
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Corfu: A Platform for Scalable Consistency

Permalink
https://escholarship.org/uc/item/8g8078t2

Author
Wei, Michael

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g8078t2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Corfu: A Platform for Scalable Consistency

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Michael Wei

Committee in charge:

Professor Steven Swanson, Chair
Professor Dahlia Malkhi
Professor George Porter
Professor Paul Siegel
Professor Alex Snoeren
Professor Michael Taylor
Professor Geoffrey M. Voelker

2017

Copyright

Michael Wei, 2017

All rights reserved.

The Dissertation of Michael Wei is approved and is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . x

Acknowledgements . xi

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1

Chapter 2 Consistency and Scalability . 7
2.1 The Era of Consistency . 7
2.2 Big Data and Scalability . 7
2.3 Compromises . 8
2.4 Summary . 9

Chapter 3 The Corfu Distributed Log . 12
3.1 Introduction . 13
3.2 Design . 15
3.3 Interface and Implementation . 16

3.3.1 Storage Unit Functionality . 18
3.3.2 Projections . 20
3.3.3 Appending without Replication . 22
3.3.4 Appending with Replication . 26
3.3.5 Changing Projections . 29
3.3.6 Garbage Collection . 31

3.4 Hardware Acceleration . 33
3.4.1 Implementing the API . 33
3.4.2 Hardware Design . 35
3.4.3 An Example Write Request . 36
3.4.4 Address Mapping Using Cuckoo Hashing . 39
3.4.5 Persistence . 43
3.4.6 SLICE and the Flash Translation Layer . 43

3.5 Evaluation . 45
3.5.1 End-to-End Latency . 46
3.5.2 Throughput . 48
3.5.3 Reconfiguration . 50

iv

3.5.4 Applications . 54
3.6 Summary . 58

Chapter 4 Virtualizing the Corfu Log . 61
4.1 Streaming . 61
4.2 Materialized streams . 65

4.2.1 Fully Elastic Layout . 69
4.2.2 Appending to vCorfu materialized streams . 69
4.2.3 Atomically appending to multiple streams . 70
4.2.4 Properties of the vCorfu Stream Store . 71

4.3 Summary . 73

Chapter 5 Distributed Objects . 77
5.1 State Machine Replication on a Shared Log . 78

5.1.1 Anatomy of a Corfu Object . 79
5.1.2 Multiple Objects in Corfu . 81

5.2 Transactions over Objects . 82
5.3 Language Support for Distributed Objects . 87

5.3.1 vCorfu Runtime . 89
5.3.2 vCorfu Objects . 89
5.3.3 Transactions in vCorfu . 91
5.3.4 Querying Objects . 92

5.4 Composable State Machine Replication . 94
5.5 Evaluation . 95

5.5.1 vCorfu Stream Store . 96
5.5.2 Remote vs. Local Views . 99
5.5.3 Transactions . 102
5.5.4 CSMR . 104

5.6 Summary . 105

Chapter 6 Applications . 110
6.1 Fault-Tolerant Coordination . 110

6.1.1 Apache ZooKeeper . 112
6.1.2 ZooKeeper on Corfu . 116
6.1.3 Evaluation . 118
6.1.4 Summary . 121

6.2 File System . 122
6.2.1 Design . 123
6.2.2 Evaluation . 130
6.2.3 Summary . 132

6.3 Software-Defined Network Control Plane . 133
6.3.1 Consistency . 135

6.4 Summary . 137

v

Chapter 7 Summary . 141

Bibliography . 147

vi

LIST OF FIGURES

Figure 3.1. Corfu Shared Log Architecture . 17

Figure 3.2. Corfu Shared Log API . 18

Figure 3.3. Corfu Shared Log Projection . 21

Figure 3.4. Corfu Client Protocols . 22

Figure 3.5. Corfu Client Protocols Continued . 23

Figure 3.6. Corfu Storage Server Protocol . 24

Figure 3.7. Corfu Token Server Protocol . 24

Figure 3.8. Corfu Projections . 30

Figure 3.9. SLICE Prototype System Design . 37

Figure 3.10. SLICE Hardware Architecture . 38

Figure 3.11. SLICE Cuckoo Map and Entries . 41

Figure 3.12. SLICE Chain vs. Cuckoo Comparison . 42

Figure 3.13. Corfu Log End-to-End Latency . 47

Figure 3.14. Corfu Log Random Read and Append Throughput 49

Figure 3.15. Corfu Log Reconfiguration Time . 51

Figure 3.16. Corfu Log Reconfiguration Performance . 52

Figure 3.17. Corfu Log Reconfiguration Scalability . 53

Figure 3.18. Corfu Store Application Gets . 55

Figure 3.19. Corfu Store Application Puts . 56

Figure 3.20. Corfu SMR application . 57

Figure 4.1. Stream Virtualization Architecture . 62

Figure 4.2. Stream Materialization Architecture . 66

Figure 4.3. Stream Materialization Physical Layout . 67

vii

Figure 4.4. Materialized Stream Virtualization Layout Description 69

Figure 4.5. Stream Materialization Write Path . 71

Figure 5.1. CorfuRegister Code Example . 78

Figure 5.2. CorfuMap And A CorfuList Transactions Example 83

Figure 5.3. Transactions over Streams Example . 85

Figure 5.4. vCorfu Object Example . 88

Figure 5.5. CSMR Java Map example . 93

Figure 5.6. vCorfu Replication Protocol Performance . 97

Figure 5.7. vCorfu Streaming Performance . 97

Figure 5.8. Backpointer Implementation Performance . 98

Figure 5.9. Append and Read Throughput . 98

Figure 5.10. Latency of Local and Remote Views . 101

Figure 5.11. YCSB Suite Throughput . 101

Figure 5.12. Snapshot Transaction Performance . 102

Figure 5.13. Read-Only Transactions vs 2PL . 103

Figure 5.14. Advertising Analytics Workload . 104

Figure 5.15. Local View Latency . 106

Figure 5.16. Optimistic Abort Rate . 106

Figure 5.17. Clear Operation Performance . 106

Figure 6.1. ZooKeeper Read and Write Operations . 113

Figure 6.2. ZooKeeper-SL Read and Write Operations . 115

Figure 6.3. ZooKeeper-SL Requests per Second . 119

Figure 6.4. ZooKeeper-SL Relative Requests per Second . 120

Figure 6.5. Silver On-Disk Layout . 125

viii

Figure 6.6. CMPLAT Architecture . 134

Figure 6.7. CMPLAT Logical Switch . 136

Figure 6.8. CMPLAT Transactions . 137

ix

LIST OF TABLES

Table 3.1. SLICE per Core Idle Time . 37

Table 4.1. Core vCorfu Operations . 68

Table 5.1. YCSB Workloads. 102

Table 6.1. ZooKeeper-SL Latency . 119

Table 6.2. Silver Required Operations . 124

Table 6.3. Silver Stream Operations . 127

Table 6.4. Silver 1Gbit Link Performance . 130

Table 6.5. Silver 1Gbit Link Performance . 130

x

ACKNOWLEDGEMENTS

A Ph.D. is a long, arduous journey which cannot be completed without support

personally and professionally. I have been fortunate enough to be in strong company of both,

and I thank everyone who has helped shape me and my dissertation throughout the years.

I must begin by thanking my mother, who pushed me to start graduate school in the

first place, and my father, who started me on the path to computer science by purchasing a

copy of Microsoft® Visual Basic® 4.0 in 1996. I thank my brother, Eric, not only for his

support, encouragement and friendship, but also for always making sure that I had a place

to crash in and a vehicle for transportation. I thank my grandparents, for supporting me

and always believing in me. I thank my wonderful girlfriend of 12 years, Misty Desai, for

always being there with immeasurable support and encouragement — I could not imagine

completing this journey with anyone else.

I thank everyone who was at the former Microsoft Research Silicon Valley Lab,

where the Corfu work all started. I am greatly indebted to the original Corfu and Tango teams

for laying out the foundational work for this dissertation. I thank Mahesh Balakrishnan, for

all his advice, support and encouragement over the years, and for entrusting me with the

future of Corfu, passing the Corfu torch after the Tango paper. I thank Dahlia Malkhi, for

never letting me go as an intern, always treating me as an equal, serving on my committee

and living with multiple complete rewrites of the Corfu code base — and really, sharing this

enthralling roller coaster of a journey taking Corfu into production. I thank Ted Wobber, for

taking me on as an intern and inspiring me with a little “what would Ted do?” every time I

approach a research problem. I thank John D. Davis, for mentoring me through the design

of the design of the Corfu hardware platform, staying late nights at the SVC machine room,

and letting me tag along on an awesome trip through Israel. I thank Vijayan Prabhakaran

for his advice, work and insights on Corfu. I thank Chuck Thacker, for all his advice and

willingness to not only talk, but be accessible to a lowly intern. I thank Lori Blonn and all

xi

my fellow interns for making my time at SVC an unforgettable experience.

I also thank all the advisors and mentors I have had over the years, both officially

and unofficially. I especially thank my advisor and chair of the committee, Professor Steven

Swanson, for his guidance, advice and encouragement throughout the years, his patience

with the ups and downs of graduate student life, and his acceptance of our unique office

with hydroponics and cooking implements. I also thank my committee members: Professor

Geoffrey M. Voelker, for his support and guidance well before the thesis proposal, Professor

Alex Snoeren, for encouraging me to be precise, Professor Michael Taylor, for his advice

and shared commuting experience, and Professor George Porter, for his advice and feedback.

I thank everyone at the VMware Research Group, which I have called home for the

last two years. I thank David Tennenhouse, for his advice and encouragement over the past

two years. I thank Ittai Abraham, for the many insights and long arguments over Corfu

internals. I thank Udi Wieder, who will probably never get me to stop drinking Coke ZeroTM

despite all his advice. I thank Chris Rossbach for his advice and his efforts on the Corfu

project. I thank Nadav Amit for his daily dose of optimism. I thank Amy Tai for not only

the Replex work, but for all the trips to the airport before she totaled my car.

I thank Philippe Bonnet for hosting me at ITU Copenhagen, and the many discussions

we had around non-volatile memories. I thank Matias Bjørling for his efforts as well as

setting up the trip and arrangements, and Javier González for his efforts and hospitality.

I also thank my undergraduate research advisor, Professor Nikil Dutt, for encouraging

me to pursue a Ph.D.

I thank Jack Sampson, for the many nights of advice over a bowl of Pho.

I also thank Tiffany Chan, Carey Lee, Henry Lee and David Knight for putting

up with me crashing at their place, where many pages of this dissertation were ultimately

written.

Though the list has been long, there are surely people who I have missed. To

xii

everyone who has helped me along the way to a Ph.D., thank you.

Chapters 1, 2, 3, 4, 5, 6 and 7 contain material from “CORFU: A Shared Log

Design for Flash Clusters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran,

Ted Wobber, Michael Wei and John D. Davis, which appears in Proceedings of the 9th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’ 12).

The dissertation author was the fifth investigator and author of this paper. This paper is

copyright c© 2012 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapters 1, 2, 3, 4, 5, 6 and 7 contain material from “Tango: Distributed data

structures over a shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming

Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad

Zuck, which appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP’13). The dissertation author was the sixth investigator and author

of this paper. This paper is copyright c© 2013 by the Association for Computing Machinery,

Inc. (ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

xiii

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapter 3 contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapter 6 contains material from “Dynamically Scalable, Fault-Tolerant Coordi-

nation on a Shared Logging Service”, by Michael Wei, John Davis, Ted Wobber, Mahesh

Balakrishnan, Vijayan Prabhakaran and Dahlia Malkhi, which appears in MSR Technical

Report MSR-TR-2013-40. The dissertation author was the first investigator and author of

this paper.

Chapter 6 contains material from “Silver, A Scalable, Distributed, Multi-Versioning,

Always growing (Ag) File System.”, by Michael Wei, Amy Tai, Chris Rossbach, Ittai

Abraham, Udi Wieder, Steven Swanson and Dahlia Malkhi., which appears in Proceedings

of HotStorage 2016: The 8th USENIX Workshop on Hot Topics in Storage and File Systems.

The dissertation author was the first investigator and author of this paper. This paper is

copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permission

xiv

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Chapters 1, 2, 3, 4, 5, 6 and 7 contains material from “vCorfu: Large-Scale Data

Stores over a Shared Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie,

Ittai Abraham, Udi Wieder, Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven

Swanson, Michael J. Freedman and Dahlia Malkhi., which appears in Proceedings of the

14th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17).

The dissertation author was the first investigator and author of this paper. This paper is

copyright c© 2017 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

xv

VITA

2009 B. S. in Computer Science, University of California, Irvine

2009 B. S. in Biological Sciences, University of California, Irvine

2009 B. A. in Philosophy, University of California, Irvine

2010-2017 Research Assistant, University of California, San Diego

2013 M. S. in Computer Science, University of California, San Diego

2015 C. Phil. in Computer Science, University of California, San Diego

2017 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder, Maithem
Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman and Dahlia
Malkhi. “vCorfu: Large-Scale Data Stores over a Shared Log.”, In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’17), March 2017.

Michael Wei, Amy Tai, Chris Rossbach, Ittai Abraham, Udi Wieder, Steven Swanson and
Dahlia Malkhi. “Silver, A Scalable, Distributed, Multi-Versioning, Always growing (Ag)
File System.”, In HotStorage 2016: The 8th USENIX Workshop on Hot Topics in Storage
and File Systems, June 2016.

Amy Tai, Michael Wei, Michael J Freedman, Ittai Abraham and Dahlia Malkhi. “Replex: A
Scalable, Highly Available Multi-Index Data Store.”, In Proceedings of USENIX ATC 2016:
The USENIX Annual Technical Conference, June 2016.

Matias Bjørling, Michael Wei, Jesper Madsen, Javier Gonzalez, Steven Swanson and
Philippe Bonnet. “AppNVM: A software-defined, application driven SSD.”, In NVMW 2015:
Non-Volatile Memories Workshop, January 2015.

Michael Wei, Matias Bjørling, Philippe Bonnet and Steven Swanson. “I/O Speculation
for the Microsecond Era.”, In Proceedings of USENIX ATC 2014: The USENIX Annual
Technical Conference, June 2014.

Michael Wei, Steven Swanson. “SYS: Synchronize your System with Simple Hardware.”,
In Proceedings of LADIS 2013: The 7th Workshop on Large-Scale Distributed Systems and
Middleware, November 2013.

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael
Wei, John D. Davis, Sriram Rao, Tao Zou, Aviad Zuck. ‘Tango: Distributed Data Structures
over a Shared Log.”, In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13), November 2013.

xvi

Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan and Dahlia Malkhi. ‘Beyond
Block I/O: Implementing a Distributed Shared Log in Hardware.”, In proceedings of SYSTOR
2013: The 6th Annual International Systems and Storage Conference, June 2013.

Michael Wei, Mahesh Balakrishnan, John D. Davis, Dahlia Malkhi, Vijayan Prabhakaran,
and Ted Wobber. “Dynamically Scalable, Fault-Tolerant Coordination on a Shared Logging
Service.” In MSR Technical Report MSR-TR-2013-40, March 2013.

Mahesh Balakrishnan, Dahlia Malkhi, John Davis, Vijayan Prabhakaran, Michael Wei, and
Ted Wobber. “ CORFU: A Distributed Shared Log.” In ACM Transactions on Computer
Systems, 2013.

Keaton Mowery, Michael Wei, David Kohlbrenner, Hovav Shacham, and Steven Swanson.
“Welcome to the Entropics: Boot-Time Entropy in Embedded Devices.” In Proceedings of
the IEEE Symposium on Security and Privacy (Oakland 2013), May 2013.

Trevor Bunker, Michael Wei and Steven Swanson. “Ming II: A Flexible Platform for NAND
Flash-based Research.” UCSD Technical Report cs2011-0978, May 2012.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and
John Davis. “CORFU: A Shared Log Design for Flash Clusters.” In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’12), April 2012.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and
John Davis. “CORFU: A Shared Log Design for Flash Clusters.” MSR Techinal Report
MSR-TR-2011-119, Sept 2011.

Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson. “Reliably Erasing
Data from Flash-Based Solid State Drives.” 9th USENIX Conference on File and Storage
Technologies (FAST ’11), Feb 2011.

Steven Swanson, Michael Wei. “SAFE: Fast, Verifiable Sanitization for SSDs.” UCSD
Technical Report cs2011-0963, Oct 2010.

Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, Thomas Weng.
“Occupancy-Driven Energy Management for Smart Building Automation.” In Proceedings
of the ACM Workshop on Embedded Sensing Systems For Energy-Efficiency In Buildings
(BuildSys ’10) Nov 2010.

xvii

ABSTRACT OF THE DISSERTATION

Corfu: A Platform for Scalable Consistency

by

Michael Wei

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Steven Swanson, Chair

Corfu is a platform for building systems which are extremely scalable, strongly

consistent and robust. Unlike other systems which weaken guarantees to provide better

performance, we have built Corfu with a resilient fabric tuned and engineered for scalability

and strong consistency at its core: the Corfu shared log. On top of the Corfu log, we

have built a layer of advanced data services which leverage the properties of the Corfu log.

Today, Corfu is already replacing data platforms in commercial products, and the thriving

Corfu open source code base enjoys regular contributions from a number of industrial and

academic institutions.

One of the key properties of Corfu is consistency, a highly desirable property

xviii

which simplifies programming complex, asynchronous distributed systems by increasing the

number of assumptions a programmer can make about how a system will behave. For years,

system designers focused on providing the strongest possible guarantees on top of unreliable

and even malicious systems. The rise of the Internet and cloud-scale computing, however,

shifted the focus of system designers towards scalability. In a rush to meet the needs

of cloud-scale workloads, system designers realized that if they weaken the consistency

guarantees they provided, they would greatly increase the scalability of their systems. As a

result, designers simplified the guarantees provided by their systems and weaker consistency

models such as eventual consistency emerged, greatly increasing the burden on developers

leading to error-prone applications. Programmers in the cloud era are forced to choose

between consistency and scalability.

Corfu, the topic of this dissertation, is a platform for scalable consistency. Corfu

answers the question: “If we were to build a distributed system from scratch, taking into

consideration both the desire for consistency and the need for scalability, what would it look

like?”. The answer lies in the Corfu distributed log.

We begin by introducing the Corfu distributed log. Corfu achieves strong consistency

by presenting the abstraction of a log — clients may read from anywhere in the log but they

may only append to the end of the log. The ordering of updates on the log is decided by a

high throughput sequencer, which we show can handle nearly a million requests per second.

The log is scalable as every update to the log is replicated independently, and every client

appending to the log merely needs to acquire a token before beginning replication. This

means that we can scale the log by merely adding replicas, and our only limit is the rate of

requests the sequencer can handle.

While building a single distributed log already provides strong consistency and

scalability, multiple applications may wish to share the same log. By sharing the same log,

updates across multiple applications can be ordered with respect to one another, which form

xix

the basic building block for advanced operations such as transactions. This dissertation

details two designs for virtualizing the log: streaming, which divides the log into streams

built using log entries which point to one another, and stream materialization, which

virtualizes the log by radically changing how data is replicated in the shared log. Stream

materialization greatly improves the performance of random reads, and allows applications

to exploit locality by placing virtualized logs on a single replica.

Efficiently virtualizing the log turns out to be important for implementing distributed

objects in Corfu, a convenient and powerful abstraction for interacting with the Corfu

distributed log introduced earlier. Rather than reading and appending entries to a log,

distributed objects enable programmers to interact with in-memory objects which resemble

traditional data structures such as maps, trees and linked lists. Under the covers, the Corfu

runtime, a library which client applications link to, translates accesses and modifications of

in-memory objects into operations on the Corfu distributed log.

The Corfu runtime provides rich support for objects. An automated translation

process converts plain old Java objects (POJOs) directly into Corfu objects through both

runtime and compile-time transformation of code. This allows programmers to quickly

adapt existing code to run on top of Corfu. The Corfu runtime also provides strong support

for transactions, which enables multiple applications to read and modify objects without

relaxing consistency guarantees. We show that with stream materialization, Corfu can

support storing large amounts of state while supporting strong consistency and transactions.

Finally, we describe our experience in both writing new applications and adapting

existing applications to Corfu. We start by building an adapter for Apache Zookeeper clients

to run on top of Corfu and then describe the implementation of Silver, a new distributed

file system which leverages the power of the Corfu log. We then conclude by describing

our efforts to retrofit a large and complex commercial application: a software defined

network (SDN) switch controller, and detail how the strong transaction model and rich

xx

object interface greatly reduce the burden on distributed system programmers.

Overall, Corfu promises to change how data platforms are built. Instead of forc-

ing developers to compromise, Corfu offers programmers the best of both worlds. This

dissertation traces the development and evolution of Corfu over five years and through

eight publications. As a testament to the robustness of the original Corfu log design, the

core log API remains mostly unchanged from the early Corfu papers, even though Corfu is

now a public open source project with contributors from multiple academic and industrial

institutions.

xxi

Chapter 1

Introduction

Consistency is a highly desirable property for distributed systems. Strong consistency

guarantees simplify programming complex, asynchronous distributed systems by increasing

the number of assumptions a programmer can make about how a system will behave. For

years, system designers focused on how to provide the strongest possible guarantees on

top of unreliable and even malicious systems. The rise of the Internet and cloud-scale

computing, however, shifted the focus of system designers towards scalability. In a rush to

meet the needs of cloud-scale workloads, system designers realized if they weakened the

consistency guarantees they provided, they could greatly increase the scalability of their

systems. As a result, designers simplified the guarantees provided by their systems and

weaker consistency models such as eventual consistency emerged, greatly increasing the

burden on developers.

This movement towards weaker consistency and reduced features is known as

NoSQL. NoSQL achieves scalability by partitioning or sharding data, spreading the load

across multiple nodes. In order to maintain scalability, NoSQL designers ensured requests

were not required to cross multiple partitions. As a result, they dropped traditional database

features such as transactions in order to maintain scalability. While this worked for some

applications, many of the developers with applications which needed this functionality

were forced to choose between a database with all the functionality they needed, or to

1

2

adapt their applications to the new world of the relaxed guarantees provided by NoSQL.

Programmers found ways around the restrictions of weaker consistency by retrofitting

transaction protocols on top of NoSQL, or by finding the minimum guarantees required by

their application. Chapter 2 explores this pendulum away from and back towards consistency.

This dissertation explores Corfu, a platform for scalable consistency. Corfu answers

the question: “If we were to build a distributed system from scratch, taking into consideration

both the desire for consistency and the need for scalability, what would it look like?”. The

answer lies in the Corfu distributed log.

Chapter 3 introduces the Corfu distributed log. Corfu achieves strong consistency

by presenting the abstraction of a log - clients may read from anywhere in the log but they

may only append to the end of the log. The ordering of updates on the log are decided by a

high throughput sequencer, which we show can handle nearly a million requests per second.

The log is scalable as every update to the log is replicated independently, and every append

merely needs to acquire a token before beginning replication. This means that we can scale

the log by merely adding additional replicas, and our only limit is the rate of requests the

sequencer can handle.

While Chapter 3 describes how to build a single distributed log, multiple applica-

tions may wish to share the same log. By sharing the same log, updates across multiple

applications can ordered with respect to one another, which form the basic building block

for advanced operations such as transactions. Chapter 4 details two designs for virtualizing

the log: streaming, which divides the log into streams built using log entries which point to

one another, and stream materialization, which virtualizes the log by radically changing how

data is replicated in the shared log. Stream materialization greatly improves the performance

of random reads, and allows applications to exploit locality by placing virtualized logs on a

single replica.

Efficiently virtualizing the log turns out to be important for implementing distributed

3

objects in Corfu, a convenient and powerful abstraction for interacting with the Corfu

distributed log introduced in Chapter 5. Rather than reading and appending entries to a log,

distributed objects enable programmers to interact with in-memory objects which resemble

traditional data structures such as maps, trees and linked lists. Under the covers, the Corfu

runtime, a library which client applications link to, translates accesses and modifications to

in-memory objects into operations on the Corfu distributed log.

The Corfu runtime provides rich support for objects. An automated translation

process converts plain old Java objects (POJOs) directly into Corfu objects through both

runtime and compile-time transformation of code. This allows programmers to quickly

adapt existing code to run on top of Corfu. The Corfu runtime also provides strong support

for transactions, which enable multiple applications to read and modify objects without

relaxing consistency guarantees. We show that with Stream materialization, Corfu can

support storing large amounts of state while supporting strong consistency and transactions.

In Chapter 6, we describe our experience in both writing new applications and adapt-

ing existing applications to Corfu. We start by building an adapter for Apache Zookeeper [41]

clients to run on top of Corfu, then describe the implementation of Silver, a new distributed

file system which leverages the power of the vCorfu stream store. We then conclude the

chapter by describing our efforts to retrofit a large and complex application: a software

defined network (SDN) switch controller, and detail how the strong transaction model and

rich object interface greatly reduce the burden on distributed system programmers.

Finally, Chapter 7 summarizes the findings from the previous chapters and concludes

the dissertation.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

4

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

5

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Dynamically Scalable, Fault-Tolerant Coordi-

nation on a Shared Logging Service”, by Michael Wei, John Davis, Ted Wobber, Mahesh

Balakrishnan, Vijayan Prabhakaran and Dahlia Malkhi, which appears in MSR Technical

Report MSR-TR-2013-40. The dissertation author was the first investigator and author of

this paper.

