidence on the effect of vaccination, its use of cross-sectional data
raises concerns about confounding, even when controlling for observable differences
between the vaccinated and unvaccinated groups using regression adjustment and
propensity score weighting. Our work expands this literature by estimating
quasi-experimental designs and quantifying the effect of vaccines on weekly mobility,
transit use, and telecommuting.

3. Data

3.1. Data Collection
We used a combination of data collection methods to develop a database that enables
a broad understanding of how COVID-19 has affected people’s travel behavior. The
analysis uses a panel dataset consisting of five waves of surveys and a total of 1,962
unique respondents. To construct our sample, we began with a geographically
representative panel of approximately 100,000 smartphone users tracked by Embee
Mobile. We recruited from a random sample stratified by U.S. region of approximately
15,000 members of this panel to conduct five waves of surveys (August 2020, October
2020, December 2020, April 2021, July 2021). In the first wave, 1,321 individuals
responded to the survey — a response rate of about 9%. We then targeted those same
respondents in the subsequent survey waves, and supplemented our sample from the
original pool of 15,000 members to account for drop-outs while maintaining a sample
size of approximately 1,000 participants in each wave. Our survey included questions
regarding respondents’ employment status, travel and telecommuting behavior,
vaccination status, demographic characteristics, and ideological beliefs.

A key advantage of our dataset is the ability to link the survey responses to passive
location tracking POI data. This allowed us to supplement the stated responses of the
survey respondents with their observed travel behavior, and to compute mobility metrics
at different temporal aggregation levels (e.g., number of daily and weekly trips), which
we analyzed in conjunction with the survey responses to understand how different
demographic and ideological groups traveled during the pandemic. An overview of the
study timeline is shown in Figure II-1. The passive data is available from January 2020.
The survey data collection started in early August 2020 and collected data in five total
survey waves, ending in July 2021.
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Figure II-1: Data collection timeline for passive and survey data.
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3.2. Demographic Summary
Table II-1 summarizes the demographic characteristics of our survey respondents and
compares those characteristics to national statistics from the U.S. census. When
compared to the U.S. population, our data oversamples men and undersamples
women. Our data also significantly oversamples young adults aged between 25 and 54
years old: this age group represented about 69 to 73% of survey participants
(depending on the wave), compared to 39% in the U.S. population. When it comes to
household income, our sample overrepresents households with low- and
medium-income levels and underrepresents high-income households: about 59 to 65%
of the survey respondents earned $50,000 or less a year, compared to only 40% in the
U.S. population. Similarly, about 10 to 11% of our respondents belong to households
that earned $100,000 or more a year, compared to 31% of households in the U.S.
population. Our sample also underrepresents white Americans and overrepresents
other groups. Caucasians represent approximately 72% of the U.S. population
compared to approximately 52-56% of our respondents across waves. Black
respondents represent about 13% of the U.S. population but comprise 18% of our
respondents, across all five waves. Our sample underrepresents non-Hispanics/Latinos
when compared to the U.S. population, with 75-77% of our sample identifying as a
non-Hispanic/Latino compared to 82% of individuals in the U.S.

Despite the non-representativeness of some characteristics in our sample, we do not
attempt to re-weight observations to match the U.S. population, since our analysis is
comparative in nature: we investigate the behavior of specific groups relative to other
groups, and we do not attempt to present aggregate statistics that are nationally
representative.

Table II-1. Demographic characteristics of study participants compared to the U.S. Census
Category Wave 1 (%)

(Aug. 2020)
Wave 2 (%)
(Oct. 2020)

Wave 3 (%)
(Dec. 2020)

Wave 4 (%)
(Apr. 2021)

Wave 5 (%)
(Jul. 2021)

Population
(%)

Sample Size 1,333 1,110 810 983 842 -

Gender
Male 40.8 40.4 40.5 43.9 45.2 49.2
Female 59.2 59.6 59.5 56.1 54.8 50.8
Age
19 years and
under 3.8 3.8 3.5 4.3 3.9 25.3
20 to 24 years 9.7 9.0 8.1* 10.2 9.4 6.8
25 to 34 years 23.7 22.4 23.0 23.7 24.1 13.9
35 to 44 years 27.4 26.1 26.8 27.2 27.0 12.6
45 to 54 years 20.2 21.2 22.0 20.4 21.3 13.0
55 to 59 years 6.7* 7.3* 6.7* 5.7* 5.6* 6.7
60 to 64 years 4.4 4.7 4.7 4.0 3.6 6.2
65 years and
over 4.3 5.5 5.5 4.6 5.2 15.6
Household
Income
$0 - $24,999 35.1 31.8 30.4 30.0 27.8 19.3
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$25,000 -
$49,999 30.1 32.5 30.8 28.7 29.1 21.2
$50,000 -
$99,999 24.5 25.4 27.3* 30.6* 31.1* 29.9
$100,000 -
$149,999 6.9 6.4 7.6 6.7 7.6 15.1
$150,000 -
$199,999 1.4 2.1 2.1 2.0 2.1 6.8
$200,000 or
more 1.8 1.7 1.8 1.9 2.1 7.7
Race
Asian or Pacific
Islander 7.4* 7.7 8.4 10.7 11.0 5.7
Black/African
American 18.1 18.9 17.4 18.4 18.1 12.7
Mixed Race 6.5 6.4 5.7 7.1 6.8 3.3
Native
American/Alask
an Native 2.5 2.8 3.1 1.9 1.9 0.9
White/Caucasi
an 54.5 54.7 56.5 52.2 53.3 72.5
Other 8.0 7.0 6.5* 6.3* 6.9 4.9
Hispanic Status
Hispanic or
Latino 20.3* 18.9* 18.8* 18.8* 19.5* 18.0
Not Hispanic or
Latino 75.8 77.9 77.5 77.0 77.3 82.0
Education
Level
Less than High
School 3.5 3.1 2.8 3.8 2.9 10.1
High School 46.4 46.2 45.8 44.8 42.8 51.5
University/Coll
ege 43.8 44.4 44.7 44.9 47.3 27.5
Post-graduate
Education 6.1 6.2 6.5 6.4 7.1 11.0
Household Size
1 15.1 16.3 14.2 15.4 14.8 28.0
2 25.2 25.8 26.3 26.3 26.3 34.0
3 20.8 21.5 24.1 20.4 23.1 15.6
4 18.3 16.2 16.8 19.6 18.7 13.0
5 10.6 11.2 9.6 8.4 7.7* 6.0
6+ 9.8 8.4 8.4 9.2 8.4 2.3
*indicates a statistic representative of the U.S. population at the 5% significance level
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4. Results

4.1. Early pandemic behavioral compliance and mobility
Public opinion has been divided about the severity of the virus and the need for the
implemented NPIs such as wearing protective masks and avoiding large gatherings
ever since COVID-19 was declared a global pandemic(44). Our data show a clear
difference in compliance with NPIs among our study participants, with a small fraction of
individuals not complying with public health recommendations. The risk of contracting
and spreading the disease by this minority is further compounded by their engagement
in multiple risky behaviors at the same time, as we show in this section.

Firstly, when it comes to mask-wearing, our data show that the majority of respondents
followed public health recommendations. Data from the first survey wave (August 2020)
reveal that, when indoors (excluding one’s own home), around 75% of participants
reported always wearing masks, while 11% reported only sometimes or never wearing
masks. When socializing with others, 49% of participants reported always wearing
masks, while 30% reported only sometimes or never wearing masks. When traveling
not in one’s own private vehicle, approximately 52% of respondents reported always
wearing masks, while 13% reported only sometimes or never wearing masks. A similar
pattern appears with the attendance of large gatherings; our first survey wave data
show that while the majority of respondents avoided large gatherings as recommended
by public health officials, approximately 18% reported attending a gathering of 10 or
more people in the previous two weeks.

More importantly, we find that those who do not follow one public health
recommendation were also less likely to follow others. For example, in August 2020,
individuals who attended large gatherings with more than 10 people were five times
more likely to never wear masks while socializing with other people, and about four
times more likely to never wear masks while traveling in public (p-value < 0.01 for both).
These individuals also made more trips, averaging 17.7 weekly trips in August 2020,
compared to 14.8 trips for those who did not attend large gatherings. This trend holds in
the October 2020 and December 2020 survey waves (Figure II-2).
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Figure II-2: The number of weekly trips (with 95% confidence intervals) exhibited by people who
do and do not attend gatherings larger than 10 people.

These findings suggest that, similar to the spread of the disease, the behavioral risk
during the initial phase of the pandemic was also overdispersed: a small share of
individuals engaged in multiple risky behaviors and exhibited more mobility compared to
the rest of the population. This suggests that human behavior can explain, at least in
part, the overdispersion in the spread of the disease. This insight has important policy
implications, specifically around the effectiveness of behavioral interventions, that we
discuss further in Section 5.

