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In this thesis, we study the geometry of Teichmüller space of punctured Riemann surfaces.

We use L2 Hodge theory to describe the deformation theory for punctured Riemann sur-

faces, in which we defined Weil-Petersson metric, Hodge metric and Kodaira-Spencer

map. We also give a new proof of Wolpert’s curvature formula by computing the expan-

sion of volume form and the Kodaira-Spencer map. We use Wolpert’s formula to estimate

upper bound for various curvature tensor. We construct an extension of pluricanonical

form and compare it to the expansion of the Kodaira-Spencer map under Hodge metric.
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CHAPTER 1

Introduction

Moduli spaces have been studied extensively by algebraic geometers. The moduli space

of marked curves is a generalization to the moduli space of curves. Many theories on

moduli space of curves can be established on marked one with some modification. The

Weil-Petersson metric and Hodge metric are the main tools to investigate the geometry

of such moduli space.

In this thesis, we use L2 Hodge theory to describe the deformation of punctured

Riemann surfaces. We also give a new proof of Wolpert’s curvature formula by comput-

ing the expansion of volume form and the Kodaira-Spencer Map. We use this formula

to estimate upper bound for various curvature tensor. We construct an extension of

pluricanonical form and compare it to the expansion of the Kodaira-Spencer map under

Hodge metric. We believe this method can be applied to obtain more curvature formulas

for Weil-Peterson metrics and Ricci metric over different moduli spaces.

In the rest of thesis, the punctured Riemann surfaces refers to closed Riemann surfaces

with finite k points punctured. We always assume 2g − 2 + k > 0 to ensure that the

Riemann surface is hyperbolic. The convention for metric, curvatures is in consistent

with [Bal06].

The Weil-Peterson metric is an Hermitian metric on the Teichmüller space of compact

Riemann surfaces with g > 1. It is introduced by Weil based on Peterson’s pairing for

automatic forms [Wei58]. It is a Kählermetric [Ahl61b] and incomplete [Wol75] [Chu76].

It has negative scalar curvature, Ricci curvature,holomorphic sectional curvature and

non-positive holomorphic bisectional curvature [Ahl61a], dual-Nakano-negative and semi

Nakano-negative[LSY13]. The optimal upper bound for the holomorphic sectional curva-
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ture is conjectured by Royden[Roy74] and proved by Wolpert[Wol86] and Tromba[Tro86].

In Wolpert’s proof, a formula is discovered to represent the curvature tensor. This for-

mula is generalized to the case the moduli space of compact Kähler-Einstein manifolds

with with c1 < 0 [Siu86] and for the case with c1 6= 0 [Sch93]. For the moduli of

compact Calabi-Yau manifolds with Weil-Peterson metric , a curvature formula is ob-

tained for Calabi-Yau threefolds [Str90] and later for higher dimensions [Wan03]. The

Weil-Peterson metric can also be defined over the direct image sheaf over the moduli

of compact Kähler-Einstein manifolds with c1 6= 0 and a curvature formula is obtained

[Sch12].

For the curvature formula for moduli of the compact or punctured Riemann surfaces.

Wolpert’s method using SL(2) invariant first order differential operators considered in

[Maa49]. Schumacher generalized Siu’s method to treat the moduli space of punctured

Riemann surface[ST08]. The proof in this paper is still base on Siu’s method by con-

structing a harmonic lift. The Liu-Zhu’s method [LZ18] and Sun’s method [Sun12] leads

to an expansion formula of pluricanonical forms under Hodge metric.

The classical deformation theory [MK71] treats holomorphic family of closed complex

manifolds. Fixing one complex structure of the base smooth manifold M , a Beltrami

differential ϕ ∈ A0,1(M,T 1,0M) is used to identify another complex structure if the

deformation is small enough. In [Kur63], Kuranishi gauge for Beltrami differential is

introduced to parametrize the complex structure. For the Teichmüller space of compact

Riemann surface, it resembles the Bers coordinate in Teichmüller theory. Noticing that

the L2 Hodge theory for the punctured Riemann surface works similarly to the Hodge

theory of closed Riemann surfaces.

Theorem 1.0.1 (Kähler package for punctured Riemann surfaces). Let (S, g,K, h) be the

canonical bundle over punctured Riemann surface with the hyperbolic metric of constant

curvature -1. The following holds for any q ≥ 0.

(a)The Hodge decomposition

L1,q
2 (S,K) = Im(∂̄m)⊕H1,q(S,K)⊕ Im(δm).
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(b)The Hodge isomorphism

H1,q(S,K) ∼= H1,q
(2)(S,K).

(c)Let H be the projection H1,q(S,K) in Hodge decomposition. Then the Green oper-

ator G = ∆∂̄m|(Hp,q(S,K))⊥(I −H) is bounded, commuting with ∂̄m,δm and ∆∂̄m.

(d)L2 Serre duality holds

H1,q
(2)(S,K) ∼= H0,1−q

(2) (S, T 1,0S)∗.

We are able to gives analytic coordinates for Teichmüller space of punctured Riemann

surfaces and give the definition for Hodge metric and Weil-Peterson metric.

Theorem 1.0.2. Let S be a Riemann surface of finite type with hyperbolic metric and

{ηa} a basis of harmonic Beltrami differentials H0,1(S, T 1,0S). There is a semi-universal

deformation (U , S0, U, b, p) of S with a horizontally analytic trivialization F such that

ϕ(t) = ηat
a with t ∈ U ⊂ C is the Beltrami differential corresponding to F .

Moreover, U is open in T and {(t, U)} for all S0 gives a holomorphic coordinate cover

of T .

Definition 1.0.3 (Weil-Petersson metric). Let (S, B, π) be an analytic family of punc-

tured Riemann surface , the Weil-Petersson hWP is a a left conjugate linear Hermitian

metric on TpTg,n defined as

hWP (X,X ′) =

∫
Sp

(K(X),K(X ′)−1,1Vp,

where X,X ′ ∈ TpTg,n ( , )−1,1 is the left conjugate linear Hermitian metric induced by

the left conjugate linear Hermitian metric hp on T 1,0Sp, Vp is the volume form on Sp.

Definition 1.0.4 (Hodge metric). Let (S, B, π) be an analytic family of punctured Rie-

mann surface . The Hodge bundle Em → B is the vector bundle with fiber H0,0
(2) (Sp, K

m
p )

at p ∈ B. The Hodge metric hm is a right conjugate linear Hermitian metric on Em

defined as

3



hmH(s, s′) =

∫
Sp

(s, s′)V −m
p
Vp,

where ( , )V −m
p

is the right conjugate linear Hermitian metric.

We apply Liu-Zhu’s method to punctured Riemann surfaces case to give an expansion

volume from Vt up to order (2,2) and claim this computation any order of expansion can

be computed recursively.

Theorem 1.0.5. Let ϕ(t) and ρ(t) be the setting as above,

ρ(t) = D(ηiηj̄)t
it̄j̄ +O(|t|3),

where ηiηj̄ is a globally defined continuous function and hence

Vt = (1−∆∂̄D(ηiηj̄)t
it̄j̄ +O(|t|3))V0.

Together with the expansion of Kodaira-Spencer map Kt, we are able derive the

expansion of Hodge metric hīj(t) under a smooth frame {ktKt(∂i)}, where kt is the

musical isomorphism.

Theorem 1.0.6. Let ϕ(t) = tiηi ∈ A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential.

The Hodge metric with respect to frame {ktKt(∂i)} coincides with the WP metric with

respect to frame {∂i} and have an explicit formula for any order. For order up to 2 is

given as below.

ι0hīj(t) =

∫
S0

ηīηjV0,

ι0∂k̄hīj(t) = 0,

ι0∂lhīj(t) = 0,

ι0∂k̄lhīj(t) =

∫
S0

σikηīηjDηk̄ηlV0.

And hence we derive the curvature formula for WP metric.

RW
ij̄kl̄(0) =

∫
S0

σikηj̄ηiDηl̄ηkV0.
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Based on the curvature formula, we proved estimated an upper bound for Ricci curvature,

holomorphic curvature and scalar curvature, which is an analog for Wolpert’s estimates

for closed Riemann surfaces.

Theorem 1.0.7. (1) The holomorphic sectional curvature and the Ricci curvature is

bounded above by −1
π(2g−2+k)

.

(2)The scalar curvature is bounded by −(3g−3+k)(3g−2+k)
2π(2g−2+k)

.

Using the techniques in [LZ18], we construct another set of smooth frame {Etk0K(∂i)}.

Denote Hodge metric under a smooth frame {Etk0K(∂i)} by h̃īj(t).

Theorem 1.0.8. Let ϕ(t) = tiηi ∈ A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential.

Let sa0 = iηāgdz2, sb0 = iηb̄gdz2 ∈ A0,0
(2)(S,K

m) be holomorphic sections and Et(s
a
0), Et(s

b
0)

be extension corresponding to ϕ. The Hodge metric with respect to frame {Et(sa0)} have

an explicit formula for any order. For order up to 2 is given as below.

ι0h̃
H
īj (t) =

∫
S0

ηīηjV0,

ι0∂k̄h̃
H
īj (t) = 0,

ι0∂lh̃
H
īj (t) = 0,

ι0∂k̄lh̃
H
īj (t) = −

∫
S0

σikηīηjDηk̄ηlV0.

However, as {Etk0K(∂i)} itself is not holomorphic nor related to any holomorphic

sections. It still remains to be question that how one could utilize h̃Hīj to get a curvature

formula.