This chapter contains material from “Silver, A Scalable, Distributed, Multi-Versioning,

Always growing (Ag) File System.”, by Michael Wei, Amy Tai, Chris Rossbach, Ittai Abra-

ham, Udi Wieder, Steven Swanson and Dahlia Malkhi., which appears in Proceedings of

HotStorage 2016: The 8th USENIX Workshop on Hot Topics in Storage and File Systems.

The dissertation author was the first investigator and author of this paper. This paper is

copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

6

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter 2

Consistency and Scalability

This chapter presents background and traces the history of consistency and scalability

in distributed systems that motivate the work in this dissertation. We begin our exploration

in the era before big data and cloud computing.

2.1 The Era Of Consistency

Before the cloud era, system designers focused on building systems which provided

increasingly stronger guarantees. Problems such as consensus [19, 33, 49] and byzantine

fault tolerance [52] were at the forefront of distributed systems research. Stronger guarantees

simplify programming complex, unreliable distributed systems, and few would consider

relaxing those guarantees. Indeed, it was often possible to avoid distributed algorithms

altogether by strong all data on a single, centralized server. Feature-rich databases [30, 35,

66] could coordinate the data needs of an entire system, and support for transactions and

complex queries made it easy for multiple clients to safely and concurrently operate on data.

2.2 Big Data And Scalability

The cloud era and “big data”, however, changed the landscape. Suddenly, system

designers had to deal with a workloads that they never dealt with before - workloads that

7

8

no longer fit within the confines of a single machine. The focus became scalability, and

the quickest way to do that was to split the data that used to fit in a single database across

multiple machines, a process known as sharding or partitioning. With partitioning, the

system can utilize the aggregate throughput of all the machines that data has been partitioned

across to service requests.

Unfortunately, partitioning was not a panacea. Splitting data across multiple nodes

made the features programmers started to depend on, such as complex queries, transac-

tions and consistency difficult to support. Strong consistency was seen as the enemy,

and the NoSQL movement sought to relax consistency as much as possible in order to

achieve maximum scalability. Consistency guarantees were greatly relaxed, and support for

transactions and queries across multiple partitions were often dropped entirely. Key-value

stores [1, 4, 5, 8, 25], which have a greatly simplified interface rose to prominence, providing

unparalleled scalability but placing the burden on the programmer to maintain consistency

across partitions.

2.3 Compromises

Migrating applications from SQL databases to early NoSQL stores was difficult

and bug-prone for all but the most simple applications. In order to build feature-rich,

reliable distributed applications, programmers really needed the capabilities of a traditional

database with strong guarantees. System designers began to make compromises, trading

off some scalability in order to provide some guarantees. Relaxed consistency models such

as eventual consistency [11, 75] and causal consistency [56] emerged to fill the gap, but

these models increased the burden on the programmer further by forcing them to reason

about an unconventional consistency model. Yet other systems [27, 63] used multi-version

concurrency control (MVCC) [32] on key-value stores with protocols such as two phase-

locking (2PL) [54] or specialized hardware [27] to ensure consistency, with a significant

9

performance penalty and added system complexity.

2.4 Summary

Since the beginning of the cloud era, developers have thought of consistency and

scalability as mutually exclusive: that scalable systems must sacrifice consistency, and the

strongly consistent systems must not be scalable. This line of thought surfaced when system

designers were pushed to a corner to deliver as much performance as possible. Shedding

consistency did indeed make their systems more scalable, but programmers paid the price,

sometimes with catastrophic results. System designers reacted by retrofitting consistency

back on, which resulted in performance losses and complexity as protocols had to work

around the strict partitioning which was added for scalability.

In the next chapters, we will explore Corfu, which takes a clean slate approach.

Instead of tacking on consistency, Corfu addresses scalability and consistency at its core,

providing a strongly consistent yet scalable fabric, the Corfu distributed log, which applica-

tions leverage through the use of an object-oriented interface.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

10

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

11

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter 3

The Corfu Distributed Log

This chapter describes the design of the Corfu Distributed Log, the scalable consis-

tency fabric that is at the heart of the Corfu platform. In this chapter, we present the original

Corfu distributed log design, as it was first described in [15]. This design has stood the test

of time - the core distributed log and its interfaces have remain largely unchanged. The

Corfu distributed log is the abstraction we virtualize in Chapter 4 and forms the foundation

for supporting the rich data services we will describe in Chapter 5.

One motivation has changed significantly, however. Corfu was originally designed

for flash memory, and the shared log was cast as a distributed flash translation layer (FTL)

for networked devices which exposed raw flash. Flash memory has a unique idiosyncrasy:

although random reads are fast, the ideal write pattern is sequential due to the cost of garbage

collection. The Corfu log takes all the writes across the datacenter and transforms them into

sequential writes, enabling Corfu to consume the full write throughput of flash devices. It

turns out Corfu works well on disk as well: due to the nature of the log, random reads on

the log are rare and clients typically read the tail of the log. In the next chapters, we will

see that the Corfu log works well irrespective of whether the underlying storage devices are

flash or disk.

Another note is that some of the terminology has changed over the course of time as

well. The Corfu storage unit is now referred to as logging unit, and the projection is now a

12

13

component of an layout which describes the entire Corfu system. In this chapter, we will

use the older terminology.

We begin by introducing the Corfu distributed log and describing its interface and

implementation in Section 3.3. Next, in Section 3.4 we describe an hardware-accelerated

implementation of the log on a FPGA, and then conclude in Section 3.5 with an evaluation

of the performance of the log.

3.1 Introduction

Traditionally, system designers have been forced to believe that the only way to scale

up reliable data stores, whether on-premise or cloud hosted, is to shard the database. In this

manner, recent systems like Percolator [63], Megastore [12], WAS [24] and Spanner [27]

are able to drive parallel IO across enormous fleets of storage machines. Unfortunately,

these designs defer to costly mechanisms like two-phase locking or centralized concurrency

managers in order to provide strong consistency across partitions.

At the same time, consensus protocols like Paxos [49] have been used as a building

block for reliable distributed systems, typically deployed on a small number (between 3 to 7)

of servers, to provide a lever for a variety of consistent services: virtual block devices [53],

replicated storage systems [55, 77], lock services [23], coordination facilities [42], con-

figuration management utilities [58], and transaction coordinators [12, 27, 63]. As these

successful designs have become pillars of today’s data centers and cloud back-ends, there

is a growing recognition of the need for these systems to scale in number of machines,

storage-volume and bandwidth.

In this chapter, we present the Corfu distributed shared log, a log design which alters

this performance-safety tradeoff: On one hand, the Corfu distributed shared log is designed

to scale to hundreds of thousands of concurrent client operations per second. On the other

hand, a shared log is a powerful and versatile primitive for ensuring strong consistency in

14

the presence of failures and asynchrony.

Internally, the Corfu distributed shared log is distributed over a cluster of machines

and is fully replicated for fault tolerance, without sharding data or sacrificing global con-

sistency. The Corfu distributed shared log allows hundreds of concurrent client machines

in a large data-center to append to the tail of a shared log and read from it over a network.

Nevertheless, there is no single I/O bottleneck to either appends or reads, and the aggregated

cluster throughput may be utilized by clients accessing the log.

Historically, shared log designs have appeared in a diverse array of systems. Quick-

Silver [38, 69] and Camelot [73] used shared logs for failure atomicity and node recovery.

LBRM [40] uses shared logs for recovery from multicast packet loss. Shared logs are also

used in distributed storage systems for consistent remote mirroring [43]. In such systems,

Corfu fits the shared log role perfectly, pooling together the aggregate cluster resources for

higher throughput and lower latency.

Moreover, a shared log is panacea for replicated transactional systems. For instance,

Hyder [17] is a recently proposed high-performance database designed around a shared

log, where servers speculatively execute transactions by appending them to the shared log

and then use the log order to decide commit/abort status. In fact, Hyder was the original

motivating application for Corfu and has been fully implemented over our code base.

Interestingly, a shared log can also be used as a consensus engine, providing func-

tionality identical to consensus protocols such as Paxos (geographically speaking, Corfu

and Paxos are neighboring Greek islands). Used in this manner, Corfu provides a fast,

fault-tolerant service for imposing and durably storing a total order on events in a distributed

system. From this perspective, Corfu can be used as a drop-in replacement for existing

Paxos implementations, with far better performance than previous solutions.

15

3.2 Design

So far, we have argued the power and hence the desirability of a shared log. The key

to its success is high performance, which we realize through a paradigm shift from existing

cluster storage designs. In Corfu, each position in the shared log is projected onto a set of

storage pages on different storage units. The projection map is maintained – consistently

and compactly – at the clients. To read a particular position in the shared log, a client uses its

local copy of this map to determine a corresponding physical storage page, and then directly

issues a read to the storage unit storing that page. To append data, a client first determines

the next available position in the shared log – using a sequencer node as an optimization for

avoiding contention with other appending clients – and then writes data directly to the set of

physical storage pages mapped to that position.

In this way, the log in its entirety is managed without a leader, and Corfu circumvents

the throughput cap of any single storage node. Instead, we can append data to the log at

the aggregate bandwidth of the cluster, limited only by the speed at which the sequencer

can assign them 64-bit tokens, i.e., new positions in the log. The evaluation for this chapter

was done with a user-space sequencer serving 200K tokens/s, whereas our more recent

user-space sequencer is capable of 500K tokens/s. Moreover, we can support reads at

the aggregate cluster bandwidth. Essentially, Corfu’s design decouples ordering from I/O,

extracting parallelism from the cluster for all IO while providing single-copy semantics for

the shared log.

Naturally, the real throughput clients obtain may depend on application workloads.

However, we argue that CORFU provides excellent throughput in many realistic scenarios.

Corfu’s append protocol generates nearly perfect sequential write-load, which can be turned

into a high throughput, purely sequential access pattern at the server units with very little

buffering effort. Meanwhile, reads can be served from a memory cache as in [67, 71], or

16

from from a cold standby as in [44]. This leaves non-sequential accesses which may result

from log compaction procedures. Because we design for large clusters, compaction need

not be performed during normal operations, and may be fulfilled by switching between

sets of active storage drives. Finally, we have originally argued in [14] for the use of non-

volatile flash memory as CORFU storage units, which alleviates altogether any performance

degradation due to random-accesses. Indeed, our present evaluation of CORFU is carried

on servers equipped with SSD drives.

The last matter we need to address is efficient failure handling. When storage units

fail, clients must move consistently to a new projection from log positions to storage pages.

Corfu achieves this via a reconfiguration mechanism (patterned after Vertical Paxos [51]

and Virtually Synchronous Reconfiguration [19]) capable of restoring availability within

tens of milliseconds on drive failures. A challenging failure mode peculiar to a client-centric

design involves ‘holes’ in the log; a client can obtain a log position from the sequencer for

an append and then crash without completing the write to that position. To handle such

situations, Corfu provides a fast hole-filling primitive that allows other clients to complete

an unfinished append (or mark the log position as junk) within a millisecond.

3.3 Interface And Implementation

The system setting for Corfu is a data center with a large number of application

servers (which we call clients) and a cluster of storage units (see Figure 3.1). Our goal is to

provide applications running on the clients with a shared log abstraction implemented over

the storage cluster.

Our design for this shared log abstraction aims to drive appends and random-reads

to/from the log at the aggregate throughput that the storage cluster provides, while avoiding

bottlenecks in the distributed software design. We strive to keep the server units’ functional-

ity as simple as possible, so that it can be realized by a standard host equipped with a storage

17

Cluster of Storage Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to storage pages in cluster

Append Read

Clients access storage units
directly over the network
via the CORFU library

Application

CORFU Library

 Database
 Key-Value Store
 Replicated State Machine
 Virtual Disk
 Reliable Multicast
…

Figure 3.1. Corfu Shared Log Architecture. Corfu presents applications running on clients
with the abstraction of a shared log, implemented over a cluster of storage units by a

client-side library.

device, or even by a power-efficient FPGA controller (more on this below). We achieve

these goals by devising a novel bottleneck-free distributed logging protocol, which places

all Corfu functionality at the clients and lets them read and write directly to the address

space of each storage unit. Storage nodes do not initiate communication, are unaware of

other storage units, and do not participate actively in replication protocols.

The entire solution is given succinctly in Figure 3.4. On the left-hand side are

the client’s algorithms, and on the right-hand side, server functionalities (including the

sequencer). In a nutshell, the solution consists of a client-side library which implements the

API shown in Figure 3.2 to applications; and a server-side functionality which complements

it to provide for reliable replication and efficient space management.

The client API includes the following operations. The append interface adds an

entry to the log and returns its position. If the append operation encounters a problem, an

error-code is returned, indicating that there is no certainty that the entry has been appended.

The read interface accepts a position in the log and returns the entry at that position. If no

entry exists at that position, an error code is returned. The application can perform garbage

18

append(b) Append an entry b and re-
turn the log position ` it oc-
cupies

read(`) Return entry at log posi-
tion `

trim(`) Indicate that no valid data
exists at log position `

fill(`) Force append at log posi-
tion ` to be completed

Figure 3.2. Corfu Shared Log API. API exposed by Corfu to applications

collection using trim, which indicates to Corfu that no valid data exists at a specific log

position. Lastly, the application can fill a position in the log, which may be needed to fill

gaps in the log with valid content. The semantics provided for read/write operations is

linearizability [39], which for a log means that once a log entry is fully written by a client

or has been read, any future read will see the same content (unless it is reclaimed via a trim

operation).

Corfu’s task of implementing a shared log abstraction with this API over a cluster

of storage units – each of which exposes a separate address space – is described in the

remainder of this section. We walk through the algorithms in detail below, starting with

the storage-server, then moving to the way log entries are projected onto storage pages,

the append functionality and replication. We finish the description with mechanisms for

reconfiguration and for garbage collection.

3.3.1 Storage Unit Functionality

The storage unit functionality is depicted in Figure 3.4 on the right hand side. The

most basic requirement of a storage unit is that it support READs and WRITEs on an infinite,

logical address space of fixed-size pages. We use the term ‘storage page’ to refer to a page

on this logical address space; logical pages are mapped internally to physical pages.

To support a specially-tailored replication protocol we have devised for the shared

19

log, Corfu requires ‘write-once’ semantics on the storage unit’s address space. Reads on

pages that have not yet been written should return an error code (err_unwritten). Writes

on pages that have already been written should also return an error code (err_written). In

addition to reads and writes, storage units are also required to expose a DELETE command,

allowing clients to indicate that the storage page is not in use anymore. Reading a previously

deleted page should return an err_deleted error code.

Implementing the infinite address space entails keeping a hash-map from 64-bit

virtual addresses to the physical address space of the storage. With respect to write-once

semantics, an address is considered unwritten if it does not exist in the hash-map. When an

address is written to the first time, an entry is created in the hash-map pointing the virtual

address to a valid physical address. Each hash-map entry also has a bit indicating whether

the address has been deleted or not, which is set by the DELETE command.

Accordingly, a read succeeds if the address exists in the hash-map and does not have

the deleted bit set. It returns err_deleted if the deleted bit is set, and err_unwritten if the

address does not exist in the hash-map. A write to an address that exists in the hash-map

returns err_deleted if the deleted bit is set and err_written if it is not. If the address is not in

the hash-map, the write succeeds.

To eventually remove deleted addresses from the hash-map, the storage unit also

maintains a watermark before which no unwritten addresses exist, and removes deleted

addresses from the hash-map that are lower than the watermark. Reads and writes to

addresses before the watermark that are not in the hash-map return err_deleted immediately.

The storage unit also efficiently supports fill operations that write junk by treating

such writes differently from first-class writes. Junk writes are initially treated as conventional

writes, either succeeding or returning err_written or err_deleted as appropriate. However,

instead of writing to the block device, the storage unit points the hash-map entry to a special

address reserved for junk; this ensures that storage pages are not wasted. Also, once the

20

hash-map is updated, the entry is immediately deleted in the scope of the same operation.

This removes the need for clients to explicitly track and trim junk in the log.

In addition, storage units are required to support a SEAL command. Each incoming

message to a storage unit is tagged with an epoch number. When a particular epoch number

is sealed at a storage unit, it must reject all subsequent messages sent with an epoch equal

or lower to the sealed epoch. In addition, the storage unit is expected to send back an

acknowledgment for the seal command to the sealing entity, including the highest logical

page address that has been written on its address space thus far.

The seal capability is simple: the storage unit maintains an epoch number s_epoch

and rejects all messages tagged with equal or lower epochs, sending back an err_sealed

error code. When a seal command arrives with a new epoch to seal, the storage unit first

flushes all ongoing operations and then updates its s_epoch. It then responds to the seal

command with highaddr, the highest address written in the address space it exposes; this is

required for reconfiguration, as explained below.

3.3.2 Projections

Each Corfu client holds a copy of a global projection that carves the log into disjoint

ranges. Each such range is projected to a list of extents within the address spaces of

individual storage units. Figure 3.3 shows an example projection, where range [0,40K) is

projected onto extents on units F0 and F1, while [40K,80K) is projected onto extents on F2

and F3.

Within each range in the log, positions are mapped to storage pages in the corre-

sponding list of extents via a simple, deterministic function. The default function used is

round-robin: in the example in Figure 3.3, log position 0 is mapped to F0 : 0, position 1 is

mapped to F1 : 0, position 2 back to F0 : 1, and so on. Any function can be used as long

as it is deterministic given a list of extents and a log position. The example above maps

21

0 1 2 3 4 5 . . 40K
40K
+1

F0

0

2

...

40K-2

F1

1

3

...

40K-1

0 – 40K

•F0 0:20K
•F1 0:20K

40K – 80K

•F2 0:20K
•F3 0:20K

F2

40K

40K+2

...

80K-2

F3

40K+1

40K+3

...

80K-1

Example Projection 
Range [0 – 40K) is
mapped to F0 and F1.
Range [40K – 80K) is
mapped to F2 and F3.

Figure 3.3. Corfu Shared Log Projection. Example projection that maps different ranges of
the shared log onto storage unit extents.

each log position to a single storage page; for replication, each extent is associated with a

replica set of storage units rather than just one unit. For example, for two-way replication the

extent F0 : 0 : 20K would be replaced by F0/F ′0 : 0 : 20K and the extent F1 : 0 : 20K would

be replaced by F1/F ′1 : 0 : 20K.

Accordingly, to map a log position to a set of storage pages, the client first consults its

projection to determine the right list of extents for that position; in Figure 3.3, position 45K

in the log is in the range [40K,80K] mapped to extents on units F2 to F3. It then computes

the log position relative to the start of the range; in the example, this is 5K. Using this

relative log position, it applies the deterministic function on the list of extents to determine

the storage pages to use. With the round-robin function and the example projection above,

the resulting page would be F2 : 2500.

By projecting log positions onto storage pages, a projection allows clients to access

the data pages associated with log entries directly at the storage units. Since Corfu organizes

this address space as a log (using a tail-finding mechanism which we describe shortly),

clients end up writing only to the last range of positions in the projection ([40K,80K) in the

22

Client:

local c_epoch, initially 0, and P, a projection

Operation READ(roffset):
choose (serv, addr) in P(roffset)
send 〈read, c_epoch, addr〉 to serv

wait for reply from serv
on 〈err_sealed〉: RECONFIG and redo READ

on 〈err_deleted〉 or 〈err_unwritten〉:
return the error code

on 〈page-content〉: return the data

Operation APPEND(ctnt):
send 〈gettoken〉 to tokenserver
wait for reply woffset from tokenserver
for each (serv, addr) in P(woffset):
send 〈write, c_epoch, addr, ctnt〉 to serv
wait for reply from serv
on 〈err_sealed〉: RECONFIG and redo APPEND

on 〈err_deleted〉 or 〈err_written〉:
return it

return(woffset)

Figure 3.4. Corfu client protocols

example); we call this the active range in the projection.

3.3.3 Appending Without Replication

Thus far, we described the machinery used by Corfu to map log positions to sets of

storage pages. This allows clients to access directly the page(s) associated with any position

in a logical address space. Supporting reads is immediate from this. However, in order to

treat this address space as an appendable log, clients must be able to find the tail of the log

and exclusively write to it.

It is possible to allow clients to contend for positions in an unconstrained manner so

23

Operation FILL(foffset):
set f to err_junk
for each (serv, addr) in P(woffset):
send 〈write, c_epoch, addr, f〉 to serv
wait for reply from serv
on 〈err_sealed〉: RECONFIG and redo FILL

on 〈err_written〉: set f to page data

Operation TRIM(toffset) at client:
foreach (serv, addr) in P(woffset):
send 〈delete, addr〉 to serv
wait for reply from serv:

Operation RECONFIG(changes):
send 〈seal, c_epoch〉 request to storage servers
wait for replies
from at least one replica in every extent

compute new projection newP
based on changes and 〈sealed, ∗〉 replies

using any black-box consensus-engine:
propose newP and receive decision

set P to decision
increment c_epoch

Figure 3.5. Corfu client protocols continued

24

Storage server:

local s_epoch, initially 0, and status address-map

Upon 〈read, epoch, addr〉:
if epoch 6= s_epoch respond 〈err_sealed〉
else respond according to addr status:
if unwritten, 〈err_unwritten〉
if deleted, 〈err_deleted〉
if written, 〈page-content〉

Upon 〈write, epoch, addr, c〉:
if epoch 6= s_epoch respond 〈err_sealed〉
else respond according to addr status:
if deleted, 〈err_deleted〉
if written, 〈err_written, page-content〉
it available
write c to addr in local store
respond 〈ack〉

Upon 〈delete, addr〉 request:
mark addr deleted
respond 〈ack〉

Upon 〈seal, epoch〉:
if epoch > s_epoch set s_epoch to epoch
respond 〈sealed, highaddr〉 where
highaddr is highest locally stored page address

Figure 3.6. Corfu storage server protocol

Token-server:

local tkn, initially 0

Upon 〈gettoken〉:
increment tkn and send it back

Figure 3.7. Corfu token server protocol

25

long as only one write is allowed to ‘win’ on each position; in the absence of replication, this

property is satisfied trivially by the storage unit’s write-once semantics. In this case, when

a Corfu instance is started, every client that wishes to append data will try to concurrently

write to position 0. One client will win, while the rest fail; these clients then try again

on position 1, and so on. This approach provides linearizable log semantics, i.e., writes

complete successfully with the guarantee that any subsequent read on the position returns

the value written, until the position is trimmed.

However, it is clear that such an approach will result in poor performance when

there are hundreds of clients concurrently attempting appends to the log. To eliminate

such contention at the tail of the log, Corfu uses a dedicated sequencer that assigns clients

‘tokens’, corresponding to empty log positions. The sequencer can be thought of as a simple

networked counter. To append data, a client first goes to the sequencer, which returns its

current value and increments itself. The client has now reserved a position in the log and

can write to it without contention from other clients.

Importantly, the sequencer does not represent a single point of failure; it is merely

an optimization to reduce contention in the system and is not required for either safety

or progress. For fast recovery from sequencer failure, we store the identity of the current

sequencer in the projection and use reconfiguration to change sequencers. The starting

counter of a new sequencer is determined using the highest page written on each storage unit,

which is returned by the storage unit in response to the seal command during reconfiguration.

However, Corfu’s sequencer-based approach does introduce a new failure mode,

since ‘holes’ can appear in the log when clients obtain tokens and then fail to use them

immediately due to crashes or slowdowns. Holes can cripple applications that consume

the log in strict order, such as state machine replication or transaction processing, since no

progress can be made until the status of the hole is resolved. Given that a large system is

likely to have a few malfunctioning clients at any given time, holes can severely disrupt

26

application performance. A simple solution is to have other clients fill holes aggressively

with a reserved junk value. To prevent aggressive hole-filling from burning up storage pages

and network bandwidth, storage units can be junk-aware, simply updating internal meta-data

to mark a logical address as filled with junk instead of writing an actual value to the storage.

Note that filling holes reintroduces contention for log positions: if a client is merely

late in using a reserved token and has not really crashed, it could end up competing with

another client trying to fill the position with junk, which is equivalent to two clients concur-

rently writing to the same position. In other words, the sequencer is an optimization that

removes contention for log positions in the common case, but does not eliminate it entirely.

3.3.4 Appending with Replication

Naturally, the single-unit solution above does not provide fault tolerance. We achieve

fault tolerance by projecting each position to a replica set of storage pages in the cluster

using the current projection. The full append protocol is more intricate due to replication, as

we now need to establish agreement on content among its replica set.

Although any replication protocol correctly solves this, several aspects of our settings

guided us to devise a novel variant. First, since deploying a storage unit for data has non-

marginal cost, we require a consensus solution that tolerates f failures with just f + 1

replicas. This means that we do not deploy any majority-based algorithm. Second, the Corfu

design poses minimal functionality requisites on storage units, hence we require replicas to

not communicate with one another. Finally, we need to support fast reads that do not require

a client to go to more than one replica to retrieve data.

To address these needs, Corfu uses a simple chaining protocol which is in essence, a

client-driven variant of Chain Replication [79]. When a client wants to write to a replica

set of storage pages (after having obtained a token for this position), it updates them in a

deterministic order, waiting for each storage unit to respond before moving to the next one.

27

The write is successfully completed when the last storage unit in the chain is updated. As a

result, if two clients attempt to concurrently update the same replica set of storage pages,

one of them will arrive second at the first unit of the chain and receive an err_written.

To read from the replica set, clients have two options. If the reading client knows

already that the log position has been successfully written to (for example, via an out-of-

band notification by the writing client), it can go to any replica in the chain for better read

performance. Alternatively, a reader may probe the last unit of the chain to check if a write

has completed. If indeed a write has completed on that log position, the last unit can return

the content. If the last unit has not yet been updated, it will return an err_unwritten.

