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ABSTRACT OF THE DISSERTATION

List Decoding of Subspace Codes and Rank-Metric Codes

by

Hessam Mahdavifar

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2012

Professor Alexander Vardy, Chair

Subspace codes and rank-metric codes can be used to correct errors and erasures

in networks with linear network coding. Both types of codes have been extensively

studied in the past five years. We develop in this document list-decoding algorithms for

subspace codes and rank-metric codes, thereby providing a better tradeoff between rate

and error-correction capability than existing constructions.

Randomized linear network coding, considered as the most practical approach

to network coding, is a powerful tool for disseminating information in networks. Yet

it is highly susceptible to transmission errors caused by noise or intentional jamming.

Subspace codes were introduced by Koetter and Kschischang to correct errors and era-

sures in networks with a randomized protocol where the topology is unknown (the non-

xi



coherent case). The codewords of a subspace code are vector subspaces of a fixed am-

bient space; thus the codes are collections of such subspaces.

We first develop a family of subspace codes, based upon the Koetter-Kschichang

construction, which are efficiently list decodable. We show that, for a certain range of

code rates, our list-decoding algorithm provides a better tradeoff between rate and de-

coding radius than the Koetter-Kschischang codes. We further improve these results by

introducing multiple roots in the interpolation step of our list-decoding algorithm. To

this end, we establish the notion of derivative and multiplicity in the ring of linearized

polynomials. In order to achieve a better decoding radius, we take advantage of enforc-

ing multiple roots for the interpolation polynomial. We are also able to list decode for a

wider range of rates. Furthermore, we propose an alternative approach which leads to a

linear-algebraic list-decoding algorithm.

Rank-metric codes are suitable for error correction in the case where the network

topology and the underlying network code are known (the coherent case). Gabidulin

codes are a well-known class of algebraic rank-metric codes that meet the Singleton

bound on the minimum rank-distance of a code. In this dissertation, we introduce a

folded version of Gabidulin codes along with a list-decoding algorithm for such codes.

Our list-decoding algorithm makes it possible to achieve the information theoretic bound

on the decoding radius of a rank-metric code.
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Chapter 1

Introduction

1.1 Randomized Network Coding

Network coding has been a very exciting and fast growing area of research in

the past decade since it was introduced in 2000 [1]. The literature on network coding

encompasses, by now, hundreds of papers contributed by people from various disciplines

including coding theory, information theory, networks and wireless communications,

security and secrecy etc. Ahlswede, Cai, Li, and Yeung, in their seminal paper [1], say

that they “refer to coding at a node in a network as network coding”. Network coding is

basically a technique where, the nodes of a network take several packets and combine

them together for transmission instead of simply relaying the packets of information

they receive. In fact, network coding generalizes network operation beyond traditional

routing approaches.

In a multicast setting, one source communicates simultaneously with several re-

ceivers in the network [1,12]. The most famous example of the network coding benefit

was given by Ahlswede et al. [1] in a multicast setting. In their example, depicted in

Figure 1.1 which is commonly referred to as the butterfly network, one source commu-

nicates with two receivers in the network. Both receivers r1 and r2 wish to know, in full,

the message at the source node s. In this network, each edge represents a link capable

of carrying one bit in one time unit reliably. There are two information bits b1 and b2
available at the source which we wish to transmit to both receivers reliably. This can

be done separately for each of the receivers using routing, or store-and-forward, algo-

1
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b1 b2

v3

v2v1
b1 b2
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b1 b2
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v4

r1 r2
⊕b1 b2 ⊕b1 b2

Figure 1.1: In the butterfly network, the source s communicates with two receivers r1
and r2 simultaneously.

rithm. It is impossible to transmit both b1 and b2 to both receivers, however, in one

round of communication by a routing algorithm. The desired multicast operation can be

established only if one of the intermediate nodes breaks the rule of traditional routing

algorithm, where intermediates nodes are only allowed to transmit copies of what they

receive, and performs a simple form of coding operation. The node v3 in the network

takes two received bits and computes the XOR of these two bits and outputs the result

on its output link. The receiver r1 receives b1 and b1 ⊕ b2 and can easily recover b2
by XORing them. The receiver r2 receives b2 and b1 ⊕ b2 and recovers b1 as well by

performing an XOR operation. In the butterfly network, the rate of information from the

source to each receiver is 2 which is equal to the min-cut bound by max-flow min-cut

theorem. Network coding enables us to simultaneously achieve the max-flow min-cut

bound from the source to each receiver that is, 2 bits of information is transmitted to

both of the receivers during each round of communication.

The network coding depicted in the butterfly network is also an example of lin-

ear network coding. In linear network coding, the underlying network coding operations

performed at intermediate nodes are linear; that is, each intermediate node computes a
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linear combination of the packets that are available at its input links and transmits the

result through its output link. In a multicast setting, linear network coding is sufficient

to achieve simultaneously the individual max-flow min-cut bound on the rate of com-

munication between the source and each of the receivers [12].

Randomized linear network coding, first proposed in [9,10], is a powerful tool

for disseminating information in networks. Since randomized network coding is com-

pletely distributed and decentralized, it is the most promising practical approach to net-

work coding to date [2]. Suppose that the source injects into the network a set of packets

v1,v2, . . . ,vn, all of the same length (the same number of symbols). These packets can

be regarded as vectors of length m over a finite field Fq. In the randomized setting, each

intermediate node in the network generates random Fq-linear combinations of the pack-

ets available at its input links and sends them out on its output links. Finally, receivers

collect the packets on their input links and use this information in an attempt to recover

v1,v2, . . . ,vn. It is proved in [10] that, with high probability, this randomized network

coding protocol achieves the max-flow min-cut bound (cf. [1,12]), simultaneously for

each receiver, provided the size q of the underlying field Fq is sufficiently large.

Randomized linear network coding is highly susceptible to transmission errors

caused by noise or intentional jamming. Even a single packet error injected in the net-

work could potentially render the entire transmission useless. Packets can also become

lost (erased), so that the problem of deducing the transmitted message at the receiver

cannot be completed. Errors in this model correspond to the injection of erroneous pack-

ets into the network, either by malicious nodes or through link mis-connections, that do

not belong to the linear space spanned by the source vectors v1,v2, . . . ,vn; erasures

(lost packets) correspond to the projection of 〈v1,v2, . . . ,vn〉 onto a lower-dimensional

subspace. The problem of error-control for randomized network coding was first ad-

dressed in the pioneering work of Koetter and Kschischang [11]. They introduced the

operator channel to capture the essence of randomized network coding. Furthermore,

motivated by the fact that randomized network coding is vector-space preserving, Koet-

ter and Kschischang [11] introduced error-correcting codes in projective space [7,11],

also known as subspace codes. We review the basics of the operator channel model and

subspace codes in the next two sections.
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1.2 Operator Channel

Koetter and Kschischang [11] introduced the operator channel model in order to

capture the essence of randomized linear network coding for multicast, in the case where

the network topology is unknown (the non-coherent case). This problem is formulated

for the case of a single unicast; that is, communication between a single source and a

single receiver. Generalizations to multicasts and sets of disjoint unicasts are relatively

straightforward.

Recall [2] that communication between a source and receiver is done in a series

of rounds or generations. During each generation, the transmitter injects a number of

packets into the network; each of them is regarded as a vector of length N over a finite

field Fq. These packets pass through the intermediate nodes of the network to reach the

targeted receiver node. Each intermediate node in the network creates random Fq-linear

combinations of the packets available at its incoming edges and sends them out on its

outgoing edges. The receiver collects a number of such network generated packets and

tries to infer the set of packets injected into the network.

Let v1,v2, . . . ,vn, vi ∈ FqN , be the vectors injected into the network. Suppose

that the receiver collects r vectors u1,u2, . . . ,ur, where the ui’s are also vectors in the

vector space FqN . If there is no error injected into the network, then each ui is a linear

combination of vj’s; that is, ui =
∑n

j=1 hi,jvj , where hi,j ∈ Fq are unknown coeffi-

cients. In fact, the hi,j’s are determined by the particular linear combinations created at

intermediate nodes. These linear combinations are assumed to be generated completely

at random, hence becoming unknown at the receiver.

Consider the scenario that some erroneous packets are injected into the network,

for instance as a result of corruption in some of the network links or by some malicious

nodes trying to disturb the communication by injecting erroneous packets into the net-

work. Suppose that t erroneous packets e1, e2, . . . , et are injected into the network. Then

each received packet ui can be expressed as

ui =
n∑
j=1

hi,jvj +
t∑

j=1

gi,jej

where ej’s and gi,j’s are unknown to the receiver. The set of all such equations for
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i = 1, 2, . . . , r can be expressed as a single matrix equation that is,

U = HV +GE (1.1)

where U is an r × N matrix whose rows represent the received packets u1,u2, . . . ,ur,

V is an n×N matrix whose rows are the transmitted packets by the source node, H and

G are random matrices of dimensions r × n and r × t respectively, and E is a t × N

matrix whose rows are the error vectors e1, e2, . . . , et.

Since the matrix H is random and is not known to the receiver, the natural ques-

tion is: How can we convey information to the receiver, even in the absence of noise?

Suppose thatH is full column-rank. Then the only thing that is preserved when we mul-

tiply V by H , is the vector space spanned by the rows of V that is, the linear span of the

set of packets injected into the network. Indeed, as far as the receiver is concerned, any

basis for this vector space is the same as any other one. Therefore, Koetter and Kschis-

chang are led to consider the information transmission by the choice of the vector space

spanned by the set of packets injected into the network. This observation is the main

motivation for the operator channel model and codes constructed for this model called

subspace codes.

Let W be a fixed vector space over Fq, called the ambient space. Let N =

dimW . All the packets in the network are viewed as elements of W . Let Pq(W)

denotes the set of all subspaces ofW . Let also Gq(W , n) denotes the set of all subspaces

ofW of dimension n.

Definition 1.2.1. [11] An operator channel C associated with the ambient spaceW is

a channel whose input and output alphabets are Pq(W). If a vector space V is the input

to C , the corresponding output vector space U is given by:

U = Hk(V )⊕ E (1.2)

where E is an error vector space such that E ∩ V = {0} and Hk is the erasure oper-

ator. The erasure operator Hk projects V onto a k-dimensional subspace of V chosen

uniformly at random, provided dimV > k; otherwise, Hk leaves V unchanged. The

number of errors and erasures that occurred during the transmission over the operator

channel C are defined as t = dimE and ρ = dimV − dimHk(V ), respectively.
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Hk(V ) ⊕ E is the direct sum of Hk(V ) and E which is by definition the set

{v + e : v ∈ Hk(V ), e ∈ E}. In general, Hk(V ) and E may have a non-trivial inter-

section. However, E can be always decomposed as E = (E ∩ V )⊕ E ′ for some vector

space E ′ such that E ′ ∩ V = {0}. Then E ′ can be regarded as the actual error vector

space, while E∩V may be only helpful by possibly recovering some part of transmitted

space V lost due to erasure. Therefore, we may always assume that E ∩ V = {0}.
If the matrix H in (1.1) is full column-rank, then there will be no erasures. In-

deed V andHV will have the same row space in that case. In general, matrixH depends

on the random coefficients picked at intermediate nodes as well as the network topology.

For instance, if the min-cut between the source and the receiver is less than n, then H

can not be full column-rank, no matter how large r is and how the intermediate nodes

pick their coefficients. If the min-cut between the source and the receiver is at least

n, then H may or may not be full rank depending on the random linear combinations

performed at intermediate nodes. It can be proved that if the size of the field q is large

enough and the coefficients at each intermediate node are picked completely at random,

then with very high probability, H is full-column rank.

1.3 Subspace Codes

In the previous section, we reviewed the operator channel model whose input and

output alphabet is the set of all subspaces of an ambient spaceW denoted by Pq(W).

In order to define codes for the operator channel, first we need to define a metric on

Pq(W). A distance function on Pq(W) is defined in [11] as follows:

Definition 1.3.1. Let N be the set of non-negative integers. The function d : Pq(W)×
Pq(W)→ N is defined as

d(A,B)
def
= dim(A+B) − dim(A ∩B) (1.3)

where A+B = {a+ b : a ∈ A, b ∈ B} denotes the sum of spaces A and B.

Notice that

dim(A+B) = dim(A) + dim(B)− dim(A ∩B)
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Therefore, the distance between A and B can be also written as

d(A,B) = dim(A) + dim(B)− 2 dim(A ∩B)

The following lemma proves that the distance function d(·, ·) makes the set Pq(W) a

metric space.

Lemma 1.3.2. [11] The distance function

d(A,B) = dim(A) + dim(B)− 2 dim(A ∩B)

is a metric for the set Pq(W).

Proof. We need to verify the following three conditions:

1. d(A,B) > 0 and equality happens if and only if A and B are identical.

2. d(A,B) = d(B,A).

3. d(A,C) 6 d(A,B) + d(B,C) for any A,B,C ∈Pq(W)

Notice thatA∩B is always a subspace ofA+B. Also, these two become identical if and

only if A and B are equal. Therefore, the first condition is always satisfied. The second

condition is trivial. For the third condition, we plug in the formula for the distance

function. Then it becomes equivalent to

dim(A ∩B) + dim(B ∩ C) 6 dim(B) + dim(A ∩ C) (1.4)

Notice that A ∩ B and B ∩ C are both subspaces of B and hence, (A ∩ B) + (B ∩ C)

is a subspace of B. Therefore,

dim
(
(A∩B)+(B∩C)

)
= dim(A∩B)+dim(B∩C)−dim(A∩B∩C) 6 dim(B) (1.5)

Also, we have

dim(A ∩B ∩ C) 6 dim(A ∩ C) (1.6)

Adding (1.5) and (1.6) results in (1.4).
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Definition 1.3.3. A subspace code C for an operator channel with ambient spaceW is

a non-empty subset of Pq(W). Thus codewords of C are subspaces ofW . Also, The

minimum distance of C is given by

d(C)
def
= min

X,Y ∈C
X 6=Y

d(X, Y )

A minimum-distance decoder for the code C takes the output of the operator

channel U and produces the closest codeword V ∈ C to U that is, for any other V ′ ∈ C

d(U, V ) 6 d(U, V ′)

Similar to traditional error correction, there is a necessary and sufficient condition on

the total number of errors and erasures happening during the transmission through the

operator channel which guarantees the minimum-distance decoder to be successful. This

is provided in the following theorem.

Theorem 1.3.4. [11] Consider a subspace code C with minimum distance d. Suppose

that V ∈ C is transmitted through an operator channel and

U = Hk(V )⊕ E

is received. Let t and ρ be the number of errors and erasures, respectively. If

2(t+ ρ) < d, (1.7)

then a minimum distance decoder for C recovers the transmitted codeword V from the

received subspace U .

Proof. Let n = dim(V ). Then dim(U) = n − ρ + t and dim(U ∩ V ) = n − ρ. The

distance between U and V is given, by definition, as

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) = ρ+ t

For any other codeword V ′ 6= V , by the triangle inequality we have

d(V ′, U) > d(V ′, V )− d(U, V ) > d− d(U, V ) = d− (ρ+ t) > ρ+ t = d(U, V )

Therefore, the output of the minimum-distance decoder is V .

Next, the rate of a subspace code is defined
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Definition 1.3.5. [11] Let C be a code associated with the ambient spaceW of dimen-

sion N over Fq. Suppose that the dimension of any V ∈ C is at most n. Then the rate R

of C is defined as follows:

R
def
=

logq |C|
nN

(1.8)

If the dimension of all codewords in C is n, then the rate R of C can be thought of as

the symbol rate of the code. In fact, logq |C| is the total number of information symbols.

We are injecting n packets, each with lengthN , into the network. Hence, nN is the total

number of symbols injected into the network.

At the end of this section, we present a very simple example of subspace codes.

Example 1.3.1. Let n and N be two positive integers with n 6 N and let Fq be a finite

field. Consider the set M of all n × N matrices over Fq of the form [In×n|An×(N−n)],
where A is an arbitrary n × (N − n) matrix and I is the n × n identity matrix. This

set contains qn(N−n) different matrices. Observe that each matrix in M generates a

different row space. Let the subspace code C be the set of all n-dimensional subspaces

corresponding to the row spaces of elements of M . Then the size of C is equal to the

size of M . The distance between any two elements of C is at least 2. Also, two matrices

in M that differs only in one row generate row spaces with distance 2. Hence, the

minimum distance of C is 2. The rate of the codes is equal to

R =
logq |C|
nN

=
n(N − n)

nN
= 1− n

N

1.4 Linearized Polynomials and Applications to

Subspace Codes

Let Fq be a finite field and let F = Fqm be an extension field for some integer

m. Recall from [13, Ch. 4.9] that a polynomial f(X) over F is called an Fq-linearized

polynomial if it has the form

f(X) =
s∑
i=0

aiX
qi

where ai ∈ F, for i = 0, 1, . . . , s. When q is fixed under discussion, we will let X [i]

denotesXqi . We use the term q-degree instead of degree for linearized polynomials. For
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instance, assuming that as 6= 0, the linearized polynomial f(X) has q-degree s which

means that its actual degree is qs.

The main property of linearized polynomials, from which they receive their

name, is the following. Let f(X) be an Fq-linearized polynomial over F and let K
be an extension of F. Then the map taking α ∈ K to f(α) ∈ K is linear with respect to

Fq that is, for all α1, α2 ∈ K and all λ1, λ2 ∈ Fq,

f(λ1α1 + λ2α2) = λ1f(α1) + λ2f(α2)

It is well-known that if two linearized polynomials of q-degree at most k − 1 agree on

at least k linearly independent points, then the two polynomials are identical. This is

proved in the following lemma.

Lemma 1.4.1. Let f(X) and g(X) be two Fq-linearized polynomials with q-degree at

most k − 1, for some k ∈ N. Suppose that there exist k linearly independent elements

α1, α2, . . . , αk ∈ K, where K is an extension of Fq, such that f(αi) = g(αi), for i =

1, 2, . . . , k. Then f(X) and g(X) must be identical.

Proof. Let h(X) = f(X) − g(X). Then h(X) is also an Fq-linearized polynomial

with q-degree at most k − 1. Furthermore, h(X) has at least k linearly independent

roots α1, α2, . . . , αk ∈ K. All Fq-linear combinations of these elements are also roots

of h(X). Hence, h(X) has at least qk distinct roots while its degree is at most qk−1.

Therefore, h(X) must be identically zero which implies that f(X) and g(X) are indeed

equal.

As proved in the lemma, an Fq-linearized polynomial f(X) with q-degree s has

at most s linearly independent roots. In fact, the set of all roots of f(X) spans a vector

space of dimension at most s, known as the the root space of f(X). Let K be an

extension field of Fq that contains all the roots of f(X). The root space of f(X) is

indeed the kernel of f(X) acting as a linear function on K.

The sum of two linearized polynomials, f1(X) and f2(X), is also a linearized

polynomial. However, the product f1(X)f2(X) is not necessarily a linearized poly-

nomial. Therefore, in order to have a ring structure, the operation f1(X) ⊗ f2(X) is
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defined to be the composition f1(f2(X)) which is always a linearized polynomial. In

fact, if f1(X) =
∑

i>0 aiX
[i] and f2(X) =

∑
j>0 bjX

[j], then

f1(X)⊗ f2(X) = f1(f2(X)) =
∑
k>0

ckX
[k] (1.9)

where ck =
∑k

i=0 aib
[i]
k−i. It should be noted that this operation is not commutative. It

is easy to construct examples for f1(X) and f2(X) such that

f1(X)⊗ f2(X) 6= f2(X)⊗ f1(X)

In summary, the set of Fq-linearized polynomials over Fqm forms a ring that

is non-commutative under addition + and composition ⊗. Let us denote this ring by

Lqm [X]. Though not commutative, the ring of linearized polynomials has many of the

properties of a Euclidean domain. In fact, there are two division algorithms: a left

division and a right division; that is, given any two linearized polynomials f1(X) and

f2(X), there exist unique linearized polynomials qL(X), qR(X), rL(X) and rR(X) such

that

f1(X) = qL(X)⊗ f2(X) + rL(X) = f2(X)⊗ qR(X) + rR(X)

where rL(X) = 0 or deg(rL(X)) < deg(f2(X)) and similarly where rR(X) = 0 or

deg(rR(X)) < deg(f2(X)). A straightforward modification of polynomial division

algorithm can be invoked in order to do left division and right division for linearized

polynomials.

Koetter and Kschischang used linearized polynomials to construct a remarkable

family of subspace codes analogous to Reed-Solomon codes in classical block codes

[11]. Recall that Reed-Solomon codes are constructed by evaluating a certain message

polynomial over a fixed set of points. They are one of the most famous families of block

codes in use today. We briefly review Reed-Solomon codes with the aim of clarifying

the analogy between them and Koetter-Kschischang subspace codes.

The construction of generalized Reed-Solomon codes is as follows. Let k be

the number of information symbols and n be the length of the code. Let Fq be a

finite field from which the message symbols are chosen. The message is a vector

u = (u0, u1, . . . , uk−1) ∈ Fqk. Then the corresponding codeword is constructed as

(fu(α1), fu(α2), . . . , fu(αn)), where fu(X) =
∑k−1

i=0 uiX
i is the message polynomial
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and α1, α2, . . . , αn are n distinct and fixed elements of Fq. Observe that generalized

Reed-Solomon code is an (n, k) linear block code. The minimum distance of this code

is equal to n−k+1, hence achieving the Singleton bound on the minimum distance of a

block code. In fact, Reed-Solomon codes are in the family of MDS (maximum distance

separable) codes.

Koetter-Kschischang algebraic subspace codes, originally called Reed-Solomon-

like codes in [11], is analogous to Reed-Solomon codes in classical coding theory

wherein symbols are replaced by vectors, regular polynomials with linearized polyno-

mials, and sequences of symbols with Fq-linear span of the corresponding vectors.

Next, we review the construction of Koetter-Kschischang subspace codes in

more details. Let Fq be a finite field and F = Fqm be an extension of Fq. F can be

actually regarded as a vector space of dimension m over Fq. Let n 6 m be a positive

integer and let A = {α1, α2, . . . , αn} be a set of n elements of F that are linearly inde-

pendent over Fq. The set A will be the evaluation set and n will be the dimension of the

constructed code.

Let u = (u0, u1, . . . , uk−1) ∈ Fk be the vector of k information symbols over F.

Then we construct the corresponding linearized message polynomial fu(X) ∈ Lqm [X]

as follows:

fu(X) = u0X + u1X
q + · · ·+ uk−1X

qk−1

We evaluate the message polynomial fu(X) over the elements of A. For each i, 1 6

i 6 n, we append fu(αi) to αi to form the vector vi =
(
αi, fu(αi)

)
. This is necessary in

this model as opposed to Reed-Solomon codes where our codewords are vectors whose

entries have a certain order. In Reed-Solomon codes, there is no need to transmit the

evaluation points themselves whereas in subspace codes, there is no ordering on the

vectors spanning the codeword as a subspace. Therefore, we have to transmit αi along

with fu(αi) for each evaluation point αi. We define the ambient spaceW as

W = 〈A〉 ⊕ F = {(α, β) : α ∈ 〈A〉 , β ∈ F}

Observe thatW is an n+m-dimensional vector space over Fq. Finally the codeword V

is the linear span of v1,v2, . . . ,vn which is a subspace of the ambient spaceW . Notice

that αi’s are linearly independent which consequently make vi’s linearly independent.
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In fact, V is an n-dimensional subspace of W . Notice that any vector in V is of the

form
(
α, fu(α)

)
for some α ∈ 〈A〉 by linearity of fu(X). Let E : Fqk→ Gq(W , n) be

the encoding map that takes elements of Fk as input and produces the corresponding

n-dimensional subspace ofW as explained above.

Lemma 1.4.2. [11] Suppose that the size of the evaluation set A is at least k. Then the

corresponding encoding map E : Fqk→ Gq(W , n) is injective.

Proof. Suppose that the encoder E maps two massages in Fk with corresponding lin-

earized polynomials f(X) and g(X) to the same subspace. It implies that f(αi) = g(αi)

for i = 1, 2, . . . , n. Since n > k, f(X) and g(X) must be identical by Lemma 1.4.1.

We always assume n > k in the construction of Koetter-Kschischang codes.

Then by Lemma 1.4.2, the image of Fk is a code C with size qmk. Therefore, the rate of

C is given as

R =
logq |C|
n dim(W)

=
mk

n(n+m)
(1.10)

We discuss the minimum distance of Koetter-Kschischang codes in the next theorem.

Theorem 1.4.3. The minimum distance of the code C constructed by the encoding map

E : Fqk→ Gq(W , n) is 2(n− k + 1).

Proof. Let f1(X) and f2(X) be two distinct linearized polynomials in Lqm [X] with

q-degree at most k− 1, corresponding to two different massages in Fk. Let V1 and V2 be

the corresponding codewords constructed by the encoder E . Suppose that the dimension

of V1 ∩ V2 is l. Let

{(β1, γ1), (β2, γ2), . . . , (βl, γl)}

be a basis for V1 ∩ V2. Then γi = f1(βi) = f2(βi). This implies that f1(X) and f2(X)

are equal on at least l linearly independent points. Therefore, by Lemma 1.4.1, l 6 k−1.

Hence

d(V1, V2) = dim(V1) + dim(V2)− 2 dim(V1 ∩ V2) = 2n− 2l > 2(n− k + 1)
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1.5 List Decoding

In general the decoding problem can be formulated as follows. A code C as

a subset of a metric space M is given and a codeword c ∈ C, corresponding to the

message, is being transmitted. An element of r ∈ M as a distorted version of c is

received and the problem is how to recover the transmitted codeword c by observing its

distorted version r.