Similarly to NPIs, we find that opinions about the effectiveness, safety, and willingness
to get vaccinated varied across segments of the population. When asked about their
plans and willingness to get vaccinated, approximately 29% of participants reported that
they intended to receive the COVID-19 vaccine once available, while another 28% of
respondents reported being unwilling or unlikely to get vaccinated (the remaining
participants either declined to answer or were unsure about their decision). We also
found an association between vaccine hesitancy and engaging in risky behaviors. The
fraction of individuals unwilling to get vaccinated was significantly larger among those
who did not follow public health measures: 35% of those unwilling or unlikely to get
vaccinated reported either not wearing masks where recommended or attending
gatherings larger than 10 people. Furthermore, 50% of those who attended gatherings
of 10 people or more and did not wear masks reported an unwillingness to get
vaccinated. In short, those who followed public health measures and significantly
reduced their mobility are also significantly more likely to get vaccinated.
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An important predictor of people’s compliance with public health measures, mobility
levels, and willingness to get vaccinated in our data was their level of concern about
contracting COVID-19 and the severity of the disease. We find that individuals with
lower levels of concern about contracting the virus were significantly more likely to
engage in riskier behaviors, such as less frequent mass wearing where recommended
by public health officials and more frequent attendance of large gatherings. Additionally,
these individuals exhibited significantly higher mobility relative to the rest of the
population. Figure II-3 illustrates these patterns. These findings add to the literature that
found that risk perception and functional fear of COVID-19 are important predictors of
behavioral compliance with COVID-19 safety measures(63, 64). Our work has
significantly more power due to larger sample sizes relative to the two previous studies
in the literature.

Figure II-3: Comparing the behaviors of participants who are concerned (in blue) vs. not
concerned (in orange) about contracting COVID-19. The behaviors compared are (from top left
to bottom right): Not wearing masks indoors, attending gatherings with more than 10 people,
number of weekly trips taken, and unwillingness to get vaccinated (asked before vaccines
became available). Lines at the end of each bar are 95% confidence intervals.

4.2. Effects of vaccination

4.2.1. On mobility
Our initial survey waves establish that following public health recommendations and
mobility were, in the early phases of the pandemic, strongly correlated with individuals’
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level of concern about contracting COVID-19. As vaccines became the primary tool to
combat the pandemic in 2021, a natural question that arises is how getting vaccinated
affected the degree to which an individual worried about contracting the disease. And, if
levels of concern change, how did these changes affect travel behavior?

To answer those questions we examined the responses of individuals who got
vaccinated by the end of the April 2021 wave of our survey, in which roughly 20% of
survey respondents were vaccinated. We limited the analysis to those who got
vaccinated by April 2021 in order to have a more well-defined treatment period
(including those who were vaccinated in the August 2021 wave would make the
treatment period eight months long, with no precise information on when the treatment
occurred). Our results show a significant increase in the share of individuals who were
not concerned about being infected with COVID-19 among those who received a
vaccine (Figure II-4), from 25% before getting vaccinated (in the December 2020 survey
wave) to 41% after getting fully vaccinated, an increase of about 64% (p-value < 0.01).
In other words, getting vaccinated has equalized the level of concern about contracting
COVID-19 between vaccinated and unvaccinated individuals. Also worth noting is the
decrease in concern among those who were not fully vaccinated by the April 2021
wave, although the decrease was much smaller in magnitude compared to vaccinated
individuals (Figure II-4). This reduction in concern for unvaccinated individuals likely
followed the change in public narrative regarding the pandemic that happened around
the time vaccines became available, when government officials adopted a noticeably
more optimistic tone(65).
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Figure II-4. The evolution of the level of concern for those early vaccinated and unvaccinated
individuals. Sample sizes: Vaccinated = ~190 panelists, Not (or partially) vaccinated = ~ 800
panelists.

In light of this reduced concern about contracting COVID-19 and the previously shown
association of this concern with mobility levels, we investigated the effects of vaccines
on personal mobility by focusing on survey participants who were fully vaccinated as of
the April 2021 survey wave. This corresponds to the first wave of surveys following
vaccine availability in the U.S. Figure II-5 shows the evolution of the number of weekly
trips taken by those who got fully vaccinated before May 2021, relative to the rest of the
population. Before the onset of the pandemic, in February 2020, the two groups of
individuals exhibited similar mobility levels. The Figure II-shows that participants who
got vaccinated before May 2021 reduced their mobility more in the early phases of the
pandemic. Once vaccinated, however, these participants increased their weekly trips at
a significantly faster rate compared to the unvaccinated.

To quantify the net effect of getting vaccinated on weekly mobility, we estimated a
difference-in-differences regression where the treatment is the individual’s vaccination
status as of the April 2021 wave of our survey and the outcome is the number of weekly
trips carried out by an individual, as inferred from the passive mobility data. Our key
identification assumption is the parallel trends assumption, i.e. that travel activity would
have evolved similarly in both groups absent the vaccine rollout. Figure II-5 suggests
that the parallel trends assumption holds, as the two groups’ average weekly trips track
closely prior to January 2021. The grayed-out area is the treatment period between
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January 1st 2021 and April 30th 2021, corresponding to the early vaccination period in
the U.S. The posttreatment period is the four weeks after the end of the treatment
period (May 2021), and the pretreatment period is the four weeks before the treatment
period (December 2020). Equation 1 shows our structural equation specification: the
outcome, , is the average number of weekly trips for group g at time t, where g is the
treatment status (vaccinated in wave 4 vs. unvaccinated in wave 4), and t is the
treatment period (pre-treatment vs. post-treatment). Table II-2 summarizes the results of
the regression. We find individuals who got vaccinated increased travel by 4.8 trips per
week (𝛃2+𝛃3) during the post-treatment period, on average, relative to the pretreatment
period, while the unvaccinated increased travel by only 1.8 trips per week (𝛃2) during the
same period. The difference-in-differences estimate (𝛃3) is 3 trips per week (p-value <
0.001), or 170% of the increase for the unvaccinated. This result provides strong
evidence that people significantly changed their travel habits after getting vaccinated,
suggesting that vaccines play a significant role in the return to normal for vaccinated
individuals.

𝑌
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       + β
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* 𝐼(𝑔 = 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑 𝑖𝑛 𝑊𝑎𝑣𝑒 4)        

+ β
2

* 𝐼(𝑡 = 𝑃𝑜𝑠𝑡 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

(eq. 1)      + β
3

* 𝐼(𝑔 = 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑 𝑖𝑛 𝑊𝑎𝑣𝑒 4) * 𝐼(𝑡 = 𝑃𝑜𝑠𝑡 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛)   

Fig. 5. The evolution of the number of weekly trips for vaccinated and unvaccinated individuals.
Sample sizes: Vaccinated = ~190 panelists, not (or partially) vaccinated = ~ 800 panelists.
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Table II-2. Estimated coefficients for the difference-in-differences regression in equation
1.
Parameter Estimate Standard error p-value

β
0

15.7 0.208 < 0.001

β
1

-1.2 0.588 0.045

β
2

1.8 0.319 < 0.001

β
3

3.0 0.849 < 0.001

Aside from the vaccine effect, Figure II-5 also shows that mobility has significantly
increased for non-vaccinated individuals, albeit at a slower rate than vaccinated
individuals (as shown by the positive and statistically significant ). This coincides with
the significant reduction in concern among unvaccinated individuals shown in Figure
II-4. The magnitude of the change in concern highly correlates with the change in
mobility as well, with a smaller decrease in concern reflected in a smaller increase in the
number of weekly trips. This presents a challenge for public health officials, as it is
harder to motivate people to avoid risky behaviors and engage in preventative
measures when perceived risk drops.

4.2.2. On transit use

In our first survey wave (August 2020), when asked about factors that would encourage
their increased use of transit, about 39% of pre-pandemic transit riders indicated that
the development of an effective COVID-19 treatment or vaccine would increase their
use of public transportation. Data from our post-vaccine availability survey waves
confirm that vaccines indeed play an important role in reducing the safety concerns
around public transportation and increasing public transportation use, offering a more
optimistic perspective on the future of public transportation. As described in section 4.1,
worries of getting infected by COVID-19 decreased significantly in 2021 relative to 2020,
particularly among vaccinated individuals. This decrease in concern is associated with
an increase in public transportation use among vaccinated individuals, where safety has
been shown to be one of the main reasons for the reduction in ridership(58, 66). In the
April 2021 and July 2021 survey waves, about 18% of individuals who got at least one
shot of a COVID-19 vaccine before May 2021 reported that they had used public
transportation at least once in the preceding two weeks. Only 12% of these individuals
reported using public transportation in the first three waves of the survey (August 2020,
October 2020, December 2020), representing a 50% increase from 2020 to 2021
(p-value < 0.05). There was no significant difference in the frequency of using public
transit among those who did not receive any vaccine, with about 15-16% of this group
reporting using transit in both pre-vaccine and post-vaccine availability survey waves
(Figure II-6). The difference-in-differences estimator
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When it comes to public transportation as a primary mode of commuting to work, we
find a similar trend between vaccinated and unvaccinated individuals, albeit among a
much smaller sample. Our data show that between 6-7% of all commuters use transit to
commute to work, a fraction comparable to the national average of about 5%. This
share, and its evolution, differ across the groups of vaccinated and unvaccinated
individuals. Of those vaccinated between January and April 2021, only 3% used transit
as a primary mode of commute in 2020 (before getting vaccinated), compared to 5.5%
after getting vaccinated in 2021, an 80% increase. Among unvaccinated individuals,
however, the numbers are roughly the same before and after vaccination (about 7%).

Figure II-6. The change in the frequency of using transit for vaccinated and
unvaccinated individuals.

This increase in the frequency of using transit among vaccinated individuals is likely due
to the effect of vaccines on reducing the concern about being infected by COVID-19, as
shown in section 4.2.1. Indeed, our data show that concern about being infected by
COVID-19 is strongly correlated with the frequency of using public transit. Across all
survey waves, panelists who say they are not concerned about being infected by
COVID-19 are 26% more likely to report using public transit in the past two weeks
(p-value < 0.05) — 19% of those who say they’re not concerned about being infected by
COVID-19 report using transit at least once in the past two weeks, compared to 15% of
those who are concerned.

