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Professor Stefano Soatto, Chair

We show that information theoretic quantities can be used to control and describe the

training process of Deep Neural Networks, and can explain how properties, such as invariance

to nuisance variability and disentanglement of semantic factors, emerge naturally in the

learned representation. Through its dynamics, stochastic gradient descent (SGD) implicitly

regularizes the information in the weights, which can then be used to bound the generalization

error through the PAC-Bayes bound. Moreover, the information in the weights can be used

to defined both a topology and an asymmetric distance in the space of tasks, which can then

be used to predict the training time and the performance on a new task given a solution

to a pre-training task. While this information distance models difficulty of transfer in first

approximation, we show the existence of non-trivial irreversible dynamics during the initial

transient phase of convergence when the network is acquiring information, which makes the

approximation fail. This is closely related to critical learning periods in biology, and suggests

that studying the initial convergence transient can yield important insight beyond those that

can be gleaned from the well-studied asymptotics.
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CHAPTER 1

Introduction

You may have seen tigers before, or at least pictures of them. You certainly have seen cats,

likely in different sizes, poses, colors, from different vantage points, under different lighting

conditions, etc. However, if you ever found yourself face-to-face with a feline trying to decide

whether to run for your life, by the time you finish searching for similar images seen in the

past, the decision may have been made for you. Despite having seen many images of cats and

tigers, none may resemble the scene facing you. Hence, storing raw memories and searching

through them to determine present danger does not seem like a viable survival strategy.

What, then, to store in lieu of the data? How does the answer change if we need to solve

more than one task? This work tries to establish a theory of representation learning and

task learning to address these and other related questions.

When we say task, we mean generally a set of decisions we need to take given observed

data. Discriminating cats from tigers is one. Survival is another. Retrieving the data from

storage is yet another. Many tasks can be abstracted as determining the most likely value

of a random variable (cat or tiger? alive or dead? same or not?) given some observed data.

A representation for a task is a function of the data that can be computed and stored in

memory so that, when presented with new data sometime in the future, one can process it

efficiently to accomplish a task. An optimal representation is one that enables accomplishing

a task as well as possible given available data and resources.

The discussion so far entails, without mentioning them explicitly, two different but inter-

twined representations: One is a representation of past data about the task (i.e., the training

set). This is the outcome of learning, and, in a Deep Network Network, which will assume as
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the reference model in this work,1 can be identified to the information stored in the weights

of the network. The other is a representation of a current inputs, which is instead encoded

in the activations of the network.

The two attend different optimality criteria: Weights needs to store useful information

that may be useful for taking future decision, without squandering resources in remembering

spurious correlations or one-time events (Chapter 4). Furthermore, this information needs

to be easily accessible at inference time. Activations, on the other end, needs to represent

essential details of the scene at hand, without squandering resources on useless details, e.g.,

representing tufts in the fur of the tiger (Chapter 2).

This dichotomy of representations creates a fundamental problem: Desirable properties

of the activations concern the representation of future data. However, we can only optimize

a representation of past data (weights). The relation between representations of past and

future data goes to the heart of the issue of learning and generalization: How past experiences

should shape the our perception of the world and create good representations that allow

successfully solving the task (Chapter 4), and continue learning the solution to an ever-

increasing set of tasks we may be interested in.

Information of what, for what, relative to what?

Data reduces uncertainty in the task. If we were to hear a roar, we would be more confident

that the animal in front of us is a tiger, rather than a cat. The amount of uncertainty

reduction is the information the data contains about that task. Reasoning about information

requires specifying information of what (the data), for what (the task), relative to whatever

prior uncertainty was present before the data was available. A representation should, ideally,

be as informative for the task as future data will be, while being invariant to nuisance factors

affecting it. Of course, we do not have access to future data. We do, however, have access

to past data. How informative is the memory of past data for the purpose of making future

1Most of theory is general and does not depend on the specific model, expect for the results in Chapter 4
connecting invariance of the learned representation to the complexity of the weights.

2



decisions? How much information is stored in memory? That depends on how we measure

uncertainty and there are many alternate ways of doing so. We contend in this paper that

what matters is the uncertainty of what we are computing, rather than how we compute it.

The central thesis is that the quantity that matters for deep learning is the information in

the weights.

3



CHAPTER 2

Information in the Activations

By the Data Processing Inequality, no function of the data (representation) can be better

than the data themself for decision and control (task). However, most organisms and algo-

rithms use complex representations that deeply alter the input in order to solve the task.

Even in contemporary deep networks, of the three main three type of operation used – con-

volutions, ReLU non-linearities and max-pooling – the only effect of ReLUs and max-pooling

is to throw away information.

In fact, as we will see in this and the following chapters, keeping all information is far from

optimal in a learning context. Assume, for example, that our task is learning to predict a

label y given an input image x. By the curse of dimensionality, the number of samples would

grow exponentially with the number of dimensions, so that for a relatively low-resolution

256×256 input, we would need ∼ 1028462 samples. Then, how can we learn at all on images?

Fortunately, both the distribution p(x) of natural images and and the usual task distri-

butions p(y|x) are far from being generic distributions, for which the worst case bound would

apply. In particular, three properties can be exploited:

1. Nuisance invariance, i.e. reduced dimension of the input space;

2. Compositionally, i.e. reduced dimension of the representation space (Chapter 3);

3. Complexity prior on the solution, i.e. reduced dimension of hypothesis space (Chap-

ter 4).

This chapter concern the former approach. Nuisances are factors of variation that affect

the data, but are otherwise irrelevant for the task. For example, change of illuminations,

4



point of view, shadows, occlusions, can change the input image, but often do not change the

inference. As it turns out, most of the information in an image is due to nuisance variability

(Sundaramoorthi et al., 2009), hence a good representation should collapse images differing

only for nuisance variability, so to decrease the effective dimensionality of input space and

reduce sample complexity.

Historically, this problem has been tackled by modeling nuisances as group actions, and

finding the respective quotient space in order to obtain a group invariant representation.

This approach however is difficult to carry, as most nuisances correspond to either complex

groups (e.g., the effect of a view-point change is a general diffeomorphism), or cannot be

modeled as groups (occlusions). In this chapter, we introduce a generalization of invariance

in information theoretic terms, and derive a variational loss function that can be used to test

and enforce invariance of the representation. Interestingly, this loss coincides with the Infor-

mation Bottleneck loss that Tishby et al. (1999) introduced as a generalization of minimal

sufficient statistcs. Moreover, it can be interpreted as a regularized version of the standard

cross-entropy loss used in Deep Learning. Using these results, we design an algorithm to ex-

plicitly minimize the loss, which we call Information Dropout, and has a generalized version

of Variational Auto-Encoders as a particular case. Finally, we show that, as a side effect

of introducing noise in the network, we can bias the network toward learning invariant and

disentangled representations. However, the framework has an important drawback in that it

gives a loss function that can be used to test optimality of the representation on test data,

but does not speak of what is the optimal use of the training data, which will be instead the

focus of next chapter.

2.1 Preliminaries

In the general supervised setting, we want to learn the conditional distribution p(y|x) of

some random variable y, which we refer to as the task, given some input data x. In typical

applications, x is often high dimensional (for example an image or a video), while y is low

dimensional, such as a label or a coarsely-quantized location.
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We say that z is a representation of x if z is a stochastic function of x, or equivalently

if the distribution of z is fully described by the conditional p(z|x). In particular we have the

Markov chain y → x→ z. We say that a representation z of x is sufficient for y if y |= x | z,
or equivalently if I(z; y) = I(x; y); it is minimal when I(x; z) is smallest among sufficient

representations.

A nuisance is any random variable that affects the observed data x, but is not informative

to the task we are trying to solve. More formally, a random variable n is a nuisance for the

task y if y |= n, or equivalently I(y;n) = 0. Similarly, we say that the representation z is

invariant to the nuisance n if z |= n, or I(z;n) = 0. When z is not strictly invariant but

it minimizes I(z;n) among all sufficient representations, we say that the representation z is

maximally insensitive to n.

One typical example of nuisance is a group G, such as translation or rotation, acting on

the data. In this case, a deterministic representation f is invariant to the nuisances if and

only if for all g ∈ G we have f(g · x) = f(x). Our definition however is more general in that

it is not restricted to deterministic functions, nor to group nuisances.

An important consequence of the more general definition of nuisances is the following

result, which shows that the observed data x can always be written as a deterministic function

of the task y and of all nuisances n affecting the data.

Proposition 2.1.1 (Task-nuisance decomposition). Given a joint distribution p(x, y), where

y is a discrete random variable, we can always find a random variable n independent of y

such that x = f(y, n), for some deterministic function f .

Proof. Let n ∼ Unif(0, 1) be sampled from the uniform distribution on [0, 1]. We claim

that, for a fixed value of y, there is a function Φy(n) such that x|y = Φy∗(n), where (·)∗
denotes the push-forward map of measures. Given the claim, let Φ(y, n) = (y,Φy(n)). Since

y is a discrete random variable, Φ(y, n) is easily seen to be a measurable function and by

construction (x, y) ∼ Φ∗(y, n). To see the claim, notice that, since there exists a measurable

isomorphism between Rn and R (Theorem 3.1.1 of Berberian (1988)), we can assume without

loss of generality that x ∈ R. In this case, by definition, we can take Φy(n) = F−1
y (n) where

6



Fy(t) = P[x < t | y] is the cumulative distribution function of p(x|y).

2.2 What is an optimal representation?

To simplify the inference process, instead of working directly with the observed high di-

mensional data x, we want to use a representation z that captures and exposes only the

information relevant for the task y. Ideally, such a representation should be:

(i) sufficient for the task y, that is, we want I(y; z) = I(y;x), so that information about

y is not lost. Equivalently, we ask that the Markov chain y → z → x holds;

(ii) minimal among all sufficient representation, that is, we want I(z;x) to be minimal,

so that it retains as little about x as possible, simplifying the role of the classifier;

(iii) invariant to the effect of nuisances I(z;n) = 0, so that the final classifier will not

overfit to spurious correlations present in the training dataset between nuisances n and

labels y;

(iv) maximally disentangled: such a representation, if it exists, would not be unique, since

any bijective mapping preserves all these properties. We can use this to further aim

to make the representation maximally disentangled, i.e., choose the one(s) for which

TC(z) is minimal. This simplifies the classifier rule, since no information will be present

in the higher-order correlations between the components of z.

Finding a representation satisfying all these properties at the same time may seem a

daunting tasks, so we will first focus on two of these properties, minimality and sufficiency,

which can easily be written as a constrained optimization problem. We will then show that

invariance and disentanglement are implied, or can easily be obtained by simply imposing

minimality of the representation.

7



2.3 A Variational Principle for Learning Invariant Representations

Let’s consider first the problem of finding minimal sufficient representations. The two con-

ditions (i) and (ii) together are equivalent to finding a distribution p(z|x) which solves the

constrained optimization problem

minimize I(x; z)

s.t. I(x;y) = I(z;y).

However, this minimization remains difficult in general due to the complexity of the non-

linear constrain. To address this problem, Tishby et al. (1999) considered the relaxed mini-

mization problem given by the corresponding Lagrangian:

L = I(x; y)− I(y; z) + βI(x; z),

which, using the identity I(y; z) = H(y)−H(y|z), and using the fact that I(x; y) and H(y)

do not depend on p(z|x), we can further simplify as

L = H(y|z) + βI(x; z). (2.1)

Here β is a positive constant that manages the trade-off between sufficiency (the perfor-

mance on the task, as measured by the first term) and minimality (the complexity of the

representation, measured by the second term). It is easy to see that, in the limit β → 0+,

this is equivalent to the original problem, where z is a minimal sufficient statistic.

When all random variables are discrete and z = T (x) is a deterministic function of x,

the algorithm proposed by Tishby et al. (1999) can be used to minimize the IB Lagrangian

efficiently. However, no algorithm is known to minimize the IB Lagrangian for non-Gaussian,

high-dimensional continuous random variables. One of our key results is that, when we

restrict to the family of distributions obtained by injecting noise to one layer of a neural

network, we can efficiently approximate and minimize the IB Lagrangian.1 As we will show,

1Since we restrict the family of distributions, there is no guarantee that the resulting representation will
be optimal. We can, however, iterate the process to obtain incrementally improved approximations.
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this process can be effectively implemented through a generalization of the dropout layer

that we call Information Dropout.

To set the stage, we rewrite the IB Lagrangian as a per-sample loss function. Let p(x,y)

denote the true distribution of the data, from which the training set {(xi,yi)}i=1,...,N is

sampled, and let pθ(z|x) and pθ(y|z) denote the unknown distributions that we wish to

estimate, parametrized by θ. Then, we can write the two terms in the IB Lagrangian as

H(y|z) ' Ex,y∼p(x,y)

[
Ez∼pθ(z|x)[− log pθ(y|z)]

]
I(x; z) = Ex∼p(x)[KL(pθ(z|x) ‖ pθ(z))],

where KL denotes the Kullback-Leibler divergence. We can therefore approximate the IB

Lagrangian empirically as

L =
1

N

N∑
i=1

Ez∼p(z|xi)[− log p(yi|z)] + βKL(pθ(z|xi) ‖ pθ(z)). (2.2)

Notice that the first term simply is the average cross-entropy, which is the most commonly

used loss function in deep learning. The second term can then be seen as a regularization

term. In fact, many classical regularizers, like the L2 penalty, can be expressed in the form

of eq. (2.2) (see also Gal and Ghahramani (2015)). In this work, we interpret the KL term

as a regularizer that penalizes the transfer of information from x to z. In the next section,

we discuss ways to control such information transfer through the injection of noise.

Remark (Deterministic vs. stochastic representations). Aside from being easier to work

with, stochastic representations can attain a lower value of the IB Lagrangian than any

deterministic representation. For example, consider the task of reconstructing single random

bit y given a noisy observation x. The only deterministic representations are equivalent to

the either the noisy observation itself or to the trivial constant map. It is not difficult to

check that for opportune values of β and of the noise, neither realize the optimal tradeoff

reached by a suitable stochastic representation.

Remark (Approximate sufficiency). The quantity I(x; y|z) = H(y|z)−H(y|x) ≥ 0 can be

seen as a measure of the distance between p(x, y, z) and the closest distribution q(x, y, z)

9



such that x → z → y is a Markov chain. Therefore, by minimizing eq. (2.1) we find

representations that are increasingly “more sufficient”, meaning that they are closer to an

actual Markov chain.

2.4 Minimal if and only if invariant

The IB Lagrangian in eq. (2.1) only enforces (a trade-off between) sufficiency and minimality

of the representation. What about the other properties? In this section we show that we only

need to enforce (a) sufficiency and (b) minimality, from which invariance and disentanglement

follow naturally thanks to the stacking of noisy layers of computation in deep networks. We

will then show that sufficiency and minimality of the learned representation can also be

promoted easily through implicit or explicit regularization during the training process.

Proposition 2.4.1 (Invariance and minimality). Let n be a nuisance for the task y and let

z be a sufficient representation of the input x. Suppose that z depends on n only through x

( i.e., n→ x→ z). Then,

I(z;n) ≤ I(z;x)− I(x; y).

Moreover, there is a nuisance n such that equality holds up to a (generally small) residual ε

I(z;n) = I(z;x)− I(x; y)− ε,

where ε := I(z; y|n) − I(x; y). In particular 0 ≤ ε ≤ H(y|x), and ε = 0 whenever y is

a deterministic function of x. Under these conditions, a sufficient statistic z is invariant

(maximally insensitive) to nuisances if and only if it is minimal.

Remark 2.4.2. Since ε ≤ H(y|x), and usually H(y|x) = 0 or at least H(y|x)� I(x; z), we

can generally ignore the extra term.

Proof. By hypothesis, we have the Markov chain (y, n)→ x→ z; therefore, by the DPI, we

have I(z; y, n) ≤ I(z;x). The first term can be rewritten using the chain rule as I(z; y, n) =

I(z;n) + I(z; y|n), giving us

I(z;n) ≤ I(z;x)− I(z; y|n).

10



Now, since y and n are independent, I(z; y|n) ≥ I(z; y). In fact,

I(z; y|n) = H(y|n)−H(y|z, n)

= H(y)−H(y|z, n)

≥ H(y)−H(y|z) = I(y; z).

Substituting in the inequality above, and using the fact that z is sufficient, we finally obtain

I(z;n) ≤ I(z;x)− I(z; y) = I(z;x)− I(x; y).

Moreover, let n be as in Lemma 2.1.1. Then, since x is a deterministic function of y and n,

we have

I(z;x) = I(z;n, y) = I(z;n) + I(z; y|n),

and therefore

I(z;n) = I(z;x)− I(z; y|n) = I(z;x)− I(x; y)− ε.

with ε defined as above. Using the sufficiency of z, the previous inequality for I(z; y|n), the

DPI, we get the chain of inequalities

ε = I(z; y|n)− I(x; z) ≤ I(x; y|n)− I(x; y)

≤ H(y|n)−H(y|n, z)−H(y) +H(y|x)

≤ H(y)−H(y|n, z)−H(y) +H(y|x)

= H(y|x)−H(y|n, z)

≤ H(y|x)

from which we obtain the desired bounds for ε.

An important consequence of this proposition is that we can construct invariants by sim-

ply reducing the amount of information z contains about x, while retaining the minimum

amount I(z;x) that we need for the task y. This provides the network a way to auto-

matically learn invariance to complex nuisances, which is complementary to the invariance

imposed by the architecture. Specifically, one way of enforcing minimality explicitly, and

hence invariance, is through the IB Lagrangian.
11



Corollary 2.4.3 (Invariants from the Information Bottleneck). Minimizing the IB La-

grangian

L(p(z|x)) = H(y|z) + β I(z;x),

in the limit β → 0, yields a sufficient invariant representation z of the test datum x for the

task y.

Hence, remarkably, the IB Lagrangian can be seen as the standard cross-entropy loss,

plus a regularizer I(z;x) that promotes invariance, and we indeed we will see how this can

be done explicitly in a DNN. However, in addition to modifying the cost function, this shows

that invariance can also be fostered implicitly by choice of architecture:

Corollary 2.4.4 (Bottlenecks promote invariance). Suppose we have the Markov chain of

layers

x→ z1 → z2,

and suppose that there is a communication or computation bottleneck between z1 and z2 such

that I(z1; z2) < I(z1;x). Then, if z2 is still sufficient, it is more invariant to nuisances than

z1. More precisely, for all nuisances n we have I(z2;n) ≤ I(z1; z2)− I(x; y).

Such a bottleneck can happen for example because dim(z2) < dim(z1), e.g., after a

pooling layer, or because the channel between z1 and z2 is noisy, e.g., because of dropout.

Proposition 2.4.5 (Stacking increases invariance). Assume that we have the Markov chain

of layers

x→ z1 → z2 → . . .→ zL,

and that the last layer zL is sufficient of x for y. Then zL is more insensitive to nuisances

than all the preceding layers.

Notice, however, that the above corollary does not simply imply that the more layers the

merrier, as it assumes that one has successfully trained the network (zL is sufficient), which

becomes increasingly difficult as the size grows. Also note that in some architectures, such

as ResNets (He et al., 2016), the layers do not necessarily form a Markov chain because of

skip connections; however, their “blocks” still do.
12



2.5 Learning disentangled representations

In addition to sufficiency and minimality, “disentanglement of hidden factors” is often cited

as a desirable property of a representation (Bengio et al., 2013), but seldom formalized.

We may think that the observed data is generated by a complex interplay of independent

causes, or factors. Ideally, the components of the learned representation should capture

these independent factors by disentangling the correlations in the observed data. We can

then quantify disentanglement by measuring the total correlation (Watanabe, 1960), also

known as multiinformation (Studenỳ and Vejnarová, 1998),2 defined as

TC(z) := KL(q(z) ‖∏j qj(zj)).

Notice that the components of z are mutually independent if and only if TC(z) is zero.

Adding this as a penalty in the IB Lagrangian, with a factor γ yields

L =
1

N

N∑
i=1

Ez∼p(z|xi)[− log p(yi|z)] + βKL(pθ(z|xi) ‖ pθ(z)) + γ TC(z). (2.3)

In general, minimizing this augmented loss is intractable, since to compute both the KL

term and the total correlation, we need to know the marginal distribution pθ(z), which is

not easily computable. However, the following proposition, that we prove in ??, shows that

if we choose γ = β, then the problem simplifies, and can be easily solved by adding an

auxiliary variable.

Proposition. Let z = (z1, . . . , zn) be a discrete random variable (the continuous case is

analogous), let p(z|x) be a generic probability distribution, and let q(z) =
∏n

i=1 qi(zi) be a

factorized prior distribution. Then, for any function F (p), a minimization problem in the

form

minimizep,q F (p) + βEx[KL(p(z|x) ‖ q(z))],

2 Multi-information would be a more common name for this quantity: We chose to use Total Correlation
both for historical reasons, after its introduction by Watanabe (1960), and to emphasize the relation with
disentanglement also in recent work on unsupervised learning (Steeg, 2017). Other measures of independence
are of course possible. Total Correlation has the advantage of being enforced naturally when optimizing other
information-theoretic quantities.
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is equivalent to

minimizep F (p) + β {Ip(z;x) + TCp(z)} ,

where Ip(z;x) is the mutual information and TCp(z) is the total correlation of z, assuming

z ∼ p(z).

Proof. First, notice that for any p(z|x) we have

KL(p(z) ‖∏i p(zi)) = min
q(z1),...,q(zn)

E
[

log
p(z|x)∏
i q(zi)

]
,

since for any p(z) and q(z) =
∏

i q(zi) we have

KL(p(z) ‖∏i p(zi)) = E
[
log

p(z)∏
i p(zi)

]
= E

[
log

p(z)∏
i q(zi)

·
∏

i q(zi)∏
i p(zi)

]
= E

[
log

p(z)∏
i q(zi)

]
−

n∑
i=1

KL(p(zi) ‖ q(zi))

≤ E
[
log

p(z)∏
i q(zi)

]
,

and equality trivially holds when q(zi) = p(zi). Using the above identity, we now have

I(x; z) + KL(p(z|x) ‖∏i p(zi|x)) = min
q(z1),...,q(zn)

E
[

log
p(z|x)

p(z)
· p(z)∏

i q(zi)

]
= min

q(z1),...,q(zn)
E
[
log

p(z|x)∏
i q(zi)

]
.