There are many common decoding methods to recover encoded messages sent

over a noisy channel. In the operator channel model, we take the minimum distance

decoding approach. In general, a minimum distance decoder or nearest neighbor de-

coder takes the received element r ∈M and finds the nearest codeword to r that is, the

codeword c ∈ C such that d(c, r) < d(c′, r) for any other c′ ∈ C, where d(·, ·) is the

distance defined on the metric spaceM. It then outputs the message corresponding to

the codeword c. Intuitively the minimum distance decoding is the relevant approach in

the operator channel model as errors and erasures with more dimensions are less likely

to happen. Therefore, loosely speaking, the closest codeword is most-likely the one that

is transmitted.

Suppose that a code C ⊆M with minimum distance dmin is given that is,

dmin = min
X,Y ∈C
X 6=Y

d(X, Y )

A codeword c ∈ C is transmitted and r ∈ M is received such that d(c, r) is at most

(dmin− 1)/2. Then the minimum distance decoder is guaranteed to successfully recover

the transmitted codeword because by triangle inequality

d(c′, r) > d(c′, c)− d(r, c) > dmin − d(r, c) > dmin −
dmin − 1

2
>
dmin − 1

2
> d(c, r)

for any other codeword c′ ∈ C. The bound (dmin − 1)/2 on the distance between the

transmitted codeword and received word is sometimes called the diameter bound. In

fact spheres of radius (d−1)/2 around codewords of C do not intersect with each other.

This is depicted in Figure 1.2. Therefore, the received word is contained in the sphere

around exactly one codeword which is indeed the transmitted codeword c.

The minimum distance decoding explained above is a type of unique decoding.

Generally speaking the unique decoding algorithm decodes only up to a certain bound,
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Figure 1.2: Spheres of radius (d− 1)/2 around the codewords of a code with minimum
distance d are all disjoint.

on the number of errors or in general on the distance between the transmitted codeword

and received word, which it is guaranteed to find at most one codeword within such a

distance of the received word. If no codeword is found within this distance, then the

decoder declares decoding failure.

The obvious unique decoding algorithm is to search the whole sphere around the

received word in order to find the transmitted codeword. However, this is not efficient

and in general requires exponential runtime. Designing efficient decoding algorithms

for various families of codes has been in the center of research in coding theory in the

past decades since the whole field of coding theory was born. Such results are discussed

in detail in any standard coding theory text (e.g. [13]). In the previous section, we

discussed Koetter-Kschischang subspace codes. Koetter and Kschischang also provided

an efficient decoding algorithm for their proposed codes, in the context of minimum

distance decoding, which we will review in the next chapter.

Suppose that we are interested to correct errors beyond the half of dmin bound. In

this case, the minimum distance decoder may fail to output the transmitted codeword.

It either outputs a wrong codeword or a decoding failure is declared. The former case

happens if the received word falls within distance (dmin− 1)/2 of some other codeword.

The later case happens if no codeword is found within distance (dmin − 1)/2 of the
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received word. Typically the minimum distance decoder is designed in such a way

that it declares decoding failure in such a case. It turns out that there is a meaningful

relaxation of unique decoding that allows us to decode beyond half of dmin bound faced

by unique decoding. This relaxed notion of decoding, called list decoding, will certainly

help to improve traditional bounds on the performance of error-correcting codes.

List decoding was introduced in two independent works by Elias [4] and Wozen-

craft [20] in the late 50s. List decoding is basically a relaxation of unique decoding that

allows a list of codewords as the output of the decoder. This offers a potential for re-

covery from errors beyond the traditional error-correction bound. In this terminology,

the decoder is said to be successful if the actual transmitted message is included in the

output list. The list decoding problem is the problem of finding all the codewords within

a certain distance τ of the received word. The case τ = (dmin − 1)/2 reduces to the

unique decoding problem. In fact list decoding is always possible for any τ even when

τ is much larger than (dmin − 1)/2.

The most important parameter associated with list decoding is the list size that is

allowed at the output of the decoder. If we require the list size equal to one, then the list

decoding problem reduces to the unique decoding. Also, we want to avoid very large list

sizes. For instance, a trivial list decoding algorithm is to just output all the codewords

of the code as the output list. This is not certainly desirable. There are two main issues

that make large list sizes undesirable. First, we want to make sure that the output list is

useful for the decoder to make the final decision about the transmitted message. This

may be done using an additional processing on the candidates to pick the best one e.g.

the decoder may choose the codeword in the list that is the closest one to the received

word. If the list size is exponentially large, this can not be efficiently done in terms of

the time complexity. Second, the list decoding algorithm itself should be done in an

efficient polynomial time. Notice that the worst-case complexity of the list decoding

algorithm is at least as large as the maximum allowed output list size.
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1.6 Dissertation Overview

Subspace codes and rank metric codes are two closely related family of codes

used for reliable communication of messages in randomized network coding. In Section

1.3, we reviewed the definition of subspace codes that were introduced for error cor-

rection in non-coherent randomized network coding, modeled by operator channel. In

Chapter 5, we will review the basics of rank-metric codes, introduced for dealing with

errors and erasures in coherent randomized network coding, with the aim of establishing

our list-decoding results in that setting.

The Koetter-Kschischang codes is our starting point in Chapter 2. We mod-

ify and generalize these codes in many important respects, thereby producing a family

of subspace codes that are efficiently list-decodable. List decoding, in turn, makes it

possible to provide a better tradeoff between rate and error-correction capability than

Koetter-Kschischang codes, albeit only for low rates. In a sense, we achieve for the

Koetter-Kschischang codes a result that is somewhat analogous to Sudan’s results for

Reed-Solomon codes in [19]. We also extend the Roth-Ruckenstein bivariate factor-

ization algorithm [16] to the domain of linearized polynomials. This result, being also

of independent interest, shows that we can perform the factorization step of our list-

decoding algorithm, which is essentially solving equations over the ring of linearized

polynomials, in an efficient polynomial time.

Given the results of Chapter 2, extending our codes and the list-decoding algo-

rithms to higher rates is set as the next target. Our work in Chapter 3 is motivated by

the Guruswami-Sudan list-decoding algorithm of Reed-Solomon codes [8]. Sudan list-

decoding algorithm enables list decoding of Reed-Solomon codes beyond the traditional

error-correction bound only for a limited range of rates. Then the Guruswami-Sudan

idea is to enforce the interpolation polynomial to go through the same set of interpola-

tion points as in Sudan algorithm but with some multiplicity greater than one. At the

end, they are able to improve upon the half of minimum distance bound for all rates. In

Chapter 3, we consider the problem of list-decoding of subspace codes with multiplic-

ities. To the best of our knowledge, however, no explicit definition of multiplicity for

linearized polynomials exists in the literature. Hence, we first establish the notion of

multiplicities for linearized polynomials in this context. We take advantage of enforc-
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ing multiple roots for the interpolation polynomial in order to enable list-decoding for a

wider range of rates. We also achieve a better trade-off between the rate and decoding

radius than both the Koetter-Kschischang codes and the results presented in Chapter 2.

In Chapter 4, we introduce a new family of subspace codes based upon a different

approach which leads to a linear-algebraic list-decoding algorithm. This new construc-

tion can be thought as a folded version of the Koetter-Kschischang codes in which we

append evaluations of the message polynomial on certain s elements of the field to each

other, where s can be called the folding parameter. This enables a linear-algebraic type

of list-decoding in which the output list itself forms a vector space. Comparing to the

results of Chapter 3 and Chapter 4 in which we fix a constant L for the list size indepen-

dent of the field size, the list size with this approach is rather large, yet polynomial in

size of the underlying field. On the other hand, there is a significant improvement in the

error correction capability of the proposed construction versus rate upon the previously

presented results.

In Chapter 5, we turn our attention to rank-metric codes, a well-studied class of

codes introduced in independent works by Delsarte [3], Gabidulin [6], and Roth [15]. In

a rank-metric code, each codeword is a matrix with fixed dimensions whose entries are

taken from a certain finite field. The distance between two matrices is simply the rank

of their difference. It turns out that rank-metric codes are a suitable tool to deal with

injected errors into the the network in coherent linear network coding when pessimistic

adversarial errors are assumed. In this setting, as opposed to non-coherent case, the

network topology and the particular network coding operations done at intermediate

nodes are known to both the transmitter and the receiver. Silva et al. show that rank-

metric and subspace codes are closely related [18]. Indeed, there is an injective mapping

between rank-metric codes and subspace codes through a lifting operation. Gabidulin

introduced a class of MRD (maximum rank distance) rank-metric codes using linearized

polynomials [6]. Also, the Singleton bound is established in the context of rank-metric

codes by Gabidulin. In Chapter 5, we define a folded version of Gabidulin codes. Then

we propose a list-decoding algorithm that can correct the fraction of errors up to the

Singleton bound which is the information theoretic upper bound on the error correction

capability of a code.
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Chapter 2

Constructions and List-Decoding

Algorithms

2.1 Introduction

Randomized linear network coding, first proposed in [4,5], is a powerful tool for

disseminating information in networks. Randomized network coding is considered as

the most promising practical approach to network coding to-date [2], since it is com-

pletely distributed and decentralized. Yet it is highly susceptible to transmission errors

caused by noise or intentional jamming. Even a single packet error injected into the net-

work could potentially render the entire transmission useless. Packets can also become

lost (erased), so that the problem of deducing the transmitted message at the receiver(s)

cannot be completed.

In multicast linear network coding [1,7], a set of packets v1,v2, . . . ,vn is in-

jected into the network by the source node. These packets are all of the same length

and can be regarded as vectors of length m over a finite field Fq. If the network cod-

ing protocol is randomized, each intermediate node in the network generates random

Fq-linear combinations of the packets available at its incoming edges and sends them

out on its outgoing edges. Finally, receiver nodes collect the packets on their incoming

edges and use this information in attempt to recover v1,v2, . . . ,vn. It is proved in [5]

that, with high probability, this randomized network coding protocol achieves the min-

21
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cut max-flow bound (cf. [1,7]), simultaneously for each receiver, provided the size q of

the underlying field Fq is sufficiently large.

Errors in this model correspond to injection into the network of extraneous pack-

ets that do not belong to the linear space spanned by the source vectors v1,v2, . . . ,vn;

erasures (lost packets) correspond to the projection of 〈v1,v2, . . . ,vn〉 onto a lower-

dimensional subspace. The problem of error-control for randomized network coding

was first addressed in the pioneering work of Koetter and Kschischang [6]. Motivated by

the fact that randomized network coding is vector-space preserving, Koetter and Kschis-

chang [6] introduced error-correcting codes in projective space [3,6], also known as

subspace codes.

LetW be a fixed ambient vector space over Fq. The projective space ofW , de-

noted here as Pq(W), is the set of all subspaces ofW . A subspace code C inW is any

nonempty subset of Pq(W). Koetter and Kschischang [6] showed that a subspace code

C ⊆Pq(W) with minimum distance d (for an appropriately defined distance function)

can correct t packet errors and ρ packet erasures introduced anywhere in the network

as long as 2t + 2ρ < d. Koetter and Kschischang also constructed in [6] a remarkable

family of subspace codes that are similar to Reed-Solomon codes in that codewords are

obtained by evaluating certain polynomials in a set of points. In the case of Koetter-

Kschischang codes, however, ordinary polynomials over Fq are replaced by linearized

polynomials. Koetter and Kschischang [6] furthermore devised a “list-1” decoding al-

gorithm for their codes, based upon bivariate interpolation in the domain of linearized

polynomials. The Koetter-Kschischang algorithm is analogous to the Berlekamp-Welch

decoding algorithm for Reed-Solomon codes; it achieves the error-correction radius of

1−R, where R is the (symbol) rate of the corresponding subspace code.

The Koetter-Kschischang codes serve as our starting point in this chapter. We

modify and generalize these codes in many important respects, thereby producing a fam-

ily of subspace codes that are efficiently list-decodable. List decoding, in turn, makes

it possible to provide a better tradeoff between rate and error-correction capability than

Koetter-Kschischang codes, albeit only for low rates. Extending our codes and list-

decoding algorithms to higher rates remains an open problem. Nevertheless, in a sense,

we have achieved for the Koetter-Kschischang codes a result that is somewhat analogous
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to Sudan’s results for Reed-Solomon codes in [10]. In order to do so, we had to over-

come several obstacles. First, the ring Lqm [X] of linearized polynomials over GF(qm)

is not commutative and, therefore, a polynomial over this ring may have more roots

than its degree. Consequently, the natural approach to making Koetter-Kschischang

codes list-decodable fails — it may lead to lists of exponential size. We overcome this

problem by using the subring Lq[X] of Lqm [X], which turns out to be commutative.

Restricting the input symbols to GF(q) rather than GF(qm), however, drastically re-

duces the rate of the code. In order to overcome this second problem, we make use of

certain normal bases for GF(qm) over GF(q). However, this restricts the dimension

of (all codewords in) our codes to one, since the entire space GF(qm) serves as the set

of potential roots of the interpolation polynomial, already in the one-dimensional case.

Hence, in order to produce list-decodable codes of arbitrary codeword dimension, we

further modify our construction. This modification extends the space of potential roots

of the interpolation polynomial from GF(qm) to GF(qnm), and makes it possible to

list-decode subspace codes of arbitrary dimension n.

The rest of this chapter is organized as follows. In Section 2.2, we briefly re-

view some previous work on subspace codes, with the aim of establishing the back-

ground necessary for our results. In Section 2.3, we introduce three key modifications

of Koetter-Kschischang codes, thereby laying the foundations for list decoding. Then

the list-decoding algorithm itself is presented and the correctness of this algorithm is

proved. We point out that the introduced list-decodable codes are one-dimensional,

meaning that the source injects a single packet v1 into the network. Unfortunately, a

straightforward extension of the results of Section 2.3 to dimensions greater than one

does not work since the entire space GF(qm) serves as the set of potential roots of

the interpolation polynomial constructed in our list-decoding algorithm. Consequently,

increasing the dimension of the codewords does not yield any new information at the

receiver(s). This problem is addressed in Section 2.4, where we show how to extend

the space of potential roots of the interpolation polynomial to GF(qnm), thereby con-

structing list-decodable subspace codes of arbitrary codeword dimension n. The cor-

responding list-decoding algorithm and a proof of its correctness are also presented

in Section 2.4. In Section 2.5, we present a solution for list-decoding of the original
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Figure 2.1: The error-correction radius τ versus the packet rate R∗ for the Koetter-
Kschischang codes and for our list-decoding algorithm with various list sizes

Koetter-Kschischang codes, though only in the one-dimensional case. The general case

remains an open problem. In Section 2.6, we extend the Roth-Ruckenstein bivariate

factorization algorithm [9] to the domain of linearized polynomials, a result that may

be of independent interest. Finally, we conclude the chapter in Section 2.7 with a brief

discussion.

The end result of all this effort is most conveniently expressed in terms of the

error-correction radius τ and the packet rate R∗. Specifically, we guarantee that the

message injected by the source will be recovered at the receivers as long as

τ 6 L − L(L+ 1)

2
R∗ (2.1)

where L is the list size. Here, as in Koetter and Kschischang [6], the error-correction

radius is defined as τ = t/n, where t is the dimension of the error and n is the codeword

dimension. The packet rate R∗ is a new parameter introduced in this paper.

Loosely speaking, R∗ is the ratio of the number of information packets to the

number of encoded packets injected into the network. This is different from the notion
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of rate R defined by Koetter and Kschischang [6], which may be thought of as the ratio

of the number of information symbols to the number of encoded symbols. For more

details on the packet rate R∗ and its relationship to the (symbol) rate R, see Section 2.4.

Figure 2.1 depicts the bound (2.1) on the error-correction radius for the first few

values of the list size L. For L = 1, our results coincide with those of [6], as expected.

For higher values of L, we improve upon [6], but only for low rates.

2.2 Prior Work

In this section, we review some of the prior work on subspace codes and corre-

sponding decoding algorithms. In Chapter 2, we reviewed the operator channel model,

the ring of linearized polynomials, and the subspace codes. In this section, we briefly

recap the necessary background and then we discuss Koetter and Kschischang [6] sub-

space codes and their list-1 decoding algorithm.

2.2.1 Background

The operator channel model was introduced by Koetter and Kschischang [6] in

order to capture the essence of randomized linear network coding for multicast, in the

non-coherent case, where network topology and the underlying network coding opera-

tions are unknown. LetW be a fixed vector space over Fq, called the ambient space. Let

N = dimW . All the packets in the network are viewed as elements ofW . As before,

let Pq(W) denote the set of all subspaces of W . Further, let Gq(W , n) denote the set

of all subspaces of W of dimension n. A distance function on Pq(W) is defined as

follows:

d(A,B)
def
= dim(A+B) − dim(A ∩B) (2.2)

The input to the operator channel is a subspace V ∈ Pq(W). The output of

the operator channel is another subspace U ∈Pq(W) with possibly deletion of vectors

from the input V , called erasures, or addition of vectors that are linearly independent

from the input V , called errors. More precisely,

U = Hk(V )⊕ E (2.3)
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where E is an error vector space such that E ∩ V = {0} and Hk is the erasure oper-

ator. The erasure operator Hk projects V onto a k-dimensional subspace of V chosen

uniformly at random, provided dimV > k; otherwise, Hk leaves V unchanged. The

number of errors and erasures that occurred during the transmission over this operator

channel are defined as t = dimE and ρ = dimV − dimHk(V ), respectively.

A subspace code C for an operator channel with ambient space W is a non-

empty subset of Pq(W). Thus codewords of C are subspaces of W . The minimum

distance of C is given by

d(C)
def
= min

X,Y ∈C
X 6=Y

d(X, Y )

Koetter and Kschischang proved in [6] that a minimum distance decoder for C will

always recover the transmitted subspace V from the received subspace U in (2.3), pro-

vided

2(t+ ρ) < d(C) (2.4)

Conversely, if (2.4) is not satisfied, then the minimum distance decoder for C may fail.

Let N denote the dimension of ambient spaceW and suppose that the dimension of any

V ∈ C is at most n. Then the rate R of the code is defined as follows:

R
def
=

logq |C|
nN

(2.5)

The main object in the construction of Koetter-Kschischang subspace codes is

the ring of linearized polynomials. Next, we briefly review linearized polynomials,

which we discussed in detail in Section 1.4. Let Fq be a finite field and let F = Fqm be an

extension field. Then a polynomial f(X) over F is called an Fq-linearized polynomial if

it has the form

f(X) =
s∑
i=0

aiX
qi

where ai ∈ F, for i = 0, 1, . . . , s. When q is fixed under discussion, we use X [i] to

denote Xqi . We also use the term q-degree instead of degree for linearized polynomials.

For instance, assuming that as 6= 0, the linearized polynomial f(X) has q-degree s

which means that its actual degree is qs. The main property of linearized polynomials,

from which they receive their name, is that they act as linear maps over any extension

field of F with respect to the base field Fq. An interesting property, analogous to the
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fundamental theorem of algebra for regular polynomials, is that a non-zero linearized

polynomial of q-degree k has at most k linearly independent roots.

The sum of two linearized polynomials, f1(X) and f2(X), is also a linearized

polynomial. In order to have a ring structure the operation f1(X) ⊗ f2(X) is defined

to be the composition f1(f2(X)) which is always a linearized polynomial. The set

of linearized polynomials over Fqm forms a non-commutative ring with identity under

addition + and composition ⊗. Let us denote this ring by Lqm [X]. Although Lqm [X]

is not commutative, it has many of the properties of a Euclidean domain. For instance,

instead of a devision algorithm there are two division algorithms: a left division and a

right division algorithm.

2.2.2 Koetter-Kschischang Codes

In Section 1.4, we reviewed Koetter-Kschischang codes as an application of lin-

earized polynomials in the construction of subspace codes. Here, we briefly recap the

construction and then present the list-1 decoding algorithm proposed by Koetter and

Kschischang in [6].

As before, let Fq be a finite field, and let F = Fqm be an extension field of Fq. The

number of information symbols k and the dimension of code n are also fixed. Notice

that F can be regarded as a vector space of dimension m over Fq. Let A = {α1, . . . , αn}
be a set of n linearly independent vectors in this vector space.

Koetter-Kschischang Encoding:

The input to the encoder is a vector u = (u0, . . . , uk−1) which consists of k message

symbols in F. The corresponding message polynomial is fu(X) =
∑k−1

i=0 uiX
[i]. Then

the corresponding codeword V is the Fq-linear span of the set {(αi, f(αi)) : 1 6 i 6 n}.
The code C is the set of all possible codewords V . The ambient space W is

〈A〉⊕F = {(α, β) : α ∈ 〈A〉 , β ∈ F}which has dimension n+m over Fq. We represent

each element ofW as a vector with two coordinates such as (x, y), where x ∈ 〈A〉 and

y ∈ F.

Suppose that V is transmitted over the operator channel and a subspace U ofW
of dimension d is received.

Koetter-Kschischang Decoding:
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Let (xi, yi), i = 1, 2, . . . , d be a basis for U . Construct a non-zero bivariate polynomial

Q(X, Y ) of the form

Q(X, Y ) = Q0(X) +Q1(Y ),

where Q0 and Q1 are linearized polynomials over F, Q0 has q-degree at most ω− 1 and

Q1 has q-degree at most ω − k such that

Q(xi, yi) = 0 for i = 1, 2, . . . , d (2.6)

The parameter ω will be specified later. Then solve the equation Q(X, f(X)) = 0 for

f(X) to recover the message polynomial.

Notice that Q(X, Y ) is constructed to interpolate only a basis for U . Since

Q(X, Y ) is linearized, this will guarantee that Q(x, y) = 0, for any (x, y) ∈ W .

Observe that (2.6) is indeed a homogeneous system of linear equations with d

equations. The total number of potential coefficients of Q0 and Q1 is 2ω−k+1. This is

in fact the number of variables in this system of equations. Therefore, (2.6) is guaranteed

to have a non-zero solution if

d < 2ω − k + 1 (2.7)

Suppose that d = n−ρ+t, where ρ is the number of erasures and t is the number

of errors. Then the dimension of U ∩ V is n − ρ. Notice that for any (x, y) ∈ U ∩ V ,

y = f(x). Therefore, the equation

Q
(
X, fu(X)

)
= 0

has at least n − ρ linearly independent roots i.e. basis elements of U ∩ V . Notice that

the q-degree of Q
(
X, fu(X)

)
is at most ω − 1. If the condition

n− ρ > ω (2.8)

is satisfied, then Q
(
X, fu(X)

)
has more linearly independent roots than its q-degree.

Therefore, it will be identically zero i.e.

Q0(X) +Q1(X)⊗ fu(X) = 0

and fu(X) can be uniquely recovered by performing right division algorithm on−Q0(X)

and Q1(X). By combining (2.7) and (2.8), observe that the necessary condition for suc-

cessful recovery of message is

ρ+ t < n− k + 1 (2.9)
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Conversely, suppose that (2.9) is satisfied. Then we can select

ω =

⌈
d+ k

2

⌉
which in turn guarantees both (2.7) and (2.8). Therefore, (2.9) is the necessary and

sufficient condition for successful unique decoding. The minimum distance of Koetter-

Kschischang codes is 2(n − k + 1) as shown in Theorem 1.4.3. Hence, the proposed

decoding algorithm indeed achieves half of minimum distance bound for unique decod-

ing of Koetter-Kschischang codes.

The rate of the code is

R =
km

n(n+m)

The result can be expressed in terms of the error-correction radius τ and the rate R. The

transmitted message is successfully recovered as long as

τ 6 1− (1 +
n

m
)R (2.10)

where τ is the total dimension of errors and erasures normalized by the dimension n. In

the regime where n is much smaller thanm, the bound on the error-correction capability

of Koetter-Kschischang codes with unique decoding can be approximated as 1−R.

2.3 List-decoding of Subspace Codes

We start this section with a brief review of Sudan’s list-decoding algorithm of

Reed-Solomon codes in Section 2.3.1. Then we justify why it is necessary to modify

Koetter-Kschischang codes in order to enable list-decoding. A simple generalization of

Koetter-Kschischang codes is proposed in Section 2.3.2. We shall see that a small list

size can not be guaranteed as a result of the ring of linearized polynomials being non-

commutative. Therefore, we further modify the construction to solve this problem in

Section 2.3.3. However, this modification results in a rate reduction by a factor of m. To

compensate for this reduction, we exploit the properties of a normal basis of Fqm over Fq
in Section 2.3.4. Having set all that, we explain the encoding and list-decoding of this

new construction of subspace codes in Section 2.3.5. We establish the correctness of the

proposed algorithm in 2.3.6. Finally the parameters of the code are discussed in Section

2.3.7.
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2.3.1 Overview of Sudan’s List-Decoding Algorithm

In this subsection, we briefly review Sudan’s list-decoding algorithm of Reed-

Solomon codes [10] which motivated our approach. Generalized Reed-Solomon codes

are constructed as follows. Let Fq be a finite field. The parameters k, the number of in-

formation symbols, and n, the length of the code, are fixed and k 6 n 6 q−1. The mes-

sage is a vector u = (u0, u1, . . . , uk−1) consisting of k information symbols over Fq. The

corresponding codeword is (fu(α1), fu(α2), . . . , fu(αn)), where fu(X) =
∑k−1

i=0 uiX
i is

the message polynomial and α1, α2, . . . , αn are n distinct and fixed elements of Fq. This

codeword is transmitted through the channel. Given the channel output (y1, y2, . . . , yn),

Sudan’s list-L decoding algorithm constructs the bivariate interpolation polynomial

Q(X, Y ) = Q0(X) +Q1(X)Y + · · ·+QL(X)Y L

such that Q(αi, yi) = 0 for all i, subject to certain degree constraints. This first step is

also called interpolation step. Then if not too many errors have occurred, Q
(
X, fu(X)

)
is identically zero, and the message can be recovered by finding all the factors (at most

L of them) of Q(X, Y ) of the form Y −F (X). This step is called the factorization step.