Our results and data further suggest that addressing safety concerns on public
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transportation modes can significantly reduce the impact of potential future pandemics
on transit ridership, even when transit service changes and reductions are inevitable. In
our first wave of surveys, preceding vaccine availability, factors such as the widespread
use of face masks and increased sanitation/cleaning on public transit were more
frequently reported as measures that would increase transit use (about 45% of transit
riders) than factors related to service changes (about 22% of transit riders)(66). The
observed increase in transit use after vaccination provides further evidence that
addressing safety concerns are key to protecting transit ridership in future pandemics
and disease outbreaks.

4.2.3. On telecommuting

While telecommuting at least once a week remains the norm for the majority of workers
in 2021, our data show a decrease in the share of individuals who fully telecommute
(Figure II-7), from a high of 39% in December 2020 to a low of 28% in July 2021
(p-value < 0.001). On the other hand, the number of people commuting to work on every
workday increased by approximately 16%, from a low of 50% in December 2020 to just
above 58% in July 2021 (p-value < 0.01). These results suggest that while partial
telecommuting continues to be an option for a significant portion of workers, full remote
work will not remain the norm in a post-pandemic world. Hybrid work models seem to be
the most likely outcome, and this trend will have significant implications on congestion
and traffic patterns.
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Figure II-7. The frequency of commuting and telecommuting to work for fully employed
panelists. We define fully employed as those who report working at least 5 days a week in the
past week. The number ranges from 402 to 477 depending on the wave, except for the third
wave in December 2021 when the number drops to 328 (likely due to vacation time).

In contrast to our general travel behavior results, the observed decrease in the
frequency of telecommuting was not significantly different between vaccinated and
unvaccinated individuals. To measure the impact of vaccination status on telecommute
frequency, we estimate a similar difference-in-differences design for two cohorts: Fully
employed participants who got vaccinated between January 2021 and April 2021
compared to those who did not (hereafter referred to as the fourth wave cohort), and
fully employed panelists who got vaccinated between April 2021 and July 2021
compared to those who did not (hereafter referred to as the fifth wave cohort). The
sample sizes for those two cohorts are shown in Table II-3. The models’ specification is
shown in Equation 2: the outcome, , is the fraction of people working fully remotely in
group g at time t, where g is the treatment status (vaccinated vs. unvaccinated) during
the wave of interest (wave 4 or wave 5, depending on the cohort), and t is the treatment
period (pre- vs post-vaccination). Table II-4 shows the models’ estimated parameters for
both cohorts.
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Table II-3: Cohort definitions for the difference-in-difference designs to quantify the
effect of vaccination on the likelihood of working fully remotely.

Vaccination status Fourth wave cohort Fifth wave cohort

Vaccinated 143 152

Unvaccinated 316 156

Table II-4. Estimated coefficients for the difference-in-differences regression in equation 2.

Fourth wave cohort Fifth wave cohort

Parameter Estimate p-value Estimate p-value

β
0

0.43 < 0.001 0.29 < 0.001

β
1

-0.089 -0.58 0.16 0.020

β
2

-0.083 0.035 -0.059 0.19

β
3

0.0035 0.96 -0.050 0.44

Our estimates for the effect of getting vaccinated were insignificant in both cohorts. The
similar drop in telecommuting rates for both the vaccinated and unvaccinated, as shown
in the small and statistically insignificant parameter in both regressions, suggests that
while vaccines increase mobility by reducing the concern about contracting the disease,
the decision to return to in-person work is not primarily driven by the safety and drop in
fear of infection provided by the vaccine. Rather, it is likely determined by other external
factors including but not limited to businesses deciding to return to in-person modes of
operation. A recent study by the Pew Research Center gives more insight into some of
the reasons some workers are returning to their offices, citing increased productivity in
the workplace, not having the proper space and resources at home, having more
opportunities for advancements in the workplace, or feeling pressure from coworkers or
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supervisors to work in-person(67). These findings, along with ours, suggest that safety
is not the main concern for working in person, and that equilibrium telecommuting rates
will ultimately be a function of both employer expectations and decisions to re-open
office spaces, as well as employee preferences.

5. Conclusion and policy implications

This work contributes to the understanding of human and travel behavior during the
pandemic impact and recovery periods. First, we showed that the changes in the
frequency of travel, as well as compliance with public health recommendations more
broadly, have been different for different groups of people. While the majority of the
participants in our study complied with public health recommendations and significantly
reduced their travel, a minority did not. These two groups have significantly different
levels of concern about contracting and spreading the disease, and we find that higher
concern is strongly associated with higher compliance and reduced travel. Next, we
showed that vaccination plays a significant role in reducing concern among vaccinated
individuals, which in turn affects their travel behavior. We estimated
difference-in-differences regressions leveraging the longitudinal aspect of our dataset
and found that vaccines have played a significant role in reversing some of the
pandemic-induced mobility trends. We showed that vaccines led to a significantly higher
increase in mobility for vaccinated individuals relative to the unvaccinated. We also
showed that the frequency of public transportation use significantly increased for
vaccinated individuals in 2021 relative to 2020, while it remained the same for the
unvaccinated. With telecommuting, we see a significant drop in the fraction of full-time
employees that worked from home every day in 2021 relative to 2020, but the fraction of
employees telecommuting at least once a week remained high at 42% in August 2021.
The drop in fully remote work was not significantly different between vaccinated and
unvaccinated individuals, suggesting that decisions to return to in-person work are not
driven by individual safety concerns and instead are likely a function of employer
expectations, and that the high telecommuting rates may well persist in a
post-pandemic world.

Our results have several implications on policy-making during pandemic times:

Insight #1: We showed that in the early phases of the pandemic preceding vaccine
availability, while the majority of individuals in our panel complied with public health
recommendations, a minority did not. This minority carried significantly more risk of
contracting and spreading the disease by engaging in multiple non-compliant behaviors
at the same time. For example, while only 18% of our panelists reported attending
gatherings larger than 10 people in the August 2020 wave of the survey, these
individuals were five times more likely to not wear masks while socializing with others,
and four times more likely to not wear masks while traveling in public (not using their
private vehicle). We also find that these individuals traveled significantly more than
others in the early phases of the pandemic, increasing their risk of spreading the virus
and highlighting the role of the transportation system in propagating the disease.
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The concentration of “behavioral” risk – risk associated with non-compliant behaviors
like eschewing masks, attending large gatherings, traveling more, etc. – among a small
subset of individuals draws parallels to the literature on superspreading: similar to how a
small number of individuals has been shown to cause the majority of cases in the early
outbreak of the disease, a small number of individuals carry disproportionately higher
risk of contracting and spreading the disease based purely on their behavior and
non-compliance with multiple recommended safety protocols. From a policy standpoint,
finding that superspreading can be, at least partially, explained by human behavior,
rather than being a fully biological phenomena, is positive. It suggests that policies
aimed at managing human behavior can be effective at controlling the spread of the
disease absent any vaccines or pharmaceutical interventions. A key to the success of
those policies, however, is ensuring high compliance from the public. Some work
suggested that the overdispersed nature of the spread is its Achilles' heel(68), since this
allows interventions to focus on key behaviors that feature a high number of interactions
like indoor events and large gatherings. Our work suggests that this may be an
oversimplification of the problem, however, since people who engage in those activities
are also the ones who are resistant to behavioral interventions. For example, our
August 2020 survey data show that those who do not wear masks where recommended
by public health officials are 181% more likely to believe that COVID-19 related
restrictions are too strict (p-value < 0.001). This implies that simply mandating public
health recommendations would likely not be effective on the people whose compliance
is needed most. Previous work studied how political ideology and demographic factors
can predict the perception of threat of COVID-19(44, 45), which we show predicts
compliance. More work is needed to develop communication strategies that speak to
different demographic and ideological groups and are effective at engaging those with
low safety concerns to improve their compliance with behavioral prevention measures.

Insight #2: The second important implication of this work relates to the role of vaccines
in reversing safety concerns and inducing a return to pre-pandemic mobility levels. The
literature on the effect of vaccination on pandemic mobility is limited, with studies
providing conflicting findings. Our data clearly shows the positive effect of vaccination
on weekly mobility for the vaccinated early in 2021. Our data also suggests that the
mediator through which vaccination affects mobility is likely the level of concern about
contracting the disease: concern about contracting COVID-19 is highly correlated with
mobility levels (Figure II-3), and vaccines are very effective at reducing concern among
vaccinated individuals (Figure II-4). The effect of vaccines on easing concerns and
increasing mobility has not been limited to vaccinated individuals: our data importantly
show that both vaccinated and unvaccinated individuals significantly increased their
mobility right after vaccines became available in early 2021 (Figure II-2). The ease in
concern among unvaccinated individuals coincides with the significantly more optimistic
rhetoric adopted by government and public health officials in early 2021. This reduction
in concern and increase in mobility early in 2021, especially among unvaccinated
individuals, poses problems for public health and government officials. Multiple studies
have found that reduced mobility can have a similar effect on the number of infections
and hospitalizations(69, 70) as vaccination, with one study suggesting that the effect of
mobility reduction is similar to that of a 30% vaccination rate with 70-90% vaccine
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efficacy(69). This suggests that, at least in the early days of vaccine availability when
vaccination rates are still low, the net effect of vaccine availability on transmission and
hospitalization numbers can be negative if safety protocols (e.g. mask wearing) and
government restrictions are eased prematurely. Political and public health messaging
should be careful to avoid narratives that suggest the pandemic is over, as this can
result in a premature sense of safety that could decrease the motivation to comply with
behavioral safety measures.

