
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Pattern recognition techniques for image and video post- processing : specific application to
image interpolation

Permalink
https://escholarship.org/uc/item/8gb3k16g

Author
Ni, Karl S.

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gb3k16g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Pattern Recognition Techniques for Image and Video Post-Processing:
Specific Application to Image Interpolation

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Karl S. Ni

Committee in charge:

Professor Truong Q. Nguyen, Chair
Professor Yoav Freund
Professor Gert Lanckriet
Professor William Hodgkiss
Professor Nuno Vasconcelos

2008

Copyright

Karl S. Ni, 2008

All rights reserved.

The dissertation of Karl S. Ni is approved, and it

is acceptable in quality and form for publication

on microfilm:

Chair

University of California, San Diego

2008

iii

To My Family. I owe you everything.

The true path of success is paved by

diligence inspired by passion.

—Unknown

iv

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita and Publications . xiv

Abstract . xvi

1 Introduction . 1
1.1 Towards a Shift in Computational Focus 3
1.2 Image Interpolation . 7
1.3 Focus of This Work . 7

2 Background . 9
2.1 Non-statistical Superresolution Methods 10
2.2 Learning-Based Superresolution Methods 11

3 Image Patch-Based Distribution . 15
3.1 A Distribution Model for Image Patches 17
3.2 Empirical Justification . 18
3.3 Using the Proposed Model . 22
3.4 Implications in Different Domains 23
3.5 On the Variability of Finite Data Sets 27
3.6 Results . 27
3.7 Summary . 30
3.8 Acknowledgements . 30

4 Adaptive k-Nearest Neighbor for Image Interpolation 31
4.1 Review of k-Nearest Neighbor for Regression 32
4.2 Building the Optimal Interpolation Mechanism 34

4.2.1 Choosing the Correct k . 36
4.3 Heuristics for Insufficient Training 38
4.4 Using the Single-Pass Approximation to the Markov Random Field

(MRF) . 40
4.5 Complexity Issues and Specifics on Implementation 44
4.6 Results . 46

v

4.6.1 Comparisons to Non-Learning-Based Algorithmic Results . . 49
4.6.2 Comparison to Learning-Based Algorithmic Results 49

4.7 Summary . 55
4.8 Acknowledgements . 56

5 Support Vector Regression Image Interpolation 57
5.1 Support Vector Regression . 58
5.2 Kernel Learning for Support Vector Regression 59

5.2.1 The SDP Problem . 61
5.2.2 The QCQP Problem . 66

5.3 General SVR Superresolution . 68
5.4 Discrete Cosine Transform Structure 69

5.4.1 Decimation in Time . 70
5.4.2 DCT Properties in Two-Dimensions 70

5.5 Results and Analysis . 73
5.6 Summary . 78
5.7 Acknowledgements . 79

6 Mixture of Experts for Image Interpolation 80
6.1 Algorithmic Description . 81

6.1.1 Hierarchical Mixture of Experts 81
6.1.2 Unsupervised Classification 83
6.1.3 Fitting the Framework . 85

6.2 Color Image Superresolution . 86
6.2.1 Integrating Color into the Stochastic Framework 87
6.2.2 Chroma-subsampling and Superresolution 88

6.3 Results and Analysis . 88
6.4 Summary . 93
6.5 Acknowledgements . 93

7 Polyphase Representation of Classification-Based Filtering for Image In-
terpolation . 103
7.1 Review: C. B. Atkins’ Ph. D. Dissertation 104
7.2 Polyphase Representation of Classification-based Filtering 106

7.2.1 Review: Polyphase Decomposition 107
7.2.2 Class-specific Polyphase Filters 108

7.3 Zero-phase Filter Design for a Single Interpolation Filter 110
7.3.1 Pretraining Constraints on H(zx, zy) 114
7.3.2 Pretraining Constraints on Em(zx, zy) 115
7.3.3 Post-Training Symmetry Enforcement 117
7.3.4 Post-Training Frequency Domain Phase Elimination 118

7.4 Arbitrary Scaling Factors Using Frequency Domain Responses . . . 119
7.4.1 Interpolation by Integer Factors 121

vi

7.4.2 Interpolation by Rational Scaling Factors 123
7.5 Results and Analysis . 126
7.6 Summary . 134
7.7 Acknowledgements . 136

8 Conclusions and Future Work . 138

Bibliography . 142

vii

LIST OF FIGURES

Figure 1.1: Statistical and Machine Learning General Framework 2
Figure 1.2: The Power of Human Inferences 3
Figure 1.3: Recent Technological Needs for Image Processing 4
Figure 1.4: Typical Video Formats . 6
Figure 1.5: Topics to be Discussed in Subsequent Chapters 8

Figure 2.1: Classification versus Nearest Neighbor Representations 13
Figure 2.2: Illustrative Diagram on the Isometry of Image Patches 14

Figure 3.1: Types of Image Content . 16
Figure 3.2: Histogram of Multi- to One-dimensional Patch Mapping 19
Figure 3.3: Example of Patches with Insufficient Training 21
Figure 3.4: Visual Results of Classification-Based Approaches 28
Figure 3.5: Properties of Reduction in Model Order 29

Figure 4.1: Example of Patches with Insufficient Training 40
Figure 4.2: Markov Random Field Implementation 41
Figure 4.3: Description of Windows and Blocks for Adaptable k-NN 42
Figure 4.4: Description of Windows and Blocks in Adaptable k-NN 43
Figure 4.5: Texture Comparisons of an Adaptable k vs. Fixed k 47
Figure 4.6: Edge Comparisons of an Adaptable k vs. Fixed k 48
Figure 4.7: Effect of Varying η = kmin . 50
Figure 4.8: Comparisons to State of the Art Interpolation Techniques . . . 51
Figure 4.9: Comparisons to Statistical Learning Methods, Bus Images . . . 53
Figure 4.10: Comparisons to Statistical Learning Methods, Pirate Images . 54

Figure 5.1: Procedure for General SVR Superresolution. 68
Figure 5.2: SVR Superresolution with DCT Structure 74
Figure 5.3: Regression Kernel Learning, Five Fold Cross-Validation 75
Figure 5.4: DCT Loss of Generalization 77
Figure 5.5: Zoomed Reconstruction of 10th CIF “Bus” Sequence Frame . . 78

Figure 6.1: Comparisons of DCT Domain to Mixture of Experts 90
Figure 6.2: Proposed Algorithm versus Resolution Synthesis [9] 95
Figure 6.3: Proposed Algorithm versus Edge Directed Interpolation [74] . . 96
Figure 6.4: Proposed Algorithm vs Various State of the Art Algorithms . . 97
Figure 6.5: PSNR Results in 8 Frames of the Bus Sequence. 98
Figure 6.6: Comparisons to State of the Art, 6th Frame City Sequence . . 99
Figure 6.7: Comparisons to State of the Art 100
Figure 6.8: Comparisons to State of the Art Interpolation Techniques . . . 101
Figure 6.9: Mixture of Experts vs C.B. Atkins [9] 102

viii

Figure 7.1: Two-dimensional Interpolation Kernels for Image Filtering . . 108
Figure 7.2: Noble Identities . 109
Figure 7.3: Interpolation Process for Class j. 109
Figure 7.4: Magnitude Responses for Four Classes, u = 2. 112
Figure 7.5: Given Magnitude Responses for Interpolation Factors of 2 and u121
Figure 7.6: IFIR Block Diagram . 122
Figure 7.7: Frequency Responses for Each Stage of Cascade in Fig. 7.6 . . 123
Figure 7.8: Typical Rational Scaling Framework 124
Figure 7.9: Super-high resolution grid, u× the original image size. 125
Figure 7.10: Interpolation of Bus Sequence Using Various Methods 129
Figure 7.11: Comparisons to Various Classification-Based Filtering Algorithms130
Figure 7.12: Comparisons to Various Classification-Based Filtering Algorithms131
Figure 7.13: Comparisons to Edge-Directed Interpolation Algorithms 133
Figure 7.14: 4/3 Rational Scaling of the Bus Sequence 135

ix

LIST OF TABLES

Table 3.1: Comparisons of Interpolation Model Replacement 29

Table 4.1: Adaptable k-NN PSNR comparisons 52

Table 5.1: Training and Testing of Optimal Kernels 76

Table 6.1: Miscellaneous PSNR comparisons 92

Table 7.1: Computational Complexity Benchmarks in 2× Interpolation . . 127
Table 7.2: PSNR Results for 2× Interpolation 132

x

ACKNOWLEDGEMENTS

The Ph.D. has been an adventure, and I have genuinely depended on several

individuals to get through it. Without them, I would not be submitting this thesis

today.

I am fortunate to have one of the most understanding advisors, Truong

Nguyen, who directed me with general and specific guidance. His efforts in securing

funding are much appreciated. I have to thank him for his trust in my abilities

because my work is a product of his positive attitude and sincere interest. My

goals are set high with his encouragement, and I intend to adopt his management

and leadership style throughout my life, professionally and personally. It has been

a privilege, truly.

I am also grateful to Professor Nuno Vasconcelos for his part in the devel-

opment of my thesis. In our conversations, he can best be described as patient and

insightful while never short nor curt. I fully appreciate and value his time, which

he freely gives even in the presence of his busy schedule. He is always enthusiastic,

and I owe a good portion of my publications to his guidance.

Professor Gert Lanckriet is ever the graduate student’s friend. His person-

able manner and his youth provide perspective and make him very approachable.

His theories and derivations also contribute to a large portion of my publications.

Someone I often turn to for help is my fellow labmate, Sanjeev Kumar,

whose technical abilities are formidable. He aided in several of the algebraic deriva-

tions throughout this work. Additionally, I have enjoyed enlightening conversations

with Koohyar Minoo, Millie Li, Ryan Prendergast, Ben Kao, and Vikas Ramachan-

dra. I would also like to thank Cheolhong An, Shay Harnoy, Ai-Mei Huang, Natan

Jacobson, Yen-Lin Lee, Jack Tzeng, Nick Mueller, Stanley Ho, Gokce Dane, Wade

Chang, Mainak Biswas, and Dung Vo. To anyone else that I may have inadver-

tently missed, my sincerest apologies and my utmost thanks.

My parents, Ming and Ann Ni, are a continuing source of inspiration to me,

and I attribute any and all accomplishments to their support. My brother, Kevin,

and my sister, Karen, have always been there for me, and they have given me their

love, best wishes, and friendship. I can only hope to be as good a brother to them.

xi

Finally, my most profound thanks go to Gina Tuazon, whose love, strength,

and encouragement got me through these five years. By building confidence in

every capacity of my life, she has given me a strong foundation on which to stand.

She is truly an amazing woman.

Portions of Chapter 3 appear in “A Model for Image Patch-Based Algo-

rithms”, Karl Ni and Truong Nguyen, to appear in presentation at the IEEE

International Conference on Image Processing, October 2008. The dissertation

author was the primary author of the publication, and the co-author listed di-

rected and supervised the research which forms the basis for this chapter.

The text of Chapter 4 is adapted from Adaptive k-Nearest Neighbor, Karl Ni

and Truong Nguyen, January 2008, manuscript submitted to IEEE Transactions

on Image Processing. Portions of the chapter also appear in “An Adaptive k-

Nearest Neighbor Algorithm for Image Interpolation”, Karl Ni and Truong Nguyen,

in Proceedings of the IEEE International Conference on Image Processing, April

2008. The dissertation author was the primary author of these publications, and

the co-author listed directed and supervised the research which forms the basis for

this chapter.

The text of Chapter 5 is adapted from Support Vector Regression based

Superresolution, Karl Ni and Truong Nguyen, in the June 2007 issue of the IEEE

Transactions on Image Processing. Portions of the chapter also appear in “Single

Image Superresolution Based on Support Vector Regression”, Karl Ni, S. Ku-

mar, N. Vasconcelos, and Truong Nguyen, in Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, May 2006; and

also in “Learning the Kernel Matrix for Superresolution”, Karl Ni and Truong

Nguyen, in Proceedings of the IEEE 8th International Workshop on Multimedia

Signal Processing, August 2006. The dissertation author was the primary author

of these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

The text of Chapter 6 is adapted from Mixture of Experts Framework for

Superresolution, Karl Ni and Truong Nguyen, January 2008, manuscript submitted

to the IEEE Transactions on Image Processing. Portions of the chapter also appear

xii

in “Kernel Resolution Synthesis for Superresolution”, Karl Ni and Truong Nguyen,

in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing, April 2007; “Complex Function Estimation using a Stochastic Classi-

fication/Regression Framework: Specific Applications to Image Superresolution”,

in Proceedings of the SPIE International Conference on Optics and Photonics,

August 2007; and also in “Color Image Superresolution Based on a Stochastic

Combinational Classification-Regression Algorithm”, in Proceedings of the IEEE

International Conference on Image Processing, September 2007. The dissertation

author was the primary author of this publication, and the co-author listed directed

and supervised the research which forms the basis for this chapter.

The text of Chapter 7 is adapted from A Zero-phase Filter for Image In-

terpolation, Karl Ni and Truong Nguyen, May 2008, manuscript submitted to the

IEEE Transactions on Image Processing. The dissertation author was the primary

author of this publication, and the listed co-author directed and supervised the

research that forms the basis for this chapter.

I am very grateful for the financial support of Qualcomm, Inc., the Univer-

sity of California Discovery Grant, and the Von Liebig Foundation. I hope I have

represented their contributions well.

xiii

VITA

1980 Born, Galveston, Texas

2002 B. S., University of California at Berkeley

2003 Engineer at Lockheed Martin Corporation, Littleton,
Colorado

2004 Teaching assistant, Department of Electrical and Com-
puter Engineering, University of California at San Diego

2005 M. S., University of California at San Diego

2008 Ph. D., University of California at San Diego

PUBLICATIONS

A Zero-phase Filter for Image Interpolation. (K. Ni and T. Q. Nguyen) Manuscript
to be submitted to the IEEE Transactions on Image Processing, 2008.

Mixture of Experts Frameworks for Image Superresolution. (K. Ni and T. Q.
Nguyen) Manuscript submitted to the IEEE Transactions on Image Processing,
2008.

An Adaptive k-Nearest Neighbor Algorithm for MMSE Image Interpolation. (K.
Ni and T. Q. Nguyen) Manuscript submitted to the IEEE Transactions on Image
Processing, 2007.

Image Superresolution Based on Support Vector Regression. (K. Ni and T. Q.
Nguyen) IEEE Transactions on Image Processing, Vol. 16, No. 6, June 2007.

“A Model for Image Patch-Based Algorithms”. (K. Ni and T. Q. Nguyen), to
appear in presentation at the IEEE International Conference on Image Processing,
June 2008.

“An Adaptive k-Nearest Neighbor Algorithm for Image Interpolation”. (K. Ni
and T. Q. Nguyen) In the Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, April 2008.

“Color Image Superresolution Based on a Stochastic Combinational Classification-
Regression Algorithm”. (K. Ni and T. Q. Nguyen) In the Proceedings of the IEEE
International Conference on Image Processing, September 2007.

xiv

“Complex Function Estimation using a Stochastic Classification/Regression Frame-
work: Specific Applications to Image Superresolution”. (K. Ni and T. Q. Nguyen)
In the Proceedings of the SPIE International Conference on Optics and Photonics,
August 2007.

“Filling Time by Plugging Holes”. (V. Ramachandra, K. Ni, T. Q. Nguyen) In the
Proceedings of the International Conference and Exhibition on Computer Graphics
and Interactive Techniques, August 2007.

“Kernel Resolution Synthesis for Superresolution”. (K. Ni and T. Q. Nguyen) In
the Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, April 2007.

“Learning the Kernel Matrix for Superresolution”. (K. Ni and T. Q. Nguyen) In
the Proceedings of the IEEE 8th International Workshop on Multimedia Signal
Processing, August 2006.

“Single Image Superresolution Based on Support Vector Regression”. (K. Ni,
S. Kumar, N. Vasconcelos, and T. Q. Nguyen) In the Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, May 2006.

xv

ABSTRACT OF THE DISSERTATION

Pattern Recognition Techniques for Image and Video Post-Processing:

Specific Application to Image Interpolation

by

Karl S. Ni

Doctor of Philosophy in Electrical and Computer Engineering

University of California San Diego, 2008

Professor Truong Q. Nguyen, Chair

Video and image enhancement relate to the age old problem of constructing

new image detail to effect a more pleasurable viewing experience in video sequences

and images. The image processing procedure described in this thesis is image and

video interpolation, but the discussed algorithms are easily applicable to other

areas in a variety of fields. The motivations behind resolution enhancement span

the full spectrum of government to commercial to medical applications. For ex-

ample, video quality from on-demand sites such as YouTube, Daily Motion, and

Veoh, where hit counts sometimes reach 4.7 million viewers per day, have traded

off quality for bandwidth; travelers who use Google Map’s Street View cannot read

signs, see landmarks from the provided low-resolution panoramic; Google Earthr

and government contractors in image intelligence demand for increasing resolution

in satellite imagery. The long list of applications goes on, including applications

such as web-photo editing, MRI scan feature enhancements, on-demand creation

of HDTV content, etc.

The image interpolation problem is an inherently ill-posed problem, and

quality assessments of the resulting images are often driven by human decision

rather than numerical analysis. By computer learning, the best viewing perfor-

mance can be achieved by mimicking the human decision-making process. There-

fore, this thesis is concerned with modeling machine and statistical learning tech-

xvi

niques to fit the interpolation framework, while easily modified to accommodate

other video and image processing problems in general. Specifically, we learn prop-

erties in a training set by using regression to map a relationship between known

and unknown information. The known information by our definitions are low-

resolution images while unknown information are high-resolution images.

Machine learning is a particularly broad topic, and we can approach the

image interpolation problems in several different ways. Our input space is the

image patch domain, where we process fixed-size contiguous subsets of the image

independently. Consequently, we first discuss properties of the feature space and

propose a multivariate probability distribution function to describe the image patch

domain. Knowledge of the distribution and properties of the feature space is

especially conducive to both parametric and nonparametric estimation techniques.

Because k-nearest neighbors is a relatively simple and commonly used non-

parametric estimation technique, we propose a nearest neighbor algorithm that

adaptively finds the appropriate number of neighbors to use and then performs the

necessary regression steps. The algorithm also imposes global constraints through

a heavily approximated Markov Random Field. Due to runtime considerations, we

explore quicker ways to search for the k nearest neighbors of a given input.

Next, we investigate the use of kernel-based methods by employing support

vector regression. We improve the generalization potential for nonlinear relation-

ships by proposing convex optimization problems focused in kernel learning. There

are various interpolation frameworks that can include the newly proposed regres-

sion technique, and we experiment with several. Ultimately, we propose a mixture

of experts framework to describe the relationships in the training set.

Finally, we propose a single, general, zero-phase MMSE interpolation filter

to address computational complexity concerns of all learning algorithms. The

idea arises from image processing analysis of machine learning techniques rather

than the application of machine learning to image processing. In the development

of the final filter, we analyze a general classification-based filtering scheme using

polyphase representation. Because there are inherent similarities and considerable

overlap between each class in such an approach, one zero-phase filter for all image

xvii

content seems to logically follow as an adequate approximation that reduces the

total number of computations to that of bicubic interpolation. Analyzing the

frequency response, we can generate filters on-the-fly for arbitrary scaling factors.

xviii

1 Introduction

It is not knowledge, but the act of learning, not possession but

the act of getting there, which grants the greatest enjoyment.

—Carl Friedrich Gauss

Human beings have survived for millions of years in large part by our ability

to recognize patterns and draw inferences from them. In an attempt to comprehend

what is involved in generalizing to real-world phenomena, computer scientists study

statistical and machine learning principles. The underlying methodology behind

statistically modeling data is to extract functional relationships from a controlled

database and apply these relationships to unseen test points. In essence, based on

what has been previously observed, we apply that information to the problem at

hand to make an informed decision. The block diagram can be seen in Fig. 1.1.

To recognize patterns, humans use their primary senses to gather informa-

tion about the problem at hand. One collection of inputs can be extracted from

the eyes and vision, where decisions are often based off of visual cues. How we

view the world from the external scene outside the eye to the brain’s interpretation

of a scene has been grouped into a broad and complex model called the human

visual system, which has been extensively studied in the biological [102] and ana-

lytical sense [22, 110, 76]. Two fields of studies are dedicated to the automation of

decision making processes through the human visual system: computer vision and

image processing.

There is not a fine line distinguishing computer vision and image processing,

and collaboration often occurs to cover the overlap between the two fields. Com-

puter vision deals with problems like object recognition and three-dimensional

1

2

Decision

Operations based on

Specified

Cost Function

Observation

Knowledge Base (Training Set):

{ (input1, output1), (input2, output2), …, (inputN, outputN)}

Informed

Decision

Figure 1.1: Statistical and Machine Learning General Framework

information extraction from a two-dimensional signal. Problems in computer vi-

sion usually stem from the higher-level processes within an image. In contrast,

image processing is concerned with the two-dimensional properties of images, with

emphasis on the image itself. In such a context, lower-level terms like “edges”,

“texture”, and “image segmentation” are relevant and tangible concepts.

Whereas computer vision fully embraces pattern recognition and statistical

and machine learning, the equivalent effort in image processing in the past has

largely been left unexplored, and only recently have conferences been dedicated to

the topic (see EURASIP’s Special Issue on Machine Learning in Image Processing).

Despite the limited scientific exposure, it seems only natural to utilize learning

because we, as humans, use learning to assess or process images. Our evaluation of

images is highly subjective because numerical metrics cannot adequately assess an

image on a global scale. Thus, when the underlying solutions mimic how human

learning would process the image, the results should reflect a more favorable HVS

evaluation, or in essence, effect a more visually pleasing image. For example, given

the blurry block on the left in Fig. 1.2, our intuition should be able to create the

3

image on the right by applying what we know of edges and lines from previous

experiences. Similarly, given a training set, we hope to automate the decision-

making process. By utilizing a training set of a priori knowledge, the image on the

right can be created.

Figure 1.2: The Power of Human Inferences

This thesis sets out to establish good learning techniques in relation to

the specific problem of image interpolation and superresolution, one of the more

basic image processing problems. The functional relationship between low and

high-resolution images is estimated through regression, and we explore various

frameworks to do so. Although regression solves our particular problem well,

we have deliberately chosen a general format for applicability to other imaging

problems. We view our designs of function estimation as a tool rather than a

means to a sole end.

1.1 Towards a Shift in Computational Focus

Image interpolation, sharpening, deblurring, and other issues in video post-

processing collectively have long since been a problem whose goal is to provide a

viewer with “acceptable” high-resolution image results (be it visually pleasing, nu-

merically correct, or some other criterion). Yet, only recently have developments in

4

digitization, displays, capture devices, information technology, and benefits reaped

by Moore’s law provided significant demand and renewed interest for resolution

enhancing solutions. For example, Reuter’s reported that in a press release from

comScore (NASDAQ: SCOR), one of the leaders in metrics of the digital world, the

United States alone watched more than ten billion online videos during the month

of December 2007, the heaviest consumption to date. The number corresponds

to an astounding 76.7% of all U.S. internet users not just visiting websites, but

sitting down and watching videos for extended periods of time. The proliferation

of videos and images in various technological settings can be seen in Fig. 1.3, where

inevitable needs for video post-processing arise.

Figure 1.3: Recent Technological Needs for Image Processing

The most recent high-profile acquisition that involves content that is di-

5

rectly related to video and image processing is Google’s buyout of YouTube. See-

ing the potential for advertisements in the video arena, Google sites have extended

their market share to one third (32.6%) of all videos viewed online. The most pop-

ular video postings boast hit counts of up to 4.7 million viewers per day. Internet

websites such as Dailymotion, Veoh, Metacafe, Tudou, etc., have followed suit of-

fering videos of different lengths and categories. Such sites have traded off video

quality for bandwidth, compressing videos excessively in favor of quick download

times so that the viewer receives a more on-demand experience. The remedy for

highly compressed, poor video quality is video post-processing at the receiving

terminal, where we build filters for video superresolution, deblocking, denoising,

and deblurring.

Cameraphones are also shown in Fig. 1.3, where integration of all things

portable and electronic, including digital cameras, have merged into a single device.

The obvious improvement is increasing resolution on cameraphones, but there

are other future video processing projects that will inevitably surface. Although

not yet popular, streaming video capability in cellphones has already begun to

make its mark with brands like Verizon’s VCAST rand Sprint’s Power Vision r.

Additionally, cameras on phones have opened the door to video teleconferencing.

Soldiers will talk to their newborn children overseas, presentations will be regularly

given remotely, and families will be visually connected across the globe; their

demand for high-quality video will require video postprocessing to make it all

happen.

Fig. 1.3 emphasizes image and signal intelligence, where military has heavily

relied on satellite imagery. Funding for specific projects include the design of a

group of filters assembled to highlight a target area of interest. In the commercial

sector, Google Maps, also sporting a satellite view option, has found it necessary

to introduce “Street View” to supplement existing top-down views, because users

sometimes rely on visual landmarks. The resolution, however, is too poor to read

street signs or house numbers, which users may need to identify areas of interest.

Image interpolation, the main application of our machine learning algorithms,

resolves this problem very well.

6

Figure 1.4: Typical Video Formats

Finally, the trend in large screen displays states that support for super-

high definition now exists. Common video formats shown in Fig. 1.4 are typically

broadcasted at a maximum of 1080p (or 1K), but display technology can now

support 2K and 4K pixels. Naturally, few video sequences exist at 2K and 4K,

so any movie on the large displays will appear blurry or undersampled. To bring

lower-resolution movies to these large displays, we require a quick algorithm to

superresolve to high resolution.

In less mainstream applications, specialized fields with needs pertaining to

image and video processing include those of biomedical imaging. While collectively,

doctors and patients are not yet ready (nor do they figure to be in the near future)

to automate diagnosis and detection, there has been considerable legal paperwork

in this respect, where the United States Food and Drug Administration has already

approved the use of the new computer aided detection device “MammoReader”

software. Although detection in such cases has often been exclusively associated

with the computer vision realm, there is a legitimate argument that finding the

optimal features, where image attributes can be highlighted either by filter or

7

other image transformation methods, is more important. The filters, potentially

obtained in a manner similar to those described in later sections, are designed to

elucidate the defining characteristics of an object.

1.2 Image Interpolation

Image interpolation relates to methods of constructing new image detail

from a discrete set of known points resulting in a higher resolution image. The

problem is ill-posed, and the quality of the solution is usually considered subjec-

tively, focusing on edges, texture, and clarity of content. These properties can be

generated in a number of ways, but to obtain them, new or assumed information

must be introduced. The information can come in many forms, including but not

limited to assumptions on pixel properties [74, 62, 3], frequency properties [4, 2], a

set of low-resolution, shifted images [83, 123, 16], or a training set in statistical and

machine learning [9, 49, 28, 38, 24, 85, 84, 86, 87, 88]. In our work, it is the final

category in the list, and the proposed algorithm is concerned with its application

in a sliding-window approach.

1.3 Focus of This Work

Processing the entire image at one time in a single non-iterative pass is

ineffective, computationally expensive, and unmanageable in terms of dimension-

ality. Hence, the proposed algorithms are patch-based. The domain of image

patches has specific and interesting properties, and we explore its potential as an

input space by building a distribution model in Chapter 3. The model hinges on a

combination of a multivariate super-Gaussian distribution and the commonly used

Gaussian Mixture Model, and some intuition about what the mixtures actually

mean is explained.

Our contributions are a group of interrelated image interpolation algo-

rithms. There are four main algorithms, and they are listed as

• Adaptive k-Nearest Neighbor Tied with a Markov Random Field

8

• Support Vector Regression in the DCT Domain

• Mixture of Modified Support Vector Regressors

• A Single, Zero-Phase Filter Built from Polyphase Representation

The list of proposed algorithms estimate functional relationships between

input and output space. Although the specific goal is image superresolution, the

learning technique is intentionally broad in application to span relationships that

may be learned for image denoising, deblurring, and demosaicking.

To arrive at the final form for each of the interpolation techniques, we set

up some optimization problems, most of them convex. Optimizations include (1)

finding the correct value of neighbors to use in k-Nearest Neighbor, (2) learning

a kernel matrix for support vector regression after reading the thesis, and (3)

adapting the support vector regression to weight “relevant” data. There are many

derivations throughout the body of the work, but the aforementioned optimization

techniques are easily generalizable to arbitrary problems. The chart of items to be

discussed and their categorization is given in Fig. 1.5.

