
UCLA
UCLA Electronic Theses and Dissertations

Title
Enhance Energy-efficiency and Security of IoT using Hardware-oriented Approaches

Permalink
https://escholarship.org/uc/item/8fj2z67r

Author
Xu, Teng

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8fj2z67r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Enhance Energy-efficiency and Security of IoT using Hardware-oriented Approaches

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Teng Xu

2017

© Copyright by

Teng Xu

2017

ABSTRACT OF THE DISSERTATION

Enhance Energy-efficiency and Security of IoT using Hardware-oriented Approaches

by

Teng Xu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Miodrag Potkonjak, Chair

The rapid growth of Internet of things (IoT) including mobile phones, portable devices,

and remote sensor network systems have imposed both conceptually and technically new

challenges. Among them, the most demanding requirements for the widespread realization

of many IoT visions are security and low power. In terms of security, IoT applications

include tasks that are rarely addressed before such as trusted sensing, secure computation

and communication, privacy, and data right management. These tasks ask for new and

better techniques for the protection of hardware, software, and data.

On the other hand, most of the IoT systems suffer from the problem of limited power

sources, which in turn require the security on IoT devices to be lightweight. While low

energy design is crucial for the successful deployment of resource-constrained IoT devices,

their often physically accessible nature, as well as low energy budget restriction, have also

contributed to rendering traditional cryptographic approaches insufficient to address all the

security concerns.

In this dissertation, we present hardware-oriented security designs and synthesis tech-

niques with the aim to reduce the system energy overhead while maintaining the security

and reliability. We first demonstrate our work to analyze and enhance the properties of hard-

ii

ware security primitives. We emphasize on physical unclonable functions (PUFs) and use

them to enable a wide range of applications, including private/public key communication,

authentication, and multi-party communication. We then present a unique system reliability

design with the use of non-volatile memory (NVM) to create a fault-tolerance application

specific architecture with almost no timing overhead and low energy overhead. Finally, we

demonstrate novel energy reduction and synthesis techniques applied on integrated circuit

subsystems of IoT applications. The techniques we have applied and improved include near-

threshold computing, dual-supply voltage optimization, and pipelining.

iii

The dissertation of Teng Xu is approved.

Gregory J. Pottie

Miloš D. Ercegovac

Mario Gerla

Miodrag Potkonjak, Committee Chair

University of California, Los Angeles

2017

iv

To my family.

v

Table of Contents

1 Introduction . 1

1.1 The Internet of Things . 1

1.2 Motivation and Challenges . 3

1.3 Contributions and Organization . 5

2 Characterize and Emulate Traditional Arbiter PUFs 9

2.1 Motivation and Problem Formulation . 9

2.2 Preliminaries . 11

2.2.1 Process Variation . 11

2.2.2 PUFs . 11

2.2.3 PUF based Protocols . 12

2.2.4 PUF Emulation . 12

2.2.5 PUF Model . 12

2.3 PUF Characterization . 13

2.3.1 Objective and Challenges . 13

2.3.2 Statistical Model . 14

2.3.3 Adaptive Challenges . 17

2.3.4 Compensate Challenges . 18

2.4 Hardware PUF Emulation . 19

2.4.1 Objective and Challenges . 19

2.4.2 Scenario I: m = n . 20

2.4.3 Scenario II: m > n . 22

2.5 Security Protocols . 27

vi

2.5.1 Message Encryption and Decryption 27

2.5.2 Multi-party Communication . 29

2.6 Results . 30

2.6.1 PUF Implementation on FPGA . 30

2.6.2 Characterization Results . 32

2.6.3 Emulation Results . 32

2.7 Summary . 33

3 Enable PUF Matching using Programmable Delay Lines 34

3.1 Motivation and Problem Formulation . 34

3.2 Preliminaries . 35

3.2.1 Programmable Delay Lines . 35

3.2.2 PDL Implementation on FPGA . 35

3.3 A Motivational Example . 36

3.4 PUF Matching . 37

3.4.1 PUF Characterization . 37

3.4.2 Delay Information Exchange . 38

3.4.3 Appending PDL Segments . 39

3.4.4 Challenge Reassignment . 40

3.4.5 Discussion . 41

3.5 Implementation . 41

3.5.1 Delay Measurement Setup . 42

3.5.2 Delay Measurement Results . 43

3.5.3 Process Variation . 44

3.6 Results . 45

vii

3.6.1 Matching Accuracy . 45

3.6.2 System Overhead . 45

3.6.3 Randomness Test . 46

3.7 Summary . 47

4 Ultra-low Energy Public Key Communication using Digital Bimodal Func-

tion . 48

4.1 Motivation and Problem Formulation . 48

4.2 A Motivational Example . 49

4.3 DBF Architecture on the FPGA . 52

4.3.1 fcompact Implementation . 52

4.3.2 Synthesis Analysis of fexpanded . 53

4.3.3 Time Gap Between fcompact and fexpanded 54

4.4 DBF Design Optimization . 55

4.4.1 DBF Size . 55

4.4.2 A Sequential DBF . 56

4.4.3 DBF Connections . 57

4.4.4 DBF Initialization . 57

4.5 Security Analysis . 58

4.5.1 Security Tests . 58

4.5.2 Test Results on Standard DBFs . 59

4.5.3 Comparisons of DBF Optimizations 60

4.6 Public Key Communication . 63

4.6.1 Execution Time Gap . 65

4.6.2 Performance Comparison . 65

viii

4.7 Summary . 66

5 Ultra-low Energy Private Key Communication using Digital Bidirectional

Function . 68

5.1 Motivation and Problem Formulation . 68

5.2 A Motivational Example . 70

5.3 Architecture . 71

5.3.1 Global Architecture . 71

5.3.2 Interstage Shuffling . 72

5.3.3 Scalability and Flexibility . 73

5.4 Protocols . 74

5.5 Summary . 75

6 Digital PUFs Initialized with Analog PUFs 76

6.1 Motivation and Problem Formulation . 76

6.2 Architecture and Operations . 78

6.3 PUF Stability . 79

6.3.1 Stable Challenge Response Pairs (CRPs) 79

6.3.2 Benefits and Limitations . 82

6.4 A Digital and Unclonable Design . 82

6.5 Security Attacks . 83

6.5.1 Cloning Attack . 83

6.5.2 Side-channel Attack . 83

6.5.3 Brute-force Simulation . 83

6.5.4 Special Purpose Hardware . 84

ix

6.6 Summary . 84

7 Digital PUFs with Laser-based Fault Injection 85

7.1 Motivation and Problem Formulation . 85

7.2 A Motivational Example . 86

7.3 Architecture . 87

7.3.1 Adders . 88

7.3.2 Multipliers . 88

7.3.3 XOR Networks . 88

7.4 Security Attacks and Evaluation . 90

7.4.1 Predict with Fault-free Circuits . 90

7.4.2 Predict with Similar Inputs . 91

7.4.3 Predict with Conditional Probabilities 91

7.5 Summary . 92

8 An Energy-efficient Fault Tolerance Approach for IoT 93

8.1 Motivation and Problem Formulation . 93

8.2 Preliminaries . 96

8.2.1 Non-volatile Memory . 96

8.2.2 Fault Tolerance . 96

8.2.3 Program Slicing . 97

8.2.4 Min-cut Max-flow Algorithm . 97

8.3 System Overview . 98

8.4 A Motivational Example . 98

8.5 Approach . 100

x

8.5.1 State(s) Selection . 100

8.5.2 Variable Scheduling . 108

8.6 Experiments . 109

8.6.1 Energy Model . 109

8.6.2 Simulation Results . 110

8.7 Summary . 113

9 Combine Pipelining with Dual-supply Voltages 114

9.1 Motivation and Problem Formulation . 114

9.2 Preliminaries . 117

9.2.1 Pipelining . 117

9.2.2 Dual Vdd Optimization . 117

9.2.3 Power and Delay Model . 118

9.3 Optimization Flow . 119

9.4 Pipelining . 120

9.5 Dual Vdd Assignment . 124

9.5.1 Dual Vdd Assignment on a Single Pipeline Stage 124

9.5.2 Dual Vdd Assignment on Multiple Pipeline Stages 127

9.6 Experiments . 129

9.6.1 Experiment Setup . 130

9.6.2 Experimental Results . 130

9.7 Summary . 133

10 Concluding Remarks . 134

References . 136

xi

List of Figures

2.1 Work flow illustration. 11

2.2 The model of an arbiter PUF with an n-bit challenge. 13

2.3 Regression plot between the delay difference and the probability. 16

2.4 An example of adaptive challenges. 17

2.5 Two categories of PUF emulation and the corresponding techniques. 20

2.6 An example of challenge mapping. 22

2.7 An example of segment combining. 24

2.8 PUF based message encryption and decryption. 28

2.9 A modified PUF based message encryption and decryption using a trusted

third party. 28

2.10 PUF based multi-party communication. 29

2.11 Conceptual shuffle segment and LUT6 realization on Spartan-6. 31

2.12 32-segment PUF delay paths mapped on Spartan-6. 31

3.1 The internal structure of a 2-input LUT. 35

3.2 An example of PUF matching using PDL. 36

3.3 The flow of PUF matching. 37

3.4 Structures of PUF A and PUF B after matching using PDL. 40

3.5 Delay characterization circuit. 42

3.6 (a) The absolute value of delay difference between any pair of selection bits

(00000 to 11111). Delay difference unit: ps. (b) The hamming distance

between all pairs of selection bits. 44

4.1 Combinational logic implementing fcompact1 and fcompact2 53

xii

4.2 Sequential logic implementing fcompact. At initialization, input variables (e.g.

ai) are loaded into the flip-flops. The outputs of the previous cycle are mapped

as inputs for the next cycle. 56

4.3 (a) Conditional probability P (Oi = 1|Ij = 1) for a single DBF instance. (b)

Conditional probability P (Oi = 1|Oj = 1) for a single DBF instance. (c)

Distribution of output hamming distance when changing the input by one

bit. Error bars represent maximum, 75th percentile, mean, 25th percentile,

and min. (d) Probability that an output bit equals to 1. 61

5.1 The memory location of a 4-input LUT. 70

5.2 The mapping and the LUT implementation for foriginal: x→ y. 70

5.3 The mapping and the LUT implementation for finverse: y→ x. 71

5.4 The architecture of digital bidirectional function. 72

5.5 The multiplexer/demultiplexer based interstage shuffling network. 73

6.1 A high level abstraction of digital PUF. 77

6.2 A 4-bit arbiter PUF with challenge 1010. 79

6.3 Distributions of delay ratios for a 32-bit PUF and a 64-bit PUF. 80

7.1 Stuck-at faults in a one-bit adder. Gi indicates different positions of faults. . 87

7.2 XOR network with w inputs, u outputs and h stages of XOR gates. Interstage

network interconnects only the cells between neighboring layers of gates. The

red line shows an example of interstage connection. 89

7.3 Conditional probabilities between input bits Ij and output bits Oi: P (Oi =

1|Ij = 1) on (a) adder, (b) multiplier, and (c) XOR network. 92

8.1 System overview. 98

8.2 A motivational example of dataflow graph and the corresponding min cut. . 99

xiii

8.3 Graph transformation to find nodes based min-cut on the motivational exam-

ple shown in Figure 8.2. 102

9.1 An example of dual-Vdd assignment on (a) non-optimized pipelining, (b) opti-

mized pipelining. The flip-flops in the circuit are represented with rectangle,

and the gates are represented with circle. The gates/flip-flops that are on

original Vdd are colored grey (middle Vdd), the ones on low Vdd are colored

blue (dashed line), and the ones on high Vdd are colored red (solid line). . . . 116

9.2 Flow of optimization. 120

9.3 Comparison of dual-Vdd assignment on pipeline method 1 and pipeline method

2. 121

9.4 Algorithmic flow of dual voltage assignment. 124

9.5 An example flow of dual voltage assignment. 126

9.6 The performance of the dual-Vdd optimization algorithm on the c880 circuit. 126

9.7 Two types of dual Vdd assignments on the pipeline circuit. 127

9.8 Power consumption of (a) stage 1, (b) stage 2, (c) stage 1 plus 2 of circuit

c880 on different high/low voltage pairs. 129

xiv

List of Tables

1.1 Major contributions and organization of the dissertation. 6

2.1 Response prediction accuracy using PUF characterization model under various

number of CRPs. 32

2.2 Response prediction accuracy using PUF emulation: emulate PUF B (n-bits)

using PUF A (m-bits). 33

3.1 Delay measurement results on three different FPGAs. 44

3.2 The overhead of PDL-based matched PUF. 46

3.3 The energy and the area overhead comparison. 46

3.4 The average success ratio for the NIST statistical test suite. The test passes

for p-value≥ σ, where σ is 0.01. 46

4.1 Size comparison between fcompact and fexpanded. 52

4.2 Average number of LUTs required for a DBF with particular input sizes and

sub-function levels of fcompact synthesized using the Xilinx ISE design suite. . 54

4.3 Average execution time (measured in nanoseconds) for fcompact and fexpanded. 54

4.4 Security comparisons of different DBF optimizations. 67

4.5 Comparing the DBF with traditional block ciphers and RSA. 67

6.1 Probability that the delay ratio (DR) is larger than threshold values for a

32-bit PUF and a 64-bit PUF. 81

6.2 Probability that the output of a 32-bit PUF and a 64-bit PUF is stable over

varying temperature conditions for different original delay ratios. Assume the

original temperature is 300K, we test under 250K, 350K, and 400K respectively. 81

xv

7.1 The impact of a single stuck-at fault on the outputs of a one-bit adder. Values

in red indicate the changed bits in the faulty outputs compared to the fault-

free outputs. 87

7.2 Average output hamming distance between the faulty circuit and the fault-free

circuit. 90

7.3 Average output hamming distance for changing faulty circuits input vector

by one bit. 91

8.1 Comparison of different memory technologies. 94

8.2 Parameters of STT-RAM (32nm). 110

8.3 Application of the fault tolerance to a set of controller benchmarks for the

estimation of energy overhead. 112

8.4 Application of the fault tolerance to a set of benchmarks from MediaBench

for the estimation of energy overhead. 112

9.1 Configuration 1(C1): initial Vdd. Configuration 2(C2): baseline pipelining+dual

Vdd. Configuration 3(C3): our pipelining+dual Vdd. Experimental results of

ISCAS-85 benchmark circuits with 2-stage pipelining and dual-Vdd optimiza-

tion. Stage 1 represents the pipeline stage close to inputs, and stage 2 repre-

sents the pipeline stage close to outputs. 132

xvi

Acknowledgments

I have always thought acknowledgment is the most difficult section to write in the whole

thesis. When I started typing the following paragraphs, I realized there is a reason for this.

The fact is that I didn’t work all by myself to accomplish all the work in this thesis, instead,

it is the combination of wisdom and efforts from many individuals. I’d like to try my best

to list all of you here and provide my most sincere gratefulness.

First and foremost, I would like to thank my adviser and doctoral committee chair, Pro-

fessor Miodrag Potkonjak, for offering me a great chance to study at University of California,

Los Angeles. He guided me through the world of academic research, witnessed and helped

me step by step to get ready for the future research career. He shared his insightful research

ideas with me selflessly and was patient to carefully listen to my proposals and discuss them

with me. I would always remember he went through my papers word by word to correct my

grammar mistakes and gave comments to every figure and table. He would always remind

me to be self-discipline and steer me back to the right track when I became complacent. His

great working attitude and critical thinking will impact me through my future career.

To my doctoral committee members, Professors Miloš D. Ercegovac, Mario Gerla, and

Gregory J. Pottie, thank you for your visionary comments and advice on my prospectus,

dissertation, and final defense, and for aiding me in the completion of my graduate studies.

Thank you all of my collaborators and colleagues: Sheng Wei, Nathaniel Conos, Jason

Zheng, Saro Meguerdichian, James B. Wendt, Jia Guo, Hongxiang Gu, for sharing and

discussing research ideas with me, for staying up with me for nights to fight for the papers

and projects. I would like to offer my special thanks to Jason Zheng (chapter 1), Hongxiang

Gu (chapter 2), James B. Wendt (chapter 4 and 6), and Nathaniel Conos (chapter 9) who

directly helped me with finishing this thesis. I would like to extend my special thanks to

James B. Wendt with whom I worked closely with to co-author a number of my publications.

Thank you for sitting together with me to correct (rewrite) the English of my whole paper

meticulously, and showing me an example of being a good researcher. And of course, the

xvii

most sincere thank you goes to Professor Miodrag Potkonjak who supervised and co-authored

all of the research work that constituted the chapters in this thesis.

Last but not least, I would like to thank my family and friends who have supported

me throughout my doctor study. A special thank you to my parents, although they are

physically half an earth alway from me, they always provide their support and unconditional

love to me whenever I need. And to Song, for her company and encouragement to keep me

through the doctor study. Thank you.

xviii

Vita

2008-2012 B.A. (Computer Science)

University of Science and Technology of China

2012-2017 Ph.D. candidate (Computer Science)

University of California, Los Angeles

Selected Publications

T. Xu, J. B. Wendt, and M. Potkonjak, “Digital Bimodal Function: An Ultra-Low Energy

Security Primitive,” ACM/IEEE International Symposium on Low Power Electronics and

Design (ISLPED), pp. 292-297, 2013.

T. Xu, M. Potkonjak, “Robust and Flexible FPGA-based Digital PUF,” International Con-

ference on Field Programmable Logic and Applications (FPL), 2014.

T. Xu, J. B. Wendt and M. Potkonjak, “Secure Remote Sensing and Communication using

Digital PUFs,” ACM/IEEE Symposium on Architectures for Networking and Communica-

tions Systems (ANCS), 2014.

T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT Systems: Design Challenges and

Opportunities,” IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp. 417-423, 2014.

T. Xu, M. Potkonjak, “Digital PUF using Intentional Faults,” International Symposium on

Quality Electronic Design (ISQED), pp. 448-451, 2015.

T. Xu, D. Li, and M. Potkonjak, “Adaptive Characterization and Emulation of Delay-based

Physical Unclonable Functions Using Statistical Models,” Proceedings of the 52nd Annual

xix

Design Automation Conference (DAC), pp. 76-81, 2015.

T. Xu, M. Potkonjak, “The Digital Bidirectional Function as a Hardware Security Primi-

tive: Architecture and Applications,” ACM/IEEE International Symposium on Low Power

Electronics and Design (ISLPED), pp. 335-340, 2015.

T. Xu, H. Gu, M. Potkonjak, “Data Protection Using Recursive Inverse Function,” Interna-

tional Conference on Field Programmable Logic and Applications (FPL), 2015.

T. Xu, M. Potkonjak, “Digital bimodal functions and digital physical unclonable functions:

architecture and applications,” Secure System Design and Trustable Computing, Springer

International Publishing, pp. 83-113, 2016.

T. Xu, M. Potkonjak, “Retiming and Dual-supply Voltage Based Energy Optimization for

DSP Applications,” International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pp. 1055-1059, 2016.

T. Xu, H. Gu, M. Potkonjak, “An Ultra-Low Energy PUF Matching Security Platform Using

Programmable Delay Lines,” International Symposium on Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), 2016.

H. Gu, T. Xu, M. Potkonjak, “An Energy-Efficient PUF Design: Computing While Racing,”

ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp.

142-147, 2016.

T. Xu, M. Potkonjak, “Energy-efficient Fault Tolerance Approach for Internet of Things

Applications,” IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp. 62-69, 2016.

T. Xu, M. Potkonjak, “Pipelining For Dual Supply Voltages,” International Workshop on

Power And Timing Modeling, Optimization and Simulation (PATMOS), 2016.

xx

CHAPTER 1

Introduction

1.1 The Internet of Things

According to the survey from L. Atzori [1], the basic idea of Internet of things (IoT) is

the pervasive presence around us of a variety of things or objects such as Radio-Frequency

identification (RFID) tags, sensors, actuators, mobile phones, etc. which, through unique

addressing schemes, are able to interact with each other and cooperate with their neighbors

to reach common goals.

Being first invented in 1985, the concept of IoT has greatly evolved over the years.

Despite different visions and interpretations, IoT has revolutionized and will continue to

revolutionize the ways in which individuals and organizations interact with the physical world

as well among themselves. For example, the interactions with home devices, cars, customer

items, industrial plants, and weaponry will be fundamentally altered. Many services, such

as health, learning, and resource management, will be provided in new ways that are novel,

better organized, and user-customized.

It is estimated that there are 6.4 billion connected IoT devices in use worldwide in 2016,

and will reach 20.8 billion by 2020 [2]. The rapid growth of IoT devices not only provides a

large potential market, but also draws many research attentions to resolve emerging problems

due to the unique properties of IoT.

A few key characteristics of IoT include the following.

• connectivity

1

• security

• constrained energy

• enormous scale

One of the pivotal property of IoT is connectivity. An IoT device is always connected to

the IoT network to communicate with the other IoT devices. It enables network accessibility

and compatibility in the IoT. Such accessibility provides great convenience to IoT users, but

also makes it vulnerable to the access of malicious parties.

IoT security is another key issue for IoT systems. As IoT provides intelligent experience,

high efficiency, and other benefits to users, a major concern is regarding how to efficiently

protect information that is stored and transmitted with IoT devices. It is necessary to secure

not only the devices, but also the networks, and the data that is transferred across all the

IoT.

IoT is also highly constrained by energy. This is mainly due to the fact that many IoT

devices have limited size, weight, and require excellent mobility so that such devices can only

afford highly limited battery. Ironically, to stay connected and secure, it normally takes a

considerable amount of energy. Consequently, many research efforts focus on reducing the

energy overhead of IoT devices.

Lastly, IoT employs an enormous scale, and the size is still growing dramatically. The

management of such a huge network of devices, as well as the corresponding data generated,

becomes critical. While IoT can borrow designs from protocols and technologies that have

been well established in other domains, there are some fundamental differences between

IoT systems and traditional computing systems, such as the differences in session lengths,

processing power, storage capacity, and transfer methods [3].

2

1.2 Motivation and Challenges

The practical realization of IoT requires the development of a number of new versions of plat-

forms and technologies including device identification and tracking, sensing and actuation,

communication, semantic knowledge processing, coordinated and distributed control, and

behavioral modeling [4]. The realization of IoT subsystems will be subjected to numerous

constraints such as cost, energy, scalability, connectivity, security and so on. Among all the

above issues, in this thesis, we focus on the two key aspects: security and energy efficiency.

It is widely acknowledged that the potential for malicious attacks can and will be greatly

spread and actuated from the Internet to the physical world. Hence, the security of the

physical IoT devices is of essential importance. One should also consider a great diversity

of IoT systems from fully organized to small individual nodes [5][6]. For example, things

such as cars, airplanes, and industrial equipment allow for much more expensive instrumen-

tation with much high power and energy budgets in comparison to household and mobile

IoT devices, such as sensors, remote controllers, personal phones and intelligent watches.

Therefore, although for full impact, generic algorithms and protocols are required, different

customized solutions are also mandatory. This is in particularly true for security solutions.

IoT security encompasses several layers of abstraction and a number of dimensions. The

abstraction levels range from physical layers of sensors, computation and communication, and

devices to the semantic layer in which all collected information is interpreted and processed.

We expect that a majority of security attacks will occur at the software level because it is

currently most popular and can simultaneously cover a large number of devices and processes.

From a research point of view, most novel attacks are on physical signals and, in particular,

semantic attacks during data processing and decision making steps. It is important to observe

that the lowest level of protection at any level and at any dimension determines the overall

security.

A significant percentage of IoT devices are operated in passive mode without batteries.

Their energy will either be harvested or received using a wireless medium. Even equipped

3

with batteries, a considerable portion of IoT devices require mobility so that only very limited

size of the battery is allowed. For example, mobile phones and tablets, in which case the

slow growing of battery capacity has become a major obstacle for the development of these

devices. Another type of IoT system, the wireless sensor network only employs a lightweight

power source, but normally requires relatively long lifespan since it is not only expensive

but also inconvenient to keep changing the batteries. All the above mentioned systems often

allow for only very minimal hardware, and thus, require an ultra compact security solution

with an ultra-small footprint and energy budget.

We target to find techniques to increase the energy efficiency of IoT devices and espe-

cially focus on finding the lightweight security solutions. While the problem itself can be

addressed from different aspects, such as network, hardware, software etc, we emphasize on

the hardware level. Our main claim in this thesis is that hardware-oriented security is ideally

suited to answer IoT security requirements. First of all, hardware-based security provides a

natural starting point for the realization of IoT protocols and procedures due to its flexibility

and potential to be designed and implemented with low area and energy requirements. It is

also naturally more resistant against side-channel and physical attacks. Finally, it provides

elegant and efficient solutions to several problems that classical cryptography has not been

able to solve, such as to prevent cloning and physical access to devices.

However, in order to realize the full potential of hardware-oriented security, significantly

additional research and engineering issues have to be addressed in novel and creative ways.

Many challenges exist when actually incorporating hardware based solutions to the IoT de-

signs. For example, a typical type of hardware security primitive is the physical unclonable

function (PUF). It is a physical structure with input-output mapping that is easy to evalu-

ate but hard to predict or clone due to the effect of process variation in the manufacturing

process. A PUF naturally employs the properties of low-energy, small-area, and most im-

portantly unclonability. A few IoT applications have started applying PUFs to authenticate

devices and prevent hardware counterfeit [7][8]. However, its shortcomings are significant as

well, among which low stability, insufficient confusion and diffusion are the most representa-

4

tive. Besides the defects from the hardware security solutions themselves, another obstacle

is to actually incorporate the new hardware solutions to the existing hardware systems. Still

take PUFs as an example, they take advantage of the process variation to create unclonabil-

ity, in other words, the PUFs are analog in nature, which prevents them from being easily

embedded to the current digital systems.

In this thesis, we focus on hardware oriented approaches to address the security and

energy efficiency issues of IoTs systems. For security, we have improved, designed and im-

plemented a set of hardware security solutions. We especially tackle their existing weakness

as well as increase their compatibility with IoT systems. In terms of energy efficiency, on one

hand, we always consider it as an important criterion when designing security primitives, on

the other hand, we have also proposed novel synthesis algorithms to decrease circuit power

of IoT devices.

1.3 Contributions and Organization

The dissertation is organized into three major categories: hardware security, hardware re-

liability, and energy optimization as shown in Table 1.1. The three categories target on

different aspects of IoT systems and try to solve the issues not only from the perspective of

hardware design, but also to address the emerging applications in the domain of IoT. Note

that for hardware security and reliability, low energy overhead has also been a key design

criterion for all the proposed approaches.

The first key category of the thesis is hardware security, in which we further split it

into two subcategories: analyze&improve analog PUFs and design novel digital security

primitives. As a typical type of hardware security primitive, a PUF is the abbreviation of a

physical unclonable function, it is a physical entity with unpredictable input-output mapping

and the entity itself is unclonable because of process variation. For example, the arbiter PUF

is a typical type of PUF and is well analyzed in a lot of research. It takes advantage of the

process variation on delays to create unique paths with unpredictable delays to compete and

5

Hardware Security

Analyze&improve analog PUFs Novel digital security primitives

• Characterize and emulate traditional ar-
biter PUFs (ch. 2)

• Enable PUF matching using programmable
delay lines (ch. 3)

• Ultra-low energy public key communication
using digital bimodal function (ch. 4)

• Ultra-low energy private key communication
using digital bidirectional function (ch. 5)

• Digital PUFs initialized with analog PUFs
(ch. 6)

• Digital PUFs with laser-based fault injection
(ch. 7)

Hardware Reliability

• An energy-efficient fault tolerance approach for IoT (ch. 8)

Hardware Energy Optimization

• Combine pipelining with dual-supply voltages (ch. 9)

Table 1.1: Major contributions and organization of the dissertation.

generate output signals. Note that the majority of standard PUFs are analog PUFs since

their unclonability depends on analog properties of circuits such as delay and frequency. Our

work investigates the properties of the existing standard analog PUFs (mostly on arbiter

PUFs), with emphasize on improving their stability and unpredictability. Two major efforts

are taken in this part. In chapter 2, we first use statistical models to characterize arbiter

PUFs. Then based on the retrieved delay information, we emulate an arbiter PUF using

another random piece of arbiter PUF. The work proves that traditional arbiter PUFs are

highly vulnerable to statistical attacks, and can be cloned with high accuracy. Motivated by

the above work, in chapter 3, we further propose to match two arbiter PUFs and increase

their matching accuracy with programmable delay lines (PDL). The matched PUFs can be

directly applied as security keys in private key communication.

While analog PUFs have intrinsic disadvantages such as inconsistent against different

temperatures and voltages that can not be completely eliminated, we take the next step to

6

develop novel digital security primitives as a replacement for the traditional analog PUFs.

The fact that the primitive is digital makes it resilient against environmental variations.

More importantly, it can be naturally embedded with digital circuits which are used by

the majority of IoT devices. To achieve the goal, we have proposed four types of digital

security primitives. In chapter 4, we first discuss digital bimodal function (DBF) and the

corresponding public key communication protocol. As the name suggested, the DBF has

two forms with the same input-output mapping function, among which one form is fast,

compact and the other form is slow and computationally expensive. We take advantage of

the above properties and use the fast form as a private key, the slow form as a public key to

design public key communication protocol. In chapter 5, we propose another type of security

primitive named digital bidirectional function (DBirF). It is designed and implemented on

a field-programmable gate array (FPGA), and is dedicated to be used as private keys in

security key communication. The previous two proposals employ the digital property of

circuits, but have totally abandoned the unclonability. Our next effort has been made to

create a security primitive that is both digital and unclonable (a digital PUF). In chapter 6,

we demonstrate an extension of the fast format of DBF and modify it to acquire unclonability.

