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1 Introduction

In Prisoners’ Dilemma, everyone gets a higher payoff from playing defect
than from playing cooperate, but everyone gets a higher payoff from playing
against a cooperator than against a defector. If meetings between the two
types are “random”, then defectors will on average get higher payoffs than
cooperators. But if matching is assortative, so that cooperators are more
likely to meet cooperators than are defectors, then it may be that the cost of
cooperating is repaid by a higher probability of playing against a cooperating
opponent.

This paper explores the quantitative relation between non-random, as-
sortative matching and the maintenance of cooperative behavior under evo-
lutionary dynamics. We consider a population of individuals who are “hard-
wired” to play either cooperate or defect. They meet other individuals ac-
cording to some random process and play their programmed strategy in a
game of Prisoners’ Dilemma. The type that gets the higher expected payoff
reproduces more rapidly. We define an index of assortativity of encounters
and develop an “algebra of assortative encounters.” In one set of applica-
tions, we calculate the index of assortativity for games between relatives
with either cultural or genetic inheritance and we show the logical connec-
tion between the index of assortativity and Hamilton’s theory of kin selection
[5]. We also apply the index of assortativity to determine the population
dynamics when players select their partners, using partially informative cues
about each others’ types.

2 Assortative Encounters in Prisoners’ Dilemma

2.1 The Payoff Matrix

Consider a large population of players who meet other players according
to a specified encounter rule. When two players meet, they play a game of
Prisoners’ Dilemma.1 Each individual is programmed for one of two possible
strategies, cooperate (C) or defect (D). The payoffs for the game are given
in Table 1. This game is a Prisoners’ Dilemma when the payoffs satisfy the
inequalities, T > R > P > S.

1The algebra found here applies to any symmetric two-person, two-strategy game, in-
cluding chicken, battle of the sexes, or the stag-hunt game. For concreteness, our discussion
will focus on Prisoners’ Dilemma games.
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Table 1: A Prisoners’ Dilemma Game

Player 1

Player 2
C D

C R, R S, T

D T, S P, P

2.2 The Algebra of Encounters

The index of Assortativity

Let x denote the proportion of the population that are cooperators (C-
strategists) and 1 − x the proportion of defectors (D-strategists). Each
member of the population randomly encounters one other member of the
population. The probability that an individual encounters a cooperator de-
pends, in general, both on that individual’s own type and on the proportion
of cooperators in the population. Let p(x) be the conditional probability
that one encounters a cooperator, given that one is a cooperator and let
q(x) be the conditional probability that one encounters a cooperator, given
that one is a defector.

The fraction of all encounters between two individuals in which a co-
operator meets a defector is x (1− p(x)). The fraction of all encounters in
which a defector meets a cooperator is (1 − x)q(x). Since these are just
two different ways of counting the same encounters, we have the following
“parity equation”

x (1− p(x)) = (1− x)q(x) (1)

Let us define the index of asssortativity a(x) to be the difference between
the probability that a C-strategist meets a C-strategist and the probability
that a D-strategist meets a C-strategist. Thus we have

a(x) = p(x)− q(x) (2)

2



Since (1− q(x)) − (1− p(x)) = p(x) − q(x) = a(x), it follows that a(x)
is also the difference between the probability that a D-strategist meets a
D-strategist and the probability that a C-strategist meets a D-strategist.
Thus for either type, a(x) is the difference between the probability that one
meets one’s own type and the probability that a member of the other type
meets one’s own type.

Rearranging terms in Equation 1, and substituting from the definition
in 2, we find that

q(x) = x[1− (p(x)− q(x))] (3)
= x (1− a(x)) . (4)

From Equations 2 and 4, it follows that

p(x) = a(x) + x (1− a(x)) . (5)

A Historical Digression on Measuring Assortativity

Sewall Wright [13] defined the assortativeness of mating with respect to a
given trait as the coefficient of correlation m between the two mates with
respect to their possession of the trait. Cavalli-Sforza and Feldman [3] inter-
pret this correlation as follows. “The population is conceived of as containing
a fraction (1 −m) that mates at random and a complementary fraction m
which mates assortatively.” With this interpretation, if the population fre-
quency of a type is x, then the probability that an individual of that type
mates an individual of its own type is p(x) = m + x(1−m). The parameter
m can be shown to be the coefficient of correlation between indicator ran-
dom variables for possession of the trait for pairs of mates.2 From Equation
5, we see that in the special case where a(x) = m is a constant, Wright’s
coefficient of correlation and Cavalli-Sforza’s and Feldman’s “fraction of the
population that mates assortatively” are formally equivalent to the index of
assortativity defined in this paper.