Adaptive k-Nearest Neighbor

Finding optimal k values
Fast Approximation: Markov Random Field

Weight MMSE Interpolation

Polyphase Interpolation

Design Zero-Phase Image Filters

Support Vector Regression
&

Mixture of SVR’s

Optimally weight training points for SVR
Learn optimal kernel matrix for SVR

Image Distribution Models

Conceptual Meaning of Mixtures

Figure 1.5: Topics to be Discussed in Subsequent Chapters

2 Background

A study of the history of opinion is a necessary

preliminary to the emancipation of the mind.

—John Maynard Keynes

Image interpolation and superresolution is one of the oldest problems in

digital image processing. It is also the simplest problem to understand and per-

haps the most difficult to solve. Because of its broad applicability to images on the

whole, the collection of solutions to the image interpolation problem has accumu-

lated a diverse and rich history. In this chapter, we explore this history and related

work in the video processing field specifically related to image interpolation.

To capture images, a scene is sampled and stored as a discrete collection

of points. The need to interpolate arises when when we would like to increase

the number of samples in the original set of points. The solution is to fill in

samples on a more concentrated, regular grid. The original image is described as

the low-resolution image. The end-image is called the high-resolution image. The

procedure by which the high-resolution image is created from the low-resolution

image is the definition of our problem.

It is well known from image restoration theory that image interpolation

is an ill-posed problem. The most common solutions [57, 119, 81, 66] are splines

methods, where polynomial functions and their derivatives are used to approximate

2-D function behavior with surrounding pixel values. As will be seen in Chapter 4,

splines interpolation methods perform adequately, but their results are mediocre at

best due to their inability to adapt to image content. Using splines is the “safest”

solution because of their tendency to average the data out. Consequently, no

9

10

additional frequencies are being added, and the image data is smeared over a larger

spatial grid. The result is a blurry image whose pixel values are not estimated,

but rather represent the contribution of surrounding, known pixel values.

Splines have long been considered and used as a standard for comparisons

in quality and complexity. Their use is not limited to image interpolation, as

they have been used for function estimation in audio and one-dimensional signals

first. As the demand for higher resolution images grew stronger, several image

superresolution algorithms surfaced. The purpose of this chapter is to discuss those

interpolation methods that are relevant and perform especially well for comparison

purposes in later chapters. Non-statistical learning methods are reviewed in in

Sec. 2.1, and then statistical learning methods similar to ours are described in

detail in Sec. 2.2.

2.1 Non-statistical Superresolution Methods

Aside from typical spline methods, several approaches interpolate in other

domains, including the DCT domain [4, 2], DWT domain [117, 120], and Fourier

Domain [63, 101]. Alternative domain methods usually perform some type of zero-

padding in higher frequency slots, which after taking the inverse transform, results

in a spatially larger image. However, instead of superresolution the result exhibits

characteristics more of re-scaling, where higher resolution information is not added,

i.e. edges and texture are not elucidated, but again, existing information is spread

out over a larger spatial area.

More complex classes of solutions use range-based operations (content-

based interpolation), methods that elucidate edges and borders while maintaining

texture continuity. The simplest among such solutions is bilateral filtering [116,

129]. Extensions to [116] include edge directed interpolation techniques [62, 5, 74].

[74] uses a low-resolution correlation matrix as an approximation to obtain a high-

resolution image filter based on an assumption of geometric duality. Although

simple to implement, the covariance matrix is still low-resolution, and the value

added is usually inadequate for complicated textures, often causing an effect sim-

11

ilar to aliasing. The methods are basic in nature and do not enhance resolution

especially well, but their existence justifies some serious thought when determining

an optimal feature space, an idea central to many learning-based algorithms.

Algorithms that concentrate on particular image attributes often preserve

some type of regularity [115, 26, 25] including measures that are tailored specif-

ically to edges. Modeling items within images as polygons and geometric figures

[49] preserves edges and shapes, but most image content is usually too complex for

simply assuming that shapes within an image are only polygonal. [26] uses prop-

erties in the decay of wavelet coefficients to predict unknown coefficients at higher

resolution subbands. Again, the assumptions made in [26] may be insufficient

when considering all types of image content. In fact, in terms of generating resolu-

tion, such algorithms are inferior to most statistical learning techniques where the

quantity of additional available information (provided a priori through a training

set) may be exceedingly large. Therefore, to compare the two types of algorithms

may be unfair because the information available to non-learning-based algorithms

is considerably less.

In considering more sophisticated methods where information is more abun-

dant, inputs can be defined as shifted and warped versions of each other with

computed shift and warp parameters. Bayesian reconstruction techniques such as

MAP, ML, IBP, POCS [83], [108], [17], [123], [98] study the reverse problem to

obtain the high-resolution image that could have produced a group of observed,

similar test images. The approach in our work considers a more limited input

space, using inferences instead of existing inputs.

2.2 Learning-Based Superresolution Methods

Learning-based algorithms find relationships by drawing inferences from a

training set and generalizing to unseen data points. The inferences can be made

from a set of low and high resolution image patch pairs. Relationships can then

be generalized to unknown data points or whatever can possibly be used as input.

Most frequently cited methods for superresolution include example-based

12

superresolution in a Markov network [49], manifold learning through neighbor em-

bedding [28], and various other statistical learning approaches [79, 38]. Other

statistical learning algorithms involve outdated neural network concepts [38] with

limited degrees of success in interpolation in terms of visual quality.

In our experimentation, the most successful algorithm1 is the classification-

based adaptive filtering in [9]. The problem is formulated by using localized choices

for filters separated by the EM algorithm [39]. Under the assumption that images

are distributed as a Gaussian mixture, [9] applies content-based interpolation by

applying class labels to each mixture. The domain is partitioned according to

image content, and problem complexity decreases per test point, which yields good

performance. Because the domain is partitioned into several different classes, the

performance of the algorithm depends on the spread of the points surrounding a

given test point (as seen in Fig. 2.1).

Fig. 2.1 depicts the case where nearest neighbor representation might per-

form better than classification-based methods such as [9]. Fig. 2.1(a) divides the

domain into several sections, and builds a representative filter at a prespecified lo-

cation. Fig. 2.1(b) forgoes classification and grabs the k nearest neighbors (in this

case k = 4). The cluster centroid in Fig. 2.1(a) is not as related to the test point

as the four nearest training points in Fig. 2.1(b). The issue for classification-based

methods is exacerbated should the initial clustering not provide adequate classes,

building the case for nearest neighbor type interpolation mechanisms.

William Freeman’s example-based super-resolution [49], which draws from

candidate nearest neighbors and chooses the best neighbor by a Markov network,

is a good instance of nearest neighbor interpolation. Instead of a single nearest

neighbor, which depending on the training set may not be sufficient, manifold

learning through neighbor embedding in [28] offers a way to consider k neighbors,

incorporating more information to the solution. All nearest neighbor methods have

an easier time coming up with local representations, but recent developments [112]

show that the underlying assumption in [28] of isometry, at least for Euclidean

1Our implementations of all statistical learning methods use large amounts of training data
resulting in good quality high-resolution images.

13

(a) Segmented domain for 2-D low-res patch in

classification

(b) Representation of domain for 2-D low-

resolution patch in k-NN

Figure 2.1: Classification versus Nearest Neighbor Representations

distances, between low-resolution neighbors and high-resolution neighbors is in-

herently false. In other words, the distance metric used by [28] at low-resolution

does not correspond equally to the high-resolution distance counterparts. Hence,

the weights used at low-resolution are inappropriate for high-resolution construc-

tion (seen in Fig. 2.2). Chapter 4 focuses on solving the shortcoming of the non-

isometric nature of manifolds and elaborates on issues seen in [9, 49, 28].

To avoid the heavy runtime approximations in k-NN searches, more ap-

proximations of parametric estimation approaches are necessary. Such approaches

14

(a) Euclidean distance in 2-D low-

resolution patches

(b) Euclidean distance in 2-D high-resolution

patches

Figure 2.2: Illustrative Diagram on the Isometry of Image Patches

are usually proposed as combinations of generative and discriminant techniques.

As part of our work on kernel-methods, we examine SVR as a learning tool [127]

and its appropriately optimized kernel. SVR is part of a broader generalization

technique known as support vector machines, a tool based on the idea of struc-

tural risk minimization [124]. To be seen in Chapter 6, alternatives to regression

by a single SVR include the use of boosting in conjunction with multiple SVR,

extensively studied in [43, 93, 69, 61, 75]. The first instance of proposing SVM’s

for use in a mixture of experts model is in Kwok’s Support Vector Mixture [69],

in which a hierarchical mixture of SVM’s is used in a combination of classifica-

tion and regression. Parameters in [69] are obtained simultaneously using a single

quadratic programming (QP) problem. The complexity involved grows according

to both N and C (where N is the number of points and C is the number of classes),

and so a simpler, two-step approach involving expectation maximization (EM) is

more appropriate. The framework that reflects this reduction follows the example

of a notable regression technique in [75]. Chapters 5 and 6 discuss in detail SVR

(including use of the DCT domain) and mixtures of SVR techniques for image

superresolution.

3 Image Patch-Based

Distribution

Mathematics are well and good but nature keeps dragging us around by the nose.

—Albert Einstein

It is wise to explore the input (domain) and output (range) spaces for

any given problem. With full knowledge of the domain and range, we are better

equipped to model the relationship between them. The goal of this chapter is to

explore our input space for image patch-based processing and determine a distrib-

ution model that best describes any given representative collection of points from

it. That is, for any sufficiently large training set, we find the general form of the

multivariate PDF of image patches.

Images and video as inputs are inherently complex entities. For example,

Fig. 3.1 contains a multitude of content: letters, water, cloudy sections, sides of

buildings, edges, and forestry. Subjective performance of an algorithm on the

variety of image and video content focuses on several attributes, including but not

limited to temporal and spatial continuity, visual comfort with respect to edges

and texture, and clarity of content. Rather than using global image properties

(of which there is often little correlation between randomly selected images) or

processing an entire image at one time, many techniques focus their efforts on

achieving these attributes by observing local image properties.

Patch-based algorithms operate locally in exactly this manner and are de-

fined by the processing done in finite dimensional windows consisting of a con-

tiguous subset of pixel locations within a single image. The subset is considered

15

16

Figure 3.1: Types of Image Content

separately from the rest of the image, which in turn contains additional subsets at

different locations that are also processed individually.

Because many image/video compression/processing algorithms find the no-

tion of patch-based processing important (e.g. N ×N DCT compression, motion-

estimation, etc., are block-based, while postprocessing techniques such as inter-

polation are windowed), our study concentrates on the properties of the patches

themselves, particularly focusing on their distribution.

Anticipating the usefulness of such a study, especially when preprocessing

in an input space, several papers [106, 71, 72] have explored the topic. The range of

their investigations are diverse, but all of the studies eventually agree on some sort

of high-dimensional manifold that cannot be easily explained. [106] assumes two

discrete manifolds, termed implicit and explicit, consisting of edges and texture.

Likewise, [71] describes image patch space as extremely sparse with data clustered

on subspace manifolds, and [72] utilizes synthetic data to offer insight. We explore

17

intuitive explanations behind the manifolds, and why image patches can be broken

up as such.

This chapter is divided as follows. Sec. 3.1 proposes a model by consid-

ering several related works and some experimental observations. Next, Sec. 3.2

introduces a few tools that aid in explaining the model. Then, Sec. 3.3 provides

the necessary parameter estimation steps to use the model. Sec. 3.4 explores the

versatility of the model by considering transforms of the input space, and finally

in a short note, Sec. 3.5 discusses the dependency of the multivariate PDF on the

training set and the need for its cardinality to be finite.

3.1 A Distribution Model for Image Patches

Numerical statistics of image patches depend loosely on the size of the

evaluation window or the picture shot depth, which can often be associated with

the size of the image itself. For example, 7 × 7 windows taken from the same

sequence at different video sizes (QCIF versus CIF versus HD at 720p and 1080p)

have different statistics. The situation is similar to appropriately scaling local

statistics to correspond to a camera that zooms in on a particular scene. However,

we take the extent of the effect to be minimal, and given a sufficiently large window,

[94] suggests approximate scale invariance. That is, if I(x, y) is the observed image,

then the statistics of any given patch of I, patch(I(x, y)), approximately reflects

the statistics of patch(I(σx, σy)).

An important measure in data analysis is the kurtosis, or normalized fourth

order cumulant, of a distribution. When the normalizing value is 3, then the

kurtosis of a random variable X becomes the classical metric of the Gaussianity

of X. Under Gaussian normalization, the definition is given in (3.1).

kurt(u) =

∑N
i (ui − u)4

(N − 1)σ4
− 3, (3.1)

Conventional modeling trends [71] assert that image statistics are seldomly

distributed as Gaussians. Instead, any one-dimensional linear mapping of multi-

variate patch-based distributions, which includes transforms (DCT, DWT, DFT,

18

etc.), display strong super -Gaussian characteristics, i.e. kurt(x) > 0 (sharply

peaked). One illustration from the extensive collection of domain modeling in-

cludes [77], which uses the wavelet detail domain. The histogram is modeled as

X ∼ ξ0e
−(|h(x)i|/α)β

. (3.2)

for any i where h(x)i is the ith wavelet detail coefficient. (3.2) results from inde-

pendently distributed characteristics between detail coefficients, and overall, the

proposed model assumes the same in the image patch domain.

The overall form of (3.2) is eventually important to the proposed distri-

bution model, but in terms of the entire multi-dimensional distribution, a single

super-Gaussian peak is only partially descriptive. There are limits on the amount

of information a single dimension can convey, which is augmented by most models’

almost universal zero-mean properties. Alternatively, patched-based applications,

e.g. superresolution [9], often model the overall distribution as a mixture of Gaus-

sians (GMM). Rationalization behind such modeling is seldomly justified in any

imaging application, the mindset being more default than deliberate.

Nevertheless, as will be further clarified in Sec. 3.2, we believe that the

GMM is a surprisingly accurate model in non-smooth areas, and the proposed

model combines a GMM with a single super-Gaussian peak similar to [77]. Thus,

we propose a multivariate distribution model of the form:

X ∼ π0Q
(−(xTx/α)β

)
+

C∑
i=1

πiG(x,µi, Σi), (3.3)

where Q(z) is some kernel (potentially including a modified Bessel function for

multivariate Laplace distributions),
N∑

i=0

πi = 1, and G(x,µ, Σ) is a multivariate

Gaussian PDF.

3.2 Empirical Justification

The literature on density estimation under various frameworks is quite ex-

tensive. In this section, we observe several statistical frameworks that not only

rationalize a parametric method but also verify the functional form of (3.3).

19

The simplest density estimation technique is the histogram, and we use a

mapping as follows for visualization purposes. With x = patch (I(i, j)) ∈ Rd2
, a

mapping u ∈ R, is given in (3.4).

u =
∑

i

|xk − x| (3.4)

(The mapping is not entirely linear, but is sufficient for our purposes.) [71]’s

contention that one-dimensional mappings always have kurt(u) > 3 is usually

true, as seen in Fig. 3.2(a), where kurt(u) = 3.203. There are cases, though, when

the image consists of considerable amounts of texture like Fig. 3.2(d), and the

histogram will have kurt(u) ≈ 0 and the Gaussian shape of Fig.3.2(b).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Filtered Mapping

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

(a) Histogram of Doorhinge

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

Filtered Mapping

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

(b) Histogram of Grass

(c) Doorhinge Image (d) Grass Image

Figure 3.2: Histogram of Multi- to One-dimensional Patch Mapping

20

Histograms (a,b) of a 1-D mapping from a 7×7 collection of image patches

and the corresponding original images (c,d). Trends in (a) and (b) are typical

because (c) contains smooth-objects with edges while (d) is mostly texture.

Explanations behind behavior seen in Fig. 3.2 are quite intuitive. The

mapping in (3.4) corresponds to a variance-like measure, where small values of u

correspond to low variance among pixel values inside a patch x. Low-variance x’s

denote smooth image patches with slowly varying gradients, which are abundant in

Fig. 3.2(c) and most images in general. Conceptually, they are the image patches

that have very low-activity levels, and where x is mathematically “similar” to 0.

Such patches appear in high concentrations in most images, where skies, surfaces,

solid fabric, etc., are most likely present as large contiguous sets of pixels. Com-

pared to other types of vectors, the large proportion of low-activity vectors form

the basis of the first term in (3.3). In fact, the presence of edges is almost unnotice-

able in Fig. 3.2(a), with less than a 8% showing. Alternately, Fig. 3.2(b) exhibits

potential for parametrization as kurt(u) = −0.2388 using the most nonparametric

techniques.

The idea is to infer properties of the multivariate distribution from the

statistics of the nonlinear projection given in (3.4) by assuming some level of

correlation between the two. Given the shape and kurtosis of both histograms,

the natural generalization is to fit a super-Gaussian distribution to zero-mean low

variance vectors and a GMM to the broad spectrum of texture.

Another traditional distribution modeling technique is k-nearest neighbor

(k-NN) [45], where density estimation is mathematically expressed as

X ∼ 1

Nσ

N∑
i=1

K

(
x− xi

σ

)
(3.5)

where K(x,µ) represents a kernel that integrates to one. Conceptually, (3.5) places

kernels around each training point for a complete picture of the probability density

function (PDF).

The paradigm for our approach is just the opposite, though the final results

should remain exactly the same. Instead of thinking that kernels extend around

each training point, we can visualize a kernel at the test point since conceptualizing

21

a PDF at runtime is unnecessary. Therefore, distances from the test point to the

surrounding training points are evaluated by kernel depending on how far they are

to the input rather than how far the input is to each of them.

k∗(x, Ω) =
argmink

N∑
i=1

Wi(xt, Ω, k)K(xi,x) ≥ η

where Wi(xt, Ω, k) ∈ {0, 1}
(3.6)

The use of Euclidean distance between nearest neighbors as a goodness of fit mea-

sure was introduced in [29], [30], and [44], according to [80]. Using k of the nearest

neighbors, (3.6) is essentially a thresholded “distance to nearest neighbor” test.

The adaptability of k for common image processing applications will be discussed

at length in the next chapter, where the interest is interpolative purposes. In the

current context, it is merely a tool in the analysis of our image patch distribution.

Using (3.6), we determine k∗ by growing k until η is satisfied by the sum

of weights. At some point k-NN becomes ineffective because irrelevant training

points begin to be associated with x in order to meet η. Therefore, we let ζ be a

maximum limit on k∗. When x cannot be represented due to insufficient training,

then ζ has been reached in (3.6) or k∗ > ζ.

(a) Original Image (b) |Ω| = 2× 106

Figure 3.3: Example of Patches with Insufficient Training

Fig. 3.3 depicts k-NN findings on the lighthouse image. The original image

22

is Fig. 3.3(a). In Fig. 3.3(b), image patches where k∗ > ζ, i.e. insufficient training,

are shown in white while well-represented patches are in black.

The conclusion drawn from Fig. 3.3 is that edges are poorly represented

by k-NN, and moreover, edge variety is difficult to accommodate in traditional

data collection. A training set is, on the other hand, sufficiently representative

of smooth patches and texture in a randomly selected image. Observations from

(3.3) are intuitive; only a very small minority (albeit the most important parts)

of the image can be considered edge patches. Furthermore, variability among

edges is extremely high, where orientation, contrast, and sharpness all must be

comparable for the patch to be considered similar. Thus, the conjecture that low

variance patches and texture form the super-Gaussian and Gaussian mixture of

(3.3) resurfaces.

3.3 Using the Proposed Model

Conventional applications of mixture models such as [9] depict each com-

ponent of the mixture as a class of image content that is independent of other

components. Algorithms can provide content-based processing based on the class

of the mixture. In practice, the proposed model does not differ much from a GMM,

where expectation maximization (EM) experimentation usually yields a number

of low-variance, high π0, and near-zero mean Gaussian.

Yet, by modeling Q(z) differently, higher accuracy may be achieved in the

initial term of (3.3). A common super-Gaussian distribution in practice is the mul-

tivariate symmetric Laplace distribution, in which it can be shown that kurt(u) = 3

for the univariate case. The behavior of multivariate Laplace distributions is at-

tractive because it belongs to a family of sparse distributions where there is a high

peak at the mean [47]. Ignoring the extraneous terms that are unnecessary for our

model, the distribution is defined in (3.7).

L(x,0, Σ) =
2

((2π)d|Σ|) 1
2

(
xT Σ−1x

2

) 2−d
4

I 2−d
2

(√
2xT Σ−1x

)
, (3.7)

where Iλ denotes the modified Bessel function of the third kind.

23

The parameter Σ must be estimated, and one straightforward estimate [47]

involves the sample covariance matrix, which is defined as R̂ = 1
N

∑
i(xi− µ̂)(xi−

µ̂)T , where µ̂ is the sample mean. This estimate of Σ is given as

Σ̂ =
1

|R̂ 1
d |

R̂ (3.8)

More advanced parameter estimation techniques include the maximum likelihood

estimate, which has been derived in [47]. To make things simple, we use (3.8).

Eventually, parameter estimation for the entire mixture model via EM un-

der (3.3) should give rise to the precise solution. A simpler alternative, as is

adopted in our work, would be to first use EM under the assumption of a GMM

for the entire domain, then define a hypercube S around 0 where training points

are relevant to Q(z), and finally approximate parameters of Q(z) using only xi ∈ S.

In doing so, we replace Gaussian curves in or near S, which may or may not be

overfitting the distribution near 0, with L(x).

The rationale behind the approximation is that in the initial EM steps,

Gaussian curves are placed inside S to accommodate the peaky behavior of the

data when in reality, the agglomeration can be attributed to a much simpler phe-

nomenon. Because the Laplace distribution is often described as a multivariate

scale mixture of Gaussian models [47], (3.7) serves as an ideal replacement around

0.

3.4 Implications in Different Domains

Exploration of multivariate distributions in the spatial domain can be ex-

tended to several domains, the analysis of which is exceedingly useful to several

applications. For example, the most common issues in video compression deal with

image data in the discrete cosine transform (DCT) domain. Knowledge of the dis-

tribution of the patches as multivariate vectors could address problems pertaining

to compression artifacts, quantization errors, etc. (Note that this is not the tra-

ditional analysis of the distribution of individual coefficients within the patches as

independent random variables.) Similarly, detection applications [126] using the

24

discrete wavelet transform (DWT) and the imaging analysis by discrete Fourier

transform (DFT) also warrant a study in the versatility of the proposed model.

Linear transforms like the DCT, DWT, and DFT are defined as a correlation-

based mapping, where correlation coefficients measure the magnitude of a partic-

ular frequency or basis function. Due to linearity, the transforms are merely a

change of coordinates. Transforms such as the DCT are designed for energy com-

paction [99], and as a result, maintain high sparsity. That is, nonzero elements

in multi-dimensional vector representation are found in a consistently few num-

ber of coefficients. Moreover, the same few coefficients are likely nonzero for any

given patch, which is the reason why block-based DCT algorithms use zig-zag

scanning [107].

The decorrelation property becomes relevant when evaluating spatial-domain

patches in Euclidean two-norm space, i.e. Rd2×1. Because the DCT is a parau-

nitary transform, Euclidean distance will measure the same quantities before and

after the transform [111]. Hence, while the effective dimensionality is reduced

from sparsity within patches, the distribution should not appear too different after

transformation in the sense that the number, type, and energy of mixture compo-

nents remain the same. The difference will be the mean, covariance, and alignment

of the distribution. That is, the spread and how wide the variance for each com-

ponent will be altered but not the general form of the distribution. Visually, with

C + 1 clusters in the spatial domain, the tails of the C + 1 corresponding clusters

in transform domain will only extend in a few directions due to sparsity within

patches. By examining the DCT, the following proof can be extended to the DFT

and DWT domains.

Claim : Given the model as defined in (3.3) with the spatial domain image

patch x, the DCT of x will be distributed according to the same mixture model

(of the form (3.3)) only with different mean and covariance parameters.

Proof : Let P ∈ Rd×d be an image patch or block in matrix form. The

two-dimensional DCT is a separable transform that is traditionally written as

DCT2D(P) = CT PC (3.9)

25

where C is a matrix defined by

C = km

1 cos(1
2

π
N

) cos(1 π
N

) · · ·
1 cos(3

2
π
N

) cos(3 π
N

) · · ·
1 cos(5

2
π
N

) cos(5 π
N

) · · ·
...

...
...

. . .

(3.10)

To evaluate the multivariate distribution, we must vectorize P by appending the

columns into a single columned arrangement, which we denote by x. Therefore, x ∈
Rd2×1 denotes an image patch for which we have already defined the distribution

in (3.3). We can now define a matrix A as

A =

C1,1C C1,2C C1,3C · · ·
C2,1C C2,2C C2,3C

...
...

...
. . .

CN,1C CN,2 · · · CN,NC

(3.11)

where Ci,j denotes the (i, j)th element in C as defined in (3.10). Equivalent oper-

ations for x can now be written from the matrix operations of P in (3.9), and the

two-dimensional DCT in vector form can be written as

y = vect
(
CT PC

)
= Ax (3.12)

Because Y = AX is an invertible function of x, where X = A−1Y (and by ortho-

normality, X = AT Y), the probability distribution function (PDF) of the random

vector y, fY (y), is written as

fY (y) =
∑

i

1

|J (xi)|fX(xi)

=
1

|J (x)|fX(A−1y) (3.13)

where the Jacobian, J (x) is equal to AT .

Because (3.3) is a linear combination of terms and the Jacobian in (3.13)

is of a linear function, individual terms will map one to one. Therefore, we sim-

ply need to ensure that each component of (3.3) after transformation remains in

26

the same form as the original, spatial domain mixture in order to show that the

framework is indeed the same only with different parameters.

Beginning with the second term in (3.3), the GMM, let Xi be the ith

Gaussian in the mixture of (3.3), such that

Xi ∼
∣∣(2π)dΣ

∣∣− 1
2 exp

{
1

2
(x− µi)

T Σ−1 (x− µi)

}
(3.14)

Then, there exists an Yi, which we define as the ith mixture component, in the

resultant transformed mixture model such that Yi = AXi. Using (3.13) and (3.14),

the mixture component can be written as

Yi ∼ 1

|AT |G
(
A−1y, µ, Σ

)
(3.15)

where it can easily be shown that Yi has the form

Yi ∼ |2πAT ΣA|− 1
2 e

n
1
2
(y−Aµi)

T (AT ΣA)
−1

(y−Aµi)
o

(3.16)

which is a Gaussian with mean Aµ and covariance matrix AT ΣA.

Finding the form of the Laplace distribution requires more thought. Let X0

denote the random variable representing the first component of (3.3), the Laplace

distribution component in the spatial domain, and let Y0 denote the corresponding

component after transform. The characteristic function of the general multivariate

symmetric Laplace distribution [67] is given by:

ΨX0(ω) =
1

1 + ωT Σω
(3.17)

The affine property of Fourier transforms (by extending the bivariate case in [20]

to the multivariate case) states that, given a linear transformation A in Rd×d, the

corresponding Fourier transform, denoted as F(ω), of the multi-dimensional vector

x is

F(Aω + b) =
1

|AT |e
j(2π/|Σ|)ωT bF(Aω) (3.18)

Because b = 0, this could have been derived from (3.13) easily.

ΨY0(ω) =
1

|AT |F
(
fX0(A

−1y)
)

(3.19)

27

We can integrate the initial term into the scaling factor of (3.7) to write the final

characteristic function of Y0:

ΨY0(ω) =
1

1 + ωT AT ΣAω
(3.20)

which upon inspection is the characteristic function of a multivariate Laplace dis-

tribution with covariance matrix parameter AT ΣA. Thus, the two-dimensional

DCT of a zero-mean vectorized patch with a multivariate Laplace distribution is

also a multivariate Laplace distribution, only with a different scale factor.

Therefore, because each of the components of the mixture model satisfies

either (3.16) or (3.20), then we have shown that Y is of the same form as (3.3).

3.5 On the Variability of Finite Data Sets

An underlying assumption behind (3.3) is that the data set from which

parameters are drawn is finite. Predicting the framework for the distribution of

the true nature of all possible image patches is unrealistic. An infinite amount

of data including all possible image content may result in an infinite amount of

mixture components, where small variations that can possibly exist in texture

equate to a different mixture.