In other words, minimizing the standard IB Lagrangian assuming that the activations are

independent, i.e. having q(z) =
∏

i qi(zi), is equivalent to enforcing disentanglement of the

hidden factors. It is interesting to note that this independence assumption is already adopted

often by practitioners on grounds of simplicity, since the actual marginal p(z) =
∫
x
p(x, z)dx

is often incomputable. That using a factorized model results in “disentanglement” was also

observed empirically by Higgins et al. (2017b), and we use it extensively in Chapter 3.

In view of the previous proposition, from now on we will assume that the activations are

independent and ignore the total correlation term.
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2.6 Learning optimal representations through noisy computations

Guided by the analysis in the previous sections, and to emphasize the role of stochasticity, we

consider representations z obtained by computing a deterministic map f(x) of the data (for

instance a sequence of convolutional and/or fully-connected layers of a neural network), and

then multiplying the result component-wise by a random sample ε drawn from a parametric

noise distribution pα with unit mean and variance that depends on the input x:

ε ∼ pα(x)(ε),

z = ε� f(x),

where “�” denotes the element-wise product. Notice that, if pα(x)(ε) is a Bernoulli distribu-

tion rescaled to have mean 1, this reduces exactly to the classic binary dropout layer. As we

discussed in Section 2.10, there are also variants of dropout that use different distributions.

x f(x) z = ε� f(x)

ε

y

A natural choice for the distribution pα(x)(ε), which also simplifies the theoretical analysis,

is the log-normal distribution pα(x)(ε) = logN (0, α2
θ(x)). Once we fix this noise distribution,

given the above expression for z, we can easily compute the distribution pθ(z|x) that appears

in eq. (2.2). However, to be able to compute the KL-divergence term, we still need to fix a

prior distribution qθ(z). The choice of this prior largely depends on the expected distribution

of the activations f(x). Recall that, by Section 2.5, we can assume that all activations are

independent, thus simplifying the computation. Now, we concentrate on two of the most

common activation functions, the rectified linear unit (ReLU), which is easy to compute and

works well in practice, and the Softplus function, which can be seen as a strictly positive

and differentiable approximation of ReLU.

A network implemented using ReLUs and batch normalization has the remarkable prop-

erty of being scale-invariant, meaning that multiplying all weights, biases, and activations
15
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Figure 2.1: Comparison of the empirical distribution p(z) of the post-noise activations with

our proposed prior when using: (a) ReLU activations, for which we propose a log-uniform

prior, and (b) Softplus activations, for which we propose a log-normal prior. In both cases,

the empirical distribution approximately follows the proposed prior. Both histograms where

obtained from the last dropout layer of the All-CNN-32 network described in ??, trained on

CIFAR-10.

by a constant does not change the final result. Therefore, from a theoretical point of view,

it would be desirable to use a scale-invariant prior. The only such prior is the improper

log-uniform, q(log(z)) = c, or equivalently q(z) = c/z, which was also suggested by Kingma

et al. (2015), but as a prior for the weights of the network, rather than the activations. Since

the ReLU activations are frequently zero, we also assume q(z = 0) = q0 for some constant

0 ≤ q0 ≤ 1. Therefore, the final prior has the form q(z) = q0δ0(z)+c/z, where δ0 is the Dirac

delta in zero. In Figure 2.1a, we compare this prior distribution with the actual empirical

distribution p(z) of a network with ReLU activations.

In a network implemented using Softplus activations, a log-normal is a good fit of

the distribution of the activations. This is to be expected, especially when using batch-

normalization, since the pre-activations will approximately follow a normal distribution with

zero mean, and the Softplus approximately resembles a scaled exponential near zero. There-

fore, in this case we suggest using a log-normal distribution as our prior q(z). In Figure 2.1b,

we compare this prior with the empirical distribution p(z) of a network with Softplus acti-

vations.

Using these priors, we can finally compute the KL divergence term in eq. (2.2) for both
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ReLU activations and Softplus activations.

Proposition 2.6.1 (Information dropout cost for ReLU). Let z = ε ·f(x), where ε ∼ pα(ε),

and assume p(z) = qδ0(z) + c/z. Then, assuming f(x) 6= 0, we have

KL(pθ(z|x) ‖ p(z)) = −H(pα(x)(log ε)) + log c

In particular, if pα(ε) is chosen to be the log-normal distribution pα(ε) = logN (0, α2
θ(x)), we

have

KL(pθ(z|x) ‖ p(z)) = − logαθ(x) + const. (2.4)

If instead f(x) = 0, we have

KL(pθ(z|x) ‖ p(z)) = − log q.

Proof. Since the measures Pθ(z|x) and Pθ(z) are not absolutely continuous with respect

to the Lebesgue measure, it will be convenient to use the more general definition of KL

divergence KL(P (z) ‖ Q(z)) :=
∫

log dP
dQ
dP , where we assume that P � Q, so that the

density dP/dQ exists. Recall that the KL-divergence is invariant under invertible parameter

transformations, that is, KL(P (z) ‖ Q(z)) = KL(P (ψ(z)) ‖ Q(ψ(z)) for any invertible

transformation ψ(z). Let’s first consider the case f(x) 6= 0, in which case we also have z 6= 0

almost surely. Since p(log z) = c for z > 0, we can write

dP (log z|x)

dP (log z)
= pα(x)(log ε)/c.

Therefore, we have

KL(Pθ(z|x) ‖ Pθ(z)) = KL(Pθ(log z|x) ‖ Pθ(log z))

=

∫
log

(
dPθ(log z|x)

dPθ(log z)

)
pθ(log z|x)dz

=

∫
log
(
pα(x)(log ε)

)
pα(x)(log ε)dε− log c

=−H(pα(x)(log ε))− log c,

which gives us the first statement. Now, notice that if pα(z)(ε) = logN (0, α2
θ(x)), then by

definition we have pα(x)(log ε) = N (0, α2
θ(x)). We can then use the known formula for the
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entropy of a Gaussian distribution to obtain

H(N (0, α)) = logαθ(x) +
1

2
log(2πe),

which gives us the second statement.

Finally, consider the case f(x) = 0, in which case z = 0, and therefore p(z|x) reduces to

the singular distribution p(z|x) = δ0(z). Again, the measure P (z|x) is absolutely continuous

with respect to P (z), and we have dP (z|x)/dP (z) = 1/q if z = 0 and dP (z|x)/dP (z) = 0 if

z 6= 0. We then readily have KL(pθ(z|x) ‖ p(z)) =
∫

log dP (z|x)
dP (z)

dP = − log q.

Proposition 2.6.2 (Information dropout cost for Softplus). Let z = ε · f(x), where ε ∼
pα(ε) = logN (0, α2

θ(x)), and assume pθ(z) = logN (µ, σ2). Then, we have

KL(pθ(z|x) ‖ p(z)) =
1

2σ2

(
α2(x) + µ2

)
− log

α(x)

σ
− 1

2
. (2.5)

Proof. Since the KL-divergence is invariant for invertible reparametrizations (as in the proof

of the previous proposition), the divergence between two log-normal distributions is equal to

the divergence between the corresponding normal distributions. Therefore, using the known

formula for the KL divergence of normals, we get the desired result.

Substituting the expression for the KL divergence in eq. (2.4) inside eq. (2.2), and ignoring

for simplicity the special case f(x) = 0, we obtain the following loss function for ReLU

activations

L =
1

N

N∑
i=1

Ez∼pθ(z|xi)[log p(yi|z)] + β logαθ(xi), (2.6)

and a similar expression for Softplus. Notice that the first expectation can be approximated

by sampling (in the experiments we use one single sample, as customary for dropout), and

is just the average cross-entropy term that is typical in deep learning. The second term,

which is new, penalizes the network for choosing a low variance for the noise, i.e. for letting

more information pass through to the next layer. This loss can be optimized easily using

stochastic gradient descent and the reparametrization trick of Kingma and Welling (2014)

to back-propagate the gradient through the sampling operation.
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2.7 Connections with Variational Auto-Encoders and ICA

We now outline some important connections between the Information Dropout method,

which we just introduced, Variational Autoencoders (VAEs) (Kingma and Welling, 2014),

and Independent Component Analysis (ICA) (Comon, 1994; Bell and Sejnow, 1995).

Variational autoencoders aim to reconstruct, given a training dataset D = {xi}, a latent

random variable z such that the observed data x can be thought as being generated by the,

usually simpler, variable z through some unknown generative process pθ(x|z). In practice,

this is done by minimizing the negative variational lower-bound to the marginal log-likelihood

of the data

L(θ) =
1

N

N∑
i=1

Ez∼pθ(z|xi)[− log pθ(xi|z)] + KL(pθ(z|xi) ‖
∏
i

qθ(zi)),

where the optimization is joint over the factorized prior qθ(z), which is often assumed to be

factorized, and the posterior pθ(z|x). The optimization can now be performed easily through

sampling using the SGVB method of Kingma and Welling (2014).

We now show that this procedure can be seen as a special case of Information Dropout:

Consider again the loss in eq. (2.3) in the special case y = x, that is, when the task is

reconstruction of the input:

L =
1

N

N∑
i=1

Ez∼p(z|xi)[− log p(xi|z)] + βKL(pθ(z|xi) ‖ pθ(z)) + γ TC(z). (2.7)

By Section 2.5, in the special case β = γ, this reduces to

L(θ) =
1

N

N∑
i=1

Ez∼pθ(z|xi)[− log pθ(xi|z)] + βKL(pθ(z|xi) ‖
∏
i

qθ(zi)), (2.8)

where again the optimization is joint over prior qθ(z) and posterior pθ(z|x), leading to the

same optimization problem of a VAE when β = 1, that is when all quantities have the same

weight in the loss function. This derivation also provides some additional insights: when

using a factorized prior, a VAE will try to find a representation of the data which is sufficient

for reconstruction (cross-entropy term), maximally compressed (KL term) and disentangled

(total correlation term). We can also see that, while using instead a non factorized prior
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Figure 2.2: Plot of the total KL-divergence at each spatial location in the first three Information

Dropout layers (of sizes 48x48, 24x24 and 12x12 respectively) of All-CNN-96 (Springenberg et al.,

2014) trained on Cluttered MNIST with different values of β. This measures how much information

from each part of the image the Information Dropout layer is transmitting to the next layer. For

small β information about the nuisances is transmitted to the next layers, while for higher values of β

the dropout layers drop the information as soon as the receptive field is big enough to recognize it as

a nuisance. The resulting representation is thus more robust to nuisances, improving generalization.

Notice that the noise added by Information Dropout is tailored to the specific sample, to the point

that the digit can be localized from the noise mask.

increases the complexity of the optimization problem, it spares the VAE from having to find

a disentangled representation, allowing it to obtain a better compression result Kingma et al.

(2016). In the same setting as eq. (2.8) we can use larger values of β to force Information

Dropout, and hence, in the case of reconstruction, a VAE, to recover representations that

are increasingly more compressed and also disentangled. This fact is implicitly used by

Higgins et al. (2017b), that derive the loss in eq. (2.8) taking inspiration from experimental

evidence in neuroscience. They empirically verify that, as expected from this theoretical

derivation, for higher values of β the representation z recovered by the VAE is increasingly

more disentangled.

Equation (2.7) has two other important cases: As we have already seen, the case γ = 0

and β > 0 is the standard Information Bottleneck Lagrangian: A VAE trained with this

loss will focus purely on compression of the input, without squandering resources to also
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disentangle the representation. In the case β = 0 and γ > 0 we obtain instead the standard

loss function of Independent Component Analysis (ICA), whereby we try to reconstruct a

perfectly disentangled representation of the data, without any constraint on its complexity

(quantity of information). While both cases are important on their own right, Section 2.5

does not apply for them, thus the loss function does not generally simplify and cannot be

computed in closed form.

2.8 Experiments

The goal of the experiments in this chapter is to validate the theory, by showing that indeed

increasing noise level yields reduced dependency on nuisance factors, a more disentangled

representation, and that by adapting the noise level to the data we can better exploit archi-

tectures of limited capacity.

To this end, we first compare Information Dropout with the Dropout baseline on several

standard benchmark datasets using different networks architecture, and highlight a few key

properties. As Kingma et al. (2015) also notice, letting the variance of the noise grow

excessively leads to poor generalization. To avoid this problem, we constraint α(x) < 0.7, so

that the maximum variance of the log-normal error distribution will be approximately 1, the

same as binary dropout when using a drop probability of 0.5. In all experiments we divide

the KL-divergence term by the number of training samples, so that for β = 1 the scaling of

the KL-divergence term in similar to the one used by Variational Dropout (see Section 2.10).

Cluttered MNIST. To visually asses the ability of Information Dropout to create

a representation that is increasingly insensitive to nuisance factors, we train an All-CNN

network (Springenberg et al., 2014) for classification on a Cluttered MNIST dataset (Mnih

et al., 2014), consisting of 96 × 96 images containing a single MNIST digit together with

21 distractors. The dataset is divided in 50,000 training images and 10,000 testing images.

As shown in Figure 4.5, for small values of β, the network lets through both the objects

of interest (digits) and distractors, to upper layers. By increasing the value of β, we force

the network to disregard the least discriminative components of the data, thereby building
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Figure 2.3: (a) Average classification error on MNIST over 3 runs of several dropout methods

applied to a fully connected network with three hidden layers and ReLU activations. Information

dropout outperforms binary dropout, especially on smaller networks, possibly because dropout

severely reduces the already limited capacity of the network, while Information Dropout can adapt

the amount of noise to the data and the size of the network. Information dropout also outperforms

a dropout layer that uses constant log-normal noise with the same variance, confirming the benefits

of adaptive noise. (b) Classification error on CIFAR-10 for several dropout methods applied to the

All-CNN architecture using Softplus activations.

a better representation for the task. This behavior depends on the ability of Information

Dropout to learn the structure of the nuisances in the dataset which, unlike other methods,

is facilitated by the ability to select noise level on a per-sample basis.

Occluded CIFAR. Occlusions are a fundamental phenomenon in vision, for which it is

difficult to hand-design invariant representations. To assess that the approximate minimal

sufficient representation produced by Information Dropout has this invariance property, we

created a new dataset by occluding images from CIFAR-10 with digits from MNIST (Fig-

ure 2.4). We train the All-CNN network to classify the CIFAR image. The information

relative to the occluding MNIST digit is then a nuisance for the task, and therefore should

be excluded from the final representation. To test this, we train a secondary network to clas-

sify the nuisance MNIST digit using only the the representation learned for the main task.

When training with small values of β, the network has very little pressure to limit the effect

of nuisances in the representation, so we expect the nuisance classifier to perform better. On

the other hand, increasing the value of β we expect its performance to degrade, since the
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Figure 2.4: (Left) Samples from our Occluded CIFAR dataset. (Right) Plot of the testing

error on the main task (classifying the CIFAR image) and on the nuisance task (classifying

the occluding MNIST digit) as β varies. For both tasks, we use the same representation of

the data trained for the main task using Information Dropout. For larger values of β the

representation is increasingly more invariant to nuisances, making the nuisance classification

task harder, but improving the performance on the main task by preventing overfitting. For

the nuisance task, we test using the learned noisy representation of the data, since we are

interested specifically in the effects of the noise. For the main task, we show the result both

using the noisy representation (N), and the deterministic representation (D) obtained by

disabling the noise at test time.
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representation will become increasingly minimal, and therefore invariant to nuisances. The

results in Figure 2.4 confirm this intuition.

MNIST and CIFAR-10. Similar to Kingma et al. (2015), to see the effect of Infor-

mation Dropout on different network sizes and architectures, we train on MNIST a network

with 3 fully connected hidden layers with a variable number of hidden units, and we train on

CIFAR-10 (Krizhevsky and Hinton, 2009) an All-CNN network (Springenberg et al., 2014),

using a variable percentage of all the filters. The fully connected network was trained for 80

epochs, using stochastic gradient descent with momentum with initial learning rate 0.07 and

dropping the learning rate by 0.1 at 30 and 70 epochs. The CNN was trained for 160 epochs

with initial learning rate 0.1 and dropping the learning rate by 0.1 at 80 and 120 epochs. We

show the results in Figure 2.3. Information Dropout is comparable or outperforms binary

dropout, especially on smaller networks. A possible explanation is that dropout severely

reduces the already limited capacity of the network, while Information Dropout can adapt

the amount of noise to the data and to the size of the network so that the relevant informa-

tion can still flow to the successive layers. Figure 6.5 shows how the amount of transmitted

information adapts to the size and hierarchical level of the layer.

Disentangling. As we saw Section 2.6, in the case of Softplus activations, the logarithm

of the activations approximately follow a normal distribution. We can then approximate

the total correlation using the associated covariance matrix Σ. Precisely, we have TC(z) =

− log |Σ−1
0 Σ|, where Σ0 = diag Σ is the variance of the marginal distribution. In Figure 2.5

we plot the testing error and the total correlation of the representation learned by All-CNN-

32 on CIFAR-10 when using 25% of the filters for different values of β. As predicted, when β

increases the total correlation diminishes, that is, the representation becomes disentangled,

and the testing error improves, since we prevent overfitting. When β is to large, information

flow is insufficient, and the testing error rapidly increases.
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Figure 2.5: For different values of β, plot of the test error and total correlation of the final

layer of the All-CNN-32 network with Softplus activations trained on CIFAR-10 with 25%

of the filters. Increasing β the test error decreases (we prevent overfitting) and the represen-

tation becomes increasingly disentangled. When β is too large, it prevents information from

passing through, jeopardizing sufficiency and causing a drastic increase in error.
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Figure 2.6: Plots of (Left) the total information transmitted through the two dropout

layers of a All-CNN-32 network with Softplus activations trained on CIFAR and (Right)

the average quantity of information transmitted through each unit in the two layers. From

(Left) we see that the total quantity of information transmitted does not vary much with

the number of filters and that, as expected, the second layer transmits less information than

the first layer, since prior to it more nuisances have been disentangled and discarded. In

(Right) we see that when we decrease the number of filters, we force each single unit to

let more information flow (i.e. we apply less noise), and that the units in the top dropout

layer contain on average more information relevant to the task than the units in the bottom

dropout layer.
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2.9 Discussion

We relate the Information Bottleneck principle and its associated Lagrangian to seemingly

unrelated practices and concepts in deep learning, including dropout, disentanglement, vari-

ational autoencoding. For classification tasks, we show how an optimal representation can

be achieved by injecting multiplicative noise in the activation functions, and therefore into

the gradient computation during learning.

A special case of noise (Bernoulli) results in dropout, which is standard practice originally

motivated by ensemble averaging rather than information-theoretic considerations. Better

(adaptive) noise models result better exploitation of limited capacity, leading to a method

we call Information Dropout. We also establish connections with variational inference and

variational autoencoding, and show that “disentangling of the hidden causes” can be mea-

sured by total correlation and achieved simply by enforcing independence of the components

in the representation prior.

So, what may be done by necessity in some computational systems (noisy computation),

turns out to be beneficial towards achieving invariance and minimality. Analogously, what

has been done for convenience (assuming a factorized prior) turns out to be the beneficial

towards achieving “disentanglement.”

Another interpretation of Information Dropout is as a way of biasing the network to-

wards reconstructing representations of the data that are compatible with a Markov chain

generative model, making it more suited to data coming from hierarchical models, and in

this sense is complementary to architectural constraint, such as convolutions, that instead

bias the model toward geometric tasks.

It should be noticed that injecting multiplicative noise to the activations can be thought of

as a particular choice of a class of minimizers of the loss function, but can also be interpreted

as a regularization terms added to the cost function, or as a particular procedure utilized to

carry out the optimization. So the same operation can be interpreted as either of the three

key ingredients in the optimization: the function to be minimized, the family over which to

minimize, and the procedure with which to minimize. This highlight the intimate interplay
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between the choice of models and algorithms in deep learning.

2.10 Related work

The main contribution of this chapter is to establish how two seemingly different areas of

research, namely dropout methods to prevent overfitting, and the study of optimal represen-

tations, can be linked through the Information Bottleneck principle.

Dropout was introduced by Srivastava et al. (2014). The original motivation was that

by randomly dropping the activations during training, we can effectively train an ensemble

of exponentially many networks, that are then averaged during testing, therefore reducing

overfitting. Wang and Manning (2013) suggested that dropout could be seen as performing

a Monte-Carlo approximation of an implicit loss function, and that instead of multiplying

the activations by binary noise, like in the original dropout, multiplicative Gaussian noise

with mean 1 can be used as a way of better approximating the implicit loss function. This

led to a comparable performance but faster training than binary dropout.

The interpretation of deep neural network as a way of creating successively better rep-

resentations of the data has already been suggested and explored by many. Most recently,

Tishby and Zaslavsky (2015) put forth an interpretation of deep neural networks as creating

sufficient representations of the data that are increasingly minimal. In parallel simultane-

ous work, Alemi et al. (2016) approximate the information bottleneck similarly to us, but

focus on empirical analysis of robustness to adversarial perturbations rather than tackling

disentanglement, invariance and minimality analytically.

Sufficient dimensionality reduction (Adragni and Cook, 2009) and Optimal Component

Analysis (Liu et al., 2003) follow a similar idea to us, in that they focus on finding the smallest

(usually linear) sufficient statistic of the data that is sufficient for a given task. However,

while they define small in term of dimension of the representation, we focus on finding a

(non-linear) representation with minimal information content, but whose dimension can, in

fact, be even larger than the original data. By allowing large non-linear representations,

we can exploit the full representational power of deep networks, while the minimality of
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the information content still promotes nuisance invariance and prevents overfitting. Our

framework also has connections with Independent Component Analysis (ICA).

Some have focused on creating representations that are maximally invariant to nuisances,

especially when they have the structure of a (possibly infinite-dimensional) group acting on

the data, like Sundaramoorthi et al. (2009), or, when the nuisance is a locally compact

group acting on each layer, by successive approximations implemented by hierarchical con-

volutional architectures, like Anselmi et al. (2016) and Bruna and Mallat (2011). In these

cases, which cover common nuisances such as translations and rotations of an image (affine

group), or small diffeomorphic deformations due to a slight change of point of view (group

of diffeomorphisms), the representation is equivalent to the data modulo the action of the

group. However, when the nuisances are not a group, as is the case for occlusions, it is not

possible to achieve such equivalence, that is, there is a loss. To address this problem, Soatto

and Chiuso (2016) defined optimal representations not in terms of maximality, but in terms

of sufficiency, and characterized representations that are both sufficient and invariant. They

argue that the management of nuisance factors common in visual data, such as changes of

viewpoint, local deformations, and changes of illumination, is directly tied to the specific

structure of deep convolutional networks, where local marginalization of simple nuisances at

each layer results in marginalization of complex nuisances in the network as a whole.