The key idea is to use the output from analog PUFs as a random source to configure the

digital circuit. In chapter 7, we create another type of digital PUF with a totally different

technique. The essential operation is to use lasers to cut the wires in the circuit layouts,

thus to intentionally introduce faults in circuits. From the perspective of an attacker, the

faults are not observable and are extremely difficult to detect, so that the faulty circuit is

unclonable.

While reliability is essential in many IoT applications, in particular in the domains such as

medical devices and automotive systems where a single fault in the system can lead to serious

consequences, it is rarely addressed because the high energy and area cost are oftentimes

not affordable by IoT devices. In chapter 8, we present our techniques to improve hardware

reliability and the approach is designed to be energy efficient. Specifically, we combine the

use of non-volatile memory (NVM) and classical CMOS transistors so that NVM judiciously

7

stores selected complete states of the pertinent program. It allows the program to resume

from the saved state in NVM when faults occur.

The last category of our thesis organization is the energy optimization techniques for IoT

devices. We have analyzed, redesigned, and combined a set of traditional circuit optimization

algorithms, and applied them to circuits of IoT applications. In chapter 9, we propose

algorithms to combine dual-supply voltage optimization with pipelining. Although each

individual techniques are proposed before, they have their own constraints that prevent

them from being optimally combined together to jointly lower circuit energy. The objective

goal of our work is to propose an approach to combine the above technologies to enable an

even more effective energy optimization scheme while trying to leverage as many constraints

as possible.

8

CHAPTER 2

Characterize and Emulate Traditional Arbiter PUFs

2.1 Motivation and Problem Formulation

Process variation is an important side effect in circuit manufacturing. Due to the effect

of process variation, the physical attributes of transistors (channel length, delay, leakage)

become unique when integrated circuits are fabricated. Such attributes can not be duplicated

since they depend on the physical properties of each transistor and the randomness in the

manufacturing process. On the other hand, PUFs take advantage of the process variation

to form uniquely unclonable devices. PUFs are physical devices that have a random but

deterministic mapping of inputs to outputs. The input to a PUF is defined as a challenge

and the output is defined as a response. When given a challenge to a PUF, it produces a

response based on both the given challenge and the intrinsic physical properties of the PUF

itself.

As a type of security primitive, some properties of PUFs are ideal for securing IoT

systems, such as low-power, fast-speed, small-area, unpredictability, and most importantly,

unclonability. For example, the unclonability of PUFs can directly prevent IoT devices from

being copied by malicious parties. Among the family of PUFs, the arbiter PUFs are widely

studied and analyzed. They utilize the process variation on delays to create two theoretically

identical paths to rival to each other. A challenge vector is used to modify and decide the two

signal paths. To generate a response, an impulse signal is sent to both paths simultaneously,

and an arbiter is at the end of the two paths taking them as two inputs. Depending on the

delay of the two paths, the impulse signal from one path triggers the arbiter first to generate

a response. Our work in this chapter will focus on arbiter PUFs.

9

PUFs enable a variety of security protocols, such as message encryption and decryption,

authentication, and public key communication. They are all widely used in IoT systems.

Unfortunately, a PUF has its own shortcomings when applied in security protocols. Such

protocols usually require at least two parties to share the same challenge-response mapping

function. However, a PUF can not be copied due to its unclonability, consequently, one of

the parties can only simulate the PUF mapping function which is significantly slower and

takes more energy when comparing to directly using the hardware of PUF.

In this chapter, we leverage the above issue by matching multiple PUFs in such a way

all the PUFs own the same or at least similar challenge-response mapping functions. Thus,

each party can hold a physical piece of PUF and apply it in the security protocols. We

achieve our goal by using adaptive PUF characterization and emulation. Although it has

been a common wisdom that a PUF is a system that is hard to be predicted, there have

been many emulation attacks proposed to characterize the arbiter PUFs and to emulate the

PUFs in software. Most of them collect and observe many challenge-response pairs (CRPs)

and apply machine learning techniques to build a statistical model from it. Based on the

statistical model, the PUF response can be predicted given any random challenge.

We have two major contributions. The first is that we propose an adaptive PUF char-

acterization technique using a statistical model. Instead of purely statistically predicting

the PUF response, our approach looks into the PUF structure and builds a delay model to

estimate the delays in all the segments of the PUF. Such delay information is used as the

premise for our PUF emulation. The second aspect is that instead of only using software

to emulate the PUF, we use hardware based emulation. To be more specific, we utilize an-

other piece of PUF to emulate the original PUF and the new PUF has a high probability to

generate the same response as the original PUF when given the same challenge. In another

word, the two PUFs are matched to each other.

Our workflow is shown in Figure 2.1. We first propose our statistical model for the

adaptive PUF characterization. It acts as the premise of the later hardware emulation. We

combine the traditional statistical approach with our adaptive test to improve the character-

10

ization accuracy. Then based on the characterization results, we propose our algorithm to

emulate a PUF using another PUF so that the two PUFs are matched to each other. Using

the matched PUFs, a set of security protocols for IoT communications will also be discussed.

Finally, we implement and evaluate our approach on a Xilinx Spartan-6 field-programmable

gate array (FPGA).

Adaptive Characterization

Hardware Emulation

Implementation & Results

Figure 2.1: Work flow illustration.

2.2 Preliminaries

2.2.1 Process Variation

Process variation is a widely recognized phenomenon in modern CMOS technologies [9].

When the transistors are designed to be identical, due to manufacturing limitations, the

real produced components are different and unique in terms of structural and operational

properties, such as propagation delay and leakage power. Many factors can cause process

variation, including wafer lattice structure imperfections, non-uniform dopant distribution,

mask alignment, and chemical polishing.

2.2.2 PUFs

The concept of PUF is first proposed by Pappu et al. using mesoscopic optical systems

[10]. Devadas et al. developed the first silicon PUFs through the use of intrinsic process

variation in deep submicron integrated circuits [11]. A variety of PUFs are proposed after

11

that, including arbiter PUFs [11], ring oscillator PUFs [12], and SRAM PUFs [13]. The

arbiter PUF on FPGA is proposed in [14], with the core idea of taking advantage of the

intrinsic delay difference between look-up tables (LUTs) to design the delay paths.

2.2.3 PUF based Protocols

Numerous traditional protocols can be interpreted using PUFs, ranging from the traditional

security key communication and authentication [15] to more sophisticated public key com-

munication [16]. The key idea is to employ the highly unpredictable PUF responses to secure

the information. However, conventionally only one party has the actual hardware of PUF

(e.g., decryption party). Thus, all the rest communication parties can only simulate the PUF

(e.g., encryption party), which takes high timing/energy overhead compared to directly us-

ing the PUF hardware. Our new proposed PUF matching platform targets to leverage the

above drawback.

2.2.4 PUF Emulation

Many technologies have been proposed to emulate PUFs. Lee first proposed to use a sta-

tistical model to extract unique secret key information from PUFs [17]. Rührmair et al.

developed numerical modeling attacks combining with machine learning techniques to break

various types of PUFs [18]. The core idea of previous PUF emulation is to collect a number

of CRPs of the PUF and derive a statistical model from there. But all of the previously

proposed techniques employ software-based emulation. Our work focuses on hardware based

PUF emulation instead.

2.2.5 PUF Model

The arbiter PUF model we are using is shown in Figure 2.2. The basic structure of the n-bit

PUF consists n delay segments. Two identically designed paths are generated by connecting

delay components from each segment, and an arbiter is at the end of the two paths.

12

The two paths of the arbiter PUF can be modified using the control bit of each segment

(ci). When the control bit is 0, the two paths will not shuffle. When the control bit is

1, the two paths swap. In Figure 2.2, when c1 = 0, d01 connects to d02 and d11 connects to

d12. Meanwhile, when c1 = 1, d01 connects to d12 and d11 connects to d02. If we denote the

propagation delays of the ith segment as d0i (upper delay) and d1i (lower delay), then the two

delays should be designed nominally equal to each other. After manufacturing, the effect of

process variation will cause unpredictable delay difference between them.

When an n bit challenge (c1c2...cn−1cn) is given to a PUF, two identically designed paths

are generated. To retrieve a response, an impulse signal is fed into the system to excite both

paths simultaneously. Because of the delay difference caused by process variation, one path

will reach the arbiter earlier, and an output bit is generated as the PUF response.

Our PUF characterization and emulation are discussed on the standard arbiter PUFs

(Figure 2.2), they are not applicable to feed-forward PUFs or feed-back PUFs.

d1
0 d2

0

d2
1d1

1 A
rb

it
er

0

1

0

1

0

1

0

1

0

1

Rising Edge

n-bit
challenge: C1 C2 Cn

0

1

0

1

dn
0

dn
1

Response

Figure 2.2: The model of an arbiter PUF with an n-bit challenge.

2.3 PUF Characterization

2.3.1 Objective and Challenges

The primary goal of PUF characterization is to observe the characteristics of a PUF, hence to

build a PUF model to correctly predict the response given a random PUF challenge. When

considering the arbiter PUF, the most important characteristics are the delay information of

each PUF segment, given which the output of the PUF can be easily predicted. For example,

13

based on our PUF model in Figure 2.2, the delay information includes d0i and d1i for each

segment.

A widely used approach to characterize a PUF is to collect a certain number of CRPs

of the PUF. Using the collected CRPs as a training set, machine learning approaches are

adopted to observe the correlations between the PUF challenges and responses. Then such

correlation is applied to the test set to make further predictions of PUF outputs. However,

current approaches can not extract the exact delay information of each PUF segment which

is important for the PUF emulation. Therefore, our goal in PUF characterization is not only

to make an accurate response prediction, but also to extract the PUF delay information.

Another important challenge for PUF characterization is about how to build an accurate

PUF model with a limited number of CRPs. To solve this, we specifically divide our PUF

characterization into two stages. The first stage follows the standard PUF model building

strategy which takes advantage of some number of CRPs to build a statistical model. As

mentioned above, compared to standard PUF models, our model is specifically designed in

such a way to reveal the delay information of the PUF. At the second stage, we propose two

novel approaches respectively to use “adaptive challenges”, and “compensate challenges”.

Both approaches only take advantage of a small number of selected CRPs with certain

specific properties. They are applied on the top of the PUF model achieved in stage one to

further tune the model to a better precision.

2.3.2 Statistical Model

Assume that it is an n-bit PUF that we are characterizing. For the ith segment, there exists

2 delays: d0i and d1i (i∈{1,2,...n}). After collecting some number of CRPs, we statistically

calculate the following 2 probabilities for each segment as shown in Equation 2.1.

P 0
i (path p0 is longer | p0 contains d0i)

P 1
i (path p1 is longer | p1 contains d1i)

(2.1)

14

We claim that when a delay in a segment is longer than its rival delay, e.g., d0i and d1i

are rival delays, the path that contains the longer delay will have a larger probability to be

longer than the opposite path. The intuition is that each path is a sum of single delays from

each segment. Consequently, if e.g., d1i in segment i is longer than d0i , because the delays

in the rest segments are randomly assigned to the two paths, the path that contains d1i will

have a better chance to be longer than the opposite path which contains d0i . Therefore, there

exists a correlation between the segment delays and the probabilities listed in Equation 2.1.

According to Figure 2.2, assume that if the path (p0) that reaches the upper port of the

arbiter is earlier, the output equals to 0. Otherwise, the arbiter output equals to 1. The

delay of the two paths can be written in the format as shown in Equation 2.2. The definition

of parity(i) can be found in Equation 2.3. It represents the parity of the times of switching

after segment i for a given challenge. Because the output is decided by the relation between

the total delays in p0 and p1, we represent the PUF output by using only the difference

between the rival delays in each segment as shown in Equation 2.4.

p0 =
n∑

i=1

t0i

p1 =
n∑

i=1

t1i

t0i = d0i , t
1
i = d1i , when ci = 0 and parity(i) = 0;

t0i = d1i , t
1
i = d0i , when ci = 1 and parity(i) = 0;

t0i = d1i , t
1
i = d0i , when ci = 0 and parity(i) = 1;

t0i = d0i , t
1
i = d1i , when ci = 1 and parity(i) = 1;

(2.2)

parity(i) =

0, even 1s in {ci+1...cn}, i ∈ {1, 2, ...n− 1}

1, odd 1s in {ci+1...cn}, i ∈ {1, 2, ...n− 1}

0, i = n

(2.3)

15

Output =

0,

∑n
i=1 d

diff
i < 0,

1,
∑n

i=1 d
diff
i > 0, ddiffi = t0i − t1i

(2.4)

After collecting a number of CRPs, the probabilities in Equation 2.1 can be summarized

statistically. Since Our goal is to characterize the PUF, therefore, the major question now

is how to derive the real delays from the probabilities. To be more specific, since it is the

delay difference that decides the PUF output, our target becomes to derive the ddiffi of each

segment in Equation 2.4 from the probabilities in Equation 2.1. To achieve this, we need to

find a suitable regression model.

We simulate a 64-bit PUF after collecting 100,000 CRPs. We calculate the probabilities

in Equation 2.1 for the delays in all the segments. By repeating the test on 1,000 simulated

PUFs, we plot all the calculated probabilities in the x-axis and the corresponding normalized

delay difference in the y-axis. Note that because of P 0
i + P 1

i = 1 (i∈{1,2,...n}), in order to

avoid repeating, we only plot the probabilities which are larger than 0.5. Due to the same

reason, we only plot the absolute value of ddiffi . The regression plot in Figure 2.3 indicates a

perfect linear mapping between the delay difference and the probability. The results strongly

suggest that a statistical delay model can be derived from the collected probabilities using

linear regression.

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2

4

6

8

10

12

14

Probability

ab
s(

D
el

ay
 D

iff
er

en
ce

)

Figure 2.3: Regression plot between the delay difference and the probability.

16

The derived delay model can be used to predict PUF responses. When given a random

challenge, the delay of the two paths can be calculated and compared using the statistically

estimated ddiffi of each segment.

2.3.3 Adaptive Challenges

On the base of the statistical model, we propose two approaches to improve the model

accuracy. The first approach is to use adaptive challenges.

Figure 2.4 shows a motivational example. We first consider the challenge 0010, where the

two paths are denoted in the red line and the blue line. Meanwhile, if we consider challenge

0100, the two paths almost stay the same except that d03 and d13 switch positions. However,

the response changes from 0 to 1, which means that the red path is longer in the first case

and the blue path is longer in the second case. It can only be caused by the switching

between d03 and d13. Consequently, we can conclude that d03 > d13. To extend the example,

we define challenges such as 0010 and 0100 as a pair of adaptive challenges, because they

can be adaptively adjusted to test the relation between the upper and lower delay of a single

segment.

0

1

0

1

0

1

0

1

0

1

Rising Edge

0 0 0

0

1

0

1

Response=0

A
rb

it
er

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

Rising Edge

0

1

0

1

Response=1

A
rb

it
er

0

1

0

1

0 1 00

d1
0

d1
1

d2
0

d2
1

d3
0

d3
1

d4
0

d4
1

d1
0

d1
1

d2
0

d2
1

d3
0

d3
1

d4
0

d4
1

Figure 2.4: An example of adaptive challenges.

Adaptive challenges require that the two paths have a very small delay difference given

17

the challenges so that the switching of only a single segment can change the PUF response.

In order to find such challenges, we need to use the statistical model achieved from the

previous step. Given the delay of each segment from the model, to find the challenge with a

smallest total delay difference to cover all the segments, the time complexity is exponential.

As an alternative, we use the greedy algorithm to find adaptive challenges. The basic idea

is to first sort the delay difference of each segment. Then starting from the segment with

the largest delay difference to the segment with the smallest delay difference, we put the

challenge bits in such a way that the delay difference of current segment compensates the

already considered segments’ delay difference to make the sum of ddiffi stays as close to 0 as

possible. Note that adaptive challenges deterministically decide the sign of ddiffi in segment

i rather than to probabilistically estimate it from a statistical model.

2.3.4 Compensate Challenges

A drawback in the adaptive challenge is that it only compares the ddiffi with 0. For instance,

if the real delay difference is 2ps, and in the statistical model the delay difference is calculated

as 10ps. Despite the error is large, the use of adaptive challenge can not test it out. As long

as the real delay difference has the same sign as the predicted one, the response stays the

same. Due to this reason, adaptive challenges miss many cases to reveal the errors in the

statistical model.

In order to better quantify the delay difference, we propose our second method: com-

pensate challenges. The basic idea is similar to the adaptive challenges, we still start from a

motivational example. We consider the challenge 0c2c3...cn. The delay difference of the two

paths can be represented as (d0i + trest)− (d1i + t′rest). In the case of compensate challenges,

instead of designing c2c3...cn to make trest ≈ t′rest, we make trest − t′rest ≈ β. Therefore, the

delay difference can be simplified as d0i − d1i + β. Depending on the response of the PUF,

the relation between d0i and d1i − β can be concluded. We define the challenges that are

intentionally designed to use a part of the segments to compensate the rest delay difference

as compensate challenges.

18

When designing a compensate challenge, the primary goal is to compensate the target

delay difference as accurate as possible, so that the real delay difference can be accurately

tested. For example, in the example of 0c2c3...cn, we want to design β to be as close to

d0i −d1i as possible. The algorithm to find such compensate challenges employs the same idea

as the greedy algorithm to find adaptive challenges.

Both the idea of adaptive challenges and compensate challenges are built on the top

of the basic statistical model, aiming at improving the model accuracy. Our characteriza-

tion algorithm has the advantage of being fast, scalable, and can be used to derive delay

information for each individual segment.

2.4 Hardware PUF Emulation

2.4.1 Objective and Challenges

Hardware PUF emulation is defined as to create a piece of hardware with the same function-

ality of the original PUF. Although PUF characterization provides an accurate PUF model,

it is restricted to be used in simulation. However, there is a need to emulate PUF in actual

hardware in order to achieve lower area/energy overhead and faster speed. On the other

hand, a more demanding scenario for PUF emulation is to use another actual PUF to emu-

late the original PUF. It not only inherits the good properties of traditional hardware PUF

emulation, but also guarantees the hardware itself is unclonable. Various security protocols

which require synchronized functional blocks can be enabled based on it.

The major challenge to emulate PUF B using PUF A is that it is almost impossible to

find a PUF A with exactly the same delay information of PUF B since the delay of a PUF

is purely decided by process variation. To leverage the above challenge, we have proposed a

set of techniques to modify the delay of segments in PUF A to create a PUF emulation as

close to PUF B as possible. To facilitate demonstration, we split the hardware emulation

procedures into two scenarios based on the size and the configuration of PUFs. We first list

the basic assumption of our PUF emulation as following.

19

• Use PUF A to emulate PUF B.

• Both PUF A and PUF B are characterized.

• PUF A has m segments, and PUF B has n segments.

Scenario I:
m=n

Techniques:
Challenge Mapping

Techniques:
Challenge Mapping,
Delay Scaling,

Segment Combining

PUF Emulation

Scenario II:
m>n

Figure 2.5: Two categories of PUF emulation and the corresponding techniques.

The two scenarios of PUF emulation and the corresponding techniques are shown in

Figure 2.5. Note that to emulate PUF B, PUF A must be at least the same size as PUF B

(m ≥ n). It is because the number of segments decides the mapping space between the PUF

challenges and the PUF responses, it is impossible to use a smaller mapping space to emulate

a larger mapping space. The first scenario considers the emulation strategy when PUF A

and PUF B have the same size (m = n). It takes advantage of the technique “challenge

mapping” to roughly emulate PUF B using PUF A. The second scenario is an extension to

the first scenario, meanwhile also provides better emulation accuracy, where PUF A has more

segments than PUF B (m > n). In addition to “challenge mapping”, two more techniques

are used, respectively “delay scaling”, and “segment combining”. In the following sections,

we separately demonstrate our PUF emulation techniques for the two scenarios.

2.4.2 Scenario I: m = n

In this scenario, both PUF A and PUF B have the same number of segments. It is the

simpler scenario among the two, and with less emulation accuracy. The major technique

20

applied in this scenario is “challenge mapping”.

2.4.2.1 Challenge Mapping

The basic idea of challenge mapping is that given a challenge CB for PUF B, there always

exists a mapped challenge CA for PUF A that has a high likelihood to produce the same

output. Now assume that PUF A and PUF B have an equal number of segments. We use

the notations in Equation 2.5 to represent the path delay difference. In the equation, the

path delay difference is represented as a sum of plus and minus of the absolute value of

each segment’s delay difference. The sign before the absolute delay difference (|ddiff−Ai | or

|ddiff−Bi |) is decided by si which is the sum of the parity(i) and the sign of ddiffi as shown

in Equation 2.6. sign = 0 when ddiffi is positive, and sign = 1 otherwise.

Ddiff−A =
n∑

i=1

(−1)s
A
i |ddiff−Ai |

Ddiff−B =
n∑

i=1

(−1)s
B
i |ddiff−Bi |

(2.5)

sAi = parityA(i) + sign(ddiff−Ai)

sBi = parityB(i) + sign(ddiff−Bi)
(2.6)

The motivation of challenge mapping starts from a question: for a ddiff−Bj in PUF B, is

it possible to find a ddiff−Ai in PUF A to replace its position when emulating? It requires

the contribution of ddiff−Ai to Ddiff−A is similar to the contribution of ddiff−Bj to Ddiff−B.

Our research suggests that for every ddiff−Ai in PUF A, there exists such a ddiff−Bj in PUF

B to match it.

An example of challenge mapping is shown in Figure 2.6. The number in each segment

represents the delay difference ranking of a segment among all the segments in the PUF.

For example, 1 means that the delay difference in the segment is the largest among all the

segments. The color shows the delay difference of a segment contributes to either the blue

21

0

1

0

1

0

1

0

1

0

1

Rising Edge

C1 C2 Cn

0

1

0

1

Response

A
rb

it
er

0

1

0

1

0

1

0

1

0

1

Rising Edge

C1 C2 Cm

0

1

0

1

Response

A
rb

it
er

1

1

2

2

3

3

PUF B:

PUF A:

Figure 2.6: An example of challenge mapping.

path or the red path. In this example, the blue path equivalents to the upper path and the

red path equivalents to the lower path. Our mapping works in the following way: we adjust

the challenge in PUF A to guarantee that the same ranking segments in PUF A and PUF

B contribute to the same path.

The algorithm of challenge mapping in shown in Algorithm 1. To guarantee that the

same ranking segment contributes to the same path, we only need to guarantee that two

segments have the same si as shown in Equation 2.6. To achieve this, given a challenge of

PUF B, we find a mapped challenge of PUF A by adaptively assigning challenge bits from

the last segment to the first segment in PUF A. Because of the order of assignment, when

deciding a specific challenge bit cAi in PUF A, all the bits after have been assigned, so that

the only variable in the sAi calculation is cAi . Therefore, by placing an appropriate value of

cAi (either 0 or 1), sAi is decided so that the ith segment in PUF A matches the same ranking

segment in PUF B.

2.4.3 Scenario II: m > n

The second scenario considers emulating the target PUF B using PUF A, and PUF A has

more segments than PUF B (m > n). Compared to the scenario I, the key question is how

22

Algorithm 1 Challenge Mapping

Input: A challenge for PUF B: CB = cB1 ...c
B
n ,

ddiff−Ai for segment i in PUF A,

ddiff−Bi for segment i in PUF B,

Output: A mapped challenge for PUF A: CA = cA1 ...c
A
n ,

1. Sort all the |ddiff−Ai | in PUF A.

2. Sort all the |ddiff−Bi | in PUF B.

3. For i from n to 1:

4. Find the ranking Ri of ddiff−Ai in PUF A.

5. Find ddiff−Bai
which has ranking Ri in PUF B.

6. Calculate sBai for ddiff−Bai
using CB.

7. Set cAi to guarantee sAi = sBai .

8. Endfor

9. Return CA = cA1 ...c
A
n .

to utilize the extra m− n segments to improve the emulation accuracy. To achieve this, on

the top of “challenge mapping”, we additional introduce two more techniques, respectively

“segment combining” and “delay scaling”.

2.4.3.1 Segment Combining

One problem for challenge mapping is that the segments with the same ranking in two PUFs

may have very different delays. For example, the segment with the largest delay difference for

PUF A has 100ps difference, while for PUF B, the largest delay difference is 70ps. Therefore,

the highest ranking segment in PUF A actually has a much larger delay difference compared

to the corresponding segment in PUF B. Such gap in delay differences has a direct influence

on the matching accuracy. To leverage the above problem, we propose the technique of

segment combining.

Instead of using only one segment in PUF A to match one segment in PUF B, segment

combining proposes to use a few segments in PUF A to match a single segment in PUF B.

As shown in Figure 2.7, the highest delay difference segment in PUF B has 70ps difference.

23

In PUF A, the same ranking segment has a delay difference of 100ps. We assume that

there exists another segment with delay difference 30ps adjacent to the PUF A segment. By

properly assigning challenge bits, we can achieve delay difference 100ps− 30ps = 70ps over

the 2 segments together. If we regard the above two segments together as a single segment

to match the largest delay difference segment in PUF B as circled in blue (dashed line) in

Figure 2.7, we can have the exact match of delay difference 70ps.

0

1

0

1

0

1

0

1

0

1

Rising Edge

C1 C2 Cm

0

1

0

1

Response

A
rb

it
er

1 2
0

1

0

1

3

C3

PUF A:

0

1

0

1

0

1

0

1

0

1

Rising Edge

C1 C2 Cn

0

1

0

1

Response

A
rb

it
er

12 3PUF B:

Figure 2.7: An example of segment combining.

Segment combining can significantly decrease the deviation between the delay difference

of two PUF segments, but it requires a longer PUF A to emulate PUF B. However, one

side-effect of using a longer PUF A is that there will be some segments left if not all the

segments are used to match PUF B. Our solution is to put the challenge bits of those

segments in such a way that their delay differences compensate to each other, thus the total

effect is as close to 0 as possible.

However, it is extremely hard to decide an optimal way of segment combining since

there are exponential possibilities. We leverage this problem by proposing the heuristic in

Algorithm 2. The key idea is that we first find an optimal combining scheme for every single

segment in PUF B. Then we check what will happen if we apply the optimal combining

scheme for one of the PUF B segment djB. Since a segment in PUF A can not be used for

more than once, thus, the optimal combining scheme for the other PUF B segments will be

24

Algorithm 2 Segment Combining

Input: diA for segment i in PUF A, i ∈ {1, 2...,m}.
djB for segment j in PUF B, j ∈ {1, 2..., n}.
SA - a set initially has all the segments in PUF A.

SB - a set initially has all the segments in PUF B.

t - constant.

Output: A combining scheme C(djB) for each segment j in PUF B.

1. While size(SB) > 0:

2. For djB in SB:

3. Find the top combining scheme Ĉ(djB) for seg-

ment djB using at most t segments from SA.

4. S ′A=SA-segments used in Ĉ(djB)

5. S ′B=SB-djB

6. Error(djB)=0

7. For diB in S ′B:

8. Find the top combining scheme Ĉ(diB)′ for

segment diB using at most t segments from S ′A.

9. Error(djB)+=|diB − Ĉ(diB)′| − |diB − Ĉ(diB)|
10. Endfor

11. Endfor

12. Sort Error(djB) in non-decreasing order.

13. Find Min(Error(djB)) when j = J .

14. Delete dJB from SB.

15. Delete Ĉ(dJB) from SA.

16. C(dJB) = Ĉ(dJB).

17. Endwhile

18. Return C(djB) for j ∈ {1, 2..., n}.

influenced as they may share the same PUF A segments in their combining schemes with

the ones to match djB. We use function Error to represent such influence. After iterating

through all the optimal combining schemes, we choose the one with the least influence over

the other segments to really apply. This is because we want to minimize the loss of accuracy

on the other PUF B segments’ combing schemes caused by applying the optimal scheme on

25

the current segment. In the next iteration, we update the available segments in PUF A (SA)

and the target segments in PUF B (SB) and repeat the previous step.

2.4.3.2 Delay Scaling

Another key technique for scenario II PUF emulation is delay scaling. Equation 2.7 shows

the delay difference notation for each segment in PUF A and PUF B. The delay difference

of the ith segment in PUF B is a scaling of the delay difference of the ith segment in PUF A

with the ratio α. We claim that PUF A and PUF B generate the same response when given

the same challenge. According to Equation 2.4, the PUF response is decided by the sign of

the sum of delay difference. When scaling all the delay segments by α at the same time, the

path delay difference is also scaled by α. But this will not change the sign of the path delay

difference, thus the response keeps the same.

PUF A = {ddiff−Ai }

PUF B = {ddiff−Bi },

ddiff−Bi = α ∗ ddiff−Ai , α > 0

(2.7)

We combine delay scaling with segment combining in the following way. Based on delay

scaling, we know that the segments of PUF A don’t need to be exactly combined to match

each ddiff−Bi . Instead, they can be combined to α ∗ ddiff−Bi as long as α is consistent for all

the segments. In order to find a suitable α, we iterate through the candidate values from

our defined lower bound to upper bound, and for each possible α, we repeat the process of

segment combining. The above process repeats until we find a α with which the segment

combining provides the best modeling accuracy.

To summarize the process of PUF emulation in scenario II, after the characterization of

PUF A and PUF B, we find the best scaling ratio and the corresponding arrangement for

segment combining. In the last step, for any random challenge CB given to PUF B with

a response RB, we use challenge mapping to form a mapped challenge CA to PUF A. This

26

challenge has a high likelihood to generate RA = RB.