This thesis is organized as follows. In Chapter 2, we review some necessary concepts

and results for the study of moduli space of punctured Riemann surface. In Section

2.1, we reviews some L2 Hodge theories in order to show that the L2 Hodge theory for

holomorphic bundles over punctured Riemann surfaces behaves very similar to the com-

pact cases. We first review the general L2 Hodge theory over complete Kähler manifolds

and gives a criteria, closedness of ∂m range, for Kähler package to hold. Next we prove

that the criteria is met for the case for holomorphic bundle over punctured Riemann
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surfaces. In Section 2.2, we introduce an analytic coordinate of Teichmüller space of

punctured Riemann surfaces, which resembles the coordinate of Bers’s. We introduce

three equivalent ways to describe deformation near a fixed punctured Riemann surface,

the definition introduced in Huber’s book, K-S coordinates and Beltrami differentials.

we defined Kodaira-Spencer Map, Weil-Peterson metric and Hodge metric at the end of

the section. In Chapter 3, we generalized the Wolpert’s formula to the case of punc-

tured Riemann surfaces. To compute the curvature of WP metric, one way is to use K

coordinate compute the expansion of a harmonic lift and the volume form with respect

to a deformation (S, S0, B, b, p). In Section 3.2, we computed the expansion of the vol-

ume form up to order 2 using a method suggested in [Sun12] which works for compact

Kähler-Einstein cases.In Section 3.2, we recall the harmonic lift constructed by Siu[Siu86]

and computed its expansion up to order 2. In Section 3.3, we ensemble the result from

previous sections and derive the Wolpert’s formula for punctured Riemann surfaces. We

also use this formula to get a negative upper bound for the Curvature Tensor for the WP

metric. In this chapter, we construct an extension of pluricanonical form and compare

the Hoghe metric under the frame of extended pluricanonical forms. As suggested in

[Sun12], one could derive Wolpert’s formula using the expansion of Hodge metric, which

can be derived from the expansion of volume form and the extension of pluricanonical

form. However, this method could not to be directly related to the curvature formula

for WP metric. This subtlety is due to the pluricanonical form we have constructed

is not identical to the musical isomorphism of the harmonic lift defined in Section 3.2.

In Section 4.1, we construct the extension of pluricanonical form for a deformation of

punctured Riemann surfaces. In section 4.2, we discussed the relation between harmonic

lift and the extension of pluricanonical form and gives an asymptotic formula.

6



CHAPTER 2

L2 Hodge Theory and Deformation Theory

In this chapter, we review some necessary concepts and results for the study of moduli

space of punctured Riemann surface. The main motivation is that each of these two

theories should behave similar to those for closed Riemann surfaces. The major difficulties

is the non-compactness of punctured Riemann surfaces, which is overcome by some choice

of complete metric and technically refined definition for deformation.

2.1 L2 Hodge Theory

This section reviews some L2 Hodge theories in order to show that the L2 Hodge theory

for holomorphic bundles over punctured Riemann surfaces behaves very similar to the

compact cases. We first review the general L2 Hodge theory over complete Kähler man-

ifolds and gives a criteria, closedness of ∂m range, for Kähler package to hold. Next we

prove that the criteria is met for the case for holomorphic bundle over punctured Rie-

mann surfaces. We refer [MP90] for treatments for line bundles being trivial and [Ohs15]

Chapter 2 for the general L2 Hodge theory.

In this section, (M, g,E, h) means a holomorphic vector bundle E over a Kähler

manifold M with the Chern connection, where h is an Hermitian metric on E and g is

the Kählermetric on M .

Let ∂̄p,q be the differential operator acting on smooth differential forms with compact

support

∂̄p,q : Ap,qc (M,E) −→ Ap,q+1
c (M,E).

Its formal adjoint, denoted by δp,q+1, still acts on smooth differential forms with compact

7



support. We omit the subscript if it is not ambiguous.

Viewing ∂̄ as a densely defined differential operator acting on Lp,q2 (M,E)→ Lp,q+1
2 (M,E),

there is two canonical extensions of ∂̄ as closed operators.

Definition 2.1.1. The maximal extension ∂̄max of ∂̄ is the adjoint operator of δ in Hilbert

space Lp,q2 (M,E). That is, α ∈ Lp,q2 (M,E) is in domain of definition Dom(∂̄max) if there

is α′ ∈ Lp,q+1
2 (M,E) such that (α, δβ)2 = (α′, β)2 holds for any β ∈ Ap,q+1

c (M,E).

Definition 2.1.2. The minimal extension ∂̄min of ∂̄ is the closure of ∂̄ in Hilbert space

Lp,q2 (M,E) under graph norm. That is, α ∈ Lp,q2 (M,E) is in domain of definition

Dom(∂̄min) if there is a sequence of αn ∈ Ap,qc (M,E) converging to α in L2 norm such

that ∂̄αn is convergent.

It is easy to check that δmin = ∂̄max and δmax = ∂̄min. The following result of Gaffney

[Gaf54] allow us to denote either of the operators by δm.

Proposition 2.1.3. If M is complete as a Riemannian manifold, then ∂̄min = ∂̄max.

Proposition 2.1.4 (Chernoff). Let D be an elliptic operator of order one with its symbol

being uniformly bounded and let M be complete and connected. Then Dk is essentially

self-adjoint for any k ≥ 1. Moreover, Dom(D∗D)max ⊆ Dom(D)max.

This result allows us to represent the closed extension of the formal Laplace operator.

Proposition 2.1.5. Denote the formal Laplace operator by

∆∂̄ : Ap,qc (M,E) −→ Ap,qc (M,E),

we have the unique closed extension ∆∂̄m being self-adjoint and

∆∂̄m = δm∂̄m + ∂̄mδm.

Moreover, the domain of definition is

Dom(∆∂̄m) = {α ∈ Dom(δm) ∩Dom(∂̄m)|δmα ∈ Dom(∂̄m), ∂̄mα ∈ Dom(δm)}.

8



Proof. Applying Proposition 2.1.4 to ∂̄ + δ, we have ∆∂̄ is essentially self-adjoint. Note

δm∂̄m + ∂̄mδm is self-adjoint and with the same core as ∆∂̄. So ∆∂̄m = δm∂̄m + ∂̄mδm.

Denote Ker ∆∂̄m by Hp,q(M,E). We obtain the following version of Kodaira decom-

position.

Proposition 2.1.6 (Kodaira decomposition).

Lp,q2 (M,E) = Im(∂̄m)⊕Hp,q(M,E)⊕ Im(δm).

Proof. Since ∂m and δm are adjoint to each other, we have

Lp,q2 (M,E) = Im(∂̄m)⊕Ker ∂m ∩Ker δm ⊕ Im(δm).

On one hand, Ker ∂m ∩ Ker δm = Ker(∂m + δm) ⊆ Hp,q(M,E). On the other hand,

Hp,q(M,E) ⊆ Dom(∂m + δm) by Proposition 2.1.4. And the identity (∆∂̄mα, α)2 =

(∂̄mα, ∂̄mα)2 + (δα, δα)2 implies Hp,q(M,E) ⊆ Ker(∂m + δm).

In the L2 cohomology theory, the following two cohomology groups are often consid-

ered.

Definition 2.1.7. Let (M,E) be a holomorphic vector bundle. The L2 cohomology

group of E is the following

Hp,q
(2)(M,E) =

Ker ∂̄max
Im ∂̄max

.

The L2 reduced cohomology group is the following

Hp,q
(2),red(M,E) =

Ker ∂̄max

Im ∂̄max
,

where Im ∂̄max means the closure under L2 norm.

They coincide exactly when ∂̄max has a closed range.

Proposition 2.1.8. If dimHp,q
(2)(M,E) < +∞, then ∂̄p,q−1

max has a closed range.

9



Proof. Note thatDom(∂̄max) is the completion of normed space Ap,qc (M,E) equipped with

the graph norm ‖α‖∂̄. Thus ∂̄max is a bounded operator from Dom(∂̄max) to Ker ∂̄max

with graph norm ‖ · ‖∂̄ and L2 norm ‖ · ‖2 respectively. It has a closed image by Lemma

2.1.9 which is proved using the open mapping theorem.

Lemma 2.1.9. Let X,Y be Banach-Spaces and T : X → Y a linear and bounded opera-

tor. Then T has a closed range if TX is of finite codimension.

Proof. We may assume T is injective. Let Z be a algebraic complimentary of TX in Y

equipping with a norm ‖‖Z . Then the map

T̃ : X × Z −→ Y

(x, z) 7→ T (x) + z

is a bijective continuous map. It is open and closed by the open mapping theorem and

thus has a closed range.

If we assume g is complete and ∂̄m has closed range, the Hodge theory is very similar

to the compact case. We state the Kähler package as the following theorem.

Theorem 2.1.10 (Kähler package). Let (M, g,E, h) be a holomorphic bundle over a

complete Kähler manifold with the Chern connection. If ∂̄p,qm has a closed range for fixed

p and all q, then following holds.

(a)The Hodge decomposition

Lp,q2 (M,E) = Im(∂̄m)⊕Hp,q(M,E)⊕ Im(δm).

(b)The Hodge isomorphism Hp,q(M,E) ∼= Hp,q
(2)(M,E).

(c)Let H be the projection Hp,q(M,E) in Hodge decomposition. Then the Green op-

erator G = ∆∂̄m|(Hp,q(M,E))⊥(I −H) is bounded, commuting with ∂̄m,δm,∆∂̄m

(d)The closed operator ∂̄m for (M,E∗) also has closed range and L2 Serre’s duality

holds

Hp,q
(2)(M,E) ∼= Hn−p,n−q

(2) (M,E∗)∗.

10



Part (a), (b) and (c) by Proposition 2.1.6, Part(d) follows from [CS12] Theorem 2.

For the rest of the article we omit the subscript ∂̄m if it is not ambiguous in the

context.

Now consider the canonical bundle K over a punctured Riemann surface S of type

(g, k), M is endowed with the hyperbolic metric g of constant curvature -1. K is endowed

with the Hermitian metric h induced by g.

Proposition 2.1.11. For (S, g,K, h) defined as above,we have

H1,q
(2)(S,K

m) = 0

for q > 0,m > 0 and dimH1,0
(2) (S,K) = 3g − 3 + k.

Proof. The q > 0 case follows from K being positive and a vanishing theorems [Ohs15]

Theorem 2.14.

For the case q = 0, note that ker ∂̄1,0
m = ker ∂̄1,0. So the element s in H1,0

(2) (S,K) is a

global holomorphic sections of 2K with finite L2 norm.