Our work fits in this last line of thinking, where the goal is not equivalence to the

data up to the action of (group) nuisances, but instead sufficiency for the task. Our main

contribution in this sense is to show that injecting noise into the layers, and therefore using a

non-deterministic function of the data, can actually simplify the theoretical analysis and lead

to disentangling and improved insensitivity to nuisances. This is an alternate explanation

to that put forth by the references above.
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CHAPTER 3

Disentangled and compositional representations

A critical feature of biological intelligence is its capacity for life-long learning (Cichon and

Gan, 2015) – the ability to acquire new knowledge from a sequence of experiences to solve

progressively more tasks, while maintaining performance on previous ones. This, however,

remains a serious challenge for current deep learning approaches. While current methods are

able to outperform humans on many individual problems (Silver et al., 2016; Mnih et al.,

2015; He et al., 2015), these algorithms suffer from catastrophic forgetting : Training on a

new task or environment can be enough to degrade their performance from super-human to

chance level (Rusu et al., 2016). Another critical aspect of life-long learning is the ability

to sensibly reuse previously learnt representations in new domains (positive transfer). For

example, knowing that strawberries and bananas are not edible when they are green could

be useful when deciding whether to eat a green peach in the future. Finding semantic

homologies between visually distinctive domains can remove the need to learn from scratch

on every new environment and hence help with data efficiency – another major drawback of

current deep learning approaches (Garnelo et al., 2016; Lake et al., 2016).

In this chapter we show how a disentangled representations, which we discussed in Chap-

ter 2, can be used in a life-long learning, exploiting this setting to learn shared representations

across domains where applicable. The proposed Variational Autoencoder with Shared Em-

beddings (VASE, see fig. 3.1B) automatically detects shifts in the training data distribution

and uses this information to allocate spare latent capacity to novel dataset-specific disentan-

gled representations, while reusing previously acquired representations of latent dimensions

where applicable. We use latent masking and a generative “dreaming” feedback loop (sim-

ilar to Ramapuram et al. (2017); Shin et al. (2017); Seff et al. (2017); Ans and Rousset
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A CB

Figure 3.1: A: Schematic representation of the life-long learning data distribution. Each

dataset/environment corresponds to a cluster s. Data samples x constituting each cluster can

be described by a local set of coordinates (data generative factors zn). Different clusters may

share some data generative factors. B: VASE model architecture C: ConContinSchematic

of the “dreaming” feedback loop. We use a snapshot of the model with the old parameters

(φold, θold) to generate an imaginary batch of data xold for a previously experienced dataset

sold. While learning in the current environment, we ensure that the representation is still

consistent on the hallucinated “dream” data, and can reconstruct it (see red dashed lines).

(1997)) to avoid catastrophic forgetting. Furthermore, we demonstrate that the pressure

to disentangle endows VASE with a number of useful properties: 1) dealing sensibly with

ambiguous inputs; 2) learning richer representations through imagination-based exploration;

3) performing semantically meaningful cross-domain inference by ignoring irrelevant aspects

of surface-level appearance.

3.1 Problem formalization and implementation

Problem formalisation

We assume that there is an a priori unknown set S = {s1, s2, ..., sK} of K environments

which, between them, share a set Z = {z1, z2, ..., zN} of N independent data generative

factors. We assume z ∼ N (0, I). Since we aim to model piece-wise stationary data, it is

reasonable to assume s ∼ Cat(π1,...,K), where πk is the probability of observing environment

sk. Two environments may use the same generative factors but render them differently,

or they may use a different subset of factors altogether. Given an environment s, and an
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environment-dependent subset Zs ⊆ Z of the ground truth generative factors, it is possible

to synthesise a dataset of images xs ∼ p(·|zs, s). In order to keep track of which subset of the

N data generative factors is used by each environment s to generate images xs, we introduce

an environment-dependent mask as with dimensionality |a| = N , where asn = 1 if zn ∈ Zs

and zero otherwise. Hence, we assume as ∼ Bern(ωs1,...,N), where ωsn is the probability that

factor zn is used in environment s. This leads to the following generative process (where “�”
is element-wise multiplication):

z ∼ N (0, I), s ∼ Cat(π1,...,K), as ∼ Bern(ωs1,...,N),

zs = as � z, xs ∼ p(· | zs, s)
(3.1)

Intuitively, we assume that the piece-wise stationary observed data x can be split into

clusters (environments s) (note evidence for similar experience clustering from the animal

literature (Auchter et al., 2017)). Each cluster has a set of standard coordinate axes (a subset

of the generative factors z chosen by the latent mask as) that can be used to parametrise the

data in that cluster (fig. 3.1A). Given a sequence x = (xs1 , xs2 , . . .) of datasets generated

according to the process in eq. (3.1), where sk ∼ p(s) is the k-th sample of the environ-

ment, the aim of life-long representation learning can be seen as estimating the full set of

generative factors Z ≈ ⋃
k q(zsk |xsk) from the environment-specific subsets of z inferred

on each stationary data cluster xsk . Henceforth, we will drop the subscript k for simplicity

of notation.

Inferring the data generative factors

Observations xs cannot contain information about the generative factors zn that are not

relevant for the environment s. Hence, we use the following form for representing the data

generative factors:

q(zs|xs) = as � N (µ(x), σ(x)) + (1− as) � N (0, I). (3.2)

Note that µ and σ in eq. (3.2) depend only on the data x and not on the environment s.

This is important to ensure that the semantic meaning of each latent dimension zn remains
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consistent for different environments s. We model the representation q(zs|xs) of the data

generative factors as a product of independent normal distributions to match the assumed

prior p(z) ∼ N (0, I).

In order to encourage the representation q(zs|xs) to be semantically meaningful, we

encourage it to capture the generative factors of variation within the data xs by following

the MDL principle. We aim to find a representation zs that minimises the reconstruction

error of the input data xs conditioned on zs under a constraint on the quantity of information

in zs. This leads to the following loss function:

LMDL(φ, θ) = Ezs∼qφ(·|xs)[− log pθ(x | zs, s)]︸ ︷︷ ︸
Reconstruction error

+ γ |KL (qφ(zs|xs)||p(z))︸ ︷︷ ︸
Representation capacity

− C︸︷︷︸
Target

|2 (3.3)

The loss in eq. (3.3) is closely related to the β-VAE (Higgins et al., 2017a) objective

L = Ez∼qφ(·|x)[− log pθ(x|z)] + β KL (qφ(z|x)||p(z)), which uses a Lagrangian to limit the

latent bottleneck capacity, rather than an explicit target C. It was shown that optimising

the β-VAE objective helps with learning a more semantically meaningful disentangled rep-

resentation q(z|x) of the data generative factors (Higgins et al., 2017a). However, Burgess

et al. (2017) showed that progressively increasing the target capacity C in eq. (3.3) through-

out training further improves the disentanglement results reported by Higgins et al. (2017a),

while simultaneously producing sharper reconstructions. Progressive increase of the rep-

resentational capacity also seems intuitively better suited to continual learning where new

information is introduced in a sequential manner. Hence, VASE optimises the objective

function in eq. (3.3) over a sequence of datasets xs. This, however, requires a way to infer s

and as, as discussed next.

Inferring the latent mask

Given a dataset xs, we want to infer which latent dimensions zn were used in its generative

process (see eq. (3.1)). This serves multiple purposes: 1) helps identify the environment s

(see next section); 2) helps ignore latent factors zn that encode useful information in some

environment but are not used in the current environment s, in order to prevent retraining and

subsequent catastrophic forgetting; and 3) promotes latent sharing between environments.
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Remember that eq. (3.3) indirectly optimises for Exs [qφ(zs|xs)] ≈ p(z) after training on

a dataset s. If a new dataset uses the same generative factors as xs, then the marginal

behaviour of the corresponding latent dimensions zn will not change. On the other hand, if a

latent dimension encodes a data generative factor that is irrelevant to the new dataset, then

it will start behaving atypically and stray away from the prior. We capture this intuition by

defining the atypicality score αn for each latent dimension zn on a batch of data xsbatch:

αn = KL
(
Exsbatch

[ qφ(zsn|xsbatch) ] || p(zn)
)
. (3.4)

The atypical components are unlikely to be relevant to the current environment, so we mask

them out:

asn =


1, if αn < λ

0, otherwise
(3.5)

where λ is a threshold hyperparameter (see supplementary material of Achille et al. (2018)

for details). Note that the uninformative latent dimensions zn that have not yet learnt to

represent any data generative factors, i.e. qφ(zn|xsn) = p(zn), are automatically unmasked in

this setup. This allows them to be available as spare latent capacity to learn new generative

factors when exposed to a new dataset. Fig. 3.2 shows the sharp changes in αn at dataset

boundaries during training.

Inferring the environment

Given the generative process introduced in eq. (3.1), it may be tempting to treat the envi-

ronment s as a discrete latent variable and learn it through amortised variational inference.

However, we found that in the continual learning scenario this is not a viable strategy. Para-

metric learning is slow, yet we have to infer each new data cluster s extremely fast to avoid

catastrophic forgetting. Hence, we opt for a fast non-parametric meta-algorithm motivated

by the following intuition. Having already experienced r datasets during life-long learning,

there are two choices when it comes to inferring the current one s: it is either a new dataset

sr+1, or it is one of the r datasets encountered in the past. Intuitively, one way to check for

the former is to see whether the current data xs seems likely under any of the previously
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seen environments. This condition on its own is not sufficient though. It is possible that

environment s uses a subset of the generative factors used by another environment Zs ⊆ Z t,
in which case environment t will explain the data xs well, yet it will be an incorrect inference.

Hence, we have to ensure that the subset of the relevant generative factors zs inferred for

the current data xs according to section 3.1 matches that of the candidate past dataset t.

Given a batch xsbatch, we infer the environment s according to:

s =


ŝ , if Ezŝ [ pθ(x

s
batch|zŝ, ŝ) ] ≤ κLŝ ∧ as = aŝ

sr+1, otherwise
(3.6)

where ŝ = arg maxs q(s|xsbatch) is the output of an auxiliary classifier trained to infer the

most likely previously experienced environment ŝ given the current batch xsbatch, Lŝ is the

average reconstruction error observed for the environment ŝ when it was last experienced,

and κ is a threshold hyperparameter (see supplementary material of Achille et al. (2018) for

details).

Preventing catastrophic forgetting

So far we have discussed how VASE integrates knowledge from the current environment into

its representation qφ(z|x), but we have not yet discussed how we ensure that past knowledge is

not forgotten in the process. Most standard approaches to preventing catastrophic forgetting

discussed in Section 3.4 are either not applicable to a variational context, or do not scale

well due to memory requirements. However, thanks to learning a generative model of the

observed environments, we can prevent catastrophic forgetting by periodically hallucinating

(i.e. generating samples) from past environments using a snapshot of VASE, and making sure

that the current version of VASE is still able to model these samples. A similar “dreaming”

feedback loop was used by Ramapuram et al. (2017); Shin et al. (2017); Seff et al. (2017);

Ans and Rousset (1997).

More formally, we follow the generative process in eq. (3.1) to create a batch of samples

xold ∼ qθold(·|z, sold) using a snapshot of VASE with parameters (φold, θold) (see fig. 3.1C).

34



We then update the current version of VASE according to the following (replacing old with ′

for brevity):

Lpast(φ, θ) = Ez,s′,x′

[
D[qφ(z|x′), qφ′(z′|x′)]︸ ︷︷ ︸

Encoder proximity

+D[qθ(x|z, s′), qθ′(x′|z, s′)]︸ ︷︷ ︸
Decoder proximity

]
, (3.7)

where D is a distance between two distributions (we use the Wasserstein distance for the

encoder and KL divergence for the decoder). The snapshot parameters get synced to the

current trainable parameters φold ← φ, θold ← θ every τ training steps, where τ is a hyperpa-

rameter. The expectation over simulators sold and latents z in eq. (3.7) is done using Monte

Carlo sampling.

Model summary

To summarise, we train our model using a meta-algorithm with both parametric and non-

parametric components. The latter is needed to quickly associate new experiences to an

appropriate cluster, so that learning can happen inside the current experience cluster, with-

out disrupting unrelated clusters. We initialise the latent representation z to have at least

as many dimensions as the total number of the data generative factors |z| ≥ |Z| = N , and

the softmax layer of the auxiliary environment classifier to be at least as large as the number

of datasets |S| = K. As we observe the sequence of training data, we detect changes in the

environment and dynamically update the internal estimate of r ≤ K datasets experienced

so far according to eq. (3.6). We then train VASE by minimising the following objective

function:

L(φ, θ) = Ezs∼qφ(·|xs))[− log pθ(x|zs, s)] + γ |KL (qφ(zs|xs)||p(z))− C|2︸ ︷︷ ︸
MDL on current data

+

+ Ez,s′,x′

[
D[qφ(z|x′), qφ′(z′|x′)] +D[qθ(x|z, s′), qθ′(x′|z, s′)]

]
.︸ ︷︷ ︸

“Dreaming” feedback on past data

(3.8)

3.2 Experiments

Continual learning with disentangled shared latents First, we qualitatively assess

whether VASE is able to learn good representations in a continual learning setup. We use
35



a sequence of three datasets: (1) a moving version of Fashion-MNIST (Xiao et al., 2017)

(shortened to moving Fashion), (2) MNIST (LeCun et al., 1998), and (3) a moving version

of MNIST (moving MNIST). During training we expect VASE to detect shifts in the data

distribution and dynamically create new experience clusters s, learn a disentangled repre-

sentation of each environment without forgetting past environments, and share disentangled

factors between environments in a semantically meaningful way. Fig. 3.2 (top) compares

the performance of VASE to that of Controlled Capacity Increase-VAE (CCI-VAE) (Burgess

et al., 2017), a model for disentangled representation learning with the same architecture as

VASE but without the modifications introduced in this paper to allow for continual learning.

It can be seen that unlike VASE, CCI-VAE forgot moving Fashion at the end of the training

sequence. Both models were able to disentangle position from object identity, however, only

VASE was able to meaningfully share latents between the different datasets - the two posi-

tional latents are active for two moving datasets but not for the static MNIST. VASE also

has moving Fashion- and MNIST-specific latents, while CCI-VAE shares all latents between

all datasets. VASE use only 8/24 latent dimensions at the end of training. The rest remained

as spare capacity for learning on future datasets.

Learning representations for tasks We train object identity classifiers (one each for

moving Fashion and MNIST) and an object position regressor on top of the latent represen-

tation z ∼ qφ(z|x) at regular intervals throughout the continual learning sequence. Good

accuracy on these measures would indicate that at the point of measurement, the latent

representation z contained dataset relevant information, and hence could be useful, e.g. for

subsequent policy learning in RL agents. Figure 3.2 (bottom) shows that both VASE and

CCI-VAE learn progressively more informative latent representations when exposed to each

dataset s, as evidenced by the increasing classification accuracy and decreasing mean squared

error (MSE) measures within each stage of training. However, with CCI-VAE, the accuracy

and MSE measures degrade sharply once a domain shift occurs. This is not the case for

VASE, which retains a relatively stable representation.
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Figure 3.2: We compare VASE to a CCI-VAE baseline. Both are trained on a sequence of

three datasets: moving fashion MNIST (moving Fashion) → MNIST → moving MNIST.

Top: latent traversals at the end of training seeded with samples from the three datasets.

The value of each latent zn is traversed between -2 and 2 one at a time, and the corresponding

reconstructions are shown. Rows correspond to latent dimensions zn, columns correspond to

the traversal values. Latent use progression throughout training is demonstrated in colour.

Bottom: performance of MNIST and Fashion object classifiers and a position regressor

trained on the latent space z throughout training. Note the relative stability of the curves

for VASE compared to the baseline. The atypicality profile shows the values of αn through

training (different colours indicate different latent dimensions), with the threshold λ indi-

cated by the dashed black line.
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Figure 3.3: Latent traversals (A) and classification accuracy (B) (both as in fig. 3.2) for

VASE trained on a sequence of moving MNIST→ Fashion→ inverse Fashion→ MNIST→
moving Fashion. See ?? for larger traversals.

Ablation study Here we perform a full ablation study to test the importance of the

proposed components for unsupervised life-long representation learning: 1) regularisation

towards disentangled representations (Section 3.1), 2) latent masking (Section 3.1 - A), 3)

environment clustering (Section 3.1 - S), and 4) “dreaming” feedback loop (Section 3.1 -

D). We use the constraint capacity loss in eq. (3.3) for the disentangled experiments, and

the standard VAE loss (Kingma and Welling, 2014; Rezende et al., 2014) for the entangled

experiments (Higgins et al., 2017a). For each condition we report the average change in the

classification metrics reported above, and the average maximum values achieved (see ?? for

details). Table 3.1 shows that the unablated VASE (SDA) has the best performance. Note

that the entangled baselines perform worse than the disentangled equivalents, and that the

capacity constraint of the CCI-VAE framework does not significantly affect the maximal

classification accuracy compared to the VAE. It is also worth noting that VASE outperforms

the entangled SD condition, which is similar to the only other baseline VAE-base approach

to continual learning that we are aware of Ramapuram et al. (2017). We have also trained

VASE on longer sequences of datasets (moving MNIST → Fashion → inverse Fashion →
MNIST → moving Fashion) and found similar levels of performance (see fig. 3.3).

Dealing with ambiguity Natural stimuli are often ambiguous and may be interpreted

differently based on contextual clues. Examples of such processes are common, e.g. visual

illusions like the Necker cube (Necker, 1832), and may be driven by the functional organisa-
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Disentangled Entangled

Object ID Accuracy Position MSE Object ID Accuracy Position MSE

Ablation Max (%) Change (%) Min (*1e-4) Change (*1e-4) Max (%) Change (%) Min (*1e-4) Change (*1e-4)

- 88.6 (±0.4) -15.2 (±2.8) 3.5 (±0.05) 24.8 (±13.5) 91.8 (±0.4) -12.1 (±0.8) 4.2 (±0.7) 10.5 (±2.6)
S 88.9 (±0.5) -13.9 (±1.9) 3.4 (±0.05) 22.5 (±12.2) 91.7 (±0.4) -12.2 (±0.03) 4.5 (±0.8) 10.9 (±3.1)
D 88.6 (±0.3) -14.4 (±1.9) 3.3 (±0.04) 21.4 (±4.9) 91.8 (±0.4) -12.4 (±0.7) 4.3 (±0.7) 11.7 (±3.2)
A 86.7 (±1.9) -24.5 (±1.0) 3.3 (±0.04) 67.6 (±107.0) 88.6 (±0.3) -19.7 (±0.5) 4.5 (±0.7) 47.1 (±26.2)
SA 87.1 (±1.8) -28.1 (±0.08) 3.3 (±0.04) 78.9 (±109.0) 89.9 (±1.3) -18.3 (±0.4) 4.8 (±0.7) 41.8 (±20.6)
DA 86.3 (±2.5) -25.2 (±0.5) 3.3 (±0.04) 72.2 (±90.0) 88.8 (±0.3) -19.4 (±0.4) 4.6 (±0.7) 40.2 (±19.2)
SD 88.3 (±0.3) -12.9 (±1.9) 3.4 (±0.05) 20.0 (±3.5) 91.4 (±0.3) -11.7 (±0.6) 4.3 (±0.5) 11.6 (±1.9)

VASE (SDA) 88.6 (±0.4) -5.4 (±0.3) 3.2 (±0.03) 3.0 (±0.2) 91.5 (±0.1) -6.5 (±0.7) 4.2 (±0.4) 3.9 (±1.1)

Table 3.1: Average change in classification accuracy/MSE and maximum/minimum average

accuracy/MSE when training an object/position classifier/regressor on top of the learnt rep-

resentation on the moving Fashion → MNIST → moving MNIST sequence. We do a full

ablation study of VASE, where D - dreaming feedback loop, S - cluster inference q(s|xs), and
A - atypicality based latent mask as inference. We compare two versions of our model - one

that is encouraged to learn a disentangled representation through the capacity increase reg-

ularisation in eq. (3.3), and an entangled VAE baseline (β = 1). The unablated disentangled

version of VASE (SDA) has the best performance.

tion and the heavy top-down influences within the ventral visual stream of the brain (Gulyas

et al., 1993; Przybyszewski, 1998). To evaluate the ability of VASE to deal with ambiguous

inputs based on the context, we train it on a CelebA (Ziwei Liu, 2015) → inverse Fashion

sequence, and test it using ambiguous linear interpolations between samples from the two

datasets (fig. 3.4A, first row). To measure the effects of ambiguity, we varied the interpola-

tion weights between the two datasets. To measure the effects of context, we presented the

ambiguous samples in a batch with real samples from one of the training datasets, varying

the relative proportions of the two. Figure 3.4A (bottom) shows the inferred probability

of interpreting the ambiguous samples as CelebA qφ(s = celebA|x). VASE shows a sharp

boundary between interpreting input samples as Fashion or CelebA despite smooth changes

in input ambiguity. Such categorical perception is also characteristic of biological intelligence

(Etcoff and Magee, 1992; Freedman, 2001; Liu and Jagadeesh, 2008). The decision bound-
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ary for categorical perception is affected by the context in which the ambiguous samples are

presented. VASE also represents its uncertainty about the ambiguous inputs by increasing

the inferred variance of the relevant latent dimensions (fig. 3.4A, second row).