We need to address three kinds of failures. First, a client failure midway through an

append can result in a replica chain partially or fully empty. Chained appends allow a client

to rapidly fill such holes. To fill holes, the client starts by checking the first unit of the chain

to determine if a valid value exists in the prefix of the chain. If such a value exists, the client

walks down the chain to find the first unwritten replica, and then ‘completes’ the append

by copying over the value to the remaining unwritten replicas in chain order. Alternatively,

if the first unit of the chain is unwritten, the client writes the junk value to all the replicas

in chain order. Corfu exposes this fast hole filling functionality to applications via a fill

interface. Applications can use this primitive as aggressively as required, depending on their

sensitivity to holes in the shared log.

Second, storage units may fail (or, they may require an upgrade, or become filled up

and need replacement). We address configuration changes in the next section.

Third, due to reconfiguration, a client might fail to read a position even though a

write on it has completed. This may happen as follows. Say that a projection is changed to

remove a working unit, e.g., due to a network disruption that causes the unit to temporarily

detach. Some client may remain uninformed of the reconfiguration, perhaps having detached

from the main partition of the system due to the same network disruption. If this unit stored

28

the last page in a replica set for some position in the previous projection, this client might

continue to probe this unit for the status of this log position. Then the client may obtain

an err_unwritten error code even after the position has been completely written in the new

configuration.

There are several ways to address this problem. Even with this somewhat rare failure

scenario, the system upholds serializability of reads, which may suffice. Alternatively, we

may disable fast reads altogether, and require reads to go to all replicas, unless they already

know an entry has been filled. Another solution is to assign leases to storage units, which

automatically expire unless the unit periodically renews them. Some entity in the system,

e.g., the sequencer, must manage these leases, which is not a heavy burden as renewals are

performed at fairly coarse intervals (typically in the order of seconds). However, a cost

associated with this approach is that we need to wait for a lease expiration before we can

remove a unit from the configuration.

29

3.3.5 Changing Projections

When some event occurs that necessitates a change in a projection – for example,

when a storage unit fails, or when the tail of the log moves past the current active range – we

switch to a new projection. The succession of projections forms a sequence of epochs, and

clients can read and write the storage units directly so long as their projection is up-to-date.

When we change the projection, we invoke a seal request on all relevant storage units, so

that clients with obsolete copies of a projection will be prevented from continuing to access

them. All messages from clients to storage units are tagged with the epoch number, so

messages from sealed epochs can be aborted

In this sense, a projection serves as a view of the current configuration. However, a

projection change does not necessarily ditch an old configuration and replace it with a new

one. Rather, it may link a new range in a succession of ranges, keeping the old ones intact,

and letting clients continue reading log entries which have already been filled. Likewise,

it may affect the configuration of some past ranges and not others. So over time, the log

evolves in disjoint ranges, each one using its own projection onto a set of storage extents.

Care must be taken to ensure that any clients operating in the context of previous epochs

and clients in the new epoch read the log consistently.

Projections – and the ability to move consistently between them – offer a versatile

mechanism for Corfu to deal with dynamism. Figure 3.8 shows an example sequence of

projections. In Figure 3.8(A), range [0,40K) in the log is mapped to the two storage unit

mirrored pairs F0/F1 and F2/F3, while range [40K,80K) is mapped to F4/F5 and F6/F7.

When F6 fails with the log tail at position 50K, Corfu moves to projection (B) immediately,

replacing F6 with F8 for new appends beyond the current tail of the log, while servicing

reads in the log range [40K,50K) with the remaining mirror F7. Note that this upholds

safety of fully written log entries: Any log offset which has already been mirrored to F7 in

30

(A) (C)

(B)

(D)

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F6/F7 0:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F7/F8 0:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 50K

•F4/F5 0:5K
•F7 0:5K

50K – 80K

•F4/F5 5K:20K
•F7/F8 5K:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F7/F8 0:20K

80K -
120K

•F9/F10 0:20K
•F11/F12 0:20K

Figure 3.8. Corfu Projections. Sequence of projections: When F6 fails in (A) with the log
tail at 50K, clients move to (B) in order to replace F6 with F8 for new appends. Once old

data on F6 is rebuilt, F8 is used in (C) for reads on old data as well. When the log tail goes
past 80K, clients add capacity by moving to (D).

the range [40K,50) can continue to be read in the next epoch.

Once F6 is completely rebuilt on F8 (by copying entries from F7), the system moves to

projection (C), where F8 is now used to service all reads in the range [40K,80K). Eventually,

the log tail moves past 80K, and the system again reconfigures, adding a new range in

projection (D) to service reads and writes past 80K.

The mechanics of forming a reconfiguration decision are tailored to the client-centric

Corfu architecture, and in particular, involve no communication among the storage units.

More specifically, our reconfiguration procedure involves two steps. The first is a ’seal-and-

snapshot’ step, and its purpose is to ensure that any appended value in the current projection

Pi survives reconfiguration. This would not be possible if clients continued writing directly

to the active range of Pi indefinitely. We reject any client messages with obsolete epochs,

writes as well as reads. When clients receive these rejections, they realize that the current

projection has been sealed. We note that storage units not affected by the reconfiguration

31

need not be sealed, and hence, often only a small subset of storage units have to be sealed,

depending on the reason for reconfiguration.

The second step involves reaching an agreement decision on the next projection Pi+1.

The decision must preserve the safety of any log entries which have been fully written, and

might have been read by clients, in the current active range. Therefore, we always ‘err on

the conservative side’, and include any entry which is filled in all surviving storage units.

For example, consider the scenario in Figure 3.8. Moving from (A) to (B), we lost F6 but

retained the mirror F7. The new projection (B) upholds the safety of any log entries which

have been fully mirrored to F7. In a slightly different scenario, we might lose F7, and retain

F6. In this case, we won’t know if entries [40K,50K) have been successfully mirrored or not,

but we would have to assume that they might have, and extend the projection accordingly.

We do not discuss the details of the actual consensus protocol here, as there is abun-

dant literature on the topic. Our current implementation incorporates a Paxos-like consensus

protocol using storage units in place of Paxos-acceptors. Note that, multiple clients can

initiate reconfiguration simultaneously, but only one of them succeeds in proposing the new

projection.

Clients that read a storage unit and discover that their local projection is stale need

to learn the new projection. We currently employ a shared network drive for storing the

sequence of agreed-upon projections, but other methods may replicate this information more

robustly.

3.3.6 Garbage Collection

Corfu provides the abstraction of an infinitely growing log to applications. The

application does not have to move data around in the address space of the log to free up

space. All it is required to do is use the trim interface to inform Corfu when individual

log positions are no longer in use. As a result, Corfu makes it easy for developers to build

32

applications over the shared log without worrying about garbage collection strategies. An

implication of this approach is that as the application appends to the log and trims positions

selectively, the address space of the log can become increasingly sparse.

Accordingly, Corfu has to efficiently support a sparse address space for the shared

log. The solution is a two-level mapping. As described before, Corfu uses projections to

map from a single infinite address space to individual extents on each storage unit. Each

storage-unit then maps a sparse 64-bit address space, broken into extents, onto the physical

set of pages. The storage unit has to maintain a hash-map from 64-bit addresses to the

physical address space of the storage.

Another place where system information might grow large is the succession of

projections. Each projection by itself is a range-to-range mapping, and hence it is quite

concise. However, it is possible that an adversarial workload can result in bloated projections;

for instance, if each range in the projection has a single valid entry that is never trimmed,

the mapping for that range has to be retained in the projection for perpetuity.

Even for such adversarial workloads, it is easy to bound the size of the projection

tightly by introducing a small amount of proactive data movement across storage units in

order to merge consecutive ranges in the projection. For instance, we estimate that adding

0.1% writes to the system can keep the projection under 25 MB on a 1 TB cluster for an

adversarial workload. In practice, we do not expect projections to exceed 10s of KBs for

conventional workloads; this is borne out by our experience building applications over

Corfu. In any case, handling multi-MB projections is not difficult, since they are static data

structures that can be indexed efficiently. Additionally, new projections can be written as

deltas to the auxiliary share.

33

3.4 Hardware Acceleration

The next sections describe our SLICE prototype, an implementation of a Corfu

storage unit in hardware.

We implemented our SLICE prototype on an FPGA using the Beehive many-core

architecture [61]. In the following section, we describe the data structures our prototype

uses to satisfy the requirements of the SLICE API. Then we outline the hardware itself and

the control flow used in the processing of shared-log requests. We conclude the section with

a look at a few specific design details.

3.4.1 Implementing The API

In order to support an infinite address space, the storage device must provide a

persistent mapping from a (potentially sparse) 64-bit virtual address (SVA) onto a physical

address (SPA). SSDs often use such a structure, although the map’s domain is usually limited

to the nominal disk size of the SSD, and the granularity of the mapping function is often

coarser than a single page. There is considerable overlap between what is described here

and the functionality of the Flash Translation Layer (FTL) firmware found in an SSD. Thus,

there is good reason to think about merging these components. We discusses this possibility

in Section 3.4.6. In practice, an SVA need only be large enough to support the maximal

number of writes for a given device. Since NAND flash supports a limited number of erase

cycles, we can base our data structures on the notion that the size of an SVA is roughly

bounded by the number of flash pages times the maximal erase cycle count.

Our current implementation uses a traditional hash table to implement a map that

resolves to flash pages of size 4 KB. This data structure occupies 4 MB of memory per

GB of target flash. We have designed, but not implemented, a significantly more compact

structure using Cuckoo Hashing as described in Section 3.4.4.

34

The referent of the page map contains per-page state (e.g.: unwritten, written,

trimmed) as well as an SPA if the page is in the written state or awaiting reclamation. We

keep three pointers with regards to the overall SVA space on each SLICE: a head pointer

to denote the maximum written entry; and a minimum unwritten pointer (below which

there are no holes); and a pointer below which all trimmed pages have been reclaimed. An

additional pointer indicating the minimum written position can also be used to restrict the

set of logical addresses under consideration during prefix trim. These pointers need not be

maintained persistently since they can be recovered from the mapping table. All trimmed

positions that both lie below the minimum unwritten pointer and have been reclaimed can

be eliminated from the map.

We optimize the hole-filling operation by using a special value of flash page pointer

to denote the junk pattern that is used to fill a hole in the log. Thus, hole-filling can be

accomplished by manipulating the mapping table: set the physical page pointer to the junk

value and mark the page as trimmed. In addition to the mapping structure, the SLICE

implementation must track the set of sealed epochs and maintain a free list of flash pages

for new writes. The former must be stored persistently, but the latter can be reconstructed

from the mapping table. For best performance, the ordering of the free list should take into

account specific peculiarities of the media, such as locality or the need to perform sequential

writes within flash blocks.

Should it become necessary to efficiently enumerate very sparse logs, we could

introduce a data structure to track ranges of reclaimed addresses and an API method to

access it (e.g, FindNextWritten). However, the applications we have built so far only

walk through the compact portion of logs, so we have not yet found the need to take such

measures. Some of the newer API functions that are part of the software implementation

of the Corfu server have not yet been fully implemented in hardware. For example, the

minimum unwritten pointer was not part of our original hardware design. These features

35

can and will be reintegrated straightforwardly into the current design.

3.4.2 Hardware Design

Our prototype hardware design is presented in Figure 3.9. Each SLICE comprises

an FPGA with a gigabit Ethernet link, a SATA-based SSD, and 2 GB of DDR2 memory.

The design is flexible and scalable: hundreds of SLICEs may be used to support a single

shared log given sufficient network capacity. We have engineered our SLICE unit to be

inexpensive and low-power while delivering sufficient performance to saturate its Ethernet

link. While our prototype unit is built with an FPGA, we envision that a production device

would be built with a low-cost ASIC and a NAND flash array instead of a SSD, offering a

better performance, lower price, and lower power than the platform that we are currently

using.

Inside the FPGA, we use a variant of the Beehive. Beehive is a many-core archi-

tecture implemented in a single FPGA. A single Beehive instance can comprise up to 32

conventional RISC cores connected by a fast token ring. Network interfaces, a memory

controller, and other devices, such as disk controllers, are implemented as nodes on the ring.

Control messages for memory access traverse the ring as do data writes to memory. Data is

returned from reads via a dedicated pipelined bus. There are additional data paths to enable

DMA between high-speed devices and memory.

We configure various Beehive cores to take on specific roles, as shown in Figure 3.10.

Whereas the memory controller, Ethernet core, and System core are common to all Beehive

designs, we use the following special-purpose cores to construct a SLICE.

• A packet processing core handles the parsing of network requests and the formatting

of responses.

• A metadata core manages the mapping table.

36

• A SATA core coordinates I/O to the SSD.

• A read and a write core interact with the metadata core, and initiate and monitor the

completion of SATA requests.

The Beehive architecture enables us to handle requests in parallel stages while

running the FPGA at a low frequency (100 MHz), thus reducing device power. Note that

new functionality can be easily added to the SLICE design. Additional cores running

specialized hardware can enhance the performance of timing-critical tasks. For example,

our current design uses a specialized hardware accelerator to speed up packet processing.

At the same time, latency-insensitive operations can be coded in a familiar programming

language (C), significantly reducing complexity.

Table 3.1 shows the percentage of time the various cores are idle under maximal

load and number of assembly instructions per core in the SLICE design. The Comm core

has a slightly different architecture than the rest of the cores (it runs all its code from ROM

and cannot execute/read/write DRAM except using DMA), thus we did not measure its

idle time. If we need more or differently allocated compute resources, we can use different

configurations of cores. In an earlier alternative design, we used two Packet Processing

Cores running the same code base: one processed even packets and the other processed odd

packets. The earlier design used more FPGA resources than the current design, but both

designs can run the Ethernet at wire speed. We could also just as easily add a second Comm,

PacketProc, Read or Write core, should the workload require it.

3.4.3 An Example Write Request

Requests to a SLICE arrive over the network. As an exemplar, we describe, below,

the nine steps required to service a write request as it moves around the ring, as shown in

Figure 3.10.

37

FPGA ONFI 3.1

DDR2

SATA 2

Beehive Cores

1 GigE

10 GigE
(Planned) NAND

Flash Array
(Planned)

SATA
SSD

2GB
DDR2 Memory

FPGA ONFI 3.1

DDR2

SATA 2

Beehive Cores

1 GigE

10 GigE
(Planned) NAND

Flash Array
(Planned)

SATA
SSD

2GB
DDR2 Memory

FPGA ONFI 3.1

DDR2

SATA 2

Beehive Cores

1 GigE

10 GigE
(Planned) NAND

Flash Array
(Planned)

SATA
SSD

2GB
DDR2 Memory

FPGA ONFI 3.1

DDR2

SATA 2

Beehive Cores

1 GigE

10 GigE
(Planned) NAND

Flash Array
(Planned)

SATA
SSD

2GB
DDR2 Memory

10
 G

ig
E N

et
wor

k

SLICE

}
Figure 3.9. SLICE Prototype System Design. Each SLICE contains a FPGA which receives

requests over gigabit Ethernet and serves them using an SSD. Future designs may
implement 10 gigabit links and direct access to a NAND flash array.

Table 3.1. SLICE per Core Idle Time. SLICE per core idle time and number of assembly
instructions. (Comm core code written in assembly, all other core code written in C.)

% Idle Instructions

System 15.5% 2,544
PacketProc 0.7% 4,116
Read 8.0% 612
Write 8.9% 634
Metadata 3.95% 712
SATA 5.3% 1,110
Comm N/A 516

38

Comm
(Ethernet)

Core DDR2
Controller

System
Core

Write Core

Read Core

SATA Core

Packet
Processing

Core

Metadata
Core

1 Gbps
PHY DDR2

Memory

GPIO
RS232
Status

Other
Cores

Token Ring

1
2

3

5
6

7

8

9

4

SSD

Figure 3.10. SLICE Hardware Architecture. Inside the FPGA, Beehive cores and a DDR
memory controller are connected via a token ring. Specialized cores allow the system to

interact with peripheral hardware such as the network and storage.

1. The SLICE receives a packet at the Communication (Comm) core.

2. When a packet is received (we support jumbo packets up to 9,000 bytes) it is placed

into a specific location in DRAM in a circular buffer using DMA and a page token is

created.

3. The Comm Core forwards the page token to the Packet Processing Core to process

the packet header information.

4. The Packet Processing Core forwards the page token to the Write Core. The Packet

Processing Core also starts to construct a reply message for the client while the packet

request is satisfied.

5. The Metadata Core receives the page token to check the metadata to make sure the

SVA has not been written or the epoch has been sealed and picks a SPA off the free-list.

The SPA and the memory address for the data are forwarded to the SATA Core.

39

6. The SATA Core reads a page from the data buffer located at the memory address and

stores the page on the SSD at the specified SPA.

7. The SATA Cores informs the Write Core that the request is complete by sending the

page token back, starting the reverse journey back to the Comm Core.

8. The page token is sent back to the Packet Processing Core to complete the reply

packet.

9. The Comm Core sends the reply packet back to the client when the page token returns

with a pointer to the reply packet.

3.4.4 Address Mapping Using Cuckoo Hashing

We now present our design for using Cuckoo Hashing to efficiently map an SVA to

an SPA. Cuckoo Hashing minimizes collisions in the table and provides better worst-case

bounds than other methods, like linear scan [62]. Under Cuckoo Hashing, two (or more)

mapping functions are applied to each inserted key, and such a key can appear at any of the

resultant addresses. If, during insertion, all candidate addresses are occupied, the occupant

of the first such address is evicted, and a recursive insert is invoked to place it in a different

location. The original insertion is placed in the vacated spot. On average, 1.5 index look-ups

are required for successful lookups in such a table. Table lookups for entries not in the table

always require two lookups, one for each mapping function.

In order to save space in each hash table entry, we store only a fraction of the bits

of each SVA. The remainder of the bits can be recovered by using hash functions that

are also permutations. Such permutations can be reversed, for example during a lookup,

to reconstruct the missing bits so as to determine whether the target matches. The end

result of hashing an SVA can then be represented by the mapping function F which is the

concatenation F1 and F2, computed as described below. The lower order bits of F are used

40

to index into the mapping hash table and the remainder of F is stored in the table entry for

disambiguation, along with a bit indicating which mapping function was used. This ensures

that for any given table entry, we can recover all of F from an entry’s position and contents,

and thus we can derive X and Y , and finally the original SVA.

An example of the forward and reverse process for the mapping function is provided

below:

• Split the SVA bitwise into two values X and Y of equal size.

• Given two hash functions, H1 and H2, compute functions F1 and F2 on X and Y as follows:

– F1 = H1(Y)
⊗

X

– F2 = H2(F1)
⊗

Y

• X and Y and hence the original SVA can be recovered from F1 and F2 as follows.

– H2(F1)
⊗

F2 = H2(F1)
⊗
(H2(F1)

⊗
Y) = Y

– F1
⊗

H1(Y) = (H1(Y)
⊗

X)
⊗

H1(Y) = X

A mapping function can be built using hash functions H1 and H2 from a collection

of 256-entry hash-value arrays. By splitting the argument into byte-sized values Ni, we

compute H1 by treating each Ni as an index into the ith array, and XORing the results. H2 is

computed similarly using 255−Ni. This reduces the number or arrays by a factor of two,

reducing on-chip storage requirements.

To express these data structures more concretely, consider a 128 GB SLICE (32

million 4KB pages). If NAND flash can be erased 100,000 times, this equates to a device

endurance of 3×1012 page writes, or 42 bits. We use Cuckoo Hashing with two mapping

functions. However, in order to achieve better memory cache locality, each index bucket

contains two entries, creating four possible spots for each new SVA insertion. We provision

a Cuckoo hash table that is 20% larger than the number of physical page entries. For 128

41

Location 1a Location 1b

Location 2a Location 2b

Mapping function 1

Mapping function 2

2-bit
page

status
25-bit SPA Residual 19 bits of F(SVA)

Mapping function ID

Cuckoo hash page map table

Figure 3.11. SLICE Cuckoo Map and Entries. Cuckoo hash page map and table entry.

GB of flash, we use a table with 226 6 byte entries, which consumes roughly 240 MB of

memory, or about 1.88 MB/GB.

Figure 3.11 shows the page mapping table with the two mapping functions and the

required metadata page entry of 48 bits: 25 bits of physical page address, 19 upper bits of F ,

1 bit for flash block status, 1 bit for mapping function ID, and 2 bits for the page status (e.g.,

written, trimmed, or unwritten).

We evaluated a software implementation of the Cuckoo Hashing page mapping

scheme and compared it with Chain Hashing. To do so, we ran sequences of insertion /

lookup pairs using a varying number of keys on hash tables of both types, and then compared

the elapsed times. Figure 3.12 shows the difference in performance, about 10X, when using

the two page mapping schemes. We used a 64,000 entry table for both tests. These tests

employed a dense key-space with relatively few hash collisions. The advantage of Cuckoo

Hashing should increase with the likelihood of collisions.

42

0

50

100

150

200

250

300

350

400

450

500

0 10000 20000 30000 40000 50000

Ti
m

e
 (

m
s)

Number of operations (1 op = 1 insert + 1 lookup)

Chain hashing

Cuckoo hashing

Figure 3.12. SLICE Chain vs. Cuckoo Comparison. Time required to insert and lookup
keys in a Chain hash versus a Cuckoo hash page map.

43

3.4.5 Persistence

The stability of SLICE storage depends on the persistence of its mapping table.

Building a persistent mapping table for a Corfu software implementation is problematic.

Writing separate metadata for every data write is not plausible. The remaining possibilities

either involve batching metadata updates, which risks losing state on power failure, or

writing metadata and data in the same chunk, which reduces the space available for data.

Fortunately, when custom hardware is in play, a further option becomes available. Using

super-capacitors or batteries, we can ensure that the hardware will always operate long

enough to flush the mapping table. Our optimized mapping table takes only a few seconds

to flush to flash, so this is an attractive option for metadata persistence (and many SSDs use

the same technique). We have specified the hardware needed for this capability, but not yet

implemented it. Ultimately, solid-state storage with fine write granularity, such as PCM,

would provide the best alternative for storing such metadata and modifying it in real time.

3.4.6 SLICE And The Flash Translation Layer

Our SLICE prototype uses an existing SSD rather than raw flash. Using an SSD, each

SPA referenced in our mapping table is a logical SSD page address. This was an expedient

for prototyping, and it eliminates a raft of potential problems. For instance, we don’t need to

worry about out-of-order writes, since these are possible on an SSD but problematic on raw

flash. Furthermore, we don’t need to worry about bad block detection and management or

error correction. But the most significant problem that using an SSD eliminates is the need

to handle garbage collection and wear-leveling. With an SSD, allocating a flash page during

a write operation is as simple as popping the head of the free list. Similarly, reclaiming a

page requires adding it to the free list and (optionally) issuing a SATA TRIM command to

the drive. Wear-leveling is performed by the SSD.

44

The downside of using an SSD is that it duplicates Flash Translation Layer (FTL)

functionality. Specifically, our mapping table requires a extra address translation in addition

to that done by the SSD. Since SSDs are fundamentally log-structured, and since we are in

practice writing a log, which is significantly simpler than a random-access disk, one might

hope that this would result in a less complex FTL. A further downside is that we lose control

over the FTL, which might have been useful to facilitate system-wide garbage collection.

For example, if there are many SLICEs in a system, it is possible to use the configuration

mechanism in Corfu to direct writes away from some units and allow garbage collection

and wear-leveling to operate in the absence of write activity. In addition, if we had access

to raw flash, our system would be able to store mapping-table metadata in the spare space

associated with each flash page and possibly leverage this, ensuring persistence without

special hardware, in the manner of Birrell et al. [20].

Fortunately, it seems likely that writing a log over an SSD will in many cases

produce optimal behavior. An application that maintains a compact log works actively to

move older, but still relevant data from the oldest to the newest part of the log. Doing this

allows such applications to trim entire prefixes of the log. This sort of log management is

appropriate for applications that maintain fast changing and (relatively) small datasets, such

as ZooKeeper [42]. With this sort of workload, appends to the log march linearly across the

address-spaces of all the SLICEs, and prefix trims at the head of the log proceed at the same

pace. This should produce optimal wear and capacity balancing across an entire cluster.

Assuming that our firmware allocates SSD logical pages in a sequential fashion, the regular

use of prefix trim should help avoid fragmentation at the SSD block level which is a major

contributor to write amplification [7].

In other applications, for example a Corfu virtual disk, it can be too expensive

to move all old data to the head of the log. Because offset trim operates at single page

granularity, we can support applications that require data to remains at static log positions.

45

In this case, the flash array must make the usual tradeoffs between leaving data in place and

balancing wear by moving data, regardless of whether we use an SSD or raw flash. The FTL

in an SSD manages these tradeoffs all the time, but if we implemented the FTL, we would

then get the option to do it within a SLICE, in a more distributed fashion, or both.

3.5 Evaluation

Our current evaluation platform uses SATA SSDs for block devices. These are well-

suited for our purposes for a number of reasons. Non-volatile memories are fast, holding

great potential for high performance storage in large data-centers. Additionally, the use

of non-volatile memory based storage alleviates any potential performance hiccups due

to non-sequential access for occasional reads from the middle of the log and for garbage

collection. Finally, our log-structured access matches perfectly the best usage scenario for

SSDs, because the Flash Translation Layer (FTL) of today’s SSDs internally organizes

memory as a log store. Our storage units come in two forms:

Server-attached SATA SSDs This consists of a pair of conventional SATA SSDs attached

to servers. The server accepts Corfu commands over the network from clients and

implements the server functionality described above, issuing reads and writes to the

fixed-size address space of the block device as required.