2.5 Security Protocols

PUF emulation allows multiple PUFs to have matched challenges to generate the same

response. Using this as a starting point, various security protocols are enabled using our

PUF matching. The major advantage is that now all the parties have a physical “unclonable”

copy of hardware to encrypt or decrypt, which is much faster and less power consuming

compared to applying software simulation.

2.5.1 Message Encryption and Decryption

One of the most commonly discussed security protocol is message encryption and decryption.

It can be easily implemented using our proposed PUF matching. We assume that Alice and

Bob are the two communicating parties where each of them owns a unique PUF. After Alice

shares her PUF A characterization (includes all the segment delay information) with Bob

who owns PUF B, PUF B is used to emulate PUF A based on our emulation methods. With

the XOR operation, any message M sent from Alice can be decrypted using PUF B. The

detailed flow is presented in Figure 2.8.

The above-proposed message exchange is an extension of the traditional PUF based

encryption and decryption. In the traditional protocol, Bob can only simulate PUF A for

decryption which is much slower and more energy consuming than the hardware emulation.

However, a major concern of identity protection still exists. With the knowledge of PUF

A characterization, Bob can pretend to be Alice. It can not be prevented if Bob needs to

emulate PUF A himself. Consequently, we decide to introduce a trusted third party (TTP)

to finish the job of PUF emulation in such a way that the characteristics of PUFs are invisible

to all the rest parties.

Our modified message encryption and decryption protocol is shown in Figure 2.9. The

TTP is in charge of managing the characteristics of all the PUFs. When Alice wants to

27

Alice Bob

Alice – owner of PUF A, encryption party

Bob – owner of PUF B, decryption party

PUF A Characterization

Select random challenge c

R=PUF A(c) M

Find mapped c of PUF B for c of PUF A

M=PUF B(c R

R, and c

(1)

(2)

(3)

(4)

(5)

M – message to transfer

Challenge Mapping
(PUF A & PUF B)

Figure 2.8: PUF based message encryption and decryption.

Alice Bob

Alice – owner of PUF A, encryption party

Bob – owner of PUF B, decryption party

PUF A Characterization

Challenge Mapping
(PUF A & PUF B)

Select random challenge c

R=PUF A(c) M

R, and c

(1)

(2)

(3)

(4)

(5)

M – message to transfer

TTP – trusted third party

TTP

PUF B Characterization

M=PUF B(c R

Find mapped c of PUF B for c of PUF A

(6)
R, and c

(7)

Figure 2.9: A modified PUF based message encryption and decryption using a trusted third party.

send a message M to Bob, she needs to first send the random challenge c together with

the XORed message R to TTP, then the TTP is responsible for finding out the mapped

challenge c′ for PUF B and sends it together with the encrypted message R to Bob. In this

protocol, the TTP serves as a centralized party. It manages the PUF emulation originally

done by the decryption party to prevent identity theft.

28

2.5.2 Multi-party Communication

The protocol of multi-party communication assumes that N trusted parties want to exchange

information mutually (N ≥ 2). The message exchange should be acted in such a way that

when a message is sent, all the other N − 1 parties are able to retrieve the message, but any

untrusted parties are incapable of doing so.

TTP:
template

PUF

BobAlice

Carly Dave

TTP:
challenge
mapping

table

BobAlice

Carly Dave

TTP:
challenge
mapping

table

BobAlice

Carly Dave

TTP:
challenge
mapping

table

BobAlice

Carly Dave

M=PUF B(CB) R

M=PUF C(CC) R M=PUF D(CD) R

(1) (2)

(3) (4)

Figure 2.10: PUF based multi-party communication.

We present our PUF based multi-party communication scheme in Figure 2.10. We assume

N = 4, and each party owns a unique PUF. The first step is that all the parties need to

send their PUF characterizations to the TTP. The TTP will create a random template PUF

which is used as the target PUF for all the PUFs to match to. Using the characterization

information of each PUF, TTP does the matching and thus generates a challenge mapping

table for all the PUFs to the template PUF. Note that the matching by TTP follows the

process of PUF emulation, but is purely software based. For example, for challenge C in

template PUF, it equivalents to challenge CA in PUF A, challenge CB in PUF B, challenge

CC in PUF C, and challenge CD in PUF D. In the second step, when Alice wants to send

message M to the other parties, similarly to the two party encryption and decryption, she

29

sends a random challenge CA and R to TTP. Then TTP will look up the challenge mapping

table to find out the corresponding challenge CB, CC , and CD for PUF B, C, and D. In the

third step, TTP sends the challenge Ci and R to party i. Eventually, each party uses their

own PUF to decrypt message M .

With the existence of TTP, all the parties do not need to expose their own PUF charac-

terizations to the other parties. Meanwhile, with all PUFs match to a single template PUF

in the TTP, it facilitates the process of PUF matching as well as the required amount of

information exchange among all the parties. Note that the template PUF of TTP does not

have to be a real PUF, it can simply be a virtual PUF model, serving as the target of PUF

matching.

2.6 Results

In the following experiments, we repeat each test on 10 individually implemented PUFs

or pairs of PUFs and take the average value to present. In the following parts, we first

demonstrate our PUF implementation on FPGA, then we illustrate the results of PUF

characterization and emulation respectively.

2.6.1 PUF Implementation on FPGA

Our arbiter PUF is implemented on a Spartan-6 LX45 FPGA. The entire PUF, including

two 32-input delay paths and the arbiter, occupies only 9 logic slices (an FPGA such as the

Spartan-6 LX45 has over 6800 slices).

Conceptually, a shuffle segment can be viewed as a pair of two-to-one multiplexers with

shared input signals in opposite orders (see Figure 2.11). On the other hand, the Xilinx

Spartan-6 FPGA uses six-input LUTs (LUT6) as the basic logic element, and each LUT6 can

be used as two LUT5 units if they share the same inputs in the same order. To accommodate

the opposite input order, the memory contents of each LUT5 are adjusted accordingly. This

architecture allows each segment to be efficiently mapped to a single LUT6.

30

Figure 2.11: Conceptual shuffle segment and LUT6 realization on Spartan-6.

Figure 2.12: 32-segment PUF delay paths mapped on Spartan-6.

Besides using fewer logic resources, packing efficiently is also crucial to implementing

balanced arbiter paths on an FPGA platform, where routing is usually outside the control of

the designer. A Spartan-6 logic slice contains 4 LUT6 units, and the signal routing within the

slice goes through a locally attached switching matrix. By packing four adjacent segments

into one slice, routing between these four segments is minimized. Figure 2.12 illustrates a

packing scheme that packs 32 shuffle segments into 8 adjacent logic slices. Notice that the

routing within each 4-segment cluster utilizes the low-delay intra-slice routing channels. The

slices are location constrained to be adjacent to each other to minimize the routing between

the 4-segment clusters.

31

2.6.2 Characterization Results

Table 2.1 shows the prediction accuracy using our PUF characterization algorithm. For each

instance, we vary the number of CRPs applied to build the statistical model as well as the

size of PUFs. Then we random apply 10,000 challenges to compare the real response of the

PUF and the predicted response based on the statistical model. From there, we calculate

the correct rate of our response prediction. We also separately test the prediction accuracy

with and without using adaptive/compensate challenges. From the results in Table 2.1, we

have the following observations.

PUF size Characterization Tech.
CRPs

1,000 10,000 100,000 1,000,000

32-bits statistical model 91.9% 96.6% 97.3% 97.5%
32-bits stats. model+adap./comp. challenges 93.1% 97.1% 97.9% 97.9%

64-bits statistical model 90.7% 95.6% 96.4% 96.9%
64-bits stats. model+adap./comp. challenges 92.9% 96.8% 97.0% 97.2%

128-bits statistical model 89.6% 94.7% 96.0% 96.3%
128-bits stats. model+adap./comp. challenges 91.5% 95.2% 96.3% 96.5%

Table 2.1: Response prediction accuracy using PUF characterization model under various number

of CRPs.

Firstly, we can clearly see that the prediction accuracy based on PUF characterization

can easily reach 96%-97% when enough CRPs are used. Besides, longer arbiter PUFs are

obviously harder to predict given a fixed number of CRPs since more delay information needs

to be retrieved. Secondly, adaptive/compensate challenges can improve the accuracy of PUF

characterization model, although the improvement gets insignificant as the number of CRPs

increases.

2.6.3 Emulation Results

Table 2.2 shows the prediction accuracy using PUF emulation. Assume that PUF A is used

to emulate PUF B. Each row is the number of bits of PUF B (n), and each column is the

number of bits of PUF A (m). Note that m ≥ n. The characterization model we are using

is based on the statistical model achieved using 1,000,000 CRPs.

32

We can clearly see that the accuracy of PUF emulation increases as we increase the size

of PUF A. It suggests that our algorithms of segment combining and delay scaling have

worked. However, when comparing the PUF emulation results to the PUF characterization

results as shown in Table 2.1, the prediction accuracy significantly drops. It is because there

always exists delay difference gaps between PUF A and PUF B segments which can not be

completely eliminated through hardware emulation.

of bits m=32 m=64 m=128 m=256
n=32 89.6% 90.8% 91.6% 93.2%
n=64 - 90.3% 91.1% 92.6%
n=128 - - 90.9% 92.5%

Table 2.2: Response prediction accuracy using PUF emulation: emulate PUF B (n-bits) using PUF

A (m-bits).

2.7 Summary

In this chapter, we have proposed a new approach to characterize an arbiter PUF by com-

bining the statistical model with adaptive challenges and compensate challenges. On the

base of our characterization results, we demonstrate our approach to emulate an arbiter

PUF using another arbiter PUF. By applying our proposed techniques, two arbiter PUFs

can be matched with high accuracy. Consequently, a few security protocols are enabled such

as message encryption and decryption, and multi-party communication.

We evaluate our algorithms with PUFs implemented on FPGA. Our result suggests that

the accuracy of response prediction based on our characterization model can reach 96%-

97% with 1, 000, 000 CRPs. Meanwhile, the prediction accuracy based on PUF emulation is

around 89%-93%.

33

CHAPTER 3

Enable PUF Matching using Programmable Delay

Lines

3.1 Motivation and Problem Formulation

In the previous chapter, we have shown that through PUF emulation, two random PUFs

can be matched in such a way that they have a high likelihood to produce the same output

when given a pair of matched input vector. A variety of security protocols that are widely

used in IoT systems can be built using the emulated PUFs, such as message encryption

and decryption, and multi-party communication. However, according to the implementation

results, the matching accuracy of two PUFs is only around 92-93% in the best case, which

is still far from the standard of being applied in the actual secure communication.

In this chapter, our technical goal is to demonstrate a new platform for PUF matching to

boost the matching accuracy. We achieve our goal by using the look-up table (LUT) based

programmable delay lines (PDL). The PDL are applied to tune and modify the delay of

each segment in the standard PUFs, and eventually in hope to match multiple PUFs. The

generated matched PUFs should preserve all the properties of the standard PUFs, and the

probability of a third party creating a same copy of the PUF must be negligible. By creating

a set of PUFs that are matched to each other, each party is able to possess one PUF copy

from the set, thus facilitating low-cost communication.

34

3.2 Preliminaries

3.2.1 Programmable Delay Lines

Programmable delay lines are a series of digital delay lines with electrically programmable

and trimmable delay times [19]. They take advantage of the lookup table (LUT) internal

structure on FPGA to create delay bias and use it to generate controllable delays.

To measure the delay bias, a high precision delay testing technique with picosecond

resolution on FPGA is required. Some previous work includes: Raychowdhury et al. [20]

proposed on-chip delay measurement hardware techniques to estimate the segment path

delay. Tsai et al. [21] proposed a vernier delay lines based built-in delay measurement circuit

with a small area overhead that can provide high-resolution delay measurement. Majzoobi

et al. [22] designed a timing characterization circuit with clock synthesis that can measure

pico-second resolution on FPGA.

3.2.2 PDL Implementation on FPGA

0

1

0

1

0

1

SRAM
values

A1 A0

O

Figure 3.1: The internal structure of a 2-input LUT.

The PDL design on FPGA is proposed by Majzoobi et al [14]. It is implemented by

a single LUT. Figure 3.1 shows an example LUT with 2 selection bits A1 and A0. Now

consider two scenarios respectively when A0 = 0 and A0 = 1. The propagation delay from

35

A1 to O when A0 = 0 is depicted in the solid red line, and the propagation delay when

A0 = 1 is marked in the dashed blue line. From the figure, we can clearly see that due

to the asymmetric structure in the LUT, the propagation delay in the blue line is slightly

larger than the propagation delay in the red line. Many modern FPGAs have on board 6

selection-bit LUTs. By assigning different selection bits, the LUT will have slightly different

delays, and the delay difference caused by such asymmetricity is in picosecond resolution.

We take advantage of the small delay difference to tune delay segments in the arbiter PUFs.

3.3 A Motivational Example

dA1 dA2

dB1 dB2

PDL
|dB

1-dA
1|

PDL
|dB

2-dA
2|PUF A

PUF B

Figure 3.2: An example of PUF matching using PDL.

We present a motivational example of our PUF matching scheme in Figure 3.2. Both

PUF A and PUF B originally have two segments. In order to match their first segments,

respectively with d1A delay difference in PUF A and d1B in PUF B, we add an additional

segment built by the PDL to PUF A with the delay of |d1B − d1A|. This can be done by using

two LUTs in a PUF segment while each LUT uses a set of different selection bits in such

a way that the delay difference is exactly |d1B − d1A|. By properly combining the existing

first segment in PUF A (d1A) with the additional PDL segment (|d1B − d1A|), they together

can represent the first segment in PUF B which has the delay of d1B. The similar matching

process can be repeated on the second segment of PUF A and B. To summarize, the basic

idea for matching two n− bit PUFs is to create n additional segments using PDL and attach

them to the end of a PUF. The delays of PDL are designed in such a way that each one of

36

them can be combined with an existing ith segment in the current PUF so that they together

realize the same delay difference as the ith segment in the other PUF.

3.4 PUF Matching

PUF Characterization

 Delay Information Exchange

Add Extra PDL Segments

Challenge Reassignment

Figure 3.3: The flow of PUF matching.

The PUF matching process can be divided into four steps as shown in Figure 3.3. We

demonstrate each procedure separately in the following parts. For simplification, we start

with PUF matching between two parties. We assume that Alice owns an n-bit arbiter PUF

A and Bob owns an n-bit arbiter PUF B. The goal is to match PUF A with PUF B.

3.4.1 PUF Characterization

In chapter 2, we have proven that standard arbiter PUFs can be characterized using statis-

tical methods. To match two PUFs, the first step is to characterize the two PUFs. If the

ith segment has two delays, d0i and d1i , we denote the delay difference between d0i and d1i as

ddiffi as shown in Equation 3.1. We assume both PUFs have n segments

ddiffi = d0i − d1i , i ∈ {1, 2, ...n} (3.1)

37

Using the notation of ddiffi , the total delay difference (Tdiff) between two PUF paths

can be represented in Equation 3.2. The parity function denotes the number of times that

switching happens after the current segment, which is decided by the number of ones in the

challenge. The total delay difference of the two PUF paths can be denoted as the plus or

minus of the delay difference of each segment.

Tdiff =
n∑

i=1

(−1)parity(i) ∗ ddiffi

parity(i) =

0, even 1s in {ci...cn}

1, odd 1s in {ci...cn}

(3.2)

We rewrite the Equation 3.2 to Equation 3.3 using vectors formats. Note that each

challenge corresponds to a unique P vector which consists of only 1 and -1.

Tdiff = P ·D

P = {(−1)parity(1), (−1)parity(2), ...(−1)parity(n)}

D = {ddiff1 , ddiff2 , ...ddiffn }

(3.3)

In our characterization, we follow the notations in Equation 3.3 and measure a set of

Tdiff given different P values, so that to create linear equations regarding D which is a

vector of ddiffi . We solve the equations and retrieve the delay difference (d0i − d1i) for each

PUF segment.

3.4.2 Delay Information Exchange

Bob and Alice exchange the characterized delay difference information in the second step.

This process is only one-time and can be done through the standard cryptographic ap-

proaches. Based on the exchanged characterization, Alice and Bob need to define a PUF

matching template, which is used as the target PUF that PUF A and PUF B are matched

to. Note that the template PUF has no physical entity; it is purely a conceptual function.

38

To facilitate demonstration, we denote the delay difference of each segment in PUF A, PUF

B, and the template PUF in Equation 3.4. There are multiple ways to define the delays of

the template PUF, we have shown an example definition in Equation 3.5.

PUF A = {d1A, d2A, ...dnA}

PUF B = {d1B, d2B, ...dnB}

PUF Template = {d1T , d2T , ...dnT}

(3.4)

diT = max(diA, d
i
B), i ∈ {1, 2, ...n} (3.5)

3.4.3 Appending PDL Segments

The goal of this step is to modify PUF A and PUF B to match the template PUF using

PDL. With the template PUF defined in Equation 3.5, two situations may happen during

the matching process. Take the PUF A matching as an example:

(1)diA < diT . An extra segment with delay difference |diT − diA| needs to be added to PUF

A. This segment together with the ith segment in PUF A are equivalent to the ith segment

in the template PUF.

(2)diA = diT . In this situation, nothing needs to done to modify the ith segment in PUF

A.

We build the extra delay segments using PDL. In each segment, one LUT with selection

bit combination Cupper is used as the upper delay and the other LUT with selection bit

combination Clower is used as the lower delay. Due to the delay bias caused by the asymmetric

internal structure of LUTs, different input combinations to LUTs will generate distinct

delays. Therefore, by properly assigning Cupper and Clower, target delay difference (|diT −diA|)

can be created. In some cases, |diT − diA| is larger than the maximum delay difference that

can be generated using Cupper and Clower, then multiple LUTs can be applied as the upper

delay/lower delay to boost the delay difference proportionally.

39

3.4.4 Challenge Reassignment

dA
1 dA

2

dB
1 dB

2

PDL
dA

n+1
PDL
dA

n+2dA
n

PDL
dB

n+1
PDL
dB

n+2dB
n

cA
1 cA

2 cA
n cA

n+1 cA
n+2 cA

n+j

cB
1 cB

2 cB
n cB

n+1 cB
n+2 cB

n+k

PDL
dA

n+j

PDL
dB

n+k

PUF A:

PUF B:

dT
1 dT

2 dT
n

cT
1 cT

2 cT
n

Template
PUF:

Figure 3.4: Structures of PUF A and PUF B after matching using PDL.

After the previous steps, both PUF A and PUF B now are matched to the template PUF,

thus are expected to have the same challenge-response mapping function. The structures of

matched PUF A and PUF B are shown in Figure 3.4. Assume that PUF A has j additional

segments and PUF B has k additional segments implemented using PDL. Then k+ j should

equal to n according to our defined template PUF, where n is the size of the original PUF.

Now consider a random n-bit challenge CT is fed to the template PUF to generate a response

R. The key question is how to adjust the (n+ j)-bit challenge CA to be fed to PUF A and

the (n+ k)-bit challenge CB to be fed to PUF B to generate the same response R.

We take PUF A as an example to illustrate our challenge reassignment algorithm. We

start with the rightmost segmental delay difference dn+j
A and check the corresponding seg-

mental delay difference diT that dn+j
A is matched to in the template PUF. The segmental delay

difference diT , which equals to diB in PUF B should be the sum of dn+j
A and diA based on the

matching policy. Then according to the challenge CT , we check whether the segmental delay

difference diT contributes to the upper path or the lower path before the arbiter. Based on

the observed path P in the template PUF, we assign the (n+ j)th challenge bit Cn+j
A in CA

40

in such a way that dn+j
A also contributes to the same path P in PUF A. The above process

is repeated with all the rest segments in PUF A. Note that when we assign a challenge bit

to the ith segment in PUF A, all the bits after the ith segment have been assigned already.

Therefore, by assigning the ith challenge bit to either 0 or 1, according to Equation 3.2, the

delay difference in the segment contributes to either the upper path or the lower path. With

the above process, for any random challenge to the template PUF, we can find a matched

challenge to PUF A and another matched challenge to PUF B to make them all generate

the same response.

3.4.5 Discussion

The above PUF matching flow can be easily extended to the multi-party PUF matching.

As long as all the parties are synchronized with the template PUF, they can always add

new PDL segments and follow the same algorithm to reassign challenges for matching. This

provides the potential for message encryption/decryption between multiple parties.

The above matching process maintains the properties of standard PUFs. On one hand,

the extra area and delay overhead are reasonably small. In the case of matching two PUFs,

the total number of additional segments equals to n, which is the length of an original PUF.

On the other hand, the generated matched PUFs remain unclonable. Although an attacker

can reproduce the PDL segments by applying the same selection bits to the LUTs, he/she

is unable to duplicate the segments of the original PUF because of process variation. This

also explains the reason we can not directly use PDL to build a whole new PUF since then

the unclonability of the function will be compromised.

3.5 Implementation

We demonstrate our implementation and evaluation of the PDL-based PUF matching mech-

anism in this section. All implementations and measurements are on Spartan-6 XC6SLX45

FPGAs.

41

3.5.1 Delay Measurement Setup

In order to measure and verify the delay of PDL on the FPGA, we use the circuit describe

by Majzoobi et al [14]. The delay characterization circuit is shown in Figure 3.5. The entire

measurement system is constructed by three parts: circuit under test (CUT), flip-flops and

external modules.

Figure 3.5: Delay characterization circuit.

3.5.1.1 Circuit Under Test

Our objective is to measure the delay of PDL when providing different input vectors. How-

ever, such delays are too small to measure individually, thus a chain of LUTs is used as our

target CUT. We use on-board LUT6 to build our CUT and each LUT in the chain imple-

ments an inverter. To be specific, only the most significant selection bit fed to the LUT is

inverted and the remaining 5 bits are used as configuration bits to configure the internal

signal routing path inside the LUT. The configuration bits are identical for every LUT in

the CUT so that we are able to estimate individual delay by calculating CUT delay over the

number of LUTs. We measure the delays of CUT that consists of 10 LUTs when providing

all possible configuration bits from “00000” to “11111”.

3.5.1.2 Flip-flops

There are three D flip-flops used in the delay characterization circuit: launch flip-flop, sample

flip-flop, and capture flip-flop. All three flip-flops share the same clock signal generated by

a sweeping frequency function generator. The launch flip-flop generates a low-to-high signal

42

through the CUT at the rising edge of the clock. Then the signal arrives at the sample

flip-flop. If the signal arrives before the sampling action takes place (at the rising edge of

the clock) then the correct signal value is successfully sampled, otherwise, the sampled value

would be different indicating a timing error. Such a mismatch can be detected by a simple

XOR gate. If the sampled value and the correct signal value are the same, the XOR gate

would produce a 0 indicating no timing violation occurred. Otherwise, the capture flip-flop

will receive a 1 from the XOR gate indicating a timing error.

3.5.1.3 External Modules

There are two external modules used in the delay measurement process. A sweeping fre-

quency function generator is used to generate a square wave from 2MHz to 100MHz. We

then shift the frequency up by 32 times using the phased lock loop on the FPGA. For

each frequency, the generator produces a fixed number of 10,000 pulses which are used to

drive the flip-flops. A timing error catcher module takes the output of the capture flip-flop

and the clock signal as inputs and calculates the probability of a timing error occurrence.

By monitoring the timing error probability, the CUT delay can be inferred at picosecond

resolution.

3.5.2 Delay Measurement Results

We have measured the average delay of our CUT under 25 ◦C operating temperature and

then calculate the individual LUT delay. Figure 3.6a shows the delay difference between

any pair of selection bits. Figure 3.6b demonstrates the hamming distance between selection

bits.

The largest difference is approximately 11 ps, which occurs between selection bits 00000

and 11111. This case is found at location (x,y) = (0,31) and location (31,0) in Figure 3.6a.

We also notice that some patterns shown in Figure 3.6a can be observed in Figure 3.6b.

In many cases, if the two configuration vectors have a large delay difference in PDL, these

43

two vectors will also have a large hamming distance. We believe this is a valid observation

because large hamming distance indicates that the corresponding internal signal paths share

very few common routes, consequently it is more likely to generate a larger delay difference.

(a) (b)

Figure 3.6: (a) The absolute value of delay difference between any pair of selection bits (00000 to

11111). Delay difference unit: ps. (b) The hamming distance between all pairs of selection bits.

3.5.3 Process Variation

Process variation is not avoidable when we measure delays at picosecond resolution. We have

run experiments on 3 difference FPGA boards as well as different locations on each board

to test the effect of process variation. We have measured the delays of PDL on 5 different

locations on each board when providing 00000 and 11111 as configuration bits. The average

delays of PDL on three boards are compared and presented in Table 3.1. The results indicate

that despite the delays under the same selection bits of the three FPGAs are distinctive, the

delay difference between 00000 and 11111 is relatively stable.

00000 (ns) 11111 (ns) Difference (ns)
FPGA 1 1.253 1.265 0.012
FPGA 2 1.248 1.259 0.011
FPGA 3 1.257 1.267 0.010

Table 3.1: Delay measurement results on three different FPGAs.

Based on our measurement, we believe it is safe to assume that the time difference

44

between different routes within PDL is larger than the difference caused by the effect of

process variation.

3.6 Results

We implement our PDL-based PUF matching platform on Spartan-6 XC6SLX45 FPGAs.

We first test the matching accuracy of our matching scheme. We then examine the system

overhead to prove that our design is lightweight.

3.6.1 Matching Accuracy

When applying the same challenge vector to a pair of matched PUFs, the probability that

the two PUFs generate the same response is defined as matching accuracy.

We follow our proposed matching scheme to implement and match two 64-bit PUFs. We

have generated 1,000,000 random challenges and applied them to the two PUFs. The test

is repeated 10 times and the average matching accuracy reaches 98.64%. Compared to the

PUF emulation result in Table 2.2, the accuracy has been significantly improved.

3.6.2 System Overhead

We measure the delay, area and energy consumption for the PDL-based PUF matching

platform and show the results in Table 3.2. Note that we have measured the average overhead

of a single PUF owner in our matching scheme. We further compare our design with several

popular low energy block ciphers as shown in Table 3.3. The comparison indicates that our

design is competitive regarding the size of the design while is the best in terms of energy

consumption (due to small delay overhead).

45

Type Overhead
LUTs 196
Slices 145
Max Delay (ns) 116.712
Energy (µJ) 9.54×10−4

Table 3.2: The overhead of PDL-based matched PUF.

Type Energy(µJ) LUTs
TinyXTEA-3 [23] 5.45×10−3 364
Present [23] 3.16×10−3 159
HIGHTs [23] 1.07×10−3 132
Matched PUF using PDL 9.54×10−4 196

Table 3.3: The energy and the area overhead comparison.

Statistical Test Lowest Success Ratio
Frequency 100%

Block Frequency (m=128) 97.6%
Cusum-Forward 98.1%
Cusum-Reverse 98.3%

Runs 98.5%
Longest Runs of Ones 96.5%

Rank 98.2%
Spectral DFT 95.6%

Non-overlapping Templates (m = 9) 95.9%
Universal 100%

Approximate Entropy (m = 8) 96.5%
Rand. Excursions (x = 1) 98.2%

Rand. Excursions Variant (x = −1) 97.6%
Serial (m = 16) 98.7%

Linear Complexity (M = 500) 97.8%

Table 3.4: The average success ratio for the NIST statistical test suite. The test passes for p-

value≥ σ, where σ is 0.01.

3.6.3 Randomness Test

As a security primitive, the output randomness is an important criteria to evaluate the

security property. We quantify the statistical randomness of the matched PUF outputs by

applying the industry-standard statistical test suite of the National Institute of Standards

46

and Technology (NIST) [24]. We generate a stream of outputs in the following way: a

random seed is used as the primary inputs to the matched PUF after configuration and

the corresponding outputs are generated. In each subsequent clock cycle, the outputs are

first shuffled and then XORed with the previous inputs to generate the inputs for the next

clock cycle. We repeat the process until we have collected enough outputs required by the

benchmark suite. For each test, we use 10 instances of matched PUFs, the results in Table

3.4 show the lowest passing ratio of each subtest over all the instances.

3.7 Summary

In this chapter, we have proposed an ultra-low energy PUF matching scheme by using PDL.

Our core idea is to modify/add arbiter PUF segments in such a way that multiple PUFs have

the same challenge-response mapping function. On the top of our PUF matching platform, a

variety of low overhead security protocols between multiple parties are enabled. Furthermore,

we have implemented our design on the Spartan-6 FPGA platform. The experiment results

indicate that our design allows the PUFs to be matched with high accuracy while requiring

ultra-low energy and area overhead.

47

CHAPTER 4

Ultra-low Energy Public Key Communication using

Digital Bimodal Function

4.1 Motivation and Problem Formulation

Classic algorithmic cryptography has been widely used in the past few decades, covering

both private key and public key communications. However, due to its relatively slow speed,

high energy consumption, and large hardware footprint, it is not well suited for the IoT

devices. It is also often susceptible to side channel and physical attacks. Furthermore,

classic cryptographic algorithms have only been retrofitted for emerging tasks such as remote

trusted sensing and computation, but are not optimized in terms of energy and speed for

such applications.

On the other hand, new types of security primitives are proposed and analyzed. Many

of them are specifically designed to meet the requirements of modern systems. However,

with most efforts made to apply the above security primitives to private key communication,

public key cryptography is still a domain that is rarely addressed. Some previous efforts to

improve the speed and energy of public key communication include the following. A compact

implementation of RSA on FPGA is proposed by Oksuzoglu et al. [25]. While it is novel

to combine RSA with FPGA, the design is still highly restricted by the algorithmic flow of

RSA, preventing a larger save in energy. The other effort is related to PUF. A derivative

of PUF called public PUF is designed by Beckmann et al. [26] to be used for public key

cryptography. A problem of the design is that it requires a lot of computational efforts for

at least one involved party (normally are the parties who use public key since they need to

48

simulate the original PUF).