Semantic transfer Here we test whether VASE can learn more sophisticated cross-domain

latent homologies than the positional latents on the moving MNIST and Fashion datasets

described above. Hence, we trained VASE on a sequence of two visually challenging DMLab-

30 1 (Beattie et al., 2016) datasets: the Exploit Deferred Effects (EDE) environment and

a randomized version of the Natural Labyrinth (NatLab) environment (Varying Map Ran-

domized). While being visually very distinct (one being indoors and the other outdoors),

the two datasets share many data generative factors that have to do with the 3D geom-

etry of the world (e.g. horizon, walls/terrain, objects/cacti) and the agent’s movements

(first person optic flow). Hence, the two domains share many semantically related factors

z, but these are rendered into very different visuals x. We compared cross-domain recon-

structions of VASE and an equivalent entangled VAE (β = 1) baseline. The reconstructions

were produced by first inferring a latent representation based on a batch from one domain,

e.g. zNatLab = qφ(·|xNatLab), and then reconstructing them conditioned on the other do-

main xxRec = qθ(·|zNatLab, sEDE). Fig. 3.4 shows that VASE discovered the latent homologies

between the two domains, while the entangled baseline failed to do so. VASE learnt the

semantic equivalence between the cacti in NatLab and the red objects in EDE, the brown

fog corresponding to the edge of the NatLab world and the walls in EDE (top leftmost re-

construction), and the horizon lines in both domains. The entangled baseline, on the other

hand, seemed to rely on the surface-level pixel statistics and hence struggled to produce

meaningful cross-domain reconstructions, attempting to match the texture rather than the

semantics of the other domain. See ?? for additional cross-domain reconstructions, including

on the sequence of five datasets mentioned earlier.

1https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30#
dmlab-30
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Figure 3.4: A Top: Ambiguous input examples created by using different interpolation

weights between samples from CelebA and Fashion, and corresponding inferred parame-

ters µ (y axis) and σ (light colour range) of qφ(z|x); red corresponds to Fashion-specific

latents, blue to CelebA-specific latents. Middle: Reconstruction samples pθ(xs|zs, s) for dif-

ferent levels of ambiguity conditioned on either dataset. Bottom: Inferred qψ(s = CelebA

given different levels of input ambiguity (x axis) and different number of ambiguous vs

real data samples (y axis) for the two datasets. VASE deals well with ambiguity, shows

context-dependent categorical perception and uncertainty within its inferred representation

parameters. B Cross-domain reconstructions on NatLab (outdoors) or EDE (indoors) DM

Lab levels. The disentangled VASE finds semantic homologies between the two datasets (e.g.

cacti → red objects). The entangled VASE only maps lower level statistics. C Imagination-

based exploration allows VASE to imagine the possibility of moving MNIST digits during

static MNIST training by using position latents acquired on moving Fashion. This helps

it learn a moving MNIST classifier during static MNIST training without ever seeing real

translations of MNIST digits.
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Imagination-driven exploration Once we learn the concept of moving objects in one

environment, it is reasonable to imagine that a novel object encountered in a different en-

vironment can also be moved. Given the ability to act, we may try to move the object

to realise our hypothesis. We can use such imagination-driven exploration to augment our

experiences in an environment and let us learn a richer representation. Notice however, that

such imagination requires a compositional representation that allows for novel yet sensible

recombinations of previously learnt semantic factors. We now investigate whether VASE

can use such imagination-driven exploration to learn better representations using a sequence

of three datasets: moving Fashion → MNIST → moving MNIST. During the first moving

Fashion stage, VASE learns the concepts of position and Fashion sprites. It also learns how

to move the sprites to reach the imagined states z∗ by training an auxiliary policy (see ??

for details). It can then use this policy to do an imagination-based augmentation of the

input data on MNIST by imagining MNIST digits in different positions and transforming

the static sprites correspondingly using the learnt policy. Hence, VASE can imagine the ex-

istence of moving MNIST before actually experiencing it. Indeed, fig. 3.4C shows that when

we train a moving MNIST classifier during the static MNIST training stage, the classifier is

able to achieve good accuracy in the imagination-driven exploration condition, highlighting

the benefits of imagination-driven data augmentation.

3.3 Discussion

We have introduced VASE, a novel approach to life-long unsupervised representation learn-

ing that builds on recent work on disentangled factor learning (Higgins et al., 2017a; Burgess

et al., 2017) by introducing several new key components. Unlike other approaches to contin-

ual learning, our algorithm does not require us to maintain a replay buffer of past datasets,

or to change the loss function after each dataset switch. In fact, it does not require any a

priori knowledge of the dataset presentation sequence, since these changes in data distribu-

tion are automatically inferred. We have demonstrated that VASE can learn a disentangled

representation of a sequence of datasets. It does so without experiencing catastrophic forget-
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ting and by dynamically allocating spare capacity to represent new information. It resolves

ambiguity in a manner that is analogous to the categorical perception characteristic of bio-

logical intelligence. Most importantly, VASE allows for semantically meaningful sharing of

latents between different datasets, which enables it to perform cross-domain inference and

imagination-driven exploration. Taken together, these properties make VASE a promising

algorithm for learning representations that are conducive to subsequent robust and data-

efficient RL policy learning.

3.4 Related work

The existing approaches to continual learning can be broadly separated into three categories:

data-, architecture- or weights-based. The data-based approaches augment the training data

on a new task with the data collected from the previous tasks, allowing for simultaneous

multi-task learning on IID data (Espeholt et al., 2018; Robins, 1995; Ratcliff, 1990; McClel-

land et al., 1995; Furlanello et al., 2016). The architecture-based approaches dynamically

augment the network with new task-specific modules, which often share intermediate repre-

sentations to encourage positive transfer (Rusu et al., 2016; Parisotto et al., 2015; Ruvolo

and Eaton, 2013). Both of these types of approaches, however, are inefficient in terms of

the memory requirements once the number of tasks becomes large. The weights-based ap-

proaches do not require data or model augmentation. Instead, they prevent catastrophic

forgetting by slowing down learning in the weights that are deemed to be important for the

previously learnt tasks (Kirkpatrick et al., 2017a; Zenke et al., 2017; Nguyen et al., 2018).

This is a promising direction, however, its application is limited by the fact that it typically

uses knowledge of the task presentation schedule to update the loss function after each switch

in the data distribution.

Most of the continual learning literature, including all of the approaches discussed above,

have been developed in task-based settings, where representations are learnt implicitly. While

deep networks learn well in such settings (Achille and Soatto, 2017; Shwartz-Ziv and Tishby,

2017), this often comes at a cost of reduced positive transfer. This is because the implic-
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itly learnt representations often overfit to the training task by discarding information that

is irrelevant to the current task but may be required for solving future tasks (Achille and

Soatto, 2017, 2018; Achille and Soatto, 2018a; Shwartz-Ziv and Tishby, 2017; Higgins et al.,

2017c). The acquisition of useful representations of complex high-dimensional data with-

out task-based overfitting is a core goal of unsupervised learning. Past work (Achille and

Soatto, 2018; Alemi et al., 2016; Higgins et al., 2017a) has demonstrated the usefulness of

information-theoretic methods in such settings. These approaches can broadly be seen as

efficient implementations of the Minimum Description Length (MDL) principle for unsuper-

vised learning (Rissanen, 1978; Grünwald, 2007). The representations learnt through such

methods have been shown to help in transfer scenarios and with data efficiency for policy

learning in the Reinforcement Learning (RL) context (Higgins et al., 2017c). These ap-

proaches, however, do not immediately generalise to non-stationary data. Indeed, life-long

unsupervised representation learning is relatively under-developed (Shin et al., 2017; Seff

et al., 2017; Nguyen et al., 2018). The majority of recent work in this direction has concen-

trated on implicit generative models (Shin et al., 2017; Seff et al., 2017), or non-parametric

approaches (Milan et al., 2016). Since these approaches do not possess an inference mecha-

nism, they are unlikely to be useful for subsequent task or policy learning. Furthermore, none

of the existing approaches explicitly investigate meaningful sharing of latent representations

between environments.
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CHAPTER 4

The Information in the Weights

In the previous chapter, we have discussed what is the minimal amount of information about

the current inputs that the network should extract in order to successfully solve a task. In

this chapter we study instead what information about past experiences, i.e., the training

set, should be extracted and encoded in the parameters of the model. As mentioned in the

Introduction, memorizing each training datum is both wasteful and inefficient. Rather, we

want to be able to extract and store the “structure” of the task, while leaving out details

that may not be relevant for future inference. This raises the natural question: What should

be considered important structure, and what is instead a nuisance? The distinction may not

always be clear: For example, given a large object dataset, we can learn that, unlike planes,

car do not have wings, clearly important information for the task of object classification. We

may also discover that the 1917 Ford Model T has a curved hood, unlike the 1915 model.

While this difference is not a nuisance (it will be shared by all future examples), it is arguably

not an important notion to learn in order to solve a simple object classification task.

In this chapter, we will follow a formalism introduced by Kolmogorov to formally define

what we mean by structure of a task in term of the trade-off between the complexity of

the model and the error committed on the dataset. Unfortunately, Kolmogorov’s original

approach is based on Kolmogorov complexity, which is not amenable for deep learning.

Rather, we introduce a definition of complexity, which we call Information in the Weights

(IIW), which generalizes several frameworks (Kolmogorov complexity, Rissanen’s stochastic

complexity, Fisher’s Information, Bayesian inference), and can be easily instantiated for

DNNs. We then show that a deep network can, in principle, be trained to learn the structure

of the task without memorizing by minimizing a variational loss function, which assumes
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the form of a Information Bottleneck Lagrangian for the weights of the network. While in

principle distinct from the activations’ IBL introduced in the previous chapter, we show

that, in a Deep Network, the former bounds the latter. This shows that in a Deep Network

a model that learns to solve a task without memorizing is bound to also learn an invariant

representation of the input data, even if this is not actually required or explicitly encouraged:

it is an emergent property. Finally, we notice that IIW bounds the generalization error of

the network through a PAC-Bayes bound.

4.1 Information in the Weights and Structure Function of a Task

As before, we call task any a random variable we want to infer given an observation x, and

given a training set D consisting of data samples xi and their corresponding task values

yi, DN = {xi, yi}Ni=1. A task may therefore be identified with the given dataset D, or with

an approximation of the posterior density p(y|x) given the dataset. Of course, without

additional hypotheses, there is no unique or right solution to the inference problem: Any

label assignment on unseen data may, in principle, be correct.

Moreover, even the label of seen data may be ambiguous: if the dataset is composed by a

sequence of uniformly random labels, should we output the memorized labels, or correspond-

ingly the posterior p(y = yi|xi) = 1, or should we rather output a uniform posterior, i.e.,

p(y = yj|xi) = 1/|Y| for each yj ∈ Y? Notice that in one case, our task has a very complex

structure, since we need to memorize several labels, while in the other, the description of the

task would be trivial.

An elegant approach to these issues was proposed by Kolmogorov (Vereshchagin and

Vitányi, 2004), which we present through a convenient generalization inspired by the bits-

back argument of Hinton and Van Camp (1993). Suppose we have a class of models pw(y|x)

parametrized by w ∈ W and we need to encode the labels of the dataset. Naively encoding

each label independenly is clearly suboptimal in general, as we may instead choose one

model pw∗(y|x) that correctly predicts the labels and transmit only the the parameters w∗

and the error correction code for the labels that are predicted incorrectly. However, if the
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parameters w are continuous, we have an additional problem of how to encode them with

finite information. Intuitively, as long as they are encoded with sufficient precision, any

mistake due to the loss of precision can be considered part of the incorrect labels. This

argument is formalized by Hinton and Van Camp (1993): let p(w) a prior distribution used

to encode the weights, and q(w|D) be a “posterior” distribution, that we use to encode the

weights to the desired level of precision. For example, q(w|D) = δw∗ may be used to encode

the weights w∗ without any loss of precision, while a gaussian distribution q(w|D) ∼ N(w∗,Σ)

can represent the weights to a lower precision level given by the prescribed variance Σ. Then,

the cost of encoding the dataset is

C(D; q(w|D)) = Ew∼q(w|D)[LD(pw(y|x)]︸ ︷︷ ︸
Label reconstruction error

+ KL(q(w|D) ‖ p(w))︸ ︷︷ ︸
Information in the Weights

.

The first term is the expected cross-entropy loss of models from the distribution q(w|D) on

the dataset D. The second term denotes the encoding length of the model pw(y|x), and we

refer to it as Information in the Weights (IIW). Depending on the choice of the prior and

posterior distribution, this term relates to several measures of information, as we will see in

the next section.

Naïvely, we may think that C(D) = minq(w|D) C(D; q(w|D)) is the complexity of the

dataset D, and that the corresponding information in the weights KL(q(w|D) ‖ p(w)) repre-

sents the amount of structure contained in the dataset. However, this definition also fails to

capture the fact that, for each task, there is a critical performance level range below which

many models can perform despite failing to capture the structure in the data. One can

easily build models that can classify “airplane” from “fireplace,” for instance by counting the

number of blue pixels in the image. However, these models are unlikely to be very precise.

To reach a small error, say 1%, one has to learn the structure of the dataset: what makes

an airplane different from a fireplace even if the latter is painted blue.

Solving a task at different level of precision requires learning different amount of structure,

and the complexity of different task can be compared only by looking at the complexity of

solving them at each level of precision. For this reason, we introduce the structure function

47



Tr
ai

ni
ng

 L
os

s

Kolmogorov complexity of model

Optimal

Training Epoch

In
fo

rm
at

io
n 

in
 W

ei
gh

ts

Figure 4.1: Speculative trends for the tradeoff between complexity and fidelity (left) and for the

information in the weights (right). On the left, at zero bits the model’s prediction is at chance

level. As the available resources increase, the model can learn simple features (few bits) that improve

performance rapidly. As we push for more precision, the model is forced to extract and store more

structure from the dataset. Eventually, to bring the loss to zero, the model is forced to memorize

all samples that it cannot explain, leading to a straight line with low pendence (memorizing is the

worst trade-off between used resources and reduction in error). The point where training loss meets

the line marks the transition between underfitting and overfitting. (Right) As for the information

in the weights, a model starts with no information and, as we proceed through training epochs, we

expect the information in the weights to increase until it saturates, while the training loss decreases

and stabilizes. While the figure on the left closely resembles what we observe in reality, the figure

on the right, is not quite accurate (Chapter 6).

of a dataset (task) D as:

SD(t) = min
KL(q(w|D) ‖ p(w))<t

Ew∼q(w|D)[LD(pw(y|x))], (4.1)

This definition has the important quality of recognizing that there is no single definition

of complexity of a task: depending on the level of accuracy we want to achieve, different

complexities are required.

We will discuss at length how to actually compute the complexity of the task and the

information in the weights. But before doing so, let us speculate how these functions may

look like. The cartoon in Figure 4.1 (left) shows how we might expect the training loss

to decrease as we increase the coding length, and on the right how the information in the

weights may change during training. As we will see, reality follows closely for the former,

but for the latter is not quite accurate, as we will see extensively in Chapter 6.
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4.2 Relation to Shannon, Fisher, and Kolmogorov

The choice of encoding, or prior, p(w) in the definition of task complexity is arbitrary.

We consider three special (and extreme) cases: In one, we use an improper, uninformative

prior, oblivious of the dataset, and show that the Information in the Weights reduces to the

log-determinant of Fisher’s Information, up to a constant. In the second case, we use an

“adapted” prior, that removes the dependency on the particular dataset by averaging over

all possible dataset, that is, q(w) = ED[q(w|D)]. In this case, we show that the Information

in the Weights reduces to Shannon’s Mutual Information I(w;D). In the third case, when

choosing the “universal prior” of computable functions, we obtain Kolmogorov’s Complexity.

Proposition 4.2.1 (Shannon Information in the Weights). Assume the dataset D is sampled

from a distribution p(D) and let the outcome of training on a sampled dataset D be described

by a distribution q(w|D). Then prior p(w) minimizing the coding length is p(w) = q(w) =

ED[q(w|D)], and the (expected) Information in the Weights for a task D is given by

ED[KL(q(w|D) ‖ q(w))] = I(w;D) (4.2)

where I(w;D) is Shannon’s Mutual Information between the weights and the dataset.

Note that, in this case, the prior p(w) = q(w) is optimal given the choice of the training

algorithm (e.g., the map A : D → q(w|D)), and the particular class of distribution of training

tasks p(D), which, however, we do not know in general, as we are often given a single dataset

to train.

Proof. For a fixed training algorithm A : D 7→ q(w|D), we want to find p(w) that minimizes

the expected complexity of the data:

p∗(w) = arg min
p(w)

ED[C(D)]

= arg min
p(w)

ED[LD(pw(y|x))] + ED[KL(q(w|D) ‖ p(w))]

Notice that only the second term depends on p(w). Let q(w) = ED[p(w|D)] be the marginal

distribution of w, averaged over all possible training datasets. Notice that we have the
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identity

ED[KL(q(w|D) ‖ p(w))] = ED[KL(q(w|D) ‖ q(w))] + ED[KL(q(w) ‖ p(w))]

= I(w;D) + KL(q(w) ‖ p(w)).

Hence, using the fact that the KL divergence is always positive, the optimal “adapted” prior

that minimizes the expected encoding length of D is given by p∗(w) = q(w), that is, the

marginal distribution of w over all trainings and datasets. With this choice, we obtain finally

ED[KL(q(w|D) ‖ p∗(w))] = I(w;D).

Computing the marginal distribution q(w) over all possible datasets is not realistic. How-

ever, it is comforting to know that the unrealistic special case of the Information in the

Weights we defined relates to Shannon’s Information. A more practical choice is to pick

both q(w|D) ∼ N(w0,Σ) and p(w) = N(0, σ2
0I) to be Gaussian, so the Information in the

Weights has a closed-form solution, which relates to the Fisher Information Matrix.

Proposition 4.2.2 (Fisher Information). Let w0 be a local minimum of the cross-entropy loss

LD(w), and assume a gaussian posterior q(w|D) ∼ N(w0,Σ) and prior p(w) = N(0, σ2
0I).

Then, the optimal choice of Σ is

Σ∗ =
(
F (w0) +

1

2σ2
0

I
)−1

,

where F (w0) is the Fisher Information Matrix computed at w0. In particular, when σ0 →∞,

i.e., when the prior becomes uniform, we have

Σ∗
σ0→∞−−−−→ F (w0)−1, and KL(q(w|D) ‖ p(w))

σ0→∞−−−−→ 1

2
log |F (w0)|+ c(σ0),

where c(σ0) is an additive constant that depends on σ0. That is, the information in the

weights is given by the log-determinant of the Fisher Information Matrix. Notice that log |F |
has a natural interpretation as a measure of the curvature of the loss function at that point.

Proof. Since both prior and posterior are gaussian, using the known close form expression

for the KL divergence of two gaussians we have

KL(q(w|D) ‖ p(w)) =
1

2

[
σ−2

0 wT0 w0 + tr(σ−2
0 Σ)− log |σ−2

0 Σ| − k].
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To find the optimal variance Σ of the posterior, we need to solve:

Σ∗ = arg min
Σ
C(D)

= arg min
Σ

Ew∼q(w|D)[LD(w)] + KL(q(w|D) ‖ p(w))

Expanding to the second order LD(w), we have:

Ew∼q(w|D)[LD(w)] = Ew∼q(w|D)[LD(w0) +∇LD(w − w0) +
1

2
(w − w0)TH(w − w0)]

= LD(pw0(y|x) + tr(ΣH),

where H is the Hessian of LD computed in w = w0. Putting this approximation back in the

expression for C(D), and optimizing for Σ using the known formula for the KL divergence,

we obtain

Σ∗ =
(
H +

1

2σ2
0

I
)−1

.

Notice that, when using the cross-entropy loss, the Hessian H(w0) of the loss function at

a stationary point of the training procedure coincides with the Fisher Information Matrix

F (w0) (Martens and Grosse, 2015).Hence, we have that

Σ∗
σ0→∞−−−−→ F−1,

that is, the optimal variance tends to the inverse of the Fisher Information Matrix when the

prior becomes uniform. Notice that this is indeed in accordance with Cramér-Rao bound.

Hence, for the optimal choice of the variance, we have

KL(q(w|D) ‖ p(w))
σ0→∞−−−−→ 1

2
log |F |+ c(σ0),

where c(σ0) is an additive constant that goes to infinity as σ0 →∞.

Remark 4.2.3 (Flat minima have low information). Additional indirect empirical evidence

is provided by the fact that some variants of SGD (Chaudhari et al., 2017) bias the opti-

mization toward “flat minima”, that are local minima whose Hessian and hence their Fisher

(Martens (2014)), has mostly small eigenvalues. Under the previous model, these min-

ima corresponds to minima with low information, as suggested early on by Hochreiter and
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Schmidhuber (1997): As we will see later, these implies that flat minima have better gener-

alization properties (Section 4.4) and that the associated representation of the data is more

insensitive to nuisances and more disentangled (Section 4.5).

Finally, we consider the algorithmic setting. Recall that, for a given string w, we have

p(w) :=
∑

p 2−|p| ' 2−K(w), where the sum is over all programs p that outputs w, |p| is the

length of the program, and K(w) is the Kolmogorov complexity of w, that is, the length of

the shortest program that output w.

Proposition 4.2.4 (Kolmogorov Complexity of the Weights). Let p(w) be the universal

prior; then the Information In the Weights equals the Kolmogorov Complexity of the weights

K(w).

Proof. Using p(w) as the prior, when the posterior is a Dirac delta q(w|D) = δw∗ we trivially

have KL(q(w|D) ‖ p(w)) = − log(2−K(w)) = K(w).

4.3 Information Bottleneck Lagrangian for the Weights

In Section 4.1 we have introduced the structure function of a dataset D as

SD(t) = min
KL(q(w|D) ‖ p(w))<t

Ew∼q(w|D)[LD(pw(y|x))].

This function allows to study how much structure is present in the dataset at various level of

precision. More importantly for applications, it allows us to find solutions that fit the data

without overfitting.

In order to compute the structure function, we may consider the lagrangian associated

to the minimization problem, which is given by:

Cβ(D;P,Q) = Ew∼q(w|D)[LD(pw(y|x))] + βKL(q(w|D) ‖ p(w)) (4.3)

Notice that, when picking the adapted prior, this reduces to:

L(q(w|D)) = Ew∼q(w|D)[LD(pw(y|x))] + βI(w;D), (4.4)
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which is precisely an Information Bottleneck Lagrangian, as the we encountered in Sec-

tion 2.3, however, that was an Information Bottleneck Lagrangian for the activations of

the network, which limits the mutual information between input and representation and is

related to nuisance invariance. On the other hand, this IBL concerns the weights of the

network, seen as a representation of the training data, and relates to the fitting the data

without overfitting.