Network-attached flash This custom implementation consists of an FPGA, a network

interface, and a SATA-connected SSD. The server functionality and network protocols

are entirely implemented in hardware. This design eliminates the need for a server

interposed between fast storage devices and clients sitting on a fast interconnect. We

used the Beehive [76] architecture on both the Xilinx XUPv5 development platform

[84] and the BEE3 hardware platform [28] for prototyping. When running at full

speed, the XUPv5 prototype consumes around 15W; in contrast, a conventional

46

storage server consumes on the order of 250W. With suitable Flash Translation Layer

firmware, our network flash unit could run over raw flash rather than employing an

SSD. Arguably, CORFU’s inherent log structure allows a simpler FTL design as

compared to a standard disk interface.

For throughput, we evaluate Corfu on a cluster of 32 Intel X25V drives. Our

experiment setup consists of two racks; each rack contains 8 servers (with 2 drives attached

to each server) and 11 clients. Each machine has a 1 Gbps link. Together, the two drives

on a server provide around 40,000 4KB read IOPS; accessed over the network, each server

bottlenecks on the Gigabit link and gives us around 30,000 4KB read IOPS. Each server runs

two processes, one per SSD, which act as individual flash units in the distributed system.

Currently, the top-of-rack switches of the two racks are connected to a central 10 Gbps

switch; our experiments do not generate more than 8 Gbps of inter-rack traffic. We run two

client processes on each of the client machines, for a total of 44 client processes.

In all our experiments, we run Corfu with two-way replication, where appends are

mirrored on drives in either rack. Reads go from the client to the replica in the local rack.

Accordingly, the total read throughput possible on our hardware is equal to 2 GB/sec (16

servers X 1 Gbps each) or 500K/sec 4KB reads. Append throughput is half that number,

since appends are mirrored.

Unless otherwise mentioned, our throughput numbers are obtained by running all 44

client processes against the entire cluster of 32 drives. We measure throughput at the clients

over a 60-second period during each run.

3.5.1 End-To-End Latency

We first summarize the end-to-end latency characteristics of Corfu in Figure 3.13.

We show the latency for read, append and fill operations issued by clients for four Corfu

configurations. The left-most bar for each operation type (Server:TCP,Flash) shows the

47

 0

 0.5

 1

 1.5

 2

 2.5

 3

Reads Appends Fills

L
at

en
cy

 (
m

s)

Server:TCP,Flash
Server:TCP,RAM
Server:UDP,RAM
FPGA:UDP,Flash

Figure 3.13. Corfu Log End-to-End Latency. Latency for Corfu operations on different
flash unit configurations.

48

latency of the server-attached flash unit where clients access the flash unit over TCP/IP

when data is durably stored on the SSD; this represents the configuration of our 32-drive

deployment. To illustrate the impact of flash latencies on this number, we then show

(Server:TCP,RAM), in which the flash unit reads and writes to RAM instead of the SSD.

Third, (Server:UDP,RAM) presents the impact of the network stack by replacing TCP with

UDP between clients and the flash unit. Lastly, (FPGA:UDP,Flash) shows end-to-end latency

for the FPGA+SSD flash unit, with the clients communicating with the unit over UDP.

Against these four configurations we evaluate the latency of three operation types.

Reads from the client involve a simple request over the network to the flash unit. Appends

involve a token acquisition from the sequencer, and then a chained append over two flash

unit replicas. Fills involve an initial read on the head of the chain to check for incomplete

appends, and then a chained append to two flash unit replicas.

In this context, Figure 3.13 makes a number of important points. First, the latency

of the FPGA unit is very low for all three operations, providing sub-millisecond appends

and fills while satisfying reads within half a millisecond. This justifies our emphasis on a

client-centric design; eliminating the server from the critical path appears to have a large

impact on latency. Second, the latency to fill a hole in the log is very low; on the FPGA

unit, fills complete within 650 microseconds. Corfu’s ability to fill holes rapidly is key to

realizing the benefits of a client-centric design, since hole-inducing client crashes can be

very frequent in large-scale systems. In addition, the chained replication scheme that allows

fast fills in Corfu does not impact append latency drastically; on the FPGA unit, appends

complete within 750 microseconds.

3.5.2 Throughput

We now focus on throughput scalability; these experiments are run on our 32-

drive cluster of server-attached SSDs. To avoid burning out the SSDs in the throughput

49

0K

125K

250K

375K

500K

 4 8 12 16 20 24 28 32
 0

 0.5

 1

 1.5

 2

4K
B

 E
nt

ri
es

/S
ec

G
B

/s
ec

Number of Flash Units

Append Throughput
Read Throughput

Figure 3.14. Corfu Log Random Read and Append Throughput. Throughput for random
reads and appends.

50

experiments, we emulate writes to the SSDs; however, all reads are served from the SSDs,

which have ‘burnt-in’ address spaces that have been written to completely. Emulating SSD

writes also allows us to test the Corfu design at speeds exceeding the write bandwidth of our

commodity SSDs.

Figure 3.14 shows how log throughput for 4KB appends and reads scales with the

number of drives in the system. As we add drives to the system, both append and read

throughput scale up proportionally. Ultimately, append throughput hits a bottleneck at

around 180K appends/sec; this is the maximum speed of our sequencer implementation,

which is a user-space application running over TCP/IP. Since we were near the append limit

of our hardware, we did not further optimize our sequencer implementation.

At such high append throughputs, Corfu can wear out 1 TB of MLC flash in around

4 months. We believe that replacing a $3K cluster of flash drives every four months is

acceptable in settings that require strong consistency at high speeds, especially since we

see Corfu as a critical component of larger systems (as a consensus engine or a metadata

service, for example).

3.5.3 Reconfiguration

Reconfiguration is used extensively in Corfu, to replace failed drives, to add capacity

to the system, and to add, remove, or relocate replicas. This makes reconfiguration latency a

crucial metric for our system.

Recall that reconfiguration latency has two components: sealing the current con-

figuration, which contacts a subset of the cluster, and writing the new configuration to the

auxiliary. In our experiments, we conservatively seal all drives, to provide an upper bound

on reconfiguration time; in practice, only a subset needs to be sealed. Our auxiliary is

implemented as a networked file share.

Figure 3.15 shows throughput behavior at an appending and reading client when a

51

0K

5K

10K

15K

20K

25K

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

O
ps

/S
ec

)

Time (seconds)

Reads
Appends

Failure

Figure 3.15. Corfu Log Reconfiguration Time. Reconfiguration performance on 32-drive
cluster, appending client waits on failed drive for 1 second before reconfiguring, while

reading client continues to read from alive replica.

52

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

%
 o

f
R

ec
on

fi
gu

ra
tio

ns

Latency (ms)

Sealing Latency
Total Latency

Figure 3.16. Corfu Log Reconfiguration Performance. Reconfiguration performance on
32-drive cluster. Distribution of sealing and total reconfiguration latency for 32 drives.

53

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24 28 32

L
at

en
cy

 (
m

s)

Number of Flash Units

Sealing Latency

Figure 3.17. Corfu Log Reconfiguration Scalability. Reconfiguration performance on
32-drive cluster. Scalability of sealing with number of drives.

54

flash unit fails. When the error occurs 25 seconds into the experiment, the appending client’s

throughput flat-lines and it waits for a 1-second timeout period before reconfiguring to a

projection that does not have the failed unit. The reading client, on the other hand, continues

reading from the other replica; when reconfiguration occurs, it receives an error from the

replica indicating that it has a stale, sealed projection; it then experiences a minor blip in

throughput as it retrieves the latest projection from the auxiliary. The graph for sequencer

failure looks identical to this graph.

Figure 3.16 shows the distribution of the latency between the start of reconfiguration

and its successful completion on a 32-drive cluster. The median latency for the sealing

step is around 5 ms, while writing to the auxiliary takes 25 ms more. The slow auxiliary

write is due to overheads in serializing the projection as human-readable XML and writing

it to the network share; implementing the auxiliary as a static Corfu instance and writing

binary data would give us sub-millisecond auxiliary writes (but make the system less easy

to administer).

Figure 3.17 shows how the median sealing latency scales with the number of drives

in the system. Sealing involves the client contacting all flash units in parallel and waiting

for responses. The auxiliary write step in reconfiguration is insensitive to system size.

3.5.4 Applications

We now demonstrate the performance of Corfu-Store for atomic multi-key operations.

Figure 3.19 shows the performance of multi-put operations in Corfu-Store. On the x-axis,

we vary the number of keys updated atomically in each multi-put operation. The bars in the

graph plot the number of multi-puts executed per second. The line plots the total number

of Corfu log appends as a result of the multi-put operations; a multi-put involving k keys

generates k+1 log appends, one for each updated key and a final append for the commit

record. For small multi-puts involving one or two keys, we are bottlenecked by the ability

55

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

T
ho

us
an

ds
 o

f
M

ul
ti-

G
et

s/
Se

c

T
ho

us
an

ds
 o

f
R

ea
ds

/S
ec

of Keys in Multi-Get

Multi-Get Tput
Log Read Tput

Figure 3.18. Corfu Store Application Gets. Example Corfu Application: Corfu-Store
supports atomic multi-gets at cluster scale.

56

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8
 0

 50

 100

 150

 200

 250

T
ho

us
an

ds
 o

f
M

ul
ti-

Pu
ts

/S
ec

T
ho

us
an

ds
 o

f
A

pp
en

ds
/S

ec
of Keys in Multi-Put

Multi-Put Tput
Log Append Tput

Figure 3.19. Corfu Store Application Puts. Example Corfu Application: Corfu-Store
supports atomic multi-puts at cluster scale.

57

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
om

m
an

ds
/S

ec

Replicas

SMR Throughput

Figure 3.20. Example Corfu Application: Corfu-SMR supports high-speed state machine
replication.

of the Corfu-Store map-service to handle and process incoming commit records; our current

implementation bottlenecks at around 50K single-key commit records per second. As we

add more keys to each multi-put, the number of log appends generated increases and the

Corfu log bottlenecks at around 180K appends/sec. Beyond 4 keys per multi-put, the log

bottleneck determines the number of multi-puts we push through; for example, we obtain

180K
6 =30K multi-puts involving 5 keys.

Figure 3.18 shows performance for atomic multi-get operations. As we increase

the number of keys accessed by each multi-get, the overall log throughput stays constant

while multi-get throughput decreases. For 4 keys per multi-get, we get a little over 100K

multi-gets per second, resulting in a load of over 400K reads/s on the Corfu log.

58

Figure 3.20 shows the throughput of Corfu-SMR, the state machine replication library

implemented over Corfu. In this application, each client acts as a state machine replica,

proposing new commands by appending them to the log and executing commands by playing

the log. Each command consists of a 512-byte payload and 64 bytes of metadata; accordingly,

7 commands can fit into a single Corfu log entry with batching. In the experiment, each client

generates 7K commands/sec; as we add clients on the x-axis, the total rate of commands

injected into the system increases by 7K. On the y-axis, we plot the average rate (with error

bars signifying the min and max across replicas) at which commands are executed by each

replica. While the system has 10 or less Corfu-SMR replicas, the rate at which commands

are executed in the system matches the rate at which they are injected. Beyond 10 replicas,

we overload the ability of a client to execute incoming commands, and hence throughput

flat-lines; this means that clients are now lagging behind while playing the state machine.

3.6 Summary

In this chapter we have described the Corfu log, a scalable fabric for consistency.

The Corfu log provides scalable write throughput (we have shown more than half a million

ops/s) without sacrificing consistency. Adding more capacity to the Corfu log is simply a

matter of adding additional storage units, and we have shown a prototype hardware storage

unit, which in the limit, could approach the cost of raw flash.

The Corfu log is resilient to failures, and reconfiguration is handled by updating

the Corfu log projection, which maps segments of the log to storage units. This mapping

enables the log to dynamically scale and shrink according to resource requirements within

the datacenter. Corfu storage units ensure safety and consistency by providing a write-once

address space. In practice, this address space is maintained by a simple mapping, and we

have shown that hash schemes implementable in hardware are capable of servicing this

mapping efficiently.

59

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

60

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

Chapter 4

Virtualizing the Corfu Log

This chapter describes two techniques to virtualize the Corfu log, streaming and

stream materialization. Section 4.1 describes our original system, Tango, used streaming,

which only permitted clients to read entries in order. The successor to Tango, vCorfu, is

described in Section 4.2 and uses stream materialization, which not only permits clients to

randomly read entries, but allows clients to exploit locality by placing all the updates to a

stream on a single replica.

4.1 Streaming

In this section, we describe our addition of a streaming interface to the Corfu shared

log implementation.

As we described in Chapter 3, Corfu consists of three components: a client-side

library that exposes an append/read/check/trim interface to clients; storage servers that each

expose a 64-bit, write-once address space over flash storage; and a sequencer that hands out

64-bit counter values.

To implement streaming, we changed the client-side library to allow the creation

and playback of streams. Internally, the library stores stream metadata as a linked list of

offsets on the address space of the shared log, along with an iterator. When the application

calls readnext on a stream, the library issues a conventional Corfu random read to the offset

61

62

0 1 2 3 4 5 6 7

0 1 3 4 7

0 2 5 6 7

Stream A

Stream B

Shared Log Backpointers:

...

Figure 4.1. Stream Virtualization Architecture. Streams are stored on the shared log with
redundant backpointers.

63

pointed to by the iterator, and moves the iterator forward.

To enable the client-side library to efficiently construct this linked list, each entry in

the shared log now has a small stream header. This header includes a stream ID as well as

backpointers to the last K entries in the shared log belonging to the same stream. When the

client-side library starts up, the application provides it with the list of stream IDs of interest

to it. For each such stream, the library finds the last entry in the shared log belonging to that

stream (we’ll shortly describe how it does so efficiently). The K backpointers in this entry

allow it to construct a K-sized suffix of the linked list of offsets comprising the stream. It

then issues a read to the offset pointed at by the Kth backpointer to obtain the previous K

offsets in the linked list. In this manner, the library can construct the linked list by striding

backward on the log, issuing N
K reads to build the list for a stream with N entries. A higher

redundancy factor K for the backpointers translates into a longer stride length and allows for

faster construction of the linked list.

By default, the stream header stores the K backpointers using 2-byte deltas relative

to the current offset, which overflow if the distance to the previous entry in the stream is

larger than 64K entries. To handle the case where all K deltas overflow, the header uses

an alternative format where it stores K
4 backpointers as 64-bit absolute offsets which can

index any location in the shared log’s address space. Each header now has an extra bit that

indicates the backpointer format used (relative or absolute), and a list of either K 2-byte

relative backpointers or K
4 8-byte absolute backpointers. In practice, we use a 31-bit stream

ID and use the leading bit to store the extra format bit. If K = 4, which is the minimum

required for this scheme, the header uses 12 bytes. To allow each entry to belong to multiple

streams, we store a fixed number of such headers on the entry. The number of headers we

store is equal to the number of streams the entry can belong to, which in turn translates to

the number of objects that a single transaction can write to.

Appending to a set of streams requires the client to acquire a new offset by calling

64

increment on the sequencer (as in conventional Corfu). However, the sequencer now accepts

a set of stream IDs in the client’s request, and maintains the last K offsets it has issued for

each stream ID. Using this information, the sequencer returns a set of stream headers in

response to the increment request, along with the new offset. Having obtained the new offset,

the client-side library prepends the stream headers to the application payload and writes the

entry using the conventional Corfu protocol to update the storage nodes. The sequencer also

supports an interface to return this information without incrementing the counter, allowing

clients to efficiently find the last entry for a stream on startup or otherwise.

Updating the metadata for a stream at the client-side library (i.e., the linked list of

offsets) is similar to populating it on startup; the library contacts the sequencer to find the

last entry in the shared log belonging to the stream and backtracks until it finds entries it

already knows about. The operation of bringing the linked list for a stream up-to-date can

be triggered at various points. It can happen reactively when readnext is called; but this can

result in very high latencies for the readnext operation if the application issues reads burstily

and infrequently. It can happen proactively on appends, but this is wasteful for applications

that append to the stream but never read from it, since the linked list is never consulted in

this case and does not have to be kept up-to-date. To avoid second-guessing the application,

we add an additional sync call to the modified library which brings the linked list up-to-date

and returns the last offset in the list to the application. The application is required to call this

sync function before issuing readnext calls to ensure linearizable semantics for the stream,

but can also make periodic, proactive sync calls to amortize the cost of keeping the linked

list updated.

Failure Handling: Our modification of Corfu has a fault-tolerance implication;

unlike the original protocol, we can no longer tolerate the existence of multiple sequencers,

since this can result in clients obtaining and storing different, conflicting sets of backpointers

for the same stream. To ensure that this case cannot occur, we modified reconfiguration in

65

Corfu to include the sequencer as a first-class member of the ‘projection’ or membership

view. When the sequencer fails, the system is reconfigured to a new view with a different

sequencer, using the same protocol used by Corfu to eject failed storage nodes. Any client

attempting to write to a storage node after obtaining an offset from the old sequencer will

receive an error message, forcing it to update its view and switch to the new sequencer. in

an 18-node deployment, we are able to replace a failed sequencer within 10 ms. Once a new

sequencer comes up, it has to reconstruct its backpointer state; in the current implementation,

this is done by backward on the shared log, but we plan on expediting this by having the

sequencer store periodic checkpoints in the log. The total state at the sequencer is quite

manageable; with K = 4 backpointers per stream, the space required is 12 bytes per stream,

or 12MB for 1M streams.

In addition, crashed clients can create holes in the log if they obtain an offset from

the sequencer and then fail before writing to the storage units. In conventional Corfu, any

client can use the fill call to patch a hole with a junk value. Junk values are problematic for

streaming Corfu since they do not contain backpointers. When the client-side library strides

through the backpointers to populate or update its metadata for a stream, it has to stop if all

K relative backpointers from a particular offset lead to junk entries (or all K
4 backpointers in

the absolute backpointer format). In our current implementation, a client in this situation

resorts to scanning the log backwards to find an earlier valid entry for the stream.

4.2 Materialized Streams

vCorfu implements a shared log abstraction that removes the overhead and limita-

tions of shared logs, enabling playback that does not force a client to playback potentially

irrelevant updates. vCorfu virtualizes the log using a novel technique called stream materi-

alization. Unlike streams in Tango, which are merely tags within a shared log, materialized

streams are a first class abstraction which supports random and bulk reads just like scattered

66

�
� �

�

 

Log Replicas (§3.1)
Even Odd

Stream Replicas (§3.1)
 A-M N-Z

 

�

Sequencer (§3)

�

Layout (§3)

�
Runtime (§4.1)

�
�

�
�

Remote Views (§4.2)

�
�

Local Views (§4.2)

vCorfu
Stream

Protocol (§3)

�
�
�
�

CSMR (§5)

�

vCorfu Clients vCorfu Stream Store

Figure 4.2. Stream Virtualization Architecture. The architecture of vCorfu. Solid lines
highlight the write path, while dotted lines highlight the read path. Thin lines indicate

control operations outside of the I/O path.

67

(c) NoSQL Data Store

(a) Operations (b) table


alice → 6pm


alice → 6pm


nancy → 3pm


nancy → 3pm

Replicas →

Partition(user)
A-M N-Z

0) log(alice, 6am)
1) log(nancy, 8am)
2) log(nancy, 3pm)
3) log(alice, 6pm)


0) alice, 6am
2) nancy, 3pm


0) alice, 6am
2) nancy, 3pm


1) nancy, 8am
3) alice, 6pm


1) nancy, 8am
3) alice, 6pm

Partition(update)
Even (mod 0) Odd (mod 1)

(d) Corfu / Tango


0) alice, 6am
2) nancy, 3pm


0) alice, 6am
3) alice, 6pm


1) nancy, 8am
3) alice, 6pm


1) nancy, 8am
2) nancy, 3pm

Partition(update)
Even (mod 0) Odd (mod 1)

Partition(stream)
 A-M N-Z

(e) vCorfu

user

alice
nancy

last_login

6pm
3pm

Figure 4.3. Stream Materialization Physical Layout. Physical layout of (a) operations on a
(b) table stored in a

(c) NOSQL data store (d) distributed, shared log and (e) vCorfu.

logs like Kafka [34] and Kinesis [80], but with all the consistency benefits of a shared log

like Corfu [13] and Tango [16].

The vCorfu stream store architecture is shown in Figure 4.2. In vCorfu, data are

written to materialized streams, and data entries receive monotonically increasing tokens on

both a global log and on individual streams from a sequencer server. The sequencer can

issue tokens conditionally to enable fast optimistic transaction resolution, as described in

Chapter 5. vCorfu writes data in the form of updates to both log replicas and stream replicas,

each of which are indexed differently. This design replicates data for durability, but enables

access to that data with different keys, similar to Replex [74]. The advantage is that clients

can directly read the latest version of a stream simply by contacting the stream replica.

A layout service maintains the mapping from log and stream addresses to replicas.

Log replicas and stream replicas in vCorfu contain different sets of updates, as shown in

68

Table 4.1. Core vCorfu Operations. Core operations supported by the vCorfu shared log.

Operation Description
read(address) Get the data stored at a particular address or

list of addresses.
read(stream, Read from a stream at a particular
address) address or list of addresses.

append(stream, Append data to a given
address, data) address on a particular stream.

check(stream) Get the last address written to on a particular
stream.

trim(stream, Release all entries with
address, prefix) address < pre f ix.

fillhole(address) Invoke the hole-filling protocol for address.

Figure 4.3. The log replicas store updates by their (global) log offset, while the stream

replicas by their stream offsets. The replication protocol in vCorfu dynamically builds

replication chains based on the global log offset, the streams which are written to, and

the streams offsets. Subsequent sections consider the design and implementation of the

vCorfu streams in more detail.

vCorfu is elastic and scalable: replicas may be added or removed from the system at

any time. The sequencer, because it merely issues tokens, does not become an I/O bottleneck.

Reconfiguration is triggered simply by changing the active layout. Finally, vCorfu is fault

tolerant - data which is stored in vCorfu can tolerate a limited number of failures based on

the arrangement and number of replicas in the system, and recovery is handled similar to

the mechanism in Replex [74]. Generally, vCorfucan tolerate the failures as long as a log

replica and stream replica do not fail simultaneously. Stream replicas can be reconstructed

from the aggregate of the log replicas, and log replicas can be reconstructed by scanning

through all stream replicas.

Operationally, stream materialization divides a single global log into materialized

streams, which support logging operations: append, random and bulk reads, trim, check

and fillhole; the full API is shown in Table 4.1. Each materialized stream maps to an object

69

1 {
2 "sequencers": 10.0.0.1,
3 "segments": {
4 "start" : 0,
5 "log" : [[10.0.1.1], [10.0.1.2]],
6 "stream" : [[10.0.2.1], [10.0.2.2]]
7 }
8 }

Figure 4.4. Stream Materialization Physical Layout Description. An example layout.
Updates are partitioned by their stream id and the log offset; a simple partitioning function
mods these values with respect to the number of replicas. For example, an update to stream
0 at log offset 1 would be written to 10.0.1.2 and 10.0.2.1, while an update to stream 1 at

log offset 3 would be written to 10.0.1.2 and 10.0.2.2.

in vCorfu, and each materialized stream stores an ordered history of modifications to that

object, following the state machine replication [70] paradigm.

4.2.1 Fully Elastic Layout

In vCorfu, a mapping called a layout describes how offsets in the global log or in a

given materialized stream map to replicas. A vCorfu client runtime must obtain a copy of the

most current layout to determine which replica(s) to interact with. Each layout is stamped

with an epoch number. Replicas will reject requests from clients with a stale epoch. A

Paxos-based protocol [49] ensures that all replicas agree on the current layout. An example

layout is shown in Figure 4.4. Layouts work like leases on the log: a client request with the

wrong layout (and wrong epoch number) will be rejected by replicas. The layout enables

clients to safely contact a stream replica directly for the latest update to a stream.

4.2.2 Appending To VCorfu materialized Streams

A client appending to a materialized stream (or streams) first obtains the current

layout and makes a request to the sequencer with a stream id. The sequencer returns both a

70

log token, which is a pointer to the next address in the global log, and a stream token, which

is a pointer to the next address in the stream. Using these tokens and the layout, the client

determines the set of replicas to write to.

In contrast to traditional designs, replica sets in vCorfu are dynamically arranged

during appends. For fault tolerance, each entry is replicated on two replica types: the first

indexed by the address in the log (the log replica), and the second by the combination of the

stream id and the stream address (the stream replica). To perform a write, the client writes

to the log replica first, then to the stream replica. If a replica previously accepted a write to

a given address, the write is rejected and the client must retry with a new log token. Once

the client writes to both replicas, it commits the write by broadcasting a commit message to

each replica it accessed (except the final replica, since the final write is already committed).

Replicas will only serve reads for committed data. The write path of a client, which takes

four roundtrips in normal operation is shown in Figure 4.5. A server-driven variant where

the log replica writes to the stream replica takes 6 messages; we leave implementation of

this variant for future work.

4.2.3 Atomically Appending To Multiple Streams

The primary benefit of materialized streams is that they provide an abstraction of

independent logs while maintaining a total global order over all appends. This enables

vCorfu to support atomic writes across streams, which form the basic building block for

supporting transactions.