The objective of this chapter is to design and implement a new type of security primitive

named digital bimodal function (DBF) that allows ultra-low energy consumption for all the

legitimate parties in public key communication. The key idea of DBFs is to have a set of

Boolean functions presented in two forms, fcompact and fexpanded, with which fcompact can be

calculated ultra-fast and low-energy while fexpanded is the opposite. We then take advantage

of the above difference and use the two forms separately as the private key and the public

key in the protocol. The properties of DBFs are summarized as following.

• Low-energy consumption for all involved parties in public key communication.

• Small-area implementation on FPGA.

• Excellent security properties in terms of confusion and diffusion.

The rest chapter is organized in the following way. We start with a motivational example

of the DBF. Then we formally explain its design and architecture. Afterwards, we analyze

the security properties of DBFs by applying various statistical tests. Lastly, we discuss how

to apply DBFs on the public key communication protocol and compare its overhead with

other popular cryptographic approaches.

4.2 A Motivational Example

A DBF is defined as a set of randomly generated Boolean functions that have two forms:

fcompact and fexpanded. Given the same inputs, both forms generate the same outputs, however,

the size and calculation expense vary greatly between the two. We design these functions such

that fcompact can be computed rapidly and with only a small amount of energy, while fexpanded

can only be computed using an exponentially higher amount of energy, hardware resources,

and longer time. The functions are naturally designed to enable public key communication

where fcompact is used as the private key and fexpanded is used as the public key.

49

Inputs : A = {a0, a1, a2, a3, a4, a5, a6, a7}
Outputs : C = {c0, c1, c2, c3, c4, c5, c6, c7}

fcompact1

b0 = a′0a3 + a2a

′
6 b4 = a′3a

′
4 + a5a7

b1 = a1a7 + a4a5 + a′1a
′
4 b5 = a2a6 + a4a

′
5 + a′5a

′
6

b2 = a′0a
′
2 + a3a

′
6 b6 = a3a

′
5 + a′2a7

b3 = a4a6 + a1a7 b7 = a′3a7 + a5a
′
6 + a′3a

′
5

(4.1)

fcompact2

c0 = b′0b3 + b2b

′
6 c4 = b′3b

′
4 + b5b7

c1 = b1b7 + b4b5 + b′1b
′
4 c5 = b2b6 + b4b

′
5 + b′5b

′
6

c2 = b′0b
′
2 + b3b

′
6 c6 = b3b

′
5 + b′2b7

c3 = b4b6 + b1b7 c7 = b′3b7 + b5b
′
6 + b′3b

′
5

(4.2)

fexpanded

c0 = a0a1a6a7 + a0a1a
′
2a7 + a0a4a6 + a1a

′
2a
′
3a7 + a1a

′
3a6a7 + a2a3a5a

′
6

+ a3a5a
′
6a
′
7 + a′0a

′
2a5a7 + a′0a

′
2a
′
3a
′
7 + a′3a4a6

c1 = a1a3a
′
4a
′
7 + a1a

′
5a
′
6a
′
7 + a2a5a7 + a2a

′
3a
′
4a6 + a3a5a

′
6 + a4a5a

′
6 + a4a

′
5a
′
7

+ a′1a4a
′
5 + a′1a5a

′
6 + a′1a

′
3a
′
5 + a′3a7

c2 = a4a5a6a
′
7 + a0a

′
2a
′
3 + a1a2a5a7 + a2a

′
3a6 + a2a4a5a6 + a0a6 + a′3a4a6a

′
7

+ a1a2a
′
3a7

c3 = a1a
′
3a7 + a4a5a

′
6 + a5a

′
6a7 + a′1a5a

′
6 + a′1a

′
3a
′
4a
′
5 + a′3a5a7 + a′2a5a7

c4 = a2a
′
3a6a7 + a2a

′
4a
′
5a
′
7 + a3a

′
4a
′
7 + a4a

′
6a
′
7 + a′1a3a

′
4a
′
5 + a′1a

′
5a
′
6 + a′3a4a

′
5

+ a′3a
′
5a
′
6

c5 = a3a
′
6 + a5a

′
6 + a′0a

′
2a3 + a′0a

′
2a7 + a′2a5 + a′2a

′
3a
′
4a6

c6 = a0a
′
3a7 + a0a

′
3a
′
5 + a0a

′
3a
′
6 + a1a5a

′
6a7 + a1a

′
2a
′
4a6a7 + a2a

′
3a7 + a2a

′
3a
′
5

+ a2a
′
3a
′
6 + a′2a4a5a6

c7 = a2a5a6 + a2a
′
3a
′
5 + a5a

′
6a
′
7 + a′1a5a

′
6 + a′1a

′
2a
′
4a6 + a′1a

′
3a
′
6 + a′2a

′
4a6a

′
7

+ a′3a
′
5a
′
7

(4.3)

We present a motivational example consisting of Equations 4.1, 4.2, and 4.3, which

comprise a DBF. In this example, each sub-function, bi, in Equation 4.1 is created by selecting

four inputs from A at random, enumerating a subset of the minterms, and minimizing the

resulting switching function. Each sub-function, ci, in Equation 4.2 is created by duplicating

the structure of the corresponding sub-function in Equation 4.1, selecting four bi variables

at random, and mapping them as inputs to each ci.

By substituting Equation 4.1 into Equation 4.2, we create new equations for each ci as

50

functions of A. We minimize the switching function, resulting in fexpanded listed in Equation

4.3. This substitution and expansion create a larger function with more operations than

the original fcompact functions even after minimization. Note that together, fcompact1 and

fcompact2 produce the same outputs as fexpanded, but are much more compact in size than

the algebraically simplified fexpanded. In this example, both fcompact1 and fcompact2 together

require a total of 38 AND operations and 22 OR operations while fexpanded requires 156 AND

operations and 59 OR operations.

While Equations 4.1, 4.2, and 4.3 offer insight into how substitutions and expansions can

create large size difference between fcompact and fexpanded, our example only uses eight inputs

and two levels of sub-functions in fcompact for substitution (from fcompact1 into fcompact2). To

show the impact of using more inputs and levels of sub-functions in fcompact, we test and

compare fcompact and fexpanded of larger DBFs. We define our DBF setting for comparisons

as following.

1. Both fcompact and fexpanded are in the form of a simplified sum of products and are

compared with the total number of products. In our motivating example, fcompact

contains 38 product terms and fexpanded contains 67 product terms.

2. Each sub-function in fcompact has at most four input variables. This purposefully limits

the size of fcompact.

3. The number of outputs is the same as the number of inputs in each sub-function level

of fcompact. In the motivational example, i ∈ {0, 1, ...7} for all ai, bi, and ci.

4. The number of sub-function levels is set to be the half of the number of inputs.

Based on the above setting, we randomly generate a group of functions defining fcompact

and subsequently generate the corresponding fexpanded expression.

The difference in computation complexity between fcompact and fexpanded can be deter-

mined by comparing their size differences in the form of their number of products. Table

4.1 shows the comparison result based on 10 instances of randomly generated DBFs. The

51

Sub-function levels Inputs
Avg. # of Products

(fcompact)
Avg. # of Products

(fexpanded)
4 8 92.7± 11.2 259± 16
5 10 143.4± 15.4 766± 69
6 12 207.6± 21.2 3820± 250
7 14 273.5± 26.5 11 500± 760
8 16 368.9± 31.6 49 200± 2700
9 18 468.5± 34.8 142 000± 7500
10 20 578.0± 46.1 370 000± 19 000

Table 4.1: Size comparison between fcompact and fexpanded.

number of products in fcompact grows polynomially as inputs and sub-function levels increase,

while the number of products in fexpanded grows exponentially. For example, when the num-

ber of inputs is 8, the average number of products in fexpanded is approximately 3× larger

than the average number of products in fcompact, while for 20 inputs, the average number

of products in fexpanded is 640× larger. By increasing the number of inputs as well as the

number of sub-function levels proportionally, it is very easy to create a huge size gap between

fcompact and fexpanded.

4.3 DBF Architecture on the FPGA

We use FPGA as the platform to implement our DBF. The goal is to design a low energy,

low delay, and small area implementation of fcompact while demonstrating that there does

not exist a fast and compact implementation of fexpanded, thus ensuring that it can only be

simulated with a large overhead.

4.3.1 fcompact Implementation

The configurable logic blocks (CLBs) in FPGA containing LUTs and flip-flops are the fun-

damental logic units we are using. For a 4-input LUT, the relation between its inputs

(a0, a1, a2, a3) and output (b) can be expressed by a Boolean function b = f(a0, a1, a2, a3).

Each sub-function in Equation 4.1 and Equation 4.2 is a Boolean function with four

52

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

a3 a4 a5 a7

b4

a2 a4 a5 a6

b5

a2 a3 a5 a7

b6

a3 a5 a6 a7

b7

a0 a2 a3 a6

b0

a1 a4 a5 a7

b1

a0 a2 a3 a6

b2

a1 a4 a6 a7

b3

a[0:7]

b3 b4 b5 b7

c4

b2 b4 b5 b6

c5

b2 b3 b5 b7

c6

b3 b5 b6 b7

c7

b0 b2 b3 b6

c0

b1 b4 b5 b7

c1

b0 b2 b3 b6

c2

b1 b4 b6 b7

c3

b[0:7]

c[0:7]

Level 1

Level 2

Figure 4.1: Combinational logic implementing fcompact1 and fcompact2 .

inputs, thus it can be expressed using a LUT. Therefore, we can use eight 4-input LUTs to

implement fcompact1 and another eight to implement fcompact2 . The structure is depicted in

Figure 4.1.

To extend our motivational example to a more general case, any fcompact that consists

of multiple levels of Boolean functions can be implemented using a similar LUT network.

With the above architecture, each sub-function level in fcompact requires an additional level

of LUTs.

4.3.2 Synthesis Analysis of fexpanded

We show that there does not exist a fast and compact implementation of fexpanded on FPGA.

For a randomly generated fcompact, we calculate the corresponding fexpanded. Then we use

the Xilinx ISE design suite to synthesize the function mappings of fexpanded and compare the

resources it requires with that of fcompact. Table 4.2 enumerates the amount of resources for

fcompact and fexpanded under varying numbers of inputs and sub-function levels. The number

of LUTs of fexpanded increases exponentially with the linear growth of the number of inputs

and the sub-function levels of fcompact.

53

Sub-function levels Inputs
fcompact

(LUTs)
fexpanded
(LUTs)

4 8 32 81
5 10 50 396
6 12 72 1,620
7 14 98 4,350
8 16 128 13,600
9 18 162 31,200
10 20 200 98,300

Table 4.2: Average number of LUTs required for a DBF with particular input sizes and sub-function

levels of fcompact synthesized using the Xilinx ISE design suite.

4.3.3 Time Gap Between fcompact and fexpanded

Because of the huge hardware resources that fexpanded requires, implementing a system with

a standard cryptographic size (e.g., 64-bit input) representing fexpanded is unrealistic. Hence,

with large DBFs, we can only simulate fexpanded. This further separates the time difference

between the FPGA implementation of fcompact and the simulation of fexpanded. Table 4.3

provides a comparison of the two. The huge time gap between the two function forms

naturally enables the application of public key communication. We demonstrate the detailed

protocol in Section 4.6.

Sub-function levels Inputs
fcompact

(implemented)
fexpanded

(simulated)
4 8 29.2± 3.7 (1.18± 0.08)× 104

5 10 37.0± 4.0 (4.33± 0.49)× 104

6 12 45.1± 5.5 (1.63± 0.12)× 105

7 14 53.9± 5.5 (5.77± 0.48)× 105

8 16 61.4± 6.5 (2.31± 0.25)× 106

9 18 69.5± 7.4 (6.75± 0.49)× 106

10 20 77.2± 8.0 (1.61± 0.19)× 107

Table 4.3: Average execution time (measured in nanoseconds) for fcompact and fexpanded.

54

4.4 DBF Design Optimization

With our basic architecture of DBFs proposed in the previous section, there still exist many

detailed design questions unanswered regarding the DBFs. We list the following ones.

• Is it possible to design a sequential DBF?

• What is the desired size of a DBF?

• What is the optimal way to interconnect the LUTs of a DBF?

• How to initialize the LUT contents of a DBF?

In the following part of this section, we discuss each of the above questions. Meanwhile,

we consider three major criteria when answering each question, respectively energy mini-

mization, footprint reduction, and security enhancement. By finding the solution of each

question that fits best for all the criteria, our goal is to picture an optimized DBF structure.

The experimental results that are related to each question will be presented in Section 4.5.

4.4.1 DBF Size

There are two size parameters of the DBF design that need to be decided. The first is the

number of input variables, and the second is the number of sub-function levels in fcompact. As

for the prior, a larger number of inputs usually represent a more secure system. In the case

of DBFs, the time consumption to calculate fcompact grows polynomially with the number of

inputs while the time overhead to calculate fexpanded grows exponentially. Thus it is ideal

to increase the number of inputs of a DBF because a larger gap between the two function

forms is more beneficial for the design of the public key protocol.

On the other hand, it is more challenging to decide what is the desired number of sub-

function levels of a DBF. Now we assume that the number of inputs of a DBF is m. If

we consider the DBF as a set of Boolean functions, the maximum number of minterms of

each output function is 2m. In other words, no matter how many levels of sub-functions are

55

applied, there is an upper bound for the size of fexpanded to reach if m is set. As a result,

after a certain point, increasing the number of sub-function levels will no longer increase the

security of DBFs. The best-suited number of sub-function levels for any given m can be

found out experimentally.

4.4.2 A Sequential DBF

An observation from the motivational example is that fcompact1 and fcompact2 employ the same

function format with the only change of the variable names. Hence, there is actually no need

to use two levels of LUTs to implement the fcompact. An alternative design is shown in Figure

4.2 which only requires a total of eight 4-input LUTs to implement the fcompact. In the first

cycle, fcompact1 is computed and the outputs of that cycle are mapped as inputs to the next

cycle, which computes fcompact2 .

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

flip-flops

Figure 4.2: Sequential logic implementing fcompact. At initialization, input variables (e.g. ai) are

loaded into the flip-flops. The outputs of the previous cycle are mapped as inputs for the next

cycle.

The sequential logic design is more advantageous than the combinational architecture

in terms of the hardware footprint. For a DBF with N sub-function levels, the sequential

design reduces the number of required LUTs by N times. However, a security concern of

sequential DBFs is that without changing the format of functions in each level, the outputs of

a sequential DBF can become more predictable and less random. We leave more quantitative

security analysis to Section 4.5.

56

4.4.3 DBF Connections

For a DBF implemented in combinational logic as shown in Figure 4.1, a most straightforward

way of interconnecting LUTs is to have all the inputs of level i LUTs from the outputs of

level i − 1 LUTs. However, there are ways to increase the complexity of connection, e.g.,

feedforward and feedback structures. In the feedforward structure, the inputs of level i LUTs

are from all the previous LUT levels instead of only level i − 1. In the feedback structure,

the key idea is that the outputs from higher LUT levels (level i+ 1 etc.) can be feedback as

the inputs of previous LUT levels (level i etc.) in the next cycle of computation.

Both the feedforward and feedback structures increase the variety of DBFs without chang-

ing the area and energy cost. Consider an attacker who tries to break a DBF by brute

forcefully simulating all possible LUT interconnections. With the possibility of feedforward

and feedback structures, he/she has exponentially more interconnections to simulate. Thus

we conclude that feedforward and feedback connections are powerful against brute force sim-

ulation attacks. We will discuss their performance against more types of attacks through

experiments in the next section.

4.4.4 DBF Initialization

The Boolean functions in fcompact are implemented using LUTs on FPGA. The way we ini-

tialize the LUT contents directly decides the functionality of the DBF. An intuitive proposal

is to initialize all the LUT cells in a completely random way. However, a concern with totally

random assignment is that a frequency bias of 0s and 1s may appear at the outputs of the

DBF. For example, for a LUT with 6 selection bits, 26 = 64 cells need to be initialized.

While the perfect case for random initialization is to have half 1s and half 0s among the 64

cells, the real scenario can be far from perfect. Consider a LUT has more cells with 1s than

with 0s, its output will have a larger probability to be 1 rather than 0 if we assume every cell

has an equal chance to be selected. From an attacker’s point of view, after collecting some

historical outputs of the LUT, he/she can easily observe the existence of the frequency bias,

57

thus he/she can now predict the LUT output correctly with a probability of more than 0.5.

The above problem can be leveraged by adding restrictions on the LUTs’ initialization.

Still take a 6 selection bit LUT as an example, during the initialization, if we enforce that

half LUT cells need to be assigned to 1s and the other half to 0s, the frequency bias problem

will no longer exist. The drawback of the above approach is that it will exponentially reduce

the solution space of the LUT initialization. In other words, an attacker can try fewer times

if he/she wants to brute forcefully discover the contents of the LUT.

4.5 Security Analysis

In this section, we explore the resilience of DBFs against a variety of potential statistical

attacks. We first propose a few security tests we will use for the evaluation. Then we present

the experimental results on DBFs. We also experiment to explore the effect of DBF structure

optimization proposed in the previous section.

4.5.1 Security Tests

Confusion and diffusion are the two most important criteria for security ciphers [27]. Confu-

sion refers that the relation between the inputs and the outputs of a security cipher should

be as non-linear as possible. On the other hand, diffusion suggests that when the inputs

to a security cipher change by a smallest amount (e.g., one bit), the corresponding outputs

should change completely in a pseudo-random way. To test the confusion and the diffusion

of DBFs, we have designed the following three standards.

4.5.1.1 Conditional Correlation

This standard represents the confusion of DBFs. The basic idea is to build a bitwise correla-

tion model via the construction of per-bit input-output and per-bit output-output conditional

probability distributions. To be more specific, by observing some historical inputs-outputs

58

of a DBF, a potential attacker targets to build a model that calculates P (Oi = c1|Ij = c2)

and P (Oi = c1|Oj = c2), where Oi is an output bit i, Ij is an input bit j, and c1 and c2

are 0 or 1. Assume that there exists some correlation between an input bit and an output

bit, then attackers can predict the output bit by observing the corresponding input bit, and

success with a probability of more than 0.5. The ideal secure system will have a probability

of approximately 0.5 for all conditions.

4.5.1.2 Avalanche Effect

We use avalanche effect to test the diffusion of a DBF. If the avalanche effect is evident in a

cryptographic system, then there is an ultra low probability that an attacker can predict any

subsequent outputs using the knowledge of outputs of similar inputs. The avalanche effect

can be measured by observing the hamming distance between the corresponding outputs of

two inputs which differ by a minimal amount. In the case of our DBF, the minimal amount

is one bit. For a cipher with perfect diffusion, the distribution of output hamming distance

should form a normal distribution.

4.5.1.3 Frequency Prediction

A special case of the conditional correlation test is not to consider the conditions, but only to

calculate the probability that an output bit is 1 or 0. A potential attacker can build a model

to predict P (Oi = c), where c = 0 or 1. A frequency biased output bit can be dangerous

as an attacker can extract a part of output information with a high probability purely by

guessing the more frequent case. An ideal secure system will produce each output bit as 0

or 1 with an equal chance.

4.5.2 Test Results on Standard DBFs

We present the security test results on a standard DBF. The setting of a standard DBF

is defined as following. The DBF has 64 inputs and 64 outputs. All the LUT contents

59

are randomly initialized without controlling the frequency of 1s and 0s. It is a combina-

tional DBF with 32 levels of LUTs neither using feedforward nor feedback structures. The

interconnection between LUTs is assigned in a completely random way.

We start with the test of conditional probabilities. Figures 4.3a and 4.3b depict the

P (Oi = 1|Ij = 1) and P (Oi = 1|Oj = 1) for a single DBF instance. The first observation

is that most of the probabilities stay close to 0.5. Secondly, we can clearly see the pattern

of horizontal lines with similar colors in the colormap, which suggests that each output bit

does not have a particularly strong correlation with any input bits or the other output bits.

The avalanche effect is measured with the hamming distance between output vectors

when changing one bit of the input vector. Ideally, the distribution of output differences

should form a normal distribution with the peak centered over 32. The avalanche effect result

of DBFs is depicted in Figure 4.3c. It is the average result over 100 randomly generated

standard DBFs. Each DBF is tested with 100,000 pairs of randomly generated input vectors.

The curve in the figure shows a nearly perfect normal distribution, indicating that our DBF

has an excellent property of diffusion.

Lastly, Figure 4.3d presents our investigation of the output frequency. We can see that

each output bit has a frequency centered close to 0.5, indicating a low probability of a

successful attack via frequency prediction. The error bars also suggest that for a single DBF

instance, some output bits indeed have frequency bias due to the random initialization on

the DBF LUTs.

4.5.3 Comparisons of DBF Optimizations

We aim to experimentally analyze the performance of different DBF optimization techniques.

We consider the 3 security tests listed in section 4.5.1. To facilitate presenting and comparing

results, instead of plotting figures, we choose to calculate a quantitative result value for each

test. The calculated value should serve as an indicator of the performance on the test. Our

selected presenting value for each test is shown as below.

60

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i
P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10 20 30 40 50 60

10

20

30

40

50

60

Output Oj

O
ut

pu
t O

i

P(Oi=1|Oj=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

0.
00

0.
05

0.
10

0.
15

Output Hamming Distance

R
el

at
iv

e
F

re
qu

en
cy

(c)

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Output Oi

P
(O

i=
1)

(d)

Figure 4.3: (a) Conditional probability P (Oi = 1|Ij = 1) for a single DBF instance. (b) Conditional

probability P (Oi = 1|Oj = 1) for a single DBF instance. (c) Distribution of output hamming

distance when changing the input by one bit. Error bars represent maximum, 75th percentile,

mean, 25th percentile, and min. (d) Probability that an output bit equals to 1.

• Conditional correlation (input-output): average pair-wise correlation of P (Oi = 1|Ij =

1). Ideal case: 0.5.

• Conditional correlation (output-output): average pair-wise correlation of P (Oi = 1|Oj =

1)(i 6= j). Ideal case: 0.5.

61

• Avalanche effect: average output hamming distance when flipping 1 bit of the input

vector. Ideal case: 32.

• Frequency prediction: average output frequency of P (Oi = 1). Ideal case: 0.5.

Each value is tested on 100 randomly generated DBF instances. We have calculated the

average value of each test together with the standard deviation (the values presented in the

table are the average of average). We consider 4 optimized DBF derivatives respectively

sequential DBF, feedforward DBF, feedback DBF, and equal 1s/0s DBF. To facilitate the

comparison, we only change one DBF property per derivative. For example, the only change

from the standard DBF to the sequential DBF is the switch from the combinational structure

to the sequential structure. Meanwhile, all the rest properties of the standard DBF remain

unchanged in the sequential DBF. The results are shown in Table 4.4 (see the last page

of this chapter). Note that the sub-function levels for sequential DBF refer the number of

cycles as the sequential DBF only has a single level of LUTs. For the equal 1s/0s DBF, we

restrict the initialization of LUTs in such a way that each LUT in the DBF has an equal

number of 1s and 0s in its cells. But the positions of 1s and 0s are randomly assigned. We

have the following observations based on Table 4.4.

First of all, increasing the number of sub-function levels in the standard DBF can improve

avalanche effect. However, the improvement becomes less significant as the number of sub-

function levels increases. For example, from 4 levels to 8 levels, the average hamming distance

increases from 13.9 to 25.1. Meanwhile, from 16 levels to 32 levels, the average hamming

distance only increases from 28.4 to 29.1.

Secondly, the sequential DBF has a very similar security performance compared to the

standard DBF. In other words, the change from the combinational structure to the sequential

structure does not compromise the DBF security.

Thirdly, the feedforward and feedback structures improve the DBF security in terms of

the avalanche effect. Especially, with the feedback structure, the average hamming distance

of avalanche effect reaches almost the ideal value 32.

62

Lastly, although restricting an equal number of 1s and 0s in LUTs comprises the solu-

tion space, the equal 0s/1s DBF derivative indeed has the best performance regarding the

conditional correlation and the output frequency prediction. The standard deviations in

both tests are the smallest, which indicates equal 1s/0s DBF are the most consistent against

conditional attacks and frequency attacks.

4.6 Public Key Communication

In this section we present the DBF based public key communication protocol and analyze

its performance. We present the following definitions for use in our discussion:

• Kpriv: the private key represented by fcompact.

• Kpub: the public key represented by fexpanded.

• Alice: the owner of Kpriv.

• Bob: the communicating party.

• TTP: the trusted third party that administrates Kpub.

Protocol 1 presents the flow of public key communication. Kpriv exists only as an imple-

mentation of fcompact on an FPGA from which fexpanded is constructed. Kpub resides with the

TTP and is stored in two forms: as a set of sum of products (SOP), and as a set of product

of sums (POS). Assume that Kpub consists of sub-functions fi, where i ∈ {1, 2, ..., t}. When

a party, such as Bob, requests access to Kpub he can request individual product terms from

the SOP representation or individual sum terms from the POS representation. With these

products and sums, he constructs the binary vectors to encrypt his message.

We have two reasons to use the TTP to store Kpub. The first is that fexpanded as the Kpub

is huge in size which requires a considerable amount of storage. Meanwhile, to communicate

with Alice, Bob only needs a very small portion of fexpanded. TTP significantly reduces Bob’s

63

Protocol 1 Public Key Communication

1: for j ∈ {1, 2, ..., N} do

2: Bob chooses a random binary vector, r, of length t.

3: Rj = r

4: for i ∈ {1, 2, ..., t} do

5: if ri == 1 then

6: Bob selects one product at random from the SOP form of fi in Kpub.

7: Using the selected product, Bob generates a binary input vector pi such that

ri = fi(pi) = 1.

8: else if ri == 0 then

9: Bob selects one sum at random from the POS form of fi in Kpub.

10: Using the selected sum, Bob generates a binary input vector pi such that ri =

fi(pi) = 0.

11: end if

12: Bob flattens and appends pi onto Pj such that Pj = p1p2...pi.

13: end for

14: end for

15: Bob calculates E = m ⊕ R1 ⊕ R2 ⊕ ... ⊕ RN, where m is the message Bob wishes to

transmit securely.

16: Bob broadcasts E and all Pj, j ∈ {1, 2, ..., N}.
17: for j ∈ {1, 2, ..., N} do

18: for pi in Pj do

19: Alice computes ri = fi(pi) using Kpriv.

20: Alice appends ri onto Rj such that Rj = r1r2...ri.

21: end for

22: end for

23: Alice computes m = E ⊕R1 ⊕R2 ⊕ ...⊕RN.

memory footprint requirements. The second reason is that attackers need the whole fexpanded

to simulate and decrypt the message. However, with TTP, no other party owns a complete

copy of fexpanded. It will create the difficulty for attackers to collect all the pieces of fexpanded.

64

4.6.1 Execution Time Gap

Protocol 1 takes advantage of the calculation time difference between fcompact and fexpanded.

Because Kpub is so large, only the owner of the physical device, Kpriv, can calculate Rj, j ∈

{1, 2, ..., N} given E and Pj, j ∈ {1, 2, ..., N}, in a short amount of time. In order to suc-

cessfully attack this protocol, an attacker would need to simulate the sub-functions in Kpub

in order to compute ri, i ∈ {1, 2, ..., t} for each Rj, j ∈ {1, 2, ..., N}. However, as previously

discussed in Section 4.3.3, the calculation of fexpanded via simulation takes an exponentially

longer time than calculation of fcompact via implementation.

We estimate the decryption time gap between the private key holder and the attacker.

Suppose that the private key holder uses a sequential DBF with 64 inputs and 32 cycles

to implement fcompact and the attacker simulates the corresponding fexpanded. Since the

full simulation of fexpanded is too expensive to execute, we estimate its timing overhead by

extrapolating on our experimental simulations times in Table 4.3. We fit an exponential

model to the lower bounds of our experimental results with an R2 value of 0.9961. Using

this model, we compute the estimated simulation time of fexpanded to be approximately

1.16 × 1019ns, which corresponds to about 370 years. Meanwhile, the implementation of

fcompact only takes approximately 239ns.

The previous estimation assumes that the simulation is executed sequentially. In order

to combat the possibility that an attacker utilizes parallel computation to reduce the total

time, we increase the number of rounds, N . If we increase the rounds to 103, this changes

the private key calculation time to 239 × 103 = 2.39 × 105ns, while an attacker must now

attempt to parallelize 370× 103 years worth of computation.

4.6.2 Performance Comparison

We measure the overall performance of the DBF by evaluating and comparing its speed

and energy consumption against other existing and similar cryptographic systems. Table

4.5 compares the DBF against traditional hardware-based block ciphers (private key) and

65

hardware-based implementations of RSA (public key). In the table, the overhead is presented

on the side of the private key holder who uses the physical implementation of fcompact to

decrypt the message. The encryption party’s overhead is almost negligible as the only thing

he/she has to do is to select and create N binary vectors. The energy result of sequential

DBF is retrieved using Xilinx power estimator (XPE). Based on the table, the DBF is orders

of magnitude more compact in area, faster in speed, and more energy efficient than RSA

(and is even competitive to the energy efficiency of secret key block ciphers).

4.7 Summary

We have developed and evaluated the DBF, an ultra low energy cryptographic primitive that

enables public key communication. The proposed protocol requires low energy consumption

for all legitimately involved parties. The primitive is composed of two forms of Boolean

functions, one is created in a compact format and has a low-energy FPGA implementation

while the other is ultra complex for both implementation and simulation. Our experimental

result concludes that the DBF exhibits excellent statistical properties as well as a resilience

to a variety of security attacks. A comprehensive performance evaluation further indicates

that the energy consumption, area footprint, and speed of DBFs outmatch current public

key cryptographic hardware implementations.