When it comes to public transit, we find a significant increase in the frequency of using
public transport among those who got vaccinated early. We also find a high correlation
between the concern about contracting COVID-19 and using public transit across all our
survey waves, with 19% of non-concerned individuals using public transit in the past two
weeks, compared to only 15% of the concerned individuals. Our results collectively
show that safety concerns are an important reason for the public transit ridership
declines during the pandemic, and consequently, dealing with safety concerns through
improved sanitization, adding capacity constraints, and enforcing NPIs like requiring
mask-wearing can soften the magnitude of ridership declines in future pandemics and
public health outbreaks.

Insight #3: The third implication of this work relates to our finding that telecommuting
will remain high after the pandemic is over. Our data also gives insight into the reasons
why people choose to return to work, showing that safety is not an important factor in
that decision. We show this by demonstrating that getting vaccinated does not affect the
magnitude of the reduction in telecommuting rates, despite significantly affecting the
level of concern about contracting the disease. In addition to the lack of vaccination
effect, our data also suggest that working fully remotely is not going to remain the norm
for many employees, as evident in the sharp decrease in the fraction of people working
fully remotely in 2021. Hybrid telecommuting models seem likely to persist, and travel
demand models need to account for this new trend which has several implications on
congestion, peak hour commute, and trip making in general. The literature on the
transport impacts of telecommuting remains conflicted, with some studies suggesting
that telecommuting results in fewer trips and vehicle miles traveled, while others
suggest the reduction in commute trips is largely offset by the generation of new trips.
With high telecommuting rates likely to persist post-pandemic, more comprehensive
analyses on the transport impact of telecommuting are needed to appropriately account
for its impact in travel demand models, environmental impact reports, and emission
analyses.
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Chapter 4: Learning and Optimizing Charging
Behavior at PEV Charging Stations: Randomized
Pricing Experiments, and Joint Power and Price
Optimization

Executive Summary
In this chapter, we introduce, implement, and assess a framework for jointly optimizing
the pricing policy and the charging schedule of electric vehicles (EVs) by learning and
nudging human behavior with pricing. The proposed methodology uses time-based
pricing to nudge user behavior at charging stations towards actions that achieve the
station operator’s objectives. The optimization framework incorporates endogenous
human behaviors by explicitly accounting for the willingness to delay charging, as well
as the plug-in duration of each session, as a function of the hourly prices. The approach
also addresses the issue of overstay at EV charging stations by casting the problem as
a trade-off between occupying resources and giving more flexibility to the station
operator. We discuss the design and analysis of the behavioral experiments used to
model the charging behavior of participants at the charging stations, and demonstrate
the effectiveness of those learned behavioral models in an optimization framework
aimed at minimizing the total cost of providing the charging service without sacrificing
the user experience. Our simulations show that our framework increases total revenue,
reduces utility cost, and increases net profit for the station operator, while maintaining a
high level of service and consumer utility.

1. Introduction
Plug-in electric vehicle (PEV) adoption has been on the rise, and the transportation
system is steadily moving towards more electrification. Recent forecasts anticipate that
the number of PEVs will seize one third of the entire vehicle sales market by 2025, and
that more than one half of the new vehicles sold will be electrified by 2030 (89). This
fast market penetration has been further accelerated by local and regional policies. For
example, California recently set targets of five million zero-emission vehicles by 2030
and 100% clean electricity by 2045 (90). At the center of these policies are PEVs, which
reduce greenhouse gas emissions by transitioning oil consumption to clean electricity.

The environmental benefits of replacing conventional vehicles with electric ones,
however, are threatened by the increased demand on the electric grid and the potential
increase in peak loads if the charging is left unmanaged. Currently, most EV owners
charge their vehicles at home during the evening hours (91, 92). This simultaneous use
of the charging stations in the future may undermine their potential by exacerbating
existing peaks, and potentially exceeding the capacity of the power grid, requiring costly
infrastructure upgrades (93, 94). In addition, charging in the evening and overnight can
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be temporarily mismatched with clean renewable electric energy sources, like solar in
California, which is much more abundant during the day.

Owing to the reasons above, a growing body of research has been studying workplace
charging as a better alternative to charging at home (95–97). Despite the growing
interest, workplace charging still only accounts for about 15-20% of all PEV charging
events (95). One important reason for the small adoption of workplace charging is the
challenge of running an economically viable service, with most employers currently
providing this service for free for their employees (97). In addition, charging at the
workplace is often less convenient for PEV users, since it usually requires them to
unplug their vehicle after a certain plug-in duration is reached or when their vehicle is
fully charged. This makes competing with charging at home even more challenging, and
puts tight constraints on the pricing strategy of the charging service (98).

Nevertheless, workplace charging still has the potential to shift a significant amount of
the charging demand away from charging at home, and in doing so, reduce the peak
loads on the electric grid. Workplace charging can also reduce the carbon footprint of
the PEV charging service by aligning charging load with solar electricity generation. To
deal with the aforementioned challenges, however, a deeper understanding of user
charging behavior, their preferences, and price thresholds is imperative to successfully
design smart charging stations that are economically viable (i.e., achieves the station
operator’s financial objectives), as well as attractive to EV users who have the option to
charge elsewhere. Despite its importance, research on consumer behavior in the PEV
charging context is limited, data is lacking, and consumer preferences, especially at
workplace charging stations, remain poorly understood. We address this gap by
implementing SlrpEV (Smart LeaRning Pilot for Electric Vehicles). Our research
objective is to understand users’ behavior and preferences when charging their vehicles
at work in order to design charging stations that can be optimized to achieve the station
operator’s objectives.

1.1. Introducing SlrpEV
SlrpEV is a workplace charging program that provides plug-in charging service to PEV
owners at two campuses within the University of California: Berkeley and San Diego.
SlrpEV can be seen as a cyber-physical and human system (Figure IV-1). The physical
component comprises the two charging sites with a total of eight Electric Vehicle Supply
Equipments (EVSEs). The cyber component refers to the backend software and
communication system for charging operation, namely the pricing optimization and
energy scheduling algorithms. The human component, which is the main focus of this
paper, refers to behavior of PEV users and their charging decisions, including their
energy demand, willingness to delay charging, plug-in duration, etc.

The main goal of the SlrpEV project and the focus of this paper is to understand PEV
drivers’ charging habits and preferences at the workplace in order to improve the
performance of the charging stations. Specifically, the project seeks to estimate the
price thresholds and incentives at which users would accept delaying the charging of
their vehicles instead of immediately charging it, giving flexibility to the charging
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operator to optimally deliver the required energy. We also model the relationship
between how long users plug-in their vehicles and the hourly price they are paying. This
knowledge is then used to design “smart” chargers that jointly optimize the pricing
strategy and the energy delivery schedule while taking into account the needs of the
consumers (PEV owners) as well as the suppliers (charging facility operators). More
specifically, our objective is to jointly optimize pricing and power to increase net profit
and minimize the cost of providing the charging service to the station operator. To
achieve this objective, SlrpEV offers PEV users two choices for charging their vehicle:
Regular charging, and Scheduled charging. Under the Regular option, the charging
process starts as soon as the vehicle is plugged in, similar to how other standard
charging stations currently operate. Scheduled charging, on the other hand, requires the
user to input their requested energy (via miles of added range) and desired departure
time before they start the charging session. The user is then guaranteed to receive their
requested charge by their specified deadline, but not sooner. This provides the station
operator with flexibility that can be used to optimally allocate the energy delivery
schedule to achieve various possible objectives: minimizing emissions, maximizing
revenue and profit, minimizing power variability, etc.

Another feature of SlrpEV that differs from many of the existing charging options is that
pricing is done by hour, as opposed to by kWh. This automatically gives the operator the
ability to influence the plug-in duration by leveraging the sensitivity of the users to the
hourly prices. We exploit this relationship between charging duration and hourly prices
to set optimal pricing policies that allow us to significantly reduce energy costs and
increase the profits of the station operator, without sacrificing the level of service for the
users.
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Figure IV-1: Schematic of the SlrpEV ecosystem

The rest of this manuscript is organized as follows: Section 2 reviews the existing
literature on PEV charging station operation and planning that is relevant to our work.
Section 3 formulates the price and power optimization problem, which motivates the
behavioral modeling section. Section 4 summarizes the data we used in this project.
Section 5 analyzes the results in three subsections: 1) Modeling the choice behavior
between Regular and Scheduled charging, 2) Modeling plug-in duration, 3) and
optimizing the choice and duration of charging to minimize station operator costs. We
conclude and provide future directions in Section 6.