In principle the two IBL do not need to be related in any way, aside from the similar

form. However, in the next section, we prove one of our main results, that in the case of deep

networks one the IBL of the weights control the one for activations. Therefore, invariance and

disentanglement emerge naturally when training a network with implicit (SGD) or explicit

(IB Lagrangian) regularization to avoid overfitting, and are related to flat minima.

Before, proving these results, we should notice that, when β = 1, eq. (4.3) reduces to the

ELBO loss used in variational inference. In fact, assuming an asymptotically optimal model,

β = 1 is the value of the IBL that recovers all the structure in the data without memorizing.

It may be tempting then to always use β = 1. However, there are two factors to consider:

(a) the task may be very complex to solve at β = 1, while much simpler solution for higher

β may still lead to good performance, and (b) the model class may not be asymptotically

optimal, and may require a different value of β to reach the critical point.

The connection with the classical ELBO however provides several efficient ways to min-

imize the IBL for the weights. In particular, it can be easily minimized in standard deep

network using Stochastic Gradient Variational Bayes (SGVB) using a slight variation of the

framework of Kingma et al. (2015).

4.4 Generalization guarantees through the PAC-Bayes bound

The Lagrangian Cβ(D;P,Q) admits another interpretation as an upper-bound to the test

error, as shown by the PAC-Bayes test error bound:

Theorem 4.4.1 (McAllester (2013)). Assume the dataset D = {(xi, yi)}Ni=1 is sampled i.i.d.
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from a distribution p(y, x), and assume that the per-sample loss used to train is bounded

by Lmax = 1 (we can reduce to this case by clipping and rescaling the loss). For any fixed

β > 1/2, prior P (w), and weight distribution Q(w|D), with probability at least 1− δ over the
sample of D, we have:

Ltest(Q) ≤ 1

N(1− 1
2β

)

[
Ew∼Q(w|D)[LD(pw)] + βKL(Q ‖ P ) + β log

1

δ

]
(4.5)

=
1

N(1− 1
2β

)

[
Cβ(D;P,Q) + β log

1

δ

]
. (4.6)

where Ltest(Q) := Ex,y∼p(x,y)[Ew∼Q[pw(y|x)]] is the expected per-sample test error that the

model incurs using the weight distribution Q(w|D).

Proof. First, we consider the case in which dim(z) = 1, and so w := W is a single row vector.

By hypothesis, q(z) is approximately Gaussian, with mean and variance

µ1 := E[z] = E[
∑
i

εiŵixi] =
∑
i

ŵiE[xi] = ŵ · E[x]

σ2
1 := var[z] = E[(

∑
i

εiŵixi)
2]− (E[

∑
i

εiŵixi])
2,

= E[
∑
i,j

εiεjŵiŵjxixj]−
∑
i,j

ŵiŵjE[xi]E[xj]

= α̃
∑
i

ŵ2
iE[xi]

2 +
∑
i,j

ŵiŵj (E[xixj]− E[xi]E[xj])

= α̃ŵ2 · E[x2] + ŵ · Cov(x)ŵ.

A similar computation gives us mean and variance of q(z|x):

µ0 := E[z|x] = ŵ · x,

σ2
0 := var[z|x] = α̃ŵ2 · x2.

Since we are assuming dim(z) = 1, we trivially have TC(z) = 0, so we are only left with
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I(z;x) which is given by

I(z;x) = Ex KL(q(z|x) ‖ q(z))

= Ex KL(N (µ0, σ
2
0) ‖ N (µ1, σ

2
1))

=
1

2
Ex
α̃ŵ2 · x2 + (ŵ · x− ŵ · E[x])2

σ2
1

− 1− log
σ2

0

σ2
1

= −1

2
Ex log

α̃ŵ2 · x2

ŵ · Cov(x)ŵ + α̃ŵ2 · E[x2]
.

Now, for the general case of dim(z) ≥ 1, notice that

I(z;x) + TC(z) = Ex KL(
∏
k

q(zi|x) ‖
∏
k

q(zi))

=

dim(z)∑
i=1

Ex KL(q(zi|x) ‖ q(zi)),

where q(zi) is the marginal of the k-th component of z. We can then use the previous result

for each component separately, and sum everything to get the desired identity.

Hence, we see that minimizing the Lagrangian Cβ(D;P,Q) can be interpreted as minimizing

an upper-bound on the test error of the model, rather than directly minimizing the train

error. This is in accordance with the intuition developed earlier, that minimizing Cβ(D;P,Q)

forces the model to capture the structure of the data. It is also interesting to consider the

following bound on the expectation over the sampling of D (McAllester, 2013, Theorem 4):

ED[Ltest(Q(w|D))] ≤ 1

N(1− 1
2β

)

[
ED[LD(Q(w|D))] + β ED[KL(Q(w|D) ‖ P )]

]
.

As we have seen in Proposition 4.2.1, for the optimal choice of prior P minimizing the bound,

we have ED[KL(Q ‖ P )] = I(w;D). Hence, the Shannon Information that the weights of the

model have about the dataset D is the measure of complexity that gives (on expectation)

the strongest generalization bound. This has also been noted in Achille and Soatto (2017).

In Dziugaite and Roy (2017), a non-vacuous generalization bound is computed for DNNs,

using (non-centered and non-isotropic) Gaussian prior and posterior distributions.
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4.5 Emergence of invariance and disentanglement during training

The following proposition gives the fundamental link in our model between information in

the weights, and hence flatness of the local minima, minimality of the representation, and

disentanglement.

Proposition 4.5.1. Let z = Wx, and assume as beforeW = ε�Ŵ , with εi,j ∼ logN (−αi/2, αi).
Further assume that the marginals of p(z) and p(z|x) are both approximately Gaussian (which

is reasonable for large dim(x) by the Central Limit Theorem). Then,

I(z;x) + TC(z) = −1

2

dim(z)∑
i=1

Ex log
α̃iŴ

2
i · x2

Ŵi · Cov(x)Ŵi + α̃iŴ 2
i · E(x2)

, (4.7)

where Wi denotes the i-th row of the matrix W , and α̃i is the noise variance α̃i = exp(αi)−1.

In particular, I(z;x) + TC(z) is a monotone decreasing function of the weight variances αi.

Proof. First, we consider the case in which dim(z) = 1, and so w := W is a single row vector.

By hypothesis, q(z) is approximately Gaussian, with mean and variance

µ1 := E[z] = E[
∑
i

εiŵixi] =
∑
i

ŵiE[xi] = ŵ · E[x]

σ2
1 := var[z] = E[(

∑
i

εiŵixi)
2]− (E[

∑
i

εiŵixi])
2,

= E[
∑
i,j

εiεjŵiŵjxixj]−
∑
i,j

ŵiŵjE[xi]E[xj]

= α̃
∑
i

ŵ2
iE[xi]

2 +
∑
i,j

ŵiŵj (E[xixj]− E[xi]E[xj])

= α̃ŵ2 · E[x2] + ŵ · Cov(x)ŵ.

A similar computation gives us mean and variance of q(z|x):

µ0 := E[z|x] = ŵ · x,

σ2
0 := var[z|x] = α̃ŵ2 · x2.

Since we are assuming dim(z) = 1, we trivially have TC(z) = 0, so we are only left with
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I(z;x) which is given by:

I(z;x) = Ex KL(q(z|x) ‖ q(z))

= Ex KL(N (µ0, σ
2
0) ‖ N (µ1, σ

2
1))

=
1

2
Ex
α̃ŵ2 · x2 + (ŵ · x− ŵ · E[x])2

σ2
1

− 1− log
σ2

0

σ2
1

= −1

2
Ex log

α̃ŵ2 · x2

ŵ · Cov(x)ŵ + α̃ŵ2 · E[x2]
.

Now, for the general case of dim(z) ≥ 1, notice that

I(z;x) + TC(z) = Ex KL(
∏
k

q(zi|x) ‖
∏
k

q(zi))

=

dim(z)∑
i=1

Ex KL(q(zi|x) ‖ q(zi)),

where q(zi) is the marginal of the k-th component of z. We can then use the previous result

for each component separately, and sum everything to get the desired identity.

The above identity is difficult to apply in practice, but with some additional hypotheses,

we can derive a clearer uniform tight bound on I(z;x) + TC(z).

Proposition 4.5.2 (Uniform bound for one layer). Let z = Wx, where W = ε� Ŵ , where

εi,j ∼ logN (−α/2, α); assume that the components of x are uncorrelated, and that their

kurtosis is uniformly bounded.1 Then, there is a strictly increasing function g(α) s.t. we

have the uniform bound

g(α) ≤ I(x; z) + TC(z)

dim(z)
≤ g(α) + c,

where c = O(1/ dim(x)) ≤ 1, g(α) = − log (1 − e−α)/2 and α is related to Ĩ(w;D) by

α = exp {−I(W ;D)/ dim(W )}. In particular, I(x; z) +TC(z) is tightly bounded by Ĩ(W ;D)

and increases strictly with it.

1 This is a technical hypothesis, always satisfied if the components xi are IID, (sub-)Gaussian, or with
uniformly bounded support.
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Proof. To simplify the notation we do the case dim z = 1, the general case being identical.

Let w := W be the only row of W . First notice that, since x is uncorrelated, we have

ŵ · Cov(x)ŵ =
∑
i

w2
i (E[x2

i ]− E[xi]
2) ≤ w2 · E[x2]

Therefore,

I(x; z) =− 1

2
Ex log

α̃ŵ2 · x2

ŵ · Cov(x)ŵ + α̃ŵ2 · E[x2]

≤− 1

2
Ex log

α̃ŵ2 · x2

(1 + α̃)ŵ2 · E[x2]

=
1

2
log(1 + α̃−1)− 1

2
Ex log

[
1 +

ŵ2 · (x2 − E[x2])

ŵ2 · E[x2]

]
.

To conclude, we want to approximate the expectation of the logarithm using a Taylor ex-

pansion, but we first need to check that the variance of the term inside the logarithm is low,

which is where we need the bound on the kurtosis. In fact, since the kurtosis is bounded,

there is some constant C such that for all i

E(x2
i − E[x2

i ])
2

E[x2
i ]

2
≤ C.

Now,

var
ŵ2 · (x2 − E[x2])

ŵ2 · E[x2]
=

∑
i ŵ

4
iE(x2 − E[x2])2∑

i,j ŵ
2
i ŵ

2
jE[x2

i ]E[x2
j ]

≤ C

∑
i ŵ

4
iE[x2

i ]
2∑

i,j ŵ
2
i ŵ

2
jE[x2

i ]E[x2
j ]

= O(1/ dim(x)).

Therefore, we can conclude

I(x; z) ≤ 1

2
log(1 + α̃−1) +O(1/ dim(x)).

The above theorems tells us that whenever we decrease the information in the weights,

either by explicit regularization, or by implicit regularization (e.g., using SGD), we auto-

matically improve the minimality, and hence, by Proposition 2.4.1, the invariance, and the

disentanglement of the learner representation. In particular, we obtain as a corollary that

SGD is biased toward learning invariant and disentangled representations of the data. Using

the Markov property of the layers, we can easily extend this bound to multiple layers:
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Corollary 4.5.3 (Multi-layer case). Let W k for k = 1, ..., L be weight matrices, with W k =

εk � Ŵ k and εki,j = logN (−αk/2, αk), and let zi+1 = φ(W kzk), where z0 = x and φ is any

nonlinearity. Then,

I(zL;x) ≤ min
k<L

{
dim(zk)

[
g(αk) + 1

]}
where αk = exp

{
−I(W k;D)/ dim(W k)

}
.

Proof. Since we have the Markov chain x → z1 → . . . → zL, by the Data Processing

Inequality we have I(zL;x) ≤ min {I(zL; zL−1), I(zL−1;x)}. Iterating this inequality, we

have

I(zL;x) ≤ min
k<L

I(zk+1, zk).

Now, notice that I(zk+1; zk) ≤ I(φ(W kzk); zk) ≤ I(W kzk; zk), since applying a deterministic

function can only decrease the information. But I(W kzk; zk) is exactly the quantity we

bounded in Corollary 4.5.2, leading us to the desired inequality.

Remark 4.5.4 (Tightness). While the bound in Proposition 4.5.2 is tight, the bound in

the multilayer case needs not be. This is to be expected: Reducing the information in the

weights creates a bottleneck, but we do not know how much information about x will actually

go through this bottleneck. Often, the final layers will let most of the information through,

while initial layers will drop the most.

Remark 4.5.5 (Training-test transfer). We note that we did not make any (explicit)

assumption about the test set having the same distribution of the training set. Instead, we

make the less restrictive assumption of sufficiency: If the test distribution is entirely different

from the training one – one may not be able to achieve sufficiency. This prompts interesting

questions about measuring the distance between tasks (as opposed to just distance between

distributions), which we study in Chapter 5.

59



4.6 Empirical validation

Phase transition from overfitting to underfitting

As pointed out by Zhang et al. (2017), when a standard convolutional neural network (CNN)

is trained on CIFAR-10 to fit random labels, the network is able to (over)fit them perfectly.

This is easily explained in our framework: It means that the network is complex enough

to memorize all the labels but, as we show here, it has to pay a steep price in terms of

information complexity of the weights (Figure 4.3) in order to do so. On the other hand,

when the information in the weights is bounded using and information regularizer, overfitting

is prevented in a theoretically predictable way.

In particular, in the case of completely random labels, we have I(y;w|x, θ) = I(y;w) ≤
I(w;D), where the first equality holds since y is by construction random, and therefore

independent of x and θ. In this case, the IBL of the weights in eq. (4.4) is an optimal

regularizer, and, regardless of the dataset size N , for β > 1 it should completely prevent

memorization, while for β < 1 overfitting is possible. To see this, notice that since the

labels are random, to decrease the classification error by log |Y|, where |Y| is the number

of possible classes, we need to memorize a new label. But to do so, we need to store more

information in the weights of the network, therefore increasing the second term I(w;D) by

a corresponding quantity. This trade-off is always favorable when β < 1, but it is not when

β > 1. Therefore, the theoretically the optimal solution to eq. (4.4) is to memorize all the

labels in the first case, and not memorize anything in the latter.

As discussed, for real neural networks we cannot directly minimize eq. (4.4), and we

assume a simple Gaussian prior and posterior (see Proposition 4.2.2), which in general pro-

vides an upper-bound to the optimal Shannon Information (Proposition 4.2.1). Even so, the

empirical behavior of the network trained to minimize the gaussian approximation, shown in

Figure 4.2, closely follows this prediction, and for various sizes of the dataset clearly shows a

phase transition between overfitting and underfitting near the critical value β = 1. Notice

instead that for real labels the situation is different: The model is still able to overfit when

β < 1, but importantly there is a large interval of β > 1 where the model can fit the data
60



! < 1 ⇒ overfitting

! > 1 ⇒ underfitting

! < 1 ⇒ overfitting

! ≫ 1 ⇒ underfitting

fitting

%

%

%

%

lo
g
1
0
N

/
�

Figure 4.2: (Left) The AlexNet model of Zhang et al. (2017) achieves high accuracy (red) even

when trained with random labels on CIFAR-10. Using the IB Lagrangian to limit information in

the weights leads to a sharp transition to under-fitting (blue) predicted by the theory (dashed line).

To overfit, the network needs to memorize the dataset, and the information needed grows linearly.

(Right) For real labels, the information sufficient to fit the data without overfitting saturates to

a value that depends on the dataset, but somewhat independent of the number of samples. Test

accuracy shows a uniform blue plot for random labels, while for real labels it increases with the

number of training samples, and is higher near the critical regularizer value β = 1.
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without overfitting to it. Indeed, as soon as βN ∝ I(w;D) is larger than the constant H(θ),

the model trained on real data fits real labels without excessive overfitting (Figure 4.2).

Notice that, based on this reasoning, we expect the presence of a phase transition between

an overfitting and an under-fitting regime at the critical value β = 1 to be largely independent

on the network architecture: To verify this, we train different architectures on a subset

of 10000 samples from CIFAR-10 with random labels. As we can see on the left plot of

Figure 4.3, even very different architectures show a phase transition at a similar value of β.

We also notice that in the experiment ResNets has a sharp transition close to the critical β.

In the right plot of Figure 4.3 we measure the quantity information in the weights for

different levels of corruption of the labels. To do this, we fix β < 1 so that the network is able

to overfit, and for various level of corruption we train until convergence, and then compute

I(w;D) for the trained model. As expected, increasing the randomness of the labels increases

the quantity of information we need to fit the dataset. For completely random labels, I(w;D)

increases by ∼ 3 nats/sample, which the same order of magnitude as the quantity required

to memorize a 10-class labels (2.30 nats/sample), as shown in Figure 4.3.

Bias-variance trade-off

The Bias-Variance trade-off is sometimes informally stated as saying that low-complexity

models tend to under-fit the data, while excessively complex models may instead overfit, so

that one should select an adequate intermediate complexity. This is apparently at odds with

the common practice in Deep Learning, where increasing the depth or the number of weights

of the network, and hence increasing the “complexity” of the model measured by the number

of parameters, does not seem to induce overfitting. Consequently, a number of alternative

measures of complexity have been proposed that capture the intuitive bias-variance trade-off

curve, such as different norms of the weights (Neyshabur et al., 2015).

From the discussion above, we have seen that the quantity of information in the weights,

or alternatively its computable gaussian upper-bound KL(N(w,Σ) ‖ N(0, λ2I)) (Propo-

sition 4.2.2), also provides a natural choice to measure model complexity in relation to
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Figure 4.3: (Left) Plot of the training error on CIFAR-10 with random labels as a function

of the parameter β for different models (see the appendix for details). As expected, all models

show a sharp phase transition from complete overfitting to under-fitting before the critical

value β = 1. (Right) We measure the quantity of information in the weights necessary to

overfit as we vary the percentage of corrupted labels under the same settings of Figure 4.2.

To fit increasingly random labels, the network needs to memorize more information in the

weights; the increase needed to fit entirely random labels is about the same magnitude as

the size of a label (2.30 nats/sample).

overfitting. In particular, we have already seen that models need to store increasingly more

information to fit increasingly random labels (Figure 4.3). In Figure 4.4 we show that by

controlling I(w;D), which can be done easily by modulating β, we recover the right trend

for the bias-variance tradeoff, whereas models with too little information tend to under-fit,

while models memorizing too much information tend to overfit.

Nuisance invariance

Corollary 4.5.3 shows that by decreasing the information in the weights I(w;D), which can

be done for example using eq. (4.4), the learned representation will be increasingly minimal,

and therefore insensitive to nuisance factors n, as measured by I(z;n). Here, we adapt a

technique from the GAN literature (Sønderby et al., 2017) that allows us to explicitly measure

I(z;n) and validate this effect, provided we can sample from the nuisance distribution p(n)

and from p(x|n); that is, if given a nuisance n we can generate data x affected by that
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Figure 4.4: Plots of the test error obtained training the All-CNN architecture on CIFAR-10

(no data augmentation). (Left) Test error as we increase the number of weights in the

network using weight decay but without any additional explicit regularization. Notice that

increasing the number of weights the generalization error plateaus rather than increasing.

(Right) Changing the value of β, which controls the amount of information in the weights,

we obtain the characteristic curve of the bias-variance trade-off. This suggests that the

quantity of information in the weights correlates well with generalization.

nuisance. Recall that by definition we have

I(z;n) = En∼p(n) KL(p(z|n) ‖ p(z))

= En∼p(n)Ez∼p(z|n) log[p(z|n)/p(z)].

To approximate the expectations via sampling we need a way to approximate the likelihood

ratio log p(z|n)/p(z). This can be done as follows: Let D(z;n) be a binary discriminator

that given the representation z and the nuisance n tries to decide whether z is sampled

from the posterior distribution p(z|n) or from the prior p(z). Since by hypothesis we can

generate samples from both distributions, we can generate data to train this discriminator.

Intuitively, if the discriminator is not able to classify, it means that z is insensitive to changes

of n. Precisely, since the optimal discriminator is

D∗(z;n) =
p(z)

p(z) + p(z|n)
,

if we assume that D is close to the optimal discriminator D∗, we have

log
p(z|n)

p(z)
= log

1−D∗(z;n)

D∗(z;n)
' log

1−D(z;n)

D(z;n)
.
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Figure 4.5: (Left) A few training samples generated adding nuisance clutter n to the

MNIST dataset. (Right) Reducing the information in the weights makes the representation

z learned by the digit classifier increasingly invariant to nuisances (I(n; z) decreases), while

sufficiency is retained (I(z; y) = I(x; y) is constant). As expected, I(z;n) is smaller but has

a similar behavior to the theoretical bound in Corollary 4.5.3.

therefore we can use D to estimate the log-likelihood ratio, and so also the mutual infor-

mation I(z;n). Notice however that this comes with no guarantees on the quality of the

approximation.

To test this algorithm, we add random occlusion nuisances to MNIST digits (Figure 4.5).

In this case, the nuisance n is the occlusion pattern, while the observed data x is the oc-

cluded digit. For various values of β, we train a classifier on this data in order to learn a

representation z, and, for each representation obtained this way, we train a discriminator

as described above and we compute the resulting approximation of I(z;n). The results in

Figure 4.5 show that decreasing the information in the weights makes the representation

increasingly more insensitive to n.

4.7 Discussion and conclusion

In this chapter, we have presented bounds, some of which are tight, that connect the amount

of information in the weights, the amount of information in the activations, the invariance

property of the network, and the geometry of the residual loss. These results leverage the

structure of deep networks, in particular the multiplicative action of the weights, and the

Markov property of the layers. This leads to the surprising result that reducing information
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stored in the weights about the past (dataset) results in desirable properties of the learned

internal representation of the test datum (future).

Our notion of representation, both the weights and the activations, is intrinsically stochas-

tic. This simplifies the computation as well as the derivation of information-based relations.

However, note that even if we start with a deterministic representation w, Proposition 4.2.2

gives us a way of converting it to a stochastic representation whose quality depends on the

flatness of the minimum. Our theory can be derived from different frameworks, such as

MDL, PAC-Bayes and Information Theory, and implies a novel variant of the Information

Bottleneck Principle which applies to the weights of the network, rather than the activations.

This work focuses on the inference and learning of optimal representations, that seek to

get the most out of the data we have for a specific task. This does not guarantee a good

outcome since, due to the Data Processing Inequality, the representation can be easier to use

but ultimately no more informative than the data themselves. An orthogonal but equally

interesting issue is how to get the most informative data possible, which is the subject of

active learning, experiment design, and perceptual exploration. Our work does not address

transfer learning, where a representation trained to be optimal for a task is instead used for

a different task, which will be subject of future investigations.