To append to multiple streams atomically, the client obtains a log token and stream

tokens for each materialized stream it wishes to append to. The client first writes to the

log replica using the log token. Then, the client writes to the stream replica of each stream

(multiple streams mapped to the same replica are written together so each replica is visited

only once). The client then sends a commit message to each participating replica (the

71

 

Log Replicas
Even (mod 0) Odd (mod 1)

Stream Replicas
 A-M N-Z

 

�

Sequencer

�
1a ▶ nextToken(“a”)

global = 4, “a” = 1 ◀ 1b

2a ▶ write(4 , data)

ok ◀ 2b

3a ▶ write(“a”, 1, data, commit)
ok ◀ 3b

4a ▶ commit(4)

ok ◀ 4b

Figure 4.5. Stream Materialization Write Path. Normal write path of a vCorfu log write,
which takes four roundtrips: one for token acquisition, two for writing to each replica, and

one to send a commit message to the log replica.

commit and write are combined for the last replica in the chain). The resulting write is

ordered in the log by a single log token, but multiple stream tokens.

4.2.4 Properties Of The vCorfu Stream Store

Materialized strreams are a first class abstraction in vCorfu, unlike streams in

Tango [16] which are merely tags within a shared log. Materialized streams strike a

balance that combines the global consistency advantages of shared logs with the locality

advantages of distributed data platforms. Specifically, the following properties enable

vCorfu materialized streamsto effectively support state machine replication at scale:

The global log is a single source of scalability, consistency, durability and history.

One may wonder, why have log replicas at all, if all we care to read from are materialized

streams? First, the global log provides a convenient, scalable mechanism to obtain a

72

consistent snapshot of the entire system. This can be used to execute long running read-only

transactions, a key part of many analytics workloads, or a backup utility could constantly

scan the log and move it to cold storage. Second, the log provides us with a unique level of

fault tolerance - even if all the stream replicas were to fail, vCorfu can fall back to using the

log replicas only, continuing to service requests.

Materialized streams are true virtual logs, unlike streams. Tango streams enable

clients to selectively consume a set of updates in a shared log. Clients read sequentially from

streams using a readNext() call, which returns the next entry in the stream. Tango clients

cannot randomly read from anywhere in stream because streams are implemented using a

technique called backpointers: each entry in a stream points to the previous entry, inducing a

requirement for sequential traveral. Materializing the stream removes this restriction: since

clients have access to a replica which contains all the updates for a given stream, clients can

perform all the functions they would call on a log, including a random read given a stream

address, or a bulk read of an entire stream. This support is essential if clients randomly read

from different streams, as backpointers would require reading each stream from the tail in

order.

vCorfu avoids backpointers, which pose performance, concurrency and recovery

issues. Backpointers can result in performance degradation when concurrent clients are writ-

ing to the log and a timeout occurs, causing a hole filling protocol to be invoked [13]. Since

holes have no backpointers, timeouts force a linear scan of the log, with a cost proportional

to the number of streams in the log. Tango mitigates this problem by keeping the number

of streams low and storing multiple backpointers, which has significant overhead because

both the log and the sequencer must store these backpointers. Furthermore, backpointers

significantly complicate recovery: if the sequencer fails, the entire log must be read to

determine the most recent writes to each stream. vCorfu instead relies on stream replicas,

which contain a complete copy of updates for each stream, resorting to a single backpointer

73

only when stream replicas fail. Sequencer recovery is fast, since stream replicas can be

queried for the most recent update.

Stream replicas may handle playback and directly serve requests. In most shared log

designs, clients must consume updates, which are distributed and sharded for performance.

The log itself cannot directly serve requests because no single storage unit for the log

contains all the updates necessary to service a request. Stream replicas in vCorfu, however,

contain all the updates for a particular stream, so a stream replica can playback updates

locally and directly service requests to clients, a departure from the traditional client-driven

shared log paradigm. This removes the burden of playback from clients and avoids the

playback bottleneck of previous shared log designs [16, 17].

Garbage collection is greatly simplified. In Tango, clients cannot trim (release entries

for garbage collection) streams directly. Instead, they must read the stream to determine

which log addresses should be released, and issue trim calls for each log address, which

can be a costly operation if many entries are to be released. In vCorfu, clients issue trim

commands to stream replicas, which release storage locally and issue trim commands to

the global log. Clients may also delegate the task of garbage collection directly to a stream

replica.

4.3 Summary

In this chapter, we discussed two techniques to virtualize the log: backpointers and

stream materialization. Backpointers are a straightforward approach to virtualizing the log,

requiring only that the sequencer be modified to keep track of the latest token issued for each

virtualized log (stream), in addition to a global token. Entries in each stream contain pointers

back to the previous entry, which is generated from the modified sequencer. An entry can

belong to multiple streams, forming the basis for transactions. However, backpointers suffer

from slow initial reads, since every entry needs to be read before the stream can be read

74

from, and clients cannot do a bulk read, since each backpointer needs to be traversed in

order. Materialized streams, through a radical change in the replication protocol of the Corfu

log, enable fast random reads and bulk reads by placing log entries which belong to the

same st ream on the same logging unit.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

75

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

76

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter 5

Distributed Objects

While the Corfu log provides a scalable fabric for consistency, programmers need

more than just a shared log abstraction to write reliable distributed programs. This chapter

introduces the rich, object-oriented data services provided by Corfu. Instead of forcing

programmers to produce and consume entries on the log, the distributed objects provided

by Corfu enables applications to use the log by interacting with in-memory objects which

are similar to common in-memory data structures used today (such as a Java HashMap or

SkipList). In addition to supporting in-memory objects, Corfu also supports transactions,

which enable applications to access and modify multiple objects consistently. Finally,

materialized streams enable local playback of the log, which enable thousands of clients to

consume the log simultaneously.

Section 5.1 describes an early version of Corfu distributed objects without advanced

language support written in C++, while Section 5.3 onwards explores the newest iteration

of Corfu with full language support written in Java. In addition, Section 5.2 describes how

transactions in Corfu were originally handled, while Section 5.3.3 describes a simplification

of the transaction system in Corfu with a simple modification to the sequencer.

77

78

1 class CorfuRegister {
2 int oid;
3 CorfuRuntime *T;
4 int state;
5 void apply(void *X) {
6 state = *(int *)X;
7 }
8 void writeRegister(int newstate){
9 T->update_helper (&newstate ,

10 sizeof(int), oid);
11 }
12 int readRegister () {
13 T->query_helper(oid);
14 return state;
15 }
16 }

Figure 5.1. CorfuRegister Code Example. CorfuRegister: a linearizable, highly available
and persistent register. Corfu functions/upcalls in bold.

5.1 State Machine Replication On A Shared Log

A Corfu application is typically a service running in a cloud environment as a part of

a larger distributed system, managing metadata such as indices, namespaces, membership,

locks, or resource lists. Application code executes on clients (which are compute nodes or

application servers in a data center) and manipulates data stored in Corfu objects, typically in

response to networked requests from machines belonging to other services and subsystems.

The local view of the object on each client interacts with a Corfu runtime, which in turn

provides persistence and consistency by issuing appends and reads to an underlying shared

log. Importantly, Corfu runtimes on different machines do not communicate with each other

directly through message-passing; all interaction occurs via the shared log. Applications

can use a standard set of objects provided by Corfu, providing interfaces similar to the Java

Collections library or the C++ STL; alternatively, application developers can roll their own

Corfu objects.

79

5.1.1 Anatomy Of A Corfu Object

As described earlier, a Corfu object is a replicated in-memory data structure backed

by a shared log. The Corfu runtime simplifies the construction of such an object by providing

the following API:

• update_helper: this accepts an opaque buffer from the object and appends it to the

shared log.

• query_helper: this reads new entries from the shared log and provides them to the

object via an apply upcall.

The code for the Corfu object itself has three main components. First, it contains the

view, which is an in-memory representation of the object in some form, such as a list or a

map; in the example of a CorfuRegister shown in Figure 5.1, this state is a single integer.

Second, it implements the mandatory apply upcall which changes the view when the Corfu

runtime calls it with new entries from the log. The view must be modified only by the Corfu

runtime via this apply upcall, and not by application threads executing arbitrary methods of

the object.

Finally, each object exposes an external interface consisting of object-specific muta-

tor and accessor methods; for example, a CorfuMap might expose get/put methods, while

the CorfuRegister in Figure 5.1 exposes read/write methods. The object’s mutators do not

directly change the in-memory state of the object, nor do the accessors immediately read

its state. Instead, each mutator coalesces its parameters into an opaque buffer – an update

record – and calls the update_helper function of the Corfu runtime, which appends it

to the shared log. Each accessor first calls query_helper before returning an arbitrary

function over the state of the object; within the Corfu runtime, query_helper plays new

update records in the shared log until its current tail and applies them to the object via the

apply upcall before returning.

80

We now explain how this simple design extracts important properties from the

underlying shared log.

Consistency: Based on our description thus far, a Corfu object is indistinguishable

from a conventional SMR (state machine replication) object. As in SMR, different views of

the object derive consistency by funneling all updates through a total ordering engine (in

our case, the shared log). As in SMR, strongly consistent accessors are implemented by first

placing a marker at the current position in the total order and then ensuring that the view has

seen all updates until that marker. In conventional SMR this is usually done by injecting a

read operation into the total order, or by directing the read request through the leader [21];

in our case we leverage the check function of the log. Accordingly, a Corfu object with

multiple views on different machines provides linearizable semantics for invocations of its

mutators and accessors.

Durability: A Corfu object is trivially persistent; the state of the object can be

reconstructed by simply creating a new instance and calling query_helper on Corfu. A

more subtle point is that the in-memory data structure of the object can contain pointers

to values stored in the shared log, effectively turning the data structure into an index over

log-structured storage. To facilitate this, each Corfu object is given direct, read-only access

to its underlying shared log, and the apply upcall optionally provides the offset in the log of

the new update. For example, a CorfuMap can update its internal hash-map with the offset

rather than the value on each apply upcall; on a subsequent get, it can consult the hash-map

to locate the offset and then directly issue a random read to the shared log.

History: Since all updates are stored in the shared log, the state of the object can be

rolled back to any point in its history simply by creating a new instance and syncing with

the appropriate prefix of the log. To enable this, the Corfu query_helper interface takes

an optional parameter that specifies the offset at which to stop syncing. To optimize this

process in cases where the view is small (e.g., a single integer in CorfuRegister), the Corfu

81

object can create checkpoints and provide them to Corfu via a checkpoint call. Internally,

Corfu stores these checkpoints on a separate shared log and accesses them when required

on query_helper calls. Additionally, the object can forgo the ability to roll back (or index

into the log) before a checkpoint with a forget call, which allows Corfu to trim the log and

reclaim storage capacity.

The Corfu design enables other useful properties. Strongly consistent read through-

put can be scaled simply by instantiating more views of the object on new clients. More

reads translate into more check and read operations on the shared log, and scale linearly until

the log is saturated. Additionally, objects with different in-memory data structures can share

the same data on the log. For example, a namespace can be represented by different trees,

one ordered on the filename and the other on a directory hierarchy, allowing applications to

perform two types of queries efficiently (i.e., “list all files starting with the letter B” vs. “list

all files in this directory”).

5.1.2 Multiple Objects In Corfu

We now substantiate our earlier claim that storing multiple objects on a single shared

log enables strongly consistent operations across them without requiring complex distributed

protocols. The Corfu runtime on each client can multiplex the log across objects by storing

and checking a unique object ID (OID) on each entry; such a scheme has the drawback that

every client has to play every entry in the shared log. For now, we make the assumption that

each client hosts views for all objects in the system. Later in the paper, we describe layered

partitioning, which enables strongly consistent operations across objects without requiring

each object to be hosted by each client, and without requiring each client to consume the

entire shared log.

Many strongly consistent operations that are difficult to achieve in conventional

distributed systems are trivial over a shared log. Applications can perform coordinated

82

rollbacks or take consistent snapshots across many objects simply by creating views of

each object synced up to the same offset in the shared log. This can be a key capability if

a system has to be restored to an earlier state after a cascading corruption event. Another

trivially achieved capability is remote mirroring; application state can be asynchronously

mirrored to remote data centers by having a process at the remote site play the log and copy

its contents. Since log order is maintained, the mirror is guaranteed to represent a consistent,

system-wide snapshot of the primary at some point in the past. In Corfu, all these operations

are implemented via simple appends and reads on the shared log.

Corfu goes one step further and leverages the shared log to provide transactions

within and across objects. It implements optimistic concurrency control by appending

speculative transaction commit records to the shared log. Commit records ensure atomicity,

since they determine a point in the persistent total ordering at which the changes that occur

in a transaction can be made visible at all clients. To provide isolation, each commit record

contains a read set: a list of objects read by the transaction along with their versions, where

the version is simply the last offset in the shared log that modified the object. A transaction

only succeeds if none of its reads are stale when the commit record is encountered (i.e., the

objects have not changed since they were read). As a result, Corfu provides serializability

with external consistency [27] for transactions across objects.

5.2 Transactions Over Objects

Corfu uses streams in an obvious way: each Corfu object is assigned its own

dedicated stream. If transactions never cross object boundaries, no further changes are

required to the Corfu runtime. When transactions cross object boundaries, Corfu changes

the behavior of its EndTX call to multiappend the commit record to all the streams involved

in the write set. This scheme ensures two important properties required for atomicity and

isolation. First, a transaction that affects multiple objects occupies a single position in the

83

T->BeginTX();

curowner = owners->get(ledgerid);

if(curowner->equals(myname))

ledger->add(item);

status = T->EndTX();

1 2 3 4 5 6

conflict window

commit record:
reads: (owners#1)
writes: (ledger#2)

speculative
update at #2

updates by
other clients

TX commits if read-set has not
changed in conflict window

TX start pos = #1

Figure 5.2. CorfuMap And A CorfuList Transactions Example. Example of a single-writer
ledger built with transactions over a CorfuMap and a CorfuList.

84

global ordering; in other words, there is only one commit record per transaction in the raw

shared log. Second, a client hosting an object sees every transaction that impacts the object,

even if it hosts no other objects.

When a commit record is appended to multiple streams, each Corfu runtime can

encounter it multiple times, once in each stream it plays (under the hood, the streaming layer

fetches the entry once from the shared log and caches it). The first time it encounters the

record at a position X, it plays all the streams involved until position X, ensuring that it has

a consistent snapshot of all the objects touched by the transaction as of X. It then checks for

read conflicts (as in the single-object case) and determines the commit/abort decision.

When each client does not host a view for every object in the system, writes or reads

can involve objects that are not locally hosted at either the client that generates the commit

record or the client that encounters it. We examine each of these cases:

A. Remote writes at the generating client: The generating client – i.e., the client that

executed the transaction and created the commit record – may want to write to a remote

object (i.e., an object for which it does not host a local view). This case is easy to handle;

as we describe later, a client does not need to play a stream to append to it, and hence the

generating client can simply append the commit record to the stream of the remote object.

B. Remote writes at the consuming client: A client may encounter commit records

generated by other clients that involve writes to objects it does not host; in this case, it

simply updates its local objects while ignoring updates to the remote objects.

Remote-write transactions are an important capability. Applications that partition

their state across multiple objects can now consistently move items from one partition to

the other. In our evaluation, we implement Apache ZooKeeper as a Corfu object, create

a partitioned namespace by running multiple instances of it, and move keys from one

namespace to the other using remote-write transactions. Another example is a producer-

consumer queue; with remote-write transactions, the producer can add new items to the

85

decision
record

App2 learns TX
status without
playing A

commit
record

A
A

A
A

A A

C C C

BeginTX
A->read();
C->write();
EndTX

A
sk
ip

C
sk
ip

A C A
sk
ip

C C

C C C

sk
ip

B C B
sk
ip

C
sk
ip

B C C

B B

B B

B B

Plays streams A and C, skips B Plays streams B and C, skips A

App1 App2

Figure 5.3. Transactions over Streams Example. Transactions over streams: decision
records allow clients to learn about a transaction’s status without hosting its read set.

queue without having to locally host it and see all its updates.

C. Remote reads at the consuming client: Here, a client encounters commit records

generated by other clients that involve reads to objects it does not host; in this case, it does

not have the information required to make a commit/abort decision since it has no local copy

of the object to check the read version against. To resolve this problem, we add an extra

round to the conflict resolution process, as shown in Figure 5.3. The client that generates

and appends the commit record (App1 in the figure) immediately plays the log forward until

the commit point, makes a commit/abort decision for the record it just appended, and then

appends an extra decision record to the same set of streams. Other clients that encounter

the commit record (App2 in the figure) but do not have locally hosted copies of the objects

involved can now wait for this decision record to arrive.

Since decision records are only needed for this particular case, the Corfu object

interface described in Section 5.1 is extended with an isShared function, which is invoked

86

by the Tango runtime and must return true if decision records are required. Significantly,

the extra phase adds latency to the transaction but does not increase the abort rate, since the

conflict window for the transaction is still the span in the shared log between the reads and

the commit record.

D. Remote reads at the generating client: Corfu does not currently allow a client

to execute transactions and generate commit records involving remote reads. Calling an

accessor on an object that does not have a local view is problematic, since the data does not

exist locally; possible solutions involve invoking an RPC to a different client with a view of

the object, if one exists, or recreating the view locally at the beginning of the transaction,

which can be too expensive. If we do issue RPCs to other clients, conflict resolution becomes

problematic; the node that generated the commit record does not have local views of the

objects read by it and hence cannot check their latest versions to find read-write conflicts.

As a result, conflict resolution requires a more complex, collaborative protocol involving

multiple clients sharing partial, local commit/abort decisions via the shared log; we plan to

explore this as future work.

A second limitation is that a single transaction can only write to a fixed number

of Corfu objects. The multiappend call places a limit on the number of streams to which

a single entry can be appended. As we will see in the next section, this limit is set at

deployment time and translates to storage overhead within each log entry, with each extra

stream requiring 12 to 20 bytes of space in a 1KB to 4KB log entry.

Failure Handling: The decision record mechanism described above adds a new

failure mode to Tango: a client can crash after appending a commit record but before

appending the corresponding decision record. A key point to note, however, is that the extra

decision phase is merely an optimization; the shared log already contains all the information

required to make the commit/abort decision. Any other client that hosts the read set of the

transaction can insert a decision record after a time-out if it encounters an orphaned commit

87

record. If no such client exists and a larger time-out expires, any client in the system can

reconstruct local views of each object in the read set synced up to the commit offset and

then check for conflicts.

5.3 Language Support For Distributed Objects

vCorfupresents itself as an object store to applications. Developers interact with

objects stored in vCorfu and a client library, which we refer to as the vCorfu runtime,

provides consistency and durability by manipulating and appending to the vCorfu stream

store. Today, the vCorfu runtime supports Java, but we envision supporting many other

languages in the future.

The vCorfu runtime is inspired by the Tango [16] runtime, which provides a similar

distributed object abstraction in C++. On top of the features provided by Tango, such as

linearizable reads and transactions, vCorfu leverages Java language features which greatly

simplify writing vCorfu objects. Developers may store arbitrary Java objects in vCorfu, we

only require that the developer provide a serialization method and to annotate the object to

indicate which methods read or mutate the object, as shown in Figure 5.4.

Like Tango, vCorfu fully supports transactions over objects with stronger semantics

than most distributed data stores, thanks to inexpensive global snapshots provided by the log.

In addition, vCorfualso supports transactions involving objects not in the runtime’s local

memory (case D, §4.1 in [16]), opacity [36], which ensures that transactions never observe

inconsistent state, and read-own-writes which greatly simplifies concurrent programming.

Unlike Tango, the vCorfu runtime never needs to resolve whether transactional entries in

the log have succeeded thanks to a lightweight transaction mechanism provided by the

sequencer.

88

1 class User {
2 String name; String password;
3 DateTime lastLogin; DateTime lastLogout;
4

5 @Accessor
6 public String getName () {
7 return name;}
8

9 @MutatorAccessor
10 public boolean login(String pass , DateTime time) {
11 if (password.equals(pass)) {
12 lastLogin = time;
13 return true;}
14 return false;}
15

16 @Mutator
17 public void logout(DateTime time) {
18 lastLogout = time ;}}

Figure 5.4. vCorfu Object Example. A Java object stored in vCorfu. @Mutator indicates
that the method modifies the object, @Accessor indicates the method reads the object, and

@MutatorAccessor indicates the object reads and modifies the object.

89

5.3.1 VCorfu Runtime

To interact with vCorfu as an object store, clients load the vCorfu runtime, a library

which manages interactions with the vCorfu stream store. Developers never interact with

the log directly, instead, the runtime manipulates the log whenever an object is accessed or

modified. The runtime provides each client with a view of objects stored in vCorfu, and

these views are synchronized through the vCorfustream store.

The runtime provides three simple functions to clients: open(), which retrieves

a new in-memory view of an object stored in the log, TXbegin(), which starts a new

transaction, and TXend(), which ends and commits a transaction.

5.3.2 VCorfu Objects

As we described earlier, vCorfu objects can be arbitrary Java objects such as the one

shown in Figure 5.4. Objects map to a stream, which stores updates to that object.

Like many shared log systems, we use state machine replication (SMR) [49] to

provide strongly consistent accesses to objects. When a method annotated with @Mutator

or @MutatorAccessor is called, the runtime serializes the method call and appends it to

the objects’ stream first. When an @Accessor or @MutatorAccessor is called, the runtime

reads all the updates to that stream, and applies those updates to the object’s state before

returning. In order for SMR to work, each mutator must be deterministic (a call to random()

or new Date() is not supported). Many method calls can be easily refactored to take

non-deterministic calls as a parameter, as shown in the login method in Figure 5.4.

The SMR technique extracts several important properties from the vCorfu stream

store. First, the log acts as a source of consistency: every change to an object is totally

ordered by the sequencer, and every access to an object reflects all updates which happen

before it. Second, the log is a source of durability, since every object can be reconstructed

90

simply by playing back all the updates in the log. Finally, the log is a source of history, as

previous versions of the object can be obtained by limiting playback to the desired position.

Each object can be referred to by the id of the stream it is stored in. Stream ids are

128 bits, and we provide a standardized hash function so that objects can be stored using

human-readable strings (i.e., “person-1”).

vCorfu clients call open() with the stream id and an object type to obtain a view

of that object. The client also specifies whether the view should be local, which means

that the object state is stored in-memory locally, or remote, which means that the stream

replica will store the state and apply updates remotely (this is enabled by the remote class

loading feature of Java). Local views are similar to objects in Tango [16] and especially

powerful when the client will read an object frequently throughout the lifespan of a view: if

the object has not changed, the runtime only performs a quick check() call to verify no

other client has modified the object, and if it has, the runtime applies the relevant updates.

Remote views, on the other hand, are useful when accesses are infrequent, the state of the

object is large, or when there are many remote updates to the object - instead of having to

playback and store the state of the object in-memory, the runtime simply delegates to the

stream replica, which services the request with the same consistency as a local view. To

ensure that it can rapidly service requests, the stream replicas generate periodic checkpoints.

Finally, the client can optionally specify a maximum position to open the view to, which

enables the client to access the history, version or snapshot of an object. Clients may have

multiple views of the same object: for example, a client may have a local view of the present

state of the object with a remote view of a past version of the object, enabling the client to

operate against a snapshot.

91

5.3.3 Transactions In vCorfu

Transactions enable developers to issue multiple operations which either succeed or

fail atomically. Transactions are a pain point for partitioned data stores since a transaction

may span across multiple partitions, requiring locking or schemes such as 2PL [63] or

MVCC [18] to achieve consistency.

vCorfu leverages atomic multi-stream appends and global snapshots provided by the

log, and exploits the sequencer as a lightweight transaction manager. Transaction execution

is optimistic, similar to transactions in shared log systems [16, 17], which leverage the total

ordering provided by the log. However, since our sequencer supports conditional token

issuance, we avoid polluting the log with transactional aborts.

To execute a transaction, a client informs the runtime that it wishes to enter a

transactional context by calling TXBegin(). The client obtains the most recently issued log

token once from the sequencer and begins optimistic execution by modifying reads to read

from a snapshot at that point. Writes are buffered into a write buffer. When the client ends

the transaction by calling TXEnd(), the client checks if there are any writes in the write

buffer. If there are not, then the client has successfully executed a read-only transaction and

ends transactional execution. If there are writes in the write buffer, the client informs the

sequencer of the log token it used and the streams which will be affected by the transaction.

If the streams have not changed, the sequencer issues log and stream tokens to the client,

which commits the transaction by writing the write buffer. Otherwise, the sequencer issues

no token and the transaction is aborted by the client without writing an entry into the log.

This important optimization ensures only committed entries are written to the log, so that

when a client encounters a transactional commit entry, it may treat it as any other update.

In other shared log systems [16, 17, 78], each client must determine whether a commit

record succeeds or aborts, either by running the transaction locally or looking for a decision

record. In vCorfu, we have designed transactional support to be as general as possible

92

and to minimize the amount of work that clients must perform to determine the result of a

transaction. We treat each object as an opaque object, since fine-grained conflict resolution

(for example, determining if two updates to different keys in a map conflict) would either

require the client resolve conflicts or a much more heavyweight sequencer.

Opacity is ensured by always operating against the same global snapshot, leveraging

the history provided by the log. Opacity [36] is a stronger guarantee than strict serializability

as opacity prevents programmers from observing inconsistent state (e.g, a divide by zero

error when system invariants prevent such a state from occuring). Since global snapshots

are expensive in partitioned systems, these systems [1, 2, 3, 59] typically provide only a

weaker guarantee, allowing programs to observe inconsistent state but guaranteeing that such

transactions will be aborted. Read-own-writes is another property which vCorfu provides:

transactional reads will also apply any writes in the write buffer. Many other systems [1, 16,

59] do not provide this property since it requires writes to be applied to data items. The SMR

paradigm, however, enables vCorfu to generate the result of a write in-memory, simplifying

transactional programming.

vCorfu fully supports nested transactions, where a transaction may begin and end

within a transaction. Whenever transaction nesting occurs, vCorfu buffers each transaction’s

write set and the transaction takes the timestamp of the outermost transaction.