The degree constraint on Q(X, Y ) in the interpolation step is set in such a way

that the degree of Q(X, fu(X)) is at most ω − 1 for a certain ω that will be specified

later. In order to formalize this statement, the weighted degree of bivariate polynomials

is defined as follows. For any pair of integers a and b, the (a, b)-weighted degree of a

monomial qi,jX iY j is defined to be ai + bj. The (a, b)-weighted degree of Q(X, Y )

is defined to be maximum (a, b)-weighted degree among all its monomials with non-

zero coefficients. This definition of weighted degree can be also easily generalized to

multivariate polynomials. Given this definition, we simply say that the
(
1, (k − 1)

)
-

weighted degree of the interpolation polynomial Q(X, Y ) is at most ω − 1.

The interpolation step is equivalent to solving a homogeneous system of linear

equations. All we need in order to guarantee a non-trivial solution for Q(X, Y ) is that

the number of variables is larger than the number of equations. The number of equations

is n. The number of variables can be easily computed in terms of ω and L as ω −(
L+1
2

)
(k − 1). Therefore, we need to have

(L+ 1)ω −
(
L+ 1

2

)
(k − 1) > n (2.11)
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Q(X, fu(X)) is a univariate polynomial in Fq[X] with degree at most ω−1. Any

correct received symbol yi = fu(αi) guarantees one particular root αi for Q(X, fu(X)).

Hence, Q(X, fu(X)) is guaranteed to have at least n− t roots, where t is the maximum

number of errors we wish to correct. If the condition

n− t > ω (2.12)

holds, then Q(X, fu(X)) is identically zero and fu(X) can be successfully recovered

by finding all the possible factors Y − f(X) of Q(X, Y ). An efficient polynomial-time

factorization algorithm is proposed by Roth and Ruckenstein in [9].

We can combine (2.11) and (2.12) in order to get a bound on the error-correction

capability of Sudan’s list-L decoder. Substituting ω from (2.12) into (2.11) leads to the

condition
t

n
<

L

L+ 1
− L

2

(k − 1

n

)
t/n is the normalized error-correction radius τ and (k − 1)/n is approximately the rate

of the code R = k/n. The final condition can be expressed as

τ <
L

L+ 1
− L

2
R

On the other hand, if this is satisfied one can find a suitable value for ω in order to

successfully perform the Sudan list-L decoding algorithm.

2.3.2 First Generalization of Koetter-Kschischang Codes

Let Fq be a finite field and F = Fqm be an extension field of Fq. For ease of nota-

tion, let f⊗L(X) denote the composition of f(X) with itself L times for any linearized

polynomial f(X). Indeed f⊗1(X) = f(X). Also, we define f⊗0(X) to be equal to X .

A = {α1, . . . , αn} ⊂ Fqm is a fixed set of n linearly independent vectors over Fq same

as in the Koetter-Kschischang codes.

To express the several steps in the generalization of Koetter-Kschischang codes

in a more convenient way, we only consider the case of the list-2 decoding algorithm.

We will see that everything can be simply generalized for an arbitrary list size L. The

first step in modifying the Koetter-Kschischang codes in order to enable list-2 decoding

is the following. We transmit f⊗2u (αi) along with αi and fu(αi), where fu is the message
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polynomial. This is one of the important differences between this work and Sudan’s list-

decoding algorithm of RS codes. In Sudan’s algorithm, there is no need to modify the

Reed-Solomon code. One can compute powers of the received symbols yi at the decoder.

In fact, once yi is given, all powers of yi come for free whereas this is not the case in

subspace codes. In general, given fu(αi) one can not compute f⊗2u (αi). This enforces

the modification of the Koetter-Kschischang codes which will be elaborated through this

section.

Based on the foregoing discussion, the first attempt at a simple generalization

of Koetter-Kschischang codes, which enables a list-2 decoding, is explained as follows.

The message vector u = (u0, u1, . . . , uk−1) consists of k information symbols as ele-

ments of Fqm , where k 6 m. Let fu(X) =
∑k−1

i=0 uiX
[i] be the corresponding message

polynomial. Then the corresponding codeword V is the vector space spanned by the set{(
α1, fu(α1), f

⊗2
u (α1)

)
, . . . ,

(
αn, fu(αn), f⊗2u (αn)

)}
Since αi’s are linearly independent, V has dimension n. V is transmitted through the

operator channel and another vector space U of dimension r is received at the receiver.

Let (xi, yi, zi), i = 1, . . . , r, be a basis for U . At the decoder, we construct a non-zero

trivariate linearized polynomial Q(X, Y, Z) of the form

Q(X, Y, Z) = Q0(X) +Q1(Y ) +Q2(Z) (2.13)

where Qi’s are linearized polynomials over F subject to certain degree constraints spec-

ified later, such that Q(xi, yi, zi) = 0 for i = 1, . . . , r. Since Q is linearized, it is zero

over the whole vector space U , in particular over the intersection of V and U . Therefore,

assuming that not too many errors and erasures happen, the polynomial

Q(X, fu(X), f⊗2u (X)) = Q0(X) +Q1 ⊗ fu(X) +Q2 ⊗ f⊗2u (X)

is guaranteed to have a certain number of linearly independent roots which is more than

its q-degree. Thus it is identically zero and the next step is to recover the message

polynomial from it. The problem is how many possible solutions for fu(X) there are

and how to extract them. Unfortunately, there might be more than two solutions for

fu(X). In general, an equation over a non-commutative ring may have more zeros
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than its degree. We illustrate this for the ring of linearized polynomials by an example.

Consider the equation:

f⊗2(X)−Xq2 = 0

This can be regarded as an equation of degree 2 over the ring of linearized polynomials.

Then f(X) = uXq is a solution for this equation for any u which satisfies uq+1 = 1. If

m is even, then q + 1 divides qm − 1. Therefore there are q + 1 distinct possible values

for u each of which gives a distinct solution for f(X).

2.3.3 Solving the List-Size Problem

As discussed in the foregoing subsection, an equation over the ring of linearized

polynomials may have more zeros than its root. This is a a consequence of the fact

that the ring of linearized polynomials is not commutative. To solve this problem, the

idea is to restrict the set of message polynomials to a commutative subring of this ring.

Lemma 2.3.1 shows that linearized polynomials over the base field Fq, Lq[X], form a

commutative subring of Lqm [X]. Theorem 2.3.2 proves that an equation of degree L

over the ring of linearized polynomials has at most L roots in Lq[X], as expected. This

suggests the following solution for the problem of having more than two roots. We only

consider message polynomials that are over Fq rather than Fqm that is, we assume that

the message is a vector u = (u0, u1, . . . , uk−1) of length k over Fq.

Lemma 2.3.1. Let f(X) and g(X) be Fq-linearized polynomials over Fq. Then they

commute i.e.

f(X)⊗ g(X) = g(X)⊗ f(X)

Proof. Let f(X) =
∑

i>0 fiX
[i] and g(X) =

∑
j>0 gjX

[j]. Then by (1.9),

f(X)⊗ g(X) =
∑
k>0

ckX
[k],

where ck =
∑k

i=0 fig
[i]
k−i and

g(X)⊗ f(X) =
∑
k>0

c′kX
[k],
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where c′k =
∑k

i=0 f
[k−i]
i gk−i. Since fi, gj ∈ Fq, f [k−i]

i = f q
k−i

i = fi and g[i]k−i = gq
i

k−i =

gk−i, for any i and k. It implies that for any k,

ck =
k∑
i=0

figk−i = c′k

Therefore, f(X)⊗ g(X) = g(X)⊗ f(X).

Theorem 2.3.2. Let Qi(X), i = 0, 1, . . . , L, be linearized polynomials in Lqm [X] such

that at least one of them is non-zero. Then the equation

L∑
i=0

Qi ⊗ f⊗i(X) = 0 (2.14)

has at most L solutions for f(x) ∈ Lq[X].

Proof. We do induction on L for L > 0. For L = 0, Q0 has to be non-zero. Thus there

is no solution for (2.14). Now, suppose that it is true for L − 1 and we want to prove it

for L. If (2.14) does not have any solution for f(X), then we are done. Otherwise, let

f0(X) be a solution for (2.14) that is,

L∑
i=0

Qi ⊗ f⊗i0 (X) = 0 (2.15)

We show that there are at most L − 1 other solutions excluding f0. Subtracting (2.15)

from (2.14) we get
L∑
i=1

Qi ⊗ (f⊗i − f⊗i0 ) = 0 (2.16)

Since f and f0 are both over Fq, by Lemma 2.3.1 they commute. As a result,

f⊗i − f⊗i0 = (
i−1∑
j=0

f
⊗(i−j−1)
0 ⊗ f⊗j)⊗ (f − f0)

for any i > 1. Plugging in this into (2.16) we get

L∑
i=1

Qi ⊗
( i−1∑
j=0

(f
⊗(i−j−1)
0 ⊗ f⊗j)⊗ (f − f0)

)
= 0⇒

( L∑
i=1

Qi ⊗
i−1∑
j=0

f
⊗(i−j−1)
0 ⊗ f⊗j

)
⊗ (f − f0) = 0



35

Since f − f0 6= 0, we can divide both sides by f − f0 to get

L∑
i=1

(
Qi ⊗

i−1∑
j=0

f
⊗(i−j−1)
0 ⊗ f⊗j

)
= 0⇒

L−1∑
j=0

( L∑
i=j+1

Qi ⊗ f⊗(i−j−1)0

)
⊗ f⊗j = 0

which has at most L − 1 solutions for f(X) by induction hypothesis. This completes

the proof.

In summary, we consider the message u = (u0, . . . , uk−1) as a vector of k in-

formation symbols over Fq rather than Fqm in order to solve the list-size problem. This

leads to a rate reduction by a factor of m.

2.3.4 Solving the Rate Penalty Problem

In this subsection, we propose a solution for the rate penalty problem. Indeed,

we take advantage of the fact that the message polynomial is over the base field Fq in

order to compensate the rate reduction at the decoder.

Recall from [8, Ch. 4.9] that any finite extension Fqm of Fq as a vector space

over Fq has a basis of the form α, αq, . . . , αq
m−1 , where α is a primitive element of

Fqm . This is called a normal basis for Fqm over Fq. Suppose that f(X) is a linearized

polynomial over Fq. Then for any j, f(αq
j
) = f(α)q

j . This implies that given f(α) one

can determine f(αq
j
), for j = 1, 2, . . . ,m− 1. Therefore, f(αq), f(αq

2
), . . . , f(αq

m−1
)

do not need to be transmitted. The idea is to manufacture them at the receiver while

only f(α) is transmitted. We elaborate on this idea by specifying an encoding and list-

decoding algorithm.

The input to the encoder is a message u = (u0, u1, . . . , uk−1) in Fqk. The cor-

responding message polynomial is fu(X) =
∑k−1

i=0 uiX
[i]. The output of the encoder is

the one dimensional subspace V as follows:

V =
〈(
α, fu(α), f⊗2u (α)

)〉
The decoder takes the received vector space, denoted by U , as the input. Suppose that

the dimension of U is r. The first step of the list-decoding algorithm is to compute the
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set of interpolation points. The decoder first finds a basis (xi, yi, zi), i = 1, 2, . . . , r for

U . Then the set of interpolation points P is as follows:

P =
{(
xq

j

i , y
qj

i , z
qj

i

)
: 1 6 i 6 r, 0 6 j 6 m− 1

}
The next step is to construct the interpolation polynomial. The decoder constructs a

non-zero trivariate linearized polynomial

Q(X, Y, Z) = Q0(X) +Q1(Y ) +Q2(Z)

such that Q passes through all the interpolation points that is,

Q(x, y, z) = 0

for any (x, y, z) ∈ P . Q0, Q1 and Q2 are linearized polynomials over F and Q0 has

q-degree at most m − 1, Q1 has q-degree at most m − k and Q2 has q-degree at most

m − 2k + 1. If the dimension of error is less than a certain threshold, the following

equality holds:

Q
(
X, fu(X), f⊗2u (X)

)
= 0

Thus the last step of the list-decoding algorithm is to find all the roots f(X) ∈ Lq[X],

with degree at most k − 1, of the equation:

Q
(
X, f(X), f⊗2(X)

)
= 0

using the LRR algorithm, that will be discussed in Section 2.6. The decoder outputs

coefficients of each root f(X) as a vector of length k. Theorem 2.3.2 guarantees that

the size of the output list is at most 2.

2.3.5 General List-Size

In this subsection, we generalize the encoding and list-2 decoding algorithm

explained in the foregoing subsection to general list size yet the construction is one

dimensional. To this end, we transmit all powers of fu(X) up to f⊗Lu (X), where fu is

the message polynomial, in order to do list-L decoding at the receiver.

The following parameters of the code are fixed: finite field Fq, an extension

F = Fqm , number of information symbols k, list size L and α ∈ F which generates a
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normal basis for F. The required condition is that k 6 m. The ambient spaceW is an

Lm+ 1-dimensional vector space over Fq.
Encoding Algorithm:

Formally, the encoder is a function E : Fqk → Gq(W , n). It accepts as input a mes-

sage vector u = (u0, u1, . . . , uk−1) ∈ Fqk. The message polynomial is constructed as

fu(X) =
∑k−1

i=0 uiX
[i]. Then the encoder outputs the following one dimensional sub-

space V :

V =
〈(
α, fu(α), f⊗2u (α), . . . , f⊗Lu (α)

)〉
Definition 2.3.3. The code Cq(k, 1,m, L) is the collection of all possible codewords V

generated by this encoding algorithm. The second parameter stands for the dimension

of the code which is equal to 1 for this code.

Remark. Each element of the ambient space W is indicated as a vector with L + 1

coordinates such as (x, y1, y2, . . . , yL), where x ∈ 〈α〉 and all other coordinates are

elements of Fqm . 2

Suppose that V is transmitted through the operator channel and another subspace

U ofW of dimension 1+t is received, where t is the dimension of error. We assume that

no erasure happens as only one erasure may destroy all the information. The decoder

first checks if the following condition on t is satisfied:

t < L− L(L+ 1)

2

(k − 1)

m
(2.17)

If not, then the decoder declares decoding failure. Otherwise, the decoder runs the list-

decoding algorithm.

List-decoding Algorithm:

The decoder accepts as input the received vector space U . The output is a list of size at

most L of vectors in Fqk after executing these three steps:

1. Computing the interpolation points:

Find a basis (xi, yi,1, . . . , yi,L), i = 1, 2, . . . , t + 1 for U . Then the the set of

interpolation points is:

P =
{(
xq

j

i , y
qj

i,1, . . . , y
qj

i,L

)
: 1 6 i 6 t+ 1, 0 6 j 6 m− 1

}
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2. Interpolation:

Construct a non-zero multivariate linearized polynomial Q(X, Y1, . . . , YL) of the

form

Q0(X) +Q1(Y1) + · · ·+QL(YL)

with eachQi having q-degree at mostm−(k−1)i−1, for i = 0, 1, . . . , L, subject

to the constraint that

Q(x, y1, . . . , yL) = 0 (2.18)

for any (x, y1, . . . , yL) ∈ P .

3. Factorization:

Find all the roots f(X) ∈ Lq[X], with q-degree at most k − 1, of the equation:

Q
(
X, f(X), . . . , f⊗L(X)

)
= 0 (2.19)

using the LRR algorithm. The decoder outputs coefficients of each root f(X) as

a vector of length k.

2.3.6 Correctness of the List-Decoding Algorithm

In this subsection, we establish correctness of the list-decoding algorithm that we

proposed in the foregoing subsection. To this end, we first establish a certain threshold

on the dimension of error which in fact guarantees the existence of the interpolation

polynomial. Then we prove that the message polynomial is included in the list generated

by the list-decoding algorithm. The threshold on the dimension of error leads to the

error-correction radius of the list-decoding algorithm which will be discussed in the

next subsection.

Lemma 2.3.4. There is a non-zero solution for multivariate linearized polynomial Q

which satisfies (2.18) provided that

t < L− L(L+ 1)

2

(k − 1)

m

Proof. The set of interpolation points P contains m(1 + t) points. Therefore, (2.18)

defines a homogeneous system of m(1 + t) linear equations. The number of unknown
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coefficients is
L∑
i=0

m− (k − 1)i = (L+ 1)m− (k − 1)
L(L+ 1)

2

It is known that if the number of variables in a homogeneous system of linear equations

is strictly smaller than the number of equations, then there is a non-trivial solution:

m(1 + t) < (L+ 1)m− (k − 1)
L(L+ 1)

2
(2.20)

that guarantees a non-zero solution for Q. (2.20) is equivalent to

t < L− L(L+ 1)

2

(k − 1)

m

Let fu(X) be the message polynomial and Q(X, Y1, . . . , YL) be the interpola-

tion polynomial provided by the list-decoding algorithm. Then we form the linearized

polynomial E(X) as follows:

E(X) = Q
(
X, fu(X), . . . , f⊗Lu (X)

)
=

L∑
i=0

Qi ⊗ f⊗iu (X)

Lemma 2.3.5. For j = 0, 1, . . . ,m− 1, αqj is a root of E(X).

Proof. Since we assume that no erasure occurs, the transmitted codeword V is contained

in the received subspace U . In particular, U includes the vector
(
α, fu(α), . . . , f⊗Lu (α)

)
.

Notice that raising to the power qj is a linear operation. Therefore,
(
xq

j
, yq

j

1 , . . . , y
qj

L

)
is a linear combination of some elements of the set of interpolation points P , for any

(x, y1, . . . , yL) ∈ U , as P contains all the qj-powers of the basis elements of U . Fur-

thermore, Q is a linearized polynomial. Therefore,

Q
(
xq

j

, yq
j

1 , . . . , y
qj

L

)
= 0

In particular,

Q
(
αq

j

, fu(α)q
j

, . . . , f⊗Lu (α)q
j)

= 0 (2.21)

Note that for any polynomial f(X) ∈ Fq[X], f(Xqj) = f(X)q
j . Since all the coeffi-

cients of f⊗iu (X) are elements of Fq, (2.21) implies that

E(αq
j

) = Q
(
αq

j

, fu(αq
j

), . . . , f⊗Lu (αq
j

)
)

= 0
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Corollary 2.3.6. E(X) is the all zero polynomial.

Proof. Since the q-degree of fu(X) is at most k − 1, the q-degree of Qi ⊗ f⊗iu (X) is at

most

m− (k − 1)i− 1 + (k − 1)i = m− 1,

for i = 0, 1, . . . , L. This implies that q-degree of E(X) is at most m − 1. On the other

hand, E(X) has at least m linearly independent roots α, αq, . . . , αqm−1 by Lemma 2.3.5.

Therefore, E(X) must be the all zero polynomial.

Theorem 2.3.7. The list-decoding algorithm produces a list of size at most L which

includes the transmitted message u provided that

t < L− L(L+ 1)

2

(k − 1)

m

Proof. By Lemma 2.3.4 the non-trivial interpolation polynomial Q exists. Then by Co-

rollary 2.3.6, E(X) is identically zero which means that the message polynomial fu(X)

is a solution to (2.19). Also, as Q is non-zero, (2.19) has at most L solutions by Theo-

rem 2.3.2. Therefore, the list size is at most L.

2.3.7 Error-Correction Radius

In this subsection, we derive the bound on the error-correction radius of the

proposed list-decoding algorithm. The ambient spaceW has dimension Lm + 1. Each

codeword is a one dimensional subspace ofW . Therefore, n = 1 and the rate R of the

code Cq(k, 1,m, L) is given as follows:

R =
logq(|Cq(k, 1,m, L)|)

nN
=

k

Lm+ 1
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The q-degree ofQL, the one with the smallest degree amongQi’s, has to be non-negative

which leads to the following series of inequalities:

m− (k − 1)L− 1 > 0⇒

L 6
m− 1

k − 1
≈ 1

LR
⇒

R 6
1

L2

By Theorem 2.3.7, the message is recovered as long as

t < L− L(L+ 1)

2

(k − 1)

m

Since n = 1, the error-correction radius τ is actually equal to t in this case. Observe that

R =
k

Lm+ 1
>
k − 1

Lm

Therefore, we guarantee that the message is successfully recovered provided that

τ 6 L− L2(L+ 1)

2
R

2.4 List-decodable Codes of Arbitrary Dimension

In the foregoing section, we proposed list-decodable subspace codes along with

a corresponding list-L decoding algorithm. A significant weakness of the construction

is that the codewords are one dimensional. One dimensional codes seem somewhat

unnatural. Besides, as the normalized dimension of error τ has to be an integer in this

case, we are not able to take advantage of the whole achievable region for τ . In this

section, we generalize our construction to an arbitrary dimension.

One simple way to generalize this construction to dimension 2 is the follow-

ing. In the construction of Cq(k, 1,m, L), the linear span of (α, fu(α), . . . , f⊗Lu (α)) is

the codeword corresponding to message polynomial fu, where α is the generator of a

normal basis for Fqm . Suppose that β is another primitive element of Fqm which gen-

erates a normal basis for Fqm . Then the corresponding codeword is the Fq-linear span

of
(
α, fu(α), . . . , f⊗Lu (α)

)
and

(
β, fu(β), . . . , f⊗Lu (β)

)
. When we inject more vectors

into the network, we in fact add redundancy to the code, and we should get something
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in return. Adding redundancy means more interpolation points at the receiver which in

fact enforces more constraints. In return, we should get more zeros in order to maintain

the same performance in terms of decoding radius versus rate. As we shall see in Lem-

ma 2.3.5, however, the root space already covers the whole space Fqm . Therefore, this

simple generalization does not lead to good performance. This becomes even worse as

the dimension increases.

The idea is to evaluate the interpolation polynomial in a larger field that is, an

extension GF (qnm) of GF (qm). Message polynomials over GF (q) are evaluated in n

special bases, in such a way that the resulting interpolation polynomial is forced to have

many zeros in GF (qnm). We elaborate on this idea in this section.

Fix a finite field Fq and let n divide q − 1. Then the equation xn − 1 = 0 has n

distinct solutions in Fq. Let e1 = 1, e2, e3, . . . , en be these solutions. Let F = GF (qnm)

and γ be a generator of a normal basis for F. Then define

αi = γ + e−1i γq
m

+ e−2i γq
2m

+ · · ·+ e
−(n−1)
i γq

(n−1)m

(2.22)

for i = 1, 2, . . . , n.

Next, we discuss the properties of the parameters αi’s.

Lemma 2.4.1. α1 ∈ Fqm and for i = 2, 3, . . . , n, αni ∈ Fqm .

Proof. For i = 1, 2, . . . , q − 1, αq
m

i = e−1i αi by the following series of equalities:

αq
m

i =
(n−1∑
j=0

ejiγ
qmj)qm

=
n−1∑
j=0

(eq
m

i )jγq
m(j+1)

=
n−1∑
j=0

ejiγ
qm(j+1)

= en−1i γq
nm

+
n−1∑
j=1

ej−1i γq
mj

= e−1i γ +
n−1∑
j=1

ej−1i γq
mj

=
n−1∑
j=0

ej−1i γq
mj

= e−1i αi

Then for i = 1, αq
m

1 = α1 and therefore, α1 ∈ Fqm . For i = 2, 3, . . . , n, (αni )q
m

=

e−ni αni = αni which implies that αni ∈ Fqm .

Lemma 2.4.2. The set

Z =
{
αq

j

i : 1 6 i 6 n, 0 6 j 6 m− 1
}



43

is a basis for F.

Proof. Let A and Γ be 1× n vectors as follows:

A = (α1, α2, . . . , αn)

Γ =
(
γ, γq

m

, . . . , γq
(n−1)m)

Also, let E be the n× n matrix whose (i, j) entry is ej−1i . Then by definition,

A = ΓEt

Notice that E is a Vandermonde matrix and that ei’s are distinct. Therefore, the deter-

minant of E is non-zero. Then we can write

Γ = A(E−1)t

It implies that for any j, γqmj is a linear combination of αi’s. We can raise this to power

qr, for any 0 6 r 6 m − 1, and say that γqmj+r is a linear combination of αq
r

i ’s. Thus

γq
l is a linear combination of elements of the set Z, for 0 6 l 6 nm − 1. Therefore,

elements of Z span the whole space F. But |Z| = nm. Hence Z is a basis for F.

2.4.1 Encoding and Decoding

The following parameters of the construction are fixed: the finite field Fq and an

extension field Fqm , the number of information symbols k, the dimension of code n and

the list size L. We require that k 6 nm and n 6 q − 1.

We let [s] denote the set of positive integers less than or equal to s, for any posi-

tive integer s.

Extended Encoding Algorithm:

A message vector u = (u0, u1, . . . , uk−1) ∈ Fqk is the input to the encoder. The corre-

sponding message polynomial is fu(X) =
∑k−1

i=0 uiX
[i]. For i = 1, 2, . . . , n, consider αi

defined in (2.22). The encoder constructs vectors vi ∈ W as follows. For i = 1, 2, . . . , n,

vi =
(
αi, fu(αi), f

⊗2
u (αi), . . . , f

⊗L
u (αi)

)
The encoder then outputs the n-dimensional vector space V spanned by v1, v2, . . . , vn.
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In this construction, the ambient spaceW is

〈α1, α2, . . . , αn〉 ⊕ Fqnm ⊕ · · · ⊕ Fqnm︸ ︷︷ ︸
L times

(2.23)

which has dimension equal to n+ nmL.

Remark. Each element inW is represented by a vector with L+ 1 coordinates such as

(x, y1, y2, . . . , yL), where x belongs to the vector space spanned by α1, α2, . . . , αn and

yi ∈ Fqnm , for i = 1, 2, . . . , L. 2

Definition 2.4.3. The code Cq(k, n,m,L) is the collection of all possible codewords V

generated by the extended encoding algorithm.