2. Literature review
Research on PEV charging station operation has been broad and diverse. Previous
work ranged from modeling and analyzing network level interactions between the power
and transportation systems, charging station interactions with renewable and green
energies, power management and efficient scheduling of energy delivery, all the way to
efficient energy storage systems and battery technology. Despite the breadth of topics,
the literature remains relatively lacking when it comes to an accurate and reliable
understanding of the behavior and decision making process of PEV users. This
understanding is crucial to unlocking the full environmental benefits of electrification,
especially as the optimal scheduling of energy delivery to PEV users will be essential as
more and more vehicles become electric, in order not to overwhelm the electric grid
infrastructure (99–103). A successful scheduling strategy should consider how PEV
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users make active decisions about their charging behavior (e.g. by delaying their
charging, charging at different times of the day, etc.) in order to optimize operations.
Recently, more studies have considered the demand side of PEV charging operations
and focusing on understanding the consumer. In the OptimizEV project (100, 104), the
authors proposed deadline differentiated pricing, which explicitly attempts to exploit the
latent flexibility in demand to reduce power demand peaks. They showed how by
incentivizing longer deadlines through reduced energy prices, they were able to
optimally schedule demand and load peaks. The choice of the price thresholds,
however, was arbitrary, and the work does not attempt to estimate the relationship
between prices and flexibility. In (105), Daziano attempts to better understand customer
behavior and estimate economic quantities related to the same OptimizEV project by
conducting a stated-preference choice experiment to analyze the incentives needed for
customers to accept delayed charging. The author found that customers were willing to
delay their charging if they received a discount on the annual fee of their charging
program of $2.66 per hour of control given to the operator. This means that customers
negatively perceived the loss of control over their charging schedule. Thus an incentive
would be required to nudge them to delay charging. The limitations of this study,
however, stem from the fact that it relies solely on a stated-preference experiment.
Despite the convenience and prevalence of stated preference surveys in research,
humans often behave differently in real life than when presented with hypothetical
choice scenarios. The study also requires participants to make unintuitive trade-offs that
are complex and abstract, like valuing an hour of delay on their charging schedule in
terms of yearly discounts, which may result in inaccurate or misguided responses.

Our work also contributes to the literature on understanding the overstay issue at
charging stations. Overstay is an important problem that affects the operational
efficiency and level of service at charging stations. At its worst, overstay can be
perceived negatively as it reduces station utilization and can result in unsatisfied
demand, especially as the charging infrastructure remains relatively sparse, leading to
reduced social welfare. Common ways to address this problem are by setting an
overstay penalty (106). For example, Tesla’s “idle fee” is one solution that has been
implemented in practice to encourage people to pick up their car right when it is charged
(107). An alternative view of overstay, however, is as an opportunity to shift power
demand and coordinate energy delivery to minimize the environmental impacts and
avoid power peaks. The latter view will become more important as PEV penetration
increases and the charging infrastructure expands to accommodate increased demand.
Deadline differentiated pricing like in (100) is one example that tries to exploit overstay
to optimally control power demand for PEV charging in residential settings. Namely, a
menu of deadline differentiated prices give discounts for longer plug-in duration. None
of the studies that we are aware of attempt to actually model plug-in duration and
develop a quantitative understanding of the relationship between charging duration and
charging price. Our work fills this gap.

Finally, our work also contributes to the growing literature on workplace PEV charging.
Workplace charging is the main charging means for about 40% of current EV owners
who lack access to a home charging facility. While charging during the day is
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environmentally preferred to overnight charging for grids with large penetration of solar
power, workplace charging comes with its own set of challenges. Specifically, workplace
charging is very likely to be synchronized due to similar arrival and departure patterns
dictated by working hours (108). In (108), the authors propose an integrated energy
management scheme where employee’s PEVs can be used as an energy supply source
to provide the building with energy, leveraging the stable arrival-departure patterns of
employees and their willingness to accept scheduled charging due to their flexibility. The
user behavior (e.g., willingness to delay charging, willingness to accept using the PEV
batteries as energy storage), and the sensitivity of those behaviors to the price of
charging, are not studied in the aforementioned paper, neither are the incentives
required by the drivers to accept scheduled charging. In (109), the authors analyze the
demand side more closely, studying the effect of social norms on charging etiquette in
the workplace. Their work focuses solely on the problem of overstay, however, and
attempts to study the effectiveness of price and non-price interventions that encourage
better and more efficient resource sharing etiquette. However, this study does not
attempt to study the effectiveness of incentives intended to delay the plug-in duration to
leverage scheduled charging. In other words, their work focuses on how to maximize
throughput, instead of how to minimize the cost of charging or optimize energy delivery.
One potential reason for why user charging behavior at the workplace is poorly
understood is the lack of experimental data where prices can be randomly perturbed to
learn user behavior. Existing research and datasets on user behavior in the workplace
are mostly based on rigid pricing structures where price does not vary randomly across
sessions and individuals (110–112). This significantly limits the researchers’ ability to
unbiasedly and robustly estimate key behavioral quantities that vary with price, like
plug-in duration, choice between different charging alternatives, energy demand,
incentive structures, etc. In this work, we fill this gap by conducting randomized
experiments to estimate the impact of different pricing strategies on key behavioral
outcomes of EV users’ charging behavior.

3. Problem Formulation
Our objective is to jointly optimize the hourly prices and energy delivery schedule to
PEV users in order to minimize the total utility costs and maximize net revenue for the
station operator, given a set time-of-use (TOU) electricity rates. Conceptually, this
framework allows us to achieve other objectives as well, like minimizing emissions, or
shifting the electricity demand curve, since TOU prices can be used as a proxy for those
objectives. For example, if the objective is to shift charging electricity demand from the
afternoon peak, then setting the TOU electricity rates to be significantly more expensive
during that peak would incentivize the station operator to try and shift the demand curve
away from this peak period. Similarly, if the objective is to minimize emissions, then the
TOU rates can be set to negatively correlate with high emission periods to disincentivize
charging during those periods.

Consider a user, i, arriving at a SlrpEV station to start a charging session. This user is
faced with three options: Regular charging, Scheduled charging, or leaving. Each of the
charging options (excluding the leave option) is associated with its own cost of energy
for the station operator.
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Under the Regular option, a session i arriving at time and leaving at time has a𝑡
𝑜

𝑡
𝑟𝑒𝑔

cost (from the station operator’s perspective) that can be expressed as follows:
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where is the minimum time needed to fully charge the car at maximum power (if the𝑡
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user departs before their car is fully charged, then = ). Symbol is the cost of𝑡
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electricity in $/kWh at time t, is the maximum charging power that user i’s car can𝑃
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accept, and is the hourly rate paid by the user (i.e. the operator's revenue) if they𝑟
𝑟𝑒𝑔

𝑖

choose the Regular option.

On the other hand, if the user chooses the Scheduled option, they are asked to indicate
their desired energy required ( ) and a fixed departure time ( ) for when they intend𝐸

𝑟𝑒𝑞
𝑡

𝑠𝑐ℎ
to pick up their car. Their cost to the operator can then be expressed as follows:
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where is the charging power at time t (controlled by the station operator), and is𝑃
𝑡

𝑟
𝑠𝑐ℎ

𝑖

the hourly rate paid by the user (i.e. revenue) if they choose the Scheduled option in
session i.

Given the costs associated with each alternative, the total expected cost to the operator
can be expressed as follows:
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where , , and are the probabilities that the user chooses the Regular𝑝
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 𝑝
𝐿𝑒𝑎𝑣𝑒

option, the Scheduled option, or the Leave option in session i, respectively. Note that
, , and must sum to one. Since our definition of the cost refers to the total𝑝
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 𝑝
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cost of providing the charging service and does not include any opportunity cost, the
cost of leave, , is assumed to be zero.𝐶
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The objective of the station operator is to minimize the total cost shown in Equation 3.
To achieve this objective, there are two levers that the operator can control: the hourly
prices for the Regular and Scheduled options, and , respectively, and the𝑟

𝑟𝑒𝑔
𝑟

𝑠𝑐ℎ
charging power at time t, , if a user chooses the Scheduled option. On the other𝑃

𝑡
hand, there are constraints on those decision variables that the station operator has to
abide by, namely:
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● The charging power at time t, , must be non-negative and upper-bounded by𝑃
𝑡

the maximum power that user i’s vehicle can accept:
○ 0 ≤ 𝑃

𝑡
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● The total energy delivered to the user in session i if they choose scheduled has
to be equal to their total energy requested ( ) at the user specified deadline,𝐸
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≥ 0

There are a few key details worth highlighting in the above equations and definitions;
many parameters in the problem formulation are dependent on user behavior and are
endogenous to the prices that the operator controls. Namely, the probabilities of
choosing each alternative, , , and , all depend on the hourly prices of the𝑝

𝑅𝑒𝑔
𝑝

𝑠𝑐ℎ
 𝑝

𝐿𝑒𝑎𝑣𝑒
Regular and Scheduled options, and (see Section 5.1 for details on how those𝑟

𝑟𝑒𝑔
𝑟

𝑠𝑐ℎ
probabilities were modeled). In addition, the plug-in duration, and for Regular𝑡

𝑟𝑒𝑔
𝑡

𝑠𝑐ℎ
and Scheduled, respectively, will also depend on the hourly price that the user is paying.
Intuitively, a discounted hourly rate will result in a longer plug-in duration, since the user
can leave their vehicle parked for longer while still maintaining a lower total session
cost. Our work importantly focuses on learning those behavioral responses to the hourly
prices, where the literature is particularly lacking. We conduct randomized experiments
and use methods from the econometrics literature and random utility theory to model
the choice making behavior of users when choosing between the charging options at
SlrpEV. We also estimate the relationship between session duration and price using
univariate Kernel regressions. Those learned behavioral models are then used in the
optimization to inform price-setting, as shown in the simulations in Section 5.3.