However, given a finite training set size, we can accurately predict how the

cohesive elements inside should behave independently of each other. Therefore,

rather than predicting the distribution of image patches in general, it is important

to note that the distribution of image patches is of a given data set, and that

though the location, number of mixture components, and scale parameters may

differ, the underlying framework remains the same.

3.6 Results

There are a multitude of standard evaluation tools to determine how accu-

rately a statistical model reflects naturally occurring phenomena. We assess the

quality of the proposed model through its performance in an application.

28

A number of algorithms assume parametric models in image processing.

One of the simpler applications that illustrates the effectiveness of the proposed

model is content-based image interpolation, where [9] is the comparison. Given an

image patch x, [9] relies on a GMM to classify image content,

Following Sec. 3.3 and using an S with side value 10, we redistribute the

πi values of the eliminated Gaussians using volumes under the curves, coming up

with a new π as consistent with (3.3). The results for the GMM interpolation

and (3.3) along with bicubic interpolation are shown in Table 3.1 and Fig. 3.4.

Table 3.1 refer to SQCIF, QCIF, and 720p formats.

(a) Original (b) Bicubic

(c) GMM Only (d) Laplacian-GMM

Figure 3.4: Visual Results of Classification-Based Approaches

29

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

GMM Order

N
um

be
r

of
 G

au
ss

ia
ns

 E
lim

in
at

ed

Figure 3.5: Properties of Reduction in Model Order

The contention with respect to interpolation is that disparity between the

reconstruction efforts of GMM and (3.3) is negligible. Moreover, as the difference

in operation involves vectors near 0, meaning there is little or no variance in pixel

values within the vectored patch, visual differences are imperceptible. The conclu-

sion in Fig. 3.4 is that (3.3) with 15 components achieves the same performance

as a GMM of order 20, where a submixture of six Gaussians has been eliminated.

Table 3.1: Comparisons of Interpolation Model Replacement

Low-Res Med-Res High-Res

GMM-Based 22.6531 dB 22.9722 dB 20.0156 dB

Model in (3.3) 22.6529 dB 22.9722 dB 20.0156 dB

Consistent clustering around 0 occurs quite frequently, and under different

training sets, the behavior remains the same. Fig. 3.5 demonstrates the near linear

trend of reduction in model components of (3.3) as a function of initial GMM

components. In replacing the Gaussians, (3.3) is validated because a mixture

of Gaussians with close means is successfully modeled as a Laplace distribution.

30

Generalizing results seen in Fig. 3.4 to trends in Fig. 3.5, (3.3) offers a simpler

model than a given GMM with many mixture components around 0.

3.7 Summary

A unifying model of image patches for general use has been proposed. The

model is based on observations that images usually consist of a large proportion of

low variance image content. Parameters are approximated using the data points in

a prespecified hypercube, not the entire training set. Except for around 0, a GMM

accurately depicts a training set of image patches. Around 0, we require a super-

Gaussian shaped distribution with kurt(x) ≈ 3, which a multivariate Laplace

distribution will supply. Therefore, the final distribution has a Laplace + GMM

framework. Applying linear transforms such as the DCT, DFT, and DWT alter

the parameters of the mixture model, but do not alter the general framework of

the PDF. The model has been tested in a conventional interpolation framework

and is shown to be equivalent in quality while simpler in model complexity than

the GMM.

3.8 Acknowledgements

Portions of Chapter 3 appear in “A Model for Image Patch-Based Algo-

rithms”, Karl Ni and Truong Nguyen, to appear in presentation at the IEEE

International Conference on Image Processing, October 2008. The dissertation

author was the primary author of the publication, and the co-author listed di-

rected and supervised the research which forms the basis for this chapter.

4 Adaptive k-Nearest Neighbor

for Image Interpolation

When in doubt, use brute force.

—Ken Thompson

Introduced in Chapter 2 are the static interpolative splines methods [57,

119, 81, 66]. Splines operate on the incorrect assumption (which has been widely

acknowledged as incorrect) that relationships between local low and high-resolution

content can be described by a single convolutional kernel. Rather, their complexity

usually justifies their usage, and though numerical results are most likely incorrect,

the visual quality does not overtly reflect it. More generally, the HVS is forgiving

of estimation errors from reasonable linear filters, meaning that in terms of human

perception, the actual process is approximated fairly well. The observation is

fundamental to the proposed algorithm in this chapter where we propose content-

specific linear filters as the regression technique of choice. Thus, when errors

do occur, the damage of estimation errors due to insufficient training appears

perceptually mitigated.

Instead of a static interpolation process for all image content, a logical im-

provement [129, 74, 3, 9, 24] would be to adapt filters that are optimized for certain

content. Such algorithms balance specificity with estimation errors by benefitting

from the knowledge that local linear filtering will not significantly distort the im-

age. We are interested in adapting optimal filters that are chosen from a training

set by variants on the k-Nearest Neighbor (k-NN) algorithm.

31

32

k-NN determines k training points that are closely related to an input vec-

tor through an appropriate similarity metric. For image interpolation, once the

relevant training samples are found, filters are specially tailored to determine high-

resolution values after identifying low-resolution content. The crux is to achieve

specificity with regard to image content without any loss of generalization of ap-

plication. That is, how detailed can we make an image look while still maintaining

a broad base of applicability?

The answer to this question is intimately related to the number of training

samples used per reconstruction filter. In images, more training points per filter,

i.e. k is large, equals more generality, meaning that errors and variations due to

the training set are diminished. Likewise, fewer training points per filter, i.e. k

is small, equals more specificity, meaning that the image reconstruction is clearer

and more detailed. As will be explained in this chapter, variables naturally depend

on the size and quality of the overall training set, but it is reasonable to conclude

that to accommodate any possible test input, k must be variable.

4.1 Review of k-Nearest Neighbor for Regression

The k-nearest neighbor [50] rule is among the simplest statistical learning

tools in density estimation, classification, and regression. Trivial to train and easy

to code, the non-parametric algorithm is surprisingly competitive and fairly robust

to errors given good cross-validation practices.

Let Ω be a training set of N input-output pairs. Then,

Ω = {(x1,y), (x2,y2), · · · , (xN ,yN)} (4.1)

For the problem specifically relating to image interpolation, xi is comprised

of the ith low-resolution image patch in the training set. Likewise, yi defines the

ith high-resolution image patch. During runtime where we denote values with the

subscript t, the adaptation of k-NN determines the high-resolution image patch yt

from a single low-resolution image patch xt. For mathematical reasons, it is easier

to represent image patches x and y as vectors instead of square patches. Therefore,

33

in subsequent derivations x and y are both vectors that have been rearranged from

image blocks into a single column.

The typical k-NN estimate for regression [40, 41] at the test point xt is

given as:

ŷ = g(xt) =
1

k

N∑
i=0

Wi(x, Ω)yi (4.2)

where Wi ∈ {0, 1} depending on whether or not xi is among the k nearest neighbors

of xt. (To be seen in later sections, instead of g, a linear transformation G performs

the task of yt = Gxt.)

Naturally, the definition of (4.2) can be extended by not necessarily limiting

Wi to 0 or 1, but rather only the constraint
∑N

i=1 Wi = k. In fact, there are several

common weighting schemes, ranging from posterior probability like expressions [45]

to iteratively determined convex solutions [7], all functions of distances or weights

that can used to minimize some criterion as in [28].

An extensive study on error rates for regression-based k-NN estimates was

analyzed in [34], where it was conceded that for (x, y) jointly normal1, under the

squared-error loss case, the unconditional, large sample risk R as N → ∞ of the

k-NN estimate satisfies

R
(k)
N =

1 + 1/k +

σ2
1

σ2
2

E

[
xt − 1

k

k∑
i=1

xi,N

]2

 R∗ (4.3)

Here, R∗ is the Bayes risk (minimum expected loss), xi ∈ Ω, and parameters

σ1 and σ2 are variance parameters in probability distribution functions (PDF’s)

f(y) and f(y|x). (4.3) trades off large k values to keep the 1/k term small while

simultaneously favoring a smaller k to keep the final term in (4.3) small. This type

of tradeoff is common in k-NN problems, and there is need for cross-validation

even for our proposed adaptable k values.

N is not always large, and for such cases, the risk RNN of nearest neighbor

(where k = 1) is usually smaller than the risk of k-NN [34], but overall, when N

is large, k-NN is invariably the rule of choice. Actually, when N is large and the

1[34] only treats the univariate case.

34

dimensionality d is small, k-NN is almost always preferable or at least competitive

among other estimation techniques such as SVR. (SVR performs well when N is

small and d is large.2) The intuition is to blanket the entire domain with samples,

possible only with large N and sufficiently small d.

It is latter scenario that tends to be the case with the potential of today’s

computing power. While memory for computing tasks increases and computing

time for higher complexity routines decreases, potential to support large N values

motivates the application of k-NN to various problems (not limited to interpola-

tion and superresolution.) The following sections offer a basic but original k-NN

algorithm while referencing existing k-NN approaches. It may also be worth it to

review Chapter 3, where we have introduced the idea that a kernel can extend

out from a given test input instead of placing kernels at every training point. The

paradigm with respect to finding the optimal k is the same as Chapter 3, and we

elaborate in throughout the rest of this chapter.

4.2 Building the Optimal Interpolation Mecha-

nism

To reiterate, the kernel function K used in the proposed algorithm is the

RBF, given in (4.4).

KF(xi,xj) =
1

2π‖Σ‖ exp {dF(xi,xj)} ≤ 1 (4.4)

where dF(xi,xj) is the Mahalanobis distance or weighted Euclidean distance spec-

ified by 1
2
(xi − xj)

T Σ−1 (xi − xj). Unfortunately, in the absence of prior knowl-

edge, most k-NN algorithms determine proximity through un-weighted Euclidean

distances. We can calculate the Σ of the entire training set and use a scaled version

of it, which does not actually offer a significant improvement.

There are many weighting schemes for W in (4.2) as alluded to in Sec. 4.1.

One general family of solutions, known as locally weighted regression (LWR) [31, 8],

2SVR is more of a generalizing technique.

35

replaces W by a particular model class g(x, β), in which yt is determined locally

by functions based on how similar point xi is to xt [105]. Then, the task of k-NN

for regression falls to estimating select parameters for reconstruction in (4.5).

β∗ = argminβ

∑

xi∈neighborhood

dR (g(xi,β),yi) K (dF(xi,xt)) (4.5)

where dR and dF are distance metrics in the range and feature space, respectively.

On the principle that isometry is not a realistic scenario for image superres-

olution [112], (4.5) becomes a viable alternative. We require a single assumption

with LWR that linear filtering yields an excellent approximation for local image

construction as opposed to assuming some kind of duality between low-resolution

and high-resolution manifolds in [28]. Hence, g(x,β) in (4.5) becomes the linear

filter in question, which can be reduced to an MMSE filter formulation. We can

find yt by

E [yt|xt] ≈ g(xt,β) = Gxt (4.6)

where G is a u × d matrix, u being the upscaling factor, and is constructed by

probability parameters β and neighboring low-resolution and high-resolution pairs.

(4.6) focuses on determining G, which is accomplished by slightly modify-

ing traditional MMSE equations. Eventually, pre-processing steps such as mean-

shifting or variance normalization are implemented to determine the feature space

F for both k-NN neighbor identification and regression, but for now, the filters are

created in a manner similar to [9]. To manage the data, let us assemble the test

vector neighbor pairs of low-resolution vectors xi and high-resolution yi into X

and Y matrices, respectively. The arrangement of X and Y matrices is as follows:

X =

...
...

...
...

...
...

x1 x2
... xi

... xN

...
...

...
...

...
...

and

Y =

...
...

...
...

...
...

y1 y2

... yi

... yN

...
...

...
...

...
...

 (4.7)

36

By defining (4.4), we can construct a matrix P for a given neighborhood

of xt such that if p is a vector of similarity measures whose ith entry is the value

KF(xi,xt), then

P = 1Tp (4.8)

where 1 is a k dimensional vector of all ones. Hence, P has dimension k × p.

The purpose of P is to establish a proper weighting of point xi ∈ N (xt).

Since one of the arguments to the KF(xi,xj) in (4.4) is always xt, weighting

schemes [7] usually observe the similarity between xi given xt as a Gaussian PDF

with mean centered at xt and the elements in P as how probable that neighborhood

vector is relevant.

The sample autocorrelation matrix RXX = XXT and cross-correlation ma-

trix RXY = XY T lead to the final expression for G in (4.9), which is roughly

equivalent to the derivations from [9].

G = (RXY · P) (RXX · P)−1 (4.9)

4.2.1 Choosing the Correct k

Top among the attractive properties of linear regression is the robustness

to poorly designed filters in image processing. The explanation stems from their

tendency to average out image data. Moreover, weighted MMSE solutions can be

interpreted as an averaging of an overdetermined system. When more and more

points are involved, or k is grown to be large, the sample size of X grows as well,

and G will be able to accommodate a more general base of xt vectors. On the other

hand, maintaining large k defeats the purpose of k-NN because using smaller k

ensures specialization of the resulting filter.

The idea of choosing an adaptable k compensates for non-uniformly dis-

tributed training data when the high dimensional domain of low-resolution image

patches is inconsistently scattered across the feature space. For the uniformly

distributed case, k can be fixed because the variance in the distances from the

surrounding training points to any given input test point is limited among all pos-

sible test points. In such cases, using a fixed k will always yield roughly equivalent

37

relevancy in training information among any two test points. As it happens, in

natural image statistics, the entropy of image patches is difficult to describe and

cannot be modeled in any traditional linear sense. The investigation of image

patch statistics has been extensively examined in several papers such as [72, 106]3

and in Chapter 3, where patches are discovered to be sparsely distributed with the

majority of points clustered in high concentration on non-linear manifolds.

The view of clustered high-dimensional manifolds is ingrained in most image

model descriptions in some form, and work on the subject is abundant [72, 106,

58, 27]. We are not concerned with the specific properties, merely exploiting the

fact that they exist. Thus, the proposed algorithm should be tuned and adaptable

to the distribution and where arbitrary test inputs might land. The manifestation

of such an endeavor is intimately connected to the number of nearest neighbors,

or k, given the input test point in a naturally distributed training set.

The goal is to find the right k for a desired tradeoff. As one may guess,

k < k∗ overfits the training set, specializing G too much, and the manifestation

is a grainy and discontinuous image. Furthermore, if k were exceedingly small,

k ¿ k∗, G could become non-singular. The intuition is that training points near

xt could be very close together causing (4.9) to be underdetermined. Analytically

speaking, vectors in X that are too similar can mean that RXX is rank deficient

and thus non-invertible. This is a dilemma because when k-NN finds the most

relevant data with respect to xt, the collected vectors based on xt are similar to

each other as well. Hence, though it is counterintuitive, it is important to choose

a large enough neighborhood in F so that diversity in the N (x) exists.

Built-in error is a consequence of uneven training data collection in unsu-

pervised learning. Similarly, uneven training data also has implications that k∗

may potentially be significantly different for any two given test points. The opti-

mal k∗ has been initially given in (3.6) in Chapter 3, and we reiterate the equation

3[106] assumes two manifolds termed “explicit” and “implicit”, but the two types effectively
describe the same behavior as [72]

38

here:

k∗(x, Ω) = argmink

N∑
i=1

Wi(xt, Ω, k)K(xi,x) ≥ η

where Wi(xt, Ω, k) ∈ {0, 1} (4.10)

The expression in (3.6) obtains k∗ by finding the minimum number of neighbors

whose sum of similarity measures exceeds a threshold η, which is obtained through

cross-validation. Moreover, η is a minimum bound of k since K(xi,xt) ≤ 1 for all

xi.

Analyzing (3.6) for a given xt, if there are only a few xi with high probability

of being related to it, that is
∑

i K(xi,xt) is small, then the proposed algorithm will

need to consider more points in hopes of generalizing well. Alternatively, if there

are many xi that are related to xt, i.e.
∑

i K(xi,xt) is large, it is unnecessary to

use other points where the similarity is low because the specialized filter generated

by the points within
∑

i K(xi,xt) ≤ η is very likely to be accurate. Conceptually,

we can visualize a ring that extends further and further depending on whether or

not there are enough points inside the ring.

4.3 Heuristics for Insufficient Training

k-NN algorithms assume there are enough points to blanket the entire do-

main, providing a good density estimate of the input space. Problems arise from

insufficient training because the further the ring of values under consideration ex-

tends, the smaller the similarity values, and the less suited any additional training

point is to complete the task of reaching η. In extreme cases, η may not even

be reached before the entire training set is exhausted of points. Thus, we require

the incorporation of a simple heuristic of limiting the maximum value of k that is

allowed to be used.

In setting a limit on k∗, ζ = kmax, a generic technique, i.e. bicubic interpo-

lation, may be used for those xt that Ω does not represent well. Additionally, the

maximum number of neighbors will reduce both complexity and errors. The com-

plexity reduction should be obvious, but to see that errors have been minimized by

39

stopping the algorithm prematurely with ζ, the algorithm effectively acknowledges

that, at least for the image patch at hand, the original intention of the proposed

algorithm cannot be carried out due to a less than competent training set. There-

fore, for any xt that k-NN is ill-equipped to manage (i.e. k∗ > ζ), the errors are

bounded by whatever interpolation algorithm replaces k-NN.

The question now becomes finding what kind of interpolation algorithm

should replace k-NN. Is there a particular type of image patch that the k-NN

algorithm consistently disfavors? Moreover, based on this bias, are there certain

properties of these patches that allow us to tailor a solution using this knowledge?

The answer is yes on both accounts. After running several tests, we came across a

peculiar reoccurring theme in generic training and testing images: texture patches

never reached ζ and appeared at high quality, but edge patches often did and

needed attention.

Using 2 × 105 training points and observing similarity measures in (4.8)

(which are based on Euclidean distances), the texture matches usually retain simi-

larity values of K(xt,xi) ≈ 0.93 (out of 1.00) , whereas edge matches usually satisfy

K(xt,xi) ≤ 0.40. Furthermore, in viewing a single image,4 only a small percent-

age of image patches are actually edges, so accumulating relevant image patches

in (3.6) to surpass η is even more improbable. The situation is best described in

Fig. 4.1, which was originally shown in Chapter 3.

With only 200 thousand data points, we cannot actively reconstruct many

edges on the lighthouse because training patches don’t occur frequently enough

and there aren’t close enough matches. Texture, however, can be, and much of the

texture interpolation occurs because k∗ < kmax.

Though texture results in high peak signal to noise ratios (PSNR), to be

presented in Sec. 4.6, the human visual system (HVS) focuses on edges [22]. Fortu-

nately, research into edge-oriented image filtering has been well-studied [114, 52].

In our framework, we can agglomerate a bank of edge-oriented filters that do “well-

enough” when the “best” filter through k-NN is unavailable, effectively reducing

4Unsupervised data collection means that the exact percentage values of patches are not
known.

40

(a) Original Image (b) |Ω| = 2× 106

Figure 4.1: Example of Patches with Insufficient Training

the implementation to a specialized version of [9] with an added MRF improvement

(see the next section, Sec. 4.4) through [73].

With enough data points, however, replacing k-NN conditioned on k∗ > ζ

should occur relatively few times. That is, edges may and often are well-represented

in the training set, which indicates the algorithm is operating closer to capacity.

Studies such as these are reserved for current and ongoing work.

4.4 Using the Single-Pass Approximation to the

Markov Random Field (MRF)

Among the nearest neighbor literature used for image interpolation, [49]

most closely resembles the proposed algorithm. The differences between the pro-

posed algorithm and [49] are subtle but significant. [49] chooses a single neighbor

among a number of candidate neighbors and applies the high-resolution differ-

ences. Our algorithm chooses an “appropriate” quantity of candidate neighbors

and directly determines the high-resolution content. The philosophy arises from

differences in the choice of feature space, where [49] first uses an analytic in-

terpolation scheme, such as bicubic interpolation, and stores differences between

41

the initial interpolation and the true high resolution patch. In contrast, the pre-

processing involved in our algorithm only consists of DC subtraction and scaling.

We trust the capacity of the algorithm to perform the approximation rather than

first approximating outside the algorithm.

Despite the difference, [49] makes a good argument that globalization in

terms of relating neighboring patches is necessary. Consequently, we have fol-

lowed their lead by considering the usage of a Markov network in modeling spatial

relationships between patches. Markov modeling techniques usually require the

use of some annealing process, which is usually computationally intractable for

most interpolation purposes. Therefore, with the aid of [73], we have implemented

a simpler-than-MRF, single-pass technique to enhance coherency from patch to

patch.

Figure 4.2: Markov Random Field Implementation

Fig. 4.2, with the exception of terminology, is very similar to the one in [49].

We use K(xt,xi), where xt is the observation and xi ∈ Ω in Sec. 4.2 to determine

possible states, {z}. We can use a function similar to K for Ψ to determine the

compatibility between the states.

Single pass algorithms include extra arguments into the decision making

process that increase propensity towards one neighbor over another. Because our

algorithm observes multiple neighbors per input patch, the structure of the one

pass algorithm must be modified somewhat.

42

Given the filter construction process in (4.9), we can take advantage of an

expression that is already designed to penalize or reward training points through

a matrix P . To review, elements within P denote the importance of a particular

training point. After determining the k∗ values for all image patches (or realisti-

cally, just the ones surrounding the test patch being evaluated), the logical course

of action would be to reward those states that contain high values for K(xi,xj) and

Ψ
(
z(x1,y1), z(x2,y2)

)
. Adding a scaling factor α, a very simple conditioning scheme

could be

P(i,·) = K(xt,xi) + α
∑
n∈N

∑
j

Ψ
(
z

(n)
j , zi

)
(4.11)

Here, z
(n)
j refers to the jth candidate state (see Fig. 4.2) of the nth low-resolution

(LR) block in N , the neighborhood of the input block. Referring to the entire

algorithm in Fig. 4.4, blocks in N are adjacent to the input test block.

ENTIRE IMAGE

Evaluation Window

Single LR block
(D x D)

Superresolve
these pixels

Figure 4.3: Description of Windows and Blocks for Adaptable k-NN

Fig. 4.3 presents the evaluation window, in which all k neighbors are known

or need to be found. The framework of the entire algorithm, shown in Fig. 4.4,

shifts the evaluation window for each pixel to process the whole image. The center

43

 High Resolution Block

Determine P from
neighboring blocks

Low Resolution Image

Does LR block
need processing?

No

Yes
Ω Vectorize and

Preprocess

Find k and k nearest neighbors

G = (RXX • P)-1 (RXY • P)

y = Gx

Figure 4.4: Description of Windows and Blocks in Adaptable k-NN

block in Fig. 4.3 depicts the block that is to be interpolated. The surrounding

blocks supply ψ values to weight the consideration of individual neighbors. All

low-resolution blocks have or need to calculate k, and the entire algorithm Fig. 4.4

uses these blocks in the evaluation window to determine G and the high-resolution

patch. In raster scans, for the majority of the time, the only low-resolution block

for which neighbors have not been calculated is the lower right block.

44

4.5 Complexity Issues and Specifics on Imple-

mentation

Nearest neighbor algorithms are notorious for their runtime complexity.

Recently, there has been a fair amount of incentive for search speeds of k-NN

algorithms to improve, which has lead to an extensive and diverse collection of

literature in the area. This section reviews (albeit superficially) contributions that

aid k-NN searches by remaining efficient as N grows large and ultimately choosing

a single method tailored to the problem at hand.

There are several directions for optimization and speedups in k-NN searches:

structured searches, approximation by lowered dimensionality (partial distances),

and the assignment/editing of prototypes in the training set, all of which are de-

scribed in [50] and [105]. Structured searches [21, 42, 64, 89] transfer the complexity

at runtime to training through domain partitioning, using structures such as trees

or vector quantization. Partial distance searches [105, 60, 59] that are locally de-

termined calculate distances with a subset of dimensions in F indicating whether

to pursue certain training points. Finally, training set editing [109] deletes points

that may seem irrelevant, are duplicates, or those that are likely to be erroneous

or cause errors. By the same token, if possible, editing could conceivably enhance

points that are important and appear frequently. In reality, a combination of the

algorithmic techniques define any significant reduction in computational burden,

where it was concluded in [60] that exact neighbor searches cannot yield reasonable

complexity.

Overall surveys of bodies of work involving k-NN search-time reduction

[59, 109, 14] have proven helpful, and elements from several techniques have been

incorporated into our algorithm. For example, 5×5 low resolution blocks equal 25

dimensions. We improve efficiency by 30% when avoiding the remainder of distance

calculations if the distance is known accurately enough. Finally, we can reduce

number of points in the training set, effectively lowering N , by manually extracting

duplicate or erroneous data points. All these techniques do not significantly alter

the rate of error performance (sometimes even boosting visual quality) but our

45

primary speed concerns remain unresolved, which are addressable in the number

of distance evaluations.

An improvement in complexity to the degree we are seeking necessarily

dictates some loss in precision, meaning the employment of several of the more

heavily approximated, inexact algorithms. A good example of speedy k-NN search

structure are tree approximation algorithms such as [89]. Both [49] and [9] have

realized their algorithms through a version of tree-based methods. The tree struc-

tures often use directional splitting according to the largest principle component,

the eigenvector with the largest eigenvalue. Instead of calculating the costly ma-

trix operations that go along with this method, inspired by previous work in kernel

learning [84] and evidence to corroborate that intrinsic dimensionality is often very

low, an especially effective flavor of approximation introduces the concept of local

sensitivity hashing (LSH) [59], where runtime search approximations are drawn

from near neighbors [105] as opposed to the exact nearest neighbor. Closely akin

to LSH algorithms and the aforementioned tree algorithms are random projection

(RP) trees. A detailed description in [37] is interested in automatically adapting to

intrinsic low-dimensional structures through RP trees without explicitly learning

this structure. Several authorities in the field have boasted that RP trees can per-

form in real time (using programmable gate arrays) with training data quantities

on the order of tens of millions with dimensionality at 10× 10.

The analysis of all of these algorithms are beyond the scope of this investi-

gation, but their relevance to the problem at hand mandates a wise choice that is

reflective of the functional domain and problem at hand. With the sheer quantity

of image data, a choice of structured tree searches sufficiently covers the necessary

requirements without sacrificing too much accuracy. Combined with several of

the calculation-evading tactics, the runtime of search-trees should be more than

acceptable.

46

4.6 Results

Given the occurrences of insufficient data in Fig. 3.3, the assumption that

a very large training set is at the proposed algorithm’s disposal remains (common

for any k-NN algorithm). The scale is highlighted with the proposed algorithm’s

failure to yield meaningful results when the high-resolution test image is available

as the only training. Hence, our experiments mandate a minimum of 12 to 14

large images, where resources consist of millions of image patches. The phenom-

enon returns to previous explanations of determining filter coefficients and the

proposed algorithm’s choice of k. As it turns out, creating a nonsingular matrix

is surprisingly difficult, and very often insufficient data plagues the construction

effort.

Images are diverse entities, but for brevity and analysis purposes, they

are divided into two categories in Fig. 4.6 and Fig. 4.5: edges and texture. Both

figures compare the performance of a variable k versus a fixed k in nearest neighbor

weighted filtering. Fig. 4.5 compares adaptable k-NN to fixed k k-NN of texture.

The proposed algorithm is consistent in superior qualitative performance for any

texture that is tested. Fig. 4.6 compares adaptable k-NN to fixed k k-NN of edges.

The proposed algorithm sacrifices some numerical performance to ensure visually

pleasing results. Adjustable k PSNR results in Fig. 4.6(d) are somewhat lower

than fixed k results. Given the behavior of k-NN in edge image patches, seen in

Fig. 3.3, the performance is justified by some intuition.

For most edge content, the amount of training that is “close” to xt is insuffi-

cient, which is manifested in some ambient noise in Fig. 4.6(c). The non-adjustable

k cannot pool from additional data though the neighbors it uses are not very “rel-

evant”. The adjustable k-NN algorithm will, on the other hand, attempt to grab

more data to obtain a general result, and the image becomes softer with fewer er-

rors in Fig. 4.6(b). Nevertheless, in obtaining a very general filter, the adjustable

k-NN sacrifices high PSNR values because it uses a very general and broad filter

that averages more than it specializes. Hence, the fixed k-NN will have higher

PSNR values.

