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ABSTRACT OF THE DISSERTATION 
 
 

Leibniz on the Concept, Ontology, and Epistemology of Number 
 
 

by 
 
 

Kyle Sereda 
 
 

Doctor of Philosophy in Philosophy 
 

University of California, San Diego, 2017 
 
 

Professor Donald Rutherford, Chair 
 
 
 

This dissertation concerns a topic that has been unduly neglected by historians of 

Early Modern philosophy and philosophers of mathematics alike: the highly original 

conception of number advanced by Gottfried Wilhelm Leibniz in the seventeenth and 

early eighteenth centuries. I aim to answer several questions regarding that conception, 

thereby illustrating its historical and philosophical importance: (1) How does Leibniz 

define the concept of number?; (2) Into which ontological category does Leibniz think 

numbers fall?; (3) Which sorts of numbers -- e.g. rational, irrational, complex -- does 

Leibniz think are conceptually legitimate, and to what extent does he realize that his own 



 

viii 

definitions commit him to the acceptance of certain kinds of numbers as such?; and (4) 

How does Leibniz think we acquire knowledge about numbers? 

In the course of answering these questions, I aim to show that Leibniz’s 

conception of number is philosophically significant insofar as it unites the most 

productive aspects of earlier conceptions into one that goes a long way toward allowing 

him to accommodate numbers that had not been previously viewed as conceptually 

legitimate (e.g. irrationals and complex numbers); provides an original ontology of 

number as a certain kind of relation; and anticipates the core views of the logicist school 

in the philosophy of mathematics. 

The dissertation is organized in a way that reflects the four core questions: I begin 

by discussing the intellectual climate in seventeenth-century mathematics in Chapter 1; I 

move on to an analysis of Leibniz’s conceptual characterization of number in Chapter 2; 

I argue that this characterization is consistent with Leibniz’s ontology of number (and 

explain the nature of that ontology) in Chapter 3; I discuss the scope of Leibniz’s view of 

number in Chapter 4, arguing that he is committed to the existence of different sorts of 

non-rational numbers, while also delineating the conceptual and technical limitations of 

his views; I explain his epistemology of number in Chapter 5; and I close by arguing that 

his views -- conceptual, ontological, and epistemological -- anticipate those of the 

logicists in Chapter 6. 
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General Introduction 

In philosophical circles, Leibniz is known primarily as a systematic metaphysician 

responsible for the theory that the world, at bottom, consists of mind-like entities and the 

results of their coordinated perceptions. In mathematical circles, he is known primarily 

as one of the founders the differential and integral calculus. Leibniz is not primarily 

known, in either circle -- in fact, he is barely recognized at all -- as a philosopher of 

mathematics, save for his well-documented and oft-debated views on the metaphysical 

and methodological status of infinitesimals and infinite numbers. The organizing 

principle of this work is that Leibniz is, and should be seen as, a philosopher with deeply 

sophisticated views on the subject matter of mathematics and the ontological and 

epistemological status of the objects under its purview. Furthermore, his views on the 

most basic questions in the philosophy of mathematics -- such as “what is a number?”, 

and “how do we acquire mathematical knowledge?” -- are of a piece both with his general 

metaphysical system and with his aforementioned views on the fundamental concepts of 

the calculus. Moreover, Leibniz's views on these most basic questions appear to arise in 

response to, and to be intended to improve upon, views of certain predecessors and 

contemporaries, and this intention should be viewed as at least a partial success. 

The purpose of this work is to investigate, and propose answers to, several 

interrelated questions that make good on its organizing principle. The questions are as 

follows: (1) What are numbers, according to Leibniz? In other words, how does Leibniz 

define the concept of number? (2) What is the ontological status of numbers, once their 
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definition is understood? In other words, what kind of objects are they? (3) What sorts of 

numbers exist, according to Leibniz, and what sorts of numbers do not? Finally, (4) how 

does Leibniz think we acquire knowledge of numbers? 