4.8 Related work

The Information Bottleneck (IB) was introduced by Tishby et al. (1999) as a generalization

of minimal sufficient statistics that allows trading off fidelity (sufficiency) and complexity

of a representation. In particular, the IB Lagrangian reduces finding a minimal sufficient

representation to a variational optimization problem. Later, Tishby and Zaslavsky (2015)

and Shwartz-Ziv and Tishby (2017) advocated using the IB between the test data and the

activations of a deep neural network, to study the sufficiency and minimality of the resulting

representation. In parallel developments, the IB Lagrangian was used as a regularized loss

function for learning representation, leading to new information theoretic regularizers (see

also Chapter 2).
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In this chapter, we introduce an IB Lagrangian between the weights of a network and the

training data, as opposed to the traditional one between the activations and the test datum.

We show that the former can be seen both as a generalization of Variational Inference, related

to Hinton and Van Camp (1993), and as a special case of the more general PAC-Bayes

framework (McAllester, 2013), that can be used to compute high-probability upper-bounds

on the test error of the network. One of our main contributions is then to show that, due to

a particular duality induced by the architecture of deep networks, minimality of the weights

(a function of the training dataset) and of the learned representation (a function of the test

input) are connected: in particular we show that networks regularized either explicitly, or

implicitly by SGD, are biased toward learning invariant and disentangled representations.

The theory we develop could be used to explain the phenomena described in small-scale

experiments in Shwartz-Ziv and Tishby (2017), whereby the initial fast convergence of SGD

is related to sufficiency of the representation, while the later asymptotic phase is related

to compression of the activations: While SGD is seemingly agnostic to the property of the

learned representation, we show that it does minimize the information in the weights, from

which the compression of the activations follows as a corollary of our bounds. Practical

implementation of this theory on real large scale problems is made possible by advances in

Stochastic Gradient Variational Bayes (Kingma and Welling, 2014; Kingma et al., 2015).

Representations learned by deep networks are observed to be insensitive to complex

nuisance transformations of the data. To a certain extent, this can be attributed to the

architecture. For instance, the use of convolutional layers and max-pooling can be shown to

yield insensitivity to local group transformations (Bruna and Mallat, 2011; Anselmi et al.,

2016; Soatto and Chiuso, 2016). But for more complex, dataset-specific, and in particular

non-local, non-group transformations, such insensitivity must be acquired as part of the

learning process, rather than being coded in the architecture. We show that a sufficient

representation is maximally insensitive to nuisances if and only if it is minimal, allowing us to

prove that a regularized network is naturally biased toward learning invariant representations

of the data.

We have also explored relations between our theory and the PAC-Bayes framework. The
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use of PAC-Bayes theory to study the generalization properties of deep networks has been

championed by Dziugaite and Roy (2017), who point out that minima that are flat in the

sense of having a large volume, toward which stochastic gradient descent algorithms are

implicitly or explicitly biased (Chaudhari and Soatto, 2018), naturally relates to the PAC-

Bayes loss for the choice of a normal prior and posterior on the weights. This has been

leveraged by Dziugaite and Roy (2017) to compute non-vacuous PAC-Bayes error bounds,

even for deep networks.
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CHAPTER 5

Asymmetric distance between tasks

Among the many virtues of deep neural networks is their transferability : One can train a

model for a task (e.g., finding cats and dogs in images), and then use it for another (e.g.,

outlining tumors in mammograms) with relatively little effort. However, little is known on

how to predict whether or not such transfer learning will work, and if so how much effort

is going to be needed, without just trying-and-seeing. It is not a given that training on a

sufficiently rich task, and then fine-tuning on anything else, must succeed. Indeed, slight

changes in the statistics of the data can make a task unreachable, as we will see in Chapter 6

At the most fundamental level, understanding transfer learning or domain adaptation

requires understanding the topology and geometry of the space of tasks. When are two

tasks “close”? Can one measure the distance between tasks without actually running an

experiment? Does knowing this distance help predict whether transfer learning is possible,

and if so how many resources or time will be needed?

Surely the distance between tasks is not just the lexicographic distance between label sets

in a taxonomy: The experiments we will present in Chapter 6 show that even for the same

label set, a task can be unreachable. Surely it is also not just the distance between two sets

of parameters in a model (say, a deep neural network) trained for the task: There are many

symmetries and large subsets in parameter space that implement the same model. These

questions are fundamental because they do not concern a particular choice of model (e.g.,

neural networks) or optimization scheme (e.g., stochastic gradient descent, SGD). They are

questions about learnability of tasks, and transferability from a task to another. But what

is a task? What is its complexity? What is its structure?

In this chapter, we introduce a method to provide vectorial representations of visual
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classification tasks which can be used to reason about the nature of those tasks and their

distance. Given a dataset with ground-truth labels and a loss function defined over those

labels, we process images through a “probe network” and compute an embedding based on

estimates of the Fisher information matrix associated with the probe network parameters.

This provides a fixed-dimensional embedding of the task that is independent of details such

as the number of classes and does not require any understanding of the class label semantics.

We demonstrate that this embedding is capable of predicting task similarities that match our

intuition about semantic and taxonomic relations between different visual tasks (e.g., tasks

based on classifying different types of plants are similar). We also demonstrate the practical

value of this framework for the meta-task of selecting a pre-trained feature extractor for a

new task. We present a simple meta-learning framework for learning a metric on embeddings

that is capable of predicting which feature extractors will perform well. Selecting a feature

extractor with task embedding obtains a performance close to the best available feature

extractor, while costing substantially less than exhaustively training and evaluating on all

available feature extractors.

5.1 Task Embeddings via Fisher Information

Given an observed input x (e.g., an image) and an hidden task variable y (e.g., a label),

a deep network is a family of functions pw(y|x) parametrized by weights w, trained to ap-

proximate the posterior p(y|x) by minimizing the (possibly regularized) cross entropy loss

Hpw,p̂(y|x) = Ex,y∼p̂[− log pw(y|x)], where p̂ is the empirical distribution defined by the train-

ing set D = {(xi, yi)}Ni=1. It is useful, especially in transfer learning, to think of the network

as composed of two parts: a feature extractor which computes some representation z = φw(x)

of the input data, and a “head,” or classifier, which encodes the distribution p(y|z) given the

representation z.

Not all network weights are equally useful in predicting the task variable: the impor-

tance, or “informative content,” of a weight for the task can be quantified by considering a

perturbation w′ = w+ δw of the weights, and measuring the average KL divergence between
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Figure 5.1: Task embedding across a large library of tasks (best seen magnified).

(Left) T-SNE visualization of the embedding of tasks extracted from the iNaturalist, CUB-

200, iMaterialist datasets. Colors indicate ground-truth grouping of tasks based on taxo-

nomic or semantic types. Notice that the bird classification tasks extracted from CUB-200

embed near the bird classification task from iNaturalist, even though the original datasets

are different. iMaterialist is well separated from iNaturalist, as it entails very different tasks

(clothing attributes). Notice that some tasks of similar type (such as color attributes) clus-

ter together but attributes of different task types may also mix when the underlying visual

semantics are correlated. For example, the tasks of jeans (clothing type), denim (material)

and ripped (style) recognition are close in the task embedding. (Right) T-SNE visualiza-

tion of the domain embeddings (using mean feature activations) for the same tasks. Domain

embedding can distinguish iNaturalist tasks from iMaterialist tasks due to differences in the

two problem domains. However, the fashion attribute tasks on iMaterialist all share the

same domain and only differ in their labels. In this case, the domain embeddings collapse

to a region without recovering any sensible structure.

the original output distribution pw(y|x) and the perturbed one pw′(y|x). To second-order

approximation, this is

Ex∼p̂ KL(pw′(y|x) ‖ pw(y|x)) = δw · Fδw + o(δw2),
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where F is the Fisher information matrix (FIM):

F = Ex,y∼p̂(x)pw(y|x)

[
∇w log pw(y|x)∇w log pw(y|x)T

]
,

that is, the expected covariance of the scores (gradients of the log-likelihood) with respect

to the model parameters.

The FIM is a Riemannian metric on the space of probability distributions (Amari and

Nagaoka, 2000a), and provides a measure of the information a particular parameter (weight

or feature) contains about the joint distribution pw(x, y) = p̂(x)pw(y|x): If the classification

performance for a given task does not depend strongly a parameter, the corresponding entry

in the FIM will be small. Notice that we have already seen the Fisher Information Matrix in

Proposition 4.2.2, where we interpreted (its log-determinant) as a measure of the information

needed to solve the task at a certain level, estimated using an uninfomrative prior over the

solutions. Moreover, the FIM can be interpreted as an easy-to-compute positive semidefinite

upper-bound to the Hessian of the cross-entropy loss, and coincides with it at local minima

(Martens, 2014). In particular, “flat minima” correspond to weights that have, on average,

low (Fisher) information (Remark 4.2.3).

task2vec embedding using a probe network

While the network activations capture the information in the input image which are needed

to infer the image label, the FIM indicates the set of feature maps which are more informative

for solving the current task. Following this intuition, we use the FIM to represent the task

itself. However, the FIMs computed on different networks are not directly comparable. To

address this, we use single “probe” network pre-trained on ImageNet as a feature extractor

and re-train only the classifier layer on any given task, which usually can be done efficiently.

After training is complete, we compute the FIM for the feature extractor parameters.

Since the full FIM is unmanageably large for rich probe networks based on CNNs, we

make two additional approximations. First, we only consider the diagonal entries, which

implicitly assumes that correlations between different filters in the probe network are not

important. Second, since the weights in each filter are usually not independent, we average
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the Fisher Information for all weights in the same filter. The resulting representation thus

has fixed size, equal to the number of filters in the probe network. We call this embedding

method task2vec.

Robust Fisher computation Since the FIM is a local quantity, it is affected by the local

geometry of the training loss landscape, which is highly irregular in many deep network

architectures (Li et al., 2017), and may be too noisy when trained with few samples. To

avoid this problem, instead of a direct computation, we use a more robust estimator that

leverages connections to variational inference. Assume we perturb the weights ŵ of the

network with Gaussian noise N (0,Λ) with precision matrix Λ, and we want to find the

optimal Λ which yields a good expected error, while remaining close to an isotropic prior

N (ŵ, λ2I). That is, we want to find Λ that minimizes:

L(ŵ; Λ) = Ew∼N (ŵ,Λ)[Hpw,p̂p(y|x)] + βKL(N (0,Λ) ‖ N (0, λ2I)),

whereH is the cross-entropy loss and β controls the weight of the prior. Notice that for β = 1

this reduces to the Evidence Lower-Bound (ELBO) commonly used in variational inference.

Approximating to the second order, the optimal value of Λ satisfies (Proposition 4.2.2):

β

2N
Λ = F +

βλ2

2N
I.

Therefore, β
2N

Λ ∼ F + o(1) can be considered as an estimator of the FIM F , biased towards

the prior λ2I in the low-data regime instead of being degenerate. In case the task is trivial

(the loss is constant or there are too few samples) the embedding will coincide with the prior

λ2I, which we will refer to as the trivial embedding. This estimator has the advantage of

being easy to compute by directly minimizing the loss L(ŵ; Σ) through Stochastic Gradient

Variational Bayes (Kingma et al., 2015), while being less sensitive to irregularities of the loss

landscape than direct computation, since the value of the loss depends on the cross-entropy

in a neighborhood of ŵ of size Λ−1. As in the standard Fisher computation, we estimate

one parameter per filter, rather than per weight, which in practice means that we constrain

Λii = Λjj whenever wi and wj belongs to the same filter. In this case, optimization of L(ŵ; Λ)

can be done efficiently using the local reparametrization trick of Kingma et al. (2015).
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Figure 5.2: Distance between species classification tasks. (Left) Task similarity

matrix ordered by hierarchical clustering. Note that the dendrogram produced by the task

similarity matches the taxonomic clusters (indicated by color bar). (Center) For tasks ex-

tracted from iNaturalist and CUB, we compare the cosine distance between tasks to their

taxonomical distance. As the size of the task embedding neighborhood increases (measured

by number of tasks in the neighborhood), we plot the average taxonomical distance of tasks

from the neighborhood center. While the task distance does not perfectly match the taxo-

nomical distance (whose curve is shown in orange), it shows a good correlation. Difference

are both due to the fact that taxonomically close species may need very different features to

be classified, creating a mismatch between the two notions of distance, and because for some

tasks in iNaturalist too few samples are provided to compute a good embedding. (Right)

Correlation between L1 norm of the task embedding (distance from origin) and test error

obtained on the task.

Properties of the task2vec embedding

The task embedding we just defined has a number of useful properties. For illustrative

purposes, consider a two-layer sigmoidal network for which an analytic expression can be

derived (see Supplementary Materials). The FIM of the feature extractor parameters can be

written using the Kronecker product as

F = Ex,y∼p̂(x)pw(y|x)[(y − p)2 · S ⊗ xxT ]

where p = pw(y = 1|x) and the matrix S = wwT � zzT � (1 − z)(1 − z)T is an element-

wise product of classifier weights w and first layer feature activations z. It is informative
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to compare this expression to an embedding based only on the dataset domain statistics,

such as the (non-centered) covariance C0 = E
[
xxT

]
of the input data or the covariance

C1 = E
[
zzT
]
of the feature activations. One could take such statistics as a representative

domain embedding since they only depend on the marginal distribution p(x) in contrast

to the FIM task embedding, which depends on the joint distribution p(x, y). These simple

expressions highlight some important (and more general) properties of the Fisher embedding

we now describe.

Invariance to the label space: The task embedding does not directly depend on the

task labels, but only on the predicted distribution pw(y|x) of the trained model. Information

about the ground-truth labels y is encoded in the weights w which are a sufficient statistic

of the task (Chapter 4). In particular, the task embedding is invariant to permutations of

the labels y, and has fixed dimension (number of filters of the feature extractor) regardless

of the output space (e.g., k-way classification with varying k).

Encoding task difficulty: As we can see from the expressions above, if the fit model

is very confident in its predictions, E[(y − p)2] goes to zero. Hence, the norm of the task

embedding ‖F‖? scales with the difficulty of the task for a given feature extractor φ. Fig-

ure 5.2 (Right) shows that even for more complex models trained on real data, the FIM

norm correlates with test performance.

Encoding task domain: Data points x that are classified with high confidence, i.e., p

is close to 0 or 1, will have a lower contribution to the task embedding than points near the

decision boundary since p(1 − p) is maximized at p = 1/2. Compare this to the covariance

matrix of the data, C0, to which all data points contribute equally. Instead, in task2vec

information on the domain is based on data near the decision boundary (task-weighted

domain embedding).

Encoding useful features for the task: The FIM depends on the curvature of the loss

function with the diagonal entries capturing the sensitivity of the loss to model parameters.

Specifically, in the two-layer model one can see that, if a given feature is uncorrelated with

y, the corresponding blocks of F are zero. In contrast, a domain embedding based on feature
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activations of the probe network (e.g., C1) only reflects which features vary over the dataset

without indication of whether they are relevant to the task.

5.2 Similarity Measures on the Space of Tasks

What metric should be used on the space of tasks? This depends critically on the meta-

task we are considering. As a motivation, we concentrate on the meta-task of selecting the

pre-trained feature extractor from a set in order to obtain the best performance on a new

training task. There are several natural metrics that may be considered for this meta-task.

In this work, we mainly consider:

Taxonomic distance For some tasks, there is a natural notion of semantic similarity, for

instance defined by sets of categories organized in a taxonomic hierarchy where each task is

classification inside a subtree of the hierarchy (e.g., we may say that classifying breeds of

dogs is closer to classification of cats than it is to classification of species of plants). In this

setting, we can define

Dtax(ta, tb) = min
i∈Sa,j∈Sb

d(i, j),

where Sa, Sb are the sets of categories in task ta, tb and d(i, j) is an ultrametric or graph

distance in the taxonomy tree. Notice that this is a proper distance, and in particular it is

symmetric.

Transfer distance. We define the transfer (or fine-tuning) gain from a task ta to a task

tb (which we improperly call distance, but is not necessarily symmetric or positive) as the

difference in expected performance between a model trained for task tb from a fixed ini-

tialization (random or pre-trained), and the performance of a model fine-tuned for task tb

starting from a solution of task ta:

Dft(ta → tb) =
E[`a→b]− E[`b]

E[`b]
,

where the expectations are taken over all trainings with the selected architecture, training

procedure and network initialization, `b is the final test error obtained by training on task b
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from the chosen initialization, and `a→b is the error obtained instead when starting from a

solution to task a and then fine-tuning (with the selected procedure) on task tb.

Symmetric and asymmetric task2vec metrics

By construction, the Fisher embedding on which task2vec is based captures fundamental

information about the structure of the task. We may therefore expect that the distance

between two embeddings correlate positively with natural metrics on the space of tasks.

However, there are two problems in using the Euclidean distance between embeddings: the

parameters of the network have different scales, and the norm of the embedding is affected

by complexity of the task and the number of samples used to compute the embedding.

Symmetric task2vec distance To make the distance computation robust, we propose

to use the cosine distance between normalized embeddings:

dsym(Fa, Fb) = dcos

( Fa
Fa + Fb

,
Fb

Fa + Fb

)
,

where dcos is the cosine distance, Fa and Fb are the two task embeddings (i.e., the diagonal of

the Fisher Information computed on the same probe network), and the division is element-

wise. This is a symmetric distance which we expect to capture semantic similarity between

two tasks. For example, we show in Fig. 5.2 that it correlates well with the taxonomical

distance between species on iNaturalist.

On the other hand, precisely for this reason, this distance is ill-suited for tasks such as

model selection, where the (intrinsically asymmetric) transfer distance is more relevant.

Asymmetric task2vec distance In a first approximation, that does not consider either

the model or the training procedure used, positive transfer between two tasks depends both

on the similarity between two tasks and on the complexity of the first. Indeed, pre-training

on a general but complex task such as ImageNet often yields a better result than fine-tuning

from a close dataset of comparable complexity. In our case, complexity can be measured

as the distance from the trivial embedding. This suggests the following asymmetric score,
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again improperly called a “distance” despite being asymmetric and possibly negative:

dasym(ta → tb) = dsym(ta, tb)− αdsym(ta, t0),

where t0 is the trivial embedding, and α is an hyperparameter. This has the effect of bring

more complex models closer. The hyper-parameter α can be selected based on the meta-task.

In our experiments, we found that the best value of α (α = 0.15 when using a ResNet-34

pretrained on ImageNet as the probe network) is robust to the choice of meta-tasks.

5.3 model2vec: task/model co-embedding

By construction, the task2vec distance ignores details of the model and only relies on the

task. If we know what task a model was trained on, we can represent the model by the

embedding of that task. However, in general we may not have such information (e.g., black-

box models or hand-constructed feature extractors). We may also have multiple models

trained on the same task with different performance characteristics. To model the joint

interaction between task and model (i.e., architecture and training algorithm), we aim to

learn a joint embedding of the two.

We consider for concreteness the problem of learning a joint embedding for model se-

lection. In order to embed models in the task space so that those near a task are likely

to perform well on that task, we formulate the following meta-learning problem: Given k

models, their model2vec embedding are the vectors mi = Fi + bi, where Fi is the task

embedding of the task used to train model mi (if available, else we set it to zero), and bi is a

learned “model bias” that perturbs the task embedding to account for particularities of the

model. We learn bi by optimizing a k-way cross entropy loss to predict the best model given

the task distance (see Supplementary Material):

L = E[− log p(m | dasym(t,m0), . . . , dasym(t,mk))].

After training, given a novel query task t, we can then predict the best model for it as the

arg maxi dasym(t,mi), that is, the model mi embedded closest to the query task.
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Figure 5.3: task2vec often selects the best available experts. Violin plot of the

distribution of the final test error (shaded plot) on tasks from the CUB-200 dataset (columns)

obtained by training a linear classifier over several expert feature extractors (points). Most

specialized feature extractors perform similarly on a given task, and generally are similar or

worse than a generic feature extractor pre-trained on ImageNet (blue triangles). However,

in some cases a carefully chosen expert, trained on a relevant task, can greatly outperform

all other experts (long whisker of the violin plot). The model selection algorithm based on

task2vec can, without training, suggest an expert to use for the task (red cross, lower is

better). task2vec mostly recover the optimal, or close to optimal, feature extractor to use

without having to perform an expensive brute-force search over all possibilities. Columns

are ordered by norm of the task embedding: Notice tasks with lower embedding norm have

lower error and more “complex” task (task with higher embedding norm) tend to benefit

more from a specialized expert.
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5.4 Experiments

We test task2vec on a large collection of tasks and models, related to different degrees. Our

experiments aim to test both qualitative properties of the embedding and its performance

on meta-learning tasks. We use an off-the-shelf ResNet-34 pretrained on ImageNet as our

probe network, which we found to give the best overall performance (see Sect. 5.4). The

collection of tasks is generated starting from the following four main datasets. iNaturalist

Van Horn et al. (2018): Each task extracted corresponds to species classification in a given

taxonomical order. For instance, the “Rodentia task” is to classify species of rodents. Notice

that each task is defined on a separate subset of the images in the original dataset; that

is, the domains of the tasks are disjoint. CUB-200 Wah et al. (2011): We use the same

procedure as iNaturalist to create tasks. In this case, all tasks are classifications inside

orders of birds (the aves taxonomical class), and have generally much less training samples

than corresponding tasks in iNaturalist. iMaterialist iMa and DeepFashion Liu et al.

(2016): Each image in both datasets is associated with several binary attributes (e.g., style

attributes) and categorical attributes (e.g., color, type of dress, material). We binarize the

categorical attributes, and consider each attribute as a separate task. Notice that, in this

case, all tasks share the same domain and are naturally correlated.

In total, our collection of tasks has 1460 tasks (207 iNaturalist, 25 CUB, 228 iMateri-

alist, 1000 DeepFashion). While a few tasks have many training examples (e.g., hundred

thousands), most have just hundreds or thousands of samples. This simulates the heavy-tail

distribution of data in real-world applications.