4. Data
The main data used in this study is from the revealed preference experiment, which was
conducted on two University of California (UC) campuses: San Diego and Berkeley. The
experiment is a real life choice experiment where individuals choose between the two
charging options described in Section 3.1: Regular and Scheduled, and pay accordingly.
The key advantage of those experiments is the ability to create random variations in the
prices and observe the resulting behavioral responses of the participants, namely their
choice of alternative and their plug-in duration. Most of the existing studies in the
literature lack this ability and either use passive observational data or have rigid pricing
policies that do not allow randomization and experimentation (100, 112), which limits
their ability to learn, and consequently control, user behavior.
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Throughout these experiments, we present users with a randomly chosen hourly rate for
each of the Regular and Scheduled alternatives. The distribution of the randomized
prices for Regular and Scheduled, as well as the distribution of the differences in their
hourly rates, are shown in Figure IV-2. As the distributions show, most of the
randomized prices are below $2/hr, in order to make SlrpEV price competitive with other
nearby available charging options and to avoid user churn; two public stations within 0.5
miles offered $1.50/hr during the experimental period. Nevertheless, higher prices were
presented occasionally in order to better analyze and model the relationship between
hourly prices and plug-in duration.

Figure IV-2 also shows that the distribution of the Regular prices has more mass over
higher hourly rates than that of the Scheduled prices. This is because, everything being
equal, the Regular option is more convenient for the users, since users will get
maximum charging immediately without having to worry about the overstay fee present
in the Scheduled option. Indeed, if prices were equal, then by picking the Scheduled
option, a participant would sacrifice the benefits of immediate charging, and risk an
additional overstay fee without any added benefits. Thus, if the difference in the hourly
rates was randomly and symmetrically distributed around zero, then the final sample of
choices will likely be heavily skewed towards the Regular option. To avoid this situation,
a discount should be applied to make the Scheduled option competitive with the
Regular and have a roughly balanced sample of choices to analyze.

In order to develop a prior on what the average discount for the Scheduled option
should be, we conducted a stated preference experiment where participants were asked
to choose between two hypothetical charging scenarios that are similar to the real
Scheduled and Regular options. We found the willingness to pay for the convenience of
the Regular option was, on average, around 30 cents/hour. We used this value as a
prior when generating the hourly rates for the revealed preference experiment. As
Figure IV-2 shows, the average difference in the randomized prices for the two charging
options is about 26 cents/hour, but the differences can be up to $2/hour in order to
broadly understand the behavioral responses at different prices. The resulting choice
split between the Regular and Scheduled options is presented in Figure IV-3, which
shows that the samples are reasonably balanced with very modest discrepancies.
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Figure IV-2: Sampling distributions of the hourly rates and hourly rate differences of
Regular and Scheduled

Figure IV-3: The split of the Regular and Scheduled choices in the experimental data
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5. Results and Discussion

5.1. Choice Modeling

5.1.1. Estimation
A key quantity to estimate in order to optimally set the pricing policy is the level of
discount needed for the Scheduled option to become competitive with the Regular
option. In order to estimate this quantity, we model the charging choice making behavior
with a discrete choice model. Understanding this behavior will allow the station operator
to incentivize the alternative that achieves a certain desired outcome, whether that is
gaining power delivery flexibility (Scheduled), or maximizing throughput (Regular). One
of the key advantages of this work is our ability to conduct real-time randomized
experiments where we exogeneously vary the hourly rates (and hourly rate differences)
for the Regular and Scheduled options and observe the corresponding changes in the
participants' choices. The ability to randomize the prices makes the modeling process
much more robust and less reliant on strong assumptions like unconfoundedness,
no-selection bias, and functional forms, since we do not need to make assumptions
about the data generating process.

We adopt a random utility theory approach and use a binary logit model to capture the
decision making process of participants choosing Regular or Scheduled. Random utility
models, like binary logit, are widely used in the literature for modeling individual choice
behaviors in the context of EVs (105, 113–115). These models are most frequently
developed based on a utility maximization framework - each alternative choice available
has a corresponding utility for each individual, and individuals are assumed to be
rational agents, i.e. they choose the alternative that maximizes their utility. We adopt a
similar framework for developing and estimating our models.

For this work, we are mainly interested in the effect of changing the hourly prices and
hourly price differentials on the probability of choosing each alternative. We are also
interested in whether those choice probabilities vary depending on the time of the day.
Indeed, one may reasonably expect that late afternoon arrivals may be more inclined to
choose Regular to minimize their charging time, compared to early morning sessions.
Note that we do not include individual characteristics and demographic information in
the final model specification. This is because the model will be later used to optimize the
prices in order to achieve a certain probability split between Regular and Scheduled.
Including individual level covariates in the model would lead to price discrimination
based on individual factors like income, gender, etc, which must be avoided. Our final
model thus only included price and temporal features, as these are the inputs that would
be used in the optimization framework.

More specifically, we specify the utility equations of each alternative for the user in
session i as shown in equation 1:
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In other words, we assume that the utility of the scheduled choice is a linear function of
the difference between the hourly price of regular ( ) and the hourly price of𝑟

𝑟𝑒𝑔
Scheduled ( ), while allowing for different intercepts depending on the arrival time.𝑟

𝑠𝑐ℎ
The utility of Regular, on the other hand, only includes an alternative specific constant (
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error terms, which we assume are independently and identically distributed (i.i.d) over
alternatives and individuals as Extreme Value Type I with a location parameter of 0 and
a scale parameter of 1.

When making a choice, the user is assumed to choose alternative n instead of m if the
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Since the individual disturbances, and , are i.i.d Extreme Value Type I, then their𝜺
𝑖𝑛

𝜺
𝑖𝑗

difference follows the logistic distribution.

Given the expression for the individual probability of choosing each alternative, we can
derive the likelihood equation for the model and estimate the model parameters using
maximum likelihood estimation. The likelihood of the model, L, is the model’s probability
that all individuals make the choices that were observed in real life. Since we assume
that the individual disturbances, and , are independent across individuals and𝜺

𝑖𝑛
𝜺

𝑖𝑗
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choice situations, this likelihood is the product of the individual probabilities across all
observations:

𝐿 =  Π
𝑛=1
𝑁 𝑃(𝑦

𝑖
)

where is the observed choice of individual n. The model parameters ,𝑦
𝑛

𝜷
∆𝑝

 𝜷
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,  𝐴𝑆𝐶
𝑟𝑒𝑔

are estimated by maximizing the log-likelihood of the model:
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5.1.2. Results and Validation
The estimated model coefficients are shown in Table IV-1.

Table IV-1: Estimated parameters of the discrete choice model
Parameter Estimated coefficient p-value

ASCREG 0.31 <0.005

𝜷
∆𝑝

-0.02 <0.001

𝜷
𝑝𝑚

-1.14 <0.005

The model allows us to estimate key quantities of interest and draw several conclusions
about user behavior at the charging station. First, the estimates show that for a price
difference of zero (i.e., when both alternatives have the same price), the Regular option
is significantly preferred over Scheduled. In fact, the model allows us to compute the
discount amount that will make Scheduled competitive with Regular, where we define
“competitive” as having equal probability. To do that, we note that in order for the two
alternatives to have equal probability, their systematic utilities to the user must be equal:
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After substituting the parameter values from Table IV-1, Equation 4 implies the station
operator will need to discount Scheduled relative to Regular by 15 cents/hour during the
day, to as high as 72.5 cents/hour in the afternoon (between 2pm and 8pm). This makes
sense, since if the Scheduled price was not discounted, the user would only be risking
overstay penalties if they choose Scheduled, without gaining anything for the additional
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risk, so Regular is the rational choice. The higher discount required in the afternoon is
intuitive too, as it reflects the fact that users have less flexibility around their pick-up
time, towards the end of the workday. That is, they prefer getting their vehicle charged
as soon as possible. Interestingly, those values are very close to the willingness to pay
estimated from the stated preference experiment prior to running the revealed
preference experiment. This shows that stated preference surveys can be accurate
tools to infer trade-offs and economic quantities using discrete choice models under the
right conditions.

The ability to relate the probability of choosing Scheduled at each discount level is the
main contribution of this model. It allows us to set the prices to achieve a desired
distribution of Scheduled and Regular options throughout the day. To validate whether
the model can achieve this objective, we conducted multiple experiments where we
used the model to set the prices that achieve a certain probability split between Regular
and Scheduled. The results of those experiments are combined in Figure IV-4. The
results show that the split between Regular and Scheduled is very close to the
real-world observed split when the corresponding prices are applied, suggesting the
model can be used reliably to set the prices and achieve a desired probability
distribution of the choices. Note this price modeling framework does not force a
particular choice on a particular user, but achieves a desired distribution in aggregate.

Figure IV-4: Performance of the discrete choice model on a test dataset.

5.2. Plug-in duration vs. Hourly rate

5.2.1. Estimation
As mentioned in Section 3, another important feature to estimate is the relationship
between plug-in duration and hourly prices, since this relationship is key to the
optimization objective. Figure IV-5 shows how the expected session duration decreases
as the session’s hourly price increases, from the real-world charging session data. This
means that, if the station operator seeks to extend plug-in durations so they have more
flexibility to optimize charging power delivery, then the station operator must provide a
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discounted hourly rate. These empirical results corroborate the deadline differentiated
pricing scheme in (100, 104). Similarly, if the station operator’s objective is to maximize
utilization, increase throughput, and minimize charging time at the station, then the
hourly rate should be increased to discourage long charging sessions and nudge the
users to quickly pick-up their vehicle.

Figure IV-5: Expected value of the session duration as a function of the hourly price.

We fit a Kernel Regression model to the data in Figure IV-5 to predict the expected
session duration given the price. A kernel regression is useful for capturing the
non-linearity compared to a linear regression, and at the same time maintain
monotonicity and better interpretability properties compared to tree-based and other
machine learning methods. The fitted Kernel Regression is shown by the blue line in
Figure IV-3.