Each of these questions, it turns out, touches some or other widely known area of 

Leibniz studies, or of the philosophy of mathematics, or both. As will become evident, 

his answers to the first and second questions are intimately related to his metaphysical 

system and are intended -- as I say above, with partial success -- to improve upon the 

relevant views of those few mathematicians and philosophers who had explicitly proposed 

theses on the concept of number and the subject matter of arithmetic before and during 

the early modern period. His answers to the third question turn out to illuminate several 

aspects of Leibniz's philosophy of mathematics: first, the extent of Leibniz's anticipation of 

the modern conception of real number; second, the limitations of that anticipation insofar 

as Leibniz is ultimately unable to provide a mathematically rigorous characterization of the 

irrationals; and third, the deep conceptual difficulties that his conception of number 

encounters insofar as he seems unaware of his own commitments to the existence of 

numbers whose existence he explicitly denies. Finally, Leibniz's answer to the fourth 

question provides a case study that illuminates the harmony between his metaphysics and 

his epistemology, in addition to clarifying a deep scholarly confusion about his view on 

the role of different mental faculties in our acquisition of mathematical knowledge. 

If there were one main claim that this work could be understood as attempting to 

establish, it would be that Leibniz's conception of number is philosophically fruitful along 

two broad dimensions. First, it is fruitful insofar as it unites and improves upon the most 
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productive aspects of earlier views into a view that allows him at least to *begin* 

formulating a conception of number that countenances the irrationals without reducing 

the concept of number to the concept of geometrical magnitude. Second, it is fruitful in 

that along the way, Leibniz also proposes a robust metaphysics and epistemology of 

number that anticipates later developments in the philosophy of mathematics -- particularly 

the views of the founding members of the logicist school. 

This work is organized in the following way. I begin, in Chapter 1, by explaining 

the philosophical and mathematical situation with respect to the concept of number in the 

seventeenth century. During this time, Leibniz's predecessors and contemporaries attempt 

to expand and precisify this concept in response to developments in mathematics that 

require the field to admit non-integral numbers as conceptually legitimate, in opposition to 

the view received from (among others) Euclid and Aristotle. This chapter focuses on two 

opposing views, due to Barrow and Wallis, respectively, on the related questions of which 

numbers count as mathematically legitimate, and what kind of objects numbers might be. 

In Chapter 2, I treat Leibniz's general definition of number and how it subsumes 

the positive rational numbers, while remaining agnostic on the question of Leibniz's 

ontology of number. This chapter describes Leibniz's conceptual characterization of 

number as a certain kind of aggregate, laying the groundwork for my subsequent 

exploration of the extent to which Leibniz's general definition of number might be able 

to accommodate -- as is his stated intention -- the more conceptually problematic case of 

irrational numbers. In Chapter 3, I show that Leibniz is committed to a view of numbers 

as a certain kind of relation, resolving the apparent inconsistency between this ontological 
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conception and his conceptual definition of the positive rationals as aggregates and 

establishing that Leibniz is best understood as a Platonist about numbers. 

In Chapter 4, I leaves the territory of the positive rationals and systematically treat 

Leibniz's views -- some of which he does not appear aware that he holds -- about non-

rational and negative numbers, where non-rational numbers include irrationals, complex 

numbers, infinite cardinals, and infinitesimals. This chapter delineates the limitations of 

Leibniz's ability, given his account of number, to carry out his apparent intention to 

establish that irrational numbers exist. Additionally, I argue that Leibniz is committed to 

the existence of negative and complex numbers despite his adamant statements to the 

effect that such numbers are conceptually incoherent and so do not exist. Chapter 5 treats 

Leibniz's epistemology of mathematics; there, I have a positive goal and a negative goal: 

the positive goal is to establish what Leibniz's epistemological views are with respect to 

number, while the negative goal is to dispel a longstanding scholarly confusion about 

them, establishing in the process what his views cannot be. Finally, Chapter 6 explores 

the extent to which Leibniz's views on number -- conceptual, metaphysical, and 

epistemological -- can be seen as anticipating the views of the logicists in the late nineteenth 

and early twentieth centuries.  
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Chapter 1: The Status of Numbers in Leibniz’s Time 