2Let Ii be a random variable that takes on value 1 if individual i is of the given type
and 0 otherwise. For two partners, 1 and 2, the correlation coefficient between I1 and I2 is
defined to be (E(I1I2)−E(I1)E(I2))/(σ1σ2) where σi is the standard deviation of Ii. Now

E(I1I2) = xp(x), and for i = 1, 2, E(Ii) = x and σi =
√

x(1− x). Making the appropriate

substitutions, we find that the correlation coefficient is (xp(x)− x2)/x(1− x) = m.
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2.3 Evolutionary Dynamics and Comparing Payoffs

We assume that at any time, the growth rate of the proportion of cooperators
in the population is positive, zero, or negative, depending on whether the
expected payoff of cooperators is higher than, equal to, or lower than the
expected payoff of defectors. Weibull [11] calls this the assumption of payoff
monotonicity.3 To study payoff monotone dynamics, we simply compare the
expected payoffs of cooperators and defectors.

With probability p(x) a cooperator meets another cooperator and gets
payoff R and with probability 1 − p(x) a cooperator meets a defector and
gets payoff S. Therefore the expected payoff to a cooperator is:

p(x)R + (1− p(x)) S = S + p(x)(R− S)
= S + a(x)(R− S) + x (1− a(x)) (R− S) (6)

where the last expression is obtained by substituting for p(x) from Equation
5. Similar reasoning shows that the expected payoff to a defector is

q(x)T + (1− q(x)) P = P + x (1− a(x)) (T − P ). (7)

Let us define δ(x) to be the difference between the expected payoff of a
cooperator and that of a defector when the proportion of cooperators in the
population is x. Substracting Equation 7 from Equation 6, we have

δ(x) = S − P + a(x)(R− S) + x(1− a(x))[(R + P )− (S + T )]. (8)

The function δ(·) plays the starring role in our study of payoff monotonic
dynamics, since for all x between 0 and 1 the sign of the growth rate of the
proportion of cooperators is the same as the sign of δ(x).

2.4 Prisoners’ Dilemma Games with Additive Payoffs

We can define a special class of Prisoners’ Dilemma games in which the ben-
efits of being helped and the costs of helping the other player are “additive.”
The restrictive assumption in the additive case is that the cost to one player

3A much-studied special case of payoff monotone dynamics is replicator dynamics in
which the growth rate of the population share using a strategy is proportional to the
difference between the average payoff to that strategy and the average payoff in the entire
population. [11]. The results found in this paper do not require the special structure of
replicator dynamics.
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of helping the other is independent of whether the help is reciprocated, and
the benefit that a player gets from being helped is independent of whether he
is also helping. In this class of games, each player has the option of helping
the other player (the C-strategy) or not helping (the D-strategy). A player
who helps bears a cost of c and confers a benefit of b on the other player,
where 0 < c < b. If each player helps the other, then both get a benefit of b
and both bear costs of c. Thus the payoff to mutual cooperation is R = b−c.
If one player helps and the other does not, the player who helps bears a cost
of c and gets no benefit and the player who doesn’t help gets a benefit of b
and bears no cost. Thus S = −c and T = b. Finally if neither helps, both get
payoffs P = 0. These payoffs satisfy the inequalities necessary for the game
to be a Prisoners’ Dilemma, since S = −c < P = 0 < R = b− c < T = b.

For additive Prisoners’ Dilemma games, we have R + P = S + T = b− c
and therefore

(R + P )− (S + T ) = 0 (9)

Therefore for additive Prisoners’ Dilemma games, Equation 8 for the dif-
ference between the expected payoffs of cooperators and defectors simplifies
to

δ(x) = S − P + a(x)(R− S) = a(x)b− c. (10)

According to Equation 10, with additive payoffs, cooperators will do
better or worse than defectors depending on whether the product of the
index of assortativity times the benefits conferred by help is greater than or
less than the cost of helping.

2.5 Prisoners’ Dilemma Games with Non-Additive Payoffs

It is important to understand that not all Prisoners’ Dilemma games have
additive payoffs and that the evolutionary dynamics can be qualitatively dif-
ferent in the non-additive cases. We will show that every Prisoners’ Dilemma
game is equivalent to a game in which the two players each contribute costly
effort to produce a joint output that is shared equally between them. With
this parameterization, the class of additive Prisoners’ Dilemma games corre-
sponds to those in which the joint “production function” exhibits constant
returns to scale.

Working and Shirking in a Game of Shared Output

Let us describe the family of PD games with shared output as follows. Each
player, i, can contribute either work, in which case si = 1 or shirk, in which
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case, si = 0. Total output is divided equally between the players, regardless
of their work effort. We will assume that the amount of output produced is
given by a production function Φ that takes the following form:

Φ(s1, s2) = 2b(s1 + s2) + 2ks1s2 (11)

where k is a parameter such that −∞ < k < c. The cost of effort for
each i is assumed to be (c + b)si. With this production function, total
output when both players work will be greater than, equal to, or less than
twice total output when one works and one shirks, depending on whether
k > 0, k = 0, or k < 0. These three cases correspond respectively to
production processes that are superadditive (increasing returns to scale),
additive, (constant returns to scale), and subadditive (decreasing returns to
scale).