66

D
B

F
se

tt
in

g
s

C
or

re
la

ti
on

C
or

re
la

ti
on

A
va

la
n

ch
e

cr
it

er
io

n
F

re
q
u

en
cy

D
es

ig
n

In
p

u
ts

S
u

b
-f

u
n

ct
io

n
le

ve
ls

(i
n

p
u

t-
ou

tp
u

t)
(o

u
tp

u
t-

ou
tp

u
t)

(h
a
m

m
in

g
d

is
ta

n
ce

)

S
ta

n
d

a
rd

D
B

F
s

64
4

0.
50
±

0.
09

0.
50
±

0.
10

13
.9
±

1
.6

0
.5

0±
0
.0

8
S

ta
n

d
a
rd

D
B

F
s

64
8

0.
50
±

0.
10

0.
50
±

0.
10

25
.1
±

1
.5

0
.5

0±
0
.0

9
S

ta
n

d
a
rd

D
B

F
s

64
16

0.
50
±

0.
08

0.
50
±

0.
09

28
.4
±

1
.1

0
.5

0±
0
.0

7
S

ta
n

d
a
rd

D
B

F
s

64
32

0.
50
±

0.
08

0.
50
±

0.
08

29
.1
±

1
.3

0
.5

0±
0
.0

8

S
eq

u
en

ti
a
l

D
B

F
s

64
32

(c
y
cl

es
)

0.
50
±

0.
09

0.
50
±

0.
08

28
.8
±

1
.5

0
.5

0±
0
.0

9
F

ee
d

fo
rw

ar
d

D
B

F
s

64
32

0.
50
±

0.
09

0.
50
±

0.
07

29
.9
±

1
.4

0
.5

0±
0
.0

9
F

ee
d

b
a
ck

D
B

F
s

64
32

0.
50
±

0.
08

0.
50
±

0.
08

3
1
.1
±
1
.2

0
.5

0±
0
.0

7
E

q
u

a
l

1
s/

0s
D

B
F

s
64

32
0
.5
0
±
0
.0
3

0
.5
0
±
0
.0
2

29
.0
±

1
.3

0
.5
0
±
0
.0
2

T
ab

le
4.

4:
S

ec
u

ri
ty

co
m

p
ar

is
on

s
of

d
iff

er
en

t
D

B
F

op
ti

m
iz

at
io

n
s.

D
es

ig
n

F
li

p
-fl

o
p

s
L

U
T

S
A

re
a

(s
li

ce
s)

M
ax

.
cy

cl
e

d
el

ay
(n
s)

C
y
cl

es
E

n
er

gy
(µ
J

)
B

lo
ck

si
ze

T
h

ro
u

g
h

p
u

t
a
t

f m
a
x

(M
b

p
s)

D
ev

ic
e

P
re

se
n
t

[2
3]

1
14

15
9

11
7

8.
78

25
6

3.
16
×

10
−
3

64
2
8
.4

6
x
c3

s5
0
-5

H
IG

H
T

[2
3]

25
13

2
91

6.
12

16
0

1.
07
×

10
−
3

64
6
5
.4

8
x
c3

s5
0
-5

A
E

S
[2

3
]

3
38

53
1

39
3

14
.2

1
53

4
3.

58
×

10
−
2

1
28

1
6
.8

6
x
c3

s5
0
-5

R
S

A
[2

5
]

18
70

2
81

1
15

53
7
.6

2
×

10
3

90
7

12
8.

80
-

0
.1

5
x
c3

s5
0
0
e

R
S

A
ra

d
ix

-2
[2

5]
75

64
11

49
6

62
82

8
.2

1
×

10
3

10
58

65
4.

80
-

0
.1

2
x
c2

v
6
0
0
0

R
S

A
ra

d
ix

-4
[2

5]
99

44
14

90
7

83
28

4
.2

3
×

10
3

56
0

23
6.

73
-

0
.4

3
x
c2

v
6
0
0
0

S
eq

u
en

ti
al

D
B

F
64

64
32

23
9.

04
10

00
9.

18
×

10
−
2

64
2
6
7
.7

4
x
c6

sl
x
4
5

T
ab

le
4
.5

:
C

om
p

ar
in

g
th

e
D

B
F

w
it

h
tr

ad
it

io
n

al
b

lo
ck

ci
p

h
er

s
a
n

d
R

S
A

.

67

CHAPTER 5

Ultra-low Energy Private Key Communication using

Digital Bidirectional Function

5.1 Motivation and Problem Formulation

While the digital bimodal function has addressed the public key communication, an even

commonly used security protocol among IoT systems is private key communication. In the

previous chapters, we have proposed PUF emulation and PUF matching to enable private

key communication. However, the system is analog thus has the problem of being unstable

against environmental variations. Consequently, the PUF matching accuracy can never reach

100%, which is often required by private key communication. In this chapter, we further

propose a new type of security primitive purely on the digital level, the digital bidirectional

function (DBidirF) which addresses private key communication with even lower power, lower

bandwidth, and higher stability.

The core idea of DBidirF is to use FPGA-based structure to produce a pair of functions,

respectively foriginal, and finverse. As the name suggested, the two functions have completely

inverse mappings. Assume that x and y are two n-bit vectors, the mappings realized by

foriginal and finverse can be defined in Equation 5.1.

foriginal : x→ y

finverse : y→ x
(5.1)

68

In order to guarantee the mappings are invertible, the x to y mapping must be a one-to-

one mapping. The major difficulty of designing a one-to-one mapping system in hardware

is to guarantee the scalability and the flexibility of the system. To be more specific, the

scalability means that the system needs to be invertible even when the number of inputs

and outputs is large. Because in such cases, it has been impossible to elaborate the whole

mapping. As for flexibility, it denotes that the mapping implemented by the system needs

to be easily reconfigured.

We meet both requirements by using the FPGA-based hierarchical LUT networks. For

each level of LUT network in foriginal, we allocate the LUT contents to guarantee that the

inputs and outputs form a one-to-one mapping. Meanwhile, we use another LUT network

to implement the inverse one-to-one mapping for finverse. We also use invertible multi-

plexer/demultiplexer based interstage shuffling to increase the randomness of outputs. On

the top of this, we connect small LUT networks of one-to-one mapping both in parallel

and in series to build large LUT networks to achieve scalability while still maintaining the

property of one-to-one mapping. In terms of flexibility, we directly take advantage of the

reconfigurability of the LUTs on FPGA, so that the DBidirF can be reconfigured every time

before use.

The technical goal of this chapter is to propose DBidirF as a new type of low-power hard-

ware security primitive that is specialized for private key communication. Compared to the

traditional cryptographic ciphers, DBidirF has the advantage of low-power, low-area, and

high-speed. E.g, using our proposed structure of LUT networks, the encryption/decryption

only requires one clock cycle computation. Compared to the traditional analog PUFs,

DBidirF resolves the problem of instability by completely operating in the digital domain.

It utilizes the digital logic functions to build the inputs-outputs mapping. Consequently, it

is resilient to the environmental and operational variations. In terms of security protocols,

DBidirF requires completely no additional assistant information to facilitate secure message

transfer. For example, a random seed is required in the encryption using traditional PUFs,

but no longer required when using the DBidirF.

69

5.2 A Motivational Example

A prerequisite of the DBidirF is that the mapping from x to y must be a one-to-one mapping.

Correspondingly, the mapping from y to x will also be a one-to-one mapping. Our solution

to build such a mapping is to use hierarchical LUT connections.

 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15

x0 x1 x2 x3

y

Figure 5.1: The memory location of a 4-input LUT.

 0 1 1 0 0 1 0 1
 1 0 1 0 1 0 1 0

 0 0 0 1 0 1 0 1
 1 1 1 1 0 0 0 1

 1 0 1 1 0 1 0 0
 0 0 1 1 1 1 0 0

 0 0 1 0 0 1 1 1
 0 0 0 1 0 1 1 1

X
(x0 x1 x2 x3)

Y
(y0 y1 y2 y3)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 0
1 0 0 0
1 0 1 1
0 1 1 0
0 0 0 0
1 1 1 1
0 0 0 1
1 1 0 1
1 1 0 0
0 1 0 0
1 1 1 0
0 1 1 1
1 0 1 0
0 0 1 1
1 0 0 1
0 1 0 1

x0 x1 x2 x3

y0

y1

y2

y3

X Y

Figure 5.2: The mapping and the LUT implementation for foriginal: x→ y.

We use a motivational example to explain our design. We consider the mapping between

two 4-bit vectors. Given the mapping of foriginal, we use four 4-input LUTs for implemen-

tation as shown in Figure 5.2. The memory location of each LUT cell is depicted in Figure

5.1 .We use x0x1x2x3 as the inputs for each LUT, then based on the mapping, we allocate

values to each memory location on the LUTs to implement the mapping. For example, in

the mapping shown on the left side of Figure 5.2, when given the inputs as 1000, the cor-

responding outputs are 1100, thus, we assign 1, 1, 0, 0 to the memory location 8 of the 4

70

 0 0 0 1 1 1 0 1
 0 1 1 0 1 0 1 0

 1 1 0 1 0 1 0 0
 0 1 1 0 0 1 0 1

 0 1 0 0 0 1 1 1
 0 1 0 1 0 1 1 0

 0 0 0 1 1 1 1 1
 1 0 0 0 0 1 0 1

X
(x0 x1 x2 x3)

Y
(y0 y1 y2 y3)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 1 0 0
0 1 1 0
0 0 0 0
1 1 0 1
1 0 0 1
1 1 1 1
0 0 1 1
1 0 1 1
0 0 0 1
1 1 1 0
1 1 0 0
0 0 1 0
1 0 0 0
0 1 1 1
1 0 1 0
0 1 0 1

x0

x1

x2

x3

y0 y1 y2 y3

XY

Figure 5.3: The mapping and the LUT implementation for finverse: y→ x.

LUTs separately. By repeatedly filling all the memory locations of the LUTs, a specified

one-to-one mapping can be implemented. For finverse, exactly the same procedures can be

followed. The mapping and the LUT implementation for finverse can be found in Figure 5.3.

There exist many derivatives of the structure. For example, for each individual LUT,

the order of the inputs does not have to be fixed. In the motivational example, instead

of using x0x1x2x3 as the inputs for all of the LUTs, we can switch the inputs to be any

combination of x0x1x2x3, e.g., x2x0x1x3. Meanwhile, the LUT locations to fill in the values

need to be adjusted because the positions have switched. As long as the derivatives still keep

the property of one-to-one mapping, they can be applied.

5.3 Architecture

5.3.1 Global Architecture

Combining the proposals from the motivational example, Figure 5.4 depicts the global ar-

chitecture of a DBidirF. Note that the foriginal and the finverse own separate pieces of the

structures, realizing two mappings of opposite directions. The system in Figure 5.4 has n

inputs/outputs and m levels of k-input LUTs. Each level of LUTs implements a one-to-

one mapping using the approach described in the motivational example. Between levels of

71

LUTs, the outputs of previous level LUTs are fed as the inputs to the next level LUTs after

interstage shuffling. The interstage shuffling introduces more randomness to the system.

The design detail of the shuffling will be explained in the next subsection. Both the LUT

contents and the LUT connections can be customized by the users as long as the structure

generates a one-to-one mapping. From the functional perspective, this architecture imple-

ments a mapping between two n-bit vectors. In order to build inverse mappings for foriginal

and finverse, assume that the ith level LUTs in foriginal implement x to y mapping, then the

y to x mapping should be implemented by the (n+1− i)th level LUTs in finverse. Since each

level of LUTs in foriginal has a corresponding level of LUTs in finverse at symmetric position

implementing the inverse mapping, the overall architecture of foriginal and finverse also forms

inverse mappings.

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUT

k-LUTin
te

rs
ta

g
e

 s
h

u
ff
li
n
g

in
te

rs
ta

g
e

 s
h

u
ff
li
n
g

k

k

k k

k

k

in
te

rs
ta

g
e

 s
h

u
ff
li
n
g

k

k

k

n-bit Inputs

in
te

rs
ta

g
e

 s
h

u
ff
li
n
g

k

k

k

n-bit Outputs

m levels

Figure 5.4: The architecture of digital bidirectional function.

5.3.2 Interstage Shuffling

The interstage shuffling is implemented using multiplexers and demultiplexers. Figure 5.5

shows an example of a 4-bit shuffling network. On the left side, it depicts a single shuffling

network implemented using multiplexers for foriginal. Each multiplexer takes 4-bit data

inputs a, b, c, d. By configuring the selection bits of the 4 multiplexers as 10, 11, 01, 00, the

outputs of the 4 multiplexers will be shuffled as c, d, b, a. Meanwhile, the demultiplexer

network on the right side is for finverse which takes in the selection bits in the same order

and implements an inverse shuffling from c, d, b, a to a, b, c, d. To get rid of the 0s in the

72

demultiplexer outputs, one way is to OR the ith output of each demultiplexer, thus only

a, b, c, d will be shown as the final outputs.

Since the inputs and the outputs must form a one-to-one mapping, no duplicated selection

bits are allowed in the network. The reason that we choose multiplexers and demultiplexers

to build the shuffling network is because of the inverse property between them, they can nat-

urally generate inverse mappings without designing additional logic. Note that the structure

has low delay and area overhead. The delay is equal to a single multiplexer/demultiplexer

delay and the area of the network only grows linearly with the number of inputs.

a

b
c
d

a

b
c
d

a

b
c
d

a

b
c
d

1 0

1 1

0 1

0 0

c

d

b

a

0

0
c
0

0

0
0
d

0

b
0
0

a

0
0
0

1 0

1 1

0 1

0 0

c

d

b

a

0

1
2

3

MUX

0

1
2

3

0

1
2

3

MUX

0

1
2

3

0

1
2

3

MUX

0

1
2

3

0

1
2

3

MUX

0

1
2

3

DE-
MUX

0

1
2

3

DE-
MUX

0

1
2

3

DE-
MUX

0

1
2

3

DE-
MUX

0

1
2

3

Figure 5.5: The multiplexer/demultiplexer based interstage shuffling network.

5.3.3 Scalability and Flexibility

The scalability of the DBidirF design is a vital criterion. The motivational example above

shows a 4-bit inputs-outputs DBidirF. A key question is how to build a large-scale DBidirF

from there, e.g., to implement a DBidirF with a 64-bit inputs-outputs mapping. Our idea

is to connect the small scale mapping network both in parallel and in series. As for the

parallel connection, we can increase the number of LUTs as well as the number of inputs.

For instance, we can duplicate the structure in the motivational example with a new set of

4-bit inputs-outputs LUTs. If we put them in parallel, the system will become an 8-inputs-

73

outputs system composed of 8 4-input LUTs. However, only using one level of LUTs can

lead the structure to be easy to break. Therefore, to increase the complexity to our system,

we connect the LUTs in series to form a hierarchical structure. The structure can be formed

by connecting the outputs of previous level LUTs as the inputs of next level LUTs.

The flexibility of DBidirF refers that the structure should be easily reconfigured. It is

solved through two aspects. The first is that the contents of the LUTs in the DBidirF can

be easily reconfigured as long as the two functions in DBidirF form a bidirectional mapping.

The second is due to the fact that the interstage shuffling can be customized by the DBidirF

users. Thus, different users will have their own flexibility to build their unique mappings of

DBidirF.

5.4 Protocols

Private key communication is one of the most commonly used protocols in cryptography.

We propose the DBidirF-based private key communication in this section and compare it

with the protocol based on traditional ciphers.

Protocol 2 Private Key Communication - DBidirF

1: Alice has foriginal, Bob has finverse.

2: Alice wants to send a message m to Bob.

3: Alice calculates n = foriginal(m).

4: Alice sends n to Bob.

5: Bob calculates m = finverse(n).

Protocol 3 Private Key Communication - traditional ciphers

1: Both Alice and Bob have f .

2: Alice wants to send a message m to Bob.

3: Alice generates a random seed: s.

4: Alice calculates S = f(s), R = m⊕ S.

5: Alice sends s and R to Bob.

6: Bob calculates m = f(s)⊕R.

74

Protocol 2 shows the steps of communication using the DBidirF. Note that in the protocol,

before communication, Alice and Bob need to split the DBidirF to own the foriginal and the

finverse separately. We also show the traditional cipher based protocol using a single mapping

function f in Protocol 3. In comparison, the DBidirF-based protocol has the following two

advantages. Firstly, both the encryption and the decryption parties are to use either the

foriginal or the finverse for only one-time calculation. Meanwhile, in the traditional cipher

based protocol, it requires extra XOR operations. The second advantage is that the DBidirF

saves the bandwidth in the message transferring. In Protocol 2, the required bandwidth

equals to the length of n = foriginal(m), because of one-to-one mapping, it equals to the

length of messagem. However, in Protocol 3, the required bandwidth is length(s)+length(R)

which is around two times of the required bandwidth in Protocol 2.

5.5 Summary

In this chapter, we have proposed another hardware security primitive that is specially

designed for private key communication: digital bidirectional function (DBidirF). The core

idea of DBidirF is to implement a pair of functions that forms bijective mappings. We have

proposed the architecture of DBidirF using LUTs on FPGA. The DBidirF based private key

communication requires less computational efforts and only half of the bandwidth compared

to the traditional secure ciphers.

75

CHAPTER 6

Digital PUFs Initialized with Analog PUFs

6.1 Motivation and Problem Formulation

In the previous two chapters, we separately discussed the digital bimodal function and the

digital bidirectional function to enable public and private key communication. Both de-

signs are proven to be compact and energy-efficient compared to traditional cryptography.

However, when compared to standard PUFs, the advantages and disadvantages are both

significant. As the name suggested, the advantage of the digital design is that everything is

operated on the digital level, thus is completely stable when the temperature and the voltage

change. The disadvantage is equally obvious, the digital logic can be easily replicated by

malicious parties, thus it is no longer unclonable.

Oftentimes IoT devices are exposed to the open environment, thus vulnerable to malicious

physical access. The property of unclonability is a valid approach to prevent the device or

the data stored from being duplicated. Therefore, a security primitive that is both digital

and unclonable is desired. In other words, we need to design a digital PUF. It must be

stable in the same sense that digital logic is stable against environmental and operational

variations and must produce deterministic outputs for all input vectors. The digital PUF

must integrate with existing combinational logic without requiring additional clock cycles or

logic to use its outputs. And lastly, the digital PUF must be flexible in the sense that its

structure can be altered for different tradeoffs between security, energy, and delay as required

by the pertinent task.

We demonstrate a novel type of digital PUF built on FPGA in this chapter. It is com-

76

posed of two parts, the digital logic part and the analog PUF part. The core idea is to use

the responses of the analog PUF to initialize the LUT contents of the digital logic so that

the digital logic obtains unclonability. Then the users can directly use the initialized digital

logic to encrypt and decrypt messages as needed. A high-level abstraction of the proposed

digital PUF is depicted in Figure 6.1.

Challenges

Digital Logic

LUT LUT LUT

LUT LUT LUT

...

...

Analog PUF

Digital PUF
Inputs

Digital PUF
Outputs

Initialize
Responses

Digital PUF:

Figure 6.1: A high level abstraction of digital PUF.

Before diving into more details about the design and properties of digital PUFs, we

organize the content of this chapter with two major questions to answer.

• How does a digital PUF work?

• Why is the design digital and unclonable?

With the first question, we aim to demonstrate the detailed architecture of the digital

PUF and the operations needed to use the digital PUF in security applications. The second

question is asked to confirm that the structure is indeed a “digital and physical unclonable

function”. We organize the following sections by presenting answers to the above questions.

77

6.2 Architecture and Operations

A digital PUF is the combination of the analog PUF and the digital logic. In terms of the

analog PUF, it can be any type of standard analog PUF that can create an analog response

under a given challenge. The analog responses need to be then converted to digital signals

(0s and 1s) so that to be used for the initialization of digital logic. For example, arbiter

PUFs as a typical type of PUF can be used in the design by using arbiters to convert analog

signals to digital signals.

In terms of the digital logic portion of the design, it also has the freedom of choosing

different digital functions as long as they can be built upon LUTs on the FPGA. Considering

digital PUFs are to be used for security tasks, functions such as the AES block cipher, the

RSA design, and the fcompact of DBF are preferred.

The operational flow of a digital PUF is stated as following. Upon power up, the user

needs to feed challenges to the analog PUFs to generate responses. Then the retrieved re-

sponses are used to initialize the LUT cells of the digital logic. On a FPGA device, assume

that the analog PUF is also embedded on the same device, such initialization occurs auto-

matically during the FPGA’s configuration phase as the initialization vectors are embedded

in the FPGA’s configuration bitstream. Afterwards, the digital logic is free to use according

to the predetermined functionality.

We assume that attackers can not break into the FPGA device to read the bitstream,

so the only information that can be potentially exposed to attackers is the user defined

challenges for the analog PUF. However, only by knowing the challenges, attackers have no

way to figure out the analog PUF responses since the PUF itself is not duplicable. Hence

the digital logic initialized with the PUF responses remains a black box to the attackers.

One possible attack is that attackers can reverse engineer the digital logic by observing

the digital PUF inputs and outputs. This issue can be easily leveraged by reinitializing the

content of the digital logic every time before use. For example, if the digital logic implements

the LUT network of a DBidirF, then the LUT contents can be randomly assigned as long as

78

the network generates a one-to-one mapping. With the reconfiguration, the model reverse

engineered from the previous digital logic will no longer be valid for the next time use.

The above operation process assumes that users should know the expected analog PUF

response given a challenge so that they are able to configure the digital logic with desired

initialization. This requirement can be met through the PUF characterization. After em-

bedding an analog PUF on the FPGA, the manufacturers should characterize the PUF to

retrieve a PUF model and share it with users. Depending on the statistical model, users can

generate the challenge-response mapping of the PUF.

A critical issue exists with the above process. An analog PUF can be highly unstable

thus the challenge-response mapping from the PUF model can be inaccurate. In fact, a large

portion of the mapping will change dramatically with even a small variation of temperature

and voltage, making the initialization process difficult to control. We discuss and solve this

problem in the next chapter by taking a close look at the PUF stability.

6.3 PUF Stability

6.3.1 Stable Challenge Response Pairs (CRPs)

10 9

128

A
rb

it
e

r

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Rising Edge

4-bit challenge:

11

9

1 0 1

0

1

0

1

11

12

0

Response: 1

Figure 6.2: A 4-bit arbiter PUF with challenge 1010.

We take the arbiter PUF as an example. The starting point is from the key observation

that a portion of challenges for an arbiter PUF can bring about more stability than other

input challenges. Figure 6.2 shows an example of an arbiter PUF with a 4-bit challenge. If

79

we use 1010 as the 4-bit challenge, the delay difference between the two paths is maximized.

The path in red corresponds to the element (can be a transistor, a LUT etc.) with a larger

delay at each stage, while the path in blue is the opposite. Now suppose the temperature

increases, the delay of each element will also increase. However, since the challenge 1010

already provides a large difference in path delay, even though the delay increases, there is

a very high probability that the red path will still have a larger delay in comparison to the

blue path and, hence, the PUF response is stable. We define such challenges which can stand

variations in environmental conditions as stable challenges.

We use delay ratio, as defined in Equation 6.1, to evaluate the relative delay difference

between the two PUF paths. In the following test, we assume that the element delays of the

PUF follow a normal distribution due to process variation.

Delay Ratio =
Delayp1 −Delayp2

min(Delayp1, Delayp2)
(6.1)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

Delay Ratio

P
ro

ba
bi

lit
y

D
en

si
ty

32−bit PUF, µ=0, σ=0.0348

64−bit PUF, µ=0, σ=0.0304

Figure 6.3: Distributions of delay ratios for a 32-bit PUF and a 64-bit PUF.

The distribution of the delay ratio for random challenges on a FPGA implemented 32-bit

arbiter PUF and a 64-bit arbiter PUF are depicted in Figure 6.3. In both cases, they follow

80

P(DR≥0.04) P(DR≥0.06) P(DR≥0.08) P(DR≥0.1)
32-bit PUF 12.51% 4.27% 1.07% 0.21%
64-bit PUF 9.34% 2.44% 0.43% 0.05%

Table 6.1: Probability that the delay ratio (DR) is larger than threshold values for a 32-bit PUF

and a 64-bit PUF.

Delay Ratio (Original T=300K) 0.04 0.05 0.06 0.07 0.08 0.09 0.1

32-bit: prob. to stay @ T=250K 0.979 0.987 0.994 0.997 1 1 1
32-bit: prob. to stay @ T=350K 0.969 0.975 0.989 0.994 0.997 1 1
32-bit: prob. to stay @ T=400K 0.937 0.951 0.959 0.977 0.988 0.996 1

64-bit: prob. to stay @ T=250K 0.984 0.986 0.996 0.998 1 1 1
64-bit: prob. to stay @ T=350K 0.982 0.986 0.993 0.998 1 1 1
64-bit: prob. to stay @ T=400K 0.954 0.974 0.986 0.991 0.997 1 1

Table 6.2: Probability that the output of a 32-bit PUF and a 64-bit PUF is stable over varying

temperature conditions for different original delay ratios. Assume the original temperature is 300K,

we test under 250K, 350K, and 400K respectively.

a normal distribution with their means at 0. The standard deviation of the 64-bit PUF is

smaller than the 32-bit PUF. To better visualize the probability that the delay ratio is larger

than some value, we use Table 6.1 to show the quantified result.

We test the stability of PUF challenges of various delay ratios under different environ-

mental temperatures. After changing the temperature, we measure the probability that the

same challenge produces the same response. Table 6.2 shows the results on a 32-bit arbiter

PUF and a 64-bit arbiter PUF. We draw the conclusion that with a higher original delay

ratio, the chance that the PUF output remains stable is higher. For example, when the

original delay ratio reaches 0.1, the probability that the output remains stable is 1 no mat-

ter how the temperature changes (250K to 400K). Compared to the 32-bit test case, the

64-bit test case demonstrates a similar trend and even exhibits a better stability under the

same condition. Therefore, we conclude that as long as the original delay ratio reaches some

threshold (e.g., 0.1 according to this test), the output will be stable for a wide range of

temperature conditions (250K to 400K). Challenges that match this threshold are selected

as the stable challenges.

81

6.3.2 Benefits and Limitations

When using an arbiter PUF to initialize the digital logic, users should only use stable re-

sponses of arbiter PUFs for initialization. The key benefit is that the approach effectively

avoids the instability of PUF model. And users can now have a full control over the config-

uration of digital logic.

However, limitations also exist. On one hand, in practice, it is time-consuming to iden-

tify all the stable CRPs for each individual PUF. It requires the manufactures or users to

test exponential CRPs under various temperatures and voltages. On the other hand, the

requirement of using only stable CRPs greatly compromises the space of available CRPs of

arbiter PUFs. For example, as shown in Table 6.1 and 6.2, only 0.21% challenges in 32-bit

PUFs and 0.05% challenges in 64-bit PUFs are completely stable across all the tested tem-

peratures. With such a small space of stable CRPs, potential attackers can more effectively

attack the PUF, even with brute force method.

Our design has created a conflict between the need of stability in the arbiter PUF re-

sponses versus the main point of an arbiter PUF having an exponential number of CRPs.

This problem can not be completely eliminated due to the instability nature of analog PUFs.

We are motivated to create a new digital PUF in chapter 7 where the design completely gets

rid of the analog PUFs.

6.4 A Digital and Unclonable Design

With the presenting of the architecture and the operations of the digital PUF design. We

answer the second question in this section: why is the design digital and unclonable?

First of all, the design is digital in the following sense. Although we also utilize analog

PUFs to generate responses, they are only applied to initialize the LUT cells of the digital

logic at the device power up stage. Afterwards, when users start to feed inputs to the digital

PUF, everything is purely operated on the digital level, and the digital PUF outputs only

82

depend on the functionality of digital logic. In other words, the outputs are not subject to

operational and environmental conditions.

On the other hand, our design is also unclonable. It is solely attributed to the existence

of the analog PUF in the design. Note that we assume there exists no interface for attackers

to physically access the analog PUF responses because the response generation and the logic

initialization happen automatically during the configuration phase. Otherwise, attackers can

build a statistical PUF model to emulate the analog PUF.

6.5 Security Attacks

6.5.1 Cloning Attack

The most intuitive type of attack is to clone an identical piece of the FPGA-based digital

PUF. As mentioned above, it is not possible because of the analog PUF. It takes advantage of

process variation in the FPGA. Although many efforts are being taken to minimize the effect

of process variation as technology improves, as long as the bias still exists, the analog PUF

will continue to work and is even more unpredictable. Therefore, due to its unclonability,

there is no way for the attacker to figure out the digital PUF configuration.

6.5.2 Side-channel Attack

Side channel attack is not a threat to analog PUFs. For example, in the arbiter PUF,

regardless of the challenge bits, two similar delay paths will always be generated, and the

response purely depends on the delay property of the physical entity.

6.5.3 Brute-force Simulation

Suppose the attackers create a huge LUT to store all the possible digital PUF inputs and

outputs. On one hand, the size of the security cipher implemented as the digital logic can be

easily boosted, making the number of pairs which need to be enumerated grows exponentially.

83

On the other hand, since our digital PUF will be reinitialized every time before use, as a

result, even if the digital logic on the FPGA after configuration is simulated by an attacker,

it will not be a threat because the same configuration is not to be used for the next time.