Let S̄ be the closed Riemann surface such that S = S̄ − {p1, . . . , pk}. A small

neighborhood U of a punctured point p is called a cusp neighborhood. We note from

classical result from Fuchsian models of Riemann surfaces or from [TZ91]. There exists

a coordinate z such that z(p) = 0 and g = |dz|2
(|z|ln|z|)2 .

Let s = f(z)dz2, then ∫
U

|f(z)|2g−1dz ∧ dz̄ <∞.

Thus f(z) = O(z−1) near 0. s is a meromorphic section of S̄ with poles at most order

1 at punctured points. By Riemann-Roch theorem, H1,0
(2) (S,K) = 3g−3+k. This finishes

the proof.

In particular, all the property mentioned in Proposition 2.1.10 can be applied for

H1,q(S,K) as well as H0,q(S, T 1,0S).

Theorem 2.1.12 (Kähler package for punctured Riemann surfaces). Let (S, g,K, h)

be the canonical bundle over punctured Riemann surface with the hyperbolic metric of

constant curvature -1. The following holds for any q ≥ 0.

11



(a)The Hodge decomposition

L1,q
2 (S,K) = Im(∂̄m)⊕H1,q(S,K)⊕ Im(δm).

(b)The Hodge isomorphism

H1,q(S,K) ∼= H1,q
(2)(S,K).

(c)Let H be the projection H1,q(S,K) in Hodge decomposition. Then the Green oper-

ator G = ∆∂̄m|(Hp,q(S,K))⊥(I −H) is bounded, commuting with ∂̄m,δm and ∆∂̄m.

(d)L2 Serre’s duality holds

H1,q
(2)(S,K) ∼= H0,1−q

(2) (S, T 1,0S)∗.

2.2 Deformation Theory for Punctured Riemann Surfaces

This section we introduce an analytic coordinate of Teichmüller space of punctured Rie-

mann surfaces, which resembles the coordinate of Bers’s [Ber58]. We first introduce

three equivalent ways to describe deformation near a fixed punctured Riemann surface,

the definition introduced in Huber’s book, K-S coordinates and Beltrami differentials. ,

we define Kodaira-Spencer Map, Weil-Peterson metric and Hodge metric at the end of

the section.

Recall the deformation family (M, B, π) for closed Riemann surfaces is a proper

submersion p between complex manifolds with fibers being closed Riemann surfaces.

For the punctured Riemann surfaces, the substitute for π being proper is the following

definition [Hub16].

Definition 2.2.1. An analytic submersion π : M −→ B admits a locally horizontally

analytic trivialization by a manifold M if there exists an open set V ⊂ B and a diffeo-

morphism F : M × V −→ π−1(V ) commuting with π such that for any p in M and any

t ∈ V , the map Fp : t 7→ F (p, t) is analytic.

Definition 2.2.2. An analytic family of Riemann surfaces is an analytic submersion

12



p : S −→ B of analytic manifolds such that the fibers St are 1-dimensional and π locally

admits horizontally analytic trivialization.

Definition 2.2.3. a deformation (S, S0, B, b, π) of Riemann surface S is an analytic

family (S, B, π) of Riemann surfaces with b ∈ B, S0 = p−1(b) and S0
∼= S.

With these definitions and minor modification on the classical deformation theory

[MK71] Chapter 4 we get another description of a deformation of Riemann surfaces.

Definition 2.2.4. A KS coordinate cover pair (ωi, si,Ui), (zi, ti,Ui) with core over a

marked analytical manifolds (B, b) of a Riemann surface S is a pair of two coordinates,

the S-coordinate (ωi, si,Ui) and the K-coordinate (zi, ti,Ui) satisfying the following: :

1. There is an open set V ⊂ B containing b such that both (ωi, si,Ui) and (zi, ti,Ui)

are smooth coordinate covers of the smooth manifold S × V .

2. K-coordinate (zi, ti,Ui) is an analytic coordinate cover induced by S × V as pro-

duction of complex analytic manifolds. That is, zi and ti is the pull back of some

analytic coordinate of S and V respectively.

3. For S-coordinate (ωi, si,Ui), si = ti, wi(zi, ti) is holomorphic with respect to ti and

for any fixed b′ ∈ B, the coordinate cover (ωi,Ui ∩ S × b′) of S × b′ has analytic

transition function and thus endowed S × b′ with a complex analytic structure.

4. Let S0 = S × b and let Ui = Ui ∩ S0. Then ti|Ui
= 0, wi|Ui

= zi|Ui
.

The last requirement is just for the purpose of normalization and not necessary. For

most of the times, we omit the subscript which indexing the cover and also the cover

itself if they can be implied from context.

KS coordinate pairs is defined mainly for coordinate computation purposes which

is extensively use in the following chapters. It is easy to verify that a deformation

(S, S0, B, b, π) with a specified horizontally analytic trivialization is equivalent to a pair

of KS coordinates.
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Definition 2.2.5. Let S be a Riemann surface, a smooth section φ ∈ A0,1
2 (S, T 1,0S) is

called a Beltrami differential.

Proposition 2.2.6. Let (S, S0, B, b, π) be a deformation of a punctured Riemann surface

S. Any horizontally analytic trivialization F to p−1(U), where (U, t) is a neighborhood of

b with t(b) = 0, gives a family of Beltrami differential ϕ(t) holomorphic with respect to t.

Proof. By picking a horizontally analytic trivialization (F, V ) of (S, S0, B, b, π), we get

KS coordinates pairs (ω, s), (z, t). one could define a global holomorphic tangent valued

(1, 0) form

ϕ(t) = (
∂ω

∂z
)−1∂̄ω ⊗ ∂z (2.2.1)

such that ϕ(0) = 0, analytic in t. By choosing a sufficient small V , we can as assume

‖ϕ(t)‖∞ < 1 for any t in V and hence φ(t) ∈ φ ∈ A0,1
2 (S, T 1,0S). Thus ϕ(t) is a Beltrami

differential for any t in V .

For a complex manifold B, a fixed point b ∈ B and Riemann surface S, a smooth fam-

ily of Beltrami differential ϕt of S with ϕ(0) = 0 also gives a deformation (S, S, B, b, π),

which is a consequence of the so called ”complex” Frobenius theorem [NN57].

Theorem 2.2.7 (Newlander and Nirenberg). Let M be a complex manifold with holo-

morphic coordinate (z, U) and a Beltrami differential

ϕ = ϕj
ī
(z)dz ī

∂

∂zj
.

Let

T̄ī =
∂

∂z ī
− ϕj

ī
(z)

∂

∂zj
,

Ti =
∂

∂zi
− ϕ̄j̄i (z)

∂

∂z j̄
.

If Ti and Tī are complex linear independent and

∂̄ϕ− 1

2
[ϕ, ϕ] = 0,

then there is a smooth solution (f1(z), . . . , fn(z)) such that

T̄īfj(z) = 0

for any j and (f1, . . . , fn, f̄1, . . . , f̄n) forms a coordinate system on U .
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Proposition 2.2.8. Let S be a Riemann surface of finite type with hyperbolic metric and

let B ⊆ Cn open with coordinate t. For any holomorphic family of Beltrami differential

ϕ(t), there is a deformation (U , S0, U, b, p) of S with a horizontally analytic trivialization

(F,U) with U ⊂ B, the Beltrami differential correspond to which coincides ϕ(t) on U .

Proof. For a coordinate (V, z) of S0 and a cover {Uj} of V ×U . LetT (z, t) = ∂z−ϕ̄(z, t)∂z̄,

so T and T̄ are linearly independent for t ∈ U . By the Theorem 2.2.7, equation

T̄wj(z, t) = 0,

has one smooth solution, for t ∈ U ⊆ B.

So {Uj, wj} forms an analytic coordinate cover for S ×U and the identity map gives

one horizontally analytic trivialization of S×U as a complex manifold, denoted by U .

The Teichmüller space has been extensively in the history. We use the following

definition for general Riemann surfaces.

Definition 2.2.9. The Teichmüller space T for Riemann surface S is the space pairs

(S, g) modulo a equivalence relation, where g : S → S a diffeomorphism. (S, g), (S, h)

are equivalent if h◦ g−1 : S → S is isotopic to identity. The pair (S, g) is called a marked

Riemann surface of S.

For a marked Riemann surface (S, g), its associated Beltrami differential is

ϕ = (
∂w

∂z
)−1∂̄w ⊗ ∂z,

where w = z ◦ g−1 and z a holomorphic coordinate of S. We have a simple criteria for

(S, g) being equivalent to (S, id).

Proposition 2.2.10. Let φ be the associated Beltrami differential to marked Riemann

surface (S, g). (S, g) equivalent to (S, id) if and only if ϕ ∈ Im(∂̄m).

Fixed a marked surface (S, id), to parametrize its neighborhood, one just need to

construct a family of Beltrami differential which is not in the same equivalent class. The
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previous proposition suggest to construct a holomorphic family of Beltrami differential

with Im ∂̄m part being zero.

With Kähler package proved in Section 2.1, we can just follow the proof line by line

the proof, which is given by Kuranishi for the compact case. We just list the statements

of propositions without proof to indicate which parts should be modified. Proof for

compact case can be found in [MK71] Chapter 4.

Proposition 2.2.11. Let S be a Riemann surface with a complete Kähler metric such

that Kähler package 2.1.10 holds for (S, T 1,0S). For any deformation of S, any Beltrami

forms ϕ(t) given by a horizontally analytic trivialization F , there exist uniquely a fam-

ily of diffeomorphisms f(t) of S0 holomorphic in t such that Beltrami differential ϕf (t)

corresponding to f ◦ F is harmonic, that is

δϕf (t) = 0.

It is easy to verify that different choice of horizontally analytic trivialization leads to

the same ϕf (t). If the complete metric is the hyperbolic metric g, we can choose ϕ(t) to

be harmonic which can be identified as one element in H0,1
(2) (S, T 1,0S).

Definition 2.2.12. A deformation (S, S0, B, b, p) of Riemann surface S is called semi-

universal if for any deformation (S ′, S ′0, B′, b′, p′) of S there is a holomorphic map f :

B′ −→ B with Im(df) being unique such that (S ′, S ′0, B′, b′, p′) is isomorphic to the pull

back of f .