Suppose that a codeword V ∈ Cq(k, n,m,L) is transmitted through the operator

channel and the decoder receives a vector space U ∈ Pq(W) with dimension d. At

the decoder we need a parameter ω which corresponds to the degree of the interpolation

polynomial. ω is computed as follows:

ω =

⌈
md+ 1

L+ 1
+

1

2
L(k − 1)

⌉
(2.24)

This will guarantee existence of the interpolation polynomial Q in the extended list-

decoding algorithm.

Extended List-decoding Algorithm:

1. Computing the interpolation points:

Find a basis for U as follows:

{(xi, yi,1, yi,2, . . . , yi,L) : i = 1, 2, . . . , d}

Then for h = 0, 1, 2, . . . ,m− 1, the set Ph is defined as follows:

Ph =
{

(xq
h

i , y
qh

i,1, . . . , y
qh

i,L) : i ∈ [d]
}

The set of interpolation points P is equal to:

P = P0 ∪ P1 ∪ · · · ∪ Pm−1
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2. Interpolation:

Construct a non-zero multivariate linearized polynomial Q(X, Y1, Y2, . . . , YL) of

the form

Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+QL(YL)

with each Qi having q-degree at most ω− (k− 1)i− 1, for i = 0, 1, . . . , L subject

to the constraint that

Q(x, y1, y2, . . . , yL) = 0 (2.25)

for any (x, y1, y2, . . . , yL) ∈ P .

3. Factorization:

Find all the roots f(X) ∈ Lq[X], with q-degree at most k − 1, of the equation:

Q
(
X, f(X), . . . , f⊗L(X)

)
= 0 (2.26)

using the LRR algorithm. The decoder outputs coefficients of each root f(X) as

a vector of length k.

The first step of the extended list-decoding algorithm is done by elementary lin-

ear algebraic operations. The interpolation step is in fact solving a system of linear

equations. There are several ways to do that. The most straightforward way is the Gaus-

sian elimination method. This method does not take advantage of the certain structure

of this system of equations and therefore, it is not efficient. An efficient polynomial-

time interpolation algorithm in the ring of linearized polynomials is presented in [11].

The factorization step can be done using the linearized Roth-Ruckenstein algorithm,

called the LRR algorithm, which will be presented in detail in Section 2.6. We have

modified the Roth-Ruckenstein algorithm [9] in order to solve equations over the ring

of linearized polynomials. For instance, an equation of degree L over Lqm [X] has the

following form:

Q0(X) +Q1(X)⊗ f(X) + · · ·+QL(X)⊗ f⊗L(X) = 0

where Qi’s are linearized polynomials over Fqm . The LRR algorithm finds all the roots

of this equation in efficient polynomial time.
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2.4.2 Correctness of the Extended List-Decoding Algorithm

Lemma 2.4.4. The choice of ω in (2.24) guarantees existence of a non-zero solution

for the interpolation polynomial Q that satisfies (2.25).

Proof. (2.25) defines a homogeneous system of at most md equations. The number of

unknown coefficients is as follows:
L∑
i=0

ω − (k − 1)i = (L+ 1)ω − (k − 1)
L(L+ 1)

2

A non-zero solution for this homogeneous system of linear equations is guaranteed if

and only if the number of equations is strictly less than the number of variables i.e.

md < (L+ 1)ω − (k − 1)
L(L+ 1)

2
⇔

ω >
md+ 1

L+ 1
+

1

2
L(k − 1)

This is guaranteed by the choice of ω in (2.24).

Lemma 2.4.5. The linear spans of the sets Ph, defined in the first step of the extended

list-decoding algorithm, are disjoint for h = 0, 1, . . . ,m− 1.

Proof. For any i ∈ [d], xi is an element of the span of α1, α2, . . . , αn. Since raising to

power qh is a linear operation, xq
h

i is an element of〈
αq

h

1 , α
qh

2 , . . . , α
qh

n

〉
By Lemma 2.4.2, these are disjoint vector spaces as h varies between 0 and m − 1.

Therefore, linear spans of Ph’s are also disjoint as h varies between 0 and h− 1.

We form the following linearized polynomial E(X) wherein fu(X) is the mes-

sage polynomial and Q(X, Y1, . . . , YL) is the interpolation polynomial provided by the

extended list-decoding algorithm.

E(X) = Q
(
X, fu(X), . . . , f⊗Lu (X)

)
=

L∑
i=0

Qi ⊗ f⊗iu (X)

Suppose that the number of errors in the received subspace U is t and the number

of erasures is ρ. Thus d = n− ρ+ t.
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Lemma 2.4.6. The linearized polynomial E(X) has at least (n−ρ)m linearly indepen-

dent roots.

Proof. Let U ′ be the intersection of the transmitted codeword V and the received sub-

space U . Then U ′ is a subspace of the received vector space U with dimension n−ρ. For

any (x, y1, . . . , yL) ∈ U ′ and h = 0, 1, . . . ,m − 1,
(
xq

h
, yq

h

1 , . . . , y
qh

L

)
is an element of

the linear span of the set Ph, because Ph contains all the qh-powers of the basis elements

of U and raising to the power qh is a linear operation. Furthermore, Q is a linearized

polynomial. Hence,

Q
(
xq

h

, yq
h

1 , . . . , y
qh

L

)
= 0 (2.27)

On the other hand, (x, y1, . . . , yL) is also an element of the transmitted codeword V .

Therefore,

(x, y1, . . . , yL) =
(
β, fu(β), . . . , f⊗Lu (β)

)
for some β in the linear span of α1, α2, . . . , αn. Since coefficients of fu(X) are elements

of Fq, for any integer h(
xq

h

, yq
h

1 , . . . , y
qh

L

)
=
(
βq

h

, fu(βq
h

), . . . , f⊗Lu (βq
h

)
)

(2.28)

Notice that linear spans of the sets Ph are disjoint by Lemma 2.4.5. This together with

(2.27) and (2.28) implies that there are at least (n− ρ)m linearly independent roots for

E(X).

Corollary 2.4.7. If ω 6 (n − ρ)m, then the linearized polynomial E(X) is identically

zero.

Proof. The q-degree of fu(X) is at most k − 1. Therefore, the q-degree of Qi(X) ⊗
f⊗iu (X) is at most

ω − (k − 1)i− 1 + (k − 1)i = ω − 1,

for i = 0, 1, . . . , L. Thus the q-degree of E(X) is at most ω − 1. On the other hand,

E(X) has at least (n − ρ)m linearly independent roots by Lemma 2.4.6. Therefore,

E(X) must be the all zero polynomial.
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Theorem 2.4.8. The output of the extended list-decoding algorithm is a list of size at

most L which includes the transmitted message u provided that

Lρ+ t < nL− L(L+ 1)

2

(k − 1)

m
(2.29)

Proof. The existence of a non-zero interpolation polynomial Q that satisfies (2.25) is

guaranteed by Lemma 2.4.4. Then by Corollary 2.4.7, E(X) is the all zero polynomial

provided that
md+ 1

L+ 1
+

1

2
L(k − 1) 6 (n− ρ)m (2.30)

where we have plugged in the expression for ω from (2.24). We plug in d = n − ρ + t

into (2.30). Then observe that (2.30) is a consequence of

Lρ+ t < nL− L(L+ 1)

2

(k − 1)

m

Thus this condition on the number of errors and erasures implies that E(X) is identi-

cally zero. Therefore, the message polynomial fu(X) is a solution to (2.26). Also, since

Q is non-zero, (2.26) has at most L solutions by Theorem 2.3.2. Therefore, the list size

is at most L.

2.4.3 Error-Correction Radius

The ambient spaceW in the construction of the code Cq(k, n,m,L) has dimen-

sion n + nmL. Each codeword is an n-dimensional subspace ofW . The rate R of the

code is

R =
logq(|Cq(k, n,m,L)|)

nN
=

k

n(n+ nmL)

The q-degree of each Qi must be non-negative. Notice that QL has the smallest degree

among Qi’s. This leads to to the following series of inequalities:

nm− (k − 1)L− 1 > 0⇒

L 6
nm− 1

k − 1
≈ 1

nLR
⇒

R 6
1

nL2
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We define the error-correction radius τ as follows:

τ =
Lρ+ t

n

τ is the total dimension of errors and erasures normalized by the dimension of the code

n, where the dimension of erasures is weighted by a factor of L. Then by Theorem 2.4.8,

the transmitted message is recovered as long as

τ < L− L(L+ 1)

2

(k − 1)

nm

This bound can be expressed in terms of the rate R, that is

τ < L− 1

2
nL(L+

1

m
)(L+ 1)R

guarantees a correct list-decoding. In this expression, L+ 1
m

can be approximated by L.

However, we still have the parameter n which prevents us from plotting the bound only

in terms of R and L.

We introduce packet rate as a new parameter in order to express our results in

a more convenient way. In fact, the rate R of the code is equal to the number of q-

ary information symbols normalized by the number of q-ary symbols injected into the

network. This can be interpreted as the symbol rate of the code. The packet rate R∗

is equal to the number of information packets normalized by the number of encoded

packets injected into the network. For Koetter-Kschischang code, the packet rate is

R∗ =
k

n

The bound in (2.10) on the error-correction radius of the Koetter-Kschischang code can

be expressed in terms of the packet rate R∗ that is,

τ 6 1−R∗

guarantees successful recovery of the message.

In our construction, we also have k information packets, indeed of length 1

over Fq, and n encoded packets. In order to make a fair comparison with the Koetter-

Kschischang code, however, we assume that there is a common source which generates

packets of length m over Fq. In our construction, we actually have to break each packet



50

into symbols over Fq which are also regarded as packets of length 1 over Fq. Having set

that, the packet rate of our code is

R∗ =
k

nm
(2.31)

The transmitted message will be successfully recovered provided that

τ 6 L− L(L+ 1)

2
R∗

This bound is plotted in Figure 2.1.

2.5 Back to Koetter-Kschischang Codes

The codes constructed in this chapter so far depend on the intended list size L

at the decoder. We actually need to transmit all the powers of the message polynomial

fu(X) up to L evaluated at certain values αi in order to enable list-L decoding at the

decoder. A natural question is then the following: Is there a way to do list-decoding if

we only transmit the f(αi)’s the same as in the Koetter-Kschischang scheme? We do not

know the answer to this question in general. As we will see, however, the answer is yes

for the special case of one-dimensional codes. The idea is that we manufacture some

powers of fu(α) from the received fu(α). In fact we are able to manufacture f qju (α),

for any positive integer j, from the received subspace. We present this idea first for the

simpler case of fields of characteristic 2. Then we elaborate it for the general case and

prove the correctness of the list-decoding algorithm.

For the sake of simplicity, we first consider the case q = 2. Similar to what

we discussed for the construction of C2(k, 1,m, L) in Section 2.3.5, suppose that α is a

primitive element of the field F2m that generates a normal basis for F2m as a vector space

over F2. Now, suppose that the transmitted codeword V is the one dimensional vector

space
〈(
α, fu(α)

)〉
. This actually matches the Koetter-Kschischang code with dimen-

sion 1 and the message polynomial evaluated at α. Remember that in construction of

Koetter-Kschischang codes, the choice of vectors αi, on which the message polynomial

is evaluated, is arbitrary as long as they are linearly independent.

The ambient space W is an (m + 1)-dimensional vector space over F2. The

source transmits the codeword V through the network and another subspace U ofW is
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received. At the decoder, we first find a basis for U such as {(xi, yi) : i = 1, 2, . . . , d},
where xi ∈ 〈α〉, yi ∈ F2m and d is the dimension of U . Since α, α2, . . . , α2m−1 is a basis

for F2m , each yi can be uniquely written as a linear combination of them; that is,

yi = u0,iα + u1,iα
2 + · · ·+ um−1,iα

2m−1

where the coefficients, the uj,i’s, are elements of F2. Then for i = 1, 2, . . . , d, we define

the linearized polynomial fi(X) as follows:

fi(X) = u0,iX + u1,iX
2 + · · ·+ um−1,iX

2m−1

Let zi = fi(fi(α)). Then the set of interpolation points P is

P =
{(
xq

j

i , y
qj

i , z
qj

i

)
: 1 6 i 6 d, 0 6 j 6 m− 1

}
With this set of interpolation points, we do the interpolation and factorization steps

exactly the same as in the list-decoding algorithm discussed in Section 2.3.5 for L = 2.

We have to make sure that(
α, fu(α), f⊗2u (α)

)
∈
〈

(xi, yi, zi) : i ∈ [d]
〉

(2.32)

provided that (
α, fu(α)

)
∈
〈

(xi, yi) : i ∈ [d]
〉

Then the rest of proof that this list-decoding algorithm is correct, provided that there

is a certain bound on the number of errors, is similar to what we had before. We also

assume there are no erasures. Hence,
(
α, fu(α)

)
is contained in the received subspace

U . Therefore, (
α, fu(α)

)
=

d∑
i=1

λi(xi, yi),

where λi ∈ F2 for i ∈ [d]. Thus,

fu(α) =
d∑
i=1

λifi(α)

This implies that

fu(X) =
d∑
i=1

λifi(X)
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Because coefficients of fu(X) and all fi(X)’s are elements of F2 and also that α,

α2,. . . ,α2m−1 form a basis for F2m . Then the following holds for f⊗2u (X):

f⊗2u = (
d∑
i=1

λifi)⊗ (
d∑
i=1

λifi) =
d∑
i=1

λ2i f
⊗2
i =

d∑
i=1

λif
⊗2
i

where we used the fact that fi’s are elements of Lq[X] and therefore, they commute by

Lemma 2.3.1. This proves that (2.32) holds as we required. Notice that we may even

gain more by manufacturing f⊗2iu (α) for i = 1, 2, . . . , s, for some positive integer s, at

the decoder.

For the rest of this section, we consider the general case where the base field is

Fq, yet the construction is one dimensional. We fix the parameters of the code as follows:

finite field Fq, finite extension F = Fqm and the number of information symbols = k.

We require the condition that k 6 m. The ambient spaceW is an (m+ 1)-dimensional

vector space over Fq. Let α be a primitive element of Fqm that generates a normal basis

for Fqm; that is, α, αq, . . . , αqm−1 form a basis for Fqm as a vector space over Fq.
Encoding Algorithm:

Message vector u = (u0, u1, . . . , uk−1) ∈ Fqk is the input to the encoder. The message

polynomial is fu(X) =
∑k−1

i=0 uiX
[i]. The vector v is constructed as follows:

v =
(
α, fu(α)

)
The output of the encoder is the one-dimensional vector space V spanned by v.

In fact, this encoding algorithm matches the Koetter-Kschischang encoding al-

gorithm reviewed in Section 2.2, for dimension n = 1, except that the message symbols

are restricted to the ground field Fq. Also, we have made a particular choice for the

evaluation point α.

Remark. The ambient spaceW is

〈α〉 ⊕ Fqm

whose dimension is m+ 1, as said before. Each element ofW is represented as a vector

with 2 coordinates such as (x, y), where x belongs to the vector space spanned by α and

y ∈ Fqm .
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Suppose that the codeword V is transmitted through the operator channel and

subspace U of dimension d = t+ 1 is received at the receiver, where t is the dimension

of the error. We fix a basis for the received subspace U and denote it by{
(xi, yi,0) : i = 1, 2, . . . , d

}
Each yi,0 can be uniquely written as a linear combination of α, αq, . . . , αqm−1:

yi,0 = u0,iα + u1,iα
q + · · ·+ um−1,iα

qm−1

And we define the linearized polynomial fi(X) as

fi(X) = u0,iX + u1,iX
q + · · ·+ um−1,iX

qm−1

The decoder fixes a parameter s which is related to the list-size allowed at the output. In

fact, the maximum list-size, in terms of the parameter s, is qs. Let yi,j = f⊗q
j

i (α), for

j = 1, 2, . . . , s. Then the list-decoding algorithm is performed as follows:

List-decoding Algorithm:

1. Computing the interpolation points:

The set of interpolation points P is

P =
{(
xq

h

i , y
qh

i,0, . . . , y
qh

i,s : i ∈ [d], 0 6 h 6 m− 1
}

2. Interpolation:

Construct a non-zero multivariate polynomial Q(X, Y1, Y2, . . . , Ys+1) of the form

Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+Qs+1(Ys+1)

where Q0 is a linearized polynomial over Fqm of q-degree at most m− 1, and Qj

is a linearized polynomial over Fqm of q-degree at most m− (k − 1)qj−1 − 1, for

j = 1, 2, . . . , s+ 1, subject to the constraint that:

Q(x, y1, y2, . . . , ys+1) = 0 (2.33)

for any (x, y1, y2, . . . , ys+1) ∈ P .
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3. Factorization:

Find all the roots f(X) ∈ Lq[X], with degree of at most k − 1 of the equation:

Q
(
X, f(X), f⊗q(X), . . . , f⊗q

s

(X)
)

= 0 (2.34)

using the LRR algorithm. The decoder outputs coefficients of each root f(X) as

a vector of length k.

Theorem 2.3.2 shows that number of solutions is at most qs. Each solution cor-

responds to an output message (u0, u1, . . . , uk−1).

Lemma 2.5.1. The vector

(α, fu(α), f⊗qu (α), . . . , f⊗q
s

u (α))

is contained in the linear span of the set of vectors

{(xi, yi,0, . . . , yi,s) : i = 1, 2, . . . , d} .

Proof. Since we assume that no erasure happens, the transmitted codeword V is con-

tained in the received subspace U . Hence,
(
α, fu(α)

)
∈ U . Therefore, we can write

(
α, fu(α)

)
=

d∑
i=1

λi(xi, yi,0)

where the coefficients λi’s are elements of the base field Fq. Then

fu(α) =
d∑
i=1

λiyi,0 =
d∑
i=1

λifi(α) (2.35)

Since fu and fi’s have q-degree of at most m − 1 and α, αq, . . . , αq
m−1 are linearly

independent, (2.35) implies that

fu(X) =
d∑
i=1

λifi(X)

Then for any positive integer h,

f⊗q
h

u = (
d∑
i=1

λifi)
⊗qh =

d∑
i=1

λq
h

i f
⊗qh
i =

d∑
i=1

λif
⊗qh
i (2.36)
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where the second equality follows from the fact that fi’s are elements of Lq[X] and

therefore, they commute by Lemma 2.3.1. (2.36) imply that

(α, fu(α), f qu (α), . . . , f⊗q
s

u (α))

=
d∑
i=1

λi(xi, fi(α), f qi (α), . . . , f⊗q
s

i (α))

=
d∑
i=1

λi(xi, yi,0, yi,1 . . . , yi,s)

Lemma 2.5.2. There is a non-zero solution for Q that satisfies (2.33) provided that the

number of errors t is bounded as

t < s+ 1−
(
qs+1 − 1

q − 1

)(
k − 1

m

)
Proof. (2.33) defines a homogeneous system of at most m(t+ 1) linear equations. The

number of unknown coefficients is

m+
s∑

h=0

m− (k − 1)qh = (s+ 2)m− (k − 1)

(
qs+1 − 1

q − 1

)
This system is guaranteed to have a non-zero solution if the number of equations is

strictly less than the number of coefficients that is,

m(t+ 1) < (s+ 2)m− (k − 1)

(
qs+1 − 1

q − 1

)
which is equivalent to

t < s+ 1−
(
qs+1 − 1

q − 1

)(
k − 1

m

)

The polynomial E(X) is defined as follows:

E(X) = Q
(
X, fu(X), f⊗qu (X), . . . , f⊗q

s

u (X)
)

where fu(X) is the message polynomial and Q is the interpolation polynomial con-

structed by the proposed list-decoding algorithm.
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Lemma 2.5.3. Suppose that the number of errors is bounded as in Lemma 2.5.2. Then

the polynomial E(X) is identically zero.

Proof. Since the q-degree of fu(X) is at most k − 1, the q-degree of Qj

(
f⊗q

j−1

u (X)
)

is

at most

m− 1− (k − 1)qj−1 + (k − 1)qj−1 = m− 1

for j = 1, 2, . . . , s+1. Also,Q0(X) has q-degree at mostm−1. Therefore, the q-degree

of E(X) is at most m− 1. By Lemma 2.5.1, (α, f(α), f q(α), . . . , f⊗q
s
(α)) is contained

in the linear span of the set of interpolation points P . Also, raising to power qh is a

linear mapping with respect to the base field Fq. Also, by using the fact that fu(X) is

over Fq, we conclude that

E(αq
h

) = 0,

for h = 0, 1, . . . ,m−1. HenceE(X) has at leastm roots which are linearly independent

by Lemma 2.4.2. But the q-degree of E(X) is at most m− 1. Therefore, E(X) ≡ 0.

The next theorem provides a bound on the error-correction capability of our list-decoding

algorithm.

Theorem 2.5.4. If

t < s+ 1−
(
qs+1 − 1

q − 1

)(
k − 1

m

)
,

then our list-decoding algorithm is correct; that is, it outputs a list of size at most qs of

messages which includes the transmitted message.

Proof. By Lemma 2.5.2 and Lemma 2.5.3, fu(X) is in the output list. Also, by Theo-

rem 2.3.2, there are at most L = qs solutions.

Now, we turn to compute the rate of the code with the aim of establishing the

bound on the error-correction radius in terms of the rate. The ambient space W has

dimension N = m+ 1. The rate R of the code is

R =
logq(|C|)
nN

=
k

m+ 1

The polynomials Qi’s must have non-negative q-degrees, i.e. m − (k − 1)qs > 0.

Therefore,

qs <
m

k − 1
≈ 1

R



57

The bound on the error-correction capability of our list-decoding algorithm is given by

Theorem 2.5.4. Approximating (k − 1)/n by R, we can express the bound as follows.

Our list-decoding algorithm successfully recovers the transmitted message as long as

t < s+ 1−
(
qs+1 − 1

q − 1

)
R

2.6 Efficient Factorization in the Ring of Linearized

Polynomials

In this section, we present the linearized Roth-Ruckenstein algorithm (LRR al-

gorithm) which is used in the factorization step of all of our list-decoding algorithms.

The LRR algorithm essentially solves equations over the ring of linearized polynomials

in an efficient polynomial time.

Consider a polynomial Q(X, Y ), where Y is a variable in the ring Lq[X], of the

form

Q(X, Y ) = Q0(X) +Q1(X)⊗ Y + · · ·+QL(X)⊗ Y ⊗L (2.37)

where Qi’s are linearized polynomials over a finite extension of Fq. The LRR algorithm

finds all the roots Y ∈ Lq[X] with q-degree at most k − 1, for some fixed k ∈ N, such

that Q(X, Y ) is identically zero.

We say that the polynomial Q(X, Y ) is divisible by Xqs if all the Qi’s, for i =

1, 2, . . . , L, are divisible by Xqs . In this case, for each i, there is a linearized polynomial

Q′i such that Q′i(X)q
s

= Qi(X). Then we define

Q�s(X, Y ) = Q′0(X) +Q′1(X)⊗ Y + · · ·+Q′L(X)⊗ Y ⊗L

Linearized Roth-Ruckenstein (LRR) algorithm

LRR (Q(X, Y ), k ∈ N, λ ∈ N ∪ {0})
Global variables:

set A ⊆ Lq[X],

polynomial g(X) =
∑k−1

i=0 uiX
qi ∈ Lq[X].

Call procedure initially with Q(X, Y ) 6= 0, k > 0, λ = 0.

if(λ == 0)
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A← ∅;
s← largest integer such that Q(X, Y ) is divisible by Xqs

H(X, γ)← 1
X
Q�s(X, γX);

Z ← set of all roots of H(0, γ) in Fq;
for each γ ∈ Z do {

uλ ← γ;

if (λ < k − 1)

LRR(Q�s(X, Y
q + γX), k, λ+ 1);

else

if (Q(X, uk−1X) == 0)

A← A ∪ {g(X)};
}

Lemma 2.6.1. Let Q(X, Y ) be as defined in (2.37). Let

f(X) = f0X + f1X
q + · · ·+ fk−1X

qk−1

and

H(X, γ) =
1

X
Q(X, γX)

Then the coefficient of X in Q(X, f(X)) is equal to H(0, f0).

Proof. Observe that the coefficient of X in f⊗i(X) is equal to f i0X . Therefore, the

coefficient of X in Q(X, f(X)) is equal to coefficient of X in

Q0(X) +Q1(f0X) +Q2(f
2
0X) + · · ·+QL(fL0 X)

The latter is equal to XH(X, f0). Note that coefficient of X in XH(X, f0) is equal to

the constant term in H(X, f0) which is indeed H(0, f0).

Notice that the level of recursion can not go beyond k − 1. In fact, each sequence of

recursions along a recursion descent is associated with a unique polynomial

f(X) = f0X + f1X
q + . . .

which stands for the contents of the global polynomial g(X) computed by that sequence.

For i = 0, 1, . . . , k− 1, let Pi(X, Y ), Ti(X, Y ) and Hi(X, γ) be the values of Q(X, Y ),
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Q�s(X, Y ) andH(X, γ), respectively, during recursion level λ = i. It can be inductively

observed that Pi and Ti are non-zero polynomials for i = 0, 1, . . . , k−1. In fact, P0 = Q

is assumed to be non-zero. Since Pi is non-zero, Ti is non-zero which implies that Pi+1

is non-zero. Therefore, the parameter s is always well-defined.

At each recursion level i, Ti(X, Y ) is not divisible by Xq. Therefore, the coeffi-

cient of X in Ti(X, γX) is not zero. Then by Lemma 2.6.1, H(0, γ) is not the all zero

polynomial.

Lemma 2.6.2. Let A be the set computed by LRR(Q, k, 0). Then every element of A is

a root of Q.

Proof. Let

f(X) = u0X + u1X
q + · · ·+ uk−1X

qk−1

be an element of A. For 0 6 i < k, define the polynomial φi(X) by

φi(X) = uiX + ui+1X
q + · · ·+ uk−1X

qk−i−1

Since ui’s are elements of Fq, φi = φqi+1 + uiX . Let Pi and Ti be the values of Q and T

during recursion level λ = i. We do a backward induction on i = k − 1, k − 2, . . . , 0 to

show that φi is a root of Pi. The base of induction is i = k−1. Note that φk−1 = uk−1X

which is a root of Pk−1 by the one before the last line of LRR procedure when λ = k−1.