47

(a) Original Image (b) Adjustable k (c) Non-adjustable k

1 2 3 4 5 6 7 8 9 10 11

x 10
5

25.1

25.15

25.2

25.25

25.3

25.35

25.4

25.45

25.5

Training

P
S

N
R

Fixed k
Adjustable k

(d) PSNR - Texture

Figure 4.5: Texture Comparisons of an Adaptable k vs. Fixed k

On the opposite spectrum, texture, according to Fig. 3.3, has a strong

showing in most training sets. Therefore, the quantitative values in Fig. 4.5(d)

reflect specific filters that are specially designed for the situation determining a

quantitatively superior result.

From descriptions in Sec. 4.2, values of k are directly correlated with the

48

(a) Original Image (b) Adjustable k (c) Non-adjustable k

1 2 3 4 5 6 7 8 9 10 11

x 10
5

35.3

35.4

35.5

35.6

35.7

35.8

35.9

36

36.1

Training

P
S

N
R

Fixed k
Adjustable k

(d) PSNR

Figure 4.6: Edge Comparisons of an Adaptable k vs. Fixed k

amount of training, N . Increasing N usually results in decreasing k, and this is

verified through experimentation because k tended to stay around select values,

kavg, for particular N . In Fig. 4.8 and Fig. 4.9, k had a standard deviation of 59.79

on average staying around 151.76. Often kmax = 106 was reached, i.e. k∗ ≥ ζ, but

it was usually either hit or miss, where either k would be close to kavg or ζ was

reached, in which case, image values were created using bicubic interpolation.

49

We can alter two degrees of freedom in our experiments, σ, the bandwidth

parameter of the Gaussian used to extend around the test point, or η, the minimum

number of training points necessary. Between the two, it is easier to alter η because

bandwidth σ is a squared exponent term and is difficult to control.

Fig. 4.7 depicts the role of η, where the images are placed in logarithmically

increasing order of η. While Fig. 4.7(a) appears clearer and sharper, there appears

to be quite a number of errors that afflict the construction effort. Meanwhile,

Fig. 4.7(c), appears blurrier and more washed out, but there are fewer errors.

4.6.1 Comparisons to Non-Learning-Based Algorithmic Re-

sults

The proposed algorithm naturally appears superior over state of the art

interpolation algorithms in Fig. 4.8. The comparisons are probably not very fair,

because the amount of information available to the proposed algorithm is greater

than any of those compared to it. Numerical results in Table 4.1 are also poor.

4.6.2 Comparison to Learning-Based Algorithmic Results

Fig. 4.9 shows the qualitative results of other nearest neighbor and statisti-

cal classification algorithms alongside our own, and Table 4.1 gives the quantitative

results5 for various images. The total number of training for this set of test runs

was N = 4, 309, 914 points.

Fig. 4.9(b) and Fig. 4.10(b) show a decidedly edge-centric result, which can

be explained by the neighborhood regularization done through Markov networks.

The algorithm does especially well in areas where the original image contains a

disparity between textures such as the border between the bus and the background,

5Peak Signal-to-Noise Ratio (PSNR) is the widely accepted and commonly used standard of
quantitatively measuring image quality.

PSNR = 10 · log10
2552

MSE
.

The value 255 is used because it is the maximum image value. MSE stands for mean squared
error, the standard definition.

50

(a) Minimum k, η = 50

(b) Minimum k, η = 500

(c) Minimum k, η = 5, 000

Figure 4.7: Effect of Varying η = kmin

51

(a) Bicubic Interpolation (b) Edge Directed Interpolation [74]

(c) Subpixel Edge Localization [62] (d) Adaptive k-NN

Figure 4.8: Comparisons to State of the Art Interpolation Techniques

52

but gives average performance where edges are less well-defined (see the pole above

the bus in Fig. 4.9(b)). The same phenomenon can be seen for involved textures

(see the barrel and pillar in Fig. 4.10). This result is interesting, and could be

a byproduct of the particularly large emphasis that Freeman places on texture

regularity. More likely, Sec. 4.3 reasons that the trend could be due to an incorrect

choice of a single neighbor from insufficient edge information. Fig. 4.9(e) and

Fig. 4.10(d) follow this model, but here, the benefits of k rather than a single

neighbor becomes apparent, significantly reducing the same artifacts that afflict

[49].

Table 4.1: Adaptable k-NN PSNR comparisons

METHOD PSNR Values

Pirates Lighthouse Bus,4

Bicubic 29.28 dB 28.87 dB 24.55 dB

NEDI [74] 26.82 dB 27.44 dB 22.57 dB

SEL [62] 26.67 dB 27.38 dB 22.63 dB

128 Class RS [9] 28.91 dB 28.98 dB 26.48 dB

LLE [28] 21.97 dB 22.70 dB 18.04 dB

Example-Based [49] 27.28 dB 28.75 dB 25.52 dB

Proposed Algorithm 29.62 dB 29.12 dB 26.25 dB

Again, our algorithm does not have the luxury of an initial interpolation

stage, instead filtering from scratch, and when there is insufficient training, cross-

validation for η and σ is difficult albeit possible. Owing to this fact, the proposed

algorithm manages smaller N sizes at the lower end of α < 10 in α × 105 worse

than [49]. Yet, when N is large, it often outperforms all statistical methods,

the conclusion here being that the proposed algorithm represents the inherent

relationship well.

Fig. 4.10 compares the performance of various methods of interpolation in

the “Pirate” images. [9] seems to be oversharp in the areas such as the face, the

side of the hat. Meanwhile [49] concentrates on edge-continuity fairly well, but

53

(a) Original Image

(b) Example-based Superresolution [49] (c) Classification-based Interpolation [9]

(d) Neighbor-Embedding [28] (e) Adaptive k-NN

Figure 4.9: Comparisons to Statistical Learning Methods, Bus Images

adaptive k-NN elucidates the texture of the image. (Notice the barrel, the wooden

pillar in the background, hat, etc.)

Interestingly enough, while [28] is the most similar in theory to our algo-

rithm, the results (Fig. 4.9(d) and in general) did not reflect this. No experi-

ment adjusting any parameter would yield acceptable results. Experiments in [28]

54

(a) Bicubic Interpolation (b) Example-based [49]

(c) Classification-based Interpolation [9] (d) Adaptive k-NN

Figure 4.10: Comparisons to Statistical Learning Methods, Pirate Images

trained on single images, but the feature space of [28] in those cases was an aston-

ishing 100 dimensions, for which we would usually expect large N . Surprisingly,

even with large N , the algorithm still remains at a disadvantage; our implemen-

tation6 of [28] was never able to achieve the generalization of any of the other

statistical learning algorithms, working for a select few images. In fact, additional

postprocessing was required to rid the constructed image of speckle noise from

erroneous estimation. The errors may be due in part to the fact that neighboring

patch information is not considered. Because the neighborhood preservation rate

of the output patch is on average less than 10% [112], we can expect little continu-

ity in the image result. Another possible explanation attributes the errors to small

k values, usually less than 40, which prevents the contribution of large amounts of

6This was later independently verified by the author of the original work, [112], and code from
the author of [28] through e-mail correspondences.

55

information to offset estimation errors, i.e. k often did not scale proportionately

with N . The proposed algorithm with N ≈ α×106 found k on average in the high

hundreds, which oddly enough, applied to [28] gave even poorer visual quality.

Fig. 4.9(c) and Fig. 4.10(c) from [9] give slightly clearer results than the

other statistical methods, but introduce sharpening errors in many instances. This

is due in part to the number of classes involved (128) because the performance

varies with different class sizes. Intuitively, the two methods should converge

when the k in k-NN algorithms is excessively large and the number of classes in

classification-based algorithms7 is large as well. This is eventually true, but the way

in which this happens is unexpectedly non-monotonic. Ultimately, the tradeoff pits

the number of data points per class against the number of classes, where N plays

an obvious role. Current results show that as N increases (as well as the number of

classes), the role of k-NN plays less, and classification based algorithms inexplicably

do better. Barring this broad analysis, which composes the subject of current work,

the only relevant conjecture made here is that conventional classification-based

algorithms could stand to improve due their deficiency of classes.

Additional comparisons and results can be found at

http://videoprocessing.ucsd.edu/~karl/k-NN/.

4.7 Summary

A k-NN algorithm with optimal filters and a variable k, determined by

relevant training, has been proposed, tested, and compared to the state of the art.

The analysis of this algorithm leads to several conclusions:

1. For small training sets, edges cannot be accurately depicted with any nearest

neighbor algorithm (if the metric used is Euclidean distance).

2. For large training sets, k-NN performs especially well, both quality and

quantity-wise.

7[9] grows a tree for training, but then prunes the tree. Comparisons for our purposes deal
with overfitting by throwing more data at the problem, rationalizing the omission of the pruning
process to the sheer quantity of training.

56

3. Fast neighboring-patch approximations of a Markov Network elucidate edges

and provide good continuity but sometimes hinder texture synthesis in cases

where the training is limited.

4. Linear filtering is a good mask and covers up considerable estimation errors.

5. The direct application of k-NN regression with slight modifications exhibits

competitive image quality and offers detailed texture.

The result of the enumerated items is an interpolative technique that pools

together concepts from several existing works to create higher resolution image

content from neighborhood information given in a training set.

4.8 Acknowledgements

The text of Chapter 4 is adapted from Adaptive k-Nearest Neighbor, Karl Ni

and Truong Nguyen, January 2008, manuscript submitted to IEEE Transactions

on Image Processing. Portions of the chapter also appear in “An Adaptive k-

Nearest Neighbor Algorithm for Image Interpolation”, Karl Ni and Truong Nguyen,

in Proceedings of the IEEE International Conference on Image Processing, April

2008. The dissertation author was the primary author of these publications, and

the co-author listed directed and supervised the research which forms the basis for

this chapter.

5 Support Vector Regression

Image Interpolation

A poor idea well written is more likely to be accepted than a good idea poorly written

—Isaac Asimov

Up until now, the function estimation in previous chapters as well as several

referenced algorithms [65, 9, 49, 28, 24] approximate relationships using linear

regression. As image content is exceedingly diverse, assumptions on linearity might

prove too restrictive. In other words, MMSE interpolative and linear regression

models may not be sufficiently representative of the true relationship between low

and high-resolution information. Chapters 5 and 6 explore nonlinear regression

techniques as an alternative in an effort to increase estimation performance.

Known mathematical regression models come in several forms: linear, Bayesian,

polynomial, etc.. As it turns out, the static function models just mentioned are

severely limited in their domain space, and may be too restrictive to represented

image content well. Instead, it is more effective to use functionals rather than a

single function in a high dimensional feature space to learn the relationship. This

can be realized with support vector machines applied to regression (SVR).

SVR simultaneously provides function estimation while offering nonlinear

complexity by using a high-dimensional mapping, φ(x). This chapter investigates

the potential of SVR in the image superresolution problem by placing it in various

frameworks and adding structural information that might aid in solving for missing

high-resolution information. The frameworks discussed in this chapter include

57

58

1. the general application of SVR to superresolution in a localized manner,

2. optimal choices of the high-dimensional mappings in SVR by adjusting the

kernel function,

3. an alternate look at the domain of the training set based on inherent struc-

tural advantages.

The enumerated frameworks are discussed throughout the chapter, which

is organized as follows. Sec. 5.1 introduces, reviews, and explains SVR to give

the necessary background of its application to the superresolution problem. Then,

Sec. 5.2 explores a method of learning the kernel matrix, an essential element of

SVR. Next, the framework of the image superresolution problem through a general

SVR approach is established in Sec. 5.3. Finally, Sec. 5.4 improves the solution by

observing a change in domain.

5.1 Support Vector Regression

The support vector machine (SVM), originally proposed in [124], is a learn-

ing algorithm [35][92] with the ability to provide function estimation. By using a

mapping, Φ : X → F , where X is the domain and F is usually a high-dimensional

feature space, support vector regression (SVR) operates in feature space to approx-

imate unknown functions in an output space Y , thereby using nonlinear functions

to linearly estimate an unknown regression.

Suppose that we are given a training set with N input-output pairs as in

(5.1).

Ω = {(x1, y1) , (x2, y2) , ..., (xN , yN)} (5.1)

where xi ∈ X and yi ∈ Y . Then, we can estimate the function f : x → y

by utilizing the feature space through φ by the following optimization. In this

manner, SVR models a way to generalize unseen inputs to what has been observed

59

in the training set as the following optimization problem.

min
w,b,ξ+/−

(
1
2
||w||+ C

N∑
i=1

(
ξ+
i + ξ−i

)
)

s.t. (〈w, φ(xi)〉+ b)− yi ≤ ε + ξ+
i

yi − (〈w, φ(xi)〉+ b) ≤ ε + ξ−i

and

ξ−i , ξ+
i ≥ 0, (5.2)

for all i ∈ [1, N] and where w ∈ F [103].

Notice that for y ∈ Y , ∀ i ∈ [1, N], there are two inequalities that bound

the output training: one for the upper boundary and one for the lower boundary.

Meanwhile, slack variable vectors ξ+
i and ξ−i correspond to the upper and lower

parameters in which the function g(x) = 〈w, φ(x)〉 + b is allowed to deviate for a

prespecified error and cost, [ε, C] ≥ 0T . We can write the Lagrangian and express

the dual maximization problem (5.3).

max
α+,α−

−1
2

∑

i,k

{
(α+

i − α−i)(α+
k − α−k)K(xi,xj)

}

−ε
∑

i

(α+
i + α−i) +

∑
i

yi(α
+
i − α−i)

s.t.
∑

i

(α+
i − α−i) = 0

0 ≤ α
+/−
i ≤ C (5.3)

with the regression estimate as

g(x) =
∑

i

(α+
i − α−i)K(x,xi) + b (5.4)

where a dot product in F is defined by K(s, t) = 〈φ(s), φ(t)〉, the kernel function.

5.2 Kernel Learning for Support Vector Regres-

sion

Using a mapping Φ : X 7→ F , SVR is often better suited to represent

complicated relationships that we otherwise could not realize linearly. Within F ,

60

a kernel function written as a kernel matrix is defined to be a collection of dot

products for an arbitrary Φ that may or may not be known. Using the kernel ma-

trix K, computational complexity is reduced because the actual high-dimensional

mapping in determining d = 〈φ(s), φ(t)〉, which is quite often intractable, is unnec-

essary when solving (5.3). This definition also allows Φ to be unknown, in which

case, K can be conceptually chosen to be a desired similarity metric depicting the

“nearness” of two vectors. Thus, the selection of the kernel matrix K becomes

important and should be sensitive to the training data.

Ordinarily, a single kernel matrix, usually a factor decided by human deci-

sion, is selected from a set of precalculated kernels to some degree of accuracy if

sufficiently cross-validated. Rather than doing this, several works have explored the

prospect of learning the kernel matrix [70], [97], [84], [131],[68],[13]. Of particular

interest is [70] in which a linear combination of known kernels is optimized to pro-

duce a large kernel with good feature representation for the classification problem.

The motivation behind this section is that the impossible task of cross-validating

all possible combinations of precalculated kernels to determine an optimal one can

be theoretically instead of analytically derived.

Within the ideas proposed in [70] is the possibility of incorporating multiple

data sources to describe inherent vector space relationships by using multiple ker-

nels. We can choose which features to use (i.e. dot products of x′ = [x1, x3, . . .]
T or

x′ = [x2, x5, . . .]
T , etc.) and how they will used (i.e. RBF kernels, polynomial ker-

nels, etc.) The extra degrees of freedom fit especially well with our design because

the vector space for our particular problem is multi-dimensional compounded by

the seemingly desultory nature of local image content. As will become clearer later

in the section, it is often the case in high dimensional spaces that individual di-

mensions of the input vector x relate differently in the actual feature space. That

is to say, individual features may be more relevant than others (feature selection

or weighting) or contribute differently (Hilbert space selection).

Like the classification case in [70]1, the analogous optimization for regres-

1Lanckriet et. al.[70] offers a method to both inductively and transductively learning a kernel
matrix, but the domain in superresolution is too large to predict input vectors beforehand and
therefore induction is exclusively used.

61

sion has been explored in [97], although errors lead the derivation to an incorrect

outcome. The errors have been addressed in a previous work [84] and will be reit-

erated here, supplying a reformulation of a semi-definite programming (SDP) and

quadratically constrained quadratic programming (QCQP) problem to learn the

kernel for regression in much the same way that it has been derived for classifica-

tion.

5.2.1 The SDP Problem

Autonomously learning a kernel matrix is generally formulated as a con-

vex optimization problem, where a single optimum (both local and global) avoids

initialization problems. A branch of convex optimization dealing with the con-

vex cone of positive semidefinite matrices and its convex subsets can be solved

with programming techniques in SDP. This relates to the kernel matrix learning

problem because the range of any convex function of kernel matrices, which by

definition are positive definite matrices, is convex and lies in the cone of positive

definite matrices and hence can be formulated in terms of an SDP problem.

Implicit within this statement is the desire to include data from several

sources by using not one single kernel matrix but a convex function of several

kernel matrices while keeping the redundancy as low as possible. We do this by

choosing from a subset of S = {Ki} such that the final kernel matrix K is some

convex function of Sc ⊆ S. Later in the section, for purposes of developing an

SDP, the convex function is chosen to be a linear combination of the Ki matrices

in Sc.

An SDP problem is defined to be a convex optimization problem of the

form

min
u

cTu

s.t. F (j)(u) = F
(j)
0 + u1F

(j)
1 + . . . + uqF

(j)
q º 0

Au = b , (5.5)

for a specified number of j and where F
(j)
i are square matrices and u ∈ Rq.

62

The expression for kernel optimization is the SVR equation, and we start

from the dual optimization problem in (5.3). For simplification, let e be a vector

of all ones, y ∈ RD be a vector of labels y1, y2, . . . , yD, and

α+ + α− = β+

α+ −α− = β− (5.6)

Substitutions in (5.6) eventually lead to the inverting of the kernel matrix

K, which is entirely possible for correctly chosen Ki. This is also where our work

diverges from [97] because their substitutions involve inverting a matrix defined as

Q(K) =

(
K −K

−K K

)
, an impossible task because Q(K) can at most be rank

dim(Q)
2

and is thus non-invertible. Invertibility in our derivations is a property that

is essential for the use of the Schur complement lemma, which will be discussed

shortly.

(5.3) can be rewritten in terms of the substitutions in (5.6) as the optimiza-

tion problem in (5.7).

max
β+,β−

−1
2
β−

T
Kβ− + yT β− − εeT β+

s.t. eT β− = 0

0 ¹ β+ + β− ¹ 2C

0 ¹ β+ − β− ¹ 2C (5.7)

The optimal objective value of (5.7) is the point-wise supremum of affine functions

in K, so it is a convex function of K [19]. Thus, it can be optimized with respect to

K to yield an optimal kernel matrix. To ensure good generalization, the trace of K

is constrained [70], and the corresponding optimization problem can be expressed

in terms of its Lagrangian function as

min
K

max
β+/−

min
λ,q

+/−
l,u

L(K, β+/−, λ,q
+/−
l ,q+/−

u) (5.8)

where we minimize with respect to K and have introduced the Lagrangian variables

λ, q
+/−
u/l º 0, and constrained our solution with trace(K) = c. The Lagrangian L

63

in (5.8) is written in (5.9).

L(K,β+/−, λ,q
+/−
l ,q+/−

u) =

− 1

2
β−T Kβ− + yT β− − εeT β+ + λeT β−

+ (β+ + β−)Tq+
l + (β+ − β−)Tq−l

− (β+ + β− − 2Ce)Tq+
u

− (β+ − β− − 2Ce)Tq−u (5.9)

(5.7) is a convex optimization problem and the constraints are strictly feasible.

Therefore, from Slater’s conditions [118], strong duality holds and we can exchange

the order of the maximum and minimum.

min
K,λ,q

+/−
l,u

max
β+/−

L(K, β+/−, λ,q
+/−
l ,q

+/−
u)

s.t. q+
l ,q−l ,q+

h ,q−h º 0

trace(K) = c

K º 0 (5.10)

In terms of β+ and β−, (5.10) is an unconstrained quadratic optimization problem

and hence can be analytically solved. After writing the Lagrangian, we set the

derivative with respect to β+ and β− equal to zero to obtain
(

∂L
∂β+ , 0

)
⇒ − εe + q+

l + q−l − q+
u − q−u = 0

(
∂L
∂β−

, 0

)
⇒β−opt = K−1(y + λe + q+

l − q−l − q+
u + q−u) (5.11)

Aside from both β’s, we can eliminate an additional variable, so we substitute for

q+
l such that

q+
l = εe + q+

u + q−u − q−l

⇓
β−

∗
= K−1(y + λe + εe + 2q−u − 2q−l) (5.12)

Let

γ = (y + λe + εe + 2q−u − 2q−l). (5.13)

64

Then, we rewrite the objective function of (5.10) using (5.11) to obtain the ex-

pression:

1

2
γT K−1γ + 2CeT (q+

u + q−u)

Therefore, the resulting optimization problem is

min
K,t,λ,q+

u ,q−l ,q−u
t (5.14)

s.t. t ≥ 1
2
γT K−1γ + 2CeT (q+

u + q−u)

εe + q+
u + q−u − q−l º 0

q+
u ,q−l ,q−u º 0

K º 0

trace(K) = c (5.15)

In (5.14), the variable K−1 in the first constraint brings up an important technique

in the formulation of many SDP problems: the Schur complement lemma. The

Schur complement lemma is useful in that it allows constraints to be expressed in

linear matrix inequality (LMI) form. In terms of its usage with the problem at

hand, K º 0 implies that

t ≥ 1
2
γT K−1γ + 2CeT (q+

u + q−u)

m(
2K γ

γT t− 2CeT (q+
u + q−u)

)
º 0 , (5.16)

where in (5.16), the positive semidefiniteness of the encompassing matrix in the

bottom expression has been rewritten as an LMI by considering the Schur comple-

ment in the top expression.

65

With this in mind, (5.14) takes the following form

min
K,t,λ,q+

u ,q−l ,q−u
t

s.t.

(
2K γ

γT t− 2CeT (q+
u + q−u)

)
º 0

q+
u ,q−u ,q−l º 0

εe + q+
u + q−u − q−l º 0

K º 0

trace(K) = c (5.17)

In order to come up with a meaningful solution that involves our input, we

adjust (5.17) to be a solvable SDP problem by writing K as a linear combination2

of fixed kernels in S = {Ki}. This avoids a trivial solution, and thus, we now

optimize with respect to the coefficients µi, of the linear combination in

K =
∑

i

µiKi(·, ·) , (5.18)

The final SDP problem is stated in (5.19).

min
µ,t,λ,q+

u ,q−l ,q−u
t

s.t.

2
∑

i

µiKi γ

γT t− 2CeT (q+
u + q−u)

 º 0

q+
u ,q−u ,q−l º 0

εe + q+
u + q−u − q−l º 0

∑
i

µiKi º 0

trace(K) = c (5.19)

The result in (5.19) is general with possible application to problems other

than superresolution.

2In fact, any convex set of K would yield a convex optimization problem. Though a single
solution would exist, there may be issues with the complexity of the resulting optimization
problem as it may not be an SDP anymore.

66

5.2.2 The QCQP Problem

A QCQP problem is defined to be a convex optimization problem of the

form

minu f0(u)

s.t. fj(u) ≥ 0, j = 1, . . . n (5.20)

for a specified number of j and where fj are quadratic functions of the form

fj(u) = (Aju + b)T (Aju + b).

From (5.19), the QCQP for learning K arises from an added constraint,

µi ≥ 0, which causes some loss of generality, though it does ensure positive defi-

niteness when inductively applying the learned kernel. The intuition behind this

is simple; a linear combination of kernels where the coefficients of the combination

are guaranteed to be positive will always yield a positive-definite matrix and hence

a valid kernel. Mathematically, this is

µi ≥ 0 ⇒
{∑

i

µiKi º 0 ⇔ K º 0

}
. (5.21)

On the other hand, the complexity of the kernel is never simplified because

the positive eigenvalues of each (µiKi) will never reduce kernel rank.

The QCQP problem is derived in the same manner as [70], and is given in

(5.22).

max
β+,β−,p

2yT β− − 2εeT β+ − cp

s.t. p ≥ β−Kiβ
−

eT β− = 0

0 ¹ β+ + β− ¹ 2C

0 ¹ β+ − β− ¹ 2C (5.22)

Here, Ki are the smaller positive semi-definite kernels in (5.18) for kernel construc-

tion. The µi values come out of the dual Lagrangian variables.

A single optimization variable p may seem to suggest that only one dual

variable µi is necessary, meaning that β−Kiβ
− = p is likely satisfied for one i. In

67

low dimensional spaces in which there are fewer non-redundant Ki, this may be

the case. In higher dimensional, more complicated spaces (including the vector

space defined by our superresolution approach), there may be several µi’s that

simultaneously satisfy equality in the constraint p ≥ β−Kiβ
−. This has important

ramifications that justify both QCQP and SDP problems over single kernel cross-

validation because it implies that there are several nonzero µi’s. Consequently,

several Ki matrices are required to fully describe a sufficiently descriptive Hilbert

space, which through (5.22), can be theoretically obtained. The high probability

that ||µ||0 is strictly greater than unity further validates the theoretical approach

over the impossible task of cross-validating over every linear combination of Ki in

S = {Ki}.
A more intuitive explanation of multiple kernel usage in linear combina-

tions of Ki lies in the complicated description of the regression itself. A single

kernel describes a single space of some sort. Typically, unknown regressions can-

not be described by a single space, while other spaces may be irrelevant to the

regression. This statement comes about because the projection of the regression

hyperplane onto individual kernel spaces will usually not be illustrative enough,

and the projections onto irrelevant kernel spaces are meaningless and add no value.

A linear combination has the capacity to include or exclude these spaces and yield

a sufficiently descriptive Hilbert space that is best suited to our needs, picking and

choosing the dimensions and spaces that are necessary while ignoring those that are

not. For example, take Ki’s that are determined by one or multiple combinations

of individual features. In this set of Ki matrices, the space that a particular kernel

describes takes the form of a dimensional axis. Then, to describe a hyperplane,

many dimensions are unnecessary while other dimensions, alone, cannot describe

the hyperplane. This is the main idea behind rationalizing K =
∑

i µiKi and why

multiple µi of µ are usually nonzero.

68

5.3 General SVR Superresolution

With support vector regression and its optimal kernel, the most straightfor-

ward administration of SVR to superresolution is described in this section. Given

low and high-resolution image patches ILR and IHR with sizes D ×D and U × U

respectively, to superresolve the center pixel of ILR by a factor of U , we define

vectors

x = vectorize(ILR)− center pixel(ILR) ∈ RD2×1

y = vectorize(IHR)− center pixel(ILR) ∈ RU2×1 (5.23)

in a given training set Ω of xi feature and yi label pairs. The task at hand is

superresolution by a factor of U to predict U high-resolution pixels corresponding

to the center pixel of the D ×D patch. For 2X superresolution, this is shown in

Fig. 5.1 for D = 5 and U = 2.

Figure 5.1: Procedure for General SVR Superresolution.

This is a multiple output regression problem and in the literature it is often

solved as separate single output regressions. Recently, there has been some work

on learning vector valued function in [78][125][113], but we adopt the traditional

method of treating multiple output regression problems as separate single output

69

regression problems for each output dimension. Therefore, learning the four out-

puts becomes
{
y(j) = g(j)(x)

} ⊂ R for j = 1, . . . , 4, given the input x ∈ RN2
, and

g(j) is estimated by SVR in (5.3).

Although the results show that SVR has the capability to provide this

regression with fairly clear results, the idea could stand to gain from improvements.

A single regressor for a large training set introduces substantial computational

complexity. Depending on the data set, the problem quickly become intractable in

(5.14) and (5.22), when the kernel matrix size for each Ki(·, ·) scales according to

N2 where N is the number of training points. For K(·, ·) to be a sum of M small

kernels, the required order of memory exceeds M · N2 without even considering

other inequality constraints. Also, without further enhancements, this idea relies

on the heavy machinery of SVR to recognize all types of image content, which

affects the quality of the prediction due to the problem complexity and the large

variety of x in X .