The payoff to player 1 for a game of shared outputs is given by the
function

Π(s1, s2) =
1
2
Φ(s1, s2)− (c + b)s1

= b(s1 + s2) + ks1s2 − (c + b)s1. (12)

For this game we see that T = Π(0, 1) = b, R = Π(1, 1) = 2b + k− (c + b) =
b+k− c, P = Π(0, 0) = 0, and S = Π(1, 0) = b− (b+ c) = −c. For all k < c,
these payoffs satisfy the inequalities S < P < R < T . A simple calculation
shows that (R + P ) − (S + T ) = k. The game has additive payoffs only
where k = 0 and in this case, R + P = S + T .

To see that every Prisoner’s Dilemma game can be described by this
parameterization of a PD game with shared output, notice that without
changing the dynamics, we can normalize the game so that P = 0.4 For
any Prisoner’s Dilemma game with S < P = 0 < R < T , we can show that
there is exactly one set of parameters for a PD game with shared output
for which these are the payoffs. In particular, a Prisoner’s Dilemma game
for which the parameters are S, P = 0, R, and T will be equivalent to
a PD game with shared output if and only if the parameters b, k, and c
of the production function and cost function satisfy b = T , c = −S, and
k = R− (S + T ).

4Since we assume that the population dynamics of Prisoners’ Dilemma game depends
on expected payoffs, these dynamics will be unchanged if we subtract a constant amount
from each payoff so as to make P = 0.
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2.6 Dynamics with a Constant Index of Assortativity

As we will show, there are interesting applications in which the index of
assortativity, a(x) = a is constant with respect to x. When a(x) is constant,
the dynamics are especially simple, since the expression for δ(x) Equation 8
is seen to be linear in x.

The dynamics are further simplified if payoffs are additive and a(x) is
constant. Then, δ(x) = ab − c is constant for all x. When this is the case,
equilibrium must be unique and stable. If ab > c, cooperators always have
higher expected payoffs than defectors and the only equilibrium is x = 1. If
ab < c, defectors always have higher payoffs and the only stable equilibrium
is x = 0.

For non-additive Prisoners’ Dilemma games when a is constant, the qual-
itative dynamics are determined by the signs of

δ(0) = [aR + (1− a)S]− P and (13)

δ(1) = R− [aP + (1− a)T ] (14)

There are four distinct possibilities.

• The case δ(0) > 0 and δ(1) > 0 occurs when aR + (1 − a)S > P and
R > aP + (1 − a)T . In this case, δ(x) > 0 for all x between 0 and
1. Therefore cooperators always have higher expected payoffs than
defectors and there is a unique stable equilibrium with x = 1.

• The case δ(0) < 0 and δ(1) < 0 occurs when aR + (1 − a)S < P
and R < aP + (1 − a)T . In this case, δ(x) < 0 for all x between 0
and 1. Therefore defectors always have a higher expected payoff than
cooperators and there is a unique stable equilibrium with x = 0.

• Figure 1 shows the graph of δ(x) when δ(0) > 0 and δ(1) < 0. If these
inequalities are satisfied, cooperators have a higher expected payoff
than defectors when cooperators are rare and defectors have a higher
expected payoff than cooperators when defectors are rare. We see from
Figure 1 that in this case, the unique equilibrium is a polymorphic
population that includes some cooperators and some defectors. This
case occurs when aR + (1− a)S < P and R < aP + (1− a)T .

• Figure 2 shows the graph of δ(x) when δ(0) < 0 and δ(1) > 0. If these
inequalities are satisfied, cooperators have a higher expected payoff
than defectors when x = 1 and defectors have a higher expected payoff
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Figure 1: Unique Polymorphic Equilibrium

δ(x)

←→
x

0 1

than cooperators when x = 0. In this case, there are two monomorphic
equilibria, one with cooperators only and one with defectors only. This
case occurs when aR + (1− a)S < P and R > aP + (1− a)T .

Figure 2: Two Stable Equilibria; x = 0 and x = 1

δ(x)

→←
x

0 1

Interpretation for games of shared outputs

If we parameterize Prisoners’ Dilemma games as games of shared outputs
with production function Φ(s1, s2) = 2b(s1 + s2) + 2ks1s2 and cost of effort
(c + b)si, then we have

δ(0) = [aR + (1− a)S]− P = ab + ak − c and (15)

δ(1) = R− [aP + (1− a)T ] = ab + k − c (16)

In the additive case, where k = 0, δ(1) = δ(0) = ab − c. Where k 6= 0,
we have δ(1) − δ(0) = k(1 − a). Therefore δ(1) − δ(0) is positive in when
the production function is superadditive and negative where the production
function is subadditive. We see from Figures 1 and 2 that if a(x) is constant,
a stable polymorphic equilibrium is possible only in the case of subadditive
production and two distinct stable monomorphic equilibria are possible only
in the case of superadditive production.
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3 Kin-selection and Assortative Matching