Now, suppose that φi+1 is a root of Pi+1. Then we have

Pi(X,φi) = Ti(X,φi)
qs = Ti(X,φ

q
i+1 + uiX)q

s

= Pi+1(X,φi+1)
qs = 0

Therefore, φi is a root of Pi which completes the induction. In particular, for i = 0 we

see that f(X) = φ0(X) is a root of P0 = Q.

Lemma 2.6.3. Let

f(X) = f0X + f1X
q + · · ·+ fk−1X

qk−1

be a root of Q(X, Y ) in Lq[X]. For 0 6 i 6 k − 1, define Pi(X, Y ) and Ti(X, Y )

inductively by P0 = Q and

Ti(X, Y )q
si = Pi(X, Y ) and Pi+1(X, Y ) = Ti(X, Y

q + fiX),
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where si is the largest possible integer such that Pi(X, Y ) is divisible by Xqsi . Also,

define

Hi(X, γ) =
1

X
Ti(X, γX)

Then for 0 6 i 6 k − 1,

i)The polynomial φi defined by

φi = fiX + fi+1X
q + · · ·+ fk−1X

k−1−i

is a root of Pi(X, Y ).

ii)Hi(0, fi) = 0

Proof. We prove part i) by induction on i. For i = 0, φ0 = f is a root of P0 = Q. Now,

suppose that φi is a root of Pi(X, Y ). Since φi = φqi+1 + fiX , Y = φi+1 is a root of

Pi(X, Y
q + fiX) and, hence, of Ti(X, Y q + fiX) = Pi+1(X, Y ). This completes the

induction which proves part i).

Also, note that

Pi(X,φi(X)) = Ti(X,φi(X))q
si = 0 ⇒ Ti(X,φi(X)) = 0

By Lemma 2.6.1, the coefficient of X in Ti(X,φi(X)) is equal to Hi(0, fi) which has to

be zero. This proves part ii).

Lemma 2.6.4. Let A be the set computed by LRR(Q, k, 0). Then every root of Q in

Lq[X] is contained in A.

Proof. Let f(X) = f0X + f1X
q + · · · + fk−1Xqk−1 be a root of Q(X, Y ) in Lq[X].

Define Pi, Ti andHi as in Lemma 2.6.3. We prove by induction on i for i = 0, 1, . . . , k−
1 that there is a recursion descent in LRR such that recursion level i is called with the

parameters (Pi, k, i).

The base of induction is i = 0 which is obvious. Suppose that it is true for some

i. Then by Lemma 2.6.3, Hi(0, fi) = 0 and therefore, γ = fi is one of the roots. If

i < k − 1, then for γ = fi the recursive call is made with parameters

(Ti(X, Y
q + fiX), k, λ+ 1) = (Pi+1(X, Y ), k, i+ 1)
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If i = k − 1, then by Lemma 2.6.3, Pk−1(X, fk−1) = 0 which means that f is inserted

into A.

Theorem 2.6.5. The LRR algorithm is correct that is, for any polynomial Q as defined

in (2.37), the call LRR(Q, k, 0) computes a set A which consists of all the roots of Q in

Lq [X].

The proof follows from Lemma 2.6.2 and Lemma 2.6.4.

2.7 Discussion

In this chapter, we have considered the problem of list-decoding of subspace

codes proposed for error correction in random linear network coding. To this end, we

modified and generalized the original Koetter-Kschischang codes in various ways. In

fact, we constructed a new subspace code and proposed a list-decoding algorithm that

enables error-correction beyond the unique decoding bound. Interestingly, for a fixed

code dimension, we can actually correct any number of errors provided that the list size

is sufficiently large and the rate is small enough. In this case, the worst-case list-size

turns out to be proportional to the number of errors.

Nevertheless, we are able to achieve a better error-correction radius than Koetter-

Kschischang codes only at low rates. Then one question that arises is how to extend this

work in order to enable list-decoding at higher rates as well. We may take advantage

of the analogy between this work and the Sudan list-decoding algorithm of RS codes.

When Sudan introduced his list-decoding algorithm of Reed-Solomon codes, there was

a similar problem. Later Guruswami and Sudan proposed a new method where they

enforced multiple roots for the interpolation polynomial which led to a significant im-

provement upon Sudan’s first result. Therefore, it is natural to look for an analogous

technique in the ring of linearized polynomials. However, there is no clear notion of

multiple roots for linearized polynomials in the literature. In fact, one has to introduce

multiplicity in the ring of linearized polynomials in such a way that list-decoding at

higher rates is enabled. This will be addressed in the next chapter.
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As mentioned, in order to do list-decoding, we modify and generalize the Koetter-

Kschischang codes in many ways. Then the natural question is the following: is there a

way to list-decode the Koetter-Kschischang codes without any modification at the trans-

mitter side? In Section 2.5, we proposed a solution for this question only when the code

is one dimensional. The question remains open in the general case.
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Chapter 3

Algebraic List-Decoding with

Multiplicities

3.1 Introduction

In Chapter 2, we reviewed subspace codes that have been recently introduced

in order to enable reliable communication of messages in random network coding [2].

In [2] Koetter and Kschischang formulated a theory in the context of a non-coherent

transmission model for random network coding wherein neither the transmitter nor the

receiver are assumed to have any knowledge about the underlying network topology

and the particular linear network coding operations performed at each network node.

They show that subspace codes capture the effects both of errors, i.e. erroneously re-

ceived packets, and of erasures, i.e., insufficiently many received packets. Indeed the

only thing that is preserved is the subspace spanned by the set of packets injected by

the transmitter into the network. Information can be conveyed via the choice of that

subspace. Koetter-Kschischang construction of subspace codes, originally called Reed-

Solomon-like codes in [2], is analogous to Reed-Solomon codes in classical block codes

wherein symbols are replaced by vectors, regular polynomials with linearized polyno-

mials, and sequences of symbols with a Fq-linear span of the corresponding vectors.

In the previous chapter, we constructed a new family of subspace codes which

are list-decodable. Motivated by Koetter-Kschischang subspace codes, we modified and

64
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generalized their construction in many important ways in order to enable list-decoding.

Using algebraic list-decoding, we are able to achieve a better tradeoff than Koetter-

Kschischang codes between rate and error-correction radius, at low rates. In a sense,

our algorithm is regarded as analogous to the Sudan list-decoding algorithm of Reed-

Solomon codes [7]. The first decoding step in Sudan’s algorithm, called the interpolation

step, computes from the received word a certain bivariate polynomial Q(X, Y ) over the

ground field, Fq, of the code which passes through certain interpolation points. By look-

ing at Q(X, Y ) as a univariate polynomial with indeterminate Y over the ring Fq[X], the

second decoding step, called the factorization step, computes the roots of Q
(
X, f(X)

)
in Fq[X]. The decoder outputs coefficients of each root as a vector. In [1], Guruswami

and Sudan improved on this by introducing multiplicities in the interpolation step of

Sudan’s algorithm. The Guruswami-Sudan idea is basically to force the interpolation

polynomial Q(X, Y ) to pass through interpolation points multiple times. This will in

turn guarantee multiple roots in the factorization step of the decoding algorithm which

leads to better error-correction radius. This result showed that list-decoding can be ef-

fectively used to go beyond the unique decoding radius for every rate.

In this chapter, we consider the problem of list-decoding of subspace codes with

multiplicities. Motivated by the Guruswami-Sudan list-decoding algorithm of Reed-

Solomon codes, we aim to achieve a better error-correction capability at higher rates by

enforcing multiple roots for the linearized interpolation polynomial. To the best of our

knowledge, however, no explicit definition of multiple roots for linearized polynomials

exists in the literature. Our result in this chapter is based upon the following key idea.

The interpolation polynomial is mapped through an isomorphism to the ring of polyno-

mials, multiple roots are enforced there and then it is lifted back to the ring of linearized

polynomials. To this end, we first define a bijective mapping between the ring of lin-

earized polynomials over Fq and the ring of polynomials over Fq. We prove that this is

in fact an isomorphism. The derivative for univariate linearized polynomials is defined

based on this isomorphism . We also generalize this definition to multivariate linearized

polynomials in such a way that by mapping them to the ring of polynomials, we get the

Hasse derivative of the corresponding bivariate polynomial.

The rest of this chapter is organized as follows. In Section 3.2, we give an
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overview of the Guruswami-Sudan list-decoding algorithm of Reed-Solomon Codes.

We also briefly review subspace codes, linearized polynomials, Koetter-Kschischang

codes and our results in the previous chapter with the aim of more firmly establishing

the results of this chapter. In Section 3.3, we establish the terminology for derivatives

and partial derivatives in the ring of linearized polynomials which leads to a notion of

multiplicity in the ring of linearized polynomials. Section 3.4 is devoted to the special

case of list-decoding with multiplicity 2. We present a list-L decoding algorithm with

multiplicity 2 and prove that it outputs a list of size at most L containing the transmitted

message provided that

τ 6
2(L+ 1)

3
− 1 − L(L+ 1)

6
R∗

where τ is the error-correction radius and R∗ is the packet rate of the code introduced

in Section 2.4.3. Loosely speaking, the packet rate of a subspace code is the ratio of

the number of information packets to the number of encoded packets injected into the

network. In this chapter, we use this notion of rate in order to express our results in

a more convenient way. In Section 3.5, we present a list-decoding algorithm in the

general case with arbitrary multiplicity r. We guarantee that the injected message into

the network will be recovered at the receiver as long as

τ 6
2(L+ 1)

r + 1
− 1 − L(L+ 1)

r(r + 1)
R∗ (3.1)

It should be noticed that the choice of r is independent of the code construction. There-

fore, r can be chosen at the decoder in such a way that the decoding radius is maximized.

The value of r which maximizes the bound in (3.1) is equal to dLR∗e. Plugging in this

value into (3.1) we get a piecewise linear function for the bound versus the packet rate

R∗. This is shown in Figure 3.1 for L = 5 for Algorithm B which exploits multiplici-

ties in comparison with the list-decoding algorithm without multiplicity explained in the

previous chapter and the Koetter-Kschischang codes.

The limit of decoding radius, as L tends to infinity, is equal to 1
R∗
− 1 for packet

rates R∗ between 0 and 1.

We conclude the chapter in Section 3.6 with a comparison between results of

this chapter and the previous chapter. A list of open problems and some discussions is

also compiled in Section 3.6.
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Figure 3.1: Improvement on error-correction radius upon previous works by using mul-
tiplicity for list size L = 3

3.2 Preliminaries and Prior Work

In this section, we first give an overview of the Guruswami-Sudan list-decoding

algorithm of Reed-Solomon codes which provided the motivation for the work pre-

sented in this chapter [1]. Following [2] we review the operator channel model, the ring

of linearized polynomials and the Koetter-Kshischang codes. Then we briefly recap the

results of [4,5] that was presented in details in the previous chapter. In [4,5] we suit-

ably modified and extended the Koetter-Kschischang construction in many important

respects in order to facilitate list-decoding.

3.2.1 Guruswami-Sudan List-Decoding Algorithm

Sudan list-decoding algorithm [7], as reviewed in Section 2.3, can be regarded

as an algorithm to solve the following curve-fitting problem: Given n pairs of elements

{(x1, y1), (x2, y2), . . . , (xn, yn))}, where xi’s and yi’s are elements of a finite field Fq, a

degree parameter k and a an error parameter e, find all polynomials p(X) ∈ Fq[X] such
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that p(xi) = yi for at least n − e values of i ∈ {1, 2, . . . , n}. The Guruswami-Sudan

list-decoding algorithm is an extension of the Sudan algorithm in that the properties of

the singularities of these curves are used.

First, we need to recall the definition of the Hasse derivative and of multiplicity

for bivariate polynomials. LetQ(X, Y ) =
∑

i,j>0 qi,jX
iY j be a polynomial in Fq[X, Y ].

Let N denote the natural numbers including 0. For any a, b ∈ N, the (a, b)-th Hasse

derivative of Q(X, Y ), denoted by D(a,b)

[
Q(X, Y )

]
, is defined as

D(a,b)

[
Q(X, Y )

]
=
∑

i>a,j>b

(
i

a

)(
j

b

)
X i−aY j−b (3.2)

The polynomial Q(X, Y ) is said to have a zero of multiplicity m at a point

(x0, y0) ∈ Fq × Fq if

Da,b
[
Q(X, Y )

]∣∣∣
(x0,y0)

= 0

for all a, b ∈ N with a+ b < m.

Given f(X) ∈ Fq[X] and Q(X, Y ) ∈ Fq[X, Y ], let x0 and y0 be elements of Fq
such that f(x0) = y0 and Q(X, Y ) has a zero of multiplicity m at (x0, y0). Then it can

be proved that

(x− x0)m
∣∣ Q(X, f(X)

)
The generalized Reed-Solomon code is constructed as follows. Let k be the

number of information symbols and n be the length of the code with k 6 n 6 q − 1.

Fix n distinct elements of Fq, such as α1, α2, . . . , αn, as the set of evaluation points. The

message is a vector u = (u0, u1, . . . , uk−1) which consists of k information symbols over

Fq. Then the corresponding codeword is (fu(α1), fu(α2), . . . , fu(αn)), where fu(X) =∑k−1
i=0 uiX

i is the message polynomial. This codeword is transmitted through the chan-

nel and the channel output (y1, y2, . . . , yn) is given. The first step of the Guruswami-

Sudan list-decoding algorithm is the interpolation step similar to Sudan list-decoding

algorithm except that the interpolation points (αi, yi) are forced to be of multiplicity m.

The decoder constructs the bivariate interpolation polynomial

Q(X, Y ) = Q0(X) +Q1(X)Y + · · ·+QL(X)Y L

with (1, k− 1)-weighted degree at most ω− 1, such that (αi, yi) is a zero of multiplicity

m for Q(X, Y ) for all i. The parameter ω will be specified later and L is the maximum
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list-size at the output of the decoder; that is, it is guaranteed that the size of the output

list is at most L. The multiplicity parameter m is completely arbitrary and can be set to

any value as long as we can guarantee the existence of a non-zero solution for Q(X, Y ).

The only difference between the Guruswami-Sudan list-decoding algorithm and

the Sudan list-decoding algorithm is in the interpolation step where we use the notion of

multiplicity. As a result, the parameter ω will be set differently. In fact, the Guruswami-

Sudan list-decoding algorithm withm = 1 reduces to the Sudan list-decoding algorithm.

The next step in this algorithm is the factorization step which is done the same

as in the Sudan list-decoding algorithm. The decoder finds all the factors of Q(X, Y )

of the form Y − f(X). It can be proved that there are at most L of them. This step can

be done efficiently in polynomial time using the Roth-Ruckenstein algorithm [6]. If not

too many errors have occurred, Q(X, fu(X)) ≡ 0 which guarantees the recovery of the

message at the output of the decoder.

By enforcing multiple zeros in the interpolation step, we basically increase the

number of constraints by a factor of
(
m+1
2

)
. On the other hand, each correct received

symbol fu(αi) leads to a root with multiplicity m for the Q(X, fu(X)) ≡ 0 that is,

(x− αi)m
∣∣ Q(X, fu(X)

)
In fact, this trade-off between the number of constraints and the number of guaranteed

roots for the polynomial Q(X, fu(X)) leads to a higher error-correction radius.

Next, we analyze the Guruswami-Sudan list-decoding algorithm in more detail.

Similar to the Sudan’s list-decoding algorithm, the weighted degree constraint on the

interpolation polynomial Q(X, Y ) is such that the degree of Q
(
X, fu(X)

)
is at most

ω − 1. The parameter ω is set in such a way that existence of a non-trivial solution

for Q(X, Y ) is guaranteed; that is, the total number of available monomials is larger

than than the number of interpolation equations. For each interpolation point (αi, yi),

we require
(
m+1
2

)
equations. Hence, the total number of equations is n

(
m+1
2

)
. The total

number of variables, number of monomials X iY j with i+ (k − 1)j < ω, is

ω + ω− (k− 1) + ω− 2(k− 1) + · · ·+ ω−L(k− 1) = (L+ 1)ω−
(
L+ 1

2

)
(k− 1)

Therefore, the first condition to be satisfied is

(L+ 1)ω −
(
L+ 1

2

)
(k − 1) > n

(
m+ 1

2

)
(3.3)
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Q
(
X, fu(X)

)
∈ Fq[X] is a univariate polynomial with a degree of at most (ω −

1). Any correct received symbol yi = fu(αi) guarantees one particular root αi for

Q(X, fu(X)) with multiplicity m. Let t be the maximum number of errors we wish to

correct. Hence, Q(X, fu(X)) is guaranteed to have at least m(n − t) roots i.e. n − t

distinct roots each with multiplicity at least m. If the condition

m(n− t) > ω (3.4)

holds, then Q
(
X, fu(X)

)
must be the zero polynomial. As a result, fu(X) can be suc-

cessfully recovered by finding all the possible factors Y − f(X) of Q(X, Y ).

(3.3) and (3.4) can be combined in order to get a bound on the error-correction

radius of the Guruswami-Sudan list-L decoder. We substitute ω from (3.4) into (3.3) to

get the following bound on the error-correction radius:
t

n
< 1− m+ 1

2(L+ 1)
− L

2m

(k − 1

n

)
t/n is the normalized error-correction radius τ and (k − 1)/n is approximately the rate

of the code R = k/n. The final condition can be expressed as

τ < 1− m+ 1

2(L+ 1)
− L

2m
R (3.5)

On the other hand, if this is satisfied, one can find a suitable value for ω in order to

successfully perform the Sudan list-L decoding algorithm.

Next, we give a rough analysis on how to set the optimum choice for the mul-

tiplicity parameter m in terms of list-size L and rate R. It then leads to the famous

1 −
√
R bound on the error-correction radius of Guruswami-Sudan list-decoding algo-

rithm. As mentioned before, the parameter m is completely arbitrary and can be set to

be anything at the decoder. However, the best choice for m is to maximize the bound

provided in (3.5) given fixed values for L and R. Finally, the bound in (3.5) becomes a

piecewise linear function of the rate R for any list-size L. Consider the regime where L

is large enough such that we can approximate (m + 1)/(L + 1) by m/L. Let γ denote

the ratio m/L. Then the bound in (3.5) can be expressed as 1 − γ/2 − R/2γ. Hence,

the whole thing reduces to minimizing γ + R/γ which happens for γ =
√
R. Then the

error-correction radius bound for this optimum choice of γ is 1−
√
R. This happens for

γ =
√
R or equivalently m = L

√
R. This analysis is for large enough values of L. In

fact, the 1−
√
R bound on error-correction radius can be achieved as L tends to infinity.
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3.2.2 Prior Work

Let W be a fixed N -dimensional vector space over Fq and Pq(W) denote the

set of all subspaces ofW which is often called the projective geometry ofW . For any

V ∈ G(W ), the dimension of V is denoted by dim(V ). For any A,B ∈ G(W ), the

distance between A and B is defined as follows:

d(A,B)
def
= dim(A+B)− dim(A ∩B)

Pq(W) is indeed a metric space under this metric. Furthermore, let Gq(W , n) denote

the set of all n-dimensional subspaces ofW . Following [2], we defined operator channel

and subspace codes in Chapter 1 in details. An operator channel C associated with the

ambient space W is a channel with input and output alphabet Pq(W). The input to

C is a subspace V ∈ Pq(W) and the output of C is another subspace U ∈ Pq(W).

Deletion of vectors from V as it is transmitted through C is called erasures and addition

of linearly independent vectors to V is called errors. The output U is the input V which

is possibly corrupted by errors and erasures.

A code C for an operator channel C with ambient spaceW is a non-empty subset

of Pq(W). A codeword is an element of C which is in fact a subspace ofW . The rate

of the code C is defined as follows. Suppose that the dimension of any V ∈ C is at most

n. Then

R
def
=

logq |C|
nN

(3.6)

A polynomial over some extension field Fqm of Fq is called Fq-linearized if it has

the following form:

f(X) =
s∑
i=0

aiX
qi ,

where ai ∈ Fqm , for i = 0, 1, . . . , s. Assuming that as 6= 0 we say that the polynomial

f(X) has q-degree s which means that its actual degree is qs. When q is fixed under

discussion, we will let X [i] denote Xqi . A linearized polynomial with coefficients from

Fqm act as a linear map over any extension of Fqm , with respect to Fq. In other words, for

any α1 and α2 in any extension field of Fqm and any λ1, λ2 ∈ Fq,

f(λ1α1 + λ2α2) = λ1f(α1) + λ2f(α2)
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The set of linearized polynomials over Fqm forms a non-commutative ring with iden-

tity under addition + and composition ⊗, where f1(X) ⊗ f2(X) is defined to be the

composition f1
(
f2(X)

)
which is always a linearized polynomial.The ring of linearized

polynomials over Fqm is denoted by Lqm [X].

Koetter-Kschischang subspace codes can be regarded as analogous to Reed-

Solomon codes wherein symbols are replaced by vectors, polynomials with linearized

polynomials and sequences of symbols with Fq-linear span of the corresponding vectors.

A set of n evaluation points A = {α1, . . . , αn} ⊂ Fqm is selected. αi’s are chosen to

be linearly independent. In fact, since we will evaluate a linearized polynomial over

the set A, evaluation over a point that is already contained in the linear span of other

points is redundant information. Therefore, we require the elements of A to be linearly

independent. Given the message symbols u0, u1, . . . , uk−1, we construct the linearized

message polynomial fu(X) =
∑k−1

i=0 uiX
[i]. The codeword V is the Fq-linear span of

the set {(αi, f(αi)) : 1 6 i 6 n}. All the codewords are n-dimensional subspaces of the

(n+m)-dimensional ambient spaceW = 〈A〉 ⊕ Fqm .

Suppose that V is transmitted through the operator channel and another subspace

U ofW of dimension d is received. At the decoder, a basis (xi, yi), i = 1, 2, . . . , d for

U is selected. Then the decoder constructs a non-zero bivariate linearized polynomial

Q(X, Y ) of the form

Q(X, Y ) = Q0(X) +Q1(Y ),

where Q0 and Q1 are linearized polynomials over Fqm , Q0 has q-degree of at most ω− 1

and Q1 has q-degree of at most ω − k subject to the constraint that

Q(xi, yi) = 0 for i = 1, 2, . . . , r

Then fu(X) is the unique solution to the equation

Q
(
X, f(X)

)
= 0

Suppose that ρ and t are the number of erasures and errors, respectively. Koetter and

Kschischang [2] prove that if ρ+t < n−k+1, then the decoding algorithm successfully

recovers the transmitted message polynomial fu(X) by choosing ω =
⌈
d+k
2

⌉
. Thus the

bound on error-correction capability of Koetter-Kschischang codes is

τ <
n− k + 1

n
= 1− k − 1

n
≈ 1− 1

n
(1 +

n

m
)R∗ (3.7)
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where τ = (ρ+ t)/n is the normalized error-correction radius.

In Chapter 2, we presented our list-decoding algorithm of subspace codes which

requires modification and generalization of the Koetter-Kschischang codes in many im-

portant ways. Our work, also presented in [4,5], essentially leads to a new construction

of subspace codes which is efficiently list-decodable. We now briefly recap the results

discussed in the foregoing chapter.

Recall from [3, Ch. 4.9] that any finite extension Fqn of Fq contains a primitive

element γ such that γ, γq, . . . , γqn−1 forms a basis for Fqn as a vector space over Fq.
This is called a normal basis for Fqn . For the purpose of this chapter, we consider the

construction discussed in Chapter 2, only for the special case where m = 1. We assume

that q − 1 is divisible by n. Then xn − 1 = 0 has n distinct solutions in Fq. Let

e1 = 1, e2, e3, . . . , en be these solutions. Let F = Fqn and γ be a generator of a normal

basis for F. Then define

αi = γ + e−1i γq + e−2i γq
2

+ · · ·+ e
−(n−1)
i γq

n−1

(3.8)

for i = 1, 2, . . . , n. In fact, this matches the definition of αi’s in (2.22) for the special

case m = 1.

Next, we briefly review the encoding and decoding of list-decodable subspace

codes that we proposed in Chapter 2. We fix the following parameters: the number of

information symbols k, the dimension of code n and the list size L. The ambient space

W is an Ln + n-dimensional vector space over Fq. We require that k 6 n and q − 1 is

divisible by n.

Encoding Algorithm:

Formally, the encoder is a function E : Fqk→ G(W,n). It accepts as input a message

u = (u0, u1, . . . , uk−1) ∈ Fqk. The corresponding message polynomial is fu(X) =∑k−1
i=0 uiX

[i]. For i = 1, 2, . . . , n, consider αi defined in (3.8). The encoder constructs

vectors vi ∈ W as follows. For i = 1, 2, . . . , n,

vi =
(
αi, fu(αi), f

⊗2
u (αi), . . . , f

⊗L
u (αi)

)
The encoder then outputs n-dimensional vector space V spanned by v1, v2, . . . , vn.

The first coordinate of each vector of the codeword V belongs to the vector space

spanned by α1, α2, . . . , αn. All the other L coordinates are elements of Fqn . Therefore,
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in this construction, the ambient spaceW is

〈α1, α2, . . . , αn〉 ⊕ Fqn ⊕ · · · ⊕ Fqn︸ ︷︷ ︸
L times

(3.9)

Its dimension, as mentioned before, is Ln+ n. The code Cq(k, n, 1, L), as given in De-

finition 2.4.3, is the collection of all possible codewords V generated by this encoding

algorithm. All the codewords are n-dimensional subspaces of the Ln + n-dimensional

ambient spaceW .