We summarize the discussion above to give a holomorphic coordinate of T by con-

structing a semi-universal deformation of S.

Theorem 2.2.13. Let S be a Riemann surface of finite type with hyperbolic metric and

{ηa} a basis of harmonic Beltrami differentials H0,1(S, T 1,0S). There is a semi-universal

deformation (U , S0, U, b, p) of S with a horizontally analytic trivialization F such that

ϕ(t) = ηat
a with t ∈ U ⊂ C is the Beltrami differential corresponding to F .

Moreover, U is open in T and {(t, U)} for all S0 gives a holomorphic coordinate cover

of T .
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Proof. Let {ηa} be a basis for H0,1(S0, T
1,0S0) then ϕ(t) = ηat

a is a harmonic Beltrami

differential for t ∈ U , where U ⊂ C is a small neighborhood of 0. Proposition 2.2.8 yields

a deformation H0,1(S, T 1,0S) with ϕ(t) = ηat
a. The semi-university of (U , S0, U, b, p)

follows from proposition 2.2.11. The coordinate neighborhood (t, U) is a holomorphic

one is a result of Ber’s [Ber58].

Definition 2.2.14 (Kodaira-Spencer map). Let (S, B, π) be an analytic family of punc-

tured Riemann surfaces with each fiber equipped with the unique hyperbolic metric of

constant curvature -1. For any point b ∈ B, the Kodaira-Spencer map K : TBb →

H0,1
(2) (Sb, T

1,0Sb) is defined as

K : TBb −→ H0,1
(2) (S0, T

1,0S0)

ta∂a 7→ ta
∂ϕ(t)

∂ta
|t=0

where ϕ(t) is harmonic and is given by a deformation (S, S0, B, b, p) of S.

It can be shown that definition is independent of different choice of deformation.

Definition 2.2.15 (Weil-Petersson metric). Let (S, B, π) be an analytic family of punc-

tured Riemann surface , the Weil-Petersson hWP is a a left conjugate linear Hermitian

metric on TpTg,n defined as

hWP (X,X ′) =

∫
Sp

(K(X),K(X ′)−1,1Vp,

where X,X ′ ∈ TpTg,n ( , )−1,1 is the left conjugate linear Hermitian metric induced by

the left conjugate linear Hermitian metric hp on T 1,0Sp, Vp is the volume form on Sp.

Definition 2.2.16 (Hodge metric). Let (S, B, π) be an analytic family of punctured Rie-

mann surface . The Hodge bundle Em → B is the vector bundle with fiber H0,0
(2) (Sp, K

m
p )

at p ∈ B. The Hodge metric hm is a right conjugate linear Hermitian metric on Em

defined as

hmH(s, s′) =

∫
Sp

(s, s′)V −m
p
Vp,

where ( , )V −m
p

is the right conjugate linear Hermitian metric.

17



Note that T is the base space of a semi-universal analytic family (S, T , S) and K

is isomorphic by semi-university. T thus endow with a WP metric on its holomorphic

tangent bundle. If m = 2, by L2 version of Serre Duality, E2 → T is isomorphic to the

holomorphic cotangent bundle over T and thus the WP metric and the Hodge metric are

co-metric to each other.

For a fixed point b ∈ T , a basis {ηi} of H0,1
(2) (Sb, T

0,1Sb), we pick a pair of KS coor-

dinates (w, s) and (z, t) corresponding to ϕ(t) = tiηi. Denote π−1(t) by St, we have the

following commuting diagram

TBt

hWP
t //

Kt

��

T ∗Bt

K∗t

((

H0,1
(2) (St, T

1,0St)
St // H2,0

(2) (St, 2Kt)
∗ h

Hodge
t // H2,0

(2) (St, 2Kt),

where hHodget and hWP
t is the conjugate linear musical isomorphism with respect to metric

and St is the complex linear Serre duality at t.

To compute the curvature of hWP , one method is to find an explicit expansion up to

order 2 of hWP and to compute the curvature of hRcci which will be treated in Chapter

4, one need to compute find an explicit expansion up to order 4 of hWP .

In K-coordinate (z, t), we use ∂i as an abbreviation for ∂ti . Note that

hīj(t) =

∫
S0

(Kt(∂i),Kt(∂j))V −1,1
t

Vt

In Chapter 3, we compute the expansion of Kt(∂i) and Vt in K-coordinate and thus

get a curvature formula for WP metric.

Denote hHt ◦ St by kt, denote the dual basis of {Kt(∂i)} by εi. We have

ktKt(∂i) = εihij̄.

Let

hHīj (t) = hH(ktKt(∂i), ktKt(∂j)) = hīj(t).

The curvature tensor of Hodge metric with respect to {ktKt(∂i)} is

RH k̄
ij̄l̄ = −∂j̄(∂ihHl̄ph

pk̄
H ). (2.2.2)
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Compared to the curvature tensor of WP metric with respect to {∂i}

RW l
ij̄k = −∂j̄(∂ihq̄khlq̄),

we have

RW
ij̄kl̄ = −RH

ij̄kl̄.

In Chapter 4, for element in H2,0
(2) (S0, 2K0), we construct a extension operator Et :

H2,0
(2) (S0, 2K0) → H2,0

(2) (S0, 2K0), which is a smooth family of isomorphisms. Denote the

following

h̃Hīj (t) = hH(Etk0K0(∂i), Etk0K0(∂j)).

It may be tempted to use formula like (2.2.2) to compute the curvature tensor. However

it will be proved in Chapter 4 that {(Etk0K0(∂i)} is a smooth et not a holomorphic frame

over B ⊆ T .

19



CHAPTER 3

Wolpert’s Formula for Punctured Riemann Surfaces

In this chapter, we generalized the Wolpert’s formula to the case of punctured Riemann

surfaces. To compute the curvature of WP metric, one way is to use K coordinate com-

pute the expansion of a harmonic lift and the volume form with respect to a deformation

(S, S0, B, b, p). In Section 3.2, we computed the expansion of the volume form up to

order 2 using a method suggested in [Sun12] which works for compact Kähler-Einstein

cases.In Section 3.2, we recall the harmonic lift constructed by Siu[Siu86] and computed

its expansion up to order 2. In Section 3.3, we ensemble the result from previous sec-

tions and derive the Wolpert’s formula for punctured Riemann surfaces. We also use this

formula to get a negative upper bound for the Curvature Tensor for the WP metric.

3.1 Expansion of the Volume Form

For a punctured Riemann surface with hyperbolic metric, to expand the volume form,

we follow the method in by [Sun12] section 3 treating compact Kähler manifold with

non-flat Kähler-Einstein metric. More computation details are provided.

In K-coordinate ,we have the following notation.

Let V0 = ig(z)dz ∧ dz̄ be the volume form of S, ϕ(t) = ϕ(z, t)dz̄ ⊗ ∂z a harmonic

Beltrami differential of a Riemann surface S, that is

ϕz = −∂z log gϕ.

in K-coordinate.

We are slightly abusing the notation of ϕ, it should be clearly from context if ϕ means

a global section or a local function.
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Let e = dz + ϕdz̄, Ṽt = ige ∧ ē. Let ρ(z, t) be the real valued function such that

Vt = Ṽte
ρ(z, t), where Vt is the volume form of St. It is easy check Ṽt and ρ is defined

globally.

In S-coordinate (w,s), we have the following notation.

The columns form Vt = iGdw ∧ dw̄. By KE metric condition, we have Ricci form

−i∂∂̄ logG is equal to the negative Kählerform −Vt, that is

(logG)ww̄ = G. (3.1.1)

Since it works for any holomorphic coordinate with respect to St, we may expect to

obtain an equation in K-coordinates, that is independent of terms like wz. Indeed we

have the following theorem.

Theorem 3.1.1. Let ϕ and ρ be the setting as above, T = ∂z − ϕ̄∂z̄, T̄ = ∂z̄ − ϕ∂z then

log(−ϕz
1

1− ϕ̄ϕ
Tρ+ T̄ (

1

1− ϕ̄ϕ
Tρ) + g) = ρ+ log g + log(1− ϕ̄ϕ). (3.1.2)

We provide a proof for how we get this equation, this proof can be generalized to

higher dimension by keeping track of the simplification order in this proof.

Proof. The proof is mainly of two parts. The first is to show (3.1.1) with some modifi-

cation is independent of choice of holomorphic coordinate w of St. This part works for

any Beltrami differentials. The second part use harmonic Beltrami differential to largely

simplify the equation.

Since w is a holomorphic coordinate with respect to ϕ, we have T̄w = 0. Let a = ∂w
∂z
,

and b by a−1 then

az̄ = ϕza+ ϕaz, (3.1.3)

T̄ (b) = −bϕz, (3.1.4)

azz̄ = azzϕ+ 2azϕz + ϕzza, (3.1.5)

T log a = b(1− ϕ̄ϕ)az − ϕ̄ϕz (3.1.6)

T log ā = ϕ̄z̄. (3.1.7)
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T̄ (b2az) = bϕzz. (3.1.8)

Denote L by (1− ϕ̄ϕ)−1 and A by 1− ϕ̄, we have

∂w = bLT, (3.1.9)

Applying log to both side of (3.1.1), we have

log(b̄L̄T̄ [bLT (ρ+ log g − log a− log ā)]) = ρ+ log g − log a− log ā (3.1.10)

Denote X by log(b̄L̄T̄ [bLT (ρ+ log g− log a− log ā)]) + log a+ log ā. We want to show

that it is independent of a , the choice of holomorphic coordinate.

Using (3.1.6) and (3.1.7), we have

X = log(b̄L̄T̄ [bLT (ρ+ log g)− b2az + bLϕ̄ϕz − bLϕ̄z̄]) + log a+ log ā,

Using (3.1.4) and (3.1.8) and let log a and log b cancel each other, we have

X = log(L̄T̄ [LT (ρ+ log g) + Lϕ̄ϕz + Lϕ̄z̄]− ϕz[LT (ρ+ log g) +Bϕ̄ϕz − Lϕ̄z̄]− ϕzz)

= log L̄+ log(T̄ [LTρ]− ϕz[LTρ] + T̄ (LT log g) + T̄ [L(ϕ̄ϕz − ϕ̄z̄)]

− L[ϕzT log g + ϕ̄ϕ2
z − ϕ̄z̄ϕz]− ϕzz),

(3.1.11)

which in independent of w.