Biologists are familiar with Equation 10 under the name Hamilton’s rule.
According to W.G. Hamilton’s [5] theory of kin selection, natural selection
will favor individuals who are willing to help a genetic relative if and only if
the product of the benefits from helping times the coefficient of relatedness
between the two relatives exceeds the cost of helping. Hamilton defines the
coefficient of relatedness between two individuals as the probability that
the alleles found in a randomly selected genetic locus in the two individuals
are inherited from the same ancestor. In a population without inbreeding,
the coefficient of relatedness is one half for full siblings, one fourth for half
siblings, and one eighth for first cousins.

Hamilton’s coefficient of relatedness plays the same formal role in his
theory as our “index of assortativeness” for the case of additive Prisoners’
Dilemma games. We will see that this is no accident. The examples below
show how the index of assortativeness can be calculated for siblings under
a variety of assumptions about mechanisms of cultural or genetic inheri-
tance. It is interesting to notice that in all of these examples, the index of
assortativeness, a(x), turns out to be constant with respect to x.

3.1 Sexual Haploid Siblings

Let us consider a population in which children play a Prisoners’ Dilemma
game with their siblings. Each child has two parents and inherits its strategy
for this game from one of its parents, chosen at random. Since for most
animals, including humans, genetic inheritance is sexual diploid rather than
sexual haploid, the sexual haploid model is more suitable as a model of
culturally transmitted rather than genetically transmitted characteristics.5

A symmetric case with monogamy and random mating

Suppose that parents mate monogamously and randomly with respect to
the strategy that they play with siblings. Assume that each child is equally
likely to inherit its strategy from its mother or its father and that the parent
copied by one child is statistically independent of that copied by its siblings.

Where x is the proportion of cooperators in the entire population, let us
calculate the probability that a randomly chosen sibling of a cooperator is

5A sexual diploid individual carries two alleles, one inherited from its mother and one
inherited from its father, in each genetic locus. The two alleles found at a genetic locus
then determine the effect of this locus on the individual’s characteristics.
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also a cooperator. With probability 1/2, the sibling will have the same role
model as the cooperator, in which case the sibling will surely be a cooperator.
With probability 1/2, the sibling will have a different role model. Since the
parents are assumed to be mated randomly with respect to their strategies
toward siblings, the probability that the other parent is a cooperator will
be x. Therefore the probability that a cooperator has a sibling who is also
a cooperator is

p(x) =
1
2

+
1
2
x (17)

If a child is a defector, then its sibling will be a cooperator only if the
sibling’s role model is different from the defector’s. With probability 1/2,
the two siblings will have different role models, and given that they have
different role models, the probability that the other parent is a cooperator
is x. Therefore we have

q(x) =
1
2
x (18)

and
a(x) = p(x)− q(x) =

1
2

(19)

Assortative mating and extra-familial influence

Suppose that all else is as in the previous section, but that there is assorta-
tive mating between parents. The degree of assortativeness in mating can
be defined with the same formalism that we used to define the degree of
assortativeness in matching for game-playing encounters. In particular, the
degree of assortativeness in mating is a number m between 0 and 1, such that
when the proportion of C-strategists in the population is x, the probability
that a C-strategist mates with another C-strategist is x + m(1− x).

Now we can calculate the probablility p(x) that a random sibling of a
cooperator child is also a cooperator. A cooperator child has at least one
cooperator parent, whose strategy the child imitates. With probability 1/2,
the child’s sibling imitates the same parent and is also a cooperator. With
probability 1/2, the sibling imitates the other parent. Given the degree
m of assortativeness in mating, the other parent will be a cooperator with
probability x + m(1− x). Therefore the probability that a random sib of a
cooperator child is also a cooperator is

p(x) =
1
2

+
x + m(1− x)

2
=

1 + m

2
+

(1−m)x
2

(20)
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A sibling of a defector child is a cooperator only if the two siblings have
different role models and if the sibling’s defector parent is mated with a
cooperator. The probability of this event is

q(x) =
(1−m)x

2
. (21)

Therefore the of assortativity between children is simply

a(x) = p(x)− q(x) =
1 + m

2
(22)

Another wrinkle that can be added to this calculation is to suppose that
with some probability v, a child copies neither of its parents but rather
chooses a random member of the population to copy. In this case it is not
hard to show that

p(x) = v

(
1
2

+
x + m(1− x)

2

)
+ (1− v)x (23)

q(x) = v
(1−m)x

2
+ (1− v)x. (24)

and hence
a(x) = p(x)− q(x) =

v(1 + m)
2

(25)

Some asymmetry and some polygamy

Consider a partially polygamous population where the probability that two
children of the same mother have the same father is µ. Suppose that children
copy their strategy from their mother with probability λ and their father
with probability 1− λ.