Together with the collection of tasks, we collect several “expert” feature extractors. These

are ResNet-34 models pre-trained on ImageNet and then fine-tuned on a specific task or

collection of related tasks (see Supplementary Materials for details). We also consider a

“generic”expert pre-trained on ImageNet without any finetuning. Finally, for each combina-

tion of expert feature extractor and task, we trained a linear classifier on top of the expert

in order to solve the selected task using the expert.

In total, we trained 4,100 classifiers, 156 feature extractors and 1,460 embeddings. The
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total effort to generate the final results was about 1,300 GPU hours.

Meta-tasks. In Section 5.4, for a given task we aim to predict, using task2vec , which

expert feature extractor will yield the best classification performance. In particular, we

formulate two model selection meta-tasks: iNat + CUB and Mixed. The first consists

of 50 tasks and experts from iNaturalist and CUB, and aims to test fine-grained expert

selection in a restricted domain. The second contains a mix of 26 curated experts and 50

random tasks extracted from all datasets, and aims to test model selection between different

domains and tasks.

Task Embedding Results

Task Embedding qualitatively reflects taxonomic distance for iNaturalist For

tasks extracted from the iNaturalist dataset (classification of species), the taxonomical dis-

tance between orders provides a natural metric of the semantic similarity between tasks. In

Figure 5.2 we compare the symmetric task2vec distance with the taxonomical distance,

showing strong agreement.

Task embedding for iMaterialist In Fig. 5.1 we show a t-SNE visualization of the em-

bedding for iMaterialist and iNaturalist tasks. Task embedding yields interpretable results:

Tasks that are correlated in the dataset, such as binary classes corresponding to the same

categorical attribute, may end up far away from each other and close to other tasks that are

semantically more similar (e.g., the jeans category task is close to the ripped attribute and

the denim material). This is reflected in the mixture of colors of semantically related nearby

tasks, showing non-trivial grouping.

We also compare the task2vec embedding with a domain embedding baseline, which

only exploits the input distribution p(x) rather than the task distribution p(x, y). While

some tasks are highly correlated with their domain (e.g., tasks from iNaturalist), other tasks

differ only on the labels (e.g., all the attribute tasks of iMaterialist, which share the same

clothes domain). Accordingly, the domain embedding recovers similar clusters on iNaturalist.
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Figure 5.4: task2vec improves results at different dataset sizes and training con-

ditions: Performance of model selection on a subset of 4 tasks as a function of the number

of samples available to train relative to optimal model selection (dashed orange). Training

a classifier on the feature extractor selected by task2vec (solid red) is always better than

using a generic ImageNet feature extractor (dashed red). The same holds when allowed to

fine-tune the feature extractor (blue curves). Also notice that in the low-data regime fine-

tuning the ImageNet feature extractor is more expensive and has a worse performance than

accurately selecting a good fixed feature extractor.

However, on iMaterialst domain embedding collapses all tasks to a single uninformative

cluster (not a single point due to slight noise in embedding computation).

Task Embedding encodes task difficulty The scatter-plot in Fig. 5.3 compares the

norm of embedding vectors vs. performance of the best expert (or task specific model for

cases where we have the diagonal computed). As shown analytically for the two-layers model,

the norm of the task embedding correlates with the complexity of the task also on real tasks

and architectures.

Model Selection

Given a task, our aim is to select an expert feature extractor that maximizes the classification

performance on that task. We propose two strategies: (1) embed the task and select the

feature extractor trained on the most similar task, and (2) jointly embed the models and
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Probe network Top-10 All

Chance +13.95% +59.52%

VGG-13 +4.82% +38.03%

DenseNet-121 +0.30% +10.63%

ResNet-13 +0.00% +9.97%

Table 5.1: Choice of probe network. Mean relative error increase over the ground-truth

optimum on the iNat+CUB meta-task for different choices of the probe-network. We also

report the performance on the top 10 tasks with more samples to show how data size affect

different architectures.

tasks, and select a model using the learned metric (see Section 5.3). Notice that (1) does

not use knowledge of the model performance on various tasks, which makes it more widely

applicable but requires we know what task a model was trained for and may ignore the fact

that models trained on slightly different tasks may still provide an overall better feature

extractor (for example by over-fitting less to the task they were trained on).

In Table 5.2 we compare the overall results of the various proposed metrics on the

model selection meta-tasks. On both the iNat+CUB and Mixed meta-tasks, the Asym-

metric task2vec model selection is close to the ground-truth optimal, and significantly

improves over both chance, and over using an generic ImageNet expert. Notice that our

method has O(1) complexity, while searching over a collection of N experts is O(N).

Error distribution In Fig. 5.3 we show in detail the error distribution of the experts on

multiple tasks. It is interesting to notice that the classification error obtained using most

experts clusters around some mean value, and little improvement is observed over using

a generic expert. On the other hand, a few optimal experts can obtain a largely better

performance on the task than a generic expert. This confirms the importance of having

access to a large collection of experts when solving a new task, especially if few training data

are available. But this collection can only be efficiently exploited if an algorithm is given to

efficiently find one of the few experts for the task, which we propose.
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Meta-task Optimal Chance ImageNet task2vec Asym. task2vec model2vec

iNat + CUB 31.24 +59.52% +30.18% +42.54% +9.97% +6.81%

Mixed 22.90 +112.49% +75.73% +40.30% +29.23% +27.81%

Table 5.2: Model selection performance of different metrics. Average optimal error

obtained on two meta-learning tasks by exhaustive search over the best expert, and relative

error increase when using cheaper model selection methods. Always picking a fixed good

general model (e.g., a model pretrained on ImageNet) performs better than picking an expert

at random (chance). However, picking an expert using the Asymmetric task2vec distance

can achieve an overall better performance than using a general model. Notice also the

improvement over the Symmetric version, especially on iNat + CUB, where experts trained

on very similar tasks may be too simple to yield good transfer, and should be avoided.

Dependence on task dataset size Finding experts is especially important when the task

we are interested in has relatively few samples. In Fig. 5.4 we show how the performance

of task2vec varies on a model selection task as the number of samples varies. At all

sample sizes task2vec is close to the optimum, and improves over selecting a generic expert

(ImageNet), both when fine-tuning and when training only a classifier. We observe that the

best choice of experts is not affected by the dataset size, and that even with few examples

task2vec is able to find the optimal experts.

Choice of probe network In Table 5.1 we show that DenseNet (Huang et al., 2017)

and ResNet architectures (He et al., 2016) perform significantly better when used as probe

networks to compute the task2vec embedding than a VGG Simonyan and Zisserman (2014)

architecture.

5.5 Related Work

Task and Domain embedding. Tasks distinguished by their domain can be understood

simply in terms of image statistics. Due to the bias of different datasets, sometimes a
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benchmark task may be identified just by looking at a few images (Torralba and Efros,

2011). The question of determining what summary statistics are useful (analogous to our

choice of probe network) has also been considered, for example Edwards and Storkey (2016)

train an autoencoder that learns to extract fixed dimensional summary statistics that can

reproduce many different datasets accurately. However, for general vision tasks which apply

to all natural images, the domain is the same across tasks.

Taskonomy (Zamir et al., 2018) explores the structure of the space of tasks, focusing on

the question of effective knowledge transfer in a curated collection of 26 visual tasks, ranging

from classification to 3D reconstruction, defined on a common domain. They compute

pairwise transfer distances between pairs of tasks and use the results to compute a directed

hierarchy. Introducing novel tasks requires computing the pairwise distance with tasks in the

library. In contrast, we focus on a larger library of 1,460 fine-grained classification tasks both

on same and different domains, and show that it is possible to represent tasks in a topological

space with a constant-time embedding. The large task collection and cheap embedding costs

allow us to tackle new meta-learning problems.

Fisher kernels Our work takes inspiration from Jaakkola and Hausler (Jaakkola and

Haussler, 1999). They propose the “Fisher Kernel”, which uses the gradients of a generative

model score function as a representation of similarity between data items

K(x(1), x(2)) = ∇θ logP (x(1)|θ)TF−1∇θ logP (x(2)|θ).

Here P (x|θ) is a parameterized generative model and F is the Fisher information matrix.

This provides a way to utilize generative models in the context of discriminative learning.

Variants of the Fisher kernel have found wide use as a representation of images (Perronnin

et al., 2010; Sánchez et al., 2013), and other structured data such as protein molecules

(Jaakkola et al., 1999) and text (Saunders et al., 2003). Since the generative model can

be learned on unlabelled data, several works have investigated the use of Fisher kernel for

unsupervised learning (Holub et al., 2005; Seeger, 2000). Van Der Maaten (2011) learns

a metric on the Fisher kernel representation similar to our metric learning approach. Our
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approach differs in that we use the FIM as a representation of a whole dataset (task) rather

than using model gradients as representations of individual data items.

Fisher Information for CNNs Our approach to task embedding makes use of the Fisher

Information matrix of a neural network as a characterization of the task. Use of Fisher

information for neural networks was popularized by Amari Amari (1998) who advocated

optimization using natural gradient descent which leverages the fact that the FIM is an

appropriate parameterization-independent metric on statistical models. Recent work has

focused on approximates of FIM appropriate in this setting (see e.g., Heskes (2000); Finn

et al. (2017); Martens and Grosse (2015)). FIM has also been proposed for various regular-

ization schemes (see Chapter 4, Arora et al. (2018); Liang et al. (2017); Mroueh and Sercu

(2017)), analyze learning dynamics of deep networks Achille et al. (2019), and to overcome

catastrophic forgetting (Kirkpatrick et al., 2017b).

Meta-learning and Model Selection The general problem of meta-learning has a long

history with much recent work dedicated to problems such as neural architecture search

and hyper-parameter estimation. Closely related to our problem is work on selecting from

a library of classifiers to solve a new task (Smith et al., 2014; Abdulrahman et al., 2018;

Leite et al., 2012). Unlike our approach, these usually address the question via land-marking

or active testing, in which a few different models are evaluated and performance of the

remainder estimated by extension. This can be viewed as a problem of completing a matrix

defined by performance of each model on each task.

A similar approach has been taken in computer vision for selecting a detector for a new

category out of a large library of detectors (Matikainen et al., 2012; Zhang et al., 2014; Wang

and Hebert, 2015).
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5.6 Discussion

task2vec is an efficient way to represent a task, or the corresponding dataset, as a fixed

dimensional vector. It has several appealing properties, in particular its norm correlates with

the test error obtained on the task, and the cosine distance between embeddings correlates

with natural distances between tasks, when available, such as the taxonomic distance for

species classification, and the fine-tuning distance for transfer learning. Having a represen-

tation of tasks paves the way for a wide variety of meta-learning tasks. In this work, we

focused on selection of an expert feature extractor in order to solve a new task, especially

when little training data is present, and showed that using task2vec to select an expert

from a collection can sensibly improve test performance while adding only a small overhead

to the training process.

Meta-learning on the space of tasks is an important step toward general artificial intel-

ligence. In this work, we introduce a way of dealing with thousands of tasks, enough to

enable reconstruct a topology on the task space, and to test meta-learning solutions. The

current experiments highlight the usefulness of our methods. Even so, our collection does

not capture the full complexity and variety of tasks that one may encounter in real-world

situations. Future work should further test effectiveness, robustness, and limitations of the

embedding on larger and more diverse collections.
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CHAPTER 6

Critical Learning Periods in Deep Networks

Critical periods are time windows of early post-natal development during which sensory

deficits can lead to permanent skill impairment (Kandel et al., 2013). Researchers have

documented critical periods affecting a range of species and systems, from visual acuity in

kittens (Wiesel and Hubel, 1963b; Wiesel, 1982) to song learning in birds (Konishi, 1985).

Uncorrected eye defects (e.g., strabismus, cataracts) during the critical period for visual

development lead to amblyopia in one in fifty adults.

The cause of critical periods is ascribed to the biochemical modulation of windows of

neuronal plasticity (Hensch, 2004). However, in this chapter we show that deep neural

networks (DNNs), while completely devoid of such regulations, respond to sensory deficits

in ways similar to those observed in humans and animal models. This surprising result

suggests that critical periods may arise from information processing, rather than biochemical,

phenomena, and that tasks close to those that we already solved can still be unreachable

during training due to emergent properties of DNNs.

In this chapter, we study critical period phenomena in DNNs using the Information in

the Weights. We show that, counterintuitively, the information in the weights does not

increase monotonically during training. Instead, a rapid growth in information (“memo-

rization phase”) is followed by a reduction of information (“reorganization” or “forgetting”

phase), even as classification performance keeps increasing. This behavior is consistent across

different tasks and network architectures. Critical periods are centered in the memorization

phase.

Our findings indicate that the early transient is critical in determining the final solution

of the optimization associated with training an artificial neural network. In particular, the
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effects of sensory deficits during a critical period cannot be overcome, no matter how much

additional training is performed. Yet most theoretical studies have focused on the network

behavior after convergence (Representation Learning) or on the asymptotic properties of the

optimization scheme used for training (SGD).

To study this early phase, using Fisher Information, we enstablish a connection between

Information in the Weights and the effective connectivity of a network during training, and

introduce the notion of Information Plasticity in learning. Information Plasticity is maximal

during the memorization phase, and decreases in the reorganization phase. We show that

deficit sensitivity during critical periods correlates strongly with the effective connectivity.

When considered in conjunction with the results in the previous chapters, our findings

indicate that forgetting (reducing information in the weights) is critical to achieving invari-

ance to nuisance variability as well as independence of the components of the representation,

but comes at the price of reduced adaptability later in the training. We also hypothesize that

the loss of physical connectivity in biology (neural plasticity) could be a consequence, rather

than a cause, of the loss of Information Plasticity, which depends on how the information

is distributed throughout a network during the early stages of learning. These results also

shed light on the common practice of pre-training a model on a task and then fine-tune it

for another, one of the most rudimentary forms of transfer learning. Our experiments show

that, rather than helpful, pre-training can be detrimental, even if the tasks are similar (e.g.,

same labels, slightly blurred images).

6.1 Deep Neural Networks have Critical Learning Periods

A notable example of critical period-related deficit, commonly affecting humans, is amblyopia

(reduced visual acuity in one eye) caused by cataracts during infancy or childhood (Taylor

et al., 1979; von Noorden, 1981). Even after surgical correction of cataracts, the ability of

the patients to regain normal acuity in the affected eye depends both on the duration of the

deficit and on its age of onset, with earlier and longer deficits causing more severe effects.

In this section, we aim to study the effects of similar deficits in DNNs. To do so, we train
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Figure 1: DNNs exhibit critical periods. (A) Final accuracy achieved by a CNN trained with a
cataract-like deficit as a function of the training epoch N at which deficit is removed (solid line).
Performance is permanently impaired if the deficit is not corrected early enough, regardless of how
much additional training is performed. As in animal models, critical periods coincide with the early
learning phase during which test accuracy would rapidly increase in the absence of deficits (dashed).
(B) For comparison, we report acuity for kittens monocularly deprived since birth and tested at the
time of eye-opening (solid), and normal development visual acuity in kittens as a function of age
(dashed) (Giffin & Mitchell, 1978; Mitchell, 1988).

artificial neural networks (ANNs) are only loosely inspired by biological systems (Hassabis et al.,
2017).

Most studies to date have focused either on the behavior of networks at convergence (Representation
Learning) or on the asymptotic properties of the numerical scheme used to get there (Optimization).
The role of the initial transient, especially its effect in biasing the network towards “good” regions
of the complex and high-dimensional optimization problem, is rarely addressed. To study this initial
learning phase of ANNs, we replicate experiments performed in animal models and find that the
responses to early deficits are remarkably similar, despite the large underlying differences between
the two systems. In particular, we show that the quality of the solution depends only minimally on
the final, relatively well-understood, phase of the training process or on its very first epochs; instead,
it depends critically on the period prior to initial convergence.

In animals, sensory deficits introduced during critical periods induce changes in the architecture
of the corresponding areas (Daw, 2014; Wiesel & Hubel, 1963a; Hendrickson et al., 1987). To
determine whether a similar phenomenon exists in ANNs, we compute the Fisher Information of
the weights of the network as a proxy to measure its “effective connectivity”, that is, the density of
connections that are effectively used by the network in order to solve the task. Like others before us
(Shwartz-Ziv & Tishby, 2017), we observe two distinct phases during the training, first a “learning
phase” in which the Fisher Information of the weights increases as the network learns from the data,
followed by a “consolidation” or “compression” phase in which the Fisher Information decreases
and stabilizes. Sensitivity to critical-period-inducing deficits is maximal exactly when the Fisher
Information peaks.

A layer-wise analysis of the network’s effective connectivity shows that, in the tasks and deficits
we consider, the hierarchy of low-level and high-level features in the training data is a key aspect
behind the observed phenomena. In particular, our experiments suggest that the existence of critical
periods in deep neural networks depends on the inability of the network to change its effective
connectivity pattern in order to process different information (in response to deficit removal). We
call this phenomenon, which is not mediated by any external factors, a loss of the “Information
Plasticity” of the network.

2 RELATED WORK

3 DEEP ARTIFICIAL NEURAL NETWORKS EXHIBIT CRITICAL PERIODS

A notable example of critical period-inducing deficit, which also commonly affects humans, is am-
blyopia (reduced visual acuity in one eye) caused unilateral cataracts during infancy or childhood
(Vaegan & Taylor, 1979; von Noorden, 1981): Even after surgical correction of the cataracts, the
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Figure 2: Sensitivity of learning phase: (C) Final test accuracy of a DNN as a function of the onset
of a short 40-epoch deficit. The decrease in the final performance can be used to measure the sen-
sitivity to deficits. The most sensitive epochs corresponds to the early rapid learning phase, before
the test error (dashed line) begins to plateau. Afterwards, the network is largely unaffected by the
temporary deficit. (D) This can be compared with changes in the degree of functional disconnection
(normalized numbers of V1 monocular cells disconnected from the contralateral eye) as a function
of the kittens’ age at the onset of a 10-12-day deficit window (Olson & Freeman, 1980). Dashed
lines are as in A and B respectively.

ability of the patients to regain normal acuity in the affected eye depends both on the duration of the
deficit and on its age of onset, with earlier and longer deficits causing more severe effects.

In order to replicate this experimental setup in ANNs, we train a standard convolutional network
(CNN) to classify objects in small 32⇥ 32 RGB images from the CIFAR-10 dataset (Krizhevsky &
Hinton, 2009) in 10 classes. To simulate the effect of cataracts, for the first t0 epochs the images in
the dataset are downsampled to 8⇥8 and then upsampled back to 32⇥32 using bilinear interpolation,
in practice blurring the image and destroying small-scale details.1 After that, the training continues
for 300 more epochs, giving the network enough time to converge and ensuring it is exposed to the
same number of uncorrupted images as in the control (t0 = 0) experiment.

In Figure 1, we graph the final performance of the network (described in Materials and Methods) as
a function of the epoch at which the deficit is corrected (t0).We clearly observe the existence of a
critical period for this deficit in the ANN: if the blur is not removed within the first 60 epochs, the
final performance is severely decreased when compared to the baseline (from a test error of ⇠6.4%,
[In this plot it is 8%, it is 6.4% for the resnet later. We can swap the plots or change the text] in the
absence of a deficit, to more than 18% when the blur is present over 140 epochs, a⇠300% increase).
The profile of the curve is also strikingly similar to the one obtained in kittens monocularly deprived
from near birth and whose visual acuity upon eye-opening was tested and plotted against the length
of the deficit window (Mitchell, 1988). Just like in humans and animal models (where critical
periods are characteristic of early development), the critical period in the DNN also arises during
the initial rapid learning phase. At this stage, the network is quickly learning a solution before the
test error plateaus and the longer asymptotic convergence phase begins.

Sensitivity to deficit. To quantify more accurately the sensitivity of the ANN to image blurring
throughout its early learning phase, we introduced the deficit in a short constant window (40 epochs),
starting at different epochs, and then measured the decrease in the ANN’s final performance com-
pared to the baseline. In Figure 2, we plot the final testing error of the network against the epoch of
onset of the deficit. We observe that the network’s sensitivity to blurring peaks in the central part of
the early rapid learning phase (around 30 epochs), while later deficits produce little or no effect. A
similar experiment was also performed on kittens by Olson and Freeman, using a window of 10-12
days during which the animals were monocularly deprived and using it to “scan” the first 4 months
after birth to obtain a sensitivity profile (Olson & Freeman, 1980).

We subsequently evaluated the effect of other training data modifications: a more drastic deprivation
where the input is substituted with random noise, simulating complete sensory deprivation, and two
“high-level” modifications of the training data: vertical flipping of the input image and permutation

1We employed this method, instead of a simpler Gaussian blur, since it has a very similar effect and makes
the quantification of information loss clearer.

3

Figure 6.1: DNNs exhibit critical periods. (A) Final accuracy achieved by a CNN

trained with a cataract-like deficit as a function of the training epoch N at which the deficit

is removed (solid line). Performance is permanently impaired if the deficit is not corrected

early enough, regardless of how much additional training is performed. As in animal models,

critical periods coincide with the early learning phase during which, in the absence of deficits,

test accuracy would rapidly increase (dashed). (B) For comparison, we report acuity for

kittens monocularly deprived since birth and tested at the time of eye-opening (solid), and

normal visual acuity development (in kittens) as a function of their age (dashed) (Giffin and

Mitchell, 1978; Mitchell, 1988). Sensitivity during learning: (C) Final test accuracy

of a DNN as a function of the onset of a short 40-epoch deficit. The decrease in the final

performance can be used to measure the sensitivity to deficits. The most sensitive epochs

corresponds to the early rapid learning phase, before the test error (dashed line) begins to

plateau. Afterwards, the network is largely unaffected by the temporary deficit. (D) This

can be compared with changes in the degree of functional disconnection (normalized numbers

of V1 monocular cells disconnected from the contralateral eye) as a function of the kittens’

age at the onset of a 10-12-day deficit window (Olson and Freeman, 1980). Dashed lines are

as in A and B respectively, up to a re-scaling of the y-axis.
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a standard All-CNN architecture based on Springenberg et al. (2014) (see ??) to classify

objects in small 32× 32 images from the CIFAR-10 dataset (Krizhevsky and Hinton, 2009).

We train with SGD using an exponential annealing schedule for the learning rate. To simulate

the effect of cataracts, for the first t0 epochs the images in the dataset are downsampled to

8× 8 and then upsampled back to 32× 32 using bilinear interpolation, in practice blurring

the image and destroying small-scale details.1 After that, the training continues for 160 more

epochs, giving the network time to converge and ensuring it is exposed to the same number

of uncorrupted images as in the control (t0 = 0) experiment.