1. Introduction 

The goal of this chapter is to describe the status of the concept of number in 

Leibniz’s time, providing a framework against which his account of number can be seen 

as unprecedented. Once this framework is in place, we will be able to see more clearly 

the precise way in which Leibniz combines various traditions in mathematical thought in 

order to formulate an account of number that moves beyond them and anticipates the 

modern conception of real number. My description of the relevant trends in mathematical 

thought is necessarily selective, focusing on the ideas that Leibniz either explicitly rejects 

or explicitly adopts in formulating his philosophy of arithmetic. I do not aim to provide 

an exhaustive summary of attempts to think about numbers from the Greeks to the early 

modern period. I do, however, aim to illuminate the relevant features of the intellectual 

landscape in which Leibniz’s account of number, and his philosophy of mathematics in 

general, is situated. 

I proceed in four stages: first, I describe the way in which Greek mathematicians 

and philosophers think of numbers, or at least the tradition in Greek mathematical thought 

that Leibniz’s contemporaries and immediate predecessors inherit and grapple with. I 

focus on the views of Euclid and Aristotle, who encapsulate a more general trend in Greek 

mathematics. Next, I treat early modern thought about numbers along two related but 

distinct dimensions: first, the ways in which early modern mathematicians define number 

-- the way they delineate what counts as a genuine number -- second, the ways in which 
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early modern mathematicians and philosophers conceive of the ontology of number. 

Finally, I look ahead to subsequent chapters by providing a brief synopsis of the way 

these lines of thought inform Leibniz’s own distinctive account of number. 

2. Number in Greek Mathematical Thought 

2.1. The Euclidean/Aristotelian Definition of Number. It has been well-documented -- for 

example in Klein (1968) -- that Euclid’s definition of number, which also can be found 

in earlier authors such as Aristotle, plays a significant role in early modern mathematical 

thought, to the extent that much of the pioneering work in this period involves implicitly 

or explicitly rejecting it. Many mathematicians, for example the English algebraists 

profiled in Neal (2002), implicitly reject the definition by accepting fractional and even 

irrational solutions to various equations. A smaller group of mathematicians -- most 

prominently Stevin and Barrow -- explicitly reject it by formulating entirely novel 

definitions of number. I eventually show that none of these attempts belongs in the same 

category as Leibniz’s, but before we examine them, we must first get clear on Euclid’s 

definition, which is found at the beginning of Book VII of the Elements, a work that Dirk 

Struik duly notes is “next to the Bible, probably the most reproduced and studied book in 

the history of the Western world” (1987, 49). In Thomas Heath’s standard translation, 

Definition 1 states that “a unit is that by virtue of which each of the things that exist is 

called one”; immediately following this, Definition 2 says that “a number is a multitude 

composed of units” (1956, 277). 
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For Euclid, then, the only genuine numbers are the positive integers. Heath notes 

in a footnote to Definition 2 that 

[Euclid’s] definition of a number is... only one out of many that are on 
record. Nicomachus [says] that it is “a defined multitude, or a collection 
of units, or a flow of quantity made up of units”. Theon... says: “a number 
is a collection of units, or a progression of multitude beginning from a unit 
and a retrogression ceasing at a unit”. According to Iamblichus the 
description “collection of units” was applied to the how many, i.e. to 
number, by Thales... while it was Eudoxus the Pythagorean who said that 
a number was “a defined multitude”. (280) 

In other words, Euclid’s definition can be be safely viewed as encapsulating the general 

Greek view of number. This is to be expected; the Elements, as a comprehensive textbook, 

is at least a partial compendium of Greek mathematical thought, in which Euclid “bring[s] 

together” various “discoveries of the recent past” (Struik 1987, 50). For Greek 

mathematicians, only the positive integers count as genuine numbers, and “our conception 

of real number [is] unknown” (ibid, 60). Further surviving examples of this conception 

of number can be found throughout Aristotle’s corpus, as Heath notes later in the same 

footnote. For example, at Metaphysics 1039a, Aristotle notes, and seems to accept, what 

he labels the “popular assumption... that number is a combination of units” (2004). And 

at Physics 207b, he says that “any given number is a plurality of ones, a particular quantity 

of them” (2008). These are just two among many examples. For Aristotle and Euclid, and 

in Greek mathematics more generally, numbers are discrete collections of units; any 

magnitude not measurable by such a collection simply fails to be associated with a 

genuine number. As Struik notes, “a line segment did not always have a length”, in the 

sense of a number indexed to a unit of measurement (1987, 60). One would expect, then, 

that a major episode in the history of mathematics might consist in the rejection of this 
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severely limited conception of number; this is precisely what occurs in the early modern 

period, and I discuss it shortly. But we must first address another aspect of Greek 

mathematical thought that was taken up by early modern mathematicians -- one that is 

equally relevant to Leibniz’s eventual characterization of number. 