Remark. We represent each element of the ambient space W as a vector with L + 1

coordinates such as (x, y1, y2, . . . , yL), where x ∈ 〈α1, α2, . . . , αn〉 and yi ∈ Fqn for

i = 1, 2, . . . , L. 2

Suppose that a codeword V ∈ Cq(k, n, 1, L) is transmitted through the operator

channel and the decoder receives a vector space U ∈ G(W ) with dimension d.

List-decoding Algorithm A:

Find a basis {
(xi, yi,1, yi,2, . . . , yi,L) : i = 1, 2, . . . , d

}
for U . Then the set of interpolation points P is the following:

P =
{

(xq
h

i , y
qh

i,1, . . . , y
qh

i,L) : i ∈ [d], h = 0, 1, . . . ,m− 1
}

We use the notation [s] to denote the set of positive integers less than or equal to s.

Construct a non-zero multivariate linearized polynomial Q(X, Y1, Y2, . . . , YL)

of the form

Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+QL(YL)

with each Qi having q-degree of at most n− (k− 1)i− 1, for i = 0, 1, . . . , L, subject to

the constraint that

Q(x, y1, y2, . . . , yL) = 0

for any (x, y1, y2, . . . , yL) ∈ P . Then find all the roots of the following equation in

Lq[X] using LRR algorithm explained in Section 2.6:

Q
(
X, f(X), f⊗2(X), . . . , f⊗L(X)

)
= 0

By Theorem 2.3.2 there are at most L solutions for f(X) ∈ Lq[X]. Each solution

corresponds to one possible output message.
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Suppose that the dimension of received vector space U is equal to d = n−ρ+ t,

where ρ is the dimension of erasure and t is the dimension of error. We proved in

Section 2.4 that if

Lρ+ t < nL− 1

2
L(L+ 1)(k − 1)

then the list-decoding algorithm A is correct that is, it outputs a list of size at most L

which includes the transmitted message u. Notice that there is a parameter m in the

original equation in (2.29). However, we restrict our attention to the case m = 1 in

this chapter. Then the bound on the error-correction radius τ = (Lρ + t)/n, where the

number of erasures is weighted by L, of this list-decoding algorithm in terms of list size

L and packet rate R∗ is given by

τ < L − 1

2
L(L+ 1)R∗ (3.10)

3.3 Multiplicity in the ring of linearized polynomials

In this section, we establish the notion of multiplicity for linearized polynomials.

As mentioned in Section 3.1, this work is motivated by Guruswami-Sudan list-decoding

algorithm of Reed-Solomon codes. Their idea is to enforce the interpolation polynomial

to go through the same set of roots as in Sudan algorithm but with some multiplicity.

In fact, the Guruswami-Sudan algorithm with multiplicity one reduces to the Sudan

algorithm. Enforcing multiple roots imposes more constraints on the interpolation poly-

nomial. In return one get multiple zeros corresponding to each correct symbol of the

received vector rather than having only one in the Sudan algorithm. The trade off is

such that at the end, one can achieve better decoding radius using Guruswami-Sudan

list-decoding algorithm compared to the Sudan algorithm.

Motivated by the Guruswami-Sudan list-decoding algorithm of Reed-Solomon

codes, we aim to enforce multiple roots for the interpolation polynomial in the list-

decoding algorithm A discussed in the foregoing section. To the best of our knowledge,

however, no explicit definition of multiplicity for linearized polynomials exists in the

literature. Therefore, we define an isomorphism between the ring of linearized polyno-

mials over Fq and the ring of polynomials over Fq. Then the idea is to map the resulted

interpolation polynomial into its image in the ring of polynomials, enforce multiple roots
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there and then lift it back to the ring of linearized polynomials. Based on this mapping,

we define a derivative for univariate linearized polynomials and an analogous one to the

Hasse derivative for multivariate linearized polynomials.

The mapping H from the ring of linearized polynomials to the ring of polyno-

mials is simply defined as follows:

Definition 3.3.1. For any linearized polynomial

f(X) = f0X + f1X
q + · · ·+ fsX

qs

We define

H
(
f(X)

) def
= f0 + f1X + · · ·+ fsX

s

It is clear that H, restricted to Lq[X], is a bijective map between Lq[X] and

Fq[X]. Moreover, it is indeed an isomorphism i.e. it preserves the ring structure of

Lq[X]. This is shown in the next lemma.

Lemma 3.3.2. The mapping H : Lq[X]→Fq[X] is a ring isomorphism i.e. for any two

linearized polynomials f, g ∈ Lq[X]

H
(
f(X) + g(X)

)
= H

(
f(X)

)
+H

(
g(X)

)
H
(
f(X)⊗ g(X)

)
= H

(
f(X)

)
H
(
g(X)

)
Proof. It is clear thatH preserves the addition. For the second part, Let f(X) =∑

i>0 fiX
[i] and g(X) =

∑
j>0 gjX

[j]. Then coefficients of f(X)⊗g(X) =
∑

k>0 ckX
[k]

can be computed as ck =
∑k

i=0 fig
[i]
k−i. On the other hand, H

(
f(X)

)
H
(
g(X)

)
=∑

k>0 c
′
kX

k, where c′k =
∑k

i=0 figk−i. Since all the coefficients of g(X) are elements of

Fq, g[i]k−i = gq
i

k−i = gk−i, for any i and k. Therefore, for any k,

ck =
k∑
i=0

figk−i = c′k

As mentioned before,H is a bijective mapping. Therefore, it is a ring isomorphism.

For ease of notation, for any linearized polynomial f(x), we will let f̃(X) denote

H
(
f(X)

)
.
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Definition 3.3.3. For a linearized polynomial f(X) =
∑

i>0 fiX
[i], we define its deriva-

tive f ′(X) as follows:

f ′(X)
def
=
∑
i>1

ifiX
[i−1]

In general, for any integer a ∈ N, the a-th derivative of f(X) is the following:

f (a)(X)
def
=
∑
i>a

(
i

a

)
fiX

[i−a] (3.11)

Remark. This definition for derivative of a linearized polynomial does not have any

direct interpretation in the ring of linearized polynomials. However, translating things

into the ring of polynomials through mappingH we shall see that it becomes the actual

derivative there. In fact, H
(
f ′(X)

)
= H

(
f(X)

)′. Therefore, with a slight abuse of

notation we simply write f̃ ′(X) which may refer to bothH
(
f ′(X)

)
andH

(
f(X)

)′. 2

Remark. For a polynomial f(X) in the ring of polynomials, we let f ′(X) to denote

its actual derivative. This is an abuse of notation as a linearized polynomial can be also

regarded as an element in the ring of polynomials whose actual derivative is zero. In this

chapter, however, it is always clear from the context whether a polynomial is an element

in the ring of linearized polynomials or it belongs to the ring of polynomials. 2

Throughout this chapter, by a multivariate linearized polynomial we mean a

polynomial Q of the following form:

Q(X, Y1, Y2, . . . , YL) = Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+QL(YL) (3.12)

where all Qi’s are linearized polynomials. Then we define the corresponding bivariate

polynomial Q̃(X, Y ) as follows:

Q̃(X, Y )
def
= Q̃0(X) + Q̃1(X)Y + Q̃2(X)Y 2 + · · ·+ Q̃L(X)Y L (3.13)

QX and QY which are analogous to first order partial derivatives are defined as follows:

QX(X, Y1, Y2, . . . , YL)
def
= Q′0(X) +Q′1(Y1) +Q′2(Y2) + · · ·+Q′L(YL)

QY (X, Y1, Y2, . . . , YL)
def
= Q1(X) + 2Q2(Y1) +Q2(Y2) + · · ·+ LQL(YL−1)

Observe that Q̃X = Q̃X , where Q̃X is the first derivative of Q̃(X, Y ) with respect to

X . Similarly, Q̃Y = Q̃Y . This is generalized to an analog of the Hasse derivative for a

multivariate linearized polynomial Q of the form given in (3.12).
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Definition 3.3.4. For any a, b ∈ N, we define Da,b(Q) as follows. If b > L, then

Da,b(Q)
def
= 0

Otherwise,

Da,b(Q)(X, Y1, . . . , YL)
def
= Q

(a)
b (X) +

L∑
i=b+1

(
i

b

)
Q

(a)
i (Yi−b) (3.14)

where Q(a)
i (X) is the a-th derivative of Qi(X) defined in (3.11).

Observe that Da,b(Q) reduces to QX and QY , defined earlier, for (a, b) = (1, 0) and

(a, b) = (0, 1) respectively. Also, H
(
Da,b(Q)

)
is indeed the (a, b)-th Hasse derivative

of Q̃(X, Y ).

3.4 List-decoding with multiplicity two

We start explaining our list-decoding algorithm with the simpler case of multi-

plicity two. Then we go to the general case in the next section. We do not change the

construction of our code reviewed in Section 3.2. The improvement is accomplished by

introducing multiplicity at the decoder side.

We fix the parameters of the code: the finite field Fq, the number of information

symbols k, the dimension of code n and the list size L. The ambient space W is an

L+ n-dimensional vector space over Fq. We require that k 6 n 6 q− 1. Then the code

Cq(k, n, 1, L) is constructed as explained in the encoding algorithm in Section 3.2.

Suppose that a codeword V ∈ Cq(k, n, 1, L) is transmitted through the operator

channel and a vector space U ∈ G(W ) with dimension d is received. The decoder first

checks the following condition on the dimension of received vector space U :

d <
L+ 1

3

(
2n− L(k − 1)

n

)
(3.15)

and if it does not hold, then the decoder declares a decoding failure.

List-decoding with multiplicity 2:

The decoder finds a basis for U :{
(xi, yi,1, yi,2, . . . , yi,L) : i = 1, 2, . . . , d

}
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This is the set of interpolation points P . Then construct a non-zero multivariate lin-

earized polynomial Q(X, Y1, Y2, . . . , YL) of the form in (3.12), with each Qi having

q-degree at most 2n− (k − 1)i− 1, for i = 0, 1, . . . , L, subject to the constraint that

Q(x, y1, y2, . . . , yL) = 0

QX(x, y1, y2, . . . , yL) = 0

QY (x, y1, y2, . . . , yL) = 0

(3.16)

for any (x, y1, y2, . . . , yL) ∈ P . Then find all the roots f(X) ∈ Fq[X], with degree at

most k − 1, of the following equation using the Roth-Ruckenstein algorithm [6]:

Q̃
(
X, f(X)

)
= 0

Coefficients of each root f(X) correspond to an output vector.

We discuss how the various parts of this algorithm can be done efficiently in

the next section. In fact, this is a special case, with multiplicity parameter r = 2, of

list-decoding algorithm B which will be presented in the next section.

Next, we establish the correctness of this algorithm.

Lemma 3.4.1. For any linearized polynomial g(X) and i = 1, 2, . . . , n,

1. g(αi) = αig̃(ei)

2. g
(
f(αi)

)
= αig̃(ei)f̃(ei), for any f(X) ∈ Lq[X].

where αi is as defined in (3.8).

Proof. Observe that

αqi =
( q−2∑
j=0

e−ji γq
j
)q

=

q−2∑
j=0

(eqi )
−jγq

j+1

=

q−2∑
j=0

e−ji γq
j+1

= αiei

Then by induction on j, for any j > 0, αq
j

i = αie
j
i . Suppose that g(X) =

∑
j>0 gjX

[j].

Then

g(αi) =
∑
j>0

gjα
qj

i =
∑
j>0

αie
j
i = αig̃(ei)

This completes the first part. The second part is proved by the following sequence of

equalities:

g
(
f(αi)

)
= g
(
αif̃(ei)

)
= g(αi)f̃(ei) = αig̃(ei)f̃(ei)
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where the first and the last equalities simply follow by the first part of this lemma. The

second equality holds since f̃(ei) ∈ Fq as all the coefficients of f̃ together with ei are

elements of Fq.

Suppose that the dimension of the received subspace U is d = n + t, where

t is the number of errors. We assume that no erasure occurs. In fact, the transmitted

codeword V is a subspace of the received subspace U .

Lemma 3.4.2. Suppose that the number of errors t is bounded as

t <
2

3
n(L+ 1)− n− 1

6
L(L+ 1)(k − 1) (3.17)

then there is a non-trivial solution for the multivariate linearized polynomial Q which

satisfies (3.16).

Proof. Notice that (3.16) defines a homogeneous system of 3(n + t) equations. The

number of unknown coefficients is as follows:

L∑
i=0

2n− (k − 1)i = 2(L+ 1)n− (k − 1)
L(L+ 1)

2

This system has a non-zero solution if the number of equations is strictly less than the

number of variables. Also, this is necessary in order to guarantee existence of a non-

trivial solution i.e.

3(n+ t) < 2(L+ 1)n− (k − 1)
L(L+ 1)

2
⇔

t <
2

3
n(L+ 1)− n− 1

6
L(L+ 1)(k − 1)

Corollary 3.4.3. The bound on the number of errors in (3.17) is necessary in order to

guarantee a non-trivial solution for the interpolation polynomial Q.

Lemma 3.4.4. For i = 1, 2, . . . , n, ei is a root of the univariate polynomial Q̃
(
X, f̃u(X)

)
with multiplicity 2, where fu(X) ∈ Lq[X] is the message polynomial.
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Proof. Since Q is a linearized polynomial and all the basis elements of U are roots of

Q, it is zero over the whole vector space U . Notice that the transmitted subspace V is a

subspace of U as we assume that no erasure happens. Therefore,

Q
(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= 0

Similarly, QX and QY are also zero at
(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
. Then Q̃

(
ei, f̃u(ei)

)
is

0, by the following sequence of equalities:

0 = Q
(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= Q0(αi) +Q1

(
fu(αi)

)
+ · · ·+QL

(
f⊗Lu (αi)

)
= αi

[
Q̃0(ei) + Q̃1(ei)f̃u(ei) + · · ·+ Q̃L(ei)f̃

L
u (ei)

]
(3.18)

= αiQ̃
(
ei, f̃u(ei)

)
(3.19)

By Lemma 3.3.2, we know that H preserves the multiplication over Lq[X]. Therefore,

H
(
f⊗Lu (X)

)
= H

(
fu(X)

)L
= f̃Lu (X). This fact together with Lemma 3.4.1 imply

(3.18). (3.19) holds just by definition of Q̃ in (3.13).

Next we show that Q̃X(X, Y ) and Q̃Y (X, Y ) are also zero at
(
ei, f̃u(ei)

)
, where

Q̃X and Q̃Y are the first derivatives of Q̃ with respect to X and Y , respectively.

0 = QX

(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= Q′0(αi) +Q′1

(
fu(αi)

)
+ · · ·+Q′L

(
f⊗Lu (αi)

)
= αi

[
Q̃′0(ei) + Q̃′1(ei)f̃u(ei) + · · ·+ Q̃′L(ei)f̃

L
u (ei)

]
(3.20)

= αiQ̃X(X, Y )
∣∣∣(
ei,f̃u(ei)

) (3.21)

(3.20) holds similar to (3.18) if we replace Q by QX and Qi by Q′i. (3.21) follows by

simply taking the first derivative of Q̃(X, Y ), given in (3.13), with respect to X . Also,

0 = QY

(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= Q1(αi) + 2Q2

(
fu(αi)

)
+ · · ·+ LQL

(
f⊗(L−1)u (αi)

)
= αi

[
Q̃1(ei) + 2Q̃2(ei)f̃u(ei) + · · ·+ LQ̃L(ei)f̃

L−1
u (ei)

]
(3.22)

= αiQ̃Y (X, Y )
∣∣∣(
ei,f̃u(ei)

) (3.23)
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(3.22) holds similar to (3.18) and (3.20). (3.23) follows by simply taking the first deriva-

tive of Q̃(X, Y ), given in (3.13), with respect to Y .

We showed that the bivariate polynomial Q̃(X, Y ) passes through
(
ei, f̃u(ei)

)
with multiplicity 2. Therefore, ei is a root of the univariate polynomial Q̃(X, f̃u(X))

with multiplicity 2.

Corollary 3.4.5. Q̃
(
X, f̃u(X)

)
is identically zero.

Proof. Notice that the degree of each polynomial Q̃i is equal to the q-degree of Qi

which is 2n − (k − 1)i − 1. Also, the degree of f̃(X) is at most k − 1. Therefore, the

degree of each term Q̃i(X)f̃ i(X) is at most 2n−1 which implies that the total degree of

Q̃
(
X, f̃u(X)

)
is at most 2n− 1. On the other hand, Q̃

(
X, f̃u(X)

)
has at least n distinct

roots e1, e2, . . . , en, each with multiplicity 2. Therefore, it must be identically zero.

Theorem 3.4.6. Suppose that the number of errors normalized by the dimension n is at

most
2

3
(L+ 1)− 1− 1

6
L(L+ 1)

(k − 1)

n

Then the list-decoding algorithm with multiplicity 2 produces a list of size at most L

which includes the transmitted message u.

Proof. Observe that this condition on the number of errors t is equivalent to (3.15) by

plugging d = n + t in (3.15). Therefore, the list-decoding algorithm is performed and

by Lemma 3.4.2, there is a non-trivial interpolation polynomial Q that satisfies (3.16).

Then by Corollary 3.4.5, f̃u(X) is a solution to Q̃
(
X, f(X)

)
= 0. Thus the message u

is included in the list generated by the decoder. Notice that Q̃
(
X, f(X)

)
can be seen as

a univariate polynomial with degree L over F[X] which is a Euclidean domain. Since Q

is a non-zero polynomial, so is Q̃. Therefore, there are at most L roots for the equation

Q̃
(
X, f(X)

)
= 0.

By Theorem 3.4.6 and Corollary 3.4.3, the necessary and sufficient condition for

a correct list-decoding with multiplicity 2 is that the normalized number of errors is
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bounded as

τ <
2

3
(L+ 1)− 1− 1

6
L(L+ 1)

(k − 1)

n

where τ = t/n is the normalized number of errors. The packet rate R∗, as defined in

Section 2.4.3, is given by k/n. Basically the number of information packets is k and

the number of encoded packets is n. Then we can express the bound on error-correction

radius as

τ <
2

3
(L+ 1)− 1− 1

6
L(L+ 1)R∗ (3.24)

3.5 List-decoding with arbitrary multiplicity

In this section, we present list-decoding algorithm with multiplicity in the gen-

eral case. We essentially generalize the results in the foregoing section. We first state

list-decoding algorithm B which takes multiplicity into account in the general case.

Then we prove the correctness of this algorithm and show the achievable error-correction

radius. At the end, we discuss the parameters of the proposed algorithm.

3.5.1 List-decoding Algorithm

Consider the code Cq(k, n, 1, L) constructed by the encoding algorithm dis-

cussed in Section 3.2. A codeword V ∈ Cq(k, n, 1, L) is transmitted through the opera-

tor channel and the decoder receives a vector space U ∈ G(W ). There is a multiplicity

parameter r that is picked by the decoder arbitrarily and is independent of the code con-

struction. We will discuss later how to pick r in order to maximize the error-correction

capability. Then the decoder looks at the dimension of received vector space U and if

the condition

dim(U) <
L+ 1

r + 1

(
2n− L(k − 1)

n

)
(3.25)

is satisfied, then the list-decoding algorithm B is run. Otherwise, the decoder declares a

decoding failure.

List-decoding Algorithm B:

The decoder accepts as input a vector space U which is a subspace ofW . It then outputs

a list of size at most L of vectors in Fqk in three steps:
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1. Computing the interpolation points:

Find a set of basis elements{
(xi, yi,1, yi,2, . . . , yi,L) : i = 1, 2, . . . , d

}
for U . This is used as the set of interpolation points P .

2. Interpolation:

Construct a non-zero multivariate linearized polynomial Q(X, Y1, Y2, . . . , YL) of

the form in (3.12) with each Qi having q-degree at most nr − (k − 1)i − 1, for

i = 0, 1, . . . , L, subject to the constraint that

Da,b(Q)(x, y1, y2, . . . , yL) = 0 (3.26)

for any (x, y1, y2, . . . , yL) ∈ P and a, b ∈ N such that a+ b < r.

3. Factorization:

Find all the roots f(X) ∈ Fq[X], with degree at most k − 1, of the following

equation:

Q̃
(
X, f(X)

)
= 0

The decoder outputs coefficients of each root f(X) as a vector of length k.

The first step of the list-decoding algorithm B can be done using elementary

linear algebraic operations. The second step is basically solving a system of linear

equations. There are several ways for doing that. The most straightforward way is

the Gaussian elimination method. However, this method does not take advantage of

the certain structure of this system of equations and therefore, it is not efficient. An

efficient polynomial-time interpolation algorithm in the ring of linearized polynomials

is presented in [8]. The factorization step can be done in an efficient polynomial-time

using Roth-Ruckenstein algorithm [6].

3.5.2 Correctness of List-decoding Algorithm

We assume that the decoder receives transmitted codeword V corrupted with t

errors and no erasures. Therefore, the input to the decoder is an n+t dimensional vector
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space U which contains the subspace V . The following lemma provides a bound on t

which guarantees correct list-decoding.

Lemma 3.5.1. There is a non-trivial solution for multivariate linearized polynomial Q

which satisfies (3.26) provided that the number of errors t satisfy the following condi-

tion:
t

n
<

2(L+ 1)

r + 1
− 1− L(L+ 1)(k − 1)

r(r + 1)n
(3.27)

Proof. The set P contains n + t elements. The number of equations in (3.26) cor-

responding to each interpolation point is
(
r+1
2

)
. Therefore, (3.26) defines a system of(

r+1
2

)
(n+ t) linear equations. The number of unknown coefficients is:

L∑
i=0

rn− (k − 1)i = (L+ 1)rn− (k − 1)
L(L+ 1)

2

If the number of equations is strictly less than the number of variables, then there is a

non-trivial solution to this system of equations. This is also a necessary condition in

order to guarantee a non-trivial solution i.e.(
r + 1

2

)
(n+ t) < (L+ 1)rn− (k − 1)

L(L+ 1)

2
⇔

t

n
<

2(L+ 1)

r + 1
− 1− L(L+ 1)(k − 1)

r(r + 1)n

which completes the proof of lemma.

Corollary 3.5.2. The condition in (3.27) is necessary to guarantee a non-zero solution

for the interpolation polynomial Q.

Lemma 3.5.3. Let fu(X) be the message polynomial and for i = 1, 2, . . . , n, let ei be

the element of Fq corresponding to αi. Then ei is a root of the univariate polynomial

Q̃
(
X, f̃u(X)

)
with multiplicity r.

Proof. Notice that for any a and b, Da,b(Q) is also a linearized polynomial. Since all

the basis elements of U are roots of Da,b(Q), it is zero over the whole vector space U .

We assume that there are no erasures which implies that the transmitted codeword V is a
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subspace of U . In particular, Da,b(Q)
(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= 0. Then the following

sequence of equalities imply that for any a, b ∈ N such that a + b < r, Q̃(a,b)(X, Y ) is

zero at
(
ei, f̃(ei)

)
, where Q̃(a,b)(X, Y ) is the (a, b)-th Hasse derivative of Q̃(X, Y ).

0 = Da,b(Q)
(
αi, fu(αi), . . . , f

⊗L
u (αi)

)
= Q

(a)
b (αi) +

L∑
j=b+1

(
j

b

)
Q

(a)
j

(
f⊗(j−b)u (αi)

)
= αiQ̃

(a)
b (ei) +

L∑
j=b+1

(
j

b

)
αiQ̃

(a)
j (ei)H

(
f⊗(j−b)u (X)

)∣∣∣
ei

(3.28)

= αi

L∑
j=b

(
j

b

)
Q̃

(a)
j (ei)f̃

j−b
u (ei) (3.29)

= αiQ̃
(a,b)
(
X, Y )

∣∣∣(
ei,f̃u(ei)

) (3.30)

(3.28) holds by Lemma 3.4.1. By Lemma 3.3.2, H preserves the multiplication over

Lq[X]. Therefore, (3.29) follows. (3.30) holds just by definition of Q̃ in (3.13) and the

Hasse derivative of a bivariate polynomial.

We showed that the bivariate polynomial Q̃(X, Y ) passes through
(
ei, f̃u(ei)

)
with multiplicity r. Therefore, ei is a root of the univariate polynomial Q̃(X, f̃u(X))

with multiplicity r.

Corollary 3.5.4. Q̃
(
X, f̃u(X)

)
is the all zero polynomial.

Proof. The degree of each polynomial Q̃i is equal to the q-degree of Qi which is

rn− (k − 1)i− 1. Also, the degree of f̃u(X) is at most k − 1. Therefore, the degree of

each term Q̃i(X)f̃ iu(X) is at most rn − 1. Thus the total degree of Q̃
(
X, f̃u(X)

)
is at

most rn−1. On the other hand, Q̃
(
X, f̃u(X)

)
has at least n distinct roots e1, e2, . . . , en,

each with multiplicity at least r. Therefore, it must be identically zero.

Theorem 3.5.5. List-decoding algorithm B with multiplicity r produces a list of size at

most L which includes the transmitted message u as long as

t

n
<

2(L+ 1)

r + 1
− 1− L(L+ 1)(k − 1)

r(r + 1)n
(3.31)
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Proof. Observe that the condition on the dimension of received vector space U in (3.25)

is equivalent to this condition on the normalized dimension of errors t/n. Therefore, the

list-decoding algorithm B is run, and by Lemma 3.5.1, there is a non-trivial interpola-

tion polynomialQ that satisfies (3.26). Consequently Corollary 3.5.4 implies that fu(X)

is a solution to the equation Q̃
(
X, f(X)

)
= 0. Therefore, the transmitted message u

is included in the output list. Notice that Q̃
(
X, f(X)

)
can be regarded as a univari-

ate polynomial with degree L over Fqn [X] which is a Euclidean domain. Since Q is

a non-zero polynomial, so is Q̃. Therefore, there are at most L roots for the equation

Q̃
(
X, f(X)

)
= 0.