DNNs exhibit critical periods: In Figure 6.1, we plot the final performance of a

network affected by the deficit as a function of the epoch t0 at which the deficit is corrected.

We can readily observe the existence of a critical period: If the blur is not removed within

the first 40-60 epochs, the final performance is severely decreased when compared to the

baseline (up to a threefold increase in error). The decrease in performance follows trends

commonly observed in animals, and may be qualitatively compared, for example, to the loss

of visual acuity observed in kittens monocularly deprived from birth as a function of the

length of the deficit (Mitchell, 1988).

We can measure more accurately the sensitivity to a blur deficit during learning by

introducing the deficit in a short window of constant length (40 epochs), starting at different

epochs, and then measure the decrease in the DNN’s final performance compared to the

baseline (Figure 6.1). Doing this, we observe that the sensitivity to the deficit peaks in the

central part of the early rapid learning phase (at around 30 epochs), while introducing the

deficit later produces little or no effect. A similar experiment performed on kittens, using

a window of 10-12 days during which the animals are monocularly deprived, again shows

a remarkable similarity between the profiles of the sensitivity curves (Olson and Freeman,

1980).

High-level deficits are not associated with a critical period: A natural question is

whether any change in the input data distribution will have a corresponding critical period

1We employed this method, instead of a simpler Gaussian blur, since it has a very similar effect and
makes the quantification of information loss clearer.
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Figure 6.2: (Left) High-level perturbations do not induce a critical period. When

the deficit only affects high-level features (vertical flip of the image) or the last layer of

the CNN (label permutation), the network does not exhibit critical periods (test accuracy

remains largely flat). On the other hand, a sensory deprivation-like deficit (image is replaced

by random noise) does cause a deficit, but the effect is less severe than in the case of image

blur. (Right) Dependence of the critical period profile on the network’s depth.

Adding more convolutional layers increases the effect of the deficit during its critical period

(shown here is the decrease in test accuracy due to the deficit with respect to the test

accuracy reached without deficits).
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for learning. This is not the case for neuronal networks, which remain plastic enough to

adapt to high-level changes in sensory processing (Daw, 2014). For example, it is well-

reported that even adult humans can rapidly adapt to certain drastic changes, such as the

inversion of the visual field (Stratton, 1896; Kohler, 1964). In Figure 6.2, we observe that

DNNs are also largely unaffected by high-level deficits – such as vertical flipping of the image,

or random permutation of the output labels: After deficit correction, the network quickly

recovers its baseline performance. This hints at a finer interplay between the structure of

the data distribution and the optimization algorithm, resulting in the existence of a critical

period.

Sensory deprivation: We now apply to the network a more drastic deficit, where each

image is replaced by white noise. Figure 6.2 shows hows this extreme deficit exhibits a

remarkably less severe effect than the one obtained by only blurring images: Training the

network with white noise does not provide any information on the natural images, and results

in milder effects than those caused by a deficit (e.g., image blur), which instead conveys some

information, but leads the network to (incorrectly) learn that no fine structure is present in

the images. A similar effect has been observed in animals, where a period of early sensory

deprivation (dark-rearing) can lengthen the critical period and thus cause less severe effects

than those documented in light-reared animals (Mower, 1991).

Architecture, depth, and learning rate annealing: Figure 6.3 shows that a fully-

connected network trained on the MNIST digit classification dataset also shows a critical

period for the image blur deficit. Therefore, the convolutional structure is not necessary, nor

is the use of natural images. Similarly, a ResNet-18 trained on CIFAR-10 also has a critical

period, which is also remarkably sharper than the one found in a standard convolutional

network (Figure 6.1). This is especially interesting, since ResNets allow for easier backprop-

agation of gradients to the lower layers, thus suggesting that the critical period is not caused

by vanishing gradients. However, Figure 6.2 (Right) shows that the presence of a critical

period does indeed depend critically on the depth of the network. In Figure 6.3, we confirm

that a critical period exists even when the network is trained with a constant learning rate,

and therefore cannot be explained by an annealed learning rate in later epochs.
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Optimization method and weight decay: Figure 6.3 (Bottom Right) shows that

when using Adam as the optimization scheme, which renormalizes the gradients using a

running mean of their first two moments, we still observe a critical period similar to that

of standard SGD. However, changing the hyperparameters of the optimization can change

the shape of the critical period: In Figure 6.3 (Bottom Left) we show that increasing weight

decay makes critical periods longer and less sharp. This can be explained as it both slows the

convergence of the network, and it limits the ability of higher layers to change to overcome

the deficit, thus encouraging lower layers to also learn new features.

6.2 The role of Information in Critical Periods

We have established empirically that, in animals and DNNs alike, the initial phases of training

are critical to the outcome of the training process. In animals, this strongly relates to

changes in the brain architecture of the areas associated with the deficit (Daw, 2014). This

is inevitably different in artificial networks, since their connectivity is formally fixed at all

times during training. However, not all the connections are equally useful to the network:

Consider a network encoding the approximate posterior distribution pw(y|x), parameterized

by the weights w, of the task variable y given an input image x. The dependency of the final

output from a specific connection can be estimated by perturbing the corresponding weight

and looking at the magnitude of the change in the final distribution. Specifically, given a

perturbation w′ = w + δw of the weights, the discrepancy between the pw(y|x) and the

perturbed network output pw′(y|x) can be measured by their Kullback-Leibler divergence,

which, to second-order approximation, is given by:

Ex KL(pw′(y|x) ‖ pw(y|x)) = δw · Fδw + o(δw2),

where the expectation over x is computed using the empirical data distribution Q̂(x) given

by the dataset, and

F := Ex∼Q̂(x)Ey∼pw(y|x)[∇w log pw(y|x)∇w log pw(y|x)T ]

94



0 20 40 60 80 100120140160180
Deficit removal (epoch)

82%

84%

86%

88%

90%

92%

94%

T
es

t a
cc

ur
ac

y

ResNet

0 80 160 240 320 400 480
Deficit removal (epoch)

98.6%

98.8%

99.0%

99.2%

Fully Connected

0 80 160 240 320 400
Deficit removal (epoch)

86%

87%

88%

89%

T
es

t a
cc

ur
ac

y

Fixed learning rate

0 20 40 60 80 100120140160180
Deficit removal (epoch)

80%
82%
84%
86%
88%
90%
92%
94%

T
es

t a
cc

ur
ac

y

Weight decay

= 0
= 5 10 4

= 10 10 4

0 20 40 60 80 100120140160180
Deficit removal (epoch)

80%

82%

84%

86%

88%

90%

92%

T
es

t a
cc

ur
ac

y

Adam optimizer

Figure 6.3: Critical periods in different DNN architectures and optimization

schemes. (Left) Effect of an image blur deficit in a ResNet architecture trained on CIFAR-

10 with learning rate annealing and (Center) in a deep fully-connected network trained

on MNIST with a fixed learning rate. Different architectures, using different optimization

methods and trained on different datasets, still exhibit qualitatively similar critical period

behavior. (Right) Same experiment as in Figure 6.1, but using a fixed learning rate instead

of an annealing scheme. Although the time scale of the critical period is longer, the trends

are similar, supporting the notion that critical periods cannot be explained solely in terms

of the loss landscape of the optimization. (Bottom Left) Networks trained without weight

decay have shorter and sharper critical periods. Gradually increasing the weight decay

makes the critical period longer, until the point where it stops training properly. (Bottom

Right) When using a different optimization method (Adam) we obtain similar results as

with standard SGD.
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Figure 6.4: Critical periods in DNNs are traced back to changes in the Fisher Informa-

tion. (Left) Trace of the Fisher Information of the network weights as a function of the training

epoch (blue line), showing two distinct phases of training: First, information sharply increases, but

once test performance starts to plateau (green line), the information in the weights decreases during

a “consolidation” phase. Eventually less information is stored, yet test accuracy improves slightly

(green line). The weights’ Fisher Information correlates strongly with the network’s sensitivity to

critical periods, computed as in Figure 6.1 using both a window size of 40 and 60, and fitted here to

the Fisher Information using a simple exponential fit. (Center) Recalling the connection between

FIM ad connectivity, we may compare it to synaptic density during development in the visual cortex

of macaques (Rakic et al., 1986). Here too, a rapid increase in connectivity is followed by elimina-

tion of synapses (pruning) continuing throughout life. (Right) Effects of a critical period-inducing

blurring deficit on the Fisher Information: The impaired network uses more information to solve

the task, compared to training in the absence of a deficit, since it is forced to memorize the labels

case by case.
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is the Fisher Information Matrix (FIM). The FIM can thus be considered a local metric mea-

suring how much the perturbation of a single weight (or a combination of weights) affects the

output of the network (Amari and Nagaoka, 2000b). In particular, weights with low Fisher

Information can be changed or “pruned” with little effect on the network’s performance. This

suggests that the Fisher Information can be used as a measure of the effective connectivity

of a DNN, or, more generally, of the “synaptic strength” of a connection (Kirkpatrick et al.,

2017b). Finally, the FIM is also a semi-definite approximation of the Hessian of the loss

function (?) and hence of the curvature of the loss landscape at a particular point w during

training, providing an elegant connection between the FIM and the optimization procedure

(Amari and Nagaoka, 2000b), which we will also employ later.

Unfortunately, the full FIM is too large to compute. Rather, we use its trace to measure

the global or layer-wise connection strength, which we can compute efficiently using (??):

tr(F ) = Ex∼Q̂(x)Ey∼pw(y|x)[‖∇w log pw(y|x)‖2].

In order to capture the behavior of the off-diagonal terms, we also tried computing the log-

determinant of the full matrix using the Kronecker-Factorized approximation of Martens

and Grosse (2015), but we observed the same qualitative trend as the trace. Since the FIM

is a local measure, it is very sensitive to the irregularities of the loss landscape. Therefore,

in this section we mainly use ResNets, which have a relatively smooth landscape (Li et al.,

2017). For other architectures we use instead a more robust estimator of the FIM based on

the injection of noise in the weights (Achille and Soatto, 2018b), also described in ??.

Two phases of learning: As its name suggests, the FIM can be thought as a measure

of the quantity of information about the training data that is contained in the model (Fisher,

1925). Based on this, one would expect the overall strength of the connections to increase

monotonically as we acquire information from experience. However, this is not the case:

While during an initial phase the network acquires information about the data, which results

in a large increase in the strength of the connections, once the performance in the task

begins to plateau, the network starts decreasing the overall strength of its connections.

However, this does not correspond to a reduction in performance, rather, performance keeps
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slowly improving. This can be seen as a “forgetting”, or “compression” phase, during which

redundant connections are eliminated and non-relevant variability in the data is discarded. It

is well-established how the elimination (“pruning”) of unnecessary synapses is a fundamental

process during learning and brain development (Rakic et al., 1986) (Figure 6.4, Center); in

Figure 6.4 (Left) an analogous phenomenon is clearly and quantitatively shown for DNNs.

Strikingly, these changes in the connection strength are closely related to the sensitivity

to critical-period-inducing deficits such as image blur, computed using the “sliding window”

method as in Figure 6.1. In Figure 6.4 we see that the sensitivity closely follows the trend

of the FIM. This is remarkable since the FIM is a local quantity computed at a single point

during the training of a network in the absence of deficit, while sensitivity during a critical

period is computed, using test data, at the end of the impaired network training. Figure 6.4

(Right) further emphasizes the effect of deficits on the FIM: in the presence of a deficit, the

FIM grows and remains substantially higher even after the deficit is removed. This may be

attributed to the fact that, when the data are so corrupted that classification is impossible,

the network is forced to memorize the labels, therefore increasing the quantity of information

needed to perform the same task.

Layer-wise effects of deficits: A layer-wise analysis of the FIM sheds further light on

how the deficit affects the network. When the network (in this case All-CNN, which has a

clearer division among layers than ResNet) is trained without deficits, the most important

connections are in the intermediate layers (Figure 6.5, Left), which can process the input

CIFAR-10 image at the most informative intermediate scale. However, if the network is

initially trained on blurred data (Figure 6.5, top right), the strength of the connections is

dominated by the top layer (Layer 6). This is to be expected, since the low-level and mid-

level structures of the images are destroyed, making the lower layers ineffective. However, if

the deficit is removed early in the training (Figure 6.5, top center), the network manages to

“reorganize”, reducing the information contained in the last layer, and, at the same time, in-

creasing the information in the intermediate layers. We refer to these phenomena as changes

in “Information Plasticity”. If, however, the data change occurs after the consolidation phase,

the network is unable to change its effective connectivity: The connection strength of each
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layer remains substantially constant. The network has lost its Information Plasticity and is

past its critical period.

Critical periods as bottleneck crossings: The analysis of the FIM also sheds light

on the geometry of the loss function and the learning dynamics. Since the FIM can be in-

terpreted as the local curvature of the residual landscape, Fig. 4 shows that learning entails

crossing “bottlenecks:” In the initial phase the network enters regions of high curvature (high

Fisher Information), and once consolidation begins, the curvature decreases, allowing it to

cross the bottleneck and enter the valley below. If the statistics change after crossing the

bottleneck, the network is trapped. In this interpretation, the early phases of convergence

are critical in leading the network towards the “right” final valley. The end of critical pe-

riods comes after the network has crossed all bottlenecks (and thus learned the features)

and entered a wide valley (region of the weight space with low curvature, or low Fisher

Information).

6.3 Discussion and Related Work

Critical periods have thus far been considered an exclusively biological phenomenon. At

the same time, the analysis of DNNs has focused on asymptotic properties and neglected

the initial transient behavior. To the best of our knowledge, we are the first to show that

artificial neural networks exhibit critical period phenomena, and to highlight the critical role

of the transient in determining the asymptotic performance of the network. Inspired by the

role of synaptic connectivity in modulating critical periods, we introduce the use of Fisher

Information to study this initial phase. We show that the initial sensitivity to deficits closely

follows changes in the FIM, both global, as the network first rapidly increases and then

decreases the amount of stored information, and layer-wise, as the network “reorganizes” its

effective connectivity in order to optimally process information.

Our work naturally relates to the extensive literature on critical periods in biology. De-

spite artificial networks being an extremely reductionist approximation of neuronal networks,

they exhibit behaviors that are qualitatively similar to the critical periods observed in hu-
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Figure 6.5: Normalized quantity of information contained in the weights of each layer as

a function of the training epoch. (Top Left) In the absence of deficits, the network relies

mostly on the middle layers (3-4-5) to solve the task. (Top Right) In the presence of

an image blur deficit until epoch 100, more resources are allocated to the higher layers (6-

7) rather than to the middle layers. The blur deficit destroys low- and mid-level features

processed by those layers, leaving only the global features of the image, which are processed

by the higher layers. Even if the deficit is removed, the middle layers remain underdeveloped.

(Top Center) When the deficit is removed at an earlier epoch, the layers can partially

reconfigure (notice, e.g., the fast loss of information of layer 6), resulting in less severe long-

term consequences. We refer to the redistribution of information and the relative changes

in effective connectivity as “Information Plasticity”. (Bottom row) Same plots, but using

a vertical flip deficit, which does not induce a critical period. As expected, the quantity of

information in the layers is not affected.
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man and animal models. Our information analysis shows that the initial rapid memorization

phase is followed by a loss of Information Plasticity which, counterintuitively, further im-

proves the performance. On the other hand, when combined with the analysis of Chapter 4,

this suggests that a “forgetting” phase may be desirable, or even necessary, in order to learn

robust, nuisance-invariant representations.

The existence of two distinct phases of training has been observed and discussed by

Shwartz-Ziv and Tishby (2017), although their analysis builds on the (Shannon) information

of the activations, rather than the (Fisher) information in the weights. On a multi-layer per-

ceptron (MLP), Shwartz-Ziv and Tishby (2017) empirically link the two phases to a sudden

increase in the gradients’ covariance. It may be tempting to compare these results with our

Fisher Information analysis. However, it must be noted that the FIM is computed using

the gradients with respect to the model prediction, not to the ground truth label, leading to

important qualitative differences. In ??, we show that the covariance and norm of the gradi-

ents exhibit no clear trends during training with and without deficits, and, therefore, unlike

the FIM, do not correlate with the sensitivity to critical periods. Nonetheless, a connection

between our FIM analysis and the information in the activations can be established based

on Section 4.5, which shows that the FIM of the weights can be used to bound the infor-

mation in the activations. In fact, we may intuitively expect that “pruning” of connections

naturally leads to loss of information in the corresponding activations. Thus, our analysis

corroborates and expands on some of the claims of Shwartz-Ziv and Tishby (2017), while

using an independent framework.

Aside from being more closely related to the deficit sensitivity during critical periods,

Fisher Information also has a number of technical advantages: Its diagonal is simple to

estimate, even on modern state-of-the-art architectures and compelling datasets, and it is less

sensitive to the choice estimator of mutual information, avoiding some of the most common

criticism of the use of information quantities in the analysis of deep learning models. Finally,

the FIM allows us to probe fine changes in the effective connectivity across the layers of the

network (Figure 6.5), which are not visible in Shwartz-Ziv and Tishby (2017).

A complete analysis of the activations should account not only for the amount of in-

101



formation (both task- and nuisance-related), but also for its accessibility, e.g., how easily

task-related information can be extracted by a linear classifier. Following a similar idea,

Montavon et al. (2011) studied the layer-wise, or “spatial” (but not temporal) evolution of

the simplicity of the representation by performing a principal component analysis (PCA) of

a radial basis function (RBF) kernel embedding of each layer representation. They showed

that, on a multi-layer perceptron, task-relevant information increasingly concentrate on the

first principal components of the representation’s embedding, implying that they become

more easily “accessible” layer after layer, while nuisance information (when codified at all) is

encoded in the remaining components. In our work, instead, we focus on the temporal evo-

lution of the weights. However, it is important to notice how a network with simpler weights

(as measured by the FIM) also requires a simpler smooth representation (as measured, e.g.,

by the RBF embedding) in order to operate properly, since it needs to be resistant to per-

turbations of the weights. Thus our analysis is wholly compatible with the intuitions of

Montavon et al. (2011). It would be interesting to study the joint spatio-temporal evolution

of the network using both frameworks at once.

One advantage of focusing on the information of the weights rather than on the activa-

tions, or the behavior of the network, is to have a readout of the “effective connectivity” during

critical periods, which can be compared to similar readouts in animals. In fact, “behavioral”

readouts upon deficit removal, both in artificial and neuronal networks, can potentially be

confounded by deficit-coping changes at different levels of the visual pathways (Daw, 2014;

Knudsen, 2004). On the other hand, deficits in deprived animals correlate strongly with

the abnormalities in the circuitry of the visual pathways, which we characterize in DNNs

using the FIM to study its “effective connectivity”, i.e., the connections that are actually

employed by the network to solve the task. Sensitivity to critical periods and the trace

of the Fisher Information peak at the same epochs, in accord with the evidence that skill

development and critical periods in neuronal networks are modulated by changes (generally

experience-dependent) in synaptic plasticity (Knudsen, 2004; Hensch, 2004). Our layer-wise

analysis of the Fisher Information (Figure 6.5) also shows that visual deficits reinforce higher

layers to the detriment of intermediate layers, leaving low-level layers virtually untouched. If

102



the deficit is removed after the critical period ends, the network is not able to reverse these

effects. Although the two systems are radically different, a similar response can be found in

the visual pathways of animal models: Lower levels (e.g., retina, lateral geniculate nucleus)

and higher-level visual areas (e.g., V2 and post-V2) show little remodeling upon deprivation,

while most changes happen in different layers of V1 (Wiesel and Hubel, 1963a; Hendrickson

et al., 1987).

An insightful interpretation of critical periods in animal models was proposed by Knud-

sen (2004): The initial connections of neuronal networks are unstable and easily modified

(highly plastic), but as more “samples” are observed, they change and reach a more stable

configuration which is difficult to modify. Learning can, however, still happen within the

newly created connectivity pattern. This is largely compatible with our findings: Sensitiv-

ity to critical-period-inducing deficits peaks when connections are remodeled (Figure 6.4,

Left), and different connectivity profiles are observed in networks trained with and without

a deficit (Figure 6.5). Moreover, high-level deficits such as image-flipping and label permu-

tation, which do not require radical restructuring of the network’s connections in order to

be corrected, do not exhibit a critical period.

Applying a deficit at the beginning of the training may be compared to the common

practice of pre-training, which is generally found to improve the performance of the network.

Erhan et al. (2010) study the somewhat related, but now seldom used, practice of layer-

wise unsupervised pre-training, and suggest that it may act as a regularizer by moving the

weights of the network towards an area of the loss landscape closer to the attractors for

good solutions, and also that early examples have a stronger effect in steering the network

towards particular solutions. Here, we have shown that pre-training on blurred data can

have the opposite effect; i.e., it can severely decrease the final performance of the network.

However, in our case, interpreting the deficit’s effect as moving the network close to a bad

attractor is difficult to reconcile with the smooth transition observed in the critical periods

since the network would either converge to this attractor, and thus have low accuracy, or

escape completely.

Instead, we can reconcile our experiments with the geometry of the loss function by intro-
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ducing a different explanation based on the interpretation of the FIM as an approximation

of the local curvature. Figure 6.4 suggests that SGD encounters two different phases during

the network training: At first, the network moves towards high-curvature regions of the loss

landscape, while in the second phase the curvature decreases and the network eventually

converges to a flat minimum (as observed in Keskar et al. (2017)). We can interpret these

as the network crossing narrow bottlenecks during its training in order to learn useful fea-

tures, before eventually entering a flat region of the loss surface once learning is completed

and ending up trapped there. When combining this assumption with our deficit sensitivity

analysis, we can hypothesize that the critical period occurs precisely upon crossing of this

bottleneck. It is also worth noticing how there is evidence that convergence to flat minima

(minima with low curvature) in a DNN correlates with a good generalization performance

(Hochreiter and Schmidhuber, 1997; Li et al., 2017; Chaudhari et al., 2017; Keskar et al.,

2017). Indeed, using this interpretation, Figure 6.4 (Right) tells us that networks more af-

fected by the deficit converge to sharper minima. However, we have also found that the

performance of the network is already mostly determined during the early “sensitive” phase.

The final sharpness at convergence may thus be an epiphenomenon rather than the cause of

good generalization.
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