5.4 Discrete Cosine Transform Structure

One way to reduce problem complexity considers inherent domain proper-

ties. Structured representations from these properties offer an informative view

of the domain and range and assume a simpler relationship. The simpler the

relationship, the better the regression.

Training data can define various relationships, the choice of which lends

several degrees of freedom. We can take any type, dimension, or combination of in-

puts, and from this, estimate an equally diverse choice of outputs. A choice where

the mapping from input to output is simple alleviates pressure in training and

testing, and generally results in a better model. We investigate low-resolution dis-

crete cosine transform (DCT) coefficients as input and considers relevant processes

involved in image downsampling to obtain the output. Considering structure in-

volved in downsampling benefits the learning process aiding in interpolation and

superresolution. We first observe the one-dimensional case in Sec. 5.4.1 and then

apply the same principles to two dimensions.

70

5.4.1 Decimation in Time

In image upscaling, we are typically trying to recover signal samples that

have been removed by decimation. Decimation in time by n retains every nth

sample of a signal. For decimation by two, n equals 2, and we retain all even

samples while discarding all odd samples.

There are several types of DCTs: DCT-I, DCT-II, etc. Most signal com-

pression algorithms rely on the DCT-II, to compress their signals. The definition

of XC2
N (m), the N-point DCT-II, of a signal x(n) is:

XC2
N (m) = km

N−1∑
i=0

x(n)cos

[
(2n + 1)mπ

2N

]
, m = 0, 1, ..., N − 1. (5.24)

As reported by Yip and Rao [99], we can write the N-point DCT as operations on

combinations of even and odd samples.

By letting:

G(m) = km

N
2∑

n=0

{x(2n) + x(2n− 1)}cos
[

mnπ
N
2

]

H(m) = km

N
2
−1∑

n=0

{x(2n) + x(2n + 1)}cos
[
(2n + 1)mπ

N

]

(5.25)

⇒ XC2
N (m) = km

[
G(m) + H(m)

cos mnπ
N

]
, m = 0, 1, ...,

N

2
− 1. (5.26)

⇒ XC2
N = km

{
DCT -I(x(2n)) + DCT -I(x(2n− 1))

+DCT -II(x(2n)) + DCT -II(x(2n + 1))

}
(5.27)

The final (5.27) expression allows us to decompose the image that we wish to be

estimated into what is known and what is unknown. Our known signal is x(2n),

the even samples, and our unknown signal is x(2n − 1) and x(2n + 1), the odd

samples.

5.4.2 DCT Properties in Two-Dimensions

The amount of information that is lost from decimation in two-dimensions

is squared. From (5.27), half of the information comes from the even samples and

71

half of the information from the unknown odd samples. In the 2-dimensional case

(decimation in space), only a quarter of information will be known.

Matrix representation can achieve the analogous expressions to those seen

in Sec.5.4.1. Let C1 be the N
2
-point DCT-I matrix and C2 be the N

2
-point DCT-II

matrix, expressed:

C1 = km

1 1 1 · · ·
1 cos(π

N
2

) cos(2π
N
2

) · · ·
1 cos(2π

N
2

) cos(4π
N

) · · ·
...

...
...

. . .

(5.28)

and

C2 = km

1 cos(1
2

π
N

) cos(1 π
N

) · · ·
1 cos(3

2
π
N

) cos(3 π
N

) · · ·
1 cos(5

2
π
N

) cos(5 π
N

) · · ·
...

...
...

. . .

. (5.29)

From (5.25), it is necessary to take the DCT-I from n = 0 to N
2
, yielding

(
N
2

+ 1
)

evaluation points rather than
(

N
2

)
evaluation points. Hence, C1 is has an extra

row over C2 and any input matrix must be padded with an extra column of zeros

to accommodate for the matrix size.

Define a labeling of the spatial signal in (5.30), where an image signal X is

divided into four sub-signals (its 2-D polyphase components): X1, X2, X3, and X4.

X =

X1(0, 0) X2(0, 0) X1(1, 0) X2(1, 0)

X4(0, 0) X3(0, 0) X4(1, 0) X3(1, 0) · · ·
X1(0, 1) X2(0, 1) X1(1, 1) X2(1, 1)

X4(0, 1) X3(0, 1) X4(1, 1) X3(1, 1) · · ·
X1(0, 2) X2(0, 2) X1(1, 2) X2(1, 2)

X4(0, 2) X3(0, 2) X4(1, 2) X3(1, 2) · · ·
...

...
. . .

(5.30)

72

From (5.30), we can determine four terms in (5.31).

T1 = CT
1

(
X1

0T
0

)
C1 + CT

1

(
X1

0T

)
C2 +

CT
2

(
X1 0

)
C1 + CT

2 X1C2

T2 = CT
1

(
0

X2

0T

)
C1 + CT

1

(
X2

0T

)
C2 +

CT
2

(
0 X2

)
C1 + CT

2 X2C2

T3 = CT
1

(
0

0T

X3

)
C1 + CT

1

(
0T

X3

)
C2 +

CT
2

(
0 X3

)
C1 + CT

2 X1C2

T4 = CT
1

(
0T

X4

0

)
C1 + CT

1

(
0T

X4

)
C2 +

CT
2

(
X4 0

)
C1 + CT

2 X4C2 (5.31)

Applying the matrices C1 and C2 once gives a 1-D DCT-I and DCT-II,

respectively, where, for example XiC2 is the 1-D N
2

DCT-II of Xi. Applying them

twice to Xi, e.g. CT
2 XiC2, gives the 2-D DCT-I and DCT-II of Xi. From [85], a

combination of the four terms in (5.31) determines an (N ×N) DCT in terms of

(N
2
× N

2
) DCTs.

XC2
N×N(l, m) = ĈT

2 XĈ2 = kT
l · km ·

4∑
i=1

Ti

for l,m = 1, 2, . . .
N

2
(5.32)

In downsampling in each direction by 2, with reference to the image matrix, we

will only retain one of the four Xi signals. For any Xi being the remaining matrix

after decimation, the terms in the decimation in space equation as given in (5.32)

can only be exactly determined for a single i, and the sum of {Tj : j 6= i} determine

the unknown information.

Given that our task is to determine high-resolution DCT coefficients from

low-resolution DCT coefficients, our problem is exactly the reverse decimation

73

problem, where CT
2 XiC2 is known for a single i and the remaining fifteen terms

in (5.31) compose the recovery problem of (5.32). For simplicity, let our signal be

known for i = 1 and let χ = CT
2 X1C2 denote our input.

Now, we can combine our algorithm with SVR to achieve the following

relationship.

XC2
N (l,m) = kT

l km {χ + g(χ) + SV R(χ)} (5.33)

where χ and g(χ) are known or can be exactly determined, and SV R(χ) are the

terms to be predicted. That is to say,

χ = CT
2 X1C2

g(χ) = CT
2 X1C1 + CT

1 X1C2 + CT
1 X1C1

SV R(χ) =
∑

i

(α+
i − α−i)K(χ, χi) + b (5.34)

The SV R(χ) term in (5.34) predicts the label as defined by

(
4∑

j=2

Tj

)
from

the feature χ, and the kernel matrix K(χi, χj) represents a high-dimensional dot-

product space and is optimized in the following section. The final solution is shown

in Fig. 5.2.

5.5 Results and Analysis

We verify the SDP (µi ≥ 0) and QCQP problems in Sec. 5.2 by using

an initial estimate for a single coefficient in five-fold cross-validation on 50 data

points, achieving an optimal C = 550. The quantitative difference between the

two programming problems is negligible (on the order of 10−8), meaning that they

are solving the same problem. Due to the small data set size, the cvx [54] Matlab

toolbox result is shown in Fig. 5.3. Fig. 5.3, where MSE = 3.6722±23.14, depicts

two examples of five-fold, regression runs on DC Coeffients are shown in Fig. 5.3

using 50 training points and 10 testing points.

Table 5.1 depicts the effect of learning a kernel matrix. With CVX [54], the

values were obtained using five-fold cross-validation on fifty points and tested on

74

Figure 5.2: SVR Superresolution with DCT Structure

ten points in several domains as labeled in the data series column. We gave the

option of three kernels and made use of the polynomial kernel k1(x1,x2) = (1 +

xT
1 x2)

d for K1, a Gaussian kernel k2(x1,x2) = exp
{(−0.5(x1 − x2)

T (x1 − x2)
)
/σ

}

for K2, and a linear kernel k3(x1,x2) = xT
1 x2 for K3. “ZZ(i)” denotes the target

series of the DCT output in zigzag scanned order, and “HR pix(i, j)” denotes the

target series of the reconstructed high-resolution pixel values. The notation µ+
i

means that we are dealing with the QCQP problem in which µ º 0, and likewise,
∑

i µiKi deals with the SDP problem. We benchmark using the optimally cross-

validated Gaussian kernel matrix, which the fourth comparison labeled “Opt. C/V

Gauss”. The comparison mark uses the mean squared error (MSE) value, which

is the sum of all the squared errors.

In the observations in Table 5.1, the cross-validation parameters suggest

very wide Gaussian kernels (σ large) and high C values especially in the AC coeffi-

cients in the DCT domain, probably to accommodate for the variety of coefficients

and pixel values. Another conclusion drawn from the table is that MSE values of

DCT coefficients are inherently more difficult to predict than pixel values in the

spatial domain. This fact can be explained by the ability, or tendency depending

75

1 2 3 4 5 6 7 8 9 10
500

1000

1500

2000

Test Point

D
C

 V
al

ue

Cross Validation Test Data, Optimal C = 550.

Estimated
Actual

Figure 5.3: Regression Kernel Learning, Five Fold Cross-Validation

on its usage, of the DCT domain to collaterally de-correlate signals. In the end,

if the metric is MSE, the solution from multiple kernels generally yields favorable

results over optimally cross-validated Gaussian RBFs.

Experiments for actual image reconstruction in the superresolution prob-

lem were implemented with the MOSEK toolbox [1], which computed the QCQP

problem in Sec. 5.2, alleviating the problem of the high complexity inherent in the

SDP problem. In multi-dimensional input spaces involved, the degrees of freedom

is significantly augmented by the choice of features for kernel selection. For exam-

ple in the pixel domain where D = 5, there were 2(D×D) possible combinations to

choose from for feature selection. We chose the most relevant combinations (i.e.

the features surrounding a center pixel in a certain orientation.) For purposes of

76

Table 5.1: Training and Testing of Optimal Kernels
Data Series K1 K2 K3 Opt. C/V Gauss

P
i µiKi

P
i µ+

i Ki

HR Pix (1,1)

MSE 3,263.6 734.7 3,773.97 395.98 194.71 103.58

C/V Params
d = 2

C = 700

σ = 100

C = 700
C = 700

σ = 400

C = 2, 000
C = 700 C = 700

µ1/µ2/µ3, 3/0/0, 0/3/0, 0/0/3, -, 0.566/2.434/0, 0.6751/1.0505/1.2744

HR Pix (2,2)

MSE 3,631.1 523.72 3,434.83 359.31 188.32 109.5

C/V Params
d = 2

C = 700

σ = 100

C = 700
C = 700

σ = 400

C = 2, 000
C = 700 C = 700

µ1/µ2/µ3, 3/0/0, 0/3/0, 0/0/3, -, 0.1441/2.8448/0.0111,0.0149/2.9844/0.0007

DCT ZZ(1)

MSE 16,193.1 6,039.2 11,647.1 4,545.3 2,043.2 2,375.7

C/V Params
d = 2

C = 2000

σ = 300

C = 2000
C = 2000

σ = 500

C = 6000
C = 2000 C = 2000

µ1/µ2/µ3, 3/0/0, 0/3/0, 0/0/3, -, 4.24/2.38/-3.62, 1.8/1.2/0.0

DCT ZZ(2)

MSE 3,810.6 35,189.6 22,686.3 12,901.3 1,519.5 1,383.7

C/V Params
d = 2

C = 10, 000

σ = 5, 000

C = 10, 000
C = 10, 000

σ = 104

C = 106 C = 10, 000 C = 10, 000

µ1/µ2/µ3, 3/0/0, 0/3/0, 0/0/3, -, 2.03/1.05/-0.08 0.532/0.000/2.468

simplicity, the experiments set up for superresolving entire images used Gaussian

RBF kernels exclusively with varying σ values, though it may better suit further

research in the area to use other types of kernels including polynomial, sigmoid,

linear, Laplacian, etc.

Fig. 5.5 and Fig. 5.4 are the result of superresolving 4× 4 to 8× 8 blocks in

the block-based DCT algorithm as described in Sec. 5.4 The training set consists

of only about a few thousand relevant input vectors from the same video sequence

because memory for (5.22) increases quadratically in terms of quantity of data

points, limiting our implementation. DCT SVR works very well when the testing

data is similar to the training set, with PSNR values as high as 33.83 dB. Both

methods are very clear, but looking at the leaves on the bushes, the sign, and the

horse in front of the bus, it’s evident that the structural improvements in the DCT

domain effect a very crisp result.

The drawback of DCT SVR (and not the case in the next chapter) is shown

77

1400 1600 1800 2000 2200 2400 2600 2800 3000
20

22

24

26

28

30

32

34
DCT PSNR Drop Off

MSE of original high−resolution to nearest training set point

P
S

N
R

 o
f i

m
ag

e

Figure 5.4: DCT Loss of Generalization

in Fig. 5.4, where it becomes clear that the training set needs to be larger in order

to generalize well. This conclusion has been made by observing the sharp drop

off in PSNR where comparison of like-images from test to training set show that

the “further” away the test image is from the training set, the lower the PSNR

value. Therefore, although the image appears very clear in Fig. 5.5, the idea

could stand to improve. As will be seen in the next chapter, a mixture of experts

framework provides the necessary improvements to perform better than the DCT

domain-based interpolation.

Additional results of DCT domain-based SVR interpolation are reserved for

the next chapter, where comparisons between techniques discussed in this chapter

are compared with a SVR mixture framework.

78

(a) Original Image (b) Bilinear Interpolation

(c) Spatial Domain SVR (d) Frequency Domain SVR

Figure 5.5: Zoomed Reconstruction of 10th CIF “Bus” Sequence Frame

5.6 Summary

Given a training set, we solve the SVR problem for image interpolation while

simultaneously optimizing the kernel function. Kernel optimization is achieved by

minimizing with respect to a sum of smaller kernel matrices and reformulating the

SVR QP as a SDP and QCQP forms. After programming problem formulations

have been derived, it is possible to introduce structure into the domain to aid the

learning process. For better regression, the DCT domain adds structure to the

problem, although its ability to generalize is severely limited. Poor performance

stems from the fact that small perturbations in AC coefficients result in large

79

disturbances in the HVS. Such issues and several new ones shall be addressed and

resolved in the next chapter where we introduce a new framework.

5.7 Acknowledgements

The text of Chapter 5 is adapted from Support Vector Regression based

Superresolution, Karl Ni and Truong Nguyen, in the June 2007 issue of the IEEE

Transactions on Image Processing. Portions of the chapter also appear in “Single

Image Superresolution Based on Support Vector Regression”, Karl Ni, S. Ku-

mar, N. Vasconcelos, and Truong Nguyen, in Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, May 2006; and

also in “Learning the Kernel Matrix for Superresolution”, Karl Ni and Truong

Nguyen, in Proceedings of the IEEE 8th International Workshop on Multimedia

Signal Processing, August 2006. The dissertation author was the primary author

of these publications, and the listed co-author directed and supervised the research

that forms the basis for this chapter.

6 Mixture of Experts for Image

Interpolation

As Machiavelle taught them, divide and ye govern.

—1732 Swift Peoms III. 805

Simplifying regression structure by using structural properties of the DCT

domain performs especially well when the training set is extremely large or is very

similar to the testing image. This is quite often not the case as can be observed in

Fig. 5.4 in Sec. 6.3 of the previous chapter, where PSNR values for video frames

dissimilar to the training set drop off sharply as video frame temporal distance

increases. As explained in the previous chapter, the HVS will detect noticeable

differences should perturbations and slight errors in the energy of AC coefficients

occur. While the effect can be mitigated to some extent by considering other do-

mains (e.g. the wavelet domain [51]), the cost for currently standardized discrete-

time domain changes1 is poor generalization for gains in structural improvements

of input domain selection. Moreover, with some thought, we may even accom-

modate for the advantages in domain structure with the inclusion of specialized

kernels in the kernel learning process in Chapter 5.

Alternatively, classification-based algorithms [24, 9] have been shown to

provide good generalization. One particularly successful classification-based frame-

work is called a mixture of experts [61, 75], in which several function estimators, or

1The domain changes referred to here consist only of the DFT, DCT, and DWT. We have
tested using only the Gaussian kernel. The final chapter discusses possible directions in research
with respect to types of kernels.

80

81

“experts”, pool their decisions together to vote on the most likely outcome. The

final solution is a weighted combination, or “mixture”, of each “expert’s” belief.

When the “experts” are defined as SVR estimators, then we have a support vector

mixture [69, 43, 93].

The mixture of experts framework for image interpolation has been initially

studied in [24], although the formulations of the “experts” as nonlinear regression

are only superficially covered with the mere brief mention of the potential of such

algorithms. This chapter is devoted to the development of a support vector mixture

framework using SVR to provide image interpolation through a sliding-window ap-

proach. We further extend the application to colored images using novel techniques

and properties of the HVS.

The following section, Sec. 6.1, highlights the proposed algorithm with more

conventional definitions, and Sec 6.2 investigates the adaptation of the algorithm

to the multiple color schemes in video transmissions, identifying which features to

use for the least amount of estimation errors. Finally, Sec. 6.3 presents several

simulation results.

6.1 Algorithmic Description

This section describes the hierarchical support vector mixture in detail.

Sec. 6.1.1 relates the overall framework to conventional terminology. As an inte-

gral part of the stochastic framework, unsupervised classification, or clustering,

is discussed in Sec. 6.1.2. Given probability metrics from Sec. 6.1.2, subsequent

summarizations of convex optimization problems from Chapter 5 are tailored to

each individual class in Sec. 6.1.3. Using a full mixture of SVR’s, Sec. 6.1.3 fits

discussed concepts into an overall framework to effect good image interpolation

results.

6.1.1 Hierarchical Mixture of Experts

Diversity and complicated structures within images require much more than

a single regression for all possible image content, even with scalable estimation

82

techniques such as SVR. While SVR is ideally able to fit an arbitrarily complex

system by properly cross-validating, without intimate knowledge of all the high-

dimensional manifolds and subspaces of images (which involves a complex mix-

ture of edges, gradients, texture, etc.), a perfect reproducing kernel Hilbert space

(RKHS) using known kernel functions for a single SVR does not make sense. Con-

sequently, the sheer number of parameters for an SVR with an imperfect kernel

space renders the optimization problem unmanageable. Thus, instead of a sin-

gle SVR, the central idea of the proposed algorithm is to use multiple SVR for

generalization purposes.

While not explicitly stated in [88], the framework of the proposed algorithm

is most adequately described as a mixture of experts [61] for regression, where given

the same input vector, “experts” pool their decisions to vote on whose outcome

is most likely correct. Systems of mixtures of experts typically use a feedforward

network where all experts receive the same input, perform their processing, and

the output is a weighted sum of the results, seen in (6.1).

f(x) = h

(
C∑

j=1

wj(x)sj(x)

)
(6.1)

In (6.1), wj(x) is a function of the input weighting the jth regression expert, sj(x),

and there are a total of C different experts.

SVR’s replace sj(x) in Mixture of Support Vector Machines. Prior to SVR

regression in sj(x), unsupervised clustering [48], as opposed to discriminant analy-

sis, is denied access to any labels. Applying labels would require an inordinate

amount of time because humans must assign classes to every training point. Four

of the most commonly used clustering techniques [55] are exclusive, overlapping,

hierarchical, and probabilistic clustering. Of the four types, only probabilistic clus-

tering offers uncertainty measures of random patterns belonging to certain clusters.

The attribute fits especially well because we will eventually require the use of pos-

terior probabilities for both the weights wj(x) and regression sj(x) in (6.1). The

uncertainty measures for a class, i.e. posterior probabilities P (J = j|x), provide

exactly that information, and the accuracy of the posteriors depends on the model

used for classification and clustering.

83

When the training set Ω consists of N training pairs (xi,yi), where xi is the

ith low-resolution training vector and yi is the ith high-resolution training vector,

the estimation of function f in y = f(x) with g(x) is given as the expected value,

g(x) = E[y|x, Ω]. To integrate classification, the conditional expectation is found

by E[y|x] =
∑

j

E[y|x, J = j]P (J = j|x) and thus,

g(x) =
C∑

j=1

gj(x)P (J = j|x) (6.2)

Here, the random variable J denotes a potential class of input vector x.

Therefore, (6.2) equates an all-encompassing function g(x) to averaging the

result of several smaller functions gj(x) that sharpen, smooth, etc., depending

on when it is necessary to do so. The posterior probability measures, P (J =

j|x), weight the regression results by how strongly the algorithm believes that a

particular regression correctly represents the original function f(x).

6.1.2 Unsupervised Classification

Clustering analysis is distinguished from discriminant analysis, the differ-

ence being that clustering is denied access to any labels, which means that it is

categorized as an unsupervised learning technique [48]. There are different types

of clustering where four of the most commonly used are [55]:

1. Exclusive Clustering

2. Overlapping Clustering

3. Hierarchical Clustering

4. Probabilistic Clustering

Of the four types, only probabilistic clustering offers uncertainty measures of ran-

dom patterns belonging to certain clusters. Since we concentrate on hierarchical

framework, probability measures are an attribute that fits especially well with (6.2)

because 6.2 requires the use of posterior probabilities. Also, because the proposed

84

algorithm eventually fits a nonlinear regression to training data points in a par-

ticular class, an important piece of knowledge would be which points to use for a

single class regression and how likely it is that those particular points are in the

class. The aforementioned uncertainty measures for a class provide exactly that

information, the accuracy of which depends on the model.

The most common probabilistic clustering method uses GMM. As is the

case in all model-based approaches, a mixture of parametric distributions (such as

Gaussians in the case of GMM) models the entire training set. Each distribution

represents a cluster, and the EM algorithm [39] is used to estimate the relevant

parameters. As GMM’s consist of the sum of several Gaussians, the estimated

parameters for the jth cluster include the prior probability of the cluster πj, the

mean µj, and the covariance matrix Σj.

By determining parameters for individual Gaussian curves of the GMM,

EM can determine the likelihood of a point being in a class, P (x|J = j). The

posterior probability in (6.2) can then be found with Bayes’ Law:

P (J = j|x) =
P (x|J = j)P (J = j)

P (x)

=
P (x|J = j)P (J = j)∑
j

P (x|J = j)P (j = j)
(6.3)

At runtime given an input vector xtest, the task becomes finding the Gaussian

in the GMM with the highest posterior probability at xtest. Whichever Gaussian

has the highest posterior is the class to which xtest most likely belongs.

Meanwhile, the complexity involved in training every point for M regressors,

where M is the number of classes, is huge as interior point methods that eventually

solve our regression problem in the next section scale according to O(M2N2.5). The

complexity promotes M separate, smaller training sets Ωj ⊂ Ω for individual jth

regressors. Therefore, to obtain the subsets for simpler, more solvable problems,

we take the points that are most relevant to the regression by thresholding the

data for which the posterior probability is the highest. Therefore, for the jth class,

if a training point xi meets a preset threshold ηj, then it is included in the training

of the jth regression.

85

Note that the simplification rejects considerable amounts of data per class,

and it becomes extremely important not to overfit the data because test points

have a good chance of not falling within a given class. Nevertheless, if SVR can

indeed predict the relationship between low and high-resolution (as it has been

shown to be capable of), then the regression may be sufficient for less relevant

points in a given class. Furthermore, through experimentation, it turns out that

only a few classes at any given test point are chosen and used for reconstruction

most of the time. The implication is that, for the test point xtest, by multiplying

Pj|x(j|xtest) with gj(xtest) in (6.2), we would maintain good accuracy by zeroing

out test data that is irrelevant for a particular class anyway, leaving reconstruction

for those classes which can accurately do so.

6.1.3 Fitting the Framework

In each class in (6.2), some training points are more “important” than others

for a given regression sj(x). The proposed algorithm must prioritize “important”

points while marginally considering “unimportant” points.

Weighting training points is analogous to the effect of choosing C in the

original primal problem, equation (6.4), on the solution hyperplane.

min
w,b

1

2
‖w‖2 + C

∑
i

(ξ+
i + ξ−i)

subject to

yi − (〈w, φ(xi)〉+ b)− ε ≤ ξ+
i

(〈w, φ(xi)〉+ b)− yi − ε ≤ ξ−i

ξ−i , ξ+
i ≥ 0 (6.4)

The larger C is, the more penalty is incurred for non-flat regression so-

lutions, in effect restricting the freedom to closely fit the training data in the

constraints. The impact of C comes from its weighting of slack variables. Slack

variables can be weighted differently for every point in the training set, and in-

tuitively, for the jth SVR, multiplying all ξ−i with the corresponding posterior

probability of a particular class, P (j = J |xi), would produce the desired effect.

86

Consequently, letting Pj be a vector of probabilities of all the points belong-

ing to a class, the final equations can be rewritten from Chapter 5 and Sec. 6.1.2

by multiplying the posterior probabilities. Final equations are shown in (6.5) and

(6.6).

Weighted SDP Problem for the cth SVR

min
µ,t,λ,q+

u ,q−l ,q−u
t

s.t.

2
∑

i

µiKi γ

γT t− 2CPT
c (q+

u + q−u)

 º 0

trace(K) = c∑
i

µiKi º 0

q+
u ,q−u ,q−l º 0

εe + q+
u + q−u − q−l º 0

(6.5)

Weighted QCQP Problem for the cth SVR

max
β+,β−,p

2yT β− − 2εeT β+ − cp

s.t. p ≥ β−Kiβ
−

eT β− = 0

0 ¹ β+ + β− ¹ 2PcC

0 ¹ β+ − β− ¹ 2PcC

(6.6)

6.2 Color Image Superresolution

This section details the problem of superresolving color, its place in the

proposed framework algorithm, and related issues such as chroma subsampling.

Sec. 6.2.1 describes the adaptation of the proposed algorithmic framework to gen-

eral color superresolution. Sec. 6.2.2 explains how the different transmission for-

mats of color affect the input features.

87

6.2.1 Integrating Color into the Stochastic Framework

Color images are usually partitioned into three components. The simplest

prediction technique is independent component interpolation. There are obvious

disadvantages to this method, most notably the disregard for inherent correlation

between components. One readily available remedy for this issue and those similar

to it would be to use values from all three components to produce an evenly

proportioned feature representative of all three components. However, using 5× 5

windows in 3 different spaces means 75 dimensions, and estimation errors overcome

whatever is gained by the added information.

Therefore, we need to maintain balance by trading off small feature vector

size for a decent amount of quality information. As it turns out, in terms of the

human visual system (HVS), changes in color Cr and Cb components are less de-

tectable, and perceptual changes in luminance seem more important. In fact, all

MPEG compression use a 4:2:0 resolution format, where luminance pixels outnum-

ber either chrominance component by a factor of 4. As a result, many techniques

that use RGB interpolation (including [9]) weight the importance of each compo-

nent by their average proportion of luminance. The proposed algorithm is more

direct in its approach and clusters luminance components only, disregarding color

altogether. The rationale behind this thinking is that for purposes of image con-

tent recognition, particular objects may be tinted differently when the underlying

texture as well as the transition of colors within the patch remain the same.

While clustering luminance components in x, color regressions use a sepa-

rate input z from a window of surrounding color components (either Cb or Cr).

It is here that SVR has distinct advantages over the linear filtering used by most

interpolation algorithms. By filtering edges, halos or odd-colored auras often ap-

pear along texture transitions and borders. This is due in part to the averaging of

pixel values, which smoothing linear filters have a tendency to do. Because there

exists a multitude of shades of colors between any two chroma values, averaging

often produces these unnatural and strange colors. The proposed algorithm avoids

these undesirable byproducts that typically plague linear algorithms because the

choice of training set often excludes these in-between values. The exclusion leaves

88

out the odd-looking colors by effecting texture transitions that occur naturally in

the image pairs of the training set.