Denote T̄ (LT log g) + T̄ [L(ϕ̄ϕz − ϕ̄z̄)]− L[ϕzT log g + ϕ̄ϕ2
z − ϕ̄z̄ϕz]− ϕzz by Y . Now

using the harmonic condition ϕz = −ϕ log gz, we have

T log g = log gz + ϕ̄z̄, (3.1.12)

T̄L = −L2T̄A, (3.1.13)

Y can be simplified as the following,

Y = T̄ [L(log gz + ϕ̄ϕz)]− L[ϕzT log g + ϕ̄ϕ2
z − ϕ̄z̄ϕz]− ϕzz

= T̄L(log gz + ϕ̄ϕz)− L[ϕz log gz + ϕ̄ϕ2
z − T̄ (log gz + ϕ̄ϕz)]− ϕzz

= T̄L(log gzA)− L[ϕz log gzA− T̄ (log gzA)]− ϕzz

= −L(log gzT̄A+ ϕz log gzA− T̄ (log gzA))− ϕzz

= T̄ log gz − ϕz log gz − ϕzz

= g.

(3.1.14)
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Putting X and Y back to (3.1.10), we get the desired equation.

The following proof is modified from [Sun12] using the notation in this article.

Proposition 3.1.2. Let ϕ(t) is a family of harmonic Beltrami operator with expansion

ϕ(t) = tiηi. Then

ρ|t=0 = 0,

ρi|t=0 = 0,

ρik|t=0 = 0,

ρij̄|t=0 = D(ηiηj̄),

(3.1.15)

where D = (∆∂̄ + 1)−1.

Proof. Denote −ϕz 1
1−ϕϕ̄Tρ+ T̄ ( 1

1−ϕ̄ϕTρ) + g by B(z, t). We have

B(z, 0) = g, ρ(z, 0) = 0, (3.1.16)

Noting from Appendix ?? that in Riemann surface case the ∂̄- Laplacian ∆∂̄ acting

on function in local coordinate can be written as ∆∂̄f = −g−1fzz̄ [Bal06] (5.51). Using

(3.1.16), we have

Bt(0, z) = ρzz̄(0, z), (3.1.17)

Differentiate (3.1.2) and evaluate it at t = 0, we have

∆∂̄ρi(0, z) = −ρi(0, z), (3.1.18)

Since ∆∂̄ has no negative eigenvalue. we have ρi(0, z) = 0 and hence ∂iB(0, z) = 0.

Similarly we have ρj̄(0, z) = 0, ρt̄t̄(0, z) = 0, and ρtt(0, z) = 0, and hence Bj̄(0, z) = 0,

Bj̄ l̄(0, z) = 0, and Bik(0, z) = 0.

For the ρzz̄(0, z) case, we still have

Bij̄(0, z) = ρij̄zz̄(0, z).
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But differentiate (3.1.2) with respect to ti and tj̄, evaluating at t = 0, we have

∆∂̄ρij̄(z, 0) = −ρij̄(z, 0) + ηi(z)ηj̄(z). (3.1.19)

we may follow this idea further to get the higher order of expansion.

Theorem 3.1.3.

ρikm|t=0 = 0,

ρikmp|t=0 = 0,

ρikj̄|t=0 = σikDPiDηkηj̄,

ρikmj̄|t=0 = σikmDPiDPkDηmηj̄,

ρikj̄l̄|t=0 = σikσj̄ l̄(DPiDP̄j̄Dηkηl̄ +DP̄j̄DPiDηkηl̄

+DQij̄Dηkηl̄ +DQ̄j̄iDηkηl̄),

(3.1.20)

where Qij̄(f) = −g−1((ηiηj̄)z̄fz).

Proof.

B = ρzz̄ − L(ϕρzz + ϕ̄ρz̄z̄)

+ L2(−ϕz + ϕ̄z̄ϕ+ ϕ̄ϕz̄ − ϕ2ϕ̄z)ρz

+ L2(−ϕ̄z̄ + ϕzϕ̄+ ϕϕ̄z − ϕ̄2ϕz̄)ρz̄

(3.1.21)

Note that

ρ(z, 0) = 0, ρt(z, 0) = 0.

Based on the inductive assumption that ρi1,...,in−1(z, 0) = 0, we have

Bi1,...,in(z, 0) = ρzz̄i1,...,in(z, 0)

Use (3.1.2), we have (1 + ∆∂̄)ρi1,...,in(z, 0) = 0 and hence ρi1,...,in(z, 0) = 0.

A direct computation shows that

Bikj̄(z, 0) = σik(−ηizρzkj̄(z, 0)− ηiρzzkj̄(z, 0)) + ρikj̄zz̄(z, 0).
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Denote a local operator Pi(f) = −g−1(ηifz)z, then we have

Bikj̄ = g(σikPηiρkj̄(z, 0)−∆∂̄ρikj̄(z, 0)).

Use (3.1.2), we have

ρikj̄(z, 0) = σikDPiDηkηj̄

For expansion of order 4, we just need to consider the case ρikmj̄(z, 0) and ρikj̄l̄(z, 0).

As the process of taking the derivative become more and more complicated.

We denote operator of evaluating at t = 0 by ι0. The following obvious formula is

used repeatedly. For smooth function A(z, t), let

N (A) = {α ∈ ∪+∞
k=0{1, . . . , n, 1̄, . . . , n̄}

k|ι0Aα = 0}.

Then for smooth function A(z, t), B(z, t), we have

ι0(AB)γ =
∑

(α,β)∈P(γ);

α 6∈N (A),β 6∈N (B)

ι0Aα · ι0Bβ, (3.1.22)

where P(γ) is the set of 2-partition of γ

For case of ι0ρikmj̄, (3.1.2) yields

g−1ι0Bikmj̄ = ι0ρikmj̄. (3.1.23)

From (3.1.21) and definition ϕ(t) = ηit
i,

ι0Bikmj̄ = ι0ρzz̄ikmj̄ − ι0Lι0(ϕρzz + ϕ̄ρz̄z̄)ikmj̄

+ ι0L
2ι0((−ϕz + ϕ̄z̄ϕ+ ϕ̄ϕz̄ − ϕ2ϕ̄z)ρz)ikmj̄

+ ι0L
2ι0(−ϕ̄z̄ + ϕzϕ̄+ ϕϕ̄z − ϕ̄2ϕz̄)ρz̄)ikmj̄

= ι0ρzz̄ikmj̄ − ι0(ϕρzz)ikmj̄ + ι0(−ϕzρz)ikmj̄

= g(−∆∂̄ι0ρikmj̄ + ι0(Pϕ(ρ))ikmj̄)

= g(−∆∂̄ι0ρikmj̄ + σi,kmPiι0ρkmj̄).

(3.1.24)

Combining (3.1.23) and (3.1.24) gives

ι0ρikmj̄ = σi,kmDPi(ι0ρkmj̄)

= σikmDPiDPkDηmηj̄

(3.1.25)
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The computation above can be applied for α containing only one conjugate index. If

α = (β, γ̄) and γ̄ ∈ {1̄, . . . , n̄} and β ∈ ∪+∞
k=1{1, . . . , n}k, then

ι0ρα = σα(Πk∈α−iDPk)Dηiηγ̄.

For the case of ι0ρikj̄l̄, (3.1.2) yields

g−1ι0Bikj̄l̄ = ι0ρikj̄l̄ − ηiηj̄ηkηl̄. (3.1.26)

ι0Bikj̄l̄ = ι0ρzz̄ikj̄l̄

− ι0Lι0(ϕρzz + ϕ̄ρz̄z̄)ikj̄l̄ − σikσj̄ l̄ι0(L)ij̄ι0(ϕρzz + ϕ̄ρz̄z̄)kl̄

+ ι0L
2ι0((−ϕz + ϕ̄z̄ϕ+ ϕ̄ϕz̄ − ϕ2ϕ̄z)ρz)ikj̄l̄

+ ι0L
2ι0(−ϕ̄z̄ + ϕzϕ̄+ ϕϕ̄z − ϕ̄2ϕz̄)ρz̄)ikj̄l̄

= ι0ρzz̄ikj̄l̄ − ι0((ϕρz)z + (ϕ̄ρz̄)z̄)ikj̄l̄

+ ι0((ϕ̄z̄ϕ+ ϕ̄ϕz̄)ρz)ikj̄l̄ + ι0((ϕzϕ̄+ ϕϕ̄z)ρz̄)ikj̄l̄

= ι0ρzz̄ikj̄l̄ − ι0((ϕρz)z + (ϕ̄ρz̄)z̄)ikj̄l̄

+ σikσj̄ l̄(ηiηj̄)z̄ι0ρzkl̄ + σikσj̄ l̄(ηiηj̄)zι0ρz̄kl̄

(3.1.27)

Introduce a new local operator Qij̄(f) = −g−1((ηiηj̄)z̄fz)

ι0Bikj̄l̄ = g(−∆∂̄ι0ρikj̄l̄ + σikPiι0ρkj̄l̄ + σj̄ l̄P̄j̄ι0ρikl̄ + σikσj̄ l̄(Qij̄ρkl̄ + Q̄j̄i)ρkl̄). (3.1.28)

Combining (3.1.27) and (3.1.28) gives

ι0ρikj̄l̄ = σikσj̄ l̄(DPiDP̄j̄Dηkηl̄ +DP̄j̄DPiDηkηl̄ +DQij̄Dηkηl̄ +DQ̄j̄iDηkηl̄). (3.1.29)

We summarize the expansion up to order 2 for later use in this Chapter.