2.2. Two Conceptions of Numerical Ontology in Greek Thought. In the first chapter 

of Metaphysics M, Aristotle describes a fundamental problem that still occupies a central 

place in the philosophy of mathematics: 

It is necessary, if the objects of mathematics have being, that they are 
either in perceptible things as some say or separate from perceptible things 
(for there are those who think that); and if they have being in neither way, 
then either they just don’t have being or they have being in some other 
way. Our controversy, then, turns not on whether they have being but on 
the mode of their having being. (2004, 1076a) 

In other words, do mathematical objects exist independently of their concrete instances? 

Is there a “number three”, for example, over and above the various collections of three 

objects in the world? Aristotle’s answer is characteristic, again, of a trend in the 

philosophy of mathematics that still abides today, and that is taken up by the more 

philosophical early modern mathematicians: “the objects of mathematics are not 

substances to a greater degree than bodies nor prior in being to perceptible things” (ibid, 

1077b). Aristotle’s argument for this conclusion is famously complicated; its details need 

not concern us here. What matters is the position he adopts: that mathematical objects do 

not exist over and above concrete, perceptible things. Thus, the mathematical sciences do 

not study a particular kind of object; they study ordinary objects at a high level of 

abstraction, such that we ignore all their properties except the ones that are mathematically 
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relevant, like an object’s being of a certain shape, or a collection’s having so many 

discrete elements. Aristotle says that 

Universal assertions in mathematics are not about separable entities which 
are beyond and apart from magnitudes and numbers. They are about these 
very things, only not qua such things as have magnitude and are divisible. 
So clearly there can be both assertions and demonstrations in connection 
with perceptible magnitudes, not, however, qua perceptible but qua their 
being of a certain sort. (2004, 1077b) 

Mathematics studies shape and magnitude abstracted from perceptible, concrete things 

that have shape and magnitude. Another way to put this is to say that mathematics studies 

perceptible things, as Aristotle says, insofar as they are “of a certain sort” -- namely, 

insofar as they possess shape and magnitude, and only insofar as they have these features, 

i.e. excluding from consideration any other features that they might have. Mathematical 

statements, accordingly, are “separable from the question what each such thing is and 

what accidental features it has” (ibid), but they are not about a separate realm of abstract 

mathematical objects. 

The view that mathematical statements do not reach out to a realm of mathematical 

objects is a straightforward denial of Plato’s view that there are mathematical objects 

separate from concrete things, and that mathematics studies them, rather than studying 

ordinary objects at a high level of abstraction. Indeed, Books M and N of the Metaphysics 

contain some of Aristotle’s most sustained and detailed attacks on Plato’s general 

ontological scheme, at whose core lies the thesis that a realm of unchanging, intelligible 

ante rem universals -- the Forms -- underlies and makes possible the realm of fluctuating 

and unreliable perceptual experience. A particularly succinct exposition of Plato’s views 
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on mathematical ontology can be found at Republic 510, where Socrates explains to 

Glaucon the metaphysical underpinnings of mathematical practice: 

I think you know that students of geometry, calculation, and the like 
hypothesize the odd and the even, the various figures, the three kinds of 
angles, and other things akin to these in each of their investigations, as if 
they knew them. They make these their hypotheses and don’t think it 
necessary to give any account of them, either to themselves or to others, 
as if they were clear to everyone. And going from these first principles 
through the remaining steps, they arrive in full agreement... You also know 
that, although they use visible figures and make claims about them, their 
thought isn’t directed to them but to those other things that they are like. 
They make their claims for the sake of the square itself and the diagonal 
itself, not the diagonal they draw, and similarly with the others. These 
figures that they make and draw, of which shadows and reflections in 
water are images, they now in turn use as images, in seeking to see those 
others themselves that one cannot see except by means of thought. (1992, 
510c-e) 