We first calculate the probability that a random sibling of a cooperator
is a cooperator. This can happen in any of the following ways: both siblings
inherit their strategies from their mother, both siblings inherit their strate-
gies from the same father, or the two siblings inherit their strategies from
different parents. Adding the relevant probabilities, we find that

p(x) = λ2 + (1− λ)2µ + 2λ(1− λ)x + (1− λ)2(1− µ)x (26)

A defector’s sibling will be a cooperator only if the two siblings inherit
their strategies from different parents and the defector’s sibling inherits its
strategy from a cooperator. The probability of this happening is

q(x) = 2λ(1− λ)x + (1− λ)2(1− µ)x (27)
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Thus we have

a(x) = p(x)− q(x) = λ2 + (1− λ)2µ (28)

3.2 Sexual Diploid Siblings

Most sexually-reproducing creatures reproduce by diploid rather than hap-
loid genetics. In each genetic locus, an individual carries two alleles, one
inherited from its father and one inherited from its mother. The allele in-
herited from each parent is randomly selected from that parent’s allele pair.
An individual’s genotype is a specification of the two genes that it carries. If
there are two allele types A and a, then there are three possible genotypes,
AA, Aa, and aa. An individual who carries two alleles of the same type is
said to be a homozygote and one who carries two different types of alleles is
said to be a heterozygote. The allele A is said to be dominant over allele
a if heterozygotes of genotype Aa use the same strategy as homozygotes of
type AA.

The full dynamics of polymorphic equilibria in diploid populations is
complex and in general seems not to be amenable to the simple methods
discussed in this paper. However, our methods work well to characterize
necessary conditions for a monomorphic equilibrium to be stable against
dominant mutant alleles A monomorphic population is one in which all
individuals, except for rare mutants, are homozygotes of the same type.
A monomorphic equilibrium is stable against dominant mutant alleles if,
so long as the number of mutant alleles is small, the expected payoff to
players who carry the mutant allele is smaller than that of players who are
homozygotes with the normal allele.

Suppose that there are two types of alleles C and D, and that individuals
of genotype CC play cooperate, while individuals of genotype DD play
defect in games with their siblings. Let x denote the fraction of C genes in
the population, let p(x) be the probability that a random sibling of a child
who plays cooperate also plays cooperate and let q(x) be the probability
that a random sibling of a child who plays defect will play cooperate. We
can calculate an index of assortativity, a(x) for the limiting values of x = 1
and x = 0. With these values in hand, we can determine conditions under
which a monomorphic equilibrium population of cooperators or of defectors
is stable.

Consider a monomorphic population of CC genotypes. This population
is stable only if individuals who carry a dominant mutant D allele receive
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a lower expected payoff than the normal CC genotypes. Let us assume
that mating is sufficiently random with respect to genotype so that when
the fraction of carriers of mutant genes is small, the probability that an
individual who carries the mutant allele mates with another carrier of the
mutant allele is nearly zero. Then so long as the mutant D allele is rare,
almost every child that is born with the mutant allele has one heterozygote
CD parent and one homozygote CC parent.

When x is nearly one, almost every cooperator child has two homozygote
CC parents, and almost every defector child has one homozygote CC parent
and one heterozygote CD parent. A cooperator child is therefore almost
certain to have a cooperator sibling. A defector child’s sibling is sure to
inherit a C allele from its CC parent, but the probability is only 1/2 that
it will receive a C allele from the CD parent. Thus in the limit for x close
to 1, we have p(x) = 1 and q(x) = 1/2 and hence the limiting value of
a(x) = p(x)− q(x) is 1/2.

Since limx→1 a(x) = 1/2, it follows from Equation 8 that the limiting
value of the difference in the expected payoffs of cooperators and of defectors
is

lim
x→1

δ(x) = R− 1
2
(P + T ). (29)

From Equation 29, it follows that a monomorphic population of C alleles
will be stable against invasion by dominant mutant D alleles if and only if
R > (P + T )/2.

Now let us explore conditions under which a monomorphic population
of D alleles is stable against invasion by dominant mutant C alleles. When
x is nearly zero, almost all defector offspring will have two homozygote DD
parents, and thus their siblings will almost certainly be defectors. When x is
nearly zero, a cooperator child will almost certainly have one heterozygote
CD parent and one homozygote DD parent. Its sibling will inherit a D
allele from the homozygote parent, and will inherit either a C or D allele
from the heterozygote parent with equal probability. Since the C allele is
assumed to be dominant, the sibling will cooperate with probability close
to 1/2. Therefore the limiting value of a(x) = p(x) − q(x) as x approaches
zero is again equal to 1/2. Applying Equation 8 once again, we have

lim
x→0

δ(x) =
1
2
(R + S)− P. (30)

From Equation 30, it follows that a monomorphic population of D alleles
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will be stable against invasion by dominant mutant C alleles if and only if
(R + S)/2 < P .