5.2.2. Validation
To check whether the sessions’ plug-in durations, and subsequently the energy
demand, are responsive to controlled shifts in price, we conducted an experiment aimed
at reducing electricity consumption in the afternoon (between 3pm and 8pm). This was
motivated by the California Independent System Operator (CAISO) encouraging energy
conservation during the summer months to ease demand peaks - a voluntary demand
response. The experiment did not attempt to optimize power and energy delivery, and
instead the objective was to shift sessions away from the 3pm - 8pm period strictly
using the hourly rate of the sessions. More specifically, we progressively increased the
prices each hour of the day in order to observe how the duration would respond. We
compare the power demand profile during the experiment to a baseline period, which is
a three week period of random price generation that occurred in September 2021.
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Figure IV-6 shows the inverse relationship between hourly rate and plug-in duration
during the experiment. Note that the prices shown in the Figure IV-are fixed for each
arrival hour, and the blue dots represent the averaged session duration across all
sessions that arrived at that hour. Figure IV-7 shows that energy demand dropped by a
significant 40% between 3pm to 8pm compared to the baseline due to the higher hourly
rates (from an average of 4.9 kWh per session in the baseline to an average of 2.9 kWh
per session). This shows that session duration, and consequently energy demand, are
responsive to controlled shifts in the hourly rates, which allows the station operator to
influence those quantities via model-based optimization. Indeed, more or less energy
can be shifted away by more or less aggressive pricing. Nevertheless, this experiment
confirms that session duration and energy delivered can be shifted by pricing only.

Figure IV-6: The hourly rates and the corresponding plug-in duration during the
experiment, by hour of arrival. Blue dots represent the average duration of all sessions
arriving at a given hour during the experiment.
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Figure IV-7: The daily energy demand profile during and before the experiment. The
baseline data is a three week period of random price generation that occurred in
September 2021. Prices during the baseline were randomized between $1/hr and $2/hr.

5.3. Operational Cost Optimization via Simulation
Now that we have shown and estimated the relationships between hourly prices and the
choice probabilities, as well as between hourly prices and plug-in durations, those
relationships can be substituted in the optimization framework shown in Section 3. We
assess the framework through simulations: we first collect a period of real-life,
uncontrolled baseline data where sessions and power were left unmanaged. We then
use the same pattern of arrival and energy demand as the baseline, compute their
optimized prices using our optimization framework defined in Section 3, and simulate
the choice behavior of the users using our validated behavioral models. We assess the
performance of our optimization framework compared to the baseline based on three
key performance indicators:

1. Total revenue, cost, and profit generated by the station operator
2. The distribution of total energy delivered in peak and off-peak periods
3. The average hourly price paid by the consumer

5.3.1. Baseline data
The baseline data is a period of passive data collection where we fixed the prices of the
two charging options and observed the corresponding charging behavior of the users.
This data was collected between February 14, 2022 and March 8th, 2022, and included
a total of 104 usable sessions. Prices were fixed for all the sessions at $1.5/hr for
Regular and $2.5/hr for Scheduled. The fee for Regular was set to be comparable to
two other public charging stations within 0.5 miles , where the charging cost was also
$1.5/hr at the time of the experiment. As expected, the vast majority of sessions

76



selected Regular due to the large discount relative to Scheduled, with the exception of
two sessions. We discarded those sessions and omitted them from the final analysis.

Table IV-2 summarizes the key characteristics of the baseline data and Figure IV-8
summarizes the distribution of arrival and departure times. Note that most of the arrivals
happen in the morning between 6am and 10am.

Table IV-2: Session characteristics of the baseline data
Total (realized) sessions 104

Session hourly price $1.5/hr

Average session duration 3.62 hours

Average energy delivered per session 13.23 kWh

Figure IV-8: Arrival pattern of baseline sessions

5.3.2. Simulation workflow
Given the baseline data, the purpose of the simulation exercise is to simulate the
behavior of those same baseline sessions if they had been subjected to our optimization
framework. Then we compare the simulated behavior to the baseline using key
performance indicators (KPIs) in order to assess the performance of our optimization
framework and quantify its potential benefits. The simulation workflow is shown in
Figure IV-9. The simulation inputs are the baseline sessions’ individual information (time
of arrival, energy required, and maximum power capacity), along with assumed hourly
TOU electricity cost. Next, we compute the optimized prices using the framework
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described in Section 3. Given those prices, we simulate the expected behaviors –
specifically, the choice of alternative, and the duration of stay – using the behavioral
models estimated in Sections 5.1 and 5.2, respectively. Since those models were
validated and have shown good predictive power in a similar setting, it is reasonable to
assume that the behavioral responses predicted by the models would reasonably
replicate what would happen if the framework were implemented in real life.

To simulate the choice of alternatives between Regular and Scheduled, we first
compute the probability of each alternative (including leave) given their optimized prices
using the discrete choice model. We then use Monte Carlo simulations to simulate a
choice from the multinomial distribution parameterized by those probabilities.

As for the plug-in duration, we simply compute the expected duration given the chosen
alternative’s hourly price using the kernel regression estimated in Section 5.1. Note that
this results in expected durations that have artificially smaller variance than the
observed durations, since we are using the deterministic conditional expectation
function to compute the expected duration. An alternative would be to model the
duration as a stochastic outcome given the prices, which will render the problem as a
stochastic optimization problem and significantly complicate the solution algorithm,
since the session duration directly affects power optimization and energy delivery
schedule for the Scheduled option. This is beyond the scope of this paper, but is one
way to improve the simulations and is a welcome future extension of this work.

Figure IV-9: Simulation workflow

5.3.3. Simulation results
In this section, we present the results of the simulation exercise where we apply the
framework outlined in Section 3 to a time-of-use (TOU) electricity rate scenario.

The first performance metric is explicitly optimized for: as Section 3 shows, the
optimization objective is to minimize total net cost, or alternatively seen as maximize net
revenue for the station operator. The second and third metrics are intended to give more
insight into the mechanism through which net revenue is maximized. Indeed, net
revenue can be increased by either increasing total revenue, decreasing total electric
utility costs, or both. Ideally, we want to see an increase in net revenue that is caused
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by shifting energy delivery to off-peak periods, without necessarily increasing the hourly
prices paid by the users.

The TOU plan that we analyze is shown in Figure IV-10, which corresponds to PG&E’s
peak-pricing TOU rate plan. Under this plan, peak pricing occurs between 4pm and
9pm, as shown by the high cost during those times. From the station operator’s
perspective, this TOU plan would incentivize shifting the energy load away from
4pm-9pm when energy prices are highest. The TOU rates shown in Figure IV-11 are
used as input to the simulation, along with the inputs reflecting the baseline session
information described in Section 5.3.2.

Figure IV-10: Electricity cost corresponding to PG&E’s TOU rate plan

Figure IV-11 shows the performance of our framework using the first performance metric
related to total revenue, cost, and profit generated by the station operator. The
behavioral aware optimization framework led to statistically significant improvements: a
reduction of 16.2% in total cost, an increase of 16.4% in total revenue, resulting in a
significant 50.2% increase in total profit.

79



Figure IV-11: Revenue, cost, and profit comparisons between the baseline and the
optimization framework

The reduction in cost and increase in profit are the result of a combination of factors:
shifting energy delivery from the afternoon peak to cheaper off-peak periods, which is
made possible by longer session durations and more flexibility to the station operator.
Figure IV-12 shows the distribution of total hourly energy delivered between the
baseline and the simulation. As shown in the figures, there is significantly more energy
delivered in the super off-peak period in the optimized framework relative to the
baseline (from 46% to 57%), and significantly less energy delivered during the peak
(from 17% to 9%).
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Figure IV-12: Distribution of energy delivered over the hours of the day - median
simulation

Figure IV-13: Fraction of total energy delivered during peak and off-peak periods -
median simulation
On the user behavior side, an important outcome is that the increase in profit has not
been the result of increasing the hourly rates that users are subjected to. In fact, the
average session hourly rate in the simulation is $1.41/hr, a 6% discount over the
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baseline hourly rates. The increase in revenue is instead a result of a significant
increase in the average plug-in duration, from 3.62 hours in the baseline to 5.3 hours
under optimized pricing, as well as a decrease in the leave rate due to more discounted
prices. Table IV-3 summarizes the session information for the median simulation in more
detail. Overall, these results demonstrate that it is possible to simultaneously increase
operator net revenue, decrease user costs, and concoct demand flexibility by optimizing
both price and power using behavioral models.

Table IV-3: Session characteristics under the optimization framework - median scenario
Total Regular Sessions 23

Total Scheduled Sessions 87

Total Leave Session 22

Average Regular Price $2.24/hr

Average Scheduled Price $1.26/hr

Average Price paid (excluding Leave
sessions)

$1.41/hr

Average Session Duration 5.26 hours

6. Conclusion
In this paper, we introduced and assessed a framework to optimally operate an PEV
charging station by exploiting inefficiencies that are present in the majority of existing
stations. The framework jointly optimizes the pricing strategy and power at charging
stations, and explicitly incorporates the key role that human behavior and decision
making play in the successful operation of those stations by explicitly modeling choice
behaviors and incorporating them into the optimization program. We describe the
experiments used to estimate and validate those behavioral models, namely a discrete
choice model of the choice between two charging options and a Kernel Regression
model for the plug-in duration as a function of the hourly price. We then show, through
simulations, how the framework improves the operation of the charging station by
increasing net revenue and decreasing utility costs for the station operator without
impacting the user experience or increasing the average cost paid by the EV owners.