Here Plato, through the mouth of Socrates, lays out the core of his philosophy of 

mathematics: mathematics studies objects “that one cannot see except by means of 

thought” -- such as “the square itself” and “the diagonal itself” -- of which diagrams and 

figures are images. The examples in this passage are geometrical, but the same line of 

thought can easily be carried over to arithmetic: any concrete representation of a number, 

for example three vertical lines drawn in the sand, is merely an image of that number 

itself, in this case three itself. Jacob Klein puts this point nicely: 

[Geometers] draw certain figures and exhibit their properties; yet they do 
not intend the drawn figure itself but that which is imaged in this figure, 
e.g., the rectangle which is... accessible only to thinking... Similarly, 
logisticians have before their eyes the “odd” and the “even” in the shape 
of certain countable objects which they reflect on, but these reflections, 
being pursued in thought, are aimed not at these particular objects but at 
the “pure” numbers... (1968, 72) 
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Contra Aristotle, mathematical assertions, both geometrical and arithmetical, do not 

concern concrete things at a certain level of abstraction: they concern an entirely different 

kind of thing existing in a realm accessible only to thought. 

This basic ontological debate is taken up in the early modern period by several 

important mathematicians and philosophers. In particular, the question whether numbers 

exist independently of numbered things finds expression in, and constitutes an integral 

part of, the sometimes heated debate over the relative priority of arithmetic and geometry. 

I will explain in due course the relationship between these questions; for now, it will 

suffice to note that they play a significant role in Leibniz’s philosophy of mathematics in 

general and his account of number specifically. 

3. Number in the Early Modern Period 

3.1. The Definition of Number in the Early Modern Period. As Katherine Neal notes 

in her study of the treatment of number in early modern Britain (2002), the sixteenth and 

seventeenth centuries are characterized by the increasing acceptance and use of non-

integral numbers in mathematical practice. For example, the three English algebraists she 

profiles -- Robert Recorde, William Oughtred, and Thomas Harriot -- all make wide-

ranging use of fractions and irrational numbers in their manipulation and solution of many 

different kinds of algebraic problems. At the same time, though, “none of these 

mathematicians shows signs of being overwhelmed with ontological worries about the 

true nature of numbers” (78). Nor do they show signs of concern with the proper definition 

of number -- i.e. with the question of what counts as a genuine number in the first place, 
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aside from the ontological question of what numbers are, metaphysically speaking. 

Additionally, the pioneers of logarithms, Napier and Briggs, work freely with decimal 

expansions of irrational numbers and both treat number as a kind of continuum starting 

from zero. But for these practitioners, even more so than for the algebraists, we find a 

pronounced lack of concern with philosophical questions about the nature or the 

legitimacy of numbers falling outside the Euclidean definition. As Neal puts it, “there 

was no available foundation for the real numbers, but the utility of the logarithms 

necessitated that this lack of proper foundations be pushed aside” (114). 

Some mathematicians, however, do explicitly concern themselves with the question 

of what counts as a genuine number. Simon Stevin, the sixteenth-century Dutchman, 

stands out as arguably the first person to offer a modern-looking definition of number, 

which seems on a cursory reading to put at least all positive numbers -- positive integers, 

rationals, and irrationals -- in the same conceptual category and to count them all as 

legitimate numbers. But we will soon see that the extent to which his definition anticipates 

the modern conception of real number is limited by his separation of numbers into two 

distinct conceptual kinds -- not, as one might expect, along the dimension of integral 

versus fractional, or rational versus irrational, but along an entirely different dimension. 