For Prisoners’ Dilemma games with additive payoffs, we have R = b− c,
P = 0, and T = b. In this case, the condition for a monomorphic population
of cooperators to be an equilibrium is that b/2 > c and the condition for
a monomorphic population of defectors to be an equilibrium is b/2 < c.
Thus, in the additive case where b/2 6= c, we have either a monomorphic
equilibrium of cooperators or a monomorphic population of defectors but
not both. Which type of behavior prevails in equilibrium is determined by
Hamilton’s Rule.

In an earlier paper [2], I worked out necessary conditions for a monomor-
phic equilibrium to be stable against recessive mutant alleles. In this case, it
can be shown that any carrier of a rare recessive allele is almost certainly the
offspring of two heterozygote parents. Some of the rare recessive genes in the
population will appear in heterozygote children who behave like members of
the normal population and some will appear in homozygotes who behave dif-
ferently. Calculations show that a recessive mutant defector gene can invade
a monomorphic population of cooperators if 1

5P + 3
5T + 1

5S > R. A recessive
mutant cooperator gene can invade a monomorphic population of defectors
if 1

5R+ 3
5S + 1

5T > P . In the special case of a Prisoners’ dilemma game with
additive payoffs, these conditions reduce to b/2 < c and b/2 > c respectively.
Thus for additive Prisoners’ dilemma games a monomorphic population will
repel invasions of both recessive and dominant mutants according to the
dictates of Hamilton’s Rule.

4 Assortative Matching with Partner Choice

4.1 A model of labelling

Interesting possibilities for assortative matching arise when players have
some choice about their partners. In a game of Prisoners’ Dilemma, everyone
would prefer to be matched with a cooperator rather than with a defector.
Let us assume that each player can make a fixed number of matches, that
search costs are negligible, and that a match requires mutual consent of the
two matched players. If players’ types were observable with perfect accuracy,
then the only equilibrium outcome would have cooperators matched only
with cooperators and defectors with defectors. In this case, a(x) = 1 for
all x and therefore cooperators receive a payoff R while defectors receive
P < R. Thus a population consisting only of cooperators would be the only
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stable equilbrium.
But suppose that detection is less than perfectly accurate. Players are

labelled with an imperfect indicator of their type. (e.g. reputation based on
partial information, behavioral cues, or a psychological test ) Assume that
with probability α > 1/2, a cooperator is correctly labelled as a cooperator
and with probability 1 − α is mislabelled as a defector with probability.
Assume that with probability β > 1/2, a defector is correctly labelled and
with probability 1− β is mislabelled as a cooperator.6

Everyone sees the same labels, so that at the time when players choose
partners there are only two distinguishable types: players who appear to be
cooperators and players who appear to be defectors. Although everyone re-
alizes that the indicators are not entirely accurate, everyone prefers to match
with an apparent cooperator rather than an apparent defector. Therefore,
with voluntary matching, apparent cooperators will all be matched with
apparent cooperators and apparent defectors with apparent defectors.

4.2 Calculating the index of assortativity

The proportion of actual cooperators among apparent cooperators is

Cc(x) =
αx

αx + (1− β)(1− x)
(31)

and the proportion of actual cooperators among apparent defectors is

Cd(x) =
(1− α)x

(1− α)x + β(1− x)
(32)

There are two possible ways in which a cooperator can be matched with
another cooperator. One way is that the cooperator is correctly labelled
as a cooperator and the apparent cooperator that it is matched with is an
actual cooperator. The other way is that the cooperator is mislabelled as
a defector, but has the good fortune to be matched with a cooperator that
has been mislabelled as a defector. Adding the probabilities of these two
outcomes, we find that

p(x) = αCc(x) + (1− α)Cd(x) (33)

Similarly, a defector can be matched with a cooperator in either of two
ways. The defector can be mislabelled as a cooperator and be matched with

6It would be interesting to pursue an expanded model in which ability to detect and
ability to deceive were also subject to evolutionary pressures.
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a correctly labelled cooperator, or the defector can be correctly labelled as
a defector and matched with a mislabelled cooperator. Thus we have

q(x) = (1− β)Cc(x) + βCd(x) (34)

We can calculate the index of assortativity, which is

a(x) = p(x)− q(x) = (α + β − 1)(Cc(x)− Cd(x)). (35)

It is straightforward to verify that Cc(0) = Cd(0) = 0 and Cc(1) = Cd(1) = 1
and therefore, according to Equation 34, a(0) = 0 and a(1) = 0. For this
model, in contrast to the examples that we have looked at so far, the index of
assortativity is not constant with respect to x. Applying simple calculus to
Equation 34, we find that a′(0) > 0, a′(1) < 0. We also find that a′′(x) < 0
for all x between 0 and 1, which implies that a(x) is a concave function, that
slopes upwards at x = 0, reaches a maximum somewhere between 0 and 1,
and then slopes downward until it reaches x = 1.