Theorem 3.1.4. Let ϕ(t) and ρ(t) be the setting as above,

ρ(t) = D(ηiηj̄)t
it̄j̄ +O(|t|3),

where ηiηj̄ is a globally defined continuous function and hence

Vt = (1−∆∂̄D(ηiηj̄)t
it̄j̄ +O(|t|3))V0.
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3.2 Expansion of the Harmonic Lift

In Definition (2.2.14), we define the KS map of a point b ∈ T by choosing a basis {ηi}

of H0,1
(2)(Sb, T

1,0Sb) and finding the corresponding holomorphic normal coordinate (t, U)

and we have by definition

K(∂i)|t=0 = ηi.

However, for t0 6= 0, to compute K(∂i)|t=t0 is not simple, as (t − t0, U) is not a normal

holomorphic coordinate at point t0.

In [Siu86], Siu proposed a method to construct a vector field over S-coordinate, which

is also mentioned in [Sch93] and [LSY09].

Definition 3.2.1 (Siu). Let (M, B, π) be an analytic family of Kähler manifolds, (w, s)

a holomorphic coordinate ofM and t a holomorphic coordinate of (B) with s = π∗t. For

the local holomorphic vector fields ∂t1 , . . . , ∂tn ,a set of smooth vector fields v1, . . . , vn on

π−1(B) are called a harmonic lift if it satisfies the following.

(1) π(vi) = ∂ti .

(2) ∂̄Fvi ∈ H0,1
(2)(Mt, T

1,0Mt).

Siu proved the existence of harmonic lift for the case of closed Kähler manifolds with

KE metric and negative Chen class of canonical bundle. Schumacher gives a construction

which could be applied to the punctured Riemann surfaces, as being harmonic is a local

condition.

Theorem 3.2.2. Let (S, B, π) be an analytic family of punctured Riemann surfaces

equipped with constant negative curvature -1. Let (w, s) be a local homomorphic coordinate

of S, with s = π∗t, holomorphic coordinate of B. Let Kähler metric be iGdw∧ dw̄ , then

vi = ∂si + (−G−1∂siw̄ logG)∂w

is a harmonic lift of ∂ti. Furthermore, its ∂̄F image

∂̄F (vi) = −(G−1∂si(logG)w̄)w̄dw̄ ⊗ ∂w

is coincides with K(∂i) for any t ∈ B.
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Our target is to find an expression of K(∂i) in K coordinate so that we could combine

the result for the volume form to compute hīj̄ in K coordinate. The expression above in

S coordinate gives us a good staring point.

Theorem 3.2.3. Denote

Aī = −G(G−1∂sī(logG)w)wc
2,

where c(z, t) = ∂w
∂z

, we have Aī is independent the choice of S-coordinate (w, s) and

ι0Aī = gηī,

ι0∂k̄Aī = 0,

ι0∂l logAī = −g(g−1ρzīl)z,

ι0∂k̄lAī = −g(g−1ι0ρzīk̄l)z + σikgηk̄ι0ρīj.

The definition of Aī might seem confusing. If we use the notation to be define in

Chapter 4, then

∂̄F (vi) = ht ◦ St ◦ σ2
ϕ(iAīdz

2).

Aī is also a building block in calculating expansion of hīj. To illustrate this and also

prepare for the proof of Theorem 3.2.3. We introduce and summarize some notation and

relation about KS coordinates.

T = ∂z − ϕ∂z̄,

L = (1− ϕϕ̄)−1,

∂w = c−1LT,

dw = c(dz + ϕ̄dz̄) + widt
i,

∂si = ∂i − wi∂w,

G = |c|−2geρ,

Vt = iGdwdw̄.
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And we have

hīj(t) =

∫
S0

AīAj|c|−4G−2Vt =

∫
S0

AīAje
−ρ(1− ϕϕ̄)V0

as well as some identities

G = (logG)ww̄, (3.2.1)

[∂ī, ∂w] = −c̄c−1Lηī∂w̄, (3.2.2)

[∂j, ∂w] = (Lϕ̄ηj − ∂j log c)∂w. (3.2.3)

Applying (3.2.2), we have

Aī = G(−G−1∂ī(logG)w + w̄ī)wc
2

= (∂w logG∂ī∂w logG− ∂w∂ī∂w logG)c2 + geρLηī.
(3.2.4)

In order to get expansion of Aī at t = 0, one just to get expansion of ∂w logG.

Let f(z, t) be a smooth function in K coordinate. Denote the expansion of f of

order (p, q) by ι0∂α∂β̄f , where α ∈ {1, . . . , n}p and β ∈ {1, . . . , n}q. We use the following

scheme to simplify the commutation for function of form ∂wf .

(1) If p 6= 0, use (3.2.3) to reduce recursively to the expansion of order (0, q)

ι0∂α∂β̄f = ι0∂α−j∂β̄∂w∂jf + ι0∂α−j∂β̄((Lϕ̄ηj − ∂j log c)∂wf).

(2) If p = 0 and q 6= 0, use (3.2.2) to reduce recursively to the expansion of order

(0, 0).

ι0∂α∂β̄f = ι0∂α∂β̄−ī∂w∂īf − ι0∂α∂β̄−ī(c̄c−1Lηī∂wf).

So to compute the expansion of hīj up tp order (1,1), one just need to compute the

expansion of Aī up tp order (1,1), and hence the expansion of ∂w logG of order up to

(1, 2).
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Direct computation using the scheme gives the following

ι0∂ī∂w = c−1(∂zī − ηī∂z̄),

ι0∂j∂w = c−1(∂zj − ∂j log c∂z),

ι0∂jl∂w = c−1(∂zjl − σjl∂l log c∂zj − ∂jl log c∂z + ∂j log c∂l log c∂z)

ι0∂īj∂w = ι0∂w∂ī − ∂j log cι0∂ī∂w + ηīηjι0∂w,

ι0∂īk̄∂w = c−1(∂zīk̄ − σikηī∂z̄k̄ + ηīηk̄∂z),

ι0∂īk̄j∂w = ι0∂īk̄∂w∂j − ∂j log cι0∂īk̄∂w + σikηīηjι0∂k̄∂w.

Acting on ∂w(logG), we have

ι0∂ī∂w logG = 0,

ι0∂j∂w logG = c−2cjz − c−2cj∂z log g,

ι0∂jl∂w logG = 0!,

ι0∂īj∂w logG = c−1ι0ρzīj,

ι0∂īk̄∂w logG = 0,

ι0∂īk̄j∂w logG = c−1ι0ρzīk̄j.

Considering (3.2.4), we get

ι0Aī = gηī,

ι0∂k̄Aī = 0,

ι0∂lAī = −g(g−1ρzīl)z,

ι0∂k̄lAī = −g(g−1ι0ρzīk̄l)z + σikgηk̄ι0ρīl.

We further use the notation fīj(t) =
∫
S0
AīAjg

−2V0 and get

ι0fīj(t) =

∫
S0

ηīηjV0,

ι0∂k̄fīj(t) = 0,

ι0∂lfīj(t) = 0.
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For expansion of order (1,1), we have

ι0∂k̄lfīj(t) =

∫
S0

(ι0∂k̄lAīι0Aj + ι0∂lAīι0∂k̄Aj + ι0Aīι0∂k̄lAj)g
−2V0

= −
∫
S0

(g−1ι0ρzīk̄l)zηjV0

+

∫
S0

σikηk̄ι0ρīlηjV0

+

∫
S0

(g−1ι0ρzīl)z(g
−1ι0ρz̄k̄j)z̄V0

−
∫
S0

(g−1ι0ρz̄jk̄l)z̄ηīV0

+

∫
S0

σjlηlι0ρjk̄ηīV0.

(3.2.5)

The first and fourth integration is 0 since (gη)z = 0. The third integration is simplified

below. ∫
S0

(g−1ι0ρzīl)z(g
−1ι0ρz̄k̄j)z̄V0

=

∫
S0

(g−1ι0ρzīl)z(−∂z̄ log gι0ρz̄k̄j + ρz̄z̄k̄j)idzdz̄

=

∫
S0

(g−1ι0ρzīl)z(−∂z̄ log gι0ρz̄k̄j + ρz̄z̄k̄j)idzdz̄

=

∫
S0

ι0ρzīlι0ρz̄k̄j + g−1ι0ρzīl(∂z̄ log gι0ρz̄zk̄j) + (g−1ι0ρzīl)z̄ρz̄zk̄jidzdz̄

=

∫
S0

−ι0ρīlρzz̄k̄j + g−1ι0ρzz̄īlρz̄zk̄jidzdz̄

=

∫
S0

ι0(D−1 − 1)ρīlρk̄j + ι0(D−1 − 1)ρīl(D
−1 − 1)ρk̄jV0

=

∫
S0

ηīηjηk̄ηl − ηk̄ηjDηīηlV0.

(3.2.6)

(3.2.5) reduced to

ι0∂k̄lfīj(t) =

∫
S0

ηīηlηk̄ηj − ηk̄ηjDηīηl + 2σikηīηjDηk̄ηlV0. (3.2.7)

Expansion of hīj is obtained bt the expansion of fīj and ρ.

Theorem 3.2.4. Let ϕ(t) = tiηi ∈ A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential.

The Hodge metric with respect to frame {ktKt(∂i)} coincides with the WP metric with

31



respect to frame {∂i} and have an explicit formula for any order. For order up to 2 is

given as below.

ι0hīj(t) =

∫
S0

ηīηjV0,

ι0∂k̄hīj(t) = 0,

ι0∂lhīj(t) = 0,

ι0∂k̄lhīj(t) =

∫
S0

σikηīηjDηk̄ηlV0.

Using the convention in [Bal06], RW
ij̄kl̄

= −RW
ij̄k
hpl̄ and

RWP
ij̄kl̄ (t) = ∂ij̄hkl̄ − ∂ihkp̄∂j̄hql̄hp̄q.

The curvature tensor formula for WP metric at t = 0 is

RW
ij̄kl̄(0) =

∫
S0

σikηj̄ηiDηl̄ηkV0.

This formula coincides in format with the Wolpert’s one for moduli of closed Riemann

surface.