6.5.4 Special Purpose Hardware

This type of attack requires the attacker to use a very fast processor, e.g., ASIC, to simulate

the FPGA-based digital PUF. The key thing to note here is that our design can not be

reversed engineered and it is easy to create an exponentially larger security cipher (in terms

of simulation effort).

6.6 Summary

We have proposed a FPGA-based digital PUF by intentionally choosing stable challenge-

response pairs from the analog PUF and using them for digital logic initialization. Our design

inherits the unclonability from analog PUF and the digital property from digital circuits. It

enables a complete elimination of the traditional PUF vulnerabilities, such as susceptibility

to operational and environmental variations while maintaining unclonability.

84

CHAPTER 7

Digital PUFs with Laser-based Fault Injection

7.1 Motivation and Problem Formulation

We continue our efforts to create digital PUFs in this chapter. In chapter 6, we have created

a valid digital PUF. However, the problem with the design is that it still depends on analog

PUFs for initialization which creates the stability problem. There is no way to completely

solve the stability problem without compromising system security. Therefore, our goal in

this chapter is to create a digital PUF that completely operates on digital level and does

not require the use of analog PUFs. A well-known wisdom that is widely and strongly

established is that integrated circuit (IC) defects and their functional faults are intrinsically

a phenomenon that should be detected, diagnosed and, if possible, eliminated. Essentially

faults in circuits are unwanted. Our objective is to rebut exactly the above well-established

postulate. Specifically, we intentionally introduce faults in circuits to create digital PUFs.

Three key observations are that (i) faults can be intentionally produced. For example,

using laser-based fault injection. (ii) large VLSI ICs with partial faults can produce highly

unpredictable outputs. (iii) Multiple faults in ICs are extremely difficult to be detected and

positioned. The first one indicates the feasibility to introduce random faults in circuits. The

second observation can prevent a large family of security attacks from statistical level. And

the last one suggests that ICs with faults are hard to be duplicated. Based on the above

observations, we claim that the faulty circuit can serve as a natural PUF that operates on

the digital level. We call our proposed digital PUF the laser-based PUF.

Since at least 1997, laser-based fault injection has been recognized and demonstrated as

a powerful security attack on cryptographic devices [28]. Numerous fault injection-based

85

security attacks have also been reported and are surprisingly successful. A comprehensive

survey of fault injection techniques as tools for compromising security devices and protocols

is presented by Barenghi etc. [29]. Models to evaluate the circuit sensitivities to random

defects are proposed by Stapper [30]. The key difference between the surveyed research and

our efforts is that for the first time we intentionally introduce faults in circuits and advocate

the positive use of faults for security.

In the following sections, we introduce the concept of faulty circuits and further evaluate

the security properties of our laser-based PUF. When a circuit has one fault or very few

number of faults, the fault detection is still possible. However, as the number of the faults

increases, the detection becomes exceptionally hard, consequently, the device itself becomes

unclonable. An essential step in exploiting faults is the creation of structures so that the

faults in circuits can maximize the output randomness. By simulating the faulty circuits,

we analyze commonly used adders, multipliers and xor networks based laser-based PUFs in

terms of their security properties.

The laser-based PUF is another type of digital PUF since its unclonability does not de-

pend on the analog properties of the circuit. With the injected faults, the circuit itself is still

operated on the digital level thus being stable against temperature and voltage variations.

7.2 A Motivational Example

We start with the simple one-bit adder circuit represented by logical gates. We assume that

the fault in the circuit is a gate-level stuck-at fault which means that the output of a gate is

tied to logical 1 or 0 regardless of the inputs. Note that when using the laser to cut in the

circuit, if we connect the position being cut to Vdd, it is equal to stuck at 1, and if we connect

it to ground, the output is equal to 0. Figure 7.1 shows the four potential fault positions

in a one-bit adder. For each position, the output can be stuck at either 1 or 0. Table 7.1

compares the outputs of the circuit with different fault positions to a fault-free adder. The

results in Table 7.1 show that even if there is only a single stuck-at fault in the circuit, the

86

impact on the outputs is significant and difficult to predict. This provides the intuition that

the outputs of the faulty circuit can show excellent randomness and unpredictability after

the appropriate configuration.

A
B
Cin

Cout

S
G1

G2

G3

G4

Figure 7.1: Stuck-at faults in a one-bit adder. Gi indicates different positions of faults.

A/B/Cin
Cout / S

Fault Free G1→ 1 G1→ 0 G2→ 1 G2→ 0 G3→ 1 G3→ 0 G4→ 1 G4→ 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1
0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1
1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0
1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0
1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

Table 7.1: The impact of a single stuck-at fault on the outputs of a one-bit adder. Values in red

indicate the changed bits in the faulty outputs compared to the fault-free outputs.

7.3 Architecture

In order to create the laser-based PUF, we have two key operations. The first is to randomly

use the laser to introduce faults in circuits. As a result, for different implementations, the

position and type of the faults would be different. The second is that since the faults are

randomly created, it is only by gate level characterization that the position and the type

of the faults can be measured and, thus, potentially enable an attacker to clone the device.

We eliminate this possibility by physically removing (e.g. burning) those pins on the circuit

which enable gate level characterization. Therefore, the physical unclonablity of the faulty

circuit is guaranteed.

87

Now consider an attacker who attempts to clone our PUF. He/she is not able to execute

a hardware level attack to look into the structure of laser-based PUF due to the burning of

the pins. Instead, the attacker can test all the possible input vectors on the faulty circuit to

get the corresponding outputs, thus to create an input-output mapping. However, for a large

scale circuit, the attacker can not reverse engineer the circuit structure just by acquiring the

mapping.

In this section, we propose the architecture of our laser-based PUF based on a few

common circuits. The desiderata is that although the laser injection can be applied to

any type of circuit, we define an architecture to have “good performance” only when it

guarantees excellent statistical properties against potential attacks. We first propose the

laser-based PUF structure based on commonly used adders and multipliers. Then we propose

a customized XOR network with a better performance.

7.3.1 Adders

An adder is one of the most commonly used circuits. We have applied faults on the most

fundamental carry-ripple adder to create a digital PUF.

7.3.2 Multipliers

Multipliers can also be found in many circuits, but generally take more area and power than

adders. We use the multiplier built with carry ripple adders in our design. Our intuition

is that since a multiplier has more depth and a larger number of gates than adders, the

faults in multipliers are easier to propagate. Consequently, they will alter the outputs more

significantly.

7.3.3 XOR Networks

The XOR network architecture shown in Figure 7.2 has w inputs, u outputs and h stages of

XOR gates. Each stage is comprised of u XOR gates. Between two stages, the outputs of

88

the previous stage are randomly shuffled and used as the inputs for the next stage of XOR

gates. The total number of XOR gates used in this design is u ∗ h.

In this design, on average, an output from a previous stage needs to be used as the input

of two gates in the next stage, e.g., the connection indicated by the red line in Figure 7.2.

Now suppose a fault occurs at the first stage of this XOR network. As a result, in stage 1,

the output of one gate is possibly changed. In stage 2, since the wire of the faulty output

from the previous stage is connecting to two gates in this stage, the outputs of two gates in

stage 2 are influenced. In the final stage (stage h), on average, 2h−1 outputs are influenced.

Therefore, we conclude that a fault in XOR network propagates exponentially as the number

of stages grows.

interstage network

interstage network

interstage network

I1 I2 Iw

O1 O2 Ou-1 Ou

Iw-1

h stage
of XORs

w inputs

u outputs

Figure 7.2: XOR network with w inputs, u outputs and h stages of XOR gates. Interstage network

interconnects only the cells between neighboring layers of gates. The red line shows an example of

interstage connection.

89

7.4 Security Attacks and Evaluation

In this section, we analysis the security properties of the laser-based PUF based on adders,

multipliers, and XOR networks respectively. The basic approach is to identify their resistance

against statistical attacks. In the attacks, the attacker observes a number of challenge-

response pairs and tries to statistically analyze them in order to predict the response to an

unseen challenge.

For each type of attack, we conducted comprehensive tests using a 64-bit carry-ripple

adder, a 32-bit array multiplier and a XOR network with w = 64, u = 64, and h = 8. All of

these circuits have 64 outputs for the sake of comparison (we do not consider the last carry

out bit in the case of adder and multiplier). For each simulation, we present the results using

10,000 input vectors. In each type of circuit, we suppose 2 percent of the gates have stuck-at

faults, and the positions of the faults are randomly assigned.

7.4.1 Predict with Fault-free Circuits

In this type of attack, the attacker tries to predict the outputs of a faulty circuit by using the

outputs of the corresponding fault-free circuit given the same inputs. We simulate to analyze

their average output hamming distance on adders, multipliers and XOR gates respectively.

Ideally, the result should be around half of the number of outputs, which is 32 in our test.

Table 7.2 shows the average output hamming distance results between faulty and fault-free

circuits. It is obvious that the XOR network has the best performance, followed by the

multiplier and the adder has the worst performance.

Adder Multiplier XOR network

Avg. Distance 2.7± 1.8 22.9± 4.3 31.92± 4.56

Table 7.2: Average output hamming distance between the faulty circuit and the fault-free circuit.

90

7.4.2 Predict with Similar Inputs

If the avalanche effect is evident in a cryptographic system, then there is an ultra low

probability that an attacker can predict any subsequent outputs using the knowledge of

outputs of similar inputs. The avalanche criterion can be measured by observing the outputs

of two inputs that differ by a minimal amount. In the case of our laser-based PUF, the

smallest amount that an input vector can change is by one bit.

Thus, we measure the hamming distance between output vectors when changing one bit

of our input vector over 10,000 inputs. Ideally, the average hamming distance should be 32.

Table 7.3 presents the results on the three architecture, still, the XOR network performs the

best, then the multiplier and the adder.

Adder Multiplier XOR network

Avg. Distance 1.54± 0.51 16.41± 3.15 31.24± 4.02

Table 7.3: Average output hamming distance for changing faulty circuits input vector by one bit.

7.4.3 Predict with Conditional Probabilities

Another type of attack is the bitwise correlation modeling via the construction of per-bit

input-output conditional probability distribution. The goal of the attacker is to predict an

output bit by observing the inputs and the probability: P (Oi = c1|Ij = c2), c1, c2=1 or 0.

An ideal secure system will have a probability of 0.5 for all conditionals. Figure 7.3 depicts

the conditional probability P (Oi = 1|Ij = 1) across adders, multipliers and xor networks.

Despite the fact that some output bits in adders and multipliers are always 0 because of the

positions and types of the faults, the overall performance of the three structures is excellent.

Note that the majority of conditional probabilities are around 0.5 and for the few “black

lines” in Figure 7.3a and Figure 7.3b, users can simply avoid using the corresponding output

bits.

91

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i

P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Adder

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i

P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Multiplier

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i

P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) XOR network

Figure 7.3: Conditional probabilities between input bits Ij and output bits Oi: P (Oi = 1|Ij = 1)

on (a) adder, (b) multiplier, and (c) XOR network.

7.5 Summary

We have developed another type of digital PUF: the laser based PUF by introducing in-

tentional faults in circuits. In addition to complete elimination of standard analog PUF

vulnerabilities such as susceptibility to operational and environmental variations, the overall

structure is still unclonable given the fact that multiple faults in large ICs are extremely dif-

ficult to detect. The test on simple models (adders, multipliers and xor network) indicates

that the xor networks show the best security properties against statistical attacks compared

to adders and multipliers.

92

CHAPTER 8

An Energy-efficient Fault Tolerance Approach for IoT

8.1 Motivation and Problem Formulation

The prevailing of Internet of Things (IoT) enables a variety of applications including smart

homes, wearable devices, intelligent automotive, and so on. Such IoT applications have

imposed new requirements on fault tolerance (FT) and energy management. On one hand, in

some IoT applications such as implanted devices and airplane control systems, a single fault

can be ultra dangerous and even life threatening. Therefore, to detect and to correct faults in

such IoT applications have become especially important. On the other hand, energy/power

has become a primary design criterion for many IoT applications. It is because such IoT

devices are normally highly constrained by their limited battery life. To summarize, the FT

in IoT applications has to be addressed in a way with high energy efficiency.

Non-volatile memory (NVM) is a type of memory that can retain the stored data even af-

ter external power has been turned off. Common types of NVM include phase-change mem-

ory (PCM), magnetoresistive random-access memory (MRAM), resistive RAM (RRAM),

and memristors. Such resistive memory technologies share the properties of high scalability,

non-volatility, and high density. Due to the unique properties of NVM, it is commonly used

to improve system reliability. The principal idea is to store program execution data in NVM

as a checkpoint. Thus, the system can be recovered from a wide range of transient and

permanent faults using the stored information.

NVM based FT approach provides a possible solution to enhance the reliability of IoT

devices. It is especially suitable for the IoT applications that calculate real-time data flow.

93

For example, in applications such as self-driving cars, airplane navigation systems, or even

fall detection systems for elderly or disabled people, they all require their data to be processed

in realtime. And when a fault indeed occurs in the process, the system has to be recovered

with an ultra-short period. NVM based FT is ideal for these IoT applications because it is

much faster to restart a program execution with the most recent checkpoint and the set of

inputs instead of falling behind trying to recover an older state from the beginning of the

program.

However, one major problem of the FT mechanism using NVM is that it employs large

timing and energy overhead. As shown in Table 8.1, NVM employs a significant cost in writ-

ing time and writing energy when compared to other memory technologies. Consequently,

when used in FT, it is crucial to reduce the number of write access to the NVM. Meanwhile,

it is also an important issue to schedule the writes at proper clock cycles to avoid congestion.

Features SRAM eDRAM MRAM PRAM

Density Low High High Very high

Speed Very Fast Fast read Slow read
fast Slow write Very slow write

Dyn.Power Low Medium Low read Medium read
High write High write

Leak.Power High Medium Low Low

Non-volatile No No Yes Yes

Table 8.1: Comparison of different memory technologies.

Our goal is to build an energy efficient FT approach using NVM. The key idea is to store

some states of a program in the NVM cache in such a way that the program can be resumed

from the saved state after faults occur. We have addressed and optimized two major issues

in our approach, respectively:

• Where should each state be?

• How to schedule the write of states to the NVM cache?

Regarding the first question, the key requirement of state selection is to minimize the

overhead. To address this issue, we have applied the min-cut max-flow algorithm on the

94

data flow model of the program. It is straightforward in the sense that each write to the

NVM takes large timing and energy overhead. Therefore, the fewer data to write to NVM,

the less overhead the system will have. Furthermore, to enable multiple states in a single

program, we extend the standard min-cut algorithm to the “multiple min-cuts algorithm”,

where the total overhead of all the states is minimized.

The second question targets to solve the issue of slow write to NVM cache. According to

Table 8.1, the write to NVM takes heavy timing overhead. Thus, it is important to minimize

the influence of states writing to the overall execution speed of the program. In other words,

the program execution should not be halted to wait for the write to NVM to finish. To

addressed this issue, we combine the use of NVM and classical CMOS register files so that

when multiple variables are generated at the same time, they are first temporarily stored in

some dedicated register files which are fast and low-energy consuming. Then the program

can continue without being influenced while the write from register files to NVM cache is

executed simultaneously.

We summarize our contributions in the following.

• We have proposed an NVM based architecture for FT by storing recoverable program

states.

• We leverage the issue of large energy and timing overhead to write to NVM by propos-

ing min-cuts for state selection, so that the amount of data needs to be written to

NVM is minimized. By introducing register files for temporary storage, the extra

timing overhead is almost eliminated.

• Our approach is generic in a sense that it can be used to recover systems from a wide

range of permanent and transient faults on many underlying IoT architectures and

computational models.

95

8.2 Preliminaries

We survey the related work along several research and development directions: non-volatile

memories, fault tolerance, program slicing techniques, and min-cut max-flow algorithms.

These efforts are intrinsically multi-disciplinary and due to space limitations, we consider

only most directly related technologies and mechanisms.

8.2.1 Non-volatile Memory

Several types of non-volatile memory have been developed and studied as potential alter-

natives for CMOS flip-flops, registers, cache, main memory as well as for long term storage

including flash, ferroelectric RAM, phase change, and MRAM [31]. In our simulation, we

have used spintronic memories, specifically spin-transfer torque RAM (STT-RAM) due to

its attractive properties regarding integration flexibility, size, and relatively low latency and

energy overhead [32]. Hybrid memory systems have seen also widely studied, and it has

been demonstrated that they are an attractive alternative in several types of systems and

workloads [33].

8.2.2 Fault Tolerance

The design of reliable and fault-tolerant circuits and systems has a long history since a

landmark pioneering paper by Moore and Shannon was published in 1956 [34]. There is a

number of excellent related books including recent ones [35][36]. Three dominant aspects of

fault-tolerant systems are fault abstraction into models (e.g. soft upsets [37], delay faults,

and power supply reduction), fault detection, and fault recovery. Our focus is on fault

recovery. We consider all types of faults such as failure of the power supply and soft upsets

that can be fully resolved through the use of NVM. More recently, a memory architecture

to enable NVM-based checkpoints for FT is proposed by Kannan et al. [38]. Compared to

their work, our paper has emphasized on using an algorithmic way to find optimal positions

of NVM-based checkpoints.

96

8.2.3 Program Slicing

A slice of a program can be defined as an executable subset of the program that computes the

same functions as the initial program for a selected subset of variables [39]. Techniques for

program slicing have emerged in the seventies as popular mechanisms for program debugging

[40][41]. They are still essential procedures for the analysis of software products [42].

The availability of several systems such as shared memory multiprocessors with global

checkpoints is optimized for on-line processing systems [43]. A checkpoint consists a set

of variables required for a program to restart after a fault detection. In computer-aided

design literature, a special type of checkpoint named cut was used for the export of “difficult

to observe variables” and for the injection of “difficult to control variables”, such that to

enable high speed debugging of complex integrated circuits. Under the assumption of the

static synchronous dataflow computational model, Kirovski et al. defined a program cut as a

system of variables that are all stored in a minimal number of registers and require minimal

additional interconnect network for their complete controllability and observability [44].

8.2.4 Min-cut Max-flow Algorithm

Our main optimization step is related to the min-cut max-flow theorem. The theorem has

been independently discovered by Elias, Feinstein, and Shannon and by Ford Fulkerson in

1956. A comprehensive coverage of the algorithms for a variety of network flow problems

is given in a book by Ahuja, Magnati, and Orlin [45] as well as many other books. We

have used the linear programming formulation from Papadimitriou and Steiglitz [46] that is

both simple and very flexible with the respect of modifying the types of min-cuts that are

required. Finally, it is interesting to notice that retiming for minimization of the number of

flip-flops by Leiserson and Saxe can also be used for this tasks and sometimes leads to even

more flexible formulations [47].

97

8.3 System Overview

Our approach works on the platform of application-specific integrated circuits (ASIC). The

program execution is performed on the regular datapath while the outputs of functional

units can be stored in the cache. Figure 8.1 shows the overview of our system. States of the

executed program are captured with some particular frequency and are stored in the NVM

based cache. When any fault occurs, the program can be recovered from the stored states.

Note that we use two NVM spaces in the cache to store program states interchangeably.

Each state is only written to a single NVM space, and it overwrites the previous state stored

in the space. Such mechanism guarantees that when faults occur in the middle of states

write, at least one NVM space in the cache stores a complete state. We also assume that

there exists a single port to write data from the datapath to the cache. As a result, to avoid

congestion, the schedule of data write becomes crucial.

Store
States

Recover
States

Datapath

Registers

NVM 1 NVM 2

Cache

Figure 8.1: System overview.

8.4 A Motivational Example

The graph G in Figure 8.2 shows an example data flow graph where I1 to I4 are inputs

and O1 to O2 are outputs. A state in the graph is defined as a set of variables that cuts

98

+x

+>>

G

G

I1 I2 I3

I4

O1 O2

x

>>

+x

+>>

x

>>

I1 I2 I3

I4

Source

Sink

O1 O2

Min
State

Figure 8.2: A motivational example of dataflow graph and the corresponding min cut.

all possible paths from primary inputs to outputs in the computational flow. Graph G′

depicts the adjustment of the original data graph G in order to fit for the min-cut max-flow

algorithm to find a state. Two major changes are made. The first is to add a source node

and a sink node to the graph. The second is to create nodes for each arithmetic unit as

well as primary inputs and final outputs. Correspondingly, we also add edges to connect the

source and the primary inputs as well as edges to connect the outputs and the sink.

Therefore, the goal of the state search algorithm is to, given a computation control data

flow graph, find a register subset of minimal cardinality that stores all the variables of at least

one complete cut. To find such state, we have applied our modified min-cut algorithm and

the minimal state is shown in G′ of Figure 8.2 (assume that each functional unit generates

the same amount of data). More details on our min-cut algorithm are illustrated in Section

8.5.

99

8.5 Approach

We address our approach of solving two optimization problems in this section. The first

is state selection with the motivation to minimize the amount of data that needs to be

written to NVM. The second issue is variable scheduling. As we demonstrated in the system

overview, only a single port is available to write to cache. Considering that each write to

NVM employs a large timing overhead, thus when to write and what to write to the NVM

have become an important issue.

8.5.1 State(s) Selection

Our key algorithm for state selection is through the min-cut max-flow algorithm. The insight

is that we want to minimize the energy spent to write a state to the NVM. The required

energy is proportional to the amount of data to write. It is a natural idea to apply the

min-cut algorithm as it directly returns the state with least data. However, there still exists

some modifications we need to make to the standard min-cut algorithm to suit our problem.

The first problem is that standard min-cut algorithm applies cut on the edges while in

our problem, we should cut on the nodes since we only need to store a single copy of the

arithmetic unit result. To address this issue, our solution is to convert the original data flow

graph to a new graph and then apply the standard min-cut algorithm. The other issue is

regarding the number of cuts in the graph. As min-cut only returns the optimal cut across

the circuit, it is not addressed in the standard algorithm about how to minimize the total

flow when multiple cuts are required.

In the following parts, we first discuss our algorithm to find a single optimal min-cut

state on the graph, then we extend our algorithm to select multiple states.

8.5.1.1 Single State Selection

We formally explain our formation of data flow graph. Following the same notation in Section

8.4, we create a directed graph G′ = (V ′, E ′) where each node v ∈ V ′ represents a primary

100

input or an arithmetic unit and each edge e ∈ E ′ represents a flow of data between two nodes.

Each node in the graph has an attribute capacity which describes the data size of the node.

For a node of a primary input, the capacity represents the size of the input; for a node of an

arithmetic unit, the capacity represents the data size of the unit output. Each edge (from

node i to node j) also has the capacity attribute which represents the size of data transmitted

from node i to node j. We virtually add a source node which has edges connecting to all the

primary inputs and a sink node that is linked with all the program outputs. The capacity

of all the edges that are directly connected to source or sink is initialized to ∞.

Our goal is to find the nodes based min-cut on graph G′. To be consistent with the stan-

dard min-cut algorithm model which only has capacity constraints for edges, we transform

our data flow graph G′ = (V ′, E ′) to G′′ = (V ′′, E ′′), where each node v in G′ breaks into

two nodes v1, v2, as well as an edge from v1 to v2 to carry the original capacity of node v.

With the above step, the node capacities are converted to edge capacities.

Figure 8.3 shows the transformation from graph G′ in the motivational example to graph

G′′. In G′′, each solid edge (black) from node i to node j represents the flow of data from

unit/input i to unit/output j. The capacity of such edges is set to ∞. Each dashed edge

(red) in G′′ is an added edge inside each node of graph G′. The capacity of a dashed edge

equals to the capacity of the node it corresponds to, which equals to the size of data the

node outputs.

When applying the standard min-cut algorithm on graph G′′, it naturally finds a minimal

complete cut over only the dashed edges since all the solid edges have the capacity of ∞.

Therefore, the corresponding nodes in G′ that map to the min-cut edges in G′′ are selected

to form a complete state. Due to the nature of min-cut, the amount of data that is generated

by such state is minimized.

One problem of the above-proposed max-flow based state selection is that the cut result

can be highly biased to inputs or outputs. For example, in our graph shown in Figure 8.3,

although the cut we denote in G′ indeed finds an optimal state in terms of energy saving, the

problem is that the state is too close to sink. To be more specific, the selected state directly

101

G

+x

+>>

x

>>

I1 I2 I3

I4

Source

Sink

O1 O2

Min
State

G

I1 I2 I3

I4

Source

Sink

O1 O2

Min
State

<< +

x +

>> x

Figure 8.3: Graph transformation to find nodes based min-cut on the motivational example shown

in Figure 8.2.

saves the program outputs. Consider a fault occurs during the program execution (before

the program outputs are generated), our state can not be used as a checkpoint to resume

the program. On the other hand, a state too close to primary inputs is also questionable. It

is because in such cases when the program resumes from the state, almost all the operations

in the program need to be recalculated in which case a state does not help anything.

As explained above, it is important to have a state somewhere in the middle of the

program flow, although this can sacrifice the size of cut to be no longer optimal. Here we

formally define the position requirement of our desired state s. The maximum distance from

the source to any node in the state (dsrc−s) has to be smaller than α, and the maximum

distance from any node in the state to sink (ds−snk) has to be smaller than β. α and β are

constants decided by the size of the graph. Using the above notation, our objective is shown

in Equation 8.1.

102

Minimize: Capacity(s)

Subject to

dsrc−s > α

ds−snk > β

α, β are constants

(8.1)

We propose Algorithm 3 to find a state that meets the above criterion. The basic idea is

to iteratively find the top n min-cuts on the graph until a cut meets the position constraint.

To find the top n optimal min-cuts (n > 1), we iterate through the edges from the 1st

optimal min-cut until the n − 1th optimal min-cut, assign the capacity of selected edges

to ∞, and then continue to find the next min-cut. By assigning edges to ∞, we avoid the

algorithm finding a min-cut solution the same as the top n− 1 optimal min-cuts. Thus, the

cut we achieve in the nth iteration comes as the nth optimal min-cut. The search for the

top n cuts continues until a cut is found to meet the position constraint.

8.5.1.2 Multiple States Selection

In the previous discussion of state selection, we assume that there only exists a single cut

in the program. However, multiple states selection is also commonly required especially for

large programs. When the frequency of state selection is high, more energy needs to be spent

to write states to NVM. Meanwhile, as the distance between different states decreases, the

expected energy that is required to resume program after faults occur is reduced. There

exists a trade-off between the write energy and the resume energy.

The first important issue in multiple states selection is to decide the desired number of

states k (k > 1). To quantitatively decide an optimal k, we define the following two concepts.

• Ewrite: Energy spent to write the data of a state to NVM.

• Ek: Given k states, the expected energy required to recover the program from faults.

103

Algorithm 3 Single State Selection

Input: Graph G′′ = (V ′′, E ′′), constants α, β.

Output: Optimal state selection s.

1: Find min-cut s on Graph G′′.

2: Sets = ∅.

3: Append s to Sets.

4: While dsrc−s < α or ds−snk < β:

5: Sete = ∅.

6: For all cuts si in Sets:

7: Select eij from si.

8: Endfor

9: G′′modi = G′′.

10: For each combination of eij:

11: Modify G′′modi with capacity(eij)=∞.

12: Find min-cut c on G′′modi.

13: Append c to Sete.

14: Endfor

15: cmin = c0 in Sete.

16: For each cut ci in Sete:

17: If capacity(ci)¡=capacity(cmin):

18: cmin = ci.

19: Endif

20: Endfor

21: s = cmin.

22: Append s to Sets.

23: Endwhile

24: Return s.

We should increase the number of states (k) only when Ek − Ek+1 > Ewrite. As the

number of states increases, the average distance between the neighbor states is reduced,

thus, on average it takes less computational efforts to recover the program when faults

happen. The left side of the equation Ek − Ek+1 represents the expected energy saving of

104

program recovery by increasing the number of states from k to k + 1. The right side of

the equation Ewrite is the energy required to add a state. Only when the energy saved by

increasing a state is larger than the energy overhead, we increase the number of states by 1.

A program with long clock cycles but relatively “thin” states tends to have a larger k. It is

because in such cases, the difference from Ek to Ek+1 is large (long execution flow) while the

Ewrite is small (“thin” states). As k increases, the difference between Ek and Ek+1 becomes

smaller and smaller, and is eventually converged to be below Ewrite. In most benchmarks,

because the write to NVM is energy expensive compared to the recovery calculations in the

datapath, k is only set to be a small value.

After k is configured, similar to the single state selection, multiple states selection imposes

requirements for the data size of the cut as well as the positions of the cut. Ideally, the total

amount of data in multiple states should be as small as possible under the constraint that

the distance between each state is larger than some threshold γ. Note that the distance

between state A and state B is defined as the average mutual distance between the nodes in

A and the nodes in B. Depending on the total number of states (k), γ needs to be adjusted

to make sure that a k-states solution exists. The above problem can be formulated using

the following notations.

Minimize:
i=k∑
i=1

Capacity(si)

Subject to

dsrc−s1 > α

dsk−snk > β

dsi−si+1
> γ (0 < i < k)

k, α, β, γ are constants

(8.2)

We employ a similar algorithm as the single state selection to solve the above problem.

The detailed algorithmic flow is shown in Algorithm 4. The key idea is to incrementally find

top min-cuts in the data flow graph, and then search for all the k cuts combinations such that

105

Algorithm 4 Multiple State Selection

Input: Graph G′′ = (V ′′, E ′′), constants k, α, β, γ.

Output: Optimal multiple states selection si, i ∈ {1, 2...k}.

1: Find min-cut s on Graph G′′.

2: Sets = ∅, check = 1.

3: Append s to Sets.

4: While check:

5: Sete = ∅
6: For all cuts si in Sets:

7: Select eij from si.

8: Endfor

9: G′′modi = G′′

10: For each combination of eij:

11: Modify G′′modi with capacity(eij)=∞.