In the special case where α = β, a(x) attains its maximum value of
(2α− 1)2 at x = 1/2. Figure 3 shows the qualitative nature of the graph of
a(x) when α = β.

Figure 3: Graph of a(x) where α = β

x0 1

(2α− 1)2

1
2

a(x)

There is a simple intuitive explanation of the fact that a(0) = a(1) = 0.
In general, a cooperator is more likely to be matched with a cooperator than
is a defector because a cooperator is more likely to be labelled a cooperator
than is a defector. But if x is small, so that actual cooperators are rare, the
advantage of being matched with an apparent cooperator is small because
almost all apparent cooperators are actually defectors who have been mis-
labelled. Similarly, when x is close to one, defectors are rare, so that most
apparent defectors are actually cooperators who have been mislabelled. In
the latter case, even if a defector is labelled a defector, his chance of getting
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matched with a cooperator are good. Thus in the two extreme cases, where x
approaches zero and where x approaches one, the chances of being matched
with a cooperator are nearly the same for a defector as for a cooperator.

In the case where α > β, so that a cooperator is more likely to be cor-
rectly labelled than is a defector, the graph of a(x) remains convex downward
but the peak occurs at x > 1/2, as in Figure 4.2. Simple calculations show
that in the limiting case as α approaches 1, the peak of the graph occurs
arbitrarily close to the point where x = 1 and a(x) = β.

Figure 4: Graph of a(x) with α > β

x0 1

a(x)

4.3 Population Dynamics

We can use what we know about the function a(x) to analyze the function
δ(x) that expresses the difference between the average payoff to cooperators.
Since a(0) = a(1) = 0, it must be that δ(0) = δ(1) = −c < 0. Thus we
know that cooperators get lower payoffs than defectors in monomorphic
populations, consisting either entirely of defectors or of cooperators. This
implies that a population consisting entirely of defectors is locally stable
and that a population consisting entirely of cooperators is locally unstable.
There remains however, the possibility for a stable polymorphic equilibrium
with some cooperators and some defectors.

Figure 5 graphs δ(x) for a Prisoners’ Dilemma with additive payoffs. We
have drawn this figure so that δ(x) is positive for some values of x between
zero and 1. The small arrows show directions of movements strarting from
any intitial position. There are two locally stable equilibria. One stable
equilibrium occurs at the point where x = 0. The other is at the point
marked A. For any level of x to the left of the point B or to the right of the
point A, δ(x) < 0 and so x, the proportion of cooperators in the population,
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would decline. For any level of x between the points A and B, δ(x) > 0 and
so in this region x would increase.

Figure 5: Graph of δ(x) for additive Prisoner’s Dilemma
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x0 1

δ(x)

−c

AB

For Prisoners’ Dilemma games with additive payoffs, δ(x) = a(x)b − c.
We have shown that that a(0) = a(1) = 0, a′(0) > 0, a′(1) < 0, and
a′′(x) < 0 for all x between 0 and 1. It follows that δ(0) = δ(1) < 0,
δ′(0) > 0, and δ′(1) < 0, and δ′′(x) < 0 for all x between 0 and 1. The
fact that δ′′(x) < 0 on the interval [0, 1] implies that the graph of δ(x) is
“single-peaked” as in in Figure 5. Where this is the case, and if δ(x) > 0
for some x, there must be exactly one stable polymorphic equilibrium and
one stable monomorphic equilibrium with defectors only.

For Prisoners’ dilemma games with non-additive payoffs, it remains true
that δ(0) = δ(1) < 0, δ′(0) > 0, and δ′(1) < 0. It is not necessarily the case
however that δ′′(x) < 0 on the interval [0, 1], so the graph of δ(x) need not
be single-peaked. In this case, there may be more than one polymorphic
equilibrium, but it still must be that if δ(x) > 0 for some x, then there is
at least one locally stable polymorphic equilibrium and one locally stable
monomorphic equilibrium with x = 0.

5 Related Literature

W.D. Hamilton’s classic paper [5] on the evolution of social behavior among
relatives showed that for some kinds of interactions between relatives, nat-
ural selection will lead to a degree of cooperativeness that can be quantified
in terms of genetic relatedness. In later work, Hamilton [6] [7] observed that
the theory of kin selection can be viewed as a special case of assortative
matching between individuals who are not necessarily related genetically.

Wilson and Dugatkin [12] consider assortative matching in N -player
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groups where players are programmed with possible strategies that can be
described by a real number x from some specied interval. An individual
with strategy x bears a personal cost cx and confers benefits of bx on every
member of the group, where it is assumed that Nb > c > b.7 The authors
point out that everyone will prefer to belong to a group consisting of oth-
ers with higher x. Therefore if group membership requires mutual consent
and if individual x’s are common knowledge, groups would segregate exactly
according to their values of x and those with the highest value of x would
receive the highest payoffs. They show through simulations that where in-
dividual types are imperfectly known so that assortativity is partial, there
can be selection pressure for high individuals with high x.