6.2.2 Chroma-subsampling and Superresolution

There is an extensive quantity of standard transmission formats for video

with color, each requiring a different implementation due to the disparity of the

domain. The most commonly used scheme, 4:2:0, can be found in all versions of

MPEG, JPEG, and various other standards, where there are 4 luminance com-

ponents to single Cb and Cr components. MPEG-4 contains options for higher

quality color, available in 4:4:4 schemes.

The consequences of the disproportionate sampling of color versus bright-

ness mandate alternatives to the support of input vectors in Cb and Cr color

components. In other words, how large the surrounding area of a color compo-

nent is used for the regression. Too large of an area would cause estimation errors

from excess dimensionality while simultaneously reducing generalization ability.

Too small of a support area makes cross-validation difficult because insufficient

discriminating information is present.

In the end, it makes sense for the Cb and Cr regression input vector support

to cover the same area image-wise as the luminance regression rather than pixel-

wise. That is to say, color components match the area of the luminance components

by the subsampling factor. For example, in 4:2:0 schemes, a 5 × 5 luminance

regression window would correspond to a 3 × 3 chrominance window where the

surrounding chrominance window is half the extension of luminance pixels.

6.3 Results and Analysis

The algorithm clustered on 3 × 3 windows. Luminance and chrominance

regression features come in 4:2:0 color schemes from windows of sizes 7 × 7 and

3 × 3, respectively. We ensure good generalization by randomly selecting a test

image that differs from a training set of thirty diverse images from the Calphotos

collection [23].

89

To generate the low-resolution images, high-resolution training images are

filtered using an 11 × 11 anti-aliasing filter, specified by MATLAB’s imresize.m

function. Then, the image is downsized by u = 2 in each direction to obtain

the low-resolution images. Every possible patch except for the edges (i.e. no

zero-padding) are then taken from the low-resolution images, and the four high-

resolution pixels corresponding to the center pixel of the low-resolution patch are

used to complete the pair (xi,yi) ∈ Ω.

Experiments for actual image reconstruction in the superresolution prob-

lem are implemented in the spatial domain with the MOSEK toolbox [1], which

computes the QCQP problem in Sec. 6.1.3, alleviating the problem of the high

complexity inherent in the SDP problem. In multi-dimensional input spaces in-

volved, the degrees of freedom is significantly augmented by the choice of features

for kernel selection. For example for 7 × 7 window sizes in regression, there are

2(7×7) possible combinations to choose from for feature selection. We chose the

features surrounding a center pixel in various orientations: vertical, horizontal,

center 3 × 3, etc.. For purposes of simplicity, the experiments set up for superre-

solving entire images used Gaussian RBF kernels exclusively with varying σ values,

though it may better suit further research in the area to use other types of kernels

including polynomial, sigmoid, linear, Laplacian, etc.

Comparisons superresolve by a factor of two. We compare to a few modern

techniques, including a correlation-based approach [74], in which edges are sharp-

ened or enhanced by preserving the low-resolution correlation matrix. Another

edge-directed technique is subpixel edge localization [62], which also draws out

edges by using geometrical relationships within a localized area of interest. Accom-

panying these comparisons are the linear counterpart to our approach, resolution

synthesis [9], and the standard splines interpolation method, bicubic interpolation.

The results in Fig. 6.1 are based on a fairly small and slightly homogeneous

training set. Using the simplified structures described in this chapter, we were

able to increase our training set to 14 images in the CalPhotos image database

from [23]. The images were chosen for content diversity, and so both quantity and

quality of the training set are expanded.

90

(a) Original Image

(b) DCT Structured Reconstruction (c) Mixture of Experts

Figure 6.1: Comparisons of DCT Domain to Mixture of Experts

In the proposed algorithm, the algorithm was set up with D = 5 and U = 2,

meaning that ILR was 5 × 5 and IHR was 2 × 2, with clustering features of size

3 × 3 for 4 training images in the CalPhotos image database from [23]. For fair

comparison, the same training set is used for any relevant learning algorithms

involving a training set to which we compare the proposed algorithm. Note that

by using an SVR-mixture and a considerably larger training set, the proposed

algorithm has the ability to operate on a variety of different images, which is

evident in the PSNR values for the bus video sequence in Fig. 6.5.

The techniques are compared quantitatively for frames in the bus sequence

in Fig. 6.5 and qualitatively in Fig. 6.4 and Fig. 6.6. The proposed algorithm not

91

only achieves more accuracy in PSNR than its linear counterpart in [9] and other

referenced methods, visual comparisons offer better clarity in Fig. 6.4 and Fig. 6.6

as well. Because our algorithm performs image “estimation” as a purely mathe-

matical optimization, high PSNR values are concentrated on first while allowing

visual acuity to follow, whereas other algorithms in Fig. 6.5 have the objective to

enhance visual acuity directly. In essence, numerically speaking, SVR obtain a

more “correct” result.

Fig. 6.2 shows the difference between nonlinear SVR and linear filtering.

Observing both images, due to presharpening, there appears to be extra noise

in the linear filtering case, whereas the SVR shows a more crisp superresolution

result. In the linear case, it is the presharpening filter that produces this effect,

in essence, overcompensating with the inadequacies of linear filtering instead of

producing exact results. This is also noticeable in Fig. 6.6, where the stripes

continue through the building top, overcompensating when it is unnecessary to do

so.

Comparisons to Li’s edge directed interpolation [74], are shown in com-

parison to the proposed algorithm in Fig.6.3 on the Barbara image. There is an

aliasing-like effect in the where there is close proximity of edges and gradients (the

striped portions of the shirt and pants). This could be a by-product of a two pass

system in which Li considers only 2 × 2 features at a time in isolated horizontal-

vertical and diagonal passes. Therefore, drawing from 3× 3 features at a time, the

proposed algorithm asserts that joint consideration is advantageous, and indeed,

the kernel chosen for the class is always one that includes the 3×3 features (though

this is the case with most classes).

Comparisons to simpler interpolation techniques are also shown in Fig. 6.4.

Of these include subpixel edge localization [62], and the result enhances edges

quite well, perhaps even better than [74]. The side effect, though, is that the

result looks slightly cartoonish. Fig. 6.4 also gives the inferior bicubic splines

interpolation result. While these algorithms perform poorer than the proposed

algorithm, it is worth it to note that they also have very little extra information to

aid them, which is part of the reason why SVR reconstruction is superior in terms

92

of quality.

Table 6.1: Miscellaneous PSNR comparisons

METHOD PSNR Values

Jellybean Chewbacca Foreman,3

Bicubic 20.65 dB 17.11 dB 18.21 dB

NEDI [74] 19.33 dB 16.40 dB 17.90 dB

SEL [62] 12.18 dB 15.73 dB 18.34 dB

Linear RS [10] 19.69 dB 16.94 dB 17.81 dB

Proposed Algorithm 20.57 dB 18.24 dB 18.60 dB

The techniques are shown quantitatively in Table 6.1. The results show that

the proposed algorithm is able to yield higher PSNR values than contemporary,

competitive algorithms on average. One non-intuitive result in the quantitative

comparisons are bicubic interpolation’s relatively high PSNR values. This can be

somewhat explained by MATLAB’s half-band filter after upsampling, in which the

inherent information never deviates too far from the actual values. Numerically

speaking, averaging surrounding pixels creates a somewhat “safe” result, never

deviating too far from the true pixel value, but also, never giving a crisp result.

While numerically superior, in the end, the visual results in Fig. 6.7, Fig. 6.8, and

Fig. 6.9 speak for themselves.

All qualitative comparisons are shown in Fig. 6.7. Already, some of the

fur texture has been lost in all methods except for the proposed algorithm, due

to the specificity of the functions gj(x). Even the linear classification method [9]

in Fig 6.7(e) is inadequate in this respect, albeit the severity is to a much lesser

degree. Further examining the difference between linear and nonlinear regression is

Fig. 6.9. Observing both images, due to presharpening, there appears to be extra

noise and pixelation in the linear filtering case, whereas SVR shows a more crisp

superresolution result. This result can be attributed to the presharpening filters

overcompensating for the inadequacies of linear filtering instead of producing exact

results.

93

Additional visual comparisons to current interpolation techniques are shown

Fig. 6.8. The errors in Li et. al [74] may be a by-product of a two pass system

in which Li considers only 2 × 2 features at a time in isolated horizontal-vertical

and diagonal passes. Therefore, drawing from 3 × 3 features at a time, kernel

resolution synthesis asserts that joint consideration is advantageous, and indeed,

the kernel chosen for the class is always one that includes the 3×3 features (though

this is the case with most classes). [62] is a somewhat simpler technique, and the

result enhances edges quite well, perhaps even better than [74]. The side effect,

though, is that the result looks slightly cartoonish. Fig. 6.7 also gives the inferior

bicubic splines interpolation result. While these algorithms perform poorer than

the proposed algorithm, it is worth it to note that they also have very little extra

information to aid them, which is part of the reason why SVR reconstruction is

superior in terms of quality.

6.4 Summary

Through a classification-based, mixture of experts frameworks, problem

complexity has been reduced and better generalization is offered. The effect of

the improvements on the image interpolation problem has produced results better

in both visual acuity and PSNR values. Regression in the color domain based on

luminance classification works very well. Correctly tuned, the ill-effects of bleeding

into surrounding edge areas will not occur in this scheme.

6.5 Acknowledgements

The text of Chapter 6 is adapted from Mixture of Experts Framework for

Superresolution, Karl Ni and Truong Nguyen, January 2008, manuscript submitted

to the IEEE Transactions on Image Processing. Portions of the chapter also appear

in “Kernel Resolution Synthesis for Superresolution”, Karl Ni and Truong Nguyen,

in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing, April 2007; “Complex Function Estimation using a Stochastic Classi-

94

fication/Regression Framework: Specific Applications to Image Superresolution”,

in Proceedings of the SPIE International Conference on Optics and Photonics,

August 2007; and also in “Color Image Superresolution Based on a Stochastic

Combinational Classification-Regression Algorithm”, in Proceedings of the IEEE

International Conference on Image Processing, September 2007. The dissertation

author was the primary author of this publication, and the co-author listed directed

and supervised the research which forms the basis for this chapter.

95

(a) Original

(b) Proposed Algorithm

(c) Resolution Synthesis [9]

Figure 6.2: Proposed Algorithm versus Resolution Synthesis [9]

96

(a) Original Image

(b) Proposed Algorithm

(c) NEDI [74]

Figure 6.3: Proposed Algorithm versus Edge Directed Interpolation [74]

97

(a) Proposed Algorithm (b) NEDI [74]

(c) Bicubic Interpolation (d) Subpixel Edge Localization [62]

Figure 6.4: Proposed Algorithm vs Various State of the Art Algorithms

98

1 2 3 4 5 6 7 8
30.8

31

31.2

31.4

31.6

31.8

32

Frame Number of Bus Sequence

P
S

N
R

 V
al

ue
 (

dB
)

Kernel Resolution Synthesis
Resolution Synthesis
NEDI
SEL
Bilinear Interpolation
Bicubic Interpolation

Figure 6.5: PSNR Results in 8 Frames of the Bus Sequence.

99

(a) Original Image (b) NEDI [74] (c) SEL

(d) Bicubic (e) Resolution Synthesis (f) Support Vector Mixture

Figure 6.6: Comparisons to State of the Art, 6th Frame City Sequence

100

(a) Original (b) Bicubic Interpolation

(c) Edge Directed Interpolation (d) Subpixel Edge Localization

(e) Resolution Synthesis (f) Mixture of Experts

Figure 6.7: Comparisons to State of the Art

101

(a) Original

(b) Bicubic Interpolation

(c) Edge Directed Interpolation [74]

(d) Mixture of Experts

Figure 6.8: Comparisons to State of the Art Interpolation Techniques

102

(a) Original

(b) Resolution Synthesis

(c) Mixture of Experts

Figure 6.9: Mixture of Experts vs C.B. Atkins [9]

7 Polyphase Representation of

Classification-Based Filtering for

Image Interpolation

In order to change an attitude, then, it is presumably necessary

to modify the information on which that attitude rests.

—Richard Petty and John Cacioppo

Results of image construction efforts in the previous chapters are impressive,

but the machinery required for the nonlinear interpolation algorithms currently do

not justify their use in commercial products. The best tradeoff between quality

and computational complexity has been discussed in Chapter 2, and of the cited

related works, we have found C. B. Atkins’ Ph.D. thesis [9] to be the most viable,

currently already implemented in newer HP printer models (See United States

Patent 7149369, European Patent EP0874330). Because [9] (and other closely

related algorithms [24, 56]) forgo frequency analysis, analytic filter design, or signal

analysis, we discuss several areas of expansion while maintaining their empirical

design aspect. It is our intention to explore [9] using such tools to reach more

intuitive conclusions and propose some novel ideas.

On the opposite end of the spectrum, up until now, we have used pattern

classification as an instrument in solving specific signal processing problems. The

remainder of this thesis observes the converse: signal processing analysis of an

interpolation method that has primarily been developed in the machine learning

sense. Sec. 7.1 briefly reviews [9] and discusses the algorithm as it is currently

103

104

interpreted. Using polyphase analysis, Sec. 7.2 interprets [9] as a weighted mixture

of filters and expresses the approach in terms of filterbanks. Sec. 7.3 proposes the

comparable performance of a single, zero-phase filter rather than a collection of

filters to furthermore reduce computational complexity. Finally, we propose to

generalize filter design to arbitrary scaling factors while simultaneously keeping

complexity low in Sec. 7.4.

7.1 Review: C. B. Atkins’ Ph. D. Dissertation

Let Ω equal {(xi,yi)}, a training set consisting of T pre-processed in-

put/output pairs. Our terminology of an x and y that denote low and high-

resolution patches, respectively, is opposite of most superresolution papers [96, 17],

which study the reverse problem. Because filter coefficients are derived from the

training pairs directly, the most noticeable of the few differences is the MMSE

expression, which will become clearer towards the end of this section.

To interpolate an image by u in both horizontal and vertical directions,

algorithms slide a d × d window across the low-resolution image. Processing a

given d× d image patch requires vector representation x ∈ Rd2×1. The resolution

enhancement at the center pixel of the d× d patch corresponds to u× u pixels in

the high-resolution image. Therefore, y has dimensions u2 × 1.

The bulk of [9] is a collection of two journal papers, defining the proposed al-

gorithms as “resolution synthesis” in [12] and “tree-based resolution synthesis” [11],

the latter of which has evolved from the former. As the title of [9] suggests, clas-

sification is used as a mechanism for content-specific regression. That is, if j

represents a particular class number, both “resolution synthesis” [12] and “tree-

based resolution synthesis” [11] find the best j for a given x and then provide

the regression seen in (7.1). The frameworks differ in that “tree-based resolution

synthesis” relies on binary classification, using the first principle component and

the mean to divide training points, while resolution synthesis assumes a GMM,

using individual Gaussians of the mixture to represent a single class.

In both [12] and [11], the underlying equation from which parameters are

105

to be estimated is given in the linear equation in (7.1).

y = A(j)x + β(j) (7.1)

where A(j) is a matrix of size d2×u2, and β(j) is a vector of size u2×1 for the class

j. [12] and [11] determine A(j) and β(j) differently for all j, although ultimately,

both use some type of weighted least-squares-like approach.

The expression that [9] associates with the training set relating domain

to range is E[y|x]. [11] directly approximates E[y|x] using (7.1). Consequently,

design of A(j) and β(j) is relatively simple, and filter coefficients can be found by

the least squares solution in

A(j) = RxyR
−1
xx (7.2)

where autocorrelation and cross-correlation matrices, Rxx and Rxy, are maximum

likelihood estimates. Likewise, using the maximum likelihood estimate of the

means of a class, µ
(j)
x and µ

(j)
y , β(j) is a normalization term defined by (7.3).

β(j) = µ(j)
y − A(j)µ(j)

x (7.3)

Alternatively, [12], like previous works in image interpolation [88, 86], adopts

a mixture of experts framework for interpolation. Recall in Chapter 6, the mixture

of experts is commonly expressed as
∑

j

g(j)(x)P (J = j|x), J being a random vari-

able denoting the true class of x. Substituting (7.1) for g(j)(x), the mathematical

equivalent for linear regression sets g(j)(x) = A′(j)x + β′(j), and (7.4) is a weighted

sum where posterior probabilities P (J = j|x) come out of hierarchical clustering

via EM.

E[y|x] =
∑

j

E[y|x, J = j]P (J = j|x)

=
∑

j

(
A′(j)x + β′(j)

)
P (J = j|x) (7.4)

The algorithm closely resembles a non-orthogonal, interdependent filterbank where

the end summation has non-unity weights, which are determined by local image

content. [12] makes full use of the posterior probabilities, P (J = j|xi) in the

106

training set by writing them in matrix form, P . As shown in (7.5), A′(j) and β′(j)

are slightly different than that of (7.2) and (7.3).

A′(j) = (Ryx · P) (Rxx · P)−1

β′(j) = µ(j)
y − A′(j)µ(j)

x (7.5)

[9] calls the process of creating A(j) and A′(j) filter design. The term is

technically correct, but for conceptualization, requires some manipulation in the

way data is organized. Typically, image filters are represented as two-dimensional

fixed kernels. Vectorizing, while standard in the pattern recognition, removes a

level of intuition with respect to image processing. Moreover, it is difficult to

relate to any image properties and see anything more than a linear system of

equations without rewriting (7.1). In later sections, we focus on two-dimensional

intuition in hopes of better generalization in application and understanding.

7.2 Polyphase Representation of Classification-

based Filtering

Polyphase decomposition of signals [121, 111], originating from Bellenger et.

al. [15], is the representation of the signals as a regularly multiplexed, parallel set

of subbands. Polyphase representation has been fundamental to multirate applica-

tions, derivations of sampling theorems, uniform DFT filterbanks, and of interest

to us, decimation and interpolation filters. Interpolation using polyphase [46] was

first used for interpolation and decimation in 1-dimensional signals in a seminal

paper by Valenzuela and Constantinidas [33]. The scope is broadened in several

Vaidyanathan works [121, 122]. It is the concepts and analysis in [121] and [111]

that catalyzes our contribution in improving our understanding of (7.1). The fol-

lowing subsections review key concepts and express (7.1) in polyphase form.

107

7.2.1 Review: Polyphase Decomposition

Let h be the impulse response of a digital filter of length N and h[n] be the

nth filter tap, where n = 0, 1, . . . , N − 1. The transfer function of h[n], H(z), can

be written as

H(z) =
N−1∑
n=0

z−nh[n]. (7.6)

We can organize (7.6) into M terms1, where

H(z) = {h[0] + z−Mh[M] + . . .}+
z−1{h[1] + z−M+1h[M + 1] + . . .}+
· · ·+ z−M+1{h[M − 1] + z−1h[2m− 1] + . . .}.

(7.7)

The mth polyphase component of H(z), Em(z) is defined as

Em(z) = {h[m] + z−1h[M + m] + . . .}

=

bN/Mc∑
n=0

z−nh[nM + m]. (7.8)

Substituting (7.8), we can express (7.6) as

H(z) = E0(z
M) + z−1E1(z

M) + . . . zM−1EM−1(z
M)

=
M∑

m=0

z−mEm(zM), (7.9)

and H(z) is given as a sum of its polyphase components.

H(z) is symmetric if h[n] = h[N − 1 − n] and anti-symmetric if h[n] =

−h[N − 1 − n]. If H(z) is either symmetric or anti-symmetric, then it has lin-

ear phase. Linear phase filters have constant group delay, which means that all

frequencies have constant delay times and phase distortion is avoided. Because

the defining characteristics of images can be found in the phase [53], attributes of

linear phase filters including constant group delay are favorable. A subset of linear

phase filters to be discussed in Sec. 7.3 include zero-phase filters in which signal

phase is unaffected.

1When we wish to interpolate in one dimension, M = u.

108

7.2.2 Class-specific Polyphase Filters

Recall that A(j) is a matrix of size d2 × u2. We observe that each element

in y comes about through a single row multiplication of A(j) with x. That is, if

A
(j)
m ∈ Rd2×1 is the mth row of A(j) denoting the jth filter, then the mth element of

y is given by ym = A
(j)
m x. Each row of A(j) can be thought of as an individual filter

to produce a single output value. Let us define E
(j)
m as the two-dimensional kernel

representation of A
(j)
m shown in Fig. 7.1 when u = 2. (Obtaining E

(j)
m is simply the

reverse of whatever operation was used to vectorize x.) Then, we can place the

kernel E
(j)
m around the d× d window to produce the filtered result ym.

2x Interpolation Kernels

A(j)

(A(j)
3)T

E(j)
k(zx, zy)

(A(j)
2)T (A(j)

1)T (A(j)
0)T

Figure 7.1: Two-dimensional Interpolation Kernels for Image Filtering

Our choice of nomenclature by using “E” in E
(j)
m is not accidental; E

(j)
m is

the mth polyphase component of a reconstruction filter. The high-resolution image

is generated by placing ym into the image after upsampling by u in horizontal and

vertical directions. See Fig. 7.3(a) for details when u = 2.

We would like to express our filter bank collectively as a single filter. Thus,

we require a simple application of the second of two noble identities [111], where

First Noble Identity : G(z)(↓ M) = (↓ M)G(zM)

Second Noble Identity : (↑ M)G(z) = G(zM)(↑ M) (7.10)

109

The noble identities allow us to push the down/upsampling block through the filter

and reverse the order of blocks, shown in Fig. 7.2.

G(z) Mx y G(zM)Mx y

G(zM) Mx yM yG(z)x

Figure 7.2: Noble Identities

2x,y

2x,y

2x,y

2x,y

z-1
y

z-1
x

z-1
x

Low-Resolution
Image

High-Resolution
Image

�

��

E3(zx,zy)

E2(zx,zy)

E1(zx,zy)

E0(zx,zy)

(a) Polyphase Filters for Image Reconstruction.

2x,y

2x,y

2x,y

2x,y

z-1
y

z-1
x

z-1
x

Low-Resolution
Image

High-Resolution
Image

�

��

E3(zx
2,zy

2)

E2(zx
2,zy

2)

E1(zx
2,zy

2)

E0(zx
2,zy

2)

(b) Use of Noble-Identities.

2x,y

High-Resolution
Image

H(zx,zy)

Low-Resolution
Image

(c) Incorporation of all Polyphase Components into

H(j)(zx, zy).

Figure 7.3: Interpolation Process for Class j.

With (7.10), we say that Fig. 7.3(a) and Fig. 7.3(b) are equivalent. We can

then collapse Fig. 7.3(b) into a single filter by using the two-dimensional version

110

of (7.9). The culmination is (7.11); an overall filter corresponding to the jth class

in an interpolating scheme where u = 2 is given by a sum of shifted polyphase

components, which have been derived from A(j).

H(j)(zx, zy) = E0(z
2
x, z

2
y) + z−1

x E1(z
2
x, z

2
y) +

z−1
y E2(z

2
x, z

2
y) + z−1

x z−1
y E3(z

2
x, z

2
y)

(7.11)

Fig. 7.3(c) is the implementation of (7.11) and is equivalent, as well, to Fig. 7.3(a)

and Fig. 7.3(b).

We have thus equated four independent filters to be the polyphase compo-

nents of an overall filter, H(j)(zx, zy). In terms of [9], we can describe the entire

interpolation procedure with the following steps:

1. Classify image block with the Frobenius Matrix Norm,

2. Upsample the two-dimensional signal by u,

3. Filter the upsampled signal with H(j)(zx, zy),

4. Determine the output signal by using the appropriate framework defined by

either [11] or [12].

We have saved a few steps by avoiding vectorization, but more importantly, we can

face the interpolation problem in two dimensions, which is how image problems

are traditionally analyzed. Among the advantages stemming from two-dimensional

intuition is 2-D Fourier-based analysis, which we utilize in subsequent sections.

7.3 Zero-phase Filter Design for a Single Inter-

polation Filter

Despite the runtime improvement over nonlinear regression techniques in

the previous chapters, the arguments against [9] do not preclude computational

considerations. Classifying multi-dimensional vectors among a few hundred classes

111

is a daunting task, and moreover, adopting any one framework to do so incurs non-

trivial overhead. For example, with a mixture of experts [12], inputs are passed

through a 100-tap filter for every class. Meanwhile, [11] iterates through a binary

tree and needs O(C log C) evaluations plus comparisons, where C is the number

of classes. Finally, vector quantization and nearest cluster evaluation [56] become

especially expensive because they require C to be “large” as opposed to [9]. In

the absence of CPU/GPU power or specialized hardware chips, the implementa-

tion may not support real-time video due to the toll that classification and the

processing of multiple classes takes on the overall interpolative effort.

In the presence of complexity issues, a basic question to ask when evaluat-

ing class-specific filters is, how many classes should we use? Several papers with

applications to biology have attempted to find a generic technique to determine the

intrinsic structure of data [48, 18], specifically in the EM setting. Our experimen-

tation on the matter2 finds that the optimal number of classes varies for each test

image and is surprisingly low, with PSNR relatively resilient to varying number of

classes. This suggests some inherent similarities between individual class filters. In

fact, using principles in Sec. 7.2 to create H(j)(zx, zy) for all j = 1, 2, . . . , C, we can

observe some peculiar behavior in the Fourier domain that seems universal for all

j and any C. In Fig. 7.4, we have zero-padded the impulse response, h(j)[nx, ny],

out to 2562 total samples (where before it was 102) to generate a smooth DFT

curve3 for C = 4 and u = 2. The trend in Fig. 7.4 is consistent for the different

C with which we have experimented, where the differences between classes in the

Fourier domain lie in the phase responses.

In lieu of recognizing patterns in the training set itself, we can try to make

sense of the shape of the magnitude response. We describe the initial low-frequency

sections from 0 to about π
3
, or the center of Fig. 7.4(b), of any one dimensional

slice as “passband-like”, where the response remains fairly constant. Most analyt-

ically designed filters follow the sentiment, where the intention is to preserve low

2Our quick implementation divides classes by the first principle component of 5 × 5 image
patches. PSNR is obtained by comparing an image to the interpolated image from a downsampled
version of the original.

3It is unnecessary to zero-pad the spatial domain. We do so only for aesthetic purposes.

112

(a) Meshgrid of Padded Responses

Radians

R
ad

ia
ns

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

1

2

3

4

5

6

7

8

(b) Top-down View of Typical Frequency Response

Figure 7.4: Magnitude Responses for Four Classes, u = 2.

frequencies as the uncorrupted remains of the original signal. The empirical design

of our filter in Fig. 7.4 justifies the idea. Towards the edge of the filter at π
2
, we

can observe some humps just prior to the stop-band, which could conceivably rep-

resent the filter’s attempt to push existing bandlimited frequencies outwards. The

corners of the humps at
(±π

2
,±π

2

)
end in a conic protrusion, where the MMSE’s

113

rendition of training pairs attempts to sharpen horizontal and vertical edges. Ob-

serving real-world image phenomena, the corner behavior tends to make sense,

e.g. orientation of edges in buildings, objects, and characters and letters in any

language. Finally, at high frequencies, H(zx, zy) has near-zero values to suppress

noise and aliasing.

We could, then, create a single filter with the common magnitude response

seen in all class-specific filters. To accommodate different orientations, such an

encompassing filter would almost certainly be zero-phase, and of course, given

the symmetry of Fig. 7.4, real. The assertion is that we can maintain near the

performance of [9], sacrificing little in terms of visual quality by the empirical

aspect of our design. Concurrently, we could achieve the complexity of bicubic

interpolation levels by avoiding the burden of classification.

There are many low-complexity, zero/linear-phase filters for image interpo-

lation, and a majority of existing algorithms are in the form of M -band filters.

Parks-McClellan filter design uses the Remez exchange algorithm, see Algorithm

5.1 in [32], to minimize ripple in both pass and stop-bands for flatness. M -band

filters in image interpolation also require that all bands must satisfy

∑
m

H(ze−j2πk/M) = 1. (7.12)

Extensions of M -band filtering to two-dimensions [130, 91] scale axes indepen-

dently (i.e. they interpolate vertically and then subsequently, horizontally), but

retain the same thought of ensuring flatness in pass and stop-bands. The flatness

specification as an essential design criterion suggests a philosophy that concen-

trates on suppression rather than enhancement. While excellent for purposes of

reducing aliasing, high-frequency noise, and artifacts, we can, at best, expect image

attributes at low-resolution to be left alone rather than elucidated. The case for

M -band filters is further weakened because we can infer from Fig. 7.4 that the rela-

tionship between low and high-resolution image content requires some sharpening

(for all edges, especially horizontal and vertical ones).