12: Find min-cut c on G′′modi, append c to Sete.

13: Endfor

14: Find cmin in Sete with the smallest capacity.

15: s = cmin, append s to Sets.

16: Setm = ∅
17: For all k cuts combinations (c1 to ck) in Sets:

18: If c1 to ck satisfy dsrc−c1 > α, dck−snk > β,

19: and dci−sc+1 > γ (0 < i < k):

20: Append {c1 to ck} to Setm.

21: Endif

22: Endfor

23: If size(Setm)¿0:

24: check = 0.

25: Select c1 to ck in Setm with the smallest sum.

26: si = ci, i ∈ {1, 2, ...k}.
27: Endif

28: Endwhile

29: Return si, i ∈ {1, 2, ...k}.

106

if the cuts in the combination can satisfy position constraints, the k cuts form a candidate

multiple states selection and is appended to Setm. Eventually, we traverse through all the

candidates in Setm to find the one with the smallest sum of cut capacity and use it as our

final solution.

8.5.1.3 Influence of Unfolding

Many programs are designed to run multiple iterations, such as various filters in DSP applica-

tions. State selection in these programs commonly faces a major problem that each iteration

of the program may only have very limited computations. Accordingly, it is not worth it

to assign a new state for every iteration. For example, it is possible that E0 − E1 < Ewrite,

making no state is needed per iteration. Hence, there is a need to update our state selection

strategy for such programs.

Unfolding addresses the above concerns. First proposed by Parhi and Messerschmitt in

1989 [48], unfolding is a transformation technique which duplicates the functional units to

increase the program throughput while preserving its functional behavior at its outputs. For

an unfolding factor J , the core idea of unfolding is to duplicate all the functional units in the

original program by J times and reconnect everything without altering program functionality.

It produces the same outputs compared to running the original program by J iterations, but

generally offers higher throughput and a smaller average iteration period.

By applying unfolding on iterative programs, we can achieve a data flow graph over

multiple program iterations (J). Note that J can be adjusted to suit the need of state

selection. On one hand, the graph is greatly expanded in such a way that a state can be

selected in every J iterations, avoiding the situation where no state is needed for a single

iteration. On the other hand, it provides a better global picture for state selection. We

are able to flexibly pick the optimal number of states as well the optimal positions of states

using our state(s) selection algorithms.

107

8.5.2 Variable Scheduling

Our design requires writing all the variables in the states to the NVM cache through a single

port in a limited number of computational iterations. However, as shown in Figure 8.1, the

write speed to NVM is slow, making the state writing to NVM easily becomes a bottleneck

of the program execution. Note that when the system writes the data of a state from the

registers to the NVM cache, the rest of the program has to halt to avoid overwriting the

registers.

We leverage the above issue by using temporary register files. Instead of directly storing

data from registers in the datapath to NVM, we first transfer the data temporarily to a

register file, and then store it to NVM. Although the mechanism introduces extra hardware,

the advantage comes in two aspects. The first is that the program no longer needs to wait

for the write to NVM to finish, which employs a large timing overhead. The write from the

temporary register file to NVM can be executed in parallel with the program running. The

other advantage is that it completely avoids the situation of overwriting. As the temporary

register file holds all the data of a state, the original registers that hold the data are free

to be used by other functional units. Our mechanism will introduce small timing overhead

which accounts for the write from regular registers to the temporary register file, however,

compared to the huge time expense of writing to NVM, the overhead is negligible.

The variable scheduling of the above scheme can be split into two parts, respectively to

schedule the write from regular registers to register files, and to schedule the write from the

register files to NVM. The basic policy is generalized in the following.

• Regular registers → register files: timing order of variables.

• Register files → NVM: timing order of states.

In terms of the scheduling from the regular registers to register files, it should strictly

follow the timing order of the generation of variables, so that the regular registers can be

immediately freed after the variable calculation. In many cases, the data variables in a

108

single state are generated in different clock cycles. It is likely that the calculation of next

functional unit requires the use of an occupied register from the current state. Thus, as soon

as a variable is generated, it should be transferred to the temporary register files.

The scheduling from register files to NVM follows the timing order of states generation.

It is simply because each NVM space is expected to store a single complete state. Assume

that variable v1 belongs to state s1, variable v2 belongs to state s2, and s1 is prior to s2.

Both v1 and v2 are in the register file, waiting to be written to NVM. Note that we assume

there exists only a single port between the register file and the NVM cache, hence, we can

only choose to write either v1 or v2. Although it is possible that v2 is generated before v1,

it is meaningless to first write v2 to NVM. Because if so, when a fault occurs shortly after

s2, neither s1 nor s2 is available in the NVM as a complete state for recovery. Nonetheless,

if v1 is stored to NVM as a priority, there is a higher chance that by the time when a fault

occurs, s1 has been ready for recovery as a checkpoint.

8.6 Experiments

8.6.1 Energy Model

We build energy models for the program execution on datapath (Eoriginal) as well as the

energy required to write the state (Estate).

Eoriginal consists two parts of energy consumption, energy for arithmetic units, and energy

for register read and write. To evaluate Eoriginal, we have applied the energy model from

circuit simulator Hspice. The main advantages of the circuit-level simulation are its accuracy

and generality. It estimates the energy consumption of our program execution on datapaths

regardless of technology, design, style, functionality, and architecture.

Estate also involves two components, the energy to write to temporary register files (Ereg)

and the energy to write to NVM (Envm). Ereg can be easily modeled using circuit simulator.

In terms of Envm, the type of NVM we have applied in our model is STT-RAM. Its energy

109

and latency data used in our simulation is obtained from CACTI [49] and Chang’s paper

[50] as shown in Table 8.2. The high-capacity cache is a 32nm, 32MB, 16-way cache that

is partitioned into 16 banks and uses 64-byte blocks. Given the same size of data, Envm is

orders of magnitude larger than Ereg, making Envm the dominant energy in Estate.

Cache Area Latency Energy
(mm2) (ns) (nJ/access)

STT-RAM(32MB) 16.39 read:3.06 read:0.94
write:25.45 write:20.25

Table 8.2: Parameters of STT-RAM (32nm).

8.6.2 Simulation Results

We apply our FT mechanism on a set of controller benchmarks as shown in Table 9.6. The

first three examples are controllers for Aircraft Advanced Flight Control (VAAC) aircraft.

The plane is a British VSTOL air force aircraft with vertical take-off and landing capabilities.

Each of the examples corresponds to three different phases and three different speeds of 6,

86, and 122 knots respectively. We see that the effectiveness of the approach increases in

the more demanding situation where faster reaction on the measurement of control signals

is required. Image and video are small processing systems that work on their corresponding

streams by applying a variety of nonlinear filters and transforms for noise removal and

contrast enhancement. Chemical.s and chemical.l are small and larger controllers used by a

chemical plant. Honda and honda.lp are the high and low speed of an automotive controller

for adjusting gasoline and oxygen into the engine. Steam is a small linear controller of

a steam plant engine. Finally, gps.nav is a location tracking system used for GPS-driven

navigation. In our simulation, we assume that faults can happen in any arithmetic unit of

the design.

In Table 8.3, column 2, 4, and 5 display the information of the program including the total

number of generated variables, the number of multiplications, and the number of additions.

Column 3 shows the number of variables in the selected checkpoint state. The size of the

110

variables in each program equals to 16-bit. Column 6 and 7 respectively show Eoriginal of

the original program, and Estate of the selected program state. The last column calculates

the energy overhead of Estate compared to Eoriginal. From the results, we have the following

observations.

First of all, the percentage of energy overhead has no direct correlation with the size of

the program or the size of the state. For example, chemical.s and video are two programs

with the largest percentage of overhead. However, chemical.s has only 302 total variables,

and video benchmark has as large as 20928 variables. A further observation suggests that

the ratio between the number of state variables and the number of total variables has a

dominant effect on the percentage of energy overhead. A larger ratio usually suggests a larger

percentage. It is because that as the number of overall variables in the program increases,

Eoriginal grows since more variables suggest more arithmetic units and more write operations

to the regular registers. On the other hand, as the number of state variables decreases, the

energy required to write data to NVM also decreases dramatically. To conclude, the most

favored programs to our FT strategy are the ones with a large number of variables while the

size of min-cut on the program is small.

To verify our observation, we choose four benchmark programs from MediaBench to

apply our FT scheme. The four programs are intentionally chosen in such a way that they

require long execution cycles while the selected state is relatively “small”. Therefore, all four

programs employ high ratio between the total number of variables and the state variables.

As shown in Table 8.4, the average energy overhead is reduced to only 14.9%.

Secondly, the number of multiplications in the program is also important. Multiplication

is among the most expensive operations in a program; an N -bit multiplier consumes around

one magnitude more energy compared to an N -bit adder. Thus, if multiplications take a

large percentage of the total arithmetic operations, Eoriginal will be increased a lot assume

the total number of operations is fixed. However, this has no influence on the result of Estate,

hence the ratio between Estate and Eoriginal will decrease.

111

D
es

ig
n

N
u
m

b
er

of
N

u
m

b
er

of
N

u
m

b
er

of
N

u
m

b
er

of
E

o
r
ig
in

a
l

E
st
a
te

P
er

ce
n
ta

ge
of

ov
er

al
l

va
ri

ab
le

s
st

at
e

va
ri

ab
le

s
m

u
lt

ip
li
ca

ti
on

s
ad

d
it

io
n
s

(n
J

)
(n
J

)
E

n
er

gy
ov

er
h
ea

d
V

A
A

C
.6

22
3

15
11

8
90

0.
88

3
0.

48
0

54
.4

%
V

A
A

C
.8

6
43

1
17

21
4

20
0

1.
66

0.
54

4
32

.7
%

V
A

A
C

.1
22

48
2

19
24

1
22

1
1.

87
0.

60
8

32
.6

%
ch

em
ic

al
.s

30
2

24
15

2
12

6
1.

17
0.

76
8

65
.8

%
ch

em
ic

al
.l

87
0

36
43

8
39

6
3.

38
1.

15
34

.1
%

im
ag

e
23

23
64

96
6

13
03

8.
36

2.
05

24
.5

%
st

ea
m

11
2

7
56

49
0.

43
3

0.
22

4
51

.8
%

h
on

d
a

36
1

9
19

2
16

0
1.

44
0.

28
8

19
.9

%
h
on

d
a.

lp
37

6
8

0
36

8
0.

82
2

0.
25

6
31

.1
%

so
u
n
d

26
9

19
12

6
12

4
1.

01
0.

60
8

60
.3

%
v
id

eo
20

92
8

15
36

97
28

96
64

78
.2

49
.2

62
.9

%
gp

s.
n
av

48
9

16
22

6
24

7
1.

83
0.

51
2

27
.9

%
A

v
g.

41
.5

%

T
a
b

le
8.

3
:

A
p

p
li

ca
ti

on
o
f

th
e

fa
u

lt
to

le
ra

n
ce

to
a

se
t

of
co

n
tr

ol
le

r
b

en
ch

m
ar

k
s

fo
r

th
e

es
ti

m
a
ti

o
n

o
f

en
er

g
y

ov
er

h
ea

d
.

D
es

ig
n

N
u
m

b
er

of
N

u
m

b
er

of
N

u
m

b
er

of
N

u
m

b
er

of
E

o
r
ig
in

a
l

E
st
a
te

P
er

ce
n
ta

ge
of

ov
er

al
l

va
ri

ab
le

s
st

at
e

va
ri

ab
le

s
m

u
lt

ip
li
ca

ti
on

s
ad

d
it

io
n
s

(n
J

)
(n
J

)
E

n
er

gy
ov

er
h
ea

d
D

/A
co

n
ve

rt
er

42
6

4
22

2
20

0
1.

69
0.

12
8

7.
6%

P
G

P
19

40
34

46
8

14
38

5.
84

1.
09

18
.6

%
J
P

E
G

.e
n
c

10
26

18
50

4
50

4
3.

96
0.

57
6

14
.5

%
M

P
E

G
2.

d
ec

86
4

25
52

7
31

2
3.

68
0.

8
21

.8
%

G
S
M

.e
n
c.

d
ec

14
00

22
85

2
52

6
5.

96
0.

70
4

11
.8

%
A

v
g.

14
.9

%

T
ab

le
8
.4

:
A

p
p

li
ca

ti
o
n

of
th

e
fa

u
lt

to
le

ra
n

ce
to

a
se

t
of

b
en

ch
m

ar
k
s

fr
om

M
ed

ia
B

en
ch

fo
r

th
e

es
ti

m
a
ti

o
n

o
f

en
er

g
y

ov
er

h
ea

d
.

112

Finally, as shown in the last row of Table 8.3, without any intentional design selection,

the average energy overhead of our FT mechanism is around 41.5%. Although our algorithm

targets to reduce the energy overhead, it is still not a negligible ratio for IoT applications.

For those IoT devices that are extremely sensitive to energy overhead, our mechanism is not

the best option. Alternatively, our FT strategy works best for the IoT systems that require

real-time updates, high accuracy calculations, as well as a moderate energy restriction.

8.7 Summary

We have proposed an NVM based fault tolerance mechanism for IoT applications. By storing

intermediate states of a program to NVM, the program can be recovered from the states when

faults occur, e.g., the loss of external power. By applying our modified min-cut max-flow

algorithm on the data flow graph, we optimize the size of states in such a way that the energy

overhead to store the state data to NVM is minimized. Moreover, we apply the temporary

register files to hold the state data before storing them to NVM, reducing the timing overhead

to be almost negligible. Our test results on a variety of controller benchmarks indicate

that the average energy overhead introduced by our FT scheme is 41.5%. Moreover, when

intentionally choose programs that favor the appliance of our FT mechanism, the average

overhead can be reduced to 14.9%.

113

CHAPTER 9

Combine Pipelining with Dual-supply Voltages

9.1 Motivation and Problem Formulation

Low energy has emerged to become one of the most important design metrics in the last

25 years. It is especially important for IoT applications due to their highly constrained

resources in many scenarios. Battery technology improvements have not kept pace with

the rapid device scaling that has continued to follow Moore’s Law. The platforms such as

mobile phones and tablets are highly restricted by the amount of energy that can be stored

in the battery and, therefore, energy efficiency has become a premier design requirement.

On the other hand, energy consumption on the hardware level directly impacts the circuit

temperature, which leads to the creation of hotspots. Frequent and significant fluctuations

in temperature can have ramifications on the circuit reliability.

Many efforts have been made to achieve power/delay optimization, two techniques among

them are well recognized, respectively pipelining, and dual-Vdd assignment. Pipelining is a

circuit optimization technique which is frequently used to speed up the execution of com-

putations in a circuit by dividing the original circuit into n consecutive sub-computation

units and overlapping their executions. By adding flip-flops between the sub-computation

units to temporarily store the intermediate results, theoretically, an n-stage pipeline circuit

should yield a factor of n times delay improvement over the non-pipelined circuit. Dual-Vdd

is another circuit design technique in which two supply voltages (high Vdd and low Vdd) are

applied to a circuit in order to save power compared to only applying a single supply volt-

age (medium Vdd). The appliance of dual-Vdd optimization should not sacrifice either the

throughput or the delay of the original circuit.

114

It is a natural idea to combine pipelining with dual-Vdd to jointly optimize circuit, ex-

pecting to achieve both low delay and low power. However, the optimal way to combine the

two techniques is not yet a solved problem, which is due to the following two facts. The

first is that there exist multiple pipeline schemes with the same circuit delay. For example,

assume that a circuit is to be transformed into a 2-stage pipelining. Since the delay of a

pipeline circuit is decided by the maximum delay of each single stage of the circuit, then it

is important to guarantee that the delay of the original critical path dc is evenly divided in

such a way that each stage has delay dc/2. However, the non-critical path logic of the circuit

can be assigned to either stage as long as it does not create a new critical path longer than

dc/2. Consequently, multiple pipeline schemes with the same delay exist. The second fact is

a technical constraint of dual-Vdd assignment. Only the gates on high Vdd can directly drive

gates on low Vdd to prevent direct current due to incomplete positive-channel metal-oxide

semiconductor (PMOS) cut-off [51]. The only exception is that a level converting flip-flop

allows the logic after low Vdd gates to switch back to high Vdd. To summarize, only high Vdd

gates can drive low Vdd gates unless converting flip-flops are used.

Combining the above two observed facts, we claim that different pipeline schemes even

though with the same delay can have very different power consumption after dual-Vdd op-

timization. Figure 9.1 shows a motivational example of the effect of dual-Vdd assignment

on a circuit with different pipelining. The original circuit contains 8 gates, from G1 to

G8. Assume that all the gates have the same delay dG on the original Vdd. Both pipeline

designs in (a) and (b) introduce 4 extra flip-flops. We denote that the delay of flip-flops

equals to dFF on the original voltage. Then for both pipeline designs in (a) and (b) before

dual Vdd optimization, the circuit has the same delay 2 ∗ dG + dFF . Now we apply dual-Vdd

optimization on both pipeline designs. The gates and flip-flops on high Vdd are colored red

(solid line) and their delays are denoted as dhG and dhFF . Correspondingly, the gates and

flip-flops on low Vdd are colored blue (dashed line) and the delays are denoted as dlG and

dlFF . Thus, for both pipeline designs in (a) and (b) after dual-Vdd, the critical path delay

equals to dlG + dhG + dhFF . Note that in our dual Vdd optimization, the critical path delay

115

G1

G3

G2

G4

G5

G6 G7 G8

G1

G2 G3 G4

G5

G6 G7 G8

FF4

FF3FF2

FF2 FF3 FF4

FF1

FF1

(a)

(b)

G1

G3

G2

G4

G5

G6 G7 G8

FF4

FF3FF2

FF1

G1

G2 G3 G4

G5

G6 G7 G8

FF2 FF3 FF4

FF1

Dual-Vdd

Dual-Vdd

Figure 9.1: An example of dual-Vdd assignment on (a) non-optimized pipelining, (b) optimized

pipelining. The flip-flops in the circuit are represented with rectangle, and the gates are represented

with circle. The gates/flip-flops that are on original Vdd are colored grey (middle Vdd), the ones on

low Vdd are colored blue (dashed line), and the ones on high Vdd are colored red (solid line).

before and after the optimization should stay the same. However, the key observation is that

the number of gates assigned to high Vdd in (a) is 4 while the number of high Vdd gates in

(b) equals to 2. It suggests that the circuit power consumption after dual Vdd assignment in

(b) is less than the power consumption in (a) although both circuit designs enable the same

delay.

Motivated by the above example, we propose a pipeline design with the use of an objective

function in which the number of gates on high Vdd is minimized under the constraint of

keeping the delay of the standard optimal pipelining. We only introduce level converting

116

flip-flops between the stages of pipelining, which suggests that within each pipeline stage

only high Vdd gates can drive low Vdd gates. Therefore, it is important that the width of

the circuit is small at the positions immediately after the flip-flops so that fewer gates need

to be placed at high Vdd while satisfying the delay constraints. To distinguish our paper

from the previous related work of pipelining and dual voltage assignment, we summarize our

contributions as following.

• A novel approach to combine the pipelining and the dual-Vdd assignment to jointly

optimize energy consumption.

• Modification to the current pipelining algorithm to enable a more energy efficient dual-

Vdd assignment.

9.2 Preliminaries

9.2.1 Pipelining

The task of pipelining is described in standard textbooks such as [52] and [53]. Many re-

searches have been focused on the automatic generation of high efficient pipelining designs.

Kroening et al. proposed automated pipelining which transforms a sequential machine into

a pipelined machine by adding forwarding and interlock logic [54]. Cong et al. presented an

architecture-level synthesis solution to support automatic pipelining of on-chip interconnec-

tions [55]. The work from Calceran-Oms et al. discussed an automatic pipelining method

for micro-architectural systems with loops [56]. Most of the conventional pipelining methods

target to maximize the processing performance by reducing the clock period [57][58].

9.2.2 Dual Vdd Optimization

Usami et al. first proposed to use multiple supply voltages as a way to reduce energy [59][60].

Salil and Sarrafzadeh applied multiple supply voltages at the behavior level for energy mini-

mization [61]. Dynamic programming techniques for solving the dual-Vdd scheduling problem

117

in both non-pipelined and functionally pipelined datapaths were proposed by Chang et al.

[62]. A low power implementation on the FPGA platform using dual-Vdd/dual-Vth fabrics

was proposed by He [63][64]. Ishihara proposed the level converter required for dual-Vdd

systems [65]. Srivastava has introduced technology that minimizes both switching and static

power using simultaneous Vdd assignment [66]. Lee et al. studied the use of dual voltages by

considering the requirement for power-network planning [67].

To the best of our knowledge, we report the first approach that combines pipelining

and dual voltage assignment for the reduction of circuit power. Our dual-Vdd assignment

method specifically does not require voltage converters inside each pipeline stage. Under

this assumption, our algorithm guarantees significant power minimization using dual-Vdd

assignment. The most important observation is that pipelining is used both for delay min-

imization as well as to improve the performance of dual-Vdd assignment. The effectiveness

of our approach in this generalized technology can be further combined with unfolding and

other sequential and combinational transformations.

9.2.3 Power and Delay Model

We build our gate level simulation model by using the delay and power models from Markovic

et al. [68]. The delay model is shown in Equation (9.1), where ktp is the delay-fitting

parameter, CL is load capacitance, Vdd is supply voltage, n is substreshold slope, µ is mobility,

Cox is oxide capacitance, W is gate width, L is effective channel length, φt = kT/q is thermal

voltage, kfit is a model-fitting parameter, σ is the drain induced barrier lowering (DIBL)

factor, and Vth is threshold voltage. Load capacitance CL is defined in Equation (9.2), where

γ is the logical effort of the gate and Wfanout is the sum of the widths of the load gates.

D =
ktp · CL · Vdd

2 · n · µ · Cox · WL · (
kT
q

)2
· kfit

(ln(e
(1+σ)Vdd−Vth
2·n cdot(kT/q)))2

(9.1)

CL = Cox · L · (γ ·W +Wfanout) (9.2)

118

We have also considered two sources of power dissipation in an IC. One is from gate

switching, in which the ICs dissipate power by charging the load capacitances of wires and

gates. The other source is leakage power. Even if the gates do not switch, they dissipate

power due to the leakage current. Equation (9.3) describes the leakage power model, and

Equation (9.4) describes the gate-level switching power model, where α is the activity factor

and f is the frequency.

Pleakage = 2 · n · µ · Cox ·
W

L
· (kT

q
)2 · Vdd · e

σ·Vdd−Vth
n·(kT/q) (9.3)

Pswitching = α · CL · V 2
dd · f (9.4)

9.3 Optimization Flow

Our flow of optimization is shown in Figure 9.2. In the first stage, we apply gate level sim-

ulation to the benchmark circuits based on Markovic’s delay and power model. Based on

the achieved circuit model, we then apply pipelining to find out where to split the pipeline

stages. Our pipelining has the following properties. (1) It does not compromise the per-

formance of standard optimal pipelining. (2) It facilitates the dual-Vdd assignment. In the

simulation, our pipelining is tested on the 2-stage situation, however, it is not limited to

such, as it can be easily extended to an n-stage pipelining (n > 2). The last step in the flow

is to assign dual-Vdd to the circuit which operates at the gate-level. Our cell Vdd selection

strategy is by efficiently identifying gates to place at high voltage without violating the basic

rules that only high Vdd gates can drive low Vdd gates. In the dual-Vdd optimization, we set

a target delay and then assign dual voltages to meet the delay while optimizing the overall

circuit power. Our algorithm returns both the optimal high/low voltages to apply as well

their coverage on the circuit.

119

Gate Level Simulation

Pipelining

Dual-Vdd Assignment

Apply delay/power model

Maintain performance of
optimal pipelining

Optimize power under
target delay

Figure 9.2: Flow of optimization.

9.4 Pipelining

We discuss our pipelining design in this section. We have focused on the 2-stage pipelining

on combinational circuits. Our whole process has two major steps, respectively “critical path

identification” and “splitting pipeline stages”.

The first step is to identify all the critical paths in the original circuit under the single

Vdd. This can be easily achieved through the standard critical path identification method,

such as dynamic programming proposed by Kirkpatrick [69]. The clock frequency of pipeline

circuit is decided by the larger delay of the pipeline stages. Therefore, in order to achieve

the optimal delay after pipelining, the gates on the critical paths should be evenly split into

2 groups in terms of delay and then distributed to the two pipeline stages. Assume that the

original critical path delay is dc, then the optimal delay can be achieved after pipelining is

dc/2 + dFF , where dFF is the delay of flip-flops.

However, the key remaining question is which pipeline stage should the non-critical path

logic be assigned to. Figure 9.3 depicts an example circuit with critical paths represented by

solid black lines. The optimal cuts on the critical paths are represented by the dashed lines

in the first figure of 9.3(a) and 9.3(b), with which the original critical path delay is split into

approximately half to half. Then two pipeline strategies are presented in the second figure

of 9.3(a) and 9.3(b), where the key difference is the assignment of non-critical path logic.

Note that we assume in both pipeline cases, the assignment on non-critical path logic does

120

not introduce new critical paths. In other words, the delay in each pipeline stage stays to

be approximate dc/2 + dFF .

Pipeline 1

Pipeline 2

Dual-Vdd

Dual-Vdd

High-Vdd

Low-Vdd

High-Vdd

Low-Vdd

High-Vdd

Low-Vdd

High-Vdd

Low-Vdd

(a)

(b)

Figure 9.3: Comparison of dual-Vdd assignment on pipeline method 1 and pipeline method 2.

The dual-Vdd optimization is followed by the pipelining. We have observed a large dif-

ference in the dual-Vdd assignment between the pipelining in the last figure of 9.3(a) and

9.3(b). The number of gates assigned on high Vdd of the second stage pipeline in 9.3(a) is

much larger than that of 9.3(b). This is because the critical path gates in the second stage

pipeline are also driven by the non-critical path logic. Thus in order to put the critical path

gates on high Vdd, all the non-critical path logic that provides fan-ins to them also need to

be assigned to high Vdd. Nevertheless, to put the non-critical path logic on high Vdd will not

further reduce the delay of pipeline stages, with the only consequence to increase the circuit

power consumption.

Motivated by the above comparison, we summarize our key idea of pipeline design as

following.

121

• Keep the optimal cut on the critical paths under the single Vdd.

• Include as much non-critical path logic as possible to the first pipeline stage without

creating a new critical path.

With the above procedures, we guarantee that at the second pipeline stage, the gates

on the critical path depend on as little non-critical path logic as possible since most of the

logic has been included in the first pipeline stage. The level converters between stages allow

such low Vdd gates to drive the high Vdd gates in the next stage. Consequently, when putting

gates on the critical path to high Vdd in the second pipeline stage, the unnecessary power

overhead from non-critical fan-ins is minimized.

The algorithmic process to find such pipeline design is presented in Algorithm 5. In the

algorithm, we first identify all the critical paths cpi, (i ∈ {0, 1, .., n}) in the original circuit,

then we traverse all the gates on the critical paths with breadth-first search (BFS) to find

cuts on the paths to minimize the maximum delay between the upper stage (S1) and the

lower stage (S2) given a single Vdd. With the finalized cut on the critical paths, we then

traverse through all the gates on the non-critical paths with BFS. As long as a gate does

not create new critical paths for S1, we incorporate it to S1. Note that at the end of the

algorithm, the delay of S1 and the delay of S2 should be as close as possible. And the sum

of the two delays should equal to dc plus the delay from the flip-flops.

Our pipeline design can be easily extended to the N -stage pipelining (N > 2). For

Algorithm 5, the same idea can be applied to all the boundaries between pipeline stages.

Assume pipeline stage i is more close to inputs, and its neighbor stage i+ 1 is more close to

outputs, then the goal is to push as much non-critical path logic from stage i+ 1 to stage i

as possible without creating a new critical path. So that for each pipeline stage (other than

stage 1), fewer non-critical path gates need to be assigned to high voltage.

122

Algorithm 5 Pipelining

Input: C - original circuit.

Output: 2-stage pipelining on C. The gates in the first pipeline stage are in S1 (close to

inputs), and the gates in the second pipeline stage are in S2 (close to outputs).

1. S1 = ∅, S2 = ∅, d = 0.

2. Identify all the critical paths cpi, (i ∈ {0, 1, .., n}) in C with delay dc.

3. d = dc.

4. Append all gates in cpi to S2.

5. For all gates gj in cpi (inputs → outputs, BFS):

6. If gj is directly driven by gates in S1:

7. If Max(Delay(S1 + gj), Delay(S2 − gj)) < d:

8. S1.append(gj).

9. S2.remove(gj).

10. d = Max(Delay(S1), Delay(S2)).

11. Else:

12. Continue.

13. Else:

14. Continue.

15. d1 = Delay(S1). d2 = Delay(S2).

16. S2 = {all gates in C − S1}.
17. For all gates gj not in cpi (inputs → outputs, BFS):

18. If gj is directly driven by gates in S1:

19. If Delay(S1 + gj) = d1 and Delay(S2 − gj) ≥ d2:

20. S1.append(gj).

21. S2.remove(gj).

22. Else:

23. Continue.

24. Else:

25. Continue.

26. Return S1, S2.

123

9.5 Dual Vdd Assignment

We start this section by demonstrating the algorithmic flow of finding the optimal dual Vdd

assignment for a single pipeline stage. Then we extend the proposed algorithm to find the

optimal Vdd assignment on a circuit with multiple pipeline stages. In the second case, the

selected voltage pair is shared among all the pipeline stages.