In Definition 1 of his Arithmetic and its associated explanatory remarks, 
Stevin offers the following general characterization of number in terms of 
its relationship to quantity or magnitude: 

Number is that by which is explained the quantity of each thing. As unity 
is [the] number by which the quantity of [something] is called one; and 
two [the number] by which we call it two; and one half [the number] by 
which we call it one half; and the square root of three the number by which 
we call it the square root of three, etc. (1958, 495) 
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What immediately stands out about this definition, in stark contrast to the one received 

from the Greeks, is Stevin’s inclusion under it of every kind of what we now call positive 

real numbers -- he gives as examples one, two, one half, and the square root of three. For 

Stevin, every quantity is associated with a number. He goes on to make it explicit, 

“against the vulgar”, that “number is not discontinuous quantity”; number is not to be 

conceived as a discrete collection of units (ibid, 501). Later on, he declares that “there are 

no absurd, irrational, irregular, inexplicable, or surd numbers” (ibid, 532). The early 

pages of the Arithmetic even contain an argument that directly associates the increasing 

arithmetical continuum with an increasing line, using the example of the number 60 as 

generated from zero by incremental addition, visualized in terms of the increase of a line 

(ibid, 499). And as Katherine Neal notes, for Stevin, lest we misunderstand him, “the 

relationship between number and magnitude [is] supposed to be more complex than the 

one being a name, or label, for the other” (2002, 35). The view that Stevin does not hold 

-- that numbers are nothing more than names of magnitudes -- is actually advanced 

unambiguously by Barrow, and we will have occasion to examine it shortly. Stevin’s 

view, on the other hand, is that 

[N]umber is something in magnitude, like humidity in water, for as 
[humidity] extends throughout all the water and each part of the water, so 
the number assigned to a given magnitude extends throughout all the 
magnitude and each part of the magnitude: as to one continuous water 
corresponds one continuous humidity, so to one continuous magnitude 
corresponds one continuous number...” (1958, 498) 

I am attempting here to keep separate, as far as possible, definitional and ontological 

questions, and I return to the latter aspect of Stevin’s view in the next section, comparing 

it with Barrow’s. 
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It would appear, then, that Stevin offers a strikingly modern definition of number 

that places all numbers on the same conceptual footing. But careful attention to other 

sections of the Arithmetic reveals a fundamental tension in Stevin’s conception of number 

that renders clear its limitations. To introduce this tension, let us return to the place where 

Stevin declares that there are no “irrational” numbers, in the sense that “irrational” (or 

“surd”, “inexplicable”, etc.) is an unfair misnomer for what is really just another 

subcategory of genuine number. Immediately after making this declaration, Stevin 

elaborates in the following way: 

It is a very common thing among the authors of [arithmetical textbooks] 
to treat numbers like the square root of 8, and similar numbers, which they 
call absurd, irrational, irregular, inexplicable, surd, etc... But why?... It 
appears to me in the first place that a root is incommensurable with an 
Arithmetical number (like 3 or 4), therefore the square root of 8 is absurd, 
irrational, etc. But the conclusion is absurd... incommensurability does not 
cause the absurdity of the incommensurable terms... (1958, 532) 

Here, in the same place where he argues against the very idea of a “surd” number, and 

argues for the inclusion of irrationals in the class of genuine numbers, he also hints at a 

basic distinction that prevents his conception of number from having the full generality 

that it at first appears to have. We see that he classifies numbers “like 3 or 4” as 

“arithmetical” numbers and seems to exclude irrational roots from this classification. 

Indeed, Stevin separates numbers into two distinct conceptual categories: the arithmetical 

numbers, which are those “that one explains without an adjective of magnitude” (1958, 

504), and the geometrical numbers, which are numbers “explaining the value of a 

geometrical quantity” and which “have the name corresponding to the kind of quantity 

that [they] explain” (ibid, 528). Now, Stevin takes care to clarify that both kinds of 
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numbers are numbers properly so called, but at the same time, he thinks that only the 

positive integers fall under the former classification, and that roots fall under the latter. 