Our work overcomes important limitations of the existing literature on optimizing PEV
charging station operations. Specifically, there is a lack of a rigorous understanding of
consumer behavior and their preferences in the PEV charging context, owing largely to
the lack of good experimental data. This is particularly true for charging at the
workplace. Our work fills this gap by designing and implementing randomized
experiments to estimate key behaviors and relationships like the choice behavior
between two charging options, and the relationship between plug-in duration and price.
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A natural extension of this work is to implement this framework in real-time and
compare the results to the simulations. This was not possible in this work due to
technical limitations related to the charging infrastructure, which did not allow us to
optimize the prices based on real-time inputs, like energy required and hour of the day.
Such limitations can be overcome with a more flexible control mechanism. Another
methodological contribution that could extend this work is to compare the experimental
results of the price sensitivity of plug-in duration and willingness-to-delay charging to
ones computed using observational data. Charging station and behavior data are
becoming more available with the increased penetration of electric vehicles, and
comparisons of this sort will either validate the use of observational data as a way to
model charging behavior if the results are comparable to the experimental benchmarks,
or emphasize the need for randomized experiments if they are not.

7. Acknowledgement

I would like to thank my collaborators on this paper for their invaluable inputs: Ayse
Tugba Ozturk, Wente Zeng, and Professor Scott Moura. I would also like to thank Teng
Zeng for his insights in the early phases of this research, and Total energies for funding
support.

83



Chapter 5: Conclusion and Future Directions

5.1. Summary of Contributions
In this dissertation, I address a gap that I see in theory and practice between the fields
of travel behavior and causal inference. I discuss a disconnect that manifests in
misinformed statements about causality, erroneous modeling specifications that
undermine the causal interpretation of modeling coefficients, and underuse of causal
identification strategies and other advances in the causal inference literature by travel
behavior researchers.

The dissertation comprised two parts: a conceptual part (Chapter 1), and an empirical
part (Chapters 2, 3, 4). The chapters contribute the following to the transportation
literature:

● The discussion presented in Chapter 1 of the disconnect between the causal
inference and transportation literatures highlights important misconceptions and
erroneous practices in transportation research when estimating and interpreting
modeling parameters causally. Specifically, I distinguish between mediators and
confounders in discussions of endogeneity in travel demand models, and show
how controlling for mediators undermines the causal interpretation of the model
parameters. I then introduce DAGs as a tool that transportation researchers can
leverage to reason about their modeling specifications and avoid the problem of
“bad controls” when the purpose is to interpret the model parameters causally.

● In Chapter 2, I overcome many of the methodological and sample size limitations
of the existing literature on the transport impacts of telecommuting that
predominantly either relies on large cross-sectional data, or small self-reported
travel diaries data. The longitudinal aspect of the data used in this chapter
coupled with the rigorous causal identification strategies I implemented allow me
to control for many observed and unobserved confounders, resulting in more
robust and defensible conclusions. I find overwhelming evidence that
telecommuting results in the generation of about 1 non-commute trip, but that the
net effect of telecommuting on distance traveled is negative, with one day of
telecommuting resulting in a reduction of about 10 km in total daily distance
traveled.

● The question answered in Chapter 3 results in a deeper understanding of the
factors affecting the heterogeneity in the behavioral response to the pandemic
among the U.S. population, as well as the role of vaccines in reversing pandemic
induced mobility trends. The findings in this chapter have important implications
on understanding and predicting human responses during future pandemic
impact and recovery periods.

● In Chapter 4, I design and implement randomized pricing experiments, the gold
standard of causal inference, in the context of user behavior at PEV charging
stations. Research on consumer behavior in the PEV charging context is limited,
data is lacking, and consumer preferences, especially at workplace charging
stations, remain poorly understood. I address this gap, and quantify key
behavioral quantities like the willingness and required incentives to delay
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charging, and the relationship between plug-in duration and hourly prices. Then, I
propose a novel optimization framework that incorporates those learned
behaviors into the optimization objective and significantly improves the
operational efficiency of PEV charging stations. My analysis shows that
incorporating behavioral theory in the optimization framework results in
significantly lower operational costs (up to 17%) and higher net revenues (up to
50%) for the charging station operator compared to the uncontrolled baseline,
without sacrificing the user experience.

5.2. Extensions and Future Directions
This dissertation included conceptual / methodological chapters, as well as
domain-specific empirical chapters. As such, the future directions of the topics explored
in this dissertation will similarly be split into conceptual and domain-specific avenues.

First, on the methodological disconnect between the causal inference and travel
demand modeling literature, I highlighted in this dissertation the misconceptions about
causality in travel demand modeling discussions, the common issue of conditioning on
post-treatment variables, also known as bad controls, distinguishing between
confounders and mediators in modeling specifications, and the lack of rigor in explicitly
specifying the causal design and identification assumptions required for producing valid
causal inferences. An important and highly impactful extension would be to perform a
comprehensive literature review of existing papers that estimate transportation choice
models using observational data, extract the “implied” causal identification assumptions
(ideally in the form of a causal graph) under which the conclusions drawn by the authors
are valid causally, and discuss the validity of such assumptions and graphs. If those
assumptions are not valid, e.g. the graph makes independence assumptions that are
unlikely to hold, the next step is then to write down an alternative, valid causal graph,
estimate the corresponding model based on the causal graph with causality as the goal,
and then look at the change in the causal parameters of interest and the impact of this
change on the research conclusions. This would be a highly impactful research area,
both from a practical and conceptual standpoint. Currently, researchers in transportation
demand modeling seem resistant to critiques (based on personal conversations with
scholars in the field) related to the lack of causality in their frameworks. Performing such
a comprehensive review and being able to quantify the consequences of not adhering to
a rigorous causal framework when developing transportation demand models will force
a more serious discussion in the field on the topic of causality in transportation and the
lack thereof.

Second, on the effect of telecommuting on travel, I showed in Chapter 2 that
telecommuting results in the generation of about 1 non-commute trip for every day of
telecommuting, and that this trip is on average shorter than the two-way commute trip,
meaning that the net effect of telecommuting on total distance traveled is negative. The
chapter also highlighted the power of using a rigorous causal framework in providing
robust and defensible estimates of the causal relationship between telecommuting and
travel. In future extensions, researchers should further investigate any modal
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differences between telecommuting-induced non-commute trips and commute trips in
order to more accurately determine the environmental impacts of telecommuting.
Comparing the different timing of those trips will also prove important in determining
their environmental footprints: trips made during peak congestion hours are more
environmentally costly than off-peak trips. Finally, researchers should extend the
existing literature on the relationship between telecommuting and home-to-work
distance. The COVID-19 pandemic has resulted in a natural experiment where
telecommuting rates have increased across the board: this presents an opportunity to
deal with the endogeneity between telecommuting decisions and home location /
distance from work. Researchers can take advantage of this emerging context to shed
light on this long-standing question in transportation research.

Finally, on the topic of learning and optimizing human behavior at charging stations, I
have shown in this study how one may learn accurate models for choice making
between different charging options, as well as the relationship between plug-in duration
and price using randomized experiments. I also showed, using simulations, how one
may formulate an optimization framework that incorporates those learned behaviors to
significantly improve station efficiency. A natural extension of this work is to implement
this framework in real-time and compare the results to the simulations. This was not
possible in this work due to technical limitations related to the charging infrastructure,
but such limitations can be overcome with a more flexible control mechanism. Another
methodological contribution that could extend this work is to compare the experimental
results of the price sensitivity of plug-in duration and willingness-to-delay charging to
ones computed using observational data. Charging station and behavior data is
becoming more available with the increased penetration of electric vehicles, and
comparisons of this sort will either validate the use of observational data as a way to
model charging behavior if the results are comparable to the experimental benchmarks,
or emphasize the need for randomized experiments if they are not.

5.3. Conclusion
The field of travel demand and behavioral modeling in transportation is often motivated
by a causal objective. The models developed in this field are often used to support
policy evaluations, which are causal evaluations by definition: we are interested in how
the system reacts to external interventions. Despite the prevalence of those causal
applications, the literature on travel demand modeling as a whole still lags behind when
it comes to leveraging the advancements in the causal inference literature, and many
causal inference techniques have yet to enter the field.

My aim in this dissertation was to shed some light on this disconnect, highlight
examples where misconceptions of causality have been made, and give a high level
overview of key causal inference concepts and identification strategies. I also aimed to
practice what I preach, by answering three empirical causal questions where the focus
was explicitly on estimating causal parameters, rather than on fitting predictive models.
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My empirical chapters emphasized the importance of a good causal design and
appropriate data collection, rather than the more commonly observed focus on modeling
complexity. With weak causal designs and limited data, no degree of modeling
complexity can overcome the fundamental problem of causal inference, unless the
modeler is willing to resort to strong and likely implausible assumptions.

The hope is that this dissertation will spark some interest in causal inference as a field
of study within the transportation research community, and will result in serious
discussions of causality in travel demand modeling. I am very confident that the
coupling of the two fields is bound to be beneficial for both: indeed, transportation
demand modelers have made very important contributions to the topic of choice
modeling given its relevance to us, and there is nothing stopping us from making the
same level of contributions to the field of causal inference. Other applied disciplines like
epidemiology, psychology, and political science have already done so, and given the
relevance of our applications in travel demand modeling, we should join and be at the
forefront of this interdisciplinary effort to tackle causality.
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