3.3 Properties for Weil-Petersson Curvature Tensor

It is well known that the WP metric has multiple negative curvature properties. WP

metric has negative scalar curvature, Ricci curvature,holomorphic sectional curvature and

non-positive holomorphic bisectional curvature, dual-Nakano-negative and semi Nakano-

negative. The optimal upper bound for the holomorphic sectional curvature is conjec-

tured by Royden[Roy74] and proved by Wolpert and Tromba. The same things holds

for the case of punctured Riemann surfaces. We provide the proof for the optimal upper

bound which slightly differ from Wolpert’s result since the number of punctured points

matters.

Theorem 3.3.1. For the WP metric of T (S) of punctured Riemann surfaces with genus

g and k points punctured.
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(1) The holomorphic sectional curvature and the Ricci curvature is bounded above by

−1

π(2g − 2 + k)
.

(2)The scalar curvature is bounded by

−(3g − 3 + k)(3g − 2 + k)

2π(2g − 2 + k)
.

Proof. For any point b ∈ T , choose a unitary basis {ηi} of H0,1
(2)(Sb, T

1,0Sb). The holo-

morphic sectional curvature of direction ∂i is

−RW
īiīi = −2

∫
Sb

|ηi|2D|ηi|2V0.

As D is a self-adjoint compact operator, its has countable eigenvalues λ0, λ1, . . . 0 with

λ0 > λ1 > . . . and limn→∞ λn = 0. λ0 ≤ 1 as D = (1 + ∆∂̄)
−1. Let |ηi|2 =

∑∞
k=0 ψk,i,

where ψk,i is the eigenfunction for λk. By Lemma 3.3.2, all L2 harmonic functions over

Sb are constants. So ψ0,i is a constant function. We have

−2

∫
Sb

|ηi|2D|ηi|2V0 = −2
∞∑
k=0

∫
Sb

|ψk,i|2λiV0 ≤ −2

∫
Sb

|ψ0,i|2V0.

Since the Poincaré dual of ηi is could be regard as a meromorphic section of 2K with at

most k poles. ηi must have zero by Riemann-Roch theorem. Thus the inequality here is

strict. Since
∫
Sb
ψ0,iV0 = 1 , we have

ψ0,i =
1

Area(Sb)
=

1

2π(2g + k − 2)
.

For the Ricci curvature, we note that the Ricci curvature of direction ∂i is

Ric(∂i, ∂i) = −
3g−3+k∑
j=1

RW
ij̄jī

. Since RW
ij̄jī is negative, we have Ric(∂i, ∂i) ≤ RW

īiīi <
−1

π(2g−2+k)
.
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For the scalar curvature, we have

Scal =

3g−3+k∑
i=1

Ric(∂i, ∂i)

= −
3g−3+k∑
i=1

3g−3+k∑
j=1

∫
Sb

ηj̄ηiDηjηī + |ηi|2D|ηj|2V0

≤ −
3g−3+k∑
i=1

3g−3+k∑
j=1

∫
Sb

|ηi|2D|ηj|2V0 −
3g−3+k∑
i=1

|ηi|2D|ηi|2V0

≤ −
3g−3+k∑
i=1

3g−3+k∑
j=1

∫
Sb

ψ0,iψ0,jV0 −
3g−3+k∑
i=1

ψ2
0,iV0

≤ −(3g − 3 + k)(3g − 2 + k)

2π(2g − 2 + k)
.

For the same reason, the second last inequality is strict.

Lemma 3.3.2. Let S be a Riemann surface wit k points punctured then

dimH0,0
(2) (S,C) = 1

and hence dimH0,0(S,C) = 1.

Proof. Note that ker ∂̄0,0
m = ker ∂̄0,0. So the element f in H0,0

(2) (S,C) is a global holomor-

phic function with finite L2 norm.

Let S̄ be the closed Riemann surface such that S = S̄ − {p1, . . . , pk}. A small neigh-

borhood U of a punctured point p is called a cusp neighborhood. We have a coordinate

z such that z(p) = 0 and g = |dz|2
(|z|ln|z|)2 . Finite L2 norm yields∫

U

|f(z)|2igdz ∧ dz̄ <∞.

Thus f(z) = O(1) near 0. f extends to a holomorphic function on S̄ and thus a

constant. By Lemma 2.1.9, Kählerpackage holds. So H0,0
(2) (S,C) ∼= H0,0(S,C) = 1.
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CHAPTER 4

Extension Formula for Pluricanonical Form and a

Curvature Formula for Ricci Metric

In this chapter, we construct an extension of pluricanonical form and compare the Hoghe

metric under the frame of extended pluricanonical forms. As suggested in [Sun12], one

could derive Wolpert’s formula using the expansion of Hodge metric, which can be derived

from the expansion of volume form and the extension of pluricanonical form. However,

this method could not to be directly related to the curvature formula for WP metric.

This subtlety is due to the pluricanonical form we have constructed is not identical to

the musical isomorphism of the harmonic lift defined in Section 3.2.

In Section 4.1, we construct the extension of pluricanonical form for a deformation of

punctured Riemann surfaces. In section 4.2, we discussed the relation between harmonic

lift and the extension of pluricanonical form and gives an asymptotic formula.

4.1 Extension of Pluricanonical Form

Let S be a punctured Riemann surface, ϕ a Beltrami differential of S, Sϕ the correspond-

ing Riemann surface, then the map

σmϕ : A0(S,Km)→ A0(Sϕ, K
m
ϕ )

defined by

(dz)m 7→ ((dz + iϕdz)m

is an isomorphism. The description of holomorphic pluri-canonical form can be stated as

the following proposition.
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Proposition 4.1.1. Let S be a Riemann surface of finite type with the hyperbolic metric,

ϕ a harmonic Beltrami differential of S , s ∈ A0,0(S,Km) a smooth pluricanonical form.

Then σmϕ (s) is holomorphic on Sϕ if and only if

∂̄s = iϕ∇1,0s. (4.1.1)

Proof. Let s = fdzm, then

∇1,0s = df −mf∂z log gdz ⊗ dzm,

iϕ∇1,0s = ϕ(fz −mf∂z log g)dz̄ ⊗ dzm,

Note σmϕ (s) = fc−mdwm. σmϕ (s) being holomorphic on Sϕ is equivalent to ∂w̄(fc−m) = 0,

∂w̄(fc−m) = c̄−1cm+1L(cT̄ f −mfT̄ c)

= c̄−1c−m−1L(cT̄ f −mfT̄ c)

= c̄−1c−mL(∂z̄f − ϕ∂zf +mf∂zϕ)

= c̄−1c−mL(∂z̄f − ϕ∂zf −mfϕ∂z log g),

(4.1.2)

which is equivalent to (4.1.1).

To solve (4.1.1) for s ∈ A0,0
(2)(S,K

m). First note that ∇1,0s has finite L2 norm. In fact,

we have

(∇1,0s,∇1,0s) = (∇1,0∗∇1,0s, s)

= (∆∂̄s, s) + ([iR,∧]s, s)

= (∂̄s, ∂̄s)−m(s, s)

≤ C(s, s).

The 1st equation follows from the Bochner-Kodaira-Nakano identity and the 2nd equation

is because of the constant scalar curvature [iR,∧] is −m. The 1st inequality is because

of ∂̄ has closed range.

We apply ∂̄∗G to the both side of (4.1.1). Using the condition ∂̄∗ϕ = 0, we get

(1− ∂̄∗Giϕ∇1,0)s = Hs,
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where Hs is the harmonic part of s. Denote ∂̄∗Giϕ∇1,0 by Tϕ, since ‖Tϕ‖2 < 1 when

‖ϕ‖∞ small enough. we have

s = (1− Tϕ)−1Hs,

the solution is determined by is harmonic part.

Conversely, let s0 ∈ A0,0
(2)(M,Km) be harmonic, then s = (1− Tϕ)−1s0 is a solution to

(4.1.1). In fact, we have ∂̄s = H⊥(iϕ∇1,0s). For m = 1, iϕ∇1,0s = ∂(iϕs). For m > 2,

iϕ∇1,0s lives in A0,1
(2)(M,Km). Since H0,1

(2) (S,Km) = 0 by Proposition 1.2, iϕ∇1,0s =

H⊥(iϕ∇1,0s).This finishes the proof of the following proposition.

Theorem 4.1.2. Let S be a punctured Riemann surface with the hyperbolic metric. Let

ϕ be a harmonic Beltrami differential and ‖ϕ‖∞ small enough. The solutions to (4.1.1)

are exactly s = (1− Tϕ)−1s0, where s0 ∈ A0,0
(2)(S,K

m) is a holomorphic section.

Remark 4.1.3. To obtain this solution one only needs a complete metric with bounded

scalar curvature.

Together with Proposition 4.1.1, we construct a smooth extension of a holomorphic

section.

Theorem 4.1.4. Let S be a punctured Riemann surface with the hyperbolic metric. For

a Beltrami differential ϕ(t) , a harmonic Beltrami differential η = ∂ϕ(t)
∂t
|t=0 with ‖η‖∞

small enough and a holomorphic section s0 ∈ A0,0
(2)(S,K

m), there is a smooth extension

of s0 with respect to Bers coordinate t

σmϕ(t)(s(t)) = s0 + Tηis0t
i + iηis0t

i +O(|t2|). (4.1.3)

4.2 Comparison between Harmonic Lift and Extension of Pluri-

canonical Form

Since L2 Serre duality holds for H0,1
(2) (S, T 1,0S), the Hodge metric hH for m = 2 is the

co-metric of WP metric hW . As discussed in the end of Section 2.2. To compute the

curvature of WP metric using h̃Hīj (t) is not obvious , one could still compute for the Ricci

tensor for the WP metric.
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In this section, we first derive some useful lemmas illustrating the interplays of several

operators and their local expression. Then we work on an expansion formula for h̃Hīj (t)

at the end of the section.

Let S be a punctured Riemann surface with hyperbolic metric. Let ϕ(t) = tiηi ∈

A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential. Let sa0 = iηāgdz2, sb0 = iηb̄gdz2 ∈

A0,0
(2)(S,K

m) be holomorphic sections and Et(s
a
0), Et(s

b
0) be the corresponding extension.