And while positive integers can also be geometrical numbers when they are being used 

to describe geometrical quantities, like squares, it does not appear to be the case that 

irrational roots can ever be arithmetical numbers; Stevin appears to have no way to make 

sense of irrational roots without recourse to geometrical concepts. He makes this clear in 

his explanation of the definition of arithmetical numbers: 

Number has two kinds, of which one is explained with an adjective of 
magnitude, like square numbers, cubic numbers, roots, etc., which we call 
geometrical numbers... the other kind is simply explained without such an 
adjective, like one, two, three, three fifths, etc. We call such numbers 
arithmetical numbers, in distinction to the other kind. (ibid, 505) 

So while the number nine, for example, is an arithmetical number but can also be 

understood as a geometrical number when used to describe a square with a side of three, 

the square root of two can only be understood as a geometrical number -- as a number 

describing the side of a square with an area of two. It cannot be understood without an 

“adjective of magnitude”. Interestingly, Stevin categorizes all positive rational numbers 

as arithmetical -- the only numbers that can’t be either arithmetical or geometrical are the 

irrational roots that are still nevertheless numbers. Ultimately, he does not quite succeed 

in putting irrationals in the same definitional category as integers and fractions. I would 

suggest that this is due to his excessively general initial definition of number as that by 

which the magnitude of things is explained. This definition appears extremely promising, 

but leaves Stevin with no choice but to characterize irrational roots as a different kind of 

number from integers and fractions. Scholars like Klein and Neal have noted the modern 
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feel of Stevin’s treatment of number -- especially insofar as he associates number with a 

continuous line -- but in the process, they gloss over the fundamental conceptual 

distinction he ends up making between irrationals and other numbers. Stevin’s treatment 

of number comes the closest to Leibniz’s out of those we encounter here, but its initial 

appearance of generality, ironically, prevents it from being general enough to encompass 

all the positive real numbers. 

Another mathematician who explicitly associates number with continuous 

quantity as a matter of definition, though differently from the way Stevin does, is Isaac 

Barrow. Barrow’s characterization of number is inextricably tied up with his conception 

of the subject matter of mathematics, and as such cannot be treated fully in this section; 

he associates number with continuous magnitude as a matter of definition and as a matter 

of metaphysics, so that even his general definition of number contains a deeper claim 

about mathematical objects. Nonetheless, it is useful to examine his characterization of 

number while bracketing its metaphysical aspects as much as possible. In Lecture III of 

his Mathematical Lectures, Barrow says that number “is not something having a proper 

existence for itself, truly distinct from the magnitude which it signifies, but merely a 

certain mark or sign of magnitude itself considered in a definite way” (1860, 56). If 

numbers are mere signs of magnitude, then presumably every magnitude is associated 

with a number, and all numbers count as genuine numbers. This is indeed the case for 

Barrow, and much of Lecture III is devoted to explaining the way integers, fractions, and 

irrationals fit into this scheme -- in other words, to an explanation of the precise 

relationship between each kind of number and the magnitude it signifies. The first two 
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cases are quite simple: as Neal puts it, “integers [are] the symbol of magnitude that [is] 

composed of equal parts... if the magnitude A consist[s] of six equal parts, then A would 

be called six. Fractions [are] to be thought of as a sort of ratio, or comparison, between 

magnitudes composed of the same type of parts” (2002, 134). Barrow actually manages 

to illustrate the expressive role of integers and fractions at the same time in one of his 

examples. After claiming that a line composed of three equal parts is signified by the 

number three, he says that “if we should conceive that [a line] A is built up from seven 

equal lines (or that it can be divided into seven equal lines), [and] another line composed 

from ten of the same kind of parts... then line A is called seven, or seven of ten (7/10) 

parts of line B” (1860, 57). In other words, fractions signify ratios between magnitudes 

with a common measure. These need not be lines; lines simply provide Barrow with the 

easiest route to a perspicuous example. 

The case of irrational numbers requires a separate exposition. How does Barrow 

conceive of the way irrationals signify magnitudes? He puts it in the following way: 

Radicals or surd numbers are signs of any magnitude, showing distinctly 
that it is in whatever manner a mean in a proportion between any assumed 
homogeneous magnitude, composed equally, according to exigency, of an 
appropriate number, either whole or fractional, and a part of it serving in 
place of unity... as the second or square root of the number 3 denotes a 
mean proportional between whatever assumed magnitude and its triple. 
(ibid, 58) 