9.5.1 Dual Vdd Assignment on a Single Pipeline Stage

There exist two essential issues when applying dual-Vdd to circuits. The first is what voltages

should be used, and the second is which part of the circuit should be assigned to high Vdd

(or low Vdd). We assume that in our design, only the gates with high Vdd can drive the gates

with low Vdd, thus we do not need to use the high-cost level converters inside each pipeline

stage.

Start

Identify critical path

Assign one gate from low

voltage group on critical path
that is closest to flip-flops

to high voltage group

Binary search for high/low
voltage pair given the target

delay

End

All gates on high

voltage group?

Yes

No

Assign all gates to low voltage

group

Figure 9.4: Algorithmic flow of dual voltage assignment.

124

To leverage the above two issues, we propose the algorithmic flow in Figure 9.4 to heuris-

tically approximate the best voltage pairs and the corresponding coverage. We assume two

gate sets in the circuit, respectively the high voltage set and the low voltage set. Initially,

all gates in the circuit are in the low voltage set. In each iteration, we choose one gate which

is on the current critical path with the shortest arrival time from the low voltage set and

place it to the high voltage set. Afterwards, given the current high/low voltage set split, we

use binary search to traverse the pairs of voltages that meet the given target delay and find

the pair that achieves the smallest power consumption. We repeat these steps until all gates

in the circuit have been placed in the high voltage group. From there, we choose the lowest

point of power consumption from all the explored iterations. In practice, the minimum power

is frequently achieved when only a small subset of gates are assigned to high Vdd.

An important point in the whole process is that the voltage for high voltage group and

the voltage for low voltage group do not keep the same across iterations. Instead, they kept

being changed with binary search as long as they met the following constraints. (1) Each

pipeline stage must meet the target delay. (2) The voltage in high voltage group must be

equal or higher than the voltage in low voltage group. That being said, the voltage used in

the initial circuit will be the same as the voltage used at the end of the algorithm because

all gates belong to a single voltage group.

An example flow of dual voltage assignment is shown on Figure 9.5. In each iteration,

the new critical path of the circuit is circled with a dashed line. As shown in the example,

one gate on the critical path of the low voltage group (blue cells) is set to high voltage group

(red cells) in every iteration. The solution with the overall minimum power consumption is

highlighted using a red rectangle.

Figure 9.6 depicts the performance of our algorithm on an example circuit. The tested

circuit c880 has the following initial configuration: the total number of gates is 383, the

initial Vdd is 0.7V , the critical path delay is 3.67ps, and the power is 798.2µW . Note that

this example does not involve any pipelining, the c880 circuit is considered as a whole single

stage. In each iteration, one gate is switched from the low Vdd set to the high Vdd set. We

125

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

G1

G2G3 G4

G5

G6 G7 G8

Minimal
Power

Figure 9.5: An example flow of dual voltage assignment.

Figure 9.6: The performance of the dual-Vdd optimization algorithm on the c880 circuit.

126

observe from Figure 9.6 that the minimum power is achieved approximately at iteration

120. The circuit achieves its optimal power consumption 612µW with high Vdd set to 0.74V

and low Vdd set to 0.62V . The reason that the initial part of the iteration causes more

energy reduction is that as more gates are assigned to high Vdd, the circuit becomes balanced

in terms of critical paths, thus the marginal effect on energy reduction using dual-Vdd will

decrease. Throughout the whole process, the target delay of the circuit is fixed, only the

voltages are scaled to meet the target delay.

9.5.2 Dual Vdd Assignment on Multiple Pipeline Stages

Pipeline
Stage 1

Pipeline
Stage 2

Vdd_1

Vdd_2

Vdd_3

Vdd_4

Pipeline
Stage 1

Pipeline
Stage 2

Vdd_1

Vdd_2

Vdd_1

Vdd_2

(a) (b)

Figure 9.7: Two types of dual Vdd assignments on the pipeline circuit.

The key issue to consider in the dual-Vdd assignment on multiple pipeline stages is that

only a single pair of high voltage and low voltage is allowed across the whole circuit (as

shown in Figure 9.7(b)). However, if we simply apply the optimization flow on every single

pipeline stage, then each of them will generate its optimal voltage pair as shown in Figure

9.7(a) and these pairs are not likely to equal to each other. The reason we only allow two

voltages to be used is because it is always expensive in terms of design and manufacturing

cost to add a new voltage to a circuit. We would show that it is not worth it to use more than

two voltages because compared to using multiple pairs of voltages, a single pair of voltage

127

only compromises a small percent of circuit performance.

To find the single optimal dual Vdd pair across the whole pipeline circuit, we extend the

algorithmic flow presented in Figure 9.4. In the first step, we apply dual-Vdd assignment

on each single pipeline stage, but instead of only recoding the optimal dual-Vdd pair for

each stage, a pool of voltage pairs distinguished by certain voltage scales together with their

power performance are all recorded. In the next step, an overall power evaluation is applied

on each candidate voltage pair, and the pair with the least overall power is selected as the

result pair.

Figure 9.8 presents the power evaluation process for different pairs of voltages applied to

the c880 circuit. In Figure 9.8a, the dual-Vdd assignment algorithm is applied on the first

stage of c880. The corresponding stage 1 power consumptions under different voltage pairs

are plotted with the colormap. Similarly, the same process is applied to the stage 2 of c880,

and the result is shown in Figure 9.8b. By adding the results of two stages together, we

can easily generate the power consumption of the overall circuit for different voltage pairs,

where the result is plotted in Figure 9.8c. We can clearly see that with the voltage pair

< 0.53V, 0.76V >, the overall circuit employs the least power consumption.

The above approach can be extended to circuit designs with more than two pipeline

stages. By applying the single stage dual-Vdd assignment algorithm to all n stages, and then

adding up the power consumption under each voltage pair, the pair that achieves the globally

minimum power consumption is easily discovered.

One question we have raised previously is that compared to using multiple pairs of volt-

ages, how much performance compromise will be caused by applying only a single pair of

voltages? For the example circuit c880, the minimum power of stage 1 is 141.9µW and

is achieved at < 0.53V, 0.75V > while the minimum power of stage 2 is 533.5µW and is

achieved at < 0.53V, 0.76V >. If there is no restriction on the number of voltages we can

apply on the whole circuit, then the minimum power globally is 141.9 + 533.5 = 675.4µW .

On the other hand, if only a single pair of voltage can be used, then the lowest power con-

sumption is 678.9µW at voltage pair < 0.53V, 0.76V >, in which case, only 0.52% extra

128

(a) (b)

(c)

Figure 9.8: Power consumption of (a) stage 1, (b) stage 2, (c) stage 1 plus 2 of circuit c880 on

different high/low voltage pairs.

power consumption is required compared to the case of multiple voltage pairs.

9.6 Experiments

We demonstrate our experimental results on our proposed approach in this section. We

first explain our experiment setup, including the cell library, power model, as well as the

benchmarks we are using. Then we present the power/delay results on benchmark circuits

to illustrate the effectiveness of our optimization algorithm.

129

9.6.1 Experiment Setup

We have used the ISPD2012 standard cell library [70] and fit it accordingly to Markovic’s

delay and power model. We set the initial Vdd to 0.7V and the threshold voltage Vth to 0.3V.

For our dual-Vdd optimization, we consider high and low Vdd within the range from 0.4V to

1.0V. We only consider the 2-stage pipelining in our experiment.

We evaluate a subset of ISCAS85 benchmarks and synthesize each netlist using Cadence

Encounter to generate parasitics capacitances for all considered netlists [71]. We develop an

in-house timer in C++ for flexibility and robustness in computing load and slew dependent

delays. We start from the characterization using the cell library, afterwards, we use the

gate-level simulation to quantify the delay, switching power, and leakage power.

In the next step, we have designed 3 circuit configurations to iteratively evaluate the

performance of our algorithm. The first configuration is when the whole circuit is under the

initial Vdd. The critical path delay of configuration 1 is recorded and the half of critical path

delay is set as the target delay for each single stage in pipelining. The second configuration is

to apply a baseline pipelining algorithm together with the dual-Vdd assignment on the circuit.

Our baseline pipelining is designed to split stages at the half of circuit critical paths. The

major difference compared to our pipelining design is that it randomly decides which stage

the non-critical path logic belongs to. It serves as a reference to validate the effectiveness

of our pipelining algorithm. The third configuration is to apply our pipelining with dual-

Vdd assignment on the circuit. Note that for all the circuit states, the pipelining stages are

optimized under the same target delay. Therefore, we use the circuit power consumption as

an indicator of performance comparison.

9.6.2 Experimental Results

We test the power consumption of each benchmark circuit under the three configurations,

pipelining with initial Vdd (C1), baseline pipelining with dual-Vdd (C2), and our pipelining

with dual-Vdd (C3). The results are presented in Table 9.1. Note that the low/high voltage

130

pairs presented in the table are calculated based on the dual-Vdd assignment algorithm in

Figure 9.4. Compared to the power consumption under initial Vdd, the introduce of dual-Vdd

together with baseline pipelining can provide 3.9% to 18.5% (Avg. 11.4%) power saving.

Furthermore, when comparing our pipelining with the baseline pipelining under the dual Vdd

optimization, the percentage of power saving is from 0% to 24.0% (Avg. 10.4%). We draw

the following conclusions from the results.

First of all, the power consumption of our pipeline design achieves better performance

compared to the baseline pipeline design when combined with the dual-Vdd optimization.

The power saving from C2 to C3 is even comparable to the power saving from C1 to C2.

In all the tested circuits, our pipelining algorithm is at least equally well performed as the

baseline standard pipelining algorithm regarding power consumption.

Secondly, our pipelining achieves more power saving when the circuit has a larger number

of gates. It is because for a larger circuit, there normally exists more non-critical path logic

near the half-to-half critical path cut. In our pipelining, such logic is merged to the first stage

of pipelining. The gates in such logic are now switched from high Vdd to low Vdd without

compromising circuit delay. As the more gates are switched, the more significant the circuit

power reduction will be. From the results, we can clearly see that if many more gates

are assigned to the upper stage in our pipelining than the baseline pipelining, it normally

suggests that the difference of power saving between the two pipeline designs is large.

Lastly, there also exists some situation when our pipelining helps little compared to the

baseline pipelining, such as circuit c499 and c880 where the power savings are 0% and 0.7%.

When taking a closer look at both circuits, it is because the area of the circuit near the half-

to-half critical path cut is ultra “thin”, which in other words, exists almost no non-critical

path logic. As a result, the stage split between the baseline pipelining and our pipelining

stays almost the same, causing no further power saving.

131

C
ir

cu
it

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

N
u
m

b
er

of
ga

te
s

16
0

20
2

38
3

54
6

88
0

T
ar

ge
t

d
el

ay
(n
s)

2.
03

2.
12

1.
91

2.
16

2.
47

C
1
-P

ow
er

(µ
W

)
37

4.
8

53
6.

9
79

8.
2

11
58

.5
18

16
.7

C
2
-P

ow
er

(µ
W

)
34

2.
4

51
6.

2
68

3.
8

10
67

.3
14

80
.4

C
2
-<

lo
w
V
d
d
,h
ig
h
V
d
d
>

(V
)

<
0.

55
,0
.7

6
>

<
0.

52
,0
.7

5
>

<
0.

54
,0
.7

4
>

<
0.

55
,0
.7

6
>

<
0.

55
,0
.7

5
>

C
2
-#

of
ga

te
s:
<

st
ag

e1
,

st
ag

e2
>

<
58
,1

02
>

<
80
,1

22
>

<
74
,3

09
>

<
29

6,
25

0
>

<
43

5,
44

5
>

C
3
-P

ow
er

(µ
W

)
28

2.
1

51
6.

2
67

8.
9

95
5.

3
14

34
.8

C
3
-<

lo
w
V
d
d
,h
ig
h
V
d
d
>

(V
)

<
0.

51
,0
.7

7
>

<
0.

52
,0
.7

5
>

<
0.

53
,0
.7

6
>

<
0.

55
,0
.7

6
>

<
0.

54
,0
.7

5
>

C
3
-#

of
ga

te
s:
<

st
ag

e1
,

st
ag

e2
>

<
12

6,
34
>

<
80
,1

22
>

<
82
,3

01
>

<
37

5,
17

1
>

<
51

3,
36

7
>

P
ow

er
S
av

e-
C

1
to
C

2
8.

6%
3.

9%
14

.3
%

7.
9%

18
.5

%
P

ow
er

S
av

e-
C

2
to
C

3
17

.6
%

0%
0.

7%
10

.5
%

3.
1%

C
ir

cu
it

c2
6
7
0

c3
5
4
0

c5
3
1
5

c6
2
8
8

c7
5
5
2

N
u
m

b
er

of
ga

te
s

11
93

16
69

23
07

24
16

35
12

T
ar

ge
t

d
el

ay
(n
s)

3.
09

3.
54

3.
38

13
.5

8
2.

71
C

1
-P

ow
er

(µ
W

)
23

55
.8

33
39

.9
45

82
.0

53
76

.8
70

26
.1

C
2
-P

ow
er

(µ
W

)
19

25
.2

30
01

.3
38

57
.9

51
19

.9
61

86
.2

C
2
-<

lo
w
V
d
d
,h
ig
h
V
d
d
>

(V
)

<
0.

51
,0
.7

7
>

<
0.

53
,0
.7

5
>

<
0.

57
,0
.7

6
>

<
0.

53
,0
.7

5
>

<
0.

55
,0
.7

5
>

C
2
-#

of
ga

te
s:
<

st
ag

e1
,

st
ag

e2
>

<
39

3,
80

0
>

<
50

7,
11

62
>

<
39

8,
19

09
>

<
14

53
,9

63
>

<
72

3,
27

89
>

C
3
-P

ow
er

(µ
W

)
16

67
.6

22
81

.8
32

34
.5

48
73

.5
53

22
.9

C
3
-<

lo
w
V
d
d
,h
ig
h
V
d
d
>

(V
)

<
0.

53
,0
.7

6
>

<
0.

54
,0
.7

6
>

<
0.

55
,0
.7

4
>

<
0.

53
,0
.7

5
>

<
0.

52
,0
.7

6
>

C
3
-#

of
ga

te
s:
<

st
ag

e1
,

st
ag

e2
>

<
73

6,
45

7
>

<
89

8,
77

1
>

<
10

81
,1

22
6
>

<
18

09
,6

07
>

<
23

68
,1

14
4
>

P
ow

er
S
av

e-
C

1
to
C

2
18

.3
%

10
.1

%
15

.8
%

4.
8%

12
.0

%
P

ow
er

S
av

e-
C

2
to
C

3
13

.4
%

24
.0

%
16

.2
%

4.
8%

14
.0

%

T
a
b

le
9.

1
:

C
on

fi
g
u
ra

ti
o
n

1(
C
1
):

in
it

ia
l
V
d
d
.

C
on

fi
gu

ra
ti

on
2(
C
2
):

b
as

el
in

e
p

ip
el

in
in

g+
d

u
al
V
d
d
.

C
o
n

fi
g
u

ra
ti

o
n

3
(C

3
):

o
u

r
p

ip
el

in
-

in
g
+

d
u

al
V
d
d
.

E
x
p

er
im

en
ta

l
re

su
lt

s
o
f

IS
C

A
S

-8
5

b
en

ch
m

ar
k

ci
rc

u
it

s
w

it
h

2-
st

ag
e

p
ip

el
in

in
g

a
n

d
d

u
a
l-
V
d
d

o
p

ti
m

iz
a
ti

o
n

.
S

ta
g
e

1

re
p

re
se

n
ts

th
e

p
ip

el
in

e
st

ag
e

cl
o
se

to
in

p
u

ts
,

an
d

st
ag

e
2

re
p

re
se

n
ts

th
e

p
ip

el
in

e
st

ag
e

cl
os

e
to

ou
tp

u
ts

.

132

9.7 Summary

A novel design of pipelining is proposed to facilitate dual-Vdd assignment to enable low

power consumption in ICs. While our pipeline design maintains the optimal pipeline delay

on the circuit, it allocates as much non-critical path logic as possible from high Vdd to low

Vdd to reduce power consumption. Our approach is by far the first attempt to optimize

circuit pipelining in conjunction with dual-Vdd optimization. We have tested our approach

on the ISCAS-85 benchmark circuits, and the results suggest that in all benchmark circuits,

our pipelining algorithm performs at least equally well as the standard baseline pipelining

algorithm after dual-Vdd assignment. An average power saving of 10.4% is observed when

comparing our pipelining to the baseline pipelining.

133

CHAPTER 10

Concluding Remarks

The development of IoT has dramatically changed the way people live and the trend will

continue. Numerous opportunities, as well as challenges, exist in regards to the design,

manufacturing, and applications of IoT. In this thesis, we sought for novel hardware solutions

to specifically address the aspects of security, reliability and power consumption in IoT

designs. While traditional security approaches are able to provide elegant and well-defined

solutions, IoT systems have imposed a set of new requirements that can not be fully leveraged.

In terms of architecture, security designs should employ ultra-low power, compact area, and

resistance against side-channel attacks. In terms of applications, not only all the standard

protocols such as public/private communication, authentication, but also more emerging IoT

applications e.g., remote trust, low-overhead fault tolerance need to be addressed.

In this thesis, we proposed hardware-oriented solutions to meet the above requirements.

We emphasized especially on the domain of hardware security primitives represented by

PUFs. The first effort is to analyze and improve the analog PUFs. Our key observation

is that the standard arbiter PUFs can be easily characterized and emulated. Based on the

PUF characterization, we added programmable delay lines to match two arbiter PUFs, in

such a way that private key communication and authentication protocols are enabled.

While realizing the problem of instability and incompatibility of analog PUFs can never

be fully eliminated, we took the next effort to develop digital security primitives. We began

with the design of security primitives for public key and private key communications. Both

of the protocols are addressed with ultra-low energy. Then we raised the design criterion

to not only digital, but also unclonable. Therefore, the concept of digital PUF is proposed

134

along with two conceptually new architectural designs.

Reliability is equally important as security. The second domain we have worked on is to

develop low-overhead solutions to solve IoT reliability. Specifically, we employed an NVM-

based checkpoint technique to keep track of the program flow and store intermediate state

for fast recovery.

After focusing on security and reliability, we discussed and explored energy optimization

on IoT from the circuit level. We have improved and combined traditional circuit synthe-

sis techniques: pipelining with dual-supply voltages assignment to jointly optimize circuit

energy.

135

References

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] “Gartner says 6.4 billion connected things will be in use in 2016, up 30 percent from
2015.” http://www.gartner.com/newsroom/id/3165317, 2016.

[3] “IoT security needs scalable solutions.” https://techcrunch.com/2016/03/01/

iot-security-needs-scalable-solutions/, 2016.

[4] A. Juels, “RFID security and privacy: a research survey,” IEEE journal on selected
areas in communications, vol. 24, no. 2, pp. 381–394, 2006.

[5] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with IP: The next Internet.
Morgan Kaufmann, 2010.

[6] J. Hui, D. Culler, and S. Chakrabarti, “6LoWPAN: Incorporating IEEE 802.15.4 into
the IP architecture,” Internet Protocol for Smart Objects (IPSO) Alliance White Paper,
no. 3, 2009.

[7] http://www.verayo.com/#internet-of-things.

[8] https://www.intrinsic-id.com/solutions/sram-puf-key-storage/

hardware-ip/.

[9] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J.
Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance CMOS variability in the
65-nm regime and beyond,” IBM journal of research and development, vol. 50, no. 4.5,
pp. 433–449, 2006.

[10] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Sci-
ence, vol. 297, no. 5589, pp. 2026–2030, 2002.

[11] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical random func-
tions,” in Proceedings of the 9th ACM conference on Computer and communications
security, pp. 148–160, ACM, 2002.

[12] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and
secret key generation,” in Proceedings of the 44th annual Design Automation Conference,
pp. 9–14, ACM, 2007.

[13] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and
their use for IP protection,” in International workshop on Cryptographic Hardware and
Embedded Systems, pp. 63–80, Springer, 2007.

136

[14] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using programmable de-
lay lines,” in Information Forensics and Security (WIFS), 2010 IEEE International
Workshop on, pp. 1–6, IEEE, 2010.

[15] L. Bolotnyy and G. Robins, “Physically unclonable function-based security and privacy
in RFID systems,” in Pervasive Computing and Communications, 2007. PerCom’07.
Fifth Annual IEEE International Conference on, pp. 211–220, IEEE, 2007.

[16] U. Rührmair, “SIMPL systems, or: can we design cryptographic hardware without
secret key information?,” in International Conference on Current Trends in Theory and
Practice of Computer Science, pp. 26–45, Springer, 2011.

[17] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “A tech-
nique to build a secret key in integrated circuits for identification and authentication
applications,” in VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on,
pp. 176–179, IEEE, 2004.

[18] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, “Modeling
attacks on physical unclonable functions,” in Proceedings of the 17th ACM conference
on Computer and communications security, pp. 237–249, ACM, 2010.

[19] T. Hui and R. W. Mounger, “Programmable delay line,” Aug. 3 1999. US Patent
5,933,039.

[20] A. Raychowdhury, S. Ghosh, and K. Roy, “A novel on-chip delay measurement hardware
for efficient speed-binning,” in On-Line Testing Symposium, 2005. IOLTS 2005. 11th
IEEE International, pp. 287–292, IEEE, 2005.

[21] M.-C. Tsai, C.-H. Cheng, and C.-M. Yang, “An all-digital high-precision built-in delay
time measurement circuit,” in VLSI Test Symposium, 2008. VTS 2008. 26th IEEE,
pp. 249–254, IEEE, 2008.

[22] M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar, “Rapid FPGA characteriza-
tion using clock synthesis and signal sparsity,” in International Test Conference (ITC),
pp. 1–10, 2010.

[23] P. Yalla and J.-P. Kaps, “Lightweight cryptography for FPGAs,” in Reconfigurable
Computing and FPGAs, 2009. ReConFig’09. International Conference on, pp. 225–230,
IEEE, 2009.

[24] J. Soto, “Statistical testing of random number generators,” in Proceedings of the 22nd
National Information Systems Security Conference, vol. 10, p. 12, NIST Gaithersburg,
MD, 1999.

[25] E. Öksüzoglu and E. Savas, “Parametric, secure and compact implementation of RSA on
FPGA,” in Reconfigurable Computing and FPGAs, 2008. ReConFig’08. International
Conference on, pp. 391–396, IEEE, 2008.

137

[26] N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptography with public
physically unclonable functions,” in International Workshop on Information Hiding,
pp. 206–220, Springer, 2009.

[27] C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs Technical Jour-
nal, vol. 28, no. 4, pp. 656–715, 1949.

[28] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking crypto-
graphic protocols for faults,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pp. 37–51, Springer, 1997.

[29] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures,” Proceedings of the IEEE,
vol. 100, no. 11, pp. 3056–3076, 2012.

[30] C. H. Stapper, “Modeling of integrated circuit defect sensitivities,” IBM Journal of
Research and Development, vol. 27, no. 6, pp. 549–557, 1983.

[31] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches for managing
embedded DRAM and non-volatile on-chip caches,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 26, no. 6, pp. 1524–1537, 2015.

[32] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for STT-RAM using early
write termination,” in Proceedings of the 2009 International Conference on Computer-
Aided Design, pp. 264–268, ACM, 2009.

[33] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid cache architecture
with disparate memory technologies,” in ACM SIGARCH computer architecture news,
vol. 37, pp. 34–45, ACM, 2009.

[34] E. F. Moore and C. E. Shannon, “Reliable circuits using less reliable relays,” Journal
of the Franklin Institute, vol. 262, no. 3, pp. 191–208, 1956.

[35] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and Evaluatuion. Dig-
ital Press, 2014.

[36] W. H. Pierce, Failure-tolerant computer design. Academic Press, 2014.

[37] T. Karnik and P. Hazucha, “Characterization of soft errors caused by single event upsets
in CMOS processes,” Dependable and Secure Computing, IEEE Transactions on, vol. 1,
no. 2, pp. 128–143, 2004.

[38] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing checkpoints using
NVM as virtual memory,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, pp. 29–40, IEEE, 2013.

[39] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and
its use in optimization,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

138

[40] M. Weiser, “Program slicing,” in Proceedings of the 5th international conference on
Software engineering, pp. 439–449, IEEE Press, 1981.

[41] M. Weiser, “Programmers use slices when debugging,” Communications of the ACM,
vol. 25, no. 7, pp. 446–452, 1982.

[42] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification and survey
of analysis strategies for software product lines,” ACM Computing Surveys (CSUR),
vol. 47, no. 1, p. 6, 2014.

[43] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood, “SafetyNet: improving
the availability of shared memory multiprocessors with global checkpoint/recovery,”
in Computer Architecture, 2002. Proceedings. 29th Annual International Symposium
on, pp. 123–134, IEEE, 2002.

[44] D. Kirovski, M. Potkonjak, and L. M. Guerra, “Cut-based functional debugging for
programmable systems-on-chip,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 8, no. 1, pp. 40–51, 2000.

[45] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows,” tech. rep., DTIC
Document, 1988.

[46] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1982.

[47] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algorithmica, vol. 6,
no. 1-6, pp. 5–35, 1991.

[48] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling of iterative data-
flow programs via optimum unfolding,” Computers, IEEE Transactions on, vol. 40,
no. 2, pp. 178–195, 1991.

[49] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA organi-
zations and wiring alternatives for large caches with CACTI 6.0,” in Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 3–14,
IEEE Computer Society, 2007.

[50] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology comparison for large
last-level caches (L 3 Cs): low-leakage SRAM, low write-energy STT-RAM, and refresh-
optimized eDRAM,” in High Performance Computer Architecture (HPCA2013), 2013
IEEE 19th International Symposium on, pp. 143–154, IEEE, 2013.

[51] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, and K. Nogami,
“Automated low-power technique exploiting multiple supply voltages applied to a media
processor,” Solid-State Circuits, IEEE Journal of, vol. 33, no. 3, pp. 463–472, 1998.

[52] M. J. Flynn, “Computer Architecture Pipelined and Parallel Processor Design, 1995.”

139

[53] D. A. Patterson and J. L. Hennessy, Computer organization and design: the hard-
ware/software interface. Newnes, 2013.

[54] D. Kroening and W. J. Paul, “Automated pipeline design,” in Design Automation Con-
ference, 2001. Proceedings, pp. 810–815, IEEE, 2001.

[55] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for automatic interconnect
pipelining,” in Proceedings of the 41st annual Design Automation Conference, pp. 602–
607, ACM, 2004.

[56] M. Galceran-Oms, J. Cortadella, D. Bufistov, and M. Kishinevsky, “Automatic mi-
croarchitectural pipelining,” in Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 961–964, European Design and Automation Association, 2010.

[57] Y. Ma, Z. Li, J. Cong, X. Hong, G. Reinman, S. Dong, and Q. Zhou, “Micro-architecture
pipelining optimization with throughput-aware floorplanning,” in Design Automation
Conference, 2007. ASP-DAC’07. Asia and South Pacific, pp. 920–925, IEEE, 2007.

[58] E. Nurvitadhi, J. C. Hoe, S.-L. L. Lu, and T. Kam, “Automatic multithreaded pipeline
synthesis from transactional datapath specifications,” in Proceedings of the 47th Design
Automation Conference, pp. 314–319, ACM, 2010.

[59] K. Usami and M. Horowitz, “Clustered voltage scaling technique for low-power design,”
in Proceedings of the 1995 international symposium on Low power design, pp. 3–8, ACM,
1995.

[60] M. Igarashi, K. Usami, K. Nogami, F. Minami, Y. Kawasaki, T. Aoki, M. Takano,
C. Mizuno, T. Ishikawa, M. Kanazawa, et al., “A low-power design method using multi-
ple supply voltages,” in Proceedings of the 1997 international symposium on Low power
electronics and design, pp. 36–41, ACM, 1997.

[61] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in Proceedings of the 1995
international symposium on Low power design, pp. 9–14, ACM, 1995.

[62] J.-M. Chang and M. Pedram, “Energy minimization using multiple supply voltages,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 5, no. 4,
pp. 436–443, 1997.

[63] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined dual-Vdd/dual-
Vt fabrics,” in Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays, pp. 42–50, ACM, 2004.

[64] Y. Lin and L. He, “Statistical dual-Vdd assignment for FPGA interconnect power re-
duction,” in Design, Automation & Test in Europe Conference & Exhibition, 2007.
DATE’07, pp. 1–6, IEEE, 2007.

[65] F. Ishihara, F. Sheikh, and B. Nikolić, “Level conversion for dual-supply systems,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 12, no. 2,
pp. 185–195, 2004.

140

[66] A. Srivastava and D. Sylvester, “Minimizing total power by simultaneous Vdd/Vth
assignment,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 23, no. 5, pp. 665–677, 2004.

[67] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “An ILP algorithm for post-floorplanning
voltage-island generation considering power-network planning,” in Computer-Aided De-
sign, 2007. ICCAD 2007. IEEE/ACM International Conference on, pp. 650–655, IEEE,
2007.

[68] D. Marković, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey, “Ultralow-power
design in near-threshold region,” Proceedings of the IEEE, vol. 98, no. 2, pp. 237–252,
2010.

[69] T. Kirkpatrick and N. Clark, “PERT as an aid to logic design,” IBM Journal of Research
and Development, vol. 10, no. 2, pp. 135–141, 1966.

[70] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo, “The ISPD-
2012 discrete cell sizing contest and benchmark suite,” in Proceedings of the 2012 ACM
international symposium on International Symposium on Physical Design, pp. 161–164,
ACM, 2012.

[71] F. Brglez, “A neutral netlist of 10 combinational benchmark circuits and a target trans-
lation in FORTRAN,” in ISCAS-85, 1985.

141