We have

h̃Hāb(t) =

∫
S0

(σmϕ(t)(s
a(t), σmϕ(t)(s

b(t)))V −m
t
Vt

=

∫
S0

(sa(t), sb(t))V −m
0

(1− ϕϕ̄)e(1−m)ρ(t)V0.

(4.2.1)

We further use the notation

f̃āb(t) =

∫
S0

(sa(t), sb(t))V −m
0
V0. (4.2.2)

Proposition 4.2.1. The expansion of f̃īj of order (p, q)at t = 0 is the following.

If p = 0 and q = 0

ι0f̃āb(t) =

∫
S0

ηīηjV0.

If p = 0 or q = 0 but (p, q) 6= (0, 0)

ι0∂αβ̄ f̃b̄(t) = 0.

If p ≥ 1 and q ≥ 1

ι0∂αβ̄ f̃b̄(t) = σασβ̄

∫
S0

ηbηj̄(Πk∈β−jP̄j̄D)(1−D)(Πk∈α−iPkD)(ηiηā),

where α ∈ {1, . . . , n}p and β ∈ {1, . . . , n}q, σα is the permutation of α.

Before the proof, we are going to deduce some lemmas.

Recall Tηs = ∂̄∗Giη∇1,0s, the linear term vanishes. We have

hm(Tηs
a
0, Tηs

b
0) = hm(Giη∇1,0sa0), H⊥iη∇1,0sb0) = hm(Giη∇1,0sa0), iη∇1,0sb0), (4.2.3)

since ∂̄(iη∇1,0s0) = 0 and H0,1
(2) (M,Km) = 0.
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Definition 4.2.2. Let (S, L)be an Hermitian line bundle over Riemann surface S. Let

z holomorphic coordinate of S, e holomorphic section of L. For ϕ = ϕj
ī
dz ī∂j ⊗ e ∈

A0,1(S, T 1,0S⊗L), its divergence is defined to be d divϕ = Tr∇ϕ. In local coordinate, it

is

divϕ = (ϕz + ϕ log gh)dz̄ ⊗ e,

where 2g is the Hermitian metric on S, h is the Hermitian metric on L.

The simplification of (4.2.3) follows from the following three lemmas [Sun12].

Lemma 4.2.3. Let ϕ = ϕdz̄ ⊗ ∂z ∈ A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential,

s = fdzm ∈ A0,0
(2)(S,K

m) be a smooth section. We have

iϕ∇1,0s = divAϕs,

where Aϕ is a global operator defined as Ai(s) = ηi ⊗ s for s ∈ A0,1
(2)(S,K

m).

Proof. Note that

∇1,0s = df −mf(log g)zdz ⊗ dzm,

iϕ∇1,0s = ϕ(fz −mf(log g)z)dz̄ ⊗ dzm,

div(ϕ⊗)s = (ϕf)z + ϕf log(g · (2g)−m)zdz̄ ⊗ dzm

= ϕ(fz −mf(log g)z) + f(ϕz + ϕ(log g)z)dz̄ ⊗ dzm.

Since divϕ = 0, we have iϕ∇s = iϕ∇s.

For ψ = ψdz ⊗ e ∈ A0,1(M,L), where e holomorphic section, S Riemann surface, we

have

div∗ ψ = −(ψg−1)dz̄ ⊗ ∂z ⊗ e.

Lemma 4.2.4. Let µ = µdz̄ ⊗ ∂z ⊗ dzm ∈ A0,1
(2)(S, T

1,0S ⊗Km), then

div∗divµ = ∆∂̄µ.
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Proof.

div µ = µz + (1−m)µ(log g)zdz̄ ⊗ dzm,

div∗ div µ = −(g−1(µz + (1−m)µ(log g)z))z̄dz̄ ⊗ ∂z ⊗ dzm,

∗̄hµ = iµ̄dz ⊗ dz ⊗ (∂z)
m(2g)1−m,

∂̄∗̄hµ = i(µ̄(2g)1−m)z̄dz̄ ∧ dz ⊗ dz ⊗ (∂z)
m,

∂̄∗µ = ∗̄h∂̄∗̄hµ = −g−1(µz + (1−m)µ(log g)z)∂z ⊗ dzm,

∆∂̄ = −(g−1(µz + (1−m)µ(log g)z))z̄dz̄ ⊗ ∂z ⊗ dzm.

Lemma 4.2.5. Let λ = λdz̄ ⊗ dzm ∈ A0,1
(2)(S,K

m), S is a punctured Riemann surface

with hyperbolic metric, then

[∆∂̄, div∗]λ = (1−m) div∗ λ.

And hence for m = 2

divDλ = G div λ.
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Proof.

∗̄hλ = iλ̄dz ⊗ (∂z)
m(2g)−m,

∂̄∗̄hλ = i(λ̄(2g)−m)z̄dz̄dz ⊗ ∂mz ,

∂̄∗λ = ∗̄h∂̄∗̄hλ = −g−1(λz −mλ(log g)z)dz
m,

∆∂̄λ = (g−1(λz −mλ(log g)z))z̄dz̄dzm,

div∗∆∂̄µ = (g−1(g−1(µz −mµ(log g)z))z̄)z̄dz̄ ⊗ ∂z ⊗ dzm

∆∂̄ div∗ µ = −(g−1((λg−1)zz̄ + (1−m)(λg−1)z̄(log g)z))z̄dz̄ ⊗ ∂z ⊗ dzm

[∆∂̄, div∗]λ = (g−1[(λg−1)zz̄ + (1−m)(λg−1)z̄(log g)z − (g−1(λz −mλ(logg)z)z̄)])z̄

= (g−1[(λg−1)zz̄ + (1−m)(λg−1)z̄(log g)z − (g−1λz)z̄

+m(g−1λ)z̄(logg)z +mg−1λ(log g)zz̄)])z̄

= (g−1[(λ(g−1)z)z̄ + (λg−1)z̄(log g)z +mg−1λ(log g)zz̄])z̄

= (g−1[λ(g−1)zz̄ + λ(g−1)z̄(log g)z +mg−1λ(log g)zz̄])z̄

= (g−1(m− 1)λ)z̄ = (1−m) div∗ λ.

(4.2.4)

The condition of hyperbolic metric with constant curvature -1 is used in the second last

row. If m = 2, then

(∆∂̄ + 1) div∗ λ = div∗∆∂̄λ.

By Proposition 2.1.11, H0,1
(2) (M,Km) = 0 and thus ∆∂̄ = G−1. By manipulating the

terms, we have divDλ = G div λ.

Lemma 4.2.6.

(1 + ∆∂̄)
−1(h(ηk)⊗ ηi) = (1 + ∆∂̄)

−1(ηi, ηk)e,

where e = ig(dz̄ ⊗ ∂z ⊗ dz2).

Check [LSY13] Lemma 3.5 for the proof.

We ready for the proof for Proposition 4.2.1

Proof. We have

∂αβ̄ f̃āb(t) = σασβ̄h
H((Πi∈αTi)s

a
0, (Πj∈βTj)s

b
0). (4.2.5)
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For the case |α| = |β| = 0, it follows directly.

For the case |α| ≥ 1 and |β| = 0, (Πi∈αTi)s
a
0 is in the range of ∂̄∗ which is perpendicular

to a holomorphic section sb0.

For the case |α| ≥ 1 and |β| ≥ 1, For simplicity, we assume α = {i, k}, β = {j}.

Use Lemma 4.2.3, Lemma 4.2.4 and Lemma 4.2.5 for the case m = 2, we have

hH(TkTis
a
0, Tjs

b
0) = hH(∂̄∗ divDAk∂̄

∗ divDAis
a
0, ∂̄

∗ divDAjs
b
0)

= hH(∂̄∗G divAk∂̄
∗ divDAis

a
0, divDAjs

b
0)

= hH(∆∂̄G divAk∂̄
∗ divDAis

a
0, divDAjs

b
0)

= hH(div∗ divAk∂̄
∗ divDAis

a
0, DAjs

b
0)

= hH((1−D)Ak∂̄
∗ divDAis

a
0, Ajs

b
0),

(4.2.6)

In a local K-coordinate, let µ = µe ∈ A0,1
(2)(S, T

1,0S⊗K2), where e = ig(dz̄⊗∂z⊗dz2).

We have

A∗∂̄ div µ = Pi(µ)e.

Combined with Lemma 4.2.6, we continue the simplification.

hH(TkTis
a
0, Tjs

b
0) = hH((1−D)Ak∂̄

∗ divDAis
a
0, Ajs

b
0),

= hH((1−D)Ak∂̄
∗ div(D(ηiηā)e), ηjηb̄e),

= hH((1−D)(PkD(ηiηā)e), ηjηb̄e),

=

∫
S0

ηbηj̄(1−D)PkD(ηiηā)V0

(4.2.7)

In general, we have by induction

∂αβ̄ f̃āb(t) = σασβ̄h
H((Πi∈αTi)s

a
0, (Πj∈βTj)s

b
0)

= σασβ̄

∫
S0

ηbηj̄(Πk∈β−jP̄j̄D)(1−D)(Πk∈α−iPkD)(ηiηā).
(4.2.8)

Combined with the expansion of ρ computed in Section (3.1.3) Let S be a punctured

Riemann surface with hyperbolic metric.
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Theorem 4.2.7. Let ϕ(t) = tiηi ∈ A0,1
(2)(S, T

1,0S) be a harmonic Beltrami differential.

Let sa0 = iηāgdz2, sb0 = iηb̄gdz2 ∈ A0,0
(2)(S,K

m) be holomorphic sections and Et(s
a
0), Et(s

b
0)

be extension corresponding to ϕ. The Hodge metric with respect to frame {Et(sa0)} have

an explicit formula for any order. For order up to 2 is given as below.

ι0h̃
H
īj (t) =

∫
S0

ηīηjV0,

ι0∂k̄h̃
H
īj (t) = 0,

ι0∂lh̃
H
īj (t) = 0,

ι0∂k̄lh̃
H
īj (t) = −

∫
S0

σikηīηjDηk̄ηlV0.
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