The proposed algorithm approaches filter design from an empirical stand-

point by minimizing the MSE, similar to [9]. Rather than multiple filters, our

114

approach differs with a single generic, zero-phase filter derived from a training set.

As such, we simultaneously address complexity issues along with aforementioned

issues plaguing M -band filters. What follows are several derivations of zero-phase

MMSE filters that double image resolution (although u can be arbitrarily selected

with minimal changes necessary.) The first two approaches impose zero-phase di-

rectly in the training. The second two approaches assume that, for some reason or

another, we cannot or do not wish to re-train the data.

7.3.1 Pretraining Constraints on H(zx, zy)

Let us assume that we have a training set where a high-resolution image

sample, vectorized as yi, is downsampled by two in each direction following an

anti-aliasing filter to get the low-resolution sample, vectorized as xi. Recall from

Sec. 7.2 that:

y = Ax + β (7.13)

where A can be reorganized into h[nx, ny], which is N ×N = 10× 10, the desired

impulse response. Without regenerating a new training set, we can directly en-

force constraints, pre-training, to obtain zero-phase in the problem formulation on

H(zx, zy) or on its polyphase components, Em(zx, zy) for m ∈ [0, 3]. The underly-

ing idea is to force symmetry on the impulse response about an axis, which can

vary depending on the desired phase. Consequently, adding a zero-phase constraint

effectively cuts the degrees of freedom in half.

In two dimensional representation, the first quadrant will be identical to

a twice-flipped (horizontal and vertical) version of the third quadrant, where the

pivot is
(

N−1
2

, N−1
2

)
. The same goes for the second and fourth quadrant. Our pivot

point is between samples since u = 2 dictates N even, meaning our filter is Type

II. Should the upscaling factor be odd, we would have a Type I filter. Given 100

total coefficients, we need only find 50 because:

h[nx, ny] = h[N − nx − 1, N − ny − 1]. (7.14)

In addition to (7.14), we must also satisfy one additional constraint that

we have previously discussed in the context of M -band filtering and is common

115

in wavelet theory [111]. To avoid regular gridding artifacts induced by unequal

energies in the final image, we must have at least one zero at H(±π,±π) and

H(∓π,±π), all four π corners of our frequency response. The implication is that:

H(π, π) =
∑
nx,ny

h[nx, ny]e
−jπ(nx+ny) = 0

↔
∑

even nx±ny

h[nx, ny] =
∑

odd nx±ny

h[nx, ny]. (7.15)

The constraint in (7.15) is true of polyphase components for most image filters,

and we can extend the property as the two-dimensional equivalent of (7.12).

There are a number of ways to simultaneously implement (7.14) and (7.15),

and the next subsection describes one intuitive method.

7.3.2 Pretraining Constraints on Em(zx, zy)

In its present form, A in (7.13) is not altogether conducive to the elimination

of variables that (7.14) calls for. Additionally, (7.14) ignores the inherent polyphase

structure that would clearly provide an implementation advantage in an MMSE

framework that deals with A instead of H.

Our association of each row of A as the polyphase components, Em(zx, zy),

of H(zx, zy) defines four linear systems, which according to (7.14) are algebraically

dependent. Let Am, again, be the mth row of A defined in (7.16).

Am = vectorize {Em(zx, zy)} , m = 0, 1, 2, 3. (7.16)

H(zx, zy) is a Type II filter, so the impulse response of the mth polyphase com-

ponent is not symmetric. Instead, the mth polyphase component, denoted by

em(nx, ny), is equal to its diagonal counterpart polyphase component when hori-

zontally and vertically flipped. Mathematically, this is,

e0[nx, ny] = e3[N − nx − 1, N − ny − 1]

e1[nx, ny] = e2[N − nx − 1, N − ny − 1]. (7.17)

If we define the “vectorize” operation as the concatenation of columns in an image

116

patch into a one long column (MATLAB’s im2col does the same thing), then

A0[n] = A3[d
2 − n− 1]

A1[n] = A2[d
2 − n− 1]. (7.18)

where d is the same d as Sec. 7.1, d = N
2
.

We can use (7.18) to our advantage and define Â with only two rows such

that

Â =

[
−A0−
−A1−

]
(7.19)

where we wish to learn Â in (7.19), which is half the size of the original A matrix.

Define a “flip” operator that reverses the order of elements inside a vector. Then,

the training pairs associated with the new Â are derived from the original training

pair, (xi,yi), to give

x̂i =
[

xi x + flip{xi}
]

ŷi =

[
ŷi[0]

ŷi[1]

]
=

[
yi[0] yi[0] + yi[3]

yi[1] yi[1] + yi[2]

]
. (7.20)

Here, x̂i has an extra column supplementing xi that enforces symmetry, and ŷi is

half the height of yi, also with an additional column. We wish to solve the new

system of equations:

ŷ = Âx̂ + β̂ (7.21)

After ensuring zero-phase in training through (7.21), we must now concen-

trate on the condition described in (7.15). Being that N is even and we are solving

for a Type II linear phase filter, equal energy in polyphase components that are

diagonal to each other is automatically ensured through (7.20). We can verify in

terms of Em that the upper left and its symmetrical lower right polyphase com-

ponents have equal energy as do the upper right and its symmetrical lower left

polyphase components. Therefore, we need only focus on polyphase components

that are off-diagonal relative to one another.

The summation to the left of the equal sign in (7.15) contains h[nx, ny]

terms where nx and ny are either both even or both odd. The summation to the

117

right of the equal sign in (7.15) contains h[nx, ny] terms where only one of nx and

ny is odd and the other is even. The positioning difference between the former and

latter summations is, in fact, off-diagonal, and so (7.15) supplemented by (7.20) is,

indeed, saying that the energy of any polyphase component is equal to the energy

of the corresponding off-diagonal component.

Without (7.15), solving (7.21) is a simple MMSE solution. The solution

considering (7.15) is similar, with an additional term. Let us denote Ŷ as a u× T

matrix and X̂ as a d2×T (where T is the number of training pairs) of all normalized

training points.4 The optimization problem is written in (7.22)

minÂ

∥∥∥ŷ− (Âx̂ + β̂)
∥∥∥

2

s.t. Â1 = 1, (7.22)

where 1 denotes a vector of ones of appropriate length.5 We have written the

constraint described by (7.15) as Â1 = 1 to regularize the energy. The problem

is convex, and we can determine the closed form by writing the Lagrangian and

taking its derivative. We have solved for the d-dimensional Lagrange optimization

variable shown in (7.23).

λ =
RxyR

−1
xx 1− 1

1T R−1
xx 1

. (7.23)

The final solution is given as:

Â = RxyR
−1
xx − 1T R−1

xx diag(λ), (7.24)

where diag(λ) is a square matrix with the entries of λ on the diagonal and zeros

elsewhere.

7.3.3 Post-Training Symmetry Enforcement

If the filters have already been found via Sec. 7.1, we may not wish to re-

train the data. One plausible situation for not re-training may be that the training

set is not be available. Another scenario may be that we do not wish to put in the

4We can eliminate the need to solve for β by incorporating it into X and Y .
5In A1 = 1, the vector 1 left of the equal sign is of size d2 × 1. The vector 1 to the right of

the equal sign is of size u2

2 × 1.

118

computation time to re-train all points in Ω to find an MMSE filter that satisfies

(7.21).

In response, a simple approach would be to take an existing filter, ensure

that the magnitude response looks like Fig. 7.4 (a good majority of classes, if not

all of them, exhibit the response), impose zero-phase on the filter coefficients by

retaining some coefficients and copying others, and lastly, scale each polyphase

component to sum to one. We can impose zero-phase with (7.14) or (7.17).

As one might have guessed, the heuristic nature of the approach leads to

several design freedoms that undoubtedly yield different solutions. For example,

which polyphase component should we preserve with (7.17), and which polyphase

component can we replace? There are equally numerous comparison metrics that

favor one set of parameters over others.

We have determined the final coefficients through visual inspection. Yet,

in the end, as long as we have a magnitude response resembling Fig. 7.4, we have

found that visual quality does not vary too much by altering our other degrees of

freedom.

7.3.4 Post-Training Frequency Domain Phase Elimination

In future sections, we explore arbitrary scaling factors given a fixed training

set. In such cases, there must be a commonality tying the filter design together.

Using the magnitude responses seen in Fig. 7.4 as the common factor, it is only

natural to impose zero-phase through the frequency domain.

Without any zero-padding, we take the N × N two dimensional DFT,

H(kx, ky), of an existing filter, h[nx, ny], that has been generated via methods in

Sec. 7.1. This can be the same filter that we have chosen to modify in Sec. 7.3.3.

Next, we let the magnitude response be the desired full response, which effectively

discards the original phase of H(kx, ky). That is,

Ĥ(kx, ky) = |H(kx, ky)|

Since h real ↔ H symmetric, ĥ is real as well. Couple this with ∠Ĥ

equaling zero, and ĥ becomes a real, symmetric, zero-phase filter based with the

119

same magnitude response as h. Hence, by letting the DFT of Ĥ be entirely real,

the mesh of |Ĥ| reflects that of Fig. 7.4 with none of the phase of H.

Because the DFT is a uniformly sampled version of the Discrete Time

Fourier Transform (DTFT), there are some implementation issues associated with

what type of filter an inverse DFT can provide. The DFT frequencies are limited

to discrete values of 2πk
N

ranging from [0, 2πN−1
N

]. Therefore, even filter lengths will

still generate Type-I-like symmetry, offsetting with a shift of z
− 1

2
x z

− 1
2

y .

One remedy is to train odd filters lengths so that the axis of symmetry

is located on samples at integer locations. Doing so would defeat the purpose of

not re-training, however. Another suggestion is to alter the filter support without

perturbing the magnitude response. We can do so with border replication or

zero-padding. This course of action may affect the performance by introducing

artifacts since the h on which ĥ had been built was originally intended for 10× 10

inputs. Moving to an 11 × 11 filter would involve pixel values that haven’t been

considered during training, and it is unclear how the change in dimensions alters

other parameters and the final result.

In the end, though, numerical problems caused by the DFT are very minor.

The filter ĥ is still linear phase, and the added shift only serves to shift the entire

image, which we can rectify after we are finished interpolating.

7.4 Arbitrary Scaling Factors Using Frequency

Domain Responses

Standalone learning algorithms like [9], by design, can be rather inflexible.

Because the purpose is to learn the natural relationship between input/output

training pairs of fixed pixel dimensions, inferences can be made only of that par-

ticular relationship. Unforeseen adjustments such as added noise models require

alterations to the training set, without which place generalization beyond the in-

tended scope of the original algorithm. For interpolation, we expect data from a

d × d image patch to resolve a single pixel to u × u pixels. Any change to the

problem statement, i.e. resolving a single pixel to v × v pixels, where u 6= v, may

120

exceed the intended purpose of the algorithm. Consequently, to change u, the

upsampling factor, the current implementation of [9] must obtain an entirely new

training set.

At present, common and successful learning algorithms have mostly con-

sidered spatial domain representations. This has evolved with the good reasons

described in Chapter 5. Besides the costly process of re-training the algorithm,

another option is to broaden the versatility by increasing robustness with various

pre-processing techniques. Pre-processing alone, though, does not drive at the root

of the problem and is thus limited in the extent of its generalization.

Under the assumptions of Sec. 7.3,6 we do, nevertheless, have knowledge of

the non-zero portion of the filter magnitude response for any scaling factor of u on

the interval ωu = [−(π
u

+ δu),
π
u

+ δu]. By establishing constraints from Sec. 7.3.1

through Sec. 7.3.4, we have focused the learning aspect of the proposed algorithm

on the magnitude response seen in Fig. 7.4. We propose to develop spatial domain

filters using knowledge of the frequency response to learn the relationship between

low and arbitrarily high resolutions. We can do so by our assumptions of zero-

phase and also mapping the non-zero band of H(ω) in ω2 = [−(π
2

+ δ2),
π
2

+ δ2]

to a new interpolating filter with transfer function of Hu(ω) with a corresponding

non-zero band in ωu = [−(π
u

+ δu),
π
u

+ δu]. We also stipulate a cutoff band for the

remainder of the frequency response outside ωu; the magnitude response of Hu(z)

here should be near zero.

There are two steps in our proposed rational scaling algorithm. The first

step is to obtain the appropriate hu[n] given the 2× interpolating filter from

Sec. 7.3. We would like to obtain the response in Fig. 7.5(b) from the response

of Fig. 7.5(a). For visualization purposes, let Fig. 7.5(a) be the one-dimensional

representation of the two-dimensional magnitude response shown in Fig. 7.4.

Besides finding the spatial domain filter hu[n] to determine pixel values, the

second step finds the grid to place the pixels in the correct location. Placement

of pixel values is simple for the integer-based interpolation scenario: upsample

6Extensions to 2-D can be easily derived, and we work exclusively with 1-D in this section.
Throughout this section, h[n], the impulse response of H(ω) is the 1-D version of the filter
proposed in Sec. 7.3.

121

π/2 π ω

| H(ω) |

(a) Interpolation by 2× (Trained Response)

π/u π ω

| Hu(ω) |

(b) Interpolation by u×

Figure 7.5: Given Magnitude Responses for Interpolation Factors of 2 and u

the low-resolution image by u and then filter using hu[n]. Placement of pixel

values for the non-integer-based interpolation scenario requires that one have filter

taps at non-integer locations or some other special resampling technique. The

two subsections that follow are devoted to the topics of integer and non-integer

scaling factors. In both subsections, the number of calculation to upsample and

produce filters is minimal, and the proposed algorithms are capable of producing

of interpolation kernels on-the-fly.

7.4.1 Interpolation by Integer Factors

The phase of an image is arguably its defining characteristic. Zero-phase

filters are especially attractive in that they will not add, subtract, or otherwise

alter the original phase of an image. The contention is that image phase does not

significantly vary from resolution to resolution, and the proposed algorithm, as

a zero-phase filter, fits especially well. We intend to enhance existing attributes

without altering content defining information, so we preserve the empirical design

aspect by using the MMSE zero-phase filter h[n] from calculations in Sec. 7.3 as a

starting point. The goal, then, is to find hu[n] that corresponds to h[n], only the

122

superresolution factor will be u = 2M instead of two. Discussions that follow in

this section involve integer values of u.

Given H(z), the question is, how shall we fill in the remaining high-frequency

bands of Hu(ω) that have no corresponding value in H(ω)? Researching the issue,

we have collected a diverse assortment of solutions. One interesting idea would

be to zero-pad to the right of the passband of Fig. 7.5(a) to fill in Fig. 7.5(b).

Video postprocessing techniques almost universally advise against zero padding a

filter response in the frequency domain. On the whole, we concur that induced

ringing artifacts by a synthetically zeroed response may be noticeable, albeit our

experimentation suggests that the effect is not severe.

A more reserved suggestion is to interpolate the interpolating filter itself.

Interpolated finite impulse response (IFIR) filters [82] are a simple way to regularize

an upscaled filter to find Hu(z). The principle behind IFIR filters for our purposes

is to shrink the non-zero portion of the frequency response to its appropriate size

while zeroing out higher cutoff frequencies. Generating IFIR filters is shown in the

general block diagram of Fig. 7.6.

M G(z)
h’ [n]

h [n] hu[n]

Figure 7.6: IFIR Block Diagram

Upsampling H(z) by M for H ′(z) = H(zM) creates periodicity in the fre-

quency domain at every 2π
M

. In the interval [−π, π], the copy that we are most

interested in is the one from −(π/u + δ) to π/u + δ, the centered frequency, mak-

ing G(z) a lowpass filter. According to [82], we can use any type of filter for G(z).

Many references suggest equiripple filters from the Parks-McClellan algorithm be-

cause of its sharp transition at the cutoff frequency, a well-sustained passband,

and good point-wise approximation of zero in the stopband. Another choice is

the maximally flat (Daubechies) filter because of its many zeros at π. The entire

process for the development of Hu(z) can be easily followed in Fig. 7.6.

123

π/2 π ω

| H(ω) |

(a) Trained FIR Filter Response of h

π/u π ω

| H ’(ω) |

π/Μ 2π/Μ

(b) Upsampled FIR Filter Response of h’

π/u π ω

| Hu(ω) |

π/Μ

(c) Desired IFIR Filter Response of hu

Figure 7.7: Frequency Responses for Each Stage of Cascade in Fig. 7.6

Integer scaling is convenient in that samples after upsampling are regularly

located on the upper left-hand corner locations in the high-resolution grid. After

finding hu[nx, ny], the task is trivial. One only has to filter the entire image and

yu[nx, ny] = hu[nx, ny] ∗ x[nx, ny] is the final, high-resolution image.

7.4.2 Interpolation by Rational Scaling Factors

Multirate approaches to non-integer interpolation factors are difficult be-

cause straightforward upsampling by u = 2M/L, where L does not divide 2M ,

means that some low-resolution pixel values cannot be placed on the high-resolution

grid. Because we filter after upsampling, the task is difficult because the coeffi-

cients of hu[nx, ny] utilize the pieces of information that have been displaced onto

non-integer locations.

Before proceeding, we clarify some possible confusion on the difference be-

124

tween the interpolation factors M and u. M is the interpolation factor of the

filter, while u is the interpolation factor of the signal. Because the original filter

h[nx, ny] already interpolates by two in each direction, to generate hu[nx, ny], we

need only interpolate by M = u
2
. Not coincidentally, u is also the patch dimension

after superresolving.

Literature on rational scaling factors is by no means sparse, many of the

works stemming from a multiresolution filterbanks perspective [130, 91]. The com-

mon view of rational scaling factors can be implemented in Fig. 7.8, where the user

wishes to interpolate by a rational factor u/L. The first portion of Fig. 7.8 is iden-

tical to the integer scaling case. Only a L-downsampler has been added to the

end of the entire procedure, and the u-upsampler has been purposely placed first.

After applying the filter Hu(z), there should be no aliasing when we downsample

by L provided that L < u and the signal is somewhat bandlimited.

Hu(z)x(n) y(n)u L

Figure 7.8: Typical Rational Scaling Framework

Computing every detail in Fig. 7.8 is almost certainly very computationally

complex, especially for close ratios of u and L (e.g., scaling by 1.1 requires u/L =

11/10.) Conventional approaches, most notably those concentrating on multiframe

superresolution [96], use concepts of non-uniform sampling and exclusively place

the responsibility of generating values onto the high-resolution grid in the co-

domain. Because correlation matrices do not exist, they rely on assumed point

spread functions and spectral density estimates. Cross-correlation approaches are

analytically derived, and thus very intuitive and logical in what they set out to

achieve. The analytical nature of such models and the assumptions of common

blur functions require that algorithms make a case of relevance to the problem at

hand. The relevancy point is moot in learning-based solutions because they rely

on empirical data, but the idea of filtering on the high-resolution grid can certainly

125

be adopted in our case.

Fig. 7.9 shows the super-high-resolution grid in the example of an inter-

polation by 3/2. Here, u = 3 and L = 2. The grid depicts the resolution after

upsampling by u and not the end high-resolution grid, which is
(

1
L

)th
of the size.

Each box denotes a pixel location. The dark boxes are the locations with the

original pixel values; the lightly shaded boxes are the final locations in the final

image after downsampling by L; the split boxes are the locations where the original

pixel values and the values to be generated overlap; and the unfilled boxes are the

locations that we do not care about. Again, we generate Hu(zx, zy), but now we

need only calculate pixels at the lightly shaded boxes and filter for
(

1
L

)2
= 1

4
of the

total number of pixels. Moreover, we need only process the polyphase components

corresponding to the shaded boxes.

u

L

Figure 7.9: Super-high resolution grid, u× the original image size.

Conceptually, the final algorithm resembles a filter that has non-integer

offsets, where instead of filter taps of h[nx, ny] located at nx,y = 1, 2, 3, · · · , offsets

nx,y can take on values like 1.3 or 3.2, etc. Such intuition can be very powerful,

and ultimately, we maintain the bottom line that the computation is still directly

126

proportionate to the end scaling factor of u/L.

7.5 Results and Analysis

Several approaches, all of which are shown in Fig. 7.10, were proposed

in Sec. 7.3 with the same objective of attaining zero-phase given a magnitude

response. The IFIR filter rational scaling approach of Sec. 7.4 can employ all sub-

sections of Sec. 7.3, but for continuity, we use Sec. 7.3.3.7 The training set, Ω,

consists of preprocessed (mean-shifted, variance normalized, and vectorized) low-

resolution/high-resolution pairs (xi,yi). Unlike [9], we do not apply pre-sharpening

to the high-resolution training samples, which gives better numerical accuracy.

When measuring the PSNR values, we downsample by a fixed factor with MAT-

LAB’s imresize command (MATLAB applies an anti-aliasing filter that defaults

to 11× 11 taps), upsample by the same factor, apply the proposed filter H(zx, zy),

and measure the differences between the original image and the interpolated one.

We numerically and visually compare to various methods that have been cited

throughout the body of this work, and we benchmark using MATLAB’s profile

function.

Our goal remains achieving “near”-optimal visual results, with considerable

reductions in computation time. There are some MATLAB efficiency issues when

measuring complexity that might slightly skew results. Nonetheless, the order of

magnitude improvement in computation time is significantly noticeable. Average

function call times for various interpolation methods are shown in Table 7.1. The

proposed methods in Sec. 7.3 require nothing more than single-pass linear filtering,

and process an entire image in only a few milliseconds. The number of operations

are on the order of bicubic interpolation. Other algorithms of note include a 20-tap

halfband filter, a first-vertical and then horizontal effort culminating in an overall

two-pass filtering system, which apparently doubles the filtering time (probably due

to implementation issues in MATLAB) despite having one fifth of the filter taps as

7The briefly mentioned zero-padding approach of Sec. 7.4 for rational scaling can only employ
the frequency domain scheme of Sec. 7.3.4, which ironically is not quite zero-phase.

127

the proposed method. We have chosen 20 taps for 2× interpolation (rational scales

require more or fewer taps) because it is difficult to enforce the energy requisite

(that the sum of all taps in a single polyphase filter component must equal one)

with fewer than 10 total filter taps. As seen in Table 7.1 and discussed in Sec. 7.3,

[12] requires a formidable number of calculations. Depending on the total number

of classes, C, runtimes will vary proportionately to the sum of

1. Computations the posterior probability C values

2. d× d filtering for C individual class

3. The final summing of the filtered responses

for every low-resolution pixel, which does not begin to address memory accesses

and space issues. Runtimes in Table 7.1 also include minor issues such as vector-

izing every input x.

Table 7.1: Computational Complexity Benchmarks in 2× Interpolation

Time (seconds) to Interpolate Various Sequences

Sequence RS [12] TBRS [11] NEDI [74] Halfband Sec. 7.3.3

Barbara 846.48 45.09 72.96 0.087 0.042

Bus 182.54 21.93 15.61 0.022 0.0101

Paris 182.61 21.62 15.41 0.022 0.0095

City 182.99 21.78 15.67 0.022 0.0096

The differences in implementations from Fig. 7.10(d), Fig. 7.10(e), and

Fig. 7.10(f), subsections of Sec. 7.3, are manifested in overall luminance levels,

small numerical differences, and some very slight visual defects in select areas of

Fig. 7.10(e) and Fig. 7.10(f) that are not quite as apparent in Fig. 7.10(d). For

example, there appears to be a halo effect along the bus’s top edge in Fig. 7.10(e)

and Fig. 7.10(f) that is not present in Fig. 7.10(d). The selective discomfitures

128

are logical as Sec. 7.3.3 and Sec. 7.3.4 enforce zero-phase more heuristically than

Sec. 7.3.2. Rather than starting somewhere in the middle of the solution to avoid

training (and depending on how the original magnitude response is chosen, possibly

using information from a single class), Sec. 7.3.2 begins at the root of training to

find the most accurate filter possible.

For rational interpolation factors, M -band filters in Fig. 7.10(c) inevitably

lead to slightly blurry results. Sharper images over a larger spatial grid necessarily

demand new and higher frequencies. M -band filters cut off or zero-out edge-

defining frequencies by degrading the passband before π
M

instead of pushing the

existing bandwidth outwards. Hence, the low-pass information appears averaged

across a larger area, much like the outcome of bicubic interpolation. The “humps”

in the proposed magnitude response enhance those higher frequencies that M -band

filters are designed to suppress in an intelligent way, which avoids the problem of

blurring content.

Visual results generated by our implementation of [12] perform surprisingly

worse than [11]. One likely explanation stems from the fact that [12] linearly

averages outputs through a mixture of experts framework. While effective for

reductions in MSE, summing outputs from individual linear interpolators, not

all of which necessarily reflect the true values, does not quite make visual sense.

Weighting by posterior probabilities should theoretically lessen the impact of the

averaging, but the underlying principle is flawed when, already, linear interpolation

tends to cause the observed blurring and washed-out effect, and averaging a group

of linear interpolators exacerbates the problem. In contrast, [11] and the proposed

algorithm choose a single filter for a specific result.

The argument for classification-based image interpolation on the whole is

weakened when |Ω| is small, e.g. 6× 106 training points, and the proposed, single

filter produces sharper images. Furthermore, [12] relies on a presharpening step,

which puts the correctness of the image construction/reconstruction in question.

That said, when |Ω| is large (i.e., a large training set), both [12] and [11] perform

very well, and numerical differences and visual acuity, as expected, outcompete

the proposed method. The choice of algorithm depends on the circumstance and

129

(a) Original Image (b) Bicubic Interpolation

(c) M th-Band Polyphase Interpolation Filter (d) Methods Described by Sec. 7.3.1 and

Sec. 7.3.2

(e) Method Described by Sec. 7.3.3 (f) Method Described by Sec. 7.3.4

Figure 7.10: Interpolation of Bus Sequence Using Various Methods

130

(a) Original Image (b) 100-Class Resolution Synthesis [12] (Pre-

sharpening Filters Implemented)

(c) 128-Class Tree-Based Resolution Synthe-

sis [11]

(d) Method Proposed by Sec. 7.3.3

Figure 7.11: Comparisons to Various Classification-Based Filtering Algorithms

131

(a) Original Image (b) 100-Class Resolution Synthesis [12]

(c) 128-Class Tree Based Resolution Synthe-

sis [11]

(d) Method Proposed by Sec. 7.3.3

Figure 7.12: Comparisons to Various Classification-Based Filtering Algorithms

132

the trade off of accuracy for speed.

The PSNR values are given in Table 7.2. Interestingly enough, the pro-

posed method unexpectedly outperforms most of the algorithms in every experi-

ment. The pleasant surprise may have something to do with recent studies that

low-resolution and high-resolution patch-based manifolds are not close to being

isometric [112]. Hence, the built-in specificity of classification algorithms poorly

represent high-resolution numerical results. Also surprising is the poor perfor-

mance of the halfband filter. If we ignore the anti-aliasing filter applied prior to

downsampling in the setup described in the first paragraph of the results section,

we would boost the numbers a bit. We do not do so because the scenario is unre-

alistic as most of the time, we wish to superresolve un-aliased images. Of course,

PSNR and MSE are well-known to be poor metrics of visual quality, but they do,

nonetheless attest to the “accuracy” of the proposed algorithm.

Table 7.2: PSNR Results for 2× Interpolation

PSNR (dB) of Interpolation for Various Sequences

Sequence RS [12] TBRS [11] Bicubic Halfband Sec. 7.3.3

Barbara 28.30 26.56 28.64 26.44 28.32

Bus 23.78 24.26 24.80 23.00 24.72

Paris 21.40 21.62 22.06 20.22 21.54

City 27.70 27.40 27.46 25.04 26.90

Also shown are edge-directed interpolation algorithms [74, 62] in Fig. 7.13.

Subpixel Edge Localization [62] produces a somewhat cartoonish image, and Li’s

edge-directed interpolation algorithm relies on a covariance matrix that is inher-

ently low-resolution. Differences between the edge-enhancing algorithms and the

proposed algorithm are especially emphasized in the face of the man and woman,

where one can hardly call the image generated by [74] and [62] high-resolution.