5.3.4 Querying Objects

vCorfusupports several mechanisms for finding and retrieving objects. First, a

developer can use vCorfu like a traditional key-value store just by using the stream id for

object as a key. We also support a much richer query model: a set of collections, which

resemble the Java collections are provided for programmers to store and access objects in.

These collections are objects just like any other vCorfu object, so developers are free to

implement their own collection. Developers can take advantage of multiple views on the

93

1 class CSMRMap <K,V> implements Map <K,V> {
2 final int numBuckets;
3

4 int getChildNumber(Object k) {
5 int hashCode = lubyRackoff(k.hashCode ());
6 return Math.abs(hashCode % numBuckets);}
7

8 SMRMap <K,V> getChild(int partition) {
9 return open(getStreamID () + partition);}

10

11 V get(K key) {
12 return getChild(getChildNumber(key)).get(key);}
13

14 @TransactionalMethod(readOnly = true)
15 int size() {
16 int total = 0;
17 for (int i = 0; i < numBuckets; i++) {
18 total += getChild(i).size();}
19 return total;}
20

21 @TransactionalMethod
22 void clear() {
23 for (int i = 0; i < numBuckets; i++) {
24 total += getChild(i).clear();}}}

Figure 5.5. CSMR Java Map example. A CSMR Java Map in vCorfu.
@TransactionalMethod indicates that the method touches multiple objects and must be

executed transactionally.

same collection: for instance a List can be viewed as a Queue or a Stack simultaneously.

Some of the collections we provide include a List, Queue, Stack, Map, and RangeMap.

Collections, however, tend to be very large objects which are highly contended. In

the next section, we discuss composable state machine replication, a technique which allows

vCorfu to build a collection out of multiple objects.

94

5.4 Composable State Machine Replication

In vCorfu, objects may be composed of other objects, a technique which we refer to

as composable state machine replication (CSMR). The simplest example of CSMR is a hash

map composed of multiple hash maps, but much more sophisticated objects can be created.

Composing SMR objects has several important advantages. First, CSMR divides

the state of a single object into several smaller objects, which reduces the amount of state

stored at each materialized stream. Second, smaller objects reduce contention and false

sharing, providing for higher concurrency. Finally, CSMR resembles how data structures are

constructed in memory - this allows us to apply standard data structure principles to vCorfu.

For example, a B-tree constructed using CSMR would result in a structure with O(logn)

time complexity for search, insert and delete operations. This opens a plethora of familiar

data structures to developers.

Programmers manipulate CSMR objects just as they would any other vCorfu object.

A CSMR object starts with a base object, which defines the interface that a developer will

use to access the object. An example of a CSMR hash map is shown in Figure 5.5. The

base object manipulates child objects, which usually store the actual data. Child objects may

just reuse standard vCorfu objects, like a hash map, or they may be custom-tailored for the

CSMR object, like a B-tree node.

In the example CSMR map shown in Figure 5.5, the object shown is the base

object and the child objects are standard SMR maps (backed by a hash map). The num-

ber of buckets is set at creation time in the numBuckets variable. Two helper functions,

getChildNumber() and getChild() help the base object locate child objects determinis-

tically. In our CSMR map, we use the Luby-Rakoff [57] algorithm to obtain an improved

key distribution over the standard Java hashCode() function. Most operations such as

get and put operate as before, and the base object needs to only select the correct child

95

to operate on. However, some operations such as size() and clear() touch all child

objects. These methods are annotated with @TransactionalObject so that under the hood,

the vCorfu runtime uses transactions to make sure objects are modified atomically and read

from a consistent snapshot. The vCorfu log provides fast access to snapshots of arbitrary

objects, and the ability to open remote views, which avoids the cost of playback, enables

clients to quickly traverse CSMR objects without reading many updates or storing large

amounts of local state.

In a more complex CSMR object, such as our CSMR B-tree, the base object and

the child object may have completely different interfaces. In the case of the B-tree, the

base object presents a map-like interface, while the child objects are nodes which contain

either keys or references to other child objects. Unlike a traditional B-tree, every node in

the CSMR B-tree is versioned like any other object in vCorfu. CSMR takes advantage of

this versioning when storing a reference to a child object: instead of storing a static pointer

to particular versions of node, as in a traditional B-tree, references in vCorfu are dynamic.

Normally, references point to the latest version of an object, but they may point to any

version during a snapshotted read, allowing the client to read a consistent version of even

the most sophisticated CSMR objects. With dynamic pointers, all pointers are implicitly

updated when an object is updated, avoiding a problem in traditional trees, where an update

to a single child node can cause an update cascade requiring all pointers up to the root to be

explicitly updated, known as the recursive update problem [85].

5.5 Evaluation

Our test system consists of sixteen 12 core machines running Linux (v4.4.0-38) with

96GB RAM and 10G NICs on each node with a single switch. The average latency between

two hosts is 0.18±0.01 ms when the system is idle. All benchmarks are done in-memory,

with persistence disabled. Due to the performance limitations and overheads from Java and

96

serialization, our system was CPU-bound and none of our tests were able to saturate the NIC

(the maximum bandwidth we achieved from a single node was 1Gb/s, with 4KB writes).

Our evaluation is driven by the following questions:

• What advantages to we obtain by materializing streams? (§ 5.5.1)

• Do remote views offer NOSQL-like performance with the global consistency of a

shared log? (§ 5.5.2)

• How does the sequencer act as a lightweight, lock-free transaction manager and offer

inexpensive read-only transactions? (§ 5.5.3)

• How does CSMR keep state machines small, while reducing contention and false

conflicts? (§ 5.5.4)

5.5.1 VCorfu Stream Store

The design of vCorfu relies on performant materialization. To show that material-

izing streams is efficient, we implement streams using backpointers in vCorfu with chain

replication, similar to the implementation described in Tango [16].

For these tests, in order to compare vCorfu with a with a chain replication-based

protocol, we use a symmetrical configuration for vCorfu, with an equal number of log

replicas and stream replicas. For the backpointer implementation, we use chain replication

(i.e., log replicas only), with two replicas per chain and two chains. Our backpointer

implementation only stores a single backpointer per entry - Tango uses 4 backpointers.

Multiple backpointers are only used to reduce the probability that a linear scan will be

required due to hole-filling and should not have an effect on our evaluation.

The primary drawback of materialization is that it requires writing a commit mes-

sage, which results in extra messages proportional to the number of streams affected. We

characterize the overhead with a microbenchmark that appends 32B entries, varying the

97

10 1K 100K

vCorfu

Streams

A
pp

en
ds

 p
er

 s
ec

on
d

0
60

K
12

0K

2 Replicas 4 Replicas 8 Replicas

10 1K 100K

Backpointers

Streams

Figure 5.6. vCorfu Replication Protocol Performance. vCorfu’s replication protocol
imposes a small penalty on writes to support stream materialization. Each run is denoted

with the number of materialized streams used.

8K 16K 80K 160K

32 Streams

Sy
nc

 L
at

en
cy

 (s
)

0
20

40
60

80

5K 10K 15K

1K Streams

Entries per stream

0
5

10
15

20

10 100 200

100K Streams

0
.0

5
.1

.1
5

.2
Figure 5.7. vCorfu Streaming Performance. vCorfu enables quick reading of streams.

Shaded bars are runs with vCorfu, while white bars represent backpointers. We test with 32,
1K and 100K streams, the number under the bars denotes the number of entries per stream.

number of streams and logging units. Figure 5.6 shows that writing a commit bit imposes

about a 40% penalty on writes, compared to a backpointer based protocol which does not

have to send commit messages. However, write throughput continues to scale as we increase

the number of replicas, so the bottleneck in both schemes is the rate in which the sequencer

can hand out tokens, not the commit protocol.

Now we highlight the power of materializing streams. Figure 5.7 shows the perfor-

mance of reading an entire stream with a varying number of 32B entries and streams in the

log. The 100K stream case uses significantly fewer entries, reflecting our expectation that

CSMR objects will increase the number of streams while decreasing the number of entries

per stream. As the number of streams and entries increase, vCorfu greatly outperforms

backpointers thanks to the ability to perform a single bulk read, whereas backpointers must

98

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of backpointer seek sizes

Number of log entries per seek

C
D

F

●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●

●
●
●

●
●
●
●
●

●
●
●

●
●

●
●
●

●
●

●
●
●

●
●

32 streams
1K streams
10K streams
100K streams
500K streams

Figure 5.8. Backpointer Implementation Performance. Distribution of the entries that a
backpointer implementation must seek through. As the number of streams increases, so
does the number of entries that must be scanned as a result of a hole. With 500k streams,

there is a 50% chance that 10k entries will have to be scanned due to a hole.

Time (s)

op
 p

er
 s

ec

0 10 20 30 40 50 60

0
20

K
40

K

●

●

Write
Read

Figure 5.9. Append and Read Throughput. Append and read throughput of a local view
during stream replica failure. On the dotted line, we fail a single stream replica. Append

throughput increases because the replication factor has now decreased, while read
throughput remains constant.

99

traverse the log backwards before being able to serve a single read.

When hole-filling occurs due to client timeouts, backpointers perform very poorly,

falling back to a scan because the hole fill does not contain backpointers resulting in a linear

scan of the log. Figure 5.8 examines the number of log entries a backpointer implementation

may have to read as a result of a hole. To populate this test, we use 256 clients which

randomly select a stream to append a 32B entry to. We then generate a hole, varying the

number of streams in the log, and measure the number of entries that the client must seek

through. The backpointer implementation cannot do bulk reads, and reading each entry

takes about 0.3 ms. The median time to read a stream with a hole takes only 210ms with

32 streams, but jumps to 14.8 and 39.6 seconds with 100K and 500k streams, respectively.

vCorfu avoids this issue altogether because stream replicas manage holes.

Finally, Figure 5.9 shows that vCorfu performance degrades gracefully when a

stream replica fails, and vCorfu switches to using the log replicas instead. We instantiate

two local views on the same object, and fail the stream replica hosting the object at t = 29.5s.

The system takes about a millisecond to detect this failure and reconfigure into degraded

mode. The append throughput almost doubles, since the replication factor has decreased

while the read throughput stays about the same, falling back to using backpointers. Since

the local view contains all the previous updates in the stream, reading the entire stream is

not necessary. If a remote view was used, however, vCorfuwould have to read the entire

stream to restore read access to the object.

5.5.2 Remote Vs. Local Views

Next, we examine the power of remote views. We first show that remote views

address the playback bottleneck: In figure 5.10, we append to a single local view and

increase the number of clients reading from their own local views. As the number of views

increases, read throughput decreases because each view must playback the stream and read

100

every update. Once read throughput is saturated readers are unable to keep up with the

updates in the system and read latency skyrockets: with just 32 clients, the read latency

jumps to above one second. With a remote view, the stream replica takes care of playback

and even with 1K clients is able to maintain read throughput and millisecond latency.

We then substantiate our claim that remote views offer performance comparable

to many NOSQLdata stores. In Figure 5.11, we run the popular Yahoo! cloud serving

benchmark with Cassandra [1] (v 2.1.9), a popular distributed key-value store, as well as the

backpointer-based implementation of vCorfu described in the previous section. In vCorfu,

we implement a key-value store using the CSMR map described in Section 5.4 with a bucket

size of 1024, and configure the system in a symmetrical configuration with 12 replicas and

a chain length of 2. Since the Java map interface returns the previous key (a read-modify-

write), we implement a special fastPut() method, which does a write without performing a

read. For Cassandra, we configure 12 nodes with a replication factor of 2, SimpleStrategy

replica placement, a consistency level of ALL and select the MurMur3Partitioner [9]. We

turn off synchronous writes to the commit log in Cassandra by setting durable_writes to

false. The workloads exercised by YCSB are described in Table 5.1. We configure YCSB

with the default 1KB entry size.

vCorfu exhibits comparable write performance to Cassandra - showing that the

overhead of the sequencer is low, since both Cassandra and vCorfu must write to two

replicas synchronously. However, for reads, Cassandra must read from both replicas in order

to not return stale updates, while vCorfu can service the read from the log replica. This

leads to significant performance degradation for Cassandra on most of the read-dominated

workloads in YCSB. In fact, even with an extra read, Cassandra does not provide the

same consistency guarantees as vCorfu as cross-partition reads in Cassandra can still be

inconsistent.

101

● ● ● ●

●

●

Number of Clients

La
te

nc
y

(s
)

1 2 4 8 16 32

● ● ● ● ● ●

●

●

LocalView
RemoteView

0
1

2

Figure 5.10. Latency of Local and Remote Views. Latency of requests under load with local
views and remote views. As the number of clients opening local views on an object

increases, so does the latency for a linearized read.

Load A B C F D E

vCorfu−Remote
Cassandra

Workload

T
hr

ou
gh

pu
t (

op
/s

ec
)

0
20

K
40

K
60

K
80

K
10

0K
12

0K
14

0K

Figure 5.11. YCSB Suite Throughput. YCSB suite throughput over 3 runs. Error bars
indicate standard deviation. Results in order executed by benchmark.

102

Table 5.1. YCSB Workloads.

Name Workload Description
Load 100% Insert Propogating Database
A 50% Read/50% Update Session Store
B 95% Read/5% Update Photo Tagging
C 100% Read User Profile Cache
D 95% Read/5% Insert User Status Updates
E 95% Scan/5% Insert Threaded Conversations
F 50% Read/50% Read-Modify User Database

● ● ● ● ●

Number of Clients

T
X

 p
er

 s
ec

1 2 4 8 16

●

●

●

●

●
●

●

LocalView
RemoteView

0
5K

10
K

Figure 5.12. Snapshot Transaction Performance. Snapshot transaction performance. The
number of snapshot transactions supported scales with the number of client views.

5.5.3 Transactions

We claimed that vCorfu supports fast efficient transactions through stream mate-

rialization and harnessing the sequencer as a fast, lightweight transaction manager. We

demonstrate this by first examining the performance of read-only transactions, and then

compare our optimistic and fast-locking transaction design to other transactional systems.

We begin our analysis of read-only transactions by running a microbenchmark to

show that snapshot transactions scale with the number of clients in vCorfu. In Figure 5.12,

we run snapshot transactions against the YCSB populated database in the previous section

with both local views and remote views. Each transaction selects a random snapshot (log

103

● ●

●

●

Number of Clients

T
X

 p
er

 s
ec

1 10 100 200

0
4K

8K

● ● ●
●

● ●

●

●

0
30

60
90

2P
L

A
bo

rt
 %●

●

●

2PL
2PL AbortRate
vCorfu

Figure 5.13. Read-Only Transactions vs 2PL. Read-only Transactions Goodput vs. 2PL.
As the number of reader clients increase, so does the abort rate for 2PL. In vCorfu, the

goodput remains 100%, since read-only transactions never conflict.

offset) to run against, and reads 3 keys. Local views suffer from having to playback the log

on each read(they currently do not utilize the snapshots generated by the stream replicas), and

can only sustain a few hundred operations per second, while remote views take advantage of

the stream replica’s ability to perform playback and sustain nearly 10K transactions/s, and

scales with the number of clients.

Next, we compare read only transactions to a 2PL approach taken by many NOSQL sys-

tems. We use the same Cassandra cluster as in the previous section with a single node

ZooKeeper lock service (v 3.4.6) and compare against vCorfu. In the 2PL case, a client

acquires locks from ZooKeeper and releases them when the transaction commits. Objects

can be locked either for read or for writes, To prevent deadlock, if a transaction cannot

acquire all locks, it releases them and aborts the transaction. We use a single writer which

selects 10 entries at random to update, and set the target write transaction rate at 5K op/s,

and populate each system with 100K objects. We then add an increasing number of reader

threads, each which read 10 entries at random. Figure 5.13 shows that as the number of

readers increase, so does the abort rate for the writer thread in the 2PL case, until at 200

concurrent readers, where the abort rate is 92% and the writer thread only can perform a few

hundred op/s. In vCorfu, read-only transactions never conflict with other transactions in the

system, so the writer throughput remains constant.

104

Time (m)

op
 p

er
 s

ec
on

d

0 5 10 15 20 25 30

0
10

K
20

K

2
6

10

La
te

nc
y

(u
s)●

●

●

●

WithoutAnalytics−TPut
WithAnalytics−TPut
WithoutAnalytics−Latency
WithAnalytics−Latency

Figure 5.14. Advertising Analytics Workload. The system exhibits consistent write
performance, even with a long-running read-only transaction.

We then evaluate vCorfuusing a benchmark which models a real-world advertising

analytics workload. In this workload, a database tracks the number of views on web pages.

Each view contains a small amount of data, including the IP address, and x,y coordinates

of each click. Each web page is modeled as an vCorfu object, and the pages views are

constantly recorded by a simulator which generates 10K page views/sec. The database tracks

a total of 10K pages. We then run a long-running analytics thread, which for 30 minutes,

runs a read-only snapshot which iterates over all the web pages, changing the snapshot it is

running against every iteration. In Figure 5.14, we show that running the analytics thread

has no impact on write throughput or latency of the system.

5.5.4 CSMR

Next, we investigate the trade-offs afforded by CSMR. One of the main benefits of

CSMR is that it divides large SMR objects into smaller SMR objects, reducing the cost

of playback, and reducing the burden on stream replicas. In figure 5.15, we compare the

performance of initializing a new view and servicing the first read on a in-memory local view

of a traditional SMR map, and a CSMR map of varying bucket sizes using 1KB entries.We

test using both a uniform key distribution and a skewed zipfian [6] distribution. In a CSMR

105

map, servicing the first read only requires reading from a single bucket, and as the number

of buckets increases, the number of updates, and the resulting in-memory state that has to be

held is reduced. With 100MB of updates, the SMR map takes nearly 10s to open, while the

CSMR maps take no more than 70ms for both the zipf and uniform random distributions,

reflecting a 150× speedup.

In addition to keeping the size of the SMR object small, dividing the SMR object

through CSMR also reduces contention in the presence of concurrency. Since concurrent

writers now touch multiple smaller objects instead of one large object, the chance of conflict

is reduced. In Figure 5.16 we compare the abort rate of SMR maps and CSMR maps as

before. We perform a transaction which performs two reads and a write over uniformly

distributed and zipf distributed keys. Even with only two concurrent writers, transactions on

the SMR map must abort half the time. With the CSMR map with 1000 buckets, even with

16 concurrent writers, the abort rate remains at 2%.

Finally, we examine the cost of CSMR: since the state machine is divided into many

smaller ones, operations which affect the entire state will touch all the divided objects. To

quantify this cost, Figure 5.17 performs a clear operation, followed by a size operation -

which requires a transactional write followed by a transactional read to all buckets. If this

operation is performed using remote views, the latency remains relatively low, even with

10K buckets, but can shoot up to almost 30s if a remote view has to playback entries for

all buckets. This shows that even with a heavily divided object, remote views keep CSMR

efficient even for transactional operations.

5.6 Summary

In this chapter, we described the rich data services provided by Corfu. The basic

abstraction Corfu presents to programmers writing applications is not the Corfu log, but

distributed objects which resemble the in-memory data structures developers are accustomed

106

● ● ● ●

●

●

0
40

00
80

00

Uniform
La

te
nc

y
(m

s)

1 10 100 1000 10000 100000

● ● ● ● ●

●

● ● ● ● ● ●● ● ● ● ● ●

●

●

●

●

Primitive
C10
C100
C1000

● ● ●
●

●

●

0
40

00
80

00

zipf

La
te

nc
y

(m
s)

1 10 100 1000 10000 100000

● ● ● ●
●

●

● ● ● ● ● ●● ● ● ● ● ●

Figure 5.15. Local View Latency. The latency of initializing a local view versus the number
of updates to the object, for different bucket sizes and on a “primitive” SMR map.

●

●
●

●

●

A
bo

rt
 R

at
e

(%
)

1 2 4 8 16

●

●

●

●

●

●
● ●

●

●

● ● ● ● ●0%

20%

40%

60%

80%

100%

●

●

●

●

●

A
bo

rt
 R

at
e

(%
)

1 2 4 8 16

●

●

●

●

●

●

● ●
●

●

● ● ● ●

●

0%

20%

40%

60%

80%

100%

Figure 5.16. Optimistic Abort Rate. The abort rate of an optimistic transaction with varying
concurrency and bucket sizes and on a “primitive” SMR map.

● ● ● ●
●

Number of Buckets

La
te

nc
y

(s
)

1 10 100 1000 10000

● ●
●

●

●

●

●

FirstRead
InMemory

0
10

20

Figure 5.17. Clear Operation Performance. The latency of a clear operation followed by a
size operation versus the number of buckets.

107

to using. These distributed objects exploit the strong consistency and scalability provided by

the Corfu log. We have shown that not only does the Corfu log provide strong consistency,

virtualizing the Corfu log enables the use of transactions, which is critical for ensuring

consistency in a distributed system. State machines can also composed, which enables large

state machines to be built from smaller ones, enabling selective playback of the log through

distributed objects. In the next chapter, we will see how these data services simplify the

construction of real-world applications.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

108

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

109

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter 6

Applications

We have built several applications over Corfu. Section 6.1.1 describes our experience

in building a dynamically scalable, fault-tolerant coordination service over Corfu. Section

6.2 details Silver, a distributed file system which leverages the copy-on-write features of

Corfu. Finally, in Section 6.3, we describe our efforts in using Corfu to power the control

plane of a software-defined network platform.

6.1 Fault-Tolerant Coordination

Distributed services within a cloud computing platform must coordinate to share

resources in a fault-tolerant and scalable manner. Coordination services provide the means

for distributed applications to build basic coordination primitives, such as shared locks,

barriers and queues. Many coordination services expose a hierarchical namespace similar to

a filesystem. The namespace provides strong consistency guarantees which programmers

use to reason about the coordination primitives they implement.

A shared log is an alternative to a hierarchical namespace which provides the same

consistency guarantees required to implement coordination primitives. A shared log is a

powerful abstraction which enables applications to reason about consistency in a world of

failures and asynchrony. Just as with existing coordination services, an application can rely

on a shared log to provide coordination primitives with fault-tolerance and scalability.

110

111

In this work, we modify Apache ZooKeeper to run over a shared log. We replace

ZooKeeper’s replication protocol, ‘zab’, with a shared log client to show that we can present

the same consistent hierarchical namespace as ZooKeeper over a shared log. Our design has

several key properties:

Correctness and Compatibility. Our implementation offers the same correctness

guarantees as ZooKeeper and presents the same API to existing ZooKeeper clients.

Simplicity. ZooKeeper uses logging at each replica to achieve persistence. Our

design simply modifies each server to use a shared log instead of a local log.

Reconfigurability. Shraer [72] demonstrated that dynamic reconfiguration can

be added to ZooKeeper. This effort was complicated by the fact that ZooKeeper uses

one mechanism to provide ordering, fault-tolerance, and state replication. Our ZooKeeper

servers contain only soft state, relying on the shared log for fault-tolerance and ordering.

This makes it simple to support reconfiguration. Moreover, server nodes can be shut down

arbitrarily without impacting overall system state.

Scalability. In the single server case, we show that using a shared log has a

negligible impact on performance (in fact, our implementation performs slightly better). In

the multiple server case, our shared log implementation scales for reads in a manner similar

to ZooKeeper with observers [41]. For writes, on the other hand, we gain a substantial

scaling advantage over the traditional implementation due to the fact that shared log write

performance can increase with the number of log servers.

We envision that a shared log will be provided as a basic feature of future cloud

computing platforms, and that services like ZooKeeper will run on top of this flexible

resource to provide coordination and other services.

112

6.1.1 Apache ZooKeeper

ZooKeeper provides coordination to clients by exposing a hierarchical namespace

we refer to as the ZooKeeper tree. ZooKeeper clients propose ZooKeeper tree state changes

to ZooKeeper servers which process updates from clients and maintain the state of the tree

in-memory. ZooKeeper servers coordinate with each other via an atomic broadcast protocol

known as ‘zab’ [45] to present a consistent view of the ZooKeeper tree to clients. Clients

can then query any ZooKeeper server to obtain the results of a given update, which the

server services locally from its in-memory tree. The client can also request to be notified of

updates to the tree through a mechanism called “watches”. The collection of ZooKeeper

servers that serve a ZooKeeper tree is known as a ZooKeeper ensemble.

‘zab’ based replication. ZooKeeper uses ‘zab’ to implement a form of primary-

backup replication which is similar to Paxos [50]. Essentially, one server is elected as a

leader (or primary). All proposals to change the ZooKeeper tree are forwarded to the leader,

which decides on the ordering of the proposals and broadcasts the resulting order to all other

servers using ‘zab’. We illustrate a write operation on the ZooKeeper tree in Figure 6.1.

Unlike Paxos, ‘zab’ uses a FIFO-ordering property to ensure that multiple outstanding

updates from clients are applied in the order they were proposed by the client. Updates

successfully broadcast using ‘zab’ are recorded in a persistent log maintained by each server.

‘zab’ is quorum-based: as long as the leader can reach a quorum of servers, the leader can

make forward progress.

State machine replication. ZooKeeper implements a form of state-machine repli-

cation (SMR). In SMR, replicas agree on a sequence of state commands and apply the state

commands in sequence to a local state machine. If the sequence of commands are the same,

each state machine will arrive at the same state. The ZooKeeper tree can be thought of as a

state machine, and operations on the ZooKeeper tree are commands that modify that state.