3.5.3 Error-Correction Radius

In Section 2.4, we introduced the new parameter packet rate in order to express

the results in a more convenient way. We take the same approach to present the results

of this section. The packet rate R∗ is equal to the number of information packets nor-

malized by the number of encoded packets injected into the network. The packet rate

of the Koetter-Kschischang code is k/n. Notice that we did not change the structure of

our list-decodable codes proposed in Chapter 2. We just restricted our attention to the

special case of m = 1. The packet rate of the code Cq(k, n,m,L) is given in (2.31) as

k/nm. For the special case of m = 1, the packet rate of Cq(k, n, 1, L) is then k/n.

Notice that the q-degree of linearized polynomials Qi has to be non-negative.

Therefore, the following condition is enforced:

rn− (k − 1)L− 1 > 0⇒

r >
L(k − 1)

n
≈ LR∗

(3.32)

Corollary 3.5.2 and Theorem 3.5.5 together imply that the necessary and sufficient con-

dition for a correct list-decoding with multiplicity r is the following:

t

n
<

2(L+ 1)

r + 1
− 1− L(L+ 1)(k − 1)

r(r + 1)n

Therefore, this provides a bound on the error-correction radius of list-decoding algo-
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rithm B with multiplicity r. Using the approximation

k − 1

n
≈ k

n
= R∗

we express the final result as follows. The list-decoding algorithm B with multiplicity r

successfully recovers the message polynomial provided that

τ <
2(L+ 1)

r + 1
− 1− L(L+ 1)

r(r + 1)
R∗ (3.33)

where τ = t/n is the error-correction radius of the proposed algorithm. Notice that

the value of r is independent of the construction of the code Cq(k, n, 1, L) and we can

choose it arbitrarily at the decoder. Therefore, we pick r such that the bound on error-

correction radius given in (3.33) is maximized. We call this value rmax. This is a simple

optimization problem. Given the fact that r has to be an integer, rmax in terms of L and

R∗ is given as dLR∗e which also satisfies (3.32).

Observe that for multiplicity r = 1, as expected, (3.33) reduces to the result of

foregoing chapter, on error-correction radius of list-decoding algorithm, given in (3.10).

3.6 Discussion and Conclusions

We have proposed a new list-L decoding algorithm with error-correction radius

given in (3.33). r is the multiplicity which is independent of the code construction and

can be decided at the decoder. R∗ is the packet rate of the code. As mentioned in

the foregoing section, for a given packet rate R∗ and list size L, the parameter r which

maximizes the bound on error-correction radius is dLR∗e. For a fixed L, plugging in this

value into the expression (3.33) we get a piecewise linear function for error-correction

radius versus the packet rate. In fact, for i = 1, 2, . . . , L, the bound on normalized

error-correction radius is linear on the interval [ i−1
L
, i
L

] of packet rates R∗ and is given

by {
2(L+1)
i+1

− 1 − L(L+1)
i(i+1)

R∗ i ∈ [L], R∗ ∈ [ i−1
L
, i
L

]

0 R∗ > 1
(3.34)

Let τL denote the normalized error-correction radius for the list size L. We plot the

bound on normalized error-correction radius τL, given in (3.34), versus the packet rate
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Figure 3.2: Improvement on error-correction radius upon previous works by using mul-
tiplicity for several values of list size L

R∗ for various amounts of L in Figure 3.2. In general, for any L, rmax = 1 for packet

rates less than 1
L

which means that we are back to the list-decoding algorithm A. In

this case, we get no improvement upon the previous work. Also, for packet rates be-

tween L−1
L

and 1, the optimum value for multiplicity r is equal to L. In this case,

we get same results as in Koetter-Kschischang construction. For R∗ ∈ [ 1
L
, L−1

L
], we

get improvements in error-correction radius, upon both list-decoding algorithm A and

Koetter-Kschischang codes, using multiplicities in list-decoding algorithm B. This can

be seen in Figure 3.2(a)-(c) for L = 3, 4, 5. As L tends to infinity, it can be shown that

τL tends to 1
R∗
− 1. This is plotted in Figure 3.2(d).

A natural question that arises is the following: Is there a direct way of using

multiplicities in the ring of linearized polynomials without resorting to the ring of poly-
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nomials? This goes back to the very first question in this chapter which is how to define

multiple roots in the ring of linearized polynomials. Despite all our efforts, we have not

been able to give an explicit answer to this question. In fact, this problem can be of in-

dependent interest for someone who wishes to study the ring of linearized polynomials.

In this chapter, we expressed the normalized error-correction radius of the code

in terms of the packet rate R∗ rather than the symbol rate R. This enables us to present

the results in a more convenient way. It is still interesting, however, to compare the

results of this chapter with the previous list-decoding work presented in Chapter 2 and

the Koetter-Kschischang code [2] in terms of the symbol rate R defined in (1.8). The

normalized error-correction radius of Koetter-Kschischang code is bounded as

τ <
n− k + 1

n
≈ 1− k

n

= 1− (1 +
n

m
)

km

n(m+ n)
= 1− (1 +

n

m
)R

When m is large compared to n, this can be approximated by 1 − R. Therefore, the

plots for Koetter-Kschischang code remain the same regardless of whether we express

τ in terms of R or R∗.

The bound on the normalized error-correction radius of list-decoding algorithm

A, given in (3.10), can be expressed in terms of symbol rate R as

τ < L− 1

2
nL2(L+ 1)R

For the error-correction radius of list-decoding algorithm B, (3.33) can be expressed in

terms of symbol rate R as

τ <
2(L+ 1)

r + 1
− 1− nL2(L+ 1)

r(r + 1)
R

The problem is that one has to take n into account in order to make a comprehensive

comparison. We can not plot the results but we still improve the error-correction radius

over the results of the previous chapter. In order to compare with Koetter-Kschischang

codes, however, we need to consider the behavior for a certain value of n. As n grows

large, our list-decoding results, with or without multiplicity, loses its advantage over the

Koetter-Kschischang results.

A disadvantage of the list-decoding algorithm with multiplicities presented in

this Chapter compared to the previous results discussed in Chapter 2 is that we are only
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able to correct errors, whereas in the original Koetter-Kschischang codes [2] and also in

the list-decoding algorithm without multiplicities both errors and erasures can be recov-

ered at the decoder as long as the total number of errors and erasures satisfies a certain

bound. This seems to be an inherent property of our algorithm. An open problem here

is how to improve the error-correction radius upon the previous list-decoding algorithm,

for a fixed list-size at the output, such that both errors and erasures can be handled at the

decoder.
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Chapter 4

An Alternative Approach:

Construction and List-Decoding

4.1 Introduction

Subspace codes were introduced by Koetter and Kschischang to correct errors

and erasures in networks with a randomized protocol where the topology is unknown

(the non-coherent case). In this model, the codewords are vector subspaces of a fixed

ambient space; thus codes for this model are collections of such subspaces. In Chapter 1,

we reviewed the basics of subspace codes and Koetter-Kschischang algebraic construc-

tions that are regarded as analogous to Reed-Solomon codes. In Chapter 2, we developed

a family of subspace codes based upon the Koetter-Kschischang construction which are

efficiently list decodable. Using these codes, we achieved a better error-correction ra-

dius than low rate Koetter-Kschischiang codes. In Chapter 3, we introduced multiplicity

in the ring of linearized polynomials with the aim of enforcing multiple roots for the

interpolation polynomial in our list-decoding algorithm in order to further improve the

error-correction results of our codes. Basically, we did not change the construction pro-

posed in Chapter 2. All the additional operations with respect to the multiplicity part are

done on the decoder’s side.

Koetter-Kschischang algebraic subspace codes, originally called Reed-Solomon-

like codes in [4], is analogous to the Reed-Solomon codes in classical block codes

93
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wherein symbols are replaced by vectors, regular polynomials by linearized polynomi-

als, and sequences of symbols with an Fq-linear span of the corresponding vectors. Our

starting point in Chapter 2 was to evaluate all the powers of the linearized message poly-

nomial, up to some power L, in order to list-decode with an output list of size of at most

L. In a sense, our algorithm can be regarded as analogous to the Sudan list-decoding

algorithm of Reed-Solomon codes [10].

In this chapter, we introduce a new family of subspace codes that allows a simple

linear-algebraic list-decoding by using s + 1-variate interpolation polynomials, where

s is a design parameter. In fact, we append evaluations of the message polynomial

over a certain set of s evaluation points in order to construct each of the basis elements

of our codeword. This is analogous to doing a folding in the construction of Reed-

Solomon codes. The entire list-decoding algorithm is linear-algebraic. A system of

linear equations is solved for the interpolation step and another linear system is solved

to compute the set of all the possible solutions which is in fact a linear space. This is

motivated by the recent work of Vadhan [11, Ch. 5] and Guruswami [2] which suggested

a simplified version with no need of the multiplicity of previously proposed for a list-

decoding algorithm of folded Reed-Solomon codes by Guruswami and Rudra in [3]. The

latter was built on the work of Parvaresh and Vardy on list-decoding of Reed-Solomon

codes by proposing multivariate interpolation [8]. The end result on error-correction

capability of our new construction can be expressed as follows: for any integer s, our

list-decoder using s+1-interpolation polynomials guarantees successful recovery of the

message subspace provided the normalized dimension of errors is at most s(1 − sR).

The same list-decoding algorithm can be used to correct erasures as well as errors. The

size of output list is at most Qs−1, where Q is the size of the field that the message

symbols are chosen from.

The rest of this chapter is organized as follows. We start with a brief overview of

linearized polynomials, subspace codes and our results in previous chapters in Section

4.2. In Section 4.3, we discuss our new construction of subspace codes, then propose a

list-decoding algorithm. Then we establish the correctness of the algorithm and provide

the error-correction radius and other parameters of our code.
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4.2 Background and Prior Work

In this section, we first briefly review the relevant terminology for subspace

codes and Koetter-Kschischang algebraic subspace codes that we discussed in detail

in Chapter 1 and Chapter 2. Then we recap our list-decoding results of [6] and [7] pre-

sented in Chapter 2, which provide a new family of subspace codes that are efficiently

list-decodable. In [6] and [7], we suitably modified and extended Koetter-Kschischang

codes in many important respects in order to enable list-decoding.

Linearized polynomials are a family of polynomials which act as linear maps

with respect to a certain base field. This fundamental property make them very useful in

the construction of codes over subspaces. A polynomial over some extension field Fqm

of Fq is called Fq-linearized if it has the following form:

f(X) =
s∑
i=0

aiX
qi ,

where ai ∈ Fqm , for i = 0, 1, . . . , s. Suppose that Xqs is the leading monomial with

non-zero coefficient. Then we say that the polynomial f(X) has q-degree s. When q is

fixed under discussion, we let X [i] denote Xqi . The fundamental property of linearized

polynomials from which they receive their name is that they act as linear maps with

respect to the base field Fq. The set of linearized polynomials forms a non-commutative

ring under addition + and composition operation⊗. For any two linearized polynomials

f1(X) and f2(X), the sum f1(X) + f2(X) is also linearized. Furthermore, the compo-

sition operation f1(X) ⊗ f2(X) is defined to be the composition f1
(
f2(X)

)
which is

always a linearized polynomial. The ring of linearized polynomials over Fqm is denoted

by Lqm [X].

LetW be a fixed N -dimensional vector space over Fq. The set of all subspaces

of W , denoted as Pq(W), forms a metric space under the following metric. For any

two subspaces A,B ∈Pq(W), the distance d(A,B) between A and B is defined as

d(A,B)
def
= dim(A+B)− dim(A ∩B)

A subspace code C associated with the ambient space W is a non-empty subset of

Pq(W). A codeword is an element of C which is in fact a subspace of W . Suppose
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that the dimension of any V ∈ C is at most n. Then the rate of the code R is defined as

follows:

R
def
=

logq |C|
nN

(4.1)

Koetter and Kschischang [4] constructed a remarkable family of subspace codes,

regarded as an analogous to Reed-Solomon codes, wherein symbols are replaced by

vectors, polynomials with linearized polynomials and sequences of symbols with an

Fq-linear span of the corresponding vectors. A set A = {α1, . . . , αn} of n linearly

independent vectors in Fqm is fixed. In fact, Fqm can be regarded as a vector space of

dimension m over Fq. The set A is used as the set of evaluation points over which we

evaluate the message polynomial. Let u = (u0, . . . , uk−1) be the message vector. We

regard ui’s as coefficients of a linearized polynomial that is, fu(X) =
∑k−1

i=0 uiX
[i] is the

linearized message polynomial. For each i, i = 1, 2, . . . , n, we evaluate fu(X) over αi
and then append it to αi to form the vector vi =

(
αi, fu(αi)

)
. Vectors vi’s are elements

of an ambient space

W = 〈A〉 ⊕ Fqm

which is an n+m-dimensional vector space over Fq. Then the corresponding codeword

V is the Fq-linear span of vi’s, for i = 1, 2, . . . , n. In fact, the codeword V is an n-

dimensional subspace of the ambient space W . We represent each element of W as a

vector (x, y) where x belongs to the span of αi’s and y is an element of Fqm .

The codeword V is transmitted through the network and another vector space

U ∈ Pq(W) is received. At the decoder, we aim to construct a non-zero interpolation

polynomial that passes through all the elements of the received vector space U . To this

end, we find a basis {
(xi, yi) : 1 6 i 6 dim(U)

}
Then we construct a non-zero bivariate linearized polynomial Q(X, Y ) of the form

Q(X, Y ) = Q0(X) +Q1(Y ),

such that Q(xi, yi) = 0 for all the basis elements (xi, yi) of the received subspace. Also,

Q0 andQ1 are subject to certain degree constraints. Then the equationQ
(
X, f(X)

)
= 0

is solved to recover the message polynomial. If not too many errors and erasures happen,

then a sufficient number of roots, i.e. α ∈ 〈A〉 such that
(
α, fu(α)

)
∈ U ∩ V , is
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guaranteed for the univariate polynomial Q
(
X, fu(X)

)
that makes it identically zero.

Hence, fu(X) is the unique solution to the equation Q
(
X, f(X)

)
= 0. This decoding

algorithm is guaranteed to recover the transmitted message provided that the normalized

error-correction radius τ = (t + ρ)/n, where t and ρ are the dimension of errors and

erasures respectively, satisfies

τ <
n− k + 1

n
= 1− k − 1

n
≈ 1−

(
1 +

n

m

)
R = 1−R∗ (4.2)

whereR∗ is the packet rate of the code. The packet rate is defined as the ratio of number

of information packets to the number of encoded packets.

The main obstacle in the list-decoding of Koetter-Kschischang codes is that the

ring of linearized polynomials is non-commutative. Because of that, an equation of

certain degree over the ring of linearized polynomials may have exponentially many

roots, while one has to guarantee a bounded list-size at the output of the decoder. In order

to enable list-decoding, we modified the Koetter-Kschischang codes in many important

ways in Chapter 2. Our work essentially leads to a new construction of subspace codes

that is efficiently list-decodable. Next, we briefly review the encoding and decoding of

these new subspace codes.

We use the normal basis of an extension field Fqm of Fq in our construction

(see [5, Ch. 4.9]). Fqm contains a primitive element γ such that γ, γq, . . . , γqm−1 form a

basis for Fqm as a vector space over Fq. This is called a normal basis for Fqm . Fix a finite

field Fq and let n divide q − 1. Then the equation xn − 1 = 0 has n distinct solutions in

Fq. Let e1 = 1, e2, e3, . . . , en be these solutions. Let F = GF (qnm) and γ be a generator

of a normal basis for F. Then define

αi = γ + e−1i γq
m

+ e−2i γq
2m

+ · · ·+ e
−(n−1)
i γq

(n−1)m

(4.3)

for i = 1, 2, . . . , n. For a given linearized message polynomial fu(X), our encoder

constructs the vector vi’s as follows:

vi =
(
αi, fu(αi), f

⊗2
u (αi), . . . , f

⊗L
u (αi)

)
for i = 1, 2, . . . , n. Then it outputs the n-dimensional vector space spanned by vectors

v1, v2, . . . , vn. In this construction, the ambient spaceW has dimension n + nmL and
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each element inW is represented as a vector with L+ 1 coordinates (x, y1, y2, . . . , yL),

where x belongs to the vector space spanned by α1, α2, . . . , αn and yi ∈ Fqnm , for

i = 1, 2, . . . , L. The decoding algorithm consists of three steps. In the first step, it com-

putes the interpolation points. In the second step, a multivariate linearized polynomial

Q(X, Y1, Y2, . . . , YL) of the form

Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+QL(YL)

is constructed, where each Qi is subject to a certain degree constraint, such that

Q(x, y1, y2, . . . , yL) = 0

for all the interpolation points (x, y1, y2, . . . , yL). Then in the factorization step, we

compute all the roots f(X) ∈ Lq[X], with degree of at most k − 1, of the equation:

Q
(
X, f(X), . . . , f⊗L(X)

)
= 0

To solve this equation efficiently, in Section 2.6, we proposed a linearized version of the

Roth-Ruckenstein algorithm, which was designed to solve equations over the ring of

polynomials [9]. We also prove in Theorem 2.3.2 that there are at most L solutions for

f(X) ∈ Lq[X]. Each solution corresponds to one possible output message.

The final result is expressed in terms of the error-correction radius of this code

and the corresponding list-decoding algorithm. We proved in Section 2.4 that our list-

decoding algorithm successfully recovers the message polynomial as long as

t

n
< L − 1

2
L(L+ 1)R∗ (4.4)

where t is the dimension of the error space added to the transmitted codeword. Our list-

decoding algorithm can also correct erasures. Each erasure, however, costs equivalent

to L errors.

We further improve this result by introducing multiplicities for the interpolation

polynomial in Chapter 3. First, we establish the notion of multiplicity for linearized

polynomials in this context. Then by enforcing multiple roots for the interpolation poly-

nomial, we manage to achieve a better error-correction radius. We are also able to

list-decode at higher rates. For every positive integer L and r, our list-L decoder with
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multiplicity r guarantees successful recovery of the message subspace provided that the

normalized error-correction radius τ = t/n satisfies

τ <
2(L+ 1)

r + 1
− 1 − L(L+ 1)

r(r + 1)
R∗

This improves the normalized error-correction radius over the previous results, given in

(4.2) and (4.4), for a wide range of rates. The multiplicity parameter r is independent

of the code construction and can be chosen at the decoder in such a way that the error-

correction radius is maximized. As L tends to infinity, the bound on the error-correction

radius of our construction with a suitable choice of r approaches 1
R∗
− 1.

4.3 New Subspace Codes and Algebraic List-decoding

Thereof

In this section, we present a new construction of subspace codes and a list-

decoding algorithm capable of correcting both errors and erasures. Our results in this

section are motivated by the recent work of Vadhan [11, Ch. p] and Guruswami [2].

Then we establish the correctness of our algorithm and compute the error correction

radius of the proposed construction.

4.3.1 Code Construction and List-decoding Algorithm

The following parameters of the construction are fixed: the finite field Fq and

an extension F = Fqm , the number of information symbols k, the dimension of code n

and the parameter s which is related to the list size. We require that k 6 n 6 m. A

set A = {α1, α2, . . . , αn} of linearly independent elements of Fqm is also fixed. In this

construction, the ambient spaceW is an n+sm-dimensional vector space over Fq. Let γ

be an element of Fqm which is not contained in any subfield of Fqm i.e. γ, γq, . . . , γqm−1

are all distinct.

Encoding Algorithm:

Formally, the encoder is a function E : Fk → G(W,n). It accepts as input a message

u = (u0, u1, . . . , uk−1) ∈ Fk. The corresponding message polynomial is fu(X) =



100

∑k−1
i=0 uiX

[i]. Then the corresponding codeword V is the Fq-linear span of the set{(
αi, f(αi), f(γαi), . . . , f(γs−1αi)

)
: i ∈ [n]

}
.

Notice that, Koetter-Kschischang code is a special case of this for s = 1. Since

the αi’s are linearly independent, each codeword is an n-dimensional vector space which

is a subspace of

W = 〈α1, α2, . . . , αn〉 ⊕ Fqm ⊕ · · · ⊕ Fqm︸ ︷︷ ︸
s times

(4.5)

The dimension of W is equal to n + sm, as mentioned before. Each element in W is

represented as a vector with s + 1 coordinates such as (x, y1, . . . , ys), where x is an

element of the vector space spanned by α1, α2, . . . , αn and all yi’s belong to Fqm .

Now, we explain the list-decoding algorithm. Suppose that V is transmitted and

a subspace U of W of dimension d is received. We need another parameter ω at the

decoder which is computed as follows:

ω =

⌈
d+ s(k − 1) + 1

s+ 1

⌉
(4.6)

As we will see, ω is chosen in such a way that existence of the interpolation polynomial

is guaranteed at the decoder.

List-decoding Algorithm:

The decoder accepts as input a vector space U which is a subspace ofW . It then outputs

a list of size at most qm(s−1) of vectors in Fk in three steps:

1. Computing the interpolation points:

Find a basis (xi, yi,1, yi,2, . . . , yi,s), i = 1, 2, . . . , d, for U . This is the set of inter-

polation points.

2. Interpolation:

Construct a non-zero multivariate linearized polynomial

Q(X, Y1, Y2, . . . , Ys) = Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+Qs(Ys)

where Qi’s are linearized polynomials over Fqm , Q0 has q-degree of at most ω− 1

and Qi has q-degree of at most ω − k, for i = 1, 2, . . . , s, subject to the constraint

that

Q(xi, yi,1, yi,2, . . . , yi,s) = 0 for i = 1, 2, . . . , d (4.7)
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3. Message recovery:

Find all polynomials f(X) ∈ Lqm [X] of degree at most k − 1 that satisfy the

following equation

Q
(
X, f(X), f(γX), . . . , f(γs−1X)

)
= 0

The decoder outputs coefficients of each solution f(X) as a vector of length k.

The first step of this list-decoding algorithm can be done using elementary linear al-

gebraic operations. The second step is basically solving a system of linear equations.

There are several ways for doing that. The most straightforward way is the Gaussian

elimination method. However, this method does not take advantage of the structure

of this system of equations, and therefore it is not efficient. Efficient interpolation al-

gorithms in the ring of linearized polynomials are presented in [12]. In this case, the

complexity of the corresponding interpolation algorithm is given as O(n2s3) field oper-

ations over Fqm . The parameter s is in fact a design parameter and can be regarded as a

constant. Indeed, the interpolation step is quadratic in terms of n. In the next subsection,

we explain how the message recovery step can be carried out using a linear algebraic

method. The complexity of the message recovery step is also quadratic. Hence, the total

complexity of our algorithm is quadratic in terms of n, the dimension of the code.

4.3.2 Recovering the Message Polynomial

As discussed in the foregoing section, in the last step of the list-decoding algo-

rithm we need to find all polynomials f(X) ∈ Lqm [X] of degree at most k − 1 that

satisfy

Q0(X) +Q1

(
f(X)

)
+Q2

(
f(γX)

)
+ · · ·+Qs

(
f(γs−1X)

)
= 0 (4.8)

Remark. Suppose that f, g ∈ Lqm [X] are two solutions to the equation (4.8). Since

Qi’s are linearized polynomials, for any α ∈ Fq, αf + (1 − α)g is also a solution to

(4.8). Therefore, the set of solutions, which can be regarded as vectors of length k over

Fqm , forms an affine subspace of Fk as a vector space over Fq. 2

In the next lemma, we establish an upperbound on the number of solutions to

(4.8). The proof of this lemma also clarifies how the affine space of solutions can be

computed with quadratic complexity.
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Lemma 4.3.1. The dimension of the affine space of solutions f(X) ∈ Lqm [X], of

degree at most k − 1, to (4.8) is at most m(s− 1).

Proof. For i = 0, 1, 2, . . . , s, let

Qi(X) =
∑
j>0

qi,jX
qj

If qi,0 = 0 for i = 0, 1, 2, . . . , s, then we replace Qi with Q′i, where Qi(X) = Q′i(X
q),

in (4.8) and the space of solutions remains unchanged. Therefore, one can assume that

at least one qi∗,0 is non-zero for some i∗ ∈ {0, 1, 2, . . . , s}. Also, if q1,0, q2,0, . . . , qs,0 are

all zero, then so is q0,0, otherwise there is no solution to (4.8). Thus, we can take i∗ from

the set {1, 2, . . . , s}.
Let us define the linearized polynomial P (X) as

P (X) = Q0(X) +
s∑
i=1

Qi

(
f(γi−1X)

)
and the polynomial A(X) as

A(X) = q1,0 + q2,0X + · · ·+ qs,0X
s−1

Then the coefficient of Xqi in P (X), for i = 0, 1, . . . , k − 1, is equal to

q0,i + ui
(
q1,0 + q2,0γ

qi + · · ·+ qs,0γ
(s−1)qi)

+ uqi−1
(
q1,1 + q2,1γ

qi + · · ·+ qs,1γ
(s−1)qi)

+ · · ·+ uq
i

0

(
q1,i + q2,iγ

qi + · · ·+ qs,iγ
(s−1)qi)

which can be simply expressed as

q0,i + A(γq
i

)ui +
i−1∑
j=0

a
(i)
j u

qi−j

j (4.9)

for some elements a(i)j ∈ Fqm . Now, suppose we want to find all possible solutions for

f(X) in (4.8). Then all the coefficients of P (X) have to be equal to zero. In particular,

for the coefficient of X in P (X):

A(γ)u0 + q0,0 = 0
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IfA(γ) is non-zero, then u0 = − q0,0
A(γ)

. IfA(γ) is zero but q0,0 is not zero, then there is no

solution for u0 and consequently for f(X). If both A(γ) and q0,0 are zero, then we can

set u0 to any element of Fqm . Then we find the solutions to ui’s iteratively. For each i,

suppose that u0, u1, . . . , ui−1 are already computed. IfA(γq
i
) is non-zero, then ui can be

uniquely determined by (4.9). Otherwise, we take all the elements of Fqm as possible so-

lutions to ui and keep going for each of them separately. Notice that A(X) is a non-zero

polynomial of degree s− 1 and γ, γq, . . . , γqk−1 are all distinct elements of Fqm . There-

fore, A(γq
i
) is equal to zero for at most s− 1 possible values of i. This implies that the

total number of solutions for f(X) to (4.8) is at most qm(s−1) which proves the lemma.