Finally, specific testing of rational scaling factors can be seen in Fig. 7.14

133

(a) Original Image (b) Edge Directed Interpolation [74]

(c) Subpixel Edge Localization Interpolation

[62]

(d) Method Proposed by Sec. 7.3.3

Figure 7.13: Comparisons to Edge-Directed Interpolation Algorithms

134

where the scaling factor is 4/3. One should be careful to set G(z) from Sec. 7.4

to have a passband that includes all of the non-zero portions of Fig. 7.4. This is

simple if we recall that the cutoff frequency is ωc = ± (
π
u

+ δu

)
. We have chosen

δu = 0.2/u. To generate flat pass and stopbands, we set the initial number of

taps in G(z) to 20 and then scaled linearly according to M = u
2
. Not discussed

in Sec. 7.4 are some necessary energy regularizations to avoid regular mismatches

in the polyphase components of the image, which we have heuristically rectified

by normalizing all polyphase filter components. The mismatches probably come

about through the use of Parks-McClellan filter design theory in G(z). We can

easily address this by using wavelet-type constraints in filter design, where all the

energy in the subbands must be equal. Also, for a scaling factor of 4/3 apparently

the IFIR filter has become non-zero-phase. This fact does not affect the results

too much as the filter is still near linear phase.

Evident from Fig. 7.14, the rational scaling of Sec. 7.4 gives very well-defined

edges in Fig. 7.14(e). Texture has also been preserved quite well, if one notices

the trees, bushes, and horse head. We have included results from zero-padding the

magnitude response, briefly mentioned in Sec. 7.4, in Fig. 7.14(d). The rippling

artifacts are actually fairly unnoticeable, probably due to a small window size.

Overall, the zero-padded results are comparable in performance with the proposed

IFIR algorithm. Both algorithms have better edge-resolution than the M -band

and bicubic interpolator.

7.6 Summary

We have reviewed classification-based interpolation, which has tradition-

ally been developed in the machine-learning setting. We have introduced a new

perspective by analyzing class-based filter design as a composition of polyphase

components. We have proposed a zero-phase, MMSE interpolation filter based

on a training set. Finally, we have proposed an approach to extend the MMSE

zero-phase interpolation algorithm to arbitrary scaling factors.

To design the zero-phase filter, we have proposed four different methods of

135

(a) Original Image

(b) Bicubic Interpolation (c) M -Band Filtering

(d) Magnitude Zero-Padding (e) IFIR Filter

Figure 7.14: 4/3 Rational Scaling of the Bus Sequence

136

obtaining such a zero-phase filter:

• Train real and symmetric coefficients in H(zx, zy)

• Train real and symmetric coefficients in Em(zx, zy)

• Eliminate phase in the spatial domain

• Eliminate phase in the frequency domain

The second methodology is a more specific version of the first. Both of the

first two items in the above list are implemented prior to training. Therefore, one

would need to retrain in order to determine the correct filter coefficients. The third

and fourth items in the list are implemented after one has already trained for the

algorithm in [9]. Using a single class or a combination of a few classes, one ignores

several portions of the filter to make the coefficients symmetric about the center

axis.

Although the fourth item is not quite symmetric, it is used for arbitrary

interpolation factors, both integer and rational. By using IFIR filters or zero-

padding, we can find the correct filter responses for any scaling factor. To scale by

non-integer, rational factors, we ignore unnecessary operations to keep complexity

low.

The complexity of the algorithm is on the order of bicubic interpolation. De-

pending on the training set, the visual quality is comparable to higher-complexity

algorithms, including the original classification-based interpolation approaches but

at a fraction of the computational cost. The proposed algorithm produces better

results than edge-directed interpolation approaches.

7.7 Acknowledgements

The text of Chapter 7 is adapted from A Zero-phase Filter for Image In-

terpolation, Karl Ni and Truong Nguyen, May 2008, manuscript submitted to the

IEEE Transactions on Image Processing. The dissertation author was the primary

137

author of this publication, and the listed co-author directed and supervised the

research that forms the basis for this chapter.

8 Conclusions and Future Work

The road leading to a goal does not separate you from

the destination; it is essentially a part of it.

—Charles de Lint

We have focused on the analysis of patch-based algorithms for image inter-

polation. Several interpolative techniques have been introduced. The work done

in this thesis may be summed up as follows:

Image Distribution Model A probability distribution function has been intro-

duced for image patches. The underlying framework assumes a GMM with

a super-Gaussian around 0. Conceptual and intuitive descriptions of what

the mixtures and center peak represent have been described.

Adaptable k-Nearest Neighbor Interpolation Two dimensional image filters

have good resiliency when they are built for the general case. There is an

optimal k given a training set and test point for any image patch. The

optimal k value is determined by how many training points are close in

distance. Small k denotes an image patch that is well-represented by the

training set. Large k denotes an image patch that is not.

Support Vector Regression Interpolation Optimal kernels can be learned with

a sufficient set of training points in the support vector regression problem.

Training points can also be weighted depending on their relevancy to the

regression.

138

139

An Optimal Zero-phase Filter for Interpolation MMSE filtering under sev-

eral classes is often unnecessary. Often, we can be approximate the filters

with a single filter to yield fairly good results. Using polyphase filters, we

can choose arbitrary interpolation factors to resize the image.

Despite the thorough investigation of the image patch domain as well as

discriminant and nonparametric methods, we have opened several avenues for fu-

ture design and analysis. Each path of exploration has the potential to lead to a

grand, unifying methodology in the application of learning to image interpolation,

and more generally image processing.

The behavior of the PDF of image patches under varying amounts of train-

ing still requires further research. The proposed model works well enough (or at

least better than currently accepted techniques), but is by no means exact. For

example, in smaller collections of training images, the center peak in the distrib-

ution becomes more and more sharp, approaching a delta function. Moreover, as

mentioned in Chapter 3, the statistical significance of the metrics used to measure

the goodness of fit of the multivariate distributions has not been fully investigated.

The depth of research required is considerable, and would involve some statistical

mathematics that are beyond the scope of this thesis. There are several references

that address the issue of statistical significance [36] and multivariate analysis [100]

using tables of significance levels to associate with goodness of fit metrics, but

none exist for the multivariate Laplace distribution case, and there is no unifying

metric to analyze our center curve. With tables of statistical significance levels,

it becomes possible to know when to use the model, and when the goodness of fit

levels require another model.

A more immediate need, the solution from which several other image process-

ing and computer vision problems may benefit, is finding the replacement for the

Euclidean distance. [104] deals directly with this problem for image patches in

one of its chapters. Because k-NN and classification algorithms rely on searches

for points with the closest distances, many alternative distance metrics usually

concentrate on complexity reduction and quality of search. The manifestation is

some sort of feature space representation [84] or dimensionality reduction/manifold

140

learning. Concepts such as semi-definite embedding [128] are especially attractive

in the latter of the two.

Other topics that warrant future research include the choice of kernel func-

tion. Our algorithms have exclusively used Gaussian (RBF) kernels with varying

covariance matrices, number of features, and overall σ parameters. For Chapter 5,

because DCT coefficients are known to Laplace distributed (though recent studies

[6] have suggested the distribution is closer to a Cauchy distribution), a kernel

choices that reflect the corresponding distribution may yield better results. One

can also address the further generalization of the currently-implemented linear

combination of kernels to a convex function of kernels. Relevant papers involve

hyperkernels [90].

In the SVR chapters, Chapters 5 and 6, prediction is carried out on four

targets independently (for 2× superresolution). Because interrelationships in pixel

values and DCT coefficients are prevalent and the values themselves are highly

correlated, integrating the concept of dependency is only logical. One approach

includes learning inter-pixel relationships with nonlinear predictors (perhaps kernel

methods) while supplementing the original task of learning pixel values. The in-

clusion of image autocorrelation in the feature space F may be an alternate route.

Other recent developments with potential in this respect concern the learning of

vector valued functions using operator-valued kernels [78] or multi-regression SVR

[95], broached in Sec. 5.3. By associating a measure of smoothness in [78] or a

cost function in [95] to model relationships among y1, y2, . . . yU of y, vector valued

functions predict individual components simultaneously, and further exploration

of the topic could benefit pixel prediction by doing so jointly.

Finally, video-processing-based algorithms are always concerned with the

robustness of proposed algorithms to noise. Currently, the proposed learning al-

gorithms actually enhance noise due to windowed and non-globalized approaches.

This is a problem that learning-based methods in general face. The relation to be

learned usually depends on the training set that is assumed. With a training set

that does not contain any noise, the proposed algorithm knows only to replicate

high-resolution data from uncorrupted low-resolution data. Possible solutions to

141

the problem almost certainly include some type of preprocessing of input vectors.

There may also be room for improvement by researching how to adjust parame-

ters in the presence of noise. Exploration of the topic would not only benefit the

current framework, but most learning algorithms as well.

Bibliography

[1] The MOSEK optimization toolbox for MATLAB manual. Version 4.0 (Revi-
sion 16), 2006.

[2] J. I. Agbinya. Interpolation using the discrete cosine transform. Electronic
Letters, 28(20), 1992.

[3] V. R. Algazi, G. E. Ford, and R. Potharlanka. Directional interpolation of
images based on visual properties and rank order filtering. volume 4, page
30053008, 1991.

[4] Z. Alkachouh and M. G. Bellanger. Fast dct-based spatial domain interpola-
tion of blocks in images. IEEE Transactions on Image Processing, 9(4):729–
732, 2000.

[5] J. Allebach and P. W. Wong. Edge-directed interpolation. In IEEE Inter-
national Conference on Image Processing, 1996.

[6] Y. Altunbasak and N. Kamaci. An analysis of the dct coefficient distribution
with the h.264 video coder. In IEEE International Conference on Acoustics
Speech and Signal Processing, volume 3, pages 177–180, 2004.

[7] A. F. Atiya. Estimating the Posterior Probabilities Using the K-Nearest
Neighbor Rule. Neural Comp., 17(3):731–740, 2005.

[8] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11:11–74, 1997.

[9] C. B. Atkins and C. Bouman. Classification based methods in optimal image
interpolation. PhD thesis, Purdue University, 1998.

[10] C. B. Atkins, C. Bouman, and J. Allebach. Tree-based resolution synthesis.
In Proceedings of the Conference on Image Processing, Image Quality, Image
Capture Systems, pages 405–410, 1999.

[11] C. B. Atkins, C. A. Bouman, and J. P. Allebach. Tree-based resolution
synthesis. In PICS, pages 405–410, 1999.

142

143

[12] C. B. Atkins, C. A. Bouman, and J. P. Allenbach. Optimal image scaling us-
ing pixel classification. IEEE International Conference on Image Processing,
3:864–867, 2001.

[13] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel
methods. In ICML ’05: Proceedings of the 22nd international conference on
Machine learning, pages 33–40, New York, NY, USA, 2005. ACM Press.

[14] C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia data-
bases. ACM Computing Surveys, 33(3):322–373, 2001.

[15] M. B. G. Bonnerot and M. Coudreuse. Digital filtering by polyphase network:
Application to sample rate alteration and filter banks. IEEE Transactions
on Acoustics, Speech, and Signal Procecssing, 24:109–114, April 1976.

[16] S. Borman and R. Stevenson. Simultaneous multi-frame MAP super-
resolution video enhancement using spatio-temporal priors. In Proceedings
of the IEEE International Conference on Image Processing, volume 3, pages
469–473, Kobe, Japan, Oct. 1999.

[17] S. Borman and R. Stevenson. Simultaneous multi-frame MAP super-
resolution video enhancement using spatio-temporal priors. In Proceedings
of the IEEE International Conference on Image Processing, volume 3, pages
469–473, Kobe, Japan, Oct. 1999.

[18] C. A. Bouman. Cluster: An unsupervised algorithm for modeling Gaussian
mixtures. Available from http://www.ece.purdue.edu/˜bouman, April 1997.

[19] S. Boyd and L. Vandenberghe. Convex Optimization. USA Cambridge Uni-
versity Press, 2004.

[20] R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y. H. Wang. Affine theorem
for two-dimensional fourier transform. Electronic Letters, 29(3), 1993.

[21] A. J. Broder. Strategies for efficient incremental nearest neighbor search.
Pattern Recognition, 23(1-2):171–178, 1990.

[22] D. Burr, M. Morrone, and D. Spinelli. Evidence for edge and bar detectors
in human vision. Vision Research, 4:419–431, 1989.

[23] CalPhotos. Cal Photos Image Collections.

[24] F. M. Candocia and J. C. Principe. Super-resolution of images based on local
correlations. IEEE Transactions on Neural Networks, 10(2):372, March 1999.

144

[25] W. K. Carey, D. B. Chuang, and S. S. Hemami. Regularity-preserving image
interpolation. In International Conference on Image Processing, pages 901–
908, 1997.

[26] W. K. Carey, D. B. Chuang, and S. S. Hemami. Regularity-preserving im-
age interpolation. IEEE Transactions on Image Processing, 8(9):1293–1297,
September 1999.

[27] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local
behavior of spaces of natural images. International Journal of Computer
Vision, 76(1):1–12, January 2008.

[28] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor
embedding. IEEE Conference on Computer Vision and Patter Recognition,
01:275–282, 2004.

[29] P. Clark and F. Evans. Distance to nearest neighbor as a measure of spatial
relationships in populations. Ecology, 35(4):445, 1954.

[30] P. Clark and F. Evans. Generalization of a nearest neighbor measure of
dispersion for use in k dimensions. Ecology, 60(2):316, 1979.

[31] W. S. Cleveland and S. J. Delvin. Locally weighted regression: An approach
to regression analysis by local fitting. Journal of American Statistical Asso-
ciation, 83(403):596–610, 1988.

[32] D. S. P. Committee. Programs for Digital Signal Processing. IEEE Press,
Piscataway, NJ, USA, 1979.

[33] A. G. Constantinides and R. A. Valenzuela. A new recursive interpolator
with applications in transmultiplexer design. In International Conference on
Signal Processing, 1981.

[34] T. Cover. Estimation by the nearest neighbor rule. IEEE Transactions on
Information Theory, IT-14(1), January 1968.

[35] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, 2000.

[36] R. D’Agostino and M. Stephens. Goodness of Fit Techniques, volume 68 of
Statistics, textbooks and monographs. Marcel Dekker, Inc., 1986.

[37] S. Dasgupta and Y. Freund. Random projection trees and low dimensional
manifolds. Technical report.

145

[38] C. A. Dávila and B. R. Hunt. Training of a Neural Network for Image Su-
perresolution Based on a Nonlinear Interpolative Vector Quantizer. Applied
Optics, 39:3473–3485, July 2000.

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. J. Royal Statistics Society, 39:1–38,
1977.

[40] L. P. Devroye, L. Gyorfi, A. Krzyzak, and G. Lugosi. On the strong universal
consistency of nearest neighbor regression function estimates. The Annals of
Statistics, 22(3):1371–1385, 1994.

[41] L. P. Devroye and T. J. Wagner. Distribution-free consistency results in non-
parametric discrimination and regression function estimation. The Annals
of Statistics, 8(2):231–239, 1980.

[42] W. D’haes, D. V. Dyck, and X. Rodet. An efficient branch and bound search
algorithm for computing k nearest neighbors in a multidimensional vector
space, 2002.

[43] L. Diao, K. Hu, Y. Lu, and C. Shi. A method to boost support vector
machines. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 463–468, 2002.

[44] P. Diggle. On parameter estimation and goodness-of-fit testing for spatial
point patterns. Biometrics, 35(87), 1979.

[45] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley Interscience,
2nd edition, 2000.

[46] O. Ekiz and A. G. Constantinides. Phase linearity in polyphase filters. In
ICASSP ’00: Proceedings of the Acoustics, Speech, and Signal Processing,
2000. on IEEE International Conference, pages 321–323, Washington, DC,
USA, 2000. IEEE Computer Society.

[47] T. Eltoft, T. Kim, and T. Lee. On the multivariate laplace distribution.
IEEE Signal Processing Letters, 13(5), May 2006.

[48] C. Fraley and A. E. Raftery. How many clusters? which clustering method?
answers via model-based cluster analysis. The Computer Journal, 41(8):578–
588, 1998.

[49] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based
super-resolution. IEEE Computer Graphics and Applications, 22(2):56–65,
March/April 2002.

[50] K. S. Fu. Digital Pattern Recognition. Springer-Verlag, 2nd edition, 1980.

146

[51] P. M. Goebel and A. N. Belbachir. Single image superresolution interpolation
by wavelet support vector regression. Wavelets and Applications Semester
and Conference, 2006.

[52] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[53] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[54] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab Software for Disciplined Convex
Programming.

[55] J. A. Hartigan. Clustering Algorithms. John Wiley and Sons, Inc., 1975.

[56] S.-H. Hong, R.-H. Park, S. Yang, and J.-Y. Kim. Image interpolation
using interpolative classified vector quantization. Image Vision Comput.,
26(2):228–239, 2008.

[57] H. Hou and H. Andrews. Cubic splines for image interpolation and digital
filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26, 1978.

[58] J. Huang and D. Mumford. Statistics of natural images and models. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
1, 1999.

[59] P. Indyk. Nearest neighbors in high-dimensional spaces, 2003.

[60] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proc. of 30th STOC, pages 604–613, 1998.

[61] R. Jacobs and M. I. Jordan. Adaptive mixture of experts. Neural Computa-
tion, 3:79–87, 1991.

[62] K. Jensen and D. Anastassiou. Subpixel edge localization and the interpo-
lation of still images. IEEE Transactions on Image Processing, 4:285–295,
1995.

[63] C.-M. Kao, X. Pan, M. Anastasio, and P. L. Riviere. An interpolation method
using signal recovery and discrete fourier transform. IEEE Medical Imaging
Conference, 1998.

[64] B. S. Kim and S. B. Park. A fast k nearest neighbor finding algorithm
based on the ordered partition. IEEE Trans. Pattern Anal. Mach. Intell.,
8(6):761–766, 1986.

147

[65] K. I. Kim, M. Franz, and B. Scholkopf. Kernel hebbian algorithm for single-
frame super-resolution. Statistical Learning in Computer Vision, pages 135–
149, 2004.

[66] V. Kober, M. A. Unser, and L. P. Yaroslavsky. Spline and sinc signal inter-
polations in image geometrical transforms. In N. A. Kuznetsov and V. A.
Soifer, editors, Proc. SPIE Vol. 2363, p. 152-161, 5th International Work-
shop on Digital Image Processing and Computer Graphics (DIP-94), Nikolai
A. Kuznetsov; Viktor A. Soifer; Eds., volume 2363 of Presented at the So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference, pages
152–161, Jan. 1995.

[67] S. Kotz, T. J. Kozubowski, and K. Podgorski. The Laplace Distribution
and Generalizations: A Revisit with Applications to Communications, Eco-
nomics, Engineering, and Finance. Birkhauser, 2001.

[68] B. Kullis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices.
International Conference on Machine Learning, 2006.

[69] J. T.-Y. Kwok. Support vector mixture for classification and regression prob-
lems. In Proceedings of the Fourteenth International Conference on Pattern
Recognition, volume 1, pages 255–258, Brisbane, Qld., Australia, 1998.

[70] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan. Learning the kernel matrix with semidefinite programming. Journal
of Machine Learning Research, 5:27–72, 2004.

[71] A. Lee, K. Pedersen, and D. Mumford. The complex statistics of high-
contrast patches in natural images, 2001. private correspondence.

[72] A. B. Lee, K. S. Pedersen, and D. Mumford. The nonlinear statistics of high-
contrast patches in natural images. Int. J. Comput. Vision, 54(1-3):83–103,
2003.

[73] M. Li and T. Nguyen. Discontinuity-adaptive de-interlacing scheme using
markov random field model. October 2006.

[74] X. Li and M. Orchard. New edge-directed interpolation. IEEE Transactions
on Image Processing, 10:1521–1527, 2001.

[75] C. A. Lima, A. L. Coelho, and F. J. V. Zuben. Hybridizing mixtures of
experts with support vector machines: Investigation into nonlinear dynamic
systems identification. Information Sciences, 177:2049–2074, 2007.

[76] D. C. Lin and P. M. Chau. Objective human visual system based videoquality
assessment metric for low bit-rate video communication systems. August
2006.

148

[77] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 11(7), July 1989.

[78] C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural
Computation, 17, 2005.

[79] C. Miravet and F. B. Rodriguez. A hybrid mlp-pnn architecture for fast
image superresolution. Lecture Notes Computer Science, 2714:401, 2003.

[80] I. Narsky. Goodness of fit: What do we really want to know? In PHYS-
TAT2003, pages 70–74, 2003.

[81] A. Netravali and B. Hasskell. Digital Pictures: Representation, Compression
and Standards. New York Plenum Press, 2nd edition, 1995.

[82] Y. Neuvo, D. Cheng-Yu, and S. Mitra. Interpolated finite impulse response
filters. IEEE Transactions on Acoustics, Speech, and Signal Processing,
32(3), June 1984.

[83] N. Nguyen, P. Milanfar, and G. Golub. A computationally efficient super-
resolution image reconstruction algorithm. IEEE Transactions on Image
Processing, 10:573–583, 2001.

[84] K. Ni, S. Kumar, and T. Q. Nguyen. Learning the kernel matrix for su-
perresolution. IEEE Conference on Multimedia Signal Processing, August
2006.

[85] K. Ni, S. Kumar, T. Q. Nguyen, and N. Vasconcelos. Single image super-
resolution based on support vector regression. International Conference on
Acoustics, Speech, and Signal Processing, May 2006.

[86] K. Ni and T. Q. Nguyen. Kernel resolution synthesis for superresolution.
International Conference on Acoustics, Speech, and Signal Processing, 2007.

[87] K. Ni and T. Q. Nguyen. Color image superresolution. International Con-
ference on Image Processing, To appear in September 2007.

[88] K. S. Ni and T. Q. Nguyen. Image superresolution using support vector
regression. IEEE Transactions on Image Processing, to appear.

[89] H. Niemann. An efficient branch-and-bound nearest neighbour classifier.
Pattern Recogn. Lett., 7(2):67–72, 1988.

[90] C. S. Ong and A. J. Smola. Machine learning using hyperkernels. In Inter-
national Conference on Machine Learning, 2003.

149

[91] S. Oraintara and T. Q. Nguyen. Image/video scaling algorithm based on
multirate signal processing. In ICIP (2), pages 732–736, 1998.

[92] M. Palaniswami and A. Shilton. Adaptive support vector machines for re-
gression. In Proceedings of the 9th International Conference on Neural In-
formation Processing, 2002.

[93] D. Pavlov, D. Chudova, and P. Smyth. Scaling-up support vector machines
using boosting algorithm. In International Conference on Pattern Recogni-
tion, 2000.

[94] K. S. Pedersen. Statistics of Natural Image Geometry. PhD thesis, University
of Copenhagen, Denmark, 2003.

[95] F. Perez-Cruz, G. Camps-Valls, E. Soria-Olivas, J. J. Perez-Ruixo, A. R.
Figueiras-Vidal, and A. Artes-Rodriguez. Multi-dimensional function ap-
proximation and regression estimation. In ICANN ’02: Proceedings of the
International Conference on Artificial Neural Networks, pages 757–762, Lon-
don, UK, 2002. Springer-Verlag.

[96] R. Prendergast and T. Q. Nguyen. Digital video super-resolution. Submitted
to IEEE Transactions on Image Processing, 2007.

[97] S. Qiu and T. Lane. Multiple kernel learning for support vector regression.
Technical report, University of New Mexico, 2005.

[98] D. Rajan and S. Chaudhuri. An mrf-based approach to generation of super-
resolution images from blurred observations. J. Math. Imaging Vis., 16(1):5–
15, 2002.

[99] K. R. Rao and P. Yip. Discrete Cosine Transforms: Algorithms, Advantages,
Applications. Academic Press, Inc., 1990.

[100] A. Rencher. Methods of Multivariate Analysis. Wiley Series in Probability
and Statistics. Wiley Interscience, second edition, 2002.

[101] P. J. L. Riviere and X. Pan. Mathematical equivalence of zero-padding
interpolation and circular sampling theorem interpolation with implications
for direct fourier image reconstruction. SPIE Medical Imaging Conference,
1998.

[102] A. Roorda. Human visual system - image formation. The Encyclopedia of
Imaging Science and Technology, 1:539–557, 2002.

[103] B. Scholkopf. Statistical learning and kernel methods. Technical report,
Microsoft Research Limited, 2000.

150

[104] G. Shakhnarovich. Learning Task-Specific Similarity. PhD thesis, Massa-
chusetts Institute of Technology, 2005.

[105] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice. The MIT Press, 2005.

[106] K. Shi and S. Zhu. Mapping natural image patches by explicit and implicit
manifolds. In CVPR07, pages 1–7, 2007.

[107] T. Sikora. Mpeg digital video–coding standards, 1997.

[108] V. N. Smelyansky, P. Cheeseman, D. A. Maluf, and R. D. Morris. Bayesian
super-resolved surface reconstruction from images. In Computer Vision and
Pattern Recognition, pages 1375–1382, 2000.

[109] M. Smid. Closest-point problems in computational geometry. Handbook of
Computational Geometry, 2000.

[110] D. Squire and T. Pun. A comparison of human and machine assessments of
image similarity for the organization of image databases, 1997.

[111] G. Strang and T. Nguyen. Wavelets and Filterbanks. Wellesley-Cambridge
Press, 1996.

[112] K. Su, Q. Tian, Q. Que, N. Sebe, and J. Ma. Neighborhood issue in single-
frame image superresolution. IEEE Computer Society, 2005.

[113] S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez. Learning via lin-
ear operators: Maximum margin regression. Technical report, PASCAL,
Southampton, UK, 2005.

[114] J. Taguchi, K. Kido, and K. Sano. Directional image filter respectively ad-
justed to edge and flat regions. Systems and Computers in Japan, 30(8):72–
78, 1999.

[115] A. Temizel and T. Vlachos. Image resolution upscaling in the wavelet domain
using directional cycle spinning. Journal of Electronic Imaging, 14(4):040501,
2005.

[116] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In ICCV, pages 839–846, 1998.

[117] P. Tsai and T. Archarya. Image up-sampling using discrete wavelet trans-
form. In Joint Conference on Information Services, Advances in Intelligent
Systems Research, 2006.

151

[118] L. Tuncel. On the slater condition for the SDP relaxations of nonconvex sets.
Operations Research Letters, 29:181–186, 2001.

[119] M. Unser. Splines: A perfect fit for signal and image processing. IEEE Signal
Processing Magazine, 16(6):22–38, November 1999. IEEE Signal Processing
Society’s 2000 magazine award.

[120] G. Uytterhoeven. Wavelets: Software and Applications. PhD thesis,
Katholieke Universiteit Leuven, 1999.

[121] P. P. Vaidyanathan. Multirate digital filters, filter banks, polyphase net-
works, and applications: A tutorial. Proc. of IEEE, 78(1):56–93, Jan. 1990.

[122] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall,
Upper Saddle River, NJ, USA, 1993.

[123] P. Vandewalle, S. Susstrunk, and M. Vetterli. Superresolution images recon-
structed from aliased images. In Proc. SPIE/IS&T Visual Communications
and Image Processing Conference, volume 5150, pages 1398–1405, 2003.

[124] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

[125] E. Vazquez and E. Walter. Multi-output support vector regression. 13th

IFAC Symposium on System Identification, 2003.

[126] P. Viola and M. Jones. Robust real-time object detection. International
Journal of Computer Vision, 2002.

[127] R. Vollgraf, M. Scholz, A. Meinertzhagen, and K. Obermeyer. Nonlinear fil-
tering of electron micrographs by means of support vector regression. Lecture
Notes Computer Science, 2714:401, 2003.

[128] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds
by semidefinite programming. Int. J. Comput. Vision, 70(1):77–90, 2006.

[129] S. Yang and K. Hong. Bilateral interpolation filters for image size conversion.
In IEEE International Conference on Image Processing, pages 986–989, 2005.

[130] S. Yang and T. Q. Nguyen. Interpolated mth band filters for image size
conversion. In ICIP (3), pages 891–894, 2001.

[131] Z. Zhang, D.-Y. Yeung, and J. T. Kwok. Bayesian inference for transductive
learning of kernel matrix using the tanner-wong data augmentation algo-
rithm. Proceedings of the 21st International Conference on Machine Learn-
ing, 2004.