113

a b c a b a b

Client

Leader
create /hello1

2

3

445

6

7
exists? /hello

Figure 6.1. ZooKeeper Read and Write Operations. A write and read operation on
ZooKeeper. At 1 , the client proposes a state changing operation to a ZooKeeper server.
At 2 , the server forwards the operation to the leader, which decides on an ordering of

proposals it has seen and persists the operation to its log at 3 . At 4 , the leader then uses
‘zab’ to atomically broadcast that update, at which time other servers commit the update to
their logs at 5 and at 6 , apply the updates in order to their ZooKeeper trees. Finally, at

7 , a client read is serviced directly from the server’s local ZooKeeper tree.

114

ZooKeeper leverages the ordering properties of ‘zab’ to ensure that all replicas agree on the

order of state commands.

Since the original release of ZooKeeper [41], a number of features have been added

or proposed by request from the ZooKeeper community. Our implementation supports these

features, and we detail them below:

Observers. Observers were not part of the original ZooKeeper design, but added

to support scalability without affecting write throughput. Observers are non-voting members

of a ZooKeeper ensemble. When a leader has completed deciding on whether to accept a

proposal, the leader broadcasts the resulting state transition to observers. Many observers

can be added to scale and increase the overall read throughput of the ensemble.

Dynamic reconfiguration. Dynamic reconfiguration was recently proposed as

a patch to ZooKeeper [72], but as of the time of this writing, has not made it into the

main branch. Dynamic reconfiguration allows servers to be added and removed without

affecting the consistency of data. This feature enables ZooKeeper to be dynamically scalable,

adjusting the total read throughput by spawning observer replicas depending on load.

Separating metadata. As proposed by Wang [81], separating replication of data

and metadata in ZooKeeper can reduce the load on the leader. Ordering can be determined

on smaller metadata chunks, and data can be replicated by forwarding.

Stale read-only mode. ZooKeeper recently introduced read-only mode as a feature.

Read-only servers are typically created as a result of a network partition. A server that is

no longer capable of communicating to the quorum can switch to read-only mode, which

allows it to continue servicing client read requests on its stale, local ZooKeeper tree.

115

C E D A B F

Client

create /hello1

2

3

4

exists? /hello
5

Figure 6.2. ZooKeeper-SL Read and Write Operations. A write and read operation on
ZooKeeper-SL. At 1 , the client proposes a state changing operation to a ZooKeeper

translation server. At 2 , the server appends the operation to the log 3 , at which point the
operation is persisted. Translation servers are constantly playing back updates on the log in

order, and at 4 other translation servers see the update and apply the update to their
ZooKeeper trees. Finally, at 5 , a client read is serviced directly from the translation

server’s local ZooKeeper tree.

116

6.1.2 ZooKeeper On Corfu

To distinguish our ZooKeeper implementation from the classic ZooKeeper imple-

mentation, we refer to our shared log ZooKeeper as ZooKeeper-SL. ZooKeeper-SL is a

two-tiered design. The first tier is composed of ZooKeeper translation servers. These servers

receive requests from ZooKeeper clients and convert those requests to operations on the

shared log, which forms the second tier. Figure 6.2 illustrates read and write operations in

ZooKeeper-SL. We can scale each tier independently: for example, we can add disks to our

shared log without reconfiguring our translation servers.

We implement our translation servers in C++. While we could have used the existing

ZooKeeper JAVA code base and replaced ‘zab’ with a shared-log interface, we chose not to

since the libraries for operating on the CORFU shared log were in C++, and JNI did not

provide the performance we desired. With the exception of ACLs, our translation servers

support the full ZooKeeper API, including features such as ephemeral/sequential nodes and

watches.

State Machine Replication. Just as in ZooKeeper, ZooKeeper-SL implements

state machine replication. Instead of using ‘zab’, we utilize the shared log’s strong ordering

guarantees to ensure that operations are executed in the same order by each translation

server. Each translation server is constantly playing back the log, applying updates in the

order they appear in the shared log. In order to ensure that updates are applied in the order

that clients propose, and to provide the same FIFO guarantees ‘zab’ provides, each update

in the log contains a per-client sequence number, and updates are executed according to

their sequence number.

Abstractly, our design replaces all the ZooKeeper per-server transaction logs with a

single shared log. This gives each ZooKeeper translation server a shared, consistent view of

117

updates being applied to the ZooKeeper tree.

Soft State and Shared Log Persistence. The shared log provides fault-tolerant

persistence. Our translation servers maintain only soft-state that can always be rebuilt by

replaying the shared log. This allows policy decisions about the number of translation

servers to be independent of fault-tolerance and persistence concerns. By teasing apart and

separately addressing these fundamental issues, we can fully subsume the benefits of the

dynamic reconfiguration and observer patches to ZooKeeper.

Disk-less operation. Traditional ZooKeeper servers must keep a transaction log

of state at each non-observer replica. Translation servers only have soft state, so they can

operate with persistent media such as disk. This makes our translation servers ideal for

deployment within a pay-as-you-go cloud environment, where they can be dynamically

instantiated depending on load conditions.

Furthermore, in ZooKeeper, the size of the ZooKeeper tree is capped by the storage

volume at each server, since each participant must log all updates. ZooKeeper-SL does

not have this limitation since updates are stored in the shared log, which can span across

multiple machines [15].

Polling. Our translation servers do not need to be up-to-date on the most recent

appends to the log to serve clients. The semantics of the ZooKeeper API allows translation

servers to return stale reads. As we will see in Section 6.1.3, adjusting the log playback

interval offers a trade-off between consistency and performance. This is similar to the stale

read-only support recently added to ZooKeeper, except that we always allow writes, since

appending to the log does not require any consensus or quorum.

118

6.1.3 Evaluation

We evaluate ZooKeeper-SL against ZooKeeper on several metrics. First, we evaluate

the effect of adjusting the polling interval, a key characteristic that affects the performance

of our design. Next, we evaluate the effect of scaling on ZooKeeper and ZooKeeper-SL.

Polling Interval. One of the key characteristics that affects the performance of our

design is the polling rate of the shared log by the translation servers. Unlike ZooKeeper

servers which receive an update from the leader, translation servers must playback the log at

some interval to receive updates that have been appended to the log. While polling can be

dynamic (e.g. a translation server could adaptively change the rate it polls the log based on

workload), we evaluate the effect of polling on several primitives that are commonly used in

ZooKeeper, shown in Table 6.1. Barrier, lock and queue are based on standard ZooKeeper

“recipes” [41], while query simply reads a node that has already been created.

As we increase the polling interval, barrier, lock and queue operations take longer

to complete because updates propagate more slowly to the translation servers. Longer

polling intervals, however, allow us to batch reads, resulting in increased throughput. At

the 1 ms polling interval, our implementation performs a little better than ZooKeeper, while

at the 100ms polling interval, we perform significantly worse. Query operation latency

is unaffected, however, since it allows for stale reads. In practice, since the shared log

can support a much higher read throughput (1M ops/sec), an interval of 1ms offers the

best performance and we perform the rest of our evaluations with a 1ms polling interval.

However, the adjustable polling interval can allow translation servers to work well in a

system with slow network links (e.g., across datacenters).

Scaling. The use of a shared log allows our system to scale in terms of both write

throughput and read throughput. We evaluate the scaling performance of our implementation

using 3, 6, and 9 servers in the ZooKeeper-SL ensemble and compare that to ZooKeeper

119

Table 6.1. ZooKeeper-SL Latency. Latency of several ZooKeeper recipes under 1, 10 and
100ms polling intervals. As the polling interval increases, the read workload on the log

decreases, but the latency of operations that require sync() or wait on watches increases.

ZK-SL
Test ZK 1ms 10ms 100ms
Barrier 3 ms 2 ms 21 ms 131 ms
Lock 8 ms 3 ms 33 ms 196 ms
Queue 15 ms 9 ms 39 ms 370 ms
Query 1 ms 1 ms 1 ms 1 ms

 0

 50000

 100000

 150000

 200000

 250000

 300000

0% 20% 40% 60% 80% 100%

R
eq

ue
st

s
/

se
co

nd

Percent Reads

ZK-SL 9 Server
ZK-SL 6 Server
ZK-SL 3 Server

Figure 6.3. ZooKeeper-SL Requests per Second. Requests per second as a function of read
percentage on ZooKeeper-SL. In our shared log implementation, the write throughput (on
the left) scales as the number of translation servers increases. The read throughput (on the

right) scales similarly to ZooKeeper.

120

 0

 50000

 100000

 150000

 200000

 250000

 300000

0% 20% 40% 60% 80% 100%

R
eq

ue
st

s
/

se
co

nd

Percent Reads

ZK 9 Server
ZK 6 Server
ZK 3 Server

Figure 6.4. ZooKeeper-SL Relative Requests per Second. Requests per second as a function
of read percentage on ZooKeeper. ZooKeeper performs well under read workloads (on the
right) since read requests are served out of the in-memory ZooKeeper tree. Write requests
(on the left), however, must go through the ‘zab’ protocol. As a result, write throughput

actually decreases as the number of non-observer servers in the ensemble increases.

121

ensembles of the same size. We test each configuration using a 0, 25%, 50%, 75% and

100% read workload using 512 byte nodes. The performance of our implementation and the

ZooKeeper implementation are shown on Figure 6.3 and Figure 6.4.

In ZooKeeper, read throughput increases as the number of servers in the ensemble

increases. This scalability property is ensured by the in-memory tree replication provided

by the servers- as the number of replicas increases, the aggregate number of requests the

ensemble can sustain will increase, since each replica can be used to serve client requests.

However, increasing the number of servers also decreases the write throughput. Each

additional server places a burden on the leader, since the leader must communicate with

all the servers through ‘zab’. As seen in Figure 6.4, ZooKeeper write throughput does not

scale - the maximum write throughput is obtained only when there is a single server in the

ensemble.

ZooKeeper-SL allows read throughput to scale just as ZooKeeper does. In fact,

the performance of ZooKeeper-SL is slightly better than ZooKeeper - we attribute this

improvement to the speed of our native C++ implementation. On the other hand, unlike

ZooKeepeer, write throughput scales in ZooKeeper-SL: as the number of translation servers

increases, so does the aggregate write throughput the ensemble can sustain. We attribute

the scaling property of our implementation to the total-ordering engine of our shared log.

Writes are appended to the shared log without communication to the rest of the ensemble,

which eliminates the bottleneck of the ‘zab’-based design. Our write throughput is limited

only by the maximum append rate of the CORFU shared log [15].

6.1.4 Summary

We have demonstrated that a shared log can be used as a drop-in buidling block

for a coordination service such as ZooKeeper, while maintaining full compatibility. The

shared log provides additional functionality like support for dynamic reconfiguration, which

122

is difficult to add to ZooKeeper. Furthermore, ZooKeeper-SL has similar read-throughput

scaling and improved write-throughput scaling.

6.2 File System

Storage capacity has steadily grown over the years, and with it, software workloads

and user expectations increasingly shifted toward write-once, ever-growing stores.

This section introduces Silver, a distributed file-system designed as an ever-growing

store.1 Silver builds on the principles of a log-structure store, which were historically

introduced in order to serialize IO [37, 68], not to expose the versions. It retains the lock-

free read/write IO path of classical LFS, enhanced with with features of modern LFS file

systems [65, 83, 86], such as “time-travel” versions, copy-on-write (CoW), snapshot and

cloning. At the same time, it provides a clean-slate, efficient design for distributed logging,

global snapshot, and unconstrained cloning with recursive-write avoidance.

The write-once substrate of Silver utilizes the Corfu [13] distributed logging system.

Silver keeps track of all changes in the log, enabling users to go back to any point in time for

almost free. It is built to be truly append-only and never overwrites data. While other append-

only file systems exist, especially in the realm of optical media [10], Silver combines Corfu

with Replex [74], a unique replication protocol which enables efficient log virtualization

to support multiple writers, low-latency linearizable reads, and the ability to create fast

copy-on-write clones. The Silver design has the following desirable properties:

• Data is sharded over a cluster for scalability, and at the same time, Silver provides

read-after-write strict consistency semantics.

• At the foundation of the system is a log, which supports multi-versioning with contin-

uous, consistent snapshots: every operation to Silver is logged and Silver efficiently
1We name the system after silver, the element indicated by the symbol Ag, which stands for “Always

Growing”.

123

supports “time-travel” on the log.

• Every directory in the file system hierarchy is mapped a virtualized log, called a

“stream”, serving as an indirect reference to the latest state of the directory. Uniquely,

this allows copy-on-write snapshot cloning of files or sub-directories at any level

while completely circumventing the recursive update problem [85] (Chapter 5).

• At any moment, taking a snapshot is done simply by capturing a prefix of the log,

which allows for easy implementation of tiering.

• Resting on the LFS approach, concurrent readers and writers have separate IO paths

and require no locking.

6.2.1 Design

Distributed Log

Silver is built on top of a distributed, shared log [13, 16]. Our log is made of two

components: a high throughput sequencer which orders append operations and a write-once

storage device which stores updates. This design has been shown to scale to more than half

a million operations per second [13]. We have previously described an implementation of

this design on a FPGA in hardware [82].

As described in Tango [16], in addition to the basic log append and random read

operations, our log also supports streams, which are essentially virtualized logs within our

log, identified by a unique 128-bit id. In Silver, we implement log virtualization using

Replex [74], a unique replication protocol which enables fast, random access to streams by

building a secondary index during replication. This avoids the overhead and complexity of

traversing backpointers in Tango.

We describe the basic operations supported by our log in table 6.2. Silver is entry-

oriented, not block oriented, and clients may only append and read entries. Entries in our

124

Table 6.2. Silver Required Operations. Operations supported by our distributed log.

Operation Description
read(addresses) Get the data stored at a particular address or

list of addresses.
read(stream, address) Get the data stored at a particular address or

list of addresses on a specific stream.
read(address, offset, len) Partially read len bytes of an extent entry at

address and offset.
append(stream, address,
data)

Append data to a given address on a particular
stream.

check(stream) Get the last address written to on a particular
stream.

log are variably-sized and we do not impose a size limit.

Distributed File System Design

On disk, Silver is stored as an ever-growing log as described in Section 6.2.1.

Figure 6.5 depicts the on-disk layout of Silver and compares it to other file systems in use

today. Unlike these file systems, however, Silver is distributed and replicated so that there is

a global log and stream replicas which provide locality and efficient random accesses. The

log is divided into three different types of streams, which represent either file metadata, data

or directories:

• Metadata streams, which contain file metadata and represent files, such as attributes.

Small files ≤4KB also store data in the metadata stream.

• Data streams, which contain the actual file data.

• Directory streams, which contain directories that point to other directory or file

streams.

Each stream consists of entries which record updates or changes. For example, when

a file is added to a directory, an “add” entry is appended to the directory stream with a

pointer to the file’s metadata stream. Table 6.3 contains the basic operations supported by

125

AgFS

btrfs

new
dir a

new
dir a

new
file b

add
file b

add
file b

write
“hi”

write
“bye”

new
dir a

new
file b

add
b

b
->2

upd.
b

new
extent

“hi” “bye”

FS
tree

Extent
tree Extents

inodes
data

blocks

Directory
Stream “a”

File
Stream “b”

FFS inode
a

inode
b

b -> 2 “bye”

new
file b

write
“hi”

write
“bye”→∞ →∞

→∞

Global Log

Stream
Replicas

Figure 6.5. Silver On-Disk Layout. Simplified models of the on-disk layouts of Silver,
btrfs [65] and FFS [60]. In each file system, a directory named a is created and a file b is

created in it with the contents “hi”. Finally, file b’s contents is overwritten with “bye’.
Unlike the other file systems, Silver is replicated, and stream replicas provide efficient

random access to streams.

126

each stream. Even though users may delete directories or overwrite data, the log preserves

the order in which changes are applied to the file system, so that a delete operation can

easily be “undone”. Every address in the log is a version in the file system, and “time-travel”

can be done by restricting traversal to a specific set of addresses.

Every file system starts with a root directory. Clients use the stream ID of the root

directory to find the file system. To open a file system, an uninitialized client first calls the

check function to get the last update on the root directory from the sequencer. The client

then must read the entire root directory stream and apply those updates in-memory to get

the current state of the root directory.

Once the root directory is read, subsequent traversals of the file system selectively

read the streams necessary to satisfy that request. For example, to perform a ls of a child

directory, the client would only need to read the stream for that directory. All requests

for metadata (metadata and directory streams) are served quickly and efficiently from in-

memory state, and updating that state consistently involves merely contacting the sequencer,

reading any updates on the stream and then applying it to the in-memory state. This permits

fast data structures such as hash tables and skip-lists to be used rather than the traditional

B-trees for the file map.

However, keeping the data for large files in memory would be costly and impractical.

To implement large files efficiently, we implement extent entries, which contain the entire

file within a single entry, and we support partial reads of that entry. The single entry is

written sequentially into the log and does not require multiple pointers or a tree structure

to traverse, unlike traditional file systems which write many extents that must be traversed

through a tree due to allocation and reallocation of the extent space. This allows fast random

accesses to large chunks of data stored efficiently within the log.

127

Table 6.3. Silver Stream Operations. Types of operations supported on streams.

Operation Description
All Streams
copy(srcid, dstid, ver) Copies a stream with the given srcid

up to ver to dstid
File Stream
setAttr(attr, val) Sets an attr to a given val
write(data, offset) Writes data to a given offset.
Data Stream
write(data, offset) Writes data to a given offset.
Directory Stream
addChild(child) Adds child to the directory if it does

not exist.
delChild(child) Remove child from the directory if it

exists.
setAttr(attr, val) Sets an attr to a given val

Streams and Indirection

An important optimization is that pointers in Silver always refer to other streams by

their id, rather than a physical address as in other file systems. For example, in figure 6.5,

directory a points to metadata stream b, rather than physical address 2. This allows the

pointer to b to remain valid even after it is updated and clients can quickly get the latest

version by contacting the appropriate stream replica. In this manner, we eliminate the

dependency on the equivalent of the inode map in LFS [68]. Other file systems, like btrfs,

suffer from the recursive update problem [85] so updates must propagate to the root, as the

pointer to physical address 2 is no longer valid, so a new root must be written pointing to

the new update leading to significant write amplification.

Efficiently supporting streams has many benefits, which we describe in the next

sections:

Caching - Read Path Separation. File systems today employ many reader-writer locks

for mutual exclusion where read and write paths intersect, since writers may overwrite previ-

128

ously written data. In Silver, the read path and write path are separated since no overwriting

occurs: any successful write is immutable, which obviates the need for mutual exclusion

logic. Mutual exclusion is a even bigger problem in a distributed systems where many

have resorted to relaxed consistency for performance, Silver is able to never compromise

consistency by never overwriting.

This separation greatly simplifies caching in Silver. Silver currently implements a

efficient LRU cache of log entries in DRAM for faster log traversal and to cache large files,

while in-memory state serves as a cache for both metadata and small files. In a traditional

distributed file system, eviction of stale data must be detected and often the entire file must

be copied. In Silver, updating stale state simply involves contacting the sequencer, which

informs the client of staleness immediately, and reading any updates, which are stored as

deltas from the log, and applying the state in-memory.

Tiering - Write Path Separation. Isolating the write path also simplifies tiering, and

allows Silver to easily take advantage of heterogeneous storage systems. For example,

consider a storage system which consists of fast NVM, SSD and hard disks. A tiered

Silver system could direct writes first to fast NVM. As the NVM fills up sequentially, writes

can be evicted to the SSD in large sequential chunks, permitting the NVM to be reused.

Before eviction, a small update to the read cache’s map would allow reads to continue being

serviced, and the read cache would make sure that popular old entries still have fast service

times, despite being evicted out to archival storage.

Reclaiming Space. Even though Silver is designed on an ever-growing log, we recognize

that practical storage considerations may limit the number of updates which a system can

store. To mitigate this limitation, we offer two mechanisms: first, we offer a compress

command which compresses prefixes of the log, and appends the compressed prefixes to

the end of the log. Second, we offer a checkpoint mechanism which takes an address and

129

compacts the history of each stream into a single entry to free space. However, once a

checkpoint is performed, “time-travel” to history previous to the checkpoint is no longer

permitted since history is lost. Users may choose to checkpoint only the histories they are

interested in. As compression and checkpointing always free data from the start of the log

and append to the end of the log, this allows a fixed storage space to be used as a circular

buffer.

Snapshots. Since every update to Silver is logged, Silver supports full time travel by

playing back the log. Snapshots are truly free in Silver, unlike other log-based systems

where snapshots must be explicitly created to freeze data blocks. In addition, Silver is always

consistent because the log is an authoritative source for the ordering of writes. Shipping

a snapshot of Silver is as simple as transferring a prefix of the log. Currently a user of

Silver can read the file system version by reading a special entry in the file system - reading

this entry queries the sequencer. To access the snapshot, a clone command is provided which

takes the version number and directory (which may be the root) as a parameter and creates a

new fully writeable clone of the directory using CoW, which is described in the next section.

Copy on Write. Copy on Write (CoW) is a feature supported by many logging file systems.

It enables a file system to quickly create a diverging copy by referencing the source and

only recording changes. Silver supports CoW of any stream. The copy command creates

a CoW entry with the source stream and an address, which denotes the version where the

new stream diverges from the source stream (we require that source version < destination

version). When a directory entry is copied, subsequent traversals to children of that directory

create copies as well to ensure that the new history diverges from the source.

Other CoW file systems suffer from fragmentation under random writes because

they must allocate data blocks or extents for a CoW file and update pointers for every

write. This problem is so bad that most logging file systems recommend disabling CoW

130

Table 6.4. Silver 1Gbit Link Performance. Silver performance on a 1Gbit network link.

Operation Latency
clone fs 0.8ms
clone dir 0.8ms
clone file 0.8ms
access fs (mount) 1.8ms
access cloned fs 2.2ms
access dir 0.9ms
access cloned dir 1.0ms
access (cat) 4KB file 0.6ms
access cloned 4KB file 0.8ms
Table 6.5. Silver 1Gbit Link Performance. Silver performance on a 1Gbit network link.

support, especially for large files. Silver does not suffer from this problem: random writes

are sequentialized by virtue of the log, and the fast streaming support eliminates problems

fragmentation may pose.

6.2.2 Evaluation

We have prototyped Silver in Java 8 over FUSE, through the use of Java Native

Runtime (JNR) bindings. While the use of Java prevents our current prototype from

performing as well as a native implementation, our prototype enables us to understand and

evaluate the key benefits of Silver. Our implementation is scalable and distributed: following

the design of Corfu [13], our log can be sharded and replicated across many nodes. However,

while we aim to be as POSIX compliant as possible, due to limitations in FUSE, Silver is

not fully POSIX-compliant. Furthermore, the use of FUSE adds significant overhead.

Our current implementation Silver is elegant and concise, taking a mere 3,186 SLOC

in Java. Part of the simplicity of Silver owes to the fact that much of the streaming logic

is implemented in the distributed log, which is about 15k SLOC but reusable by other

applications (other applications may directly use the log simultaneously with Silver). We

also envision that the distributed log may be implemented in hardware.

131

In table 6.5, we show the basic performance of Silver with 3x replication, demonstrat-

ing fast cloning performance. No distributed file system that we are aware of can provide

such a consistent global snapshot efficiently. Due to the different guarantees provided by

other file systems and the overhead of FUSE, we are unable show meaningful comparisons

with other file systems, which we leave to future work.

Silver and Other File Systems

Log-structured CoW File Systems. While Silver is distributed, single node log-structured

file systems still serve as a useful comparison point for Silver’s design. Historically, these

stores were introduced mostly in order to serialize IO, and not in order to expose the history

of versions. Systems like LFS [68] and Zebra [37] aggressively garbage-collected all by the

latest updates to any block. Consequently, the metadata issues they tackle are quite different:

the name space did not need to expose versions, nor support cloning and snapshots.

btrfs [65], nilfs [46], WAFL [31] and ZFS [86] are copy-on-write file systems with

snapshot capability. These systems primarily log metadata, but data is typically stored

in allocated regions called extents in btrfs and slabs in ZFS. Generating snapshots, as

a result, is not automatic as the filesystem must lock data regions to create a snapshot.

Furthermore, the allocated regions are at risk for inconsistency, whereas in Silver the log is

the pristine source of ordering for all metadata and file data. Finally, allocators can suffer

from fragmentation especially with a high number of random writes. Silver converts random

writes into compact sequential writes while an efficient cache mechanism enables these

writes to be read efficiently.

Append-only File Systems. Many append-only file systems exist today which are primary

a result of limitations of physical media. For example, UDF [10] is an example of a system

designed for optical media, and Quinlan [64] describes a file system for early WORM media.

Unlike Silver, these file systems are mainly designed for archival content, which is reflected

132

by their slow access times and mount times.

Distributed File Systems. Most distributed file systems such as the popular HDFS [22],

Ceph [83] and CalvinFS [78] separate the storage of metadata and data. This separation

makes it difficult to create true snapshots: for example, in HDFS and Ceph snapshots

only capture the state of the metadata. Data, which is stored separately from metadata can

continue to change after a snapshot, resulting in a inconsistent snapshot. Furthermore, these

file systems are not copy-on-write, so creating a modifiable clone is an expensive operation.

Streams and Backpointers. Tango [16] presented the concept of a stream within a dis-

tributed log. In Tango, streams never referred to each other: rather they contained opaque

objects on a single log so that transactions could be run against them. In Silver, our file

system leverages many streams in order to support efficient accesses and copies.

In Tango, backpointers are used to enable streams, which imposes a burden on both

the sequencer, which must persist the last token that was issued for each stream, and during

failures, which require scanning the log to find the stream. Furthermore, bulk reads of a

stream are not possible with backpointers. Silver uses the Replex [74] replication protocol

to address these issues.

6.2.3 Summary

The storage needs of users have shifted from just needing to store data to requiring a

rich interface which enables the efficient query of versions, snapshots and creation of clones.