Corollary 4.3.2. The affine space of solutions to (4.8) can be computed with quadratic

complexity in terms of dimension n.

4.3.3 Correctness of the Algorithm and Code Parameters

In this subsection, we first establish the correctness of our list-decoding algo-

rithm. Then we consider the error-correction capability of our scheme.

Lemma 4.3.3. The particular choice of ω in (4.6) guarantees the existence of a non-zero

solution for the interpolation polynomial Q that satisfies (4.7).

Proof. (4.7) defines a homogeneous system of d linear equations. The number of un-

known coefficients is equal to

ω + (ω − k + 1)s = ω(s+ 1)− s(k − 1)

A non-zero solution for this homogeneous system of linear equations is guaranteed if

the number of equations is strictly less than the number of variables. i.e.

d 6 ω(s+ 1)− s(k − 1)− 1⇔

ω >
d+ s(k − 1) + 1

s+ 1

This is guaranteed by the choice of ω in (4.6).
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We form the following linearized polynomial E(X) wherein fu(X) is the mes-

sage polynomial and Q(X, Y1, . . . , YL) is the interpolation polynomial provided by the

list-decoding algorithm.

E(X) = Q
(
X, fu(X), fu(γX), . . . , fu(γs−1X)

)
= Q0(X) +

s∑
i=1

Qi ⊗ fu(γi−1X)

Let ρ and t denote the number of erasures and errors in the received subspace U , respec-

tively. Hence, the dimension of U is in fact equal to d = n− ρ+ t.

Lemma 4.3.4. The linearized polynomial E(X) has at least n− ρ linearly independent

roots in Fqm .

Proof. Let U ′ denote the intersection of the transmitted codeword V and the received

subspace U . Then U ′ is a subspace of the received vector space U with dimension n−ρ.

Since Q is a linearized polynomial

Q(x, y1, . . . , ys) = 0

for any (x, y1, . . . , ys) ∈ U ′. On the other hand, (x, y1, . . . , ys) is also an element of the

transmitted codeword V . Therefore,

(x, y1, . . . , ys) =
(
β, fu(β), fu(γβ), . . . , fu(γs−1β)

)
for some β in the linear span of α1, α2, . . . , αn. Therefore, β is a root for the polynomial

E(X). Hence, there are at least n− ρ linearly independent roots for E(X).

Corollary 4.3.5. If ω 6 n−ρ, then the linearized polynomial E(X) is identically zero.

Proof. The q-degree of fu(X) is at most k−1. Therefore, the q-degree ofQi⊗fu(γi−1X)

is at most

ω − k + k − 1 = ω − 1

for i = 1, . . . , L. Also, the q-degree of Q0(X) is at most ω − 1. Thus the q-degree of

E(X) is at most ω− 1. On the other hand, E(X) has at least n− ρ linearly independent

roots by Lemma 4.3.4. Therefore, E(X) must be the all zero polynomial.
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Theorem 4.3.6. The output of our list-decoding algorithm is a list of size at most

qm(s−1) which includes the transmitted message u provided that

sρ+ t < ns− s(k − 1) (4.10)

Proof. The existence of non-zero interpolation polynomial Q that satisfies (4.7) is guar-

anteed by Lemma 4.3.3. Then by Corollary 4.3.5, E(X) is the all zero polynomial pro-

vided that ⌈
d+ s(k − 1) + 1

s+ 1

⌉
6 (n− ρ) (4.11)

where we have used the expression for ω from (4.6). We plug in d = n − ρ + t into

(4.11). Then observe that (4.11) is in fact equivalent to

sρ+ t < ns− s(k − 1)

Thus this condition on the number of errors and erasures implies that E(X) is identi-

cally zero. Therefore, the message polynomial fu(X) is a solution to (4.8). There are

at most qm(s−1) solutions to (4.8) by Lemma 4.3.1. Therefore, the list size is at most

qm(s−1).

Now, we turn our attention to the parameters of the proposed construction. The

ambient spaceW is given in (4.5) which has dimension equal to n + sm. The symbol

rate R of the code can be computed as defined in (4.1):

R =
logq(size of the code)

n(dim(W ))
=

km

n(n+ sm)

We define the error-correction radius τ as

τ =
t+ sρ

n

In fact, the cost of each erasure is equal to the cost of s errors. By Theorem 4.3.6, our

list-decoding algorithm successfully recovers the transmitted message as long as

τ < s− s(k − 1)

n
≈ s − s2(1 +

n

ms
)R (4.12)

In the regime where n is much smaller thanms, the bound on the error-correction radius

can be approximated as s− s2R.
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Chapter 5

List-Decoding of Rank-Metric Codes

5.1 Introduction

In rank-metric codes, each codeword is a matrix with fixed dimensions whose

entries are taken from a finite field Fq. The distance between any two matrices is defined

as the rank of their difference. There is indeed a close relation between rank-metric

codes and subspace codes. In [13], Silva et al. show that there is an injective mapping

between rank-metric codes and subspace codes through a lifting operation. Gabidulin

codes were introduced as a class of MRD (maximum rank-distance) codes [6]. They

achieve the Singleton bound on the minimum rank distance of a rank-metric code. In

Gabidulin codes, the rows of each codeword are evaluations of a linearized message

polynomial over certain fixed points. In fact, Koetter-Kschischang subspace codes are

the image of Gabidulin codes through a lifting operation defined in [13]. In this chapter,

we consider the problem of list-decoding of rank-metric codes.

There are various applications of rank-metric codes addressed by Roth in [11].

He refers to the error patterns confined to a particular number t of rows, or columns, that

may happen to an array of symbols as crisscross errors. Crisscross errors can happen

in memory chip arrays, where row or column failures occur because of the mulfunc-

tioning of row drivers, or column amplifiers (for example, see [5] and [9]). In magnetic

recording applications, where the errors usually occur along the tracks and information

is recorded across the tracks, we can model the errors as crisscross errors and use rank-

metric codes to deal with errors. Recently, rank-metric codes have received a lot of

108
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attention as a suitable tool for error-correction in coherent network coding [12,13].

In coherent network coding, the topology of the network and the underlying

network code is known at the source and receivers of the network. Suppose that there

is a source node that transmits n packets through the network. Each packet is regarded

as a vector of length m over a finite field Fq. Each intermediate node in the network

receives some packets through its incoming edges, linearly combines them, and then

sends the result out on its outgoing edges. There are one or more destination nodes

that try to obtain the message transmitted by the source node. This is the scenario in

a multicast model for linear network coding. Let the rows of X ∈ Fn×mq denote the

transmitted packets by the source. In the error-free case, at a particular receiver, the

received packets can be represented as rows of an N ×m matrix Y = AX, where A is

the transfer matrix of the network from the source to that particular receiver. Suppose

that we allow up to t error packets to be injected into the network. Then the received

matrix Y can be written as

Y = AX + BZ (5.1)

where Z is a t×mmatrix whose rows represent the error packets, and B is the transform

matrix from the error packets to the receiver. The error correcting problem can be viewed

in various ways depending on certain assumptions about which of the parameters are

known.

Cai and Yeung initiated the error correcting problem for coherent network cod-

ing in [1]. They established some fundamental bounds in [2] and [3]. However, a

different approach can be taken to the problem as in [12]. We assume a pessimistic sit-

uation wherein an adversary injects up to t packets into the network while it is also free

to choose the transfer matrix B. Essentially, we consider the model with input matrix

X ∈ Fn×mq , output matrix Y ∈ FqN×m, fixed transfer matrix A ∈ FqN×n, and B ∈ FqN×t

and Z ∈ Fqt×m are chosen by the adversary. The parameter t is the maximum number

of linearly independent error packets injected by the adversary into the network. Silva

and Kschischang in [12] show that the pessimistic assumption on the error model actu-

ally incurs no penalty since maximum rank-distance codes indeed achieve the Singleton

bound derived by Yeung and Cai in [2]. In fact, this approach suggests a universality in

the sense that the outer rank-metric code for network error correction and the underlying
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network code can be designed independently.

In this chapter, we introduce folded version of Gabidulin codes, a family of max-

imum rank-distance codes, that allows a simple linear-algebraic list-decoding by using

s + 1-variate interpolation polynomials, where s is a design parameter. All the steps of

this list-decoding algorithm are done by linear-algebraic methods. A system of linear

equations is solved for the interpolation step and another linear system is solved to com-

pute the set of all the possible solutions which indeed is a linear space. This is motivated

by the recent work of Vadhan [14, Ch. 5] and Guruswami [7] which suggested a sim-

plified version, with no need for multiplicity, of the previously proposed list-decoding

algorithm of folded Reed-Solomon codes by Guruswami and Rudra in [8]. The later was

built upon the work of Parvaresh and Vardy on list-decoding of Reed-Solomon codes by

proposing multivariate interpolation [10].

This chapter is organized as follows. We first give an overview of rank-metric

codes and Gabidulin codes in 5.2. In Section 5.3, we introduce the folded version of

Gabidulin codes and provide the list-decoding algorithm. Then we show that we are

able to correct the fraction of errors up to 1 − R, R being the rate of the code, hence

achieving the Singleton upper bound on the error-correction radius which is the infor-

mation theoretic upper bound on the error-correction radius of rank-metric codes.

5.2 Background

5.2.1 Rank-Metric Codes

Let Fn×mq denote the set of all n × m matrices over Fq. The distance between

X,Y ∈ Fn×mq is defined as rank (X − Y). Fn×mq is a metric space with this distance

metric. It is easy to verify all the conditions. This metric is clearly symmetric and also

if X = Y, then the distance is 0. Furthermore, for any X,Y,Z ∈ Fn×mq ,

rank(X − Y) + rank(X − Z) > rank(Z− Y)

That is because rank satisfies subadditivity: rank(A+B) 6 rank(A) + rank(B) for any

two matrices A and B of the same size.
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For any X ∈ Fn×mq , let 〈X〉 denote the row space of the matrix X. A rank-metric

code C is just a subset of Fn×mq which is called an array code in [11]. We define the rate

R of a rank-metric code C ⊆ Fn×mq as follows:

R
def
=

logq(|C|)
nm

(5.2)

The minimum (rank) distance of C is the minimum distance between distinct elements

of C. A rich coding theory is developed for rank-metric codes analogous to the classical

block codes with Hamming metric in [4] and [6]. In particular, we state a Singleton

bound that is established in the context of rank-metric codes by Gabidulin in [6]:

Theorem 5.2.1. [6] A rank-metric code C ⊆ Fn×mq with minimum distance d must

satisfy

logq
(
|C|
)
6 min {n(m− d+ 1),m(n− d+ 1)}

Proof. The proof is very similar to the proof of the Singleton bound for block codes.

We map each codeword X ∈ C to an element of Fqn×(m−d+1) by erasing the last d − 1

columns of X. We claim that this is an injective mapping. Assume, to the contrary that,

X,Y ∈ C map to the same element of Fqn×(m−d+1). This implies that the first m− d+ 1

columns of X and Y are equal. Therefore, X − Y may have non-zero entries only in its

last d−1 columns. Hence, its rank is at most d−1 which contradicts the assumption that

the minimum distance of C is d. Therefore, this mapping is injective which immediately

implies that

|C| >
∣∣Fqn×(m−d+1)

∣∣ = qn(m−d+1)

By erasing the last d − 1 rows of elements of C and using the same argument we can

prove that

|C| >
∣∣Fq(n−d+1)×m∣∣ = q(n−d+1)m

which completes the proof of the theorem.

A rank-metric code that meets the Singleton bound on the minimum distance is called

a maximum rank-distance (MRD) code. Gabidulin codes are a class of MRD codes

proposed in [6].

Rank-metric codes in Fn×mq can be constructed as block codes of length n over

the extension field Fqm . In other words, we fix a basis for Fqm , as a vector space of
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dimension m, over the base field Fq. Then we regard each symbol in Fqm as a row vector

of length m over Fq. Hence, any codeword of length n over Fqm is regarded as an n×m
matrix over Fq.

5.2.2 Gabidulin Codes

Linearized polynomials play an important role in the construction of Gabidulin

codes just as in the construction of Koetter-Kschischang subspace codes. We reviewed

the ring of linearized polynomials and their properties in Section 1.4. Linearized poly-

nomials are a family of polynomials which act as linear maps with respect to a certain

base field Fq. A polynomial over an extension field Fqm of Fq is called Fq-linearized if it

has the form

f(X) =
s∑
i=0

aiX
qi

We say that the polynomial f(X) has q-degree s assuming that as 6= 0. Xqi is denoted

by X [i], when q is fixed under discussion. The fundamental property of linearized poly-

nomials is that they act as linear maps with respect to the base field Fq. For any two

linearized polynomials f1(X) and f2(X), the summation f1(X) + f2(X) is clearly lin-

earized. However, the product f1(X)f2(X) is not necessarily a linearized polynomial.

In order to have a ring structure, the composition operation f1(X)⊗ f2(X) is defined to

be the composition f1(f2(X)) which is always a linearized polynomial.The set of lin-

earized polynomials forms a non-commutative ring under addition + and composition

operation ⊗. We denote the ring of linearized polynomials over Fqm by Lqm [X].

As we discussed in the previous subsection, rank-metric codes in Fn×mq can be

regarded as block codes over Fqm . A Gabidulin code in Fn×mq is a linear (n, k) block

code over Fqm with the following parity check matrix:

h
[0]
1 h

[0]
2 . . . h

[0]
n

h
[1]
1 h

[1]
2 . . . h

[1]
n

. . . .

. . . .

. . . .

h
[n−k−1]
1 h

[n−k−1]
2 . . . h

[n−k−1]
n
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where the parameters h1, h2, . . . , hn ∈ Fqm are picked arbitrarily as long as they are

linearly independent. Hence, we require that n 6 m. Furthermore, given the parity

check matrix of the Gabidulin codes, it can be shown that the corresponding generator

matrix G has the following form:

α
[0]
1 α

[0]
2 . . . α

[0]
n

α
[1]
1 α

[1]
2 . . . α

[1]
n

. . . .

. . . .

. . . .

α
[k−1]
1 α

[k−1]
2 . . . α

[k−1]
n


where the elements α1, α2, . . . , αn ∈ Fqm are linearly independent over Fq. The rate of

Gabidulin code, as a rank-metric code, can be computed using the definition given in

(5.2). The rate is k/n which is in fact equal to the rate of the corresponding (n, k) block

code.

Suppose that the input to the Gabidulin encoder is a message vector

u = [u0 u1 . . . uk−1]

which consists of k message symbols in Fqm . Let fu(X) denote the corresponding

linearized message polynomial
∑k−1

i=0 uiX
[i]. Then the corresponding codeword V =

(uG)T is indeed equal to [
fu(α1) fu(α2) . . . fu(αn)

]T
which can be also regarded as a matrix in Fn×mq . The following lemma proves that

Gabidulin codes are a class of maximum rank distance codes.

Lemma 5.2.2. The minimum rank distance of the Gabidulin code in Fn×mq with rate

R = k/n, is n− k + 1.

Proof. Suppose that there are two linearized polynomials f(X), g(X) ∈ Lqm [X], with

q-degree at most k − 1, such that the distance between their corresponding codewords

is at most n− k. Let h(X) = f(X)− g(X). Then the rank of the matrix

H =
[
h(α1)h(α2) . . . h(αn)

]T
,
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which is regarded as an element in Fn×mq , is at most n − k. Therefore, the dimension

of the null space of H is at least k. Observe that each element in the null space of H

corresponds to a root of h(X). Therefore, the dimension of the root space of h(X) is at

least k. On the other hand, the q-degree of h(X) is at most k− 1. Therefore, h(X) must

be identically zero which means that f(X) and g(X) must be identically equal. This

completes the proof of the lemma.

Corollary 5.2.3. Gabidulin codes are a family of maximum rank-distance codes.

Proof. The proof follows from Lemma 5.2.2, Theorem 5.2.1 and the fact that n 6 m in

the construction of Gabidulin codes.

Notice that when n 6 m, which is always the case in the construction of Gabidulin

codes, the Singleton bound on the minimum distance d of the rank-metric code C re-

duces to

logq
(
|C|
)
6 m(n− d+ 1)

which can be normalized to

R =
logq

(
|C|
)

nm
6 1− d− 1

n

Hence, 1 − R is the bound on the normalized minimum distance of the code C, when

we normalize it by the number of rows n. This is also the information-theoretic bound

on the error-correction radius of the code C. Furthermore, the unique decoding radius

bound is (1− R)/2. A decoding algorithm which can correct errors as long as the rank

of error is less than (d− 1)/2, is proposed in [6], hence achieving the bound (1−R)/2

on a unique decoding radius.

5.3 List-decoding of Gabidulin Codes

In this section, we first introduce a folded version of Gabidulin codes. Then, we

propose a list-decoding algorithm which provides the decoding radius up to the Single-

ton bound 1 − R, the best possible trade-off between the rate and the error-correction

radius.



115

Let γ be a primitive element of Fqm . Let C denote the Gabidulin code constructed

with parameters αi = γ[i−1] as discussed in Section 5.2.1. Let also h be a positive integer

that divides n. Then let N = n/h and M = hm.

Definition 5.3.1. (Folded Gabidulin Code)

The h-folded version of the Gabidulin code C is a rank-metric code whose codewords

are elements of FqN×M . The message polynomial fu(X) of q-degree of at most k − 1 is

encoded into a matrix with the h-tuple
(
fu(γih), fu(γih+1), . . . , fu(γ(i+1)h−1)

)
, which is

regarded as an element in FqM , as its i-th row, for 0 6 i < N . The rate of the folded

version of C is k/n, equal to the rate of original code C.

Notice that folding does not change the rate. The rate of the folded version of

code C is equal to the rate of C which is equal to k/n.

Before going into the details of the list-decoding algorithm, we would like to

clarify the difference between the notion of “error” in subspace codes and rank-metric

codes. Suppose that a codeword X in code C is transmitted and a word Y with t errors

is received i.e. rank(X − Y) = t. Now consider 〈X〉 and 〈Y〉 in the context of subspace

codes. Then 〈Y〉 is corrupted with t errors and t erasures with respect to 〈X〉. In fact,

in rank-metric codes, there is no notion of “erasure” and each error corresponds to one

error together with one erasure in the context of subspace codes.

For 0 6 i 6 N − 1 and 0 6 j 6 h − 1, let yi,j ∈ Fqm denote the (i, j)-th

coordinate of the received word Y regarded as a matrix in FqmN×h. Let s be a positive

integer less than or equal to h. We propose a decoding algorithm based on interpo-

lating an s + 1-variate linearized polynomial Q(X, Y1, . . . , Ys). The q-degree of Q is

characterized in terms of parameter ω which is defined as follows:

ω =

⌈
N(h− s+ 1) + s(k − 1) + 1

s+ 1

⌉
(5.3)

This particular choice of ω will guarantee existence of the interpolation polynomial.

List-decoding algorithm of folded Gabidulin codes

1. Interpolation: Construct a non-zero multivariate linearized polynomial

Q(X, Y1, Y2, . . . , Ys) = Q0(X) +Q1(Y1) +Q2(Y2) + · · ·+Qs(Ys)
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where Qi’s are linearized polynomials over Fqm , Q0 has q-degree of at most ω− 1

and the q-degree of all other Qi’s is at most ω − k subject to the constraint that

Q(γih+j, yi,j, yi,j+1, . . . , yi,j+s−1) = 0 (5.4)

for i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , h− s.

2. Message recovery: Find all the solutions f(X) ∈ Lqm [X] to the following equa-

tion:

Q
(
X, f(X), f(γX), . . . , f(γs−1X)

)
= 0 (5.5)

The decoder outputs coefficients for each solution f(X) as a vector of length k.

The interpolation step is very similar to the interpolation step of the list-decoding

algorithm discussed in Section 4.3.1. It can be executed using either the straightforward

Gaussian elimination method or an efficient interpolation algorithm in the ring of lin-

earized polynomials as presented in [15], similar to the algorithm presented in Section

4.3.1. The message recovery step is exactly similar to that of the list-decoding algo-

rithm in Section 4.3.1. It also can be executed as discussed in Section 4.3.2. The total

complexity of our list-decoding algorithm is then quadratic in terms of the dimension n.

Next, we establish correctness of the proposed list-decoding algorithm and com-

pute the decoding radius of the code.

Lemma 5.3.2. The particular choice of ω in (5.3) guarantees existence of a non-zero

solution for the interpolation polynomial Q that satisfies (5.4).

Proof. (5.4) is in fact a homogeneous system of N(h− s+ 1) linear equations.

The number of unknown coefficients is given by

ω + (ω − k + 1)s = ω(s+ 1)− s(k − 1)

If the number of equations is strictly less than the number of variables in a homogeneous

system of linear equations, then a non-zero solution is guaranteed to exist . i.e.

N(h− s+ 1) 6 ω(s+ 1)− s(k − 1)− 1⇔

ω >
N(h− s+ 1) + s(k − 1) + 1

s+ 1
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This is guaranteed by the choice of ω in (5.3).

Let U ∈ FqN×M denote the codeword corresponding to the message polynomial

fu(X). Then 〈U〉 ∩ 〈Y〉, the intersection of the row spaces of matrices U and Y, has

dimension N − t, where t is the rank of error. We also define the linearized polynomial

E(X) as follows:

E(X) = Q
(
X, fu(X), fu(γX), . . . , fu(γs−1X)

)
= Q0(X) +

s∑
i=1

Qi ⊗ fu(γi−1X)

Lemma 5.3.3. There are at least (N − t)(h − s + 1) linearly independent roots in Fqm

for the linearized polynomial E(X).

Proof. Notice that any element in the row space of U can be represented as(
(fu(β), fu(γβ), . . . , fu(γh−1β)

)
for some β ∈ Fqm . Now consider a basis for 〈U〉 ∩ 〈Y〉. The basis can be represented as{(

(fu(βi), fu(γβi), . . . , fu(γh−1βi)
)

: i = 1, 2, . . . , n− t
}

where β1, . . . , βN−t are N − t linearly independent elements of Fqm . In fact, they are

taken from the subspace spanned by 1, γh, . . . , γh(N−1). Then linearity of the interpola-

tion Q and (5.4) together imply that

Q
(
γjβi, fu(γjβi), fu(γj+1)βi, . . . , fu(γj+s−1βi)

)
= 0

for i = 1, 2, . . . , N − t and j = 0, 1, . . . , h − s. It is indeed equivalent to γjβi being

a root for E(X). We claim that γjβi, for i = 1, 2, . . . , N − t and j = 0, 1, . . . , h − s
are all linearly independent elements of Fqm . Let Pj denote the subspace spanned by

γj, γj+h, . . . , γj+h(N−1). Since 1, γ, . . . , γn−1 are all linearly independent, the Pj’s are

all disjoint. Also, γjβi, for i = 1, 2, . . . , N − t, are N − t linearly independent elements

of Pj . This completes the proof of the claim. Therefore, γjβi, for i = 1, 2, . . . , N − t
and j = 0, 1, . . . , h− s, are (N − t)(h− s+ 1) linearly independent roots for E(X).
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Corollary 5.3.4. If ω 6 (N − t)(h− s+ 1), then E(X) is identically equal to zero.

Proof. The proof is very similar to the proof of Corollary 4.3.5. The q-degree of E(X)

is at most ω − 1 by the same argument. E(X) has at least (N − t)(h − s + 1) linearly

independent roots by Lemma 5.3.3. Thus, E(X) must be the all zero polynomial.

Theorem 5.3.5. If the number of errors, t, is bounded as

t <
Ns

s+ 1

(
1− h

h− s+ 1
R
)

(5.6)

Then the proposed list-decoding algorithm of folded Gabidulin codes is correct i.e. it

outputs a list of size of at most qm(s−1) which includes the transmitted message u.

Proof. The interpolation polynomialQ that satisfies (5.4) is guaranteed to exist by Lem-

ma 5.3.2. If ⌈
N(h− s+ 1) + s(k − 1) + 1

s+ 1

⌉
6 (N − t)(h− s+ 1) (5.7)

then by Corollary 5.3.4 and using the expression for ω from (5.3), E(X) is the all zero

polynomial. (5.7) is equivalent to

N(h− s+ 1) + s(k − 1) < (N − t)(h− s+ 1)(s+ 1)

which can be simplified to (5.6) by using the approximation

R ≈ k − 1

n

Therefore, the message polynomial fu(X) is a solution to (5.5). There are at most

qm(s−1) solutions to (5.5) by Lemma 4.3.1. Therefore, the list size is at most qm(s−1).

Corollary 5.3.6. The normalized decoding radius of the folded Gabidulin code using

the proposed list-decoding algorithm is equal to

s

s+ 1

(
1− h

h− s+ 1
R
)
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If we let both s and h grow large while s is much smaller that h, we get a

decoding radius arbitrarily close to 1 − R. Notice that 1 − R is indeed equal to the

normalized minimum rank distance of the code. This means that we are able to achieve

the ultimate error-correction radius for rank-metric codes.This result is stated in the

following theorem.

Theorem 5.3.7. For every ε > 0 and 0 < R < 1, there is a family of folded Gabidulin

codes with rateR that can be list-decoded up to a normalized number of errors 1−R−ε.
The size of output list is at mostQO(1/ε), whereQ is the size of the field that the message

symbols are chosen from.

Proof. Given R and ε, we can apply the results of Theorem 5.3.5 and Corolla-

ry 5.3.6 with the choice s = 1/2ε and h = 1/4ε2.
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