Myerson, Pollock, and Swinkels [9] introduce a viscosity parameter that
is equivalent to a constant index of assortativity as defined in this paper. For
a population with a finite number of pure strategies, they define a δ-viscous
population equilibrium to be an assignment of proportions of the population
playing each strategy such that for each strategy played by a positive pro-
portion, this strategy is a best response to the current strategy mix under
the assumption that an individual will meet its own type with probability
δ and will meet a randomly selected member of the overall population with
probability 1 − δ. Thus a δ-viscous equilibrium is a symmetric Nash equi-
librium for a game in which the payoff to a player is his expected payoff if
with probability δ he encounters a someone playing the same strategy as his
own and with probability 1− δ he encounters a randomly chosen member of
the entire population.8

Bergstrom [2] shows that for symmetric games between relatives in a pop-
ulation of sexual diploids, a monomorphic equilibrium will be stable against
invasion by dominant mutants and by recessive mutants if each player acts
so as to maximize a “semi-Kantian” expected utility function that assigns
a probability weight k to the event that one’s opponent mimics one’s own
behavior and 1− k to the event that one’s opponent is a random draw from
the population, where k is defined by the genetic coefficient of relatedness
between the two relatives.

The published papers that seem to be most closely related to this one are
Eshel and Cavalli-Sforza9 [4] and by Bergstrom and Stark [1]. Both papers

7This game is equivalent to the “voluntary provision of public goods game” that is
much studied in experimental economics.[8]

8The authors also propose an interesting Nash equilibrium refinement which selects
only those Nash equilibria that are the limit of δ-viscous equilibria as δ approaches zero.

9Toro and Silio [10] offer interesting extensions of Eshel and Cavalli-Sforza’s paper.
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study models with assortative matching of players in Prisoners’ Dilemma
games and consider examples in which sexual haploid and sexual diploid
players recognize genetic kin. Eshel and Cavalli-Sforza also study a model
in which players are able to actively choose partners who are likely to treat
them favorably, though their model of partner selection differs from ours
in that they emphasize search costs rather than inaccuracy of determining
others’ types.

The current paper suggests a unifying method for treating a great va-
riety of models of assortative encounters and I think offers a simpler, more
transparent method of deriving both known and new results.

References

[1] Theodore Bergstrom and Oded Stark. How altruism can prevail in an
evolutionary environment. American Economic Review, 83(2):149–155,
1993.

[2] Theodore C. Bergstrom. On the evolution of altruistic ethical rules for
siblings. American Economic Review, 85(1):58–81, 1995.

[3] L.L. Cavalli-Sforza and M.W. Feldman. Cultural transmission and evo-
lution: A quantitative approac. Princeton University Press, Princeton,
NJ, 1981.

[4] Ilan Eshel and L.L. Cavalli-Sforza. Assortment of encounters and evo-
lution of cooperativeness. Proceedings of the National Academy of Sci-
ences, 79:1331–1335, February 1982.

[5] W.D. Hamilton. The genetical evolution of social behavior, parts i and
ii. Journal of Theoretical Biology, 7:1–52, 1964.

[6] W.D. Hamilton. Selection of selfish and altruistic behavior in some
extreme models. In J.F. Eisenberg and W.S. Dillon, editors, Man and
Beast: Comparative Social Behavior, pages 57–91. Smithsonian Press,
Washington, D.C., 1971.

[7] W.D. Hamilton. Inate social aptitudes of man: an approach from evo-
lutionary genetics. In R. Fox, editor, Biosocial Anthropology, pages
133–155. Malaby Press, London, 1975.

20



[8] John Ledyard. Public goods: a survey of experimental research. In
John H. Kagel and Alvin E. Roth, editors, The Handbook of Experimen-
tal Economics, chapter 2, pages 111–181. Princeton University Press,
Princeton, N.J., 1995.

[9] Roger B. Myerson, Gregory B. Pollock, and Jeroen M. Swinkels. Vis-
cous population equilibrium. Games and Economic Behavior, 3:101–
109, 1991.

[10] M. Toro and L. Silio. Assortment of encounters in the two-strategy
game. Journal of Theoretical Biology, 123:193–204, 1986.

[11] Jörgen Weibull. Evolutionary Game Theory. MIT Press, Cambridge,
MA, 1995.

[12] David Sloan Wilson and Lee A. Dugatkin. Group selection and assorta-
tive interactions. The American Naturalist, 149(2):336–351, February
1997.

[13] Sewall Wright. Systems of mating. Genetics, 6(2):111–178, March 1921.

21