Silver leverages a distributed shared log to efficiently provide these components without

sacrificing consistency, scalability or performance.

133

6.3 Software-Defined Network Control Plane

Driving scale-out distributed software requires more than merely spreading data

across clusters and replicating it for fault tolerance; it requires name services to place

data and locate it; ownership management, locking and failover atomicity and isolation of

multi-object transactions, in-memory caching, snapshot, checkpoint; and so on. As a result,

the software stack of most distributed systems in production today contains a plethora of

tools–Cassandra[48], Redis, ZooKeeper[42], and others [12, 23, 26, 27, 29, 63].

Each tool comes with its own data-model, proprietary API and query language.

In order to make use of any specific tool, a developer needs to cast its own application’s

state into the tool’s format, and use the tool’s API or query language in order to extract

information about the state and to manipulate it.

As an example, consider the lifecycle of a typical distributed platform: developers

may begin with the need for a distributed database such as Cassandra to store data. As the

system grows and scales out, programmers begin to realize they need a way to manage

Cassandra itself, so ZooKeeper is deployed to manage configuration data and provide a

mechanism for coordinating clients. Soon, a programmer realizes that funneling everything

through ZooKeeper is becoming a bottleneck, so Kafka is bolted on to provide reliable high-

speed messaging. To further improve performance, Redis is added to implement a distributed

cache. Finally, because the programmers still need a way to query data, everything in Kafka

is also inserted into Cassandra.

Getting different tools to work together and sharing updates across them is a night-

mare. The same information ends up duplicated and translated between multiple tools,

resulting in data redundancies, inefficiencies, inconsistencies, and difficult maintenance.

Onboarding new programmers now requires learning multiple tools and picking the correct

one for each task.

134

Figure 6.6. CMPLAT Architecture. CMPLAT software architecture (left), a model of
virtual network components (right)

In an on-going joint venture, the NSX team and the VMware Research Group

(VRG) are contemplating what a Clustered Management PLATform (in short, CMPLAT;

pronounced sim-plat) for driving the control of VMware’s SDN technology should look like.

The design and implementation of Corfu specifically draws motivation from this venture.

Figure 6.6 depicts the components of the CMPLAT-Corfu design. The left side of

the figure portrays a deployment scenario. Every component in Corfu is built with redun-

dancy and completely automated life-cycle management: Initialization, failure-monitoring,

reconfiguration and fail-over. This obviates the operation of CMPLAT as a service with 24/7

availability, driving network control of large, mission critical clusters.

The right side portrays the live network model CMPLAT maintains of a real network.

Like previous network control planes (e.g., Onix [47]), examples of items reflected inside

CMPLAT are ports, switches, nodes, transport zones, and others. These objects are grouped

into maps, e.g., a map of ports, a map of switches. Object and maps may reference one

another, e.g., ports and switches belong to zones, and each port resides on some node.

CMPLAT exposes an API for admins to manipulate virtual network components, e.g., create

a virtual switch containing a certain number of ports, connect ports to virtual machines, and

so on.

The current state NSX system is based on the classical distributed system architecture:

135

it uses an auxiliary database management system to store the model as DB tables. This

necessitates back-and-forth translation between the management plane app-servers, which

use Java hash-maps to represent the model, and the DBMS. There is a rather complex a data-

abstraction layer that performs the translation, internally using a SQL-like query-interface

for storing and retrieving information from the remote DMBS.

In contrast, since Corfu supports arbitrary data-structures, CMPLAT simply uses the

most natural data representation, e.g., a hash-map of ports, a linked-list of zones, and so

on. Persisting updates to the data-structure is done transparently and seamlessly, without

developer awareness. An example of a NSX logical switch modeled in Corfu is shown in

figure 6.7.

6.3.1 Consistency

Since CMPLAT drives the network of entire datacenters, it has stringent availability

and consistency guarantees. This makes it a catastrophic experience to build over platforms

with weaker guarantees. Additionally, there are radically different requirements from

different components, for example, live feeds from the network require high-throughput and

cannot go through a slow and heavy database service, whereas admin directives must never

be lost, and require strong commit guarantees. But building a management platform out of

a hybrid system of components is problem-prone. For example, Onix reports anomalous

situations in which a node has been updated in a "nodes base", but the port states this node

references have not been updated in the "ports base" ([47, Section 4.3]).

Corfu has the capacity to sustain millions of updates per second, and app-servers

efficiently consume updates by selective filtering. This makes it possible to use Corfu as the

single data platform for all the information CMPLAT processes. In this way, all of CMPLAT

needs are addressed in one place, providing consistency across updates to any part, while

avoiding unnecessary duplication and translation of the same information.

136

class LSwitch {
List <Port > ports;

public LSwitch () {
ports = new LinkedList <>();

}

public List <Port > getPorts () {
return ports;

}

public boolean addPort(Port port) {
if (!ports.contains(port)) {

ports.add(port);
return true;

}
return false;

}
}

Figure 6.7. CMPLAT Logical Switch. A logical switch modeled in CMPLAT. Developers
write plain Java objects which are automatically transformed into distributed objects.

Importantly, Corfu supports full ACID transactions over arbitrary data structures.

The transaction layer is part of the runtime and incorporated into the application logic,

providing a natural way for the application threads to manipulate data structures with strong,

easy to work-with guarantees. For example, consider two admins, A and B, both querying

the state of a switch S, and then both issuing an update conditioned on the previous state

they saw. Corfu guarantees full transaction linearizability, so that only one transaction of the

form “if S state is X, change it to Y” may succeed (Figure 6.8).

Last, but not least, in Corfu, taking a distributed snapshot is simple and without

disruption: this allows CMPLAT to take a snapshot of the state of the system up to a desired

position in the log.

137

try {
cr.TXstart ();

render(lswitch.getPorts ());
Result r = waitForAdmin ();
if (r.cmd == ADD_PORT)

lswitch.addPort(r.port);
cr.TXend ();

}
catch (TransactionAbortedException tae) {

render("System changed , Please retry!");
}

Figure 6.8. CMPLAT Transactions. A simple transaction in CMPLAT. If two administrators
attempt to add a port at the same time, only one will succeed.

6.4 Summary

We have described three real-world applications which run on top of Corfu: a fault-

tolerant coordination service, Zookeeper, an ever-growing file system which we refer to

as silver, and the control plane for a software-defined network switch. Each application

shows how Corfu’s focus on strong consistency along with support for rich data services

greatly simplifies the task of application development. Silver shows that the history of the

log itself can be exploited by applications to support operations such as divergence and

cloning, and CMPLAT, the control plane for an SDN, show the importance of providing

strong consistency to applications.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

138

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

139

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Dynamically Scalable, Fault-Tolerant Coordi-

nation on a Shared Logging Service”, by Michael Wei, John Davis, Ted Wobber, Mahesh

Balakrishnan, Vijayan Prabhakaran and Dahlia Malkhi, which appears in MSR Technical

Report MSR-TR-2013-40. The dissertation author was the first investigator and author of

this paper.

This chapter contains material from “Silver, A Scalable, Distributed, Multi-Versioning,

Always growing (Ag) File System.”, by Michael Wei, Amy Tai, Chris Rossbach, Ittai Abra-

ham, Udi Wieder, Steven Swanson and Dahlia Malkhi., which appears in Proceedings of

HotStorage 2016: The 8th USENIX Workshop on Hot Topics in Storage and File Systems.

The dissertation author was the first investigator and author of this paper. This paper is

copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

140

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter 7

Summary

The era of cloud-scale computing has resulted in the exponential growth of work-

loads. To cope with the barrage, system designers chose to trade consistency for scalability

by partitioning the system and eliminating features which require communication across

partitions. As cloud-scale applications became more sophisticated, programmers realized

that those features were necessary for building robust, reliable distributed applications.

Many of these features were then retrofitted back on, resulting in decreased performance

and sometimes serious bugs in an attempt to achieve consistency across a now heavily

partitioned system.

This dissertation has explored Corfu, a platform for scalable consistency which

answers the question: “If we were to build a distributed system from scratch, taking into

consideration both the desire for consistency and the need for scalability, what would it look

like?”.

At the heart of this dissertation is the Corfu distributed log. The Corfu log achieves

strong consistency by presenting the abstraction of a log - clients may read from anywhere

in the log but they may only append to the end of the log. The ordering of updates on the log

are decided by a high throughput sequencer, which we show can issue millions of tokens

per second. The log is scalable as every update to the log is replicated independently, and

every append merely needs to acquire a token before beginning replication. This means

141

142

that we can scale the log by merely adding additional replicas, and our only limit is the

number of tokens the sequencer can issue. We have shown that we can build a sequencer

using low-level networking interfaces capable of issuing more than half a million tokens

per second. We have also built a prototype FPGA storage unit which can interface directly

with SSDs and raw flash, which can easily saturate a gigabit network a uses a simplified

UDP-based protocol.

On top of the Corfu distributed log, we have shown how multiple applications

may share the same log. By sharing the same log, updates across multiple applications

can ordered with respect to one another, which for the basic building block for advanced

operations such as transactions. We presented two designs for virtualizing the log: streaming,

which divides the log into streams built using log entries which point to one another, and

stream materialization, which virtualizes the log by radically changing how data is replicated

in the shared log. Materializing streams greatly improves the performance of random reads,

and allows applications to exploit locality by placing virtualized logs on a single replica.

Efficiently virtualizing the log turns out to be important for implementing distributed

objects in Corfu, a convenient and powerful abstraction for interacting with the Corfu

distributed log introduced in Chapter 5. Rather than reading and appending entries to a log,

distributed objects enable programmers to interact with in-memory objects which resemble

traditional data structures such as maps, trees and linked lists. Under the covers, the Corfu

runtime, a library which client applications link to, translates accesses and modifications to

in-memory objects into operations on the Corfu distributed log.

The Corfu runtime provides rich support for objects. An automated translation

process converts plain old Java objects (POJOs) directly into Corfu objects through both

runtime and compile-time transformation of code. This allows programmers to quickly adapt

existing code to run on top of Corfu. The Corfu runtime also provides strong support for

transactions, which enable multiple applications to read and modify objects without relaxing

143

consistency guarantees. We show that with stream materialization, Corfu can support storing

large amounts of state while supporting strong consistency and transactions.

In Chapter 6, we describe our experience in both writing new applications and

adapting existing applications to Corfu. We start by building an adapter for Zookeeper [41]

clients to run on top of Corfu, then describe the implementation of Silver, a new distributed

file system which leverages the power of the vCorfu stream store. We then conclude the

chapter by describing our efforts to retrofit a large and complex application: a software

defined network (SDN) switch controller, and detail how the strong transaction model and

rich object interface greatly reduce the burden on distributed system programmers.

Overall, Corfu demonstrates a highly scalable yet strongly consistent system, and

shows that such a system greatly simplifies development without sacrificing performance.

Acknowledgements

This chapter contains material from “CORFU: A Shared Log Design for Flash Clus-

ters”, by Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael

Wei and John D. Davis, which appears in Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’ 12). The dissertation author

was the fifth investigator and author of this paper. This paper is copyright c© 2012 by

the Association for Computing Machinery, Inc. (ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or permissions@acm.org.

144

This chapter contains material from “Tango: Distributed data structures over a

shared log”, by Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou and Aviad Zuck, which

appears in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (SOSP’13). The dissertation author was the sixth investigator and author of this

paper. This paper is copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

permissions@acm.org.

This chapter contains material from “Beyond Block I/O: Implementing a Distributed

Shared Log in Hardware”, by Michael Wei, John Davis, Ted Wobber, Mahesh Balakrishnan

and Dahlia Malkhi, which appears in Proceedings of SYSTOR 2013: The 6th Annual Inter-

national Systems and Storage Conference. The dissertation author was the first investigator

and author of this paper. This paper is copyright c© 2013 by the Association for Computing

Machinery, Inc. (ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

145

permissions@acm.org.

This chapter contains material from “Dynamically Scalable, Fault-Tolerant Coordi-

nation on a Shared Logging Service”, by Michael Wei, John Davis, Ted Wobber, Mahesh

Balakrishnan, Vijayan Prabhakaran and Dahlia Malkhi, which appears in MSR Technical

Report MSR-TR-2013-40. The dissertation author was the first investigator and author of

this paper.

This chapter contains material from “Silver, A Scalable, Distributed, Multi-Versioning,

Always growing (Ag) File System.”, by Michael Wei, Amy Tai, Chris Rossbach, Ittai Abra-

ham, Udi Wieder, Steven Swanson and Dahlia Malkhi., which appears in Proceedings of

HotStorage 2016: The 8th USENIX Workshop on Hot Topics in Storage and File Systems.

The dissertation author was the first investigator and author of this paper. This paper is

copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permission

to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Publications

Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This chapter contains material from “vCorfu: Large-Scale Data Stores over a Shared

Log.”, by Michael Wei, Amy Tai, Chris Rossbach, Scott Fritchie, Ittai Abraham, Udi Wieder,

Maithem Munshed, Medhavi Dhawan, Jim Stabile, Steven Swanson, Michael J. Freedman

and Dahlia Malkhi., which appears in Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’17). The dissertation author was the

first investigator and author of this paper. This paper is copyright c© 2017 by the Association

for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of part or

146

all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Bibliography

[1] Cassandra. http://cassandra.apache.org/.

[2] Cockroach Labs. http://www.cockroachlabs.com/.

[3] Couchbase. http://www.couchbase.com/.

[4] DynamoDB FAQs. https://aws.amazon.com/dynamodb/faqs/.

[5] 10gen. MongoDB. http://www.10gen.com/white-papers, 2011.

[6] L. A. Adamic. Zipf, power-laws, and pareto-a ranking tutorial. Xerox Palo Alto
Research Center, Palo Alto, CA, http://ginger. hpl. hp. com/shl/papers/ranking/ranking.
html, 2000.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy.
Design tradeoffs for SSD performance. In USENIX ATC, 2008.

[8] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without
consensus. In ACM Symposium on Principles of Distributed Computing, pages 17–25,
Aug. 2009.

[9] A. Appleby. Murmurhash3 64-bit finalizer. Technical report, Version 19/02/15.
https://code. google. com/p/smhasher/wiki/MurmurHash3.

[10] O. S. T. Association. Universal Disk Format Specification 2.60. 2005.

[11] P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. Communications of the ACM, 56(5):55–63, 2013.

[12] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Léon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: providing scalable, highly available storage
for interactive services. In Proceedings of Conference on Innovative Data Systems
Research, CIDR, pages 223–234, 2011.

147

http://cassandra.apache.org/
http://www.cockroachlabs.com/
http://www.couchbase.com/
https://aws.amazon.com/dynamodb/faqs/
http://www.10gen.com/white-papers

148

[13] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran, M. Wei, and T. Wobber.
Corfu: A distributed shared log. ACM Trans. Comput. Syst., 31(4):10:1–10:24, Dec.
2013.

[14] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. Davis. Corfu:
A shared log design for flash clusters. In 9th USENIX Symposium on Networked
Systems Design and Implementation, pages 1–14, 2012.

[15] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. D. Davis.
Corfu: a shared log design for flash clusters. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, NSDI’12, pages 1–1,
Berkeley, CA, USA, 2012. USENIX Association.

[16] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D. Davis,
S. Rao, T. Zou, and A. Zuck. Tango: Distributed data structures over a shared log. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 325–340. ACM, 2013.

[17] P. Bernstein, C. Reid, and S. Das. Hyder – A Transactional Record Manager for Shared
Flash. In 5th Bienneial Conference on Innovative Data Systems Research, CIDR, pages
9–20, 2011.

[18] P. A. Bernstein and N. Goodman. Multiversion concurrency controlâĂŤtheory and
algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–483, 1983.

[19] K. Birman, D. Malkhi, and R. Van Renesse. Virtually synchronous methodology for
dynamic service replication. Technical report, Microsoft Research MSR-TR-2010-151,
2010.

[20] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for high-performance flash
disks. Operating Systems Review, 41(2):88–93, 2007.

[21] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li. Paxos Replicated State
Machines as the Basis of a High-performance Data Store. In NSDI, 2011.

[22] D. Borthakur. Hdfs architecture guide. http://hadoop.apache.org/common/docs/current/
hdfsdesign.pdf, 2008.

[23] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
OSDI ’06, pages 335–350. USENIX Association, 2006.

[24] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Sri-

http://hadoop.apache.org/common/docs/current/hdfs design.pdf
http://hadoop.apache.org/common/docs/current/hdfs design.pdf

149

vastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraj, A. Khatri, J. anf Edwards, V. Bedekar,
S. Mainali, R. Abbasi, A. Agarwal, M. F. Haq, M. I. Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas. Windows
Azure Storage: a highly available cloud storage service with strong consistency. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP, pages 143–157. ACM, 2011.

[25] J. L. Carlson. Redis in Action. Manning Publications Co., 2013.

[26] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[27] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd,
S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-distributed database.
In Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation, pages 251–264, 2012.

[28] J. Davis, C. P. Thacker, and C. Chang. BEE3: Revitalizing computer architecture
research. Technical report, Microsoft Research MSR-TR-2009-45, 2009.

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In Proceedings of the 21st Symposium on Operating Systems Principles
(SOSP’07), 2007.

[30] K. Delaney. Inside Microsoft SQL Server 2000. Microsoft Press, 2000.

[31] J. K. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn, A. Kanevsky,
J. Lentini, A. Prakash, K. A. Smith, and E. Zayas. Flexvol: flexible, efficient file
volume virtualization in wafl. In Usenix 2008 Annual Technical Conference, pages
129–142. USENIX Association, 2008.

[32] S. M. Fernandes and J. Cachopo. Lock-free and scalable multi-version software
transactional memory. In ACM SIGPLAN Notices, volume 46, pages 179–188. ACM,
2011.

[33] E. Gafni and L. Lamport. Disk paxos. In DISC ’00: Proceedings of the 14th Inter-
national Conference on Distributed Computing, pages 330–344, London, UK, 2000.
Springer-Verlag.

150

[34] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[35] R. Greenwald, R. Stackowiak, and J. Stern. Oracle essentials: Oracle database 12c. "
O’Reilly Media, Inc.", 2013.

[36] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pages 175–184, 2008.

[37] J. H. Hartman and J. K. Ousterhout. Zebra: A striped network file system. Technical
Report UCB/CSD-92-683, EECS Department, University of California, Berkeley, Apr
1992.

[38] R. Haskin, Y. Malachi, and G. Chan. Recovery management in quicksilver. ACM
Trans. Comput. Syst., 6(1):82–108, Feb. 1988.

[39] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[40] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-based receiver-reliable
multicast for distributed interactive simulation. SIGCOMM Comput. Commun. Rev.,
25(4):328–341, Oct. 1995.

[41] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for
internet-scale systems. In USENIX ATC, volume 10, 2010.

[42] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free coordination for
internet-scale systems. In Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, pages 11–11, 2010.

[43] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring done write. In USENIX
ATC, 2003.

[44] F. Junqueira. Durability with BookKeeper. In LADIS 2012, Keynote, 2012.

[45] F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance broadcast for primary-
backup systems. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 245–256. IEEE, 2011.

[46] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai. The linux
implementation of a log-structured file system. ACM SIGOPS Operating Systems
Review, 40(3):102–107, 2006.

151

[47] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A distributed control platform for
large-scale production networks. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, pages 1–6, 2010.

[48] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[49] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169, May
1998.

[50] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[51] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and primary-backup replication.
In Proceedings of the 28th ACM symposium on Principles of distributed computing,
PODC ’09, pages 312–313, New York, NY, USA, 2009. ACM.

[52] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[53] E. Lee and C. Thekkath. Petal: Distributed virtual disks. ACM SIGOPS Operating
Systems Review, 30(5):84–92, 1996.

[54] W.-T. K. Lin and J. Nolte. Basic timestamp, multiple version timestamp, and two-phase
locking. In VLDB, volume 83, pages 109–119, 1983.

[55] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira. Replication in the harp
file system. In Proceedings of the thirteenth ACM symposium on Operating systems
principles, SOSP ’91, pages 226–238, New York, NY, USA, 1991. ACM.

[56] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with cops. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 401–416.
ACM, 2011.

[57] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[58] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood:
abstractions as the foundation for storage infrastructure. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation, OSDI’04,
pages 105–120, Berkeley, CA, USA, 2004. USENIX Association.

152

[59] I. Mapanga and P. Kadebu. Database management systems: A nosql analysis. Interna-
tional Journal of Modern Communication Technologies & Research (IJMCTR), 1:12–
18, 2013.

[60] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for unix.
ACM Transactions on Computer Systems (TOCS), 2(3):181–197, 1984.

[61] Microsoft Research. Beehive distribution for licensees. http://research.microsoft.com/
en-us/um/people/birrell/beehive/.

[62] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 41:122–144, 2004.

[63] D. Peng and F. Dabek. Large-scale incremental processing using distributed transac-
tions and notifications. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, pages 1–15. USENIX Association, 2010.

[64] S. Quinlan. A cached worm file system. Softw., Pract. Exper., 21(12):1289–1299,
1991.

[65] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree filesystem. ACM Transac-
tions on Storage (TOS), 9(3):9, 2013.

[66] M. Ronstrom and L. Thalmann. Mysql cluster architecture overview. MySQL Technical
White Paper, 2004.

[67] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. SIGOPS Oper. Syst. Rev., 25(5):1–15, Sept. 1991.

[68] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems (TOCS), 10(1):26–52, 1992.

[69] F. Schmuck and J. Wylie. Experience with transactions in quicksilver. In Proceedings
of the thirteenth ACM symposium on Operating systems principles, SOSP ’91, pages
239–253, New York, NY, USA, 1991. ACM.

[70] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[71] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Padmanabhan.
File system logging versus clustering: a performance comparison. In Proceedings
of the USENIX 1995 Technical Conference Proceedings, TCON’95, pages 21–21,
Berkeley, CA, USA, 1995. USENIX Association.

http://research.microsoft.com/en-us/um/people/birrell/beehive/
http://research.microsoft.com/en-us/um/people/birrell/beehive/

153

[72] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira. Dynamic reconfiguration of pri-
mary/backup clusters. In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 39–39, Berkeley, CA, USA, 2012.
USENIX Association.

[73] A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and R. Pausch. Distributed
transactions for reliable systems. volume 19, pages 127–146, New York, NY, USA,
Dec. 1985. ACM.

[74] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi. Replex: A scalable,
highly available multi-index data store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), Denver, CO, June 2016. USENIX Association.

[75] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage
system, volume 29. ACM, 1995.

[76] C. P. Thacker. Beehive: A many-core computer for FPGAs. Unpublished Manuscript.

[77] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable distributed file system.
In Proceedings of the sixteenth ACM symposium on Operating systems principles,
SOSP ’97, pages 224–237, New York, NY, USA, 1997. ACM.

[78] A. Thomson and D. J. Abadi. Calvinfs: consistent wan replication and scalable
metadata management for distributed file systems. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 1–14, 2015.

[79] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput
and availability. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, OSDI’04, pages 7–7, Berkeley, CA, USA, 2004.
USENIX Association.

[80] J. Varia and S. Mathew. Overview of amazon web services. Amazon Web Services,
2014.

[81] Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: separating data and metadata for efficient
and available storage replication. In Proceedings of the 2012 USENIX conference on
Annual Technical Conference, pages 38–38. USENIX Association, 2012.

[82] M. Wei, J. D. Davis, T. Wobber, M. Balakrishnan, and D. Malkhi. Beyond block
i/o: implementing a distributed shared log in hardware. In Proceedings of the 6th
International Systems and Storage Conference, page 21. ACM, 2013.

154

[83] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 307–320. USENIX Association,
2006.

[84] Xilinx. Xilinx university program xupv5-lx110t development system. http://www.
xilinx.com/univ/xupv5-lx110t.htm, 2011.

[85] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. De-
indirection for flash-based ssds with nameless writes. In FAST, page 1, 2012.

[86] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. End-to-end
data integrity for file systems: A zfs case study. In FAST, pages 29–42, 2010.

http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/univ/xupv5-lx110t.htm

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Consistency and Scalability
	The Era of Consistency
	Big Data and Scalability
	Compromises
	Summary

	The Corfu Distributed Log
	Introduction
	Design
	Interface and Implementation
	Storage Unit Functionality
	Projections
	Appending without Replication
	Appending with Replication
	Changing Projections
	Garbage Collection

	Hardware Acceleration
	Implementing the API
	Hardware Design
	An Example Write Request
	Address Mapping Using Cuckoo Hashing
	Persistence
	SLICE and the Flash Translation Layer

	Evaluation
	End-to-End Latency
	Throughput
	Reconfiguration
	Applications

	Summary

	Virtualizing the Corfu Log
	Streaming
	Materialized streams
	Fully Elastic Layout
	Appending to vCorfu materialized streams
	Atomically appending to multiple streams
	Properties of the vCorfu Stream Store

	Summary

	Distributed Objects
	State Machine Replication on a Shared Log
	Anatomy of a Corfu Object
	Multiple Objects in Corfu

	Transactions over Objects
	Language Support for Distributed Objects
	vCorfu Runtime
	vCorfu Objects
	Transactions in vCorfu
	Querying Objects

	Composable State Machine Replication
	Evaluation
	vCorfu Stream Store
	Remote vs. Local Views
	Transactions
	CSMR

	Summary

	Applications
	Fault-Tolerant Coordination
	Apache ZooKeeper
	ZooKeeper on Corfu
	Evaluation
	Summary

	File System
	Design
	Evaluation
	Summary

	Software-Defined Network Control Plane
	Consistency

	Summary

	Summary
	Bibliography