Put a bit more clearly, irrational numbers signify a special kind of comparison between 

magnitudes: that which occurs when no common measure can be found between them, 

i.e. they cannot both be divided into the same kinds of parts. Barrow’s point is that any 

given magnitudes can always be compared, even if they lack a common unit of 
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measurement into which they can both be divided; and if all numbers are just signs of 

magnitude or of a particular comparison between magnitudes, then irrational numbers are 

just as admissible as integers and fractions. Indeed, as Neal puts it, “Barrow [is] quite 

distressed about the exclusion of surds from the realm of numbers... because when one is 

measuring or comparing magnitudes the results are more often irrational than rational” 

(2002, 134). Almost immediately after his presentation of irrationals, he characterizes the 

denial that they are numbers as “without merit” (1860, 59). When I discuss Barrow’s 

conception of mathematical ontology, I will have more to say about his reasons for 

admitting irrationals into the class of genuine numbers, and about the actual import of 

doing this given Barrow’s radical philosophy of mathematics. 

The final definition of number that I discuss in this section is that of John Wallis, 

a contemporary and correspondent of Leibniz’s, and one of Barrow’s staunchest 

opponents. Wallis actually offers the least modern definition of those under consideration, 

at least in terms of how he delineates the class of genuine numbers. In Chapter IV of his 

Mathesis Universalis, he straightforwardly adopts the Greek definition, with one 

interesting conceptual improvement. He begins by saying that “unity is said to be truly 

the principle of number. But unity is that according to which anything is called one: 

moreover, a number is a multitude composed from units” (1695, 24). Wallis then 

explicitly cites the first two definitions of Elements VII as his source. But immediately 

following this, he argues against the Greek idea, which can be understood as a corollary 

of those definitions, that one is not a number. Incidentally, Stevin had also argued in his 

Arithmetic that one counts as a genuine number as against the Greek definition, but Stevin 
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approaches the concept of number at the outset in a radically different way from the 

Greeks, as has been noted. For Wallis, the idea that one is a number represents a much 

less significant conceptual modification of the Greek definition -- indeed, it is arguably 

the only such modification he wants to make. “Not unity”, Wallis argues, “but non-

existence... or nothing has the same status with respect to numbers that a point has with 

respect to magnitude and a moment has with respect to time” (ibid, 25). Zero, in other 

words, is the beginning or generative principle of number in the way that a point is for 

magnitude and an instant is for time. This idea appears to have been in the air explicitly -

- not just implicitly in mathematical practice -- during the seventeenth century; on the 

continent, we find a similar argument in Pascal’s “Of the Geometrical Spirit”: 

[i]f we wish to take in numbers a comparison that represents with accuracy 
what we are considering in extension, this must be the relation of zero to 
numbers; for zero is not of the same kind as numbers, since, being 
multiplied, it cannot exceed them: so that it is the true indivisibility of 
number, as indivisibility is the true zero of extension. And a like one will 
be found between rest and motion, and between an instant and time... 
(1914, 436) 

One, both Pascal and Wallis think, is not only the generative principle of number, but is 

itself a number just like the other positive integers -- even if, as Wallis thinks, number is 

a multitude composed of units. We can consider one as a multitude of units if we 

“understand by ‘multitude’ something looser” that is usually understood. In other words, 

the number one is the degenerate or limiting case of a multitude of units. Either way, one 

is a number. 

Wallis also denies that fractions are genuine numbers. We see this in the first 

instance in the title of Chapter IV, where he asserts that “broken numbers [i.e. fractions] 
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are not true numbers” (1695, 24). He takes up this topic near the end of that chapter, 

where he says that “a fraction is not so much a number as an index of a ratio of numbers 

to each other. And therefore the smallest number is one, and not either zero or a fraction” 

(ibid, 27). Interestingly, Wallis thinks, as Barrow does, that fractions serve to indicate a 

relationship between magnitudes divided into the same parts. The argument of the section 

on fractions begins with a concession that it seems that “many things are given between 

zero and one”, but proceeds to claim that fractions 

do not answer [the question] ‘how many?’ but ‘how much?’: for one does 
not say how many of time passes, but how much of time, or how many 
parts of time... Therefore this response pertains not so much to a discrete 
quantity, or number, but to a continuous quantity; just as an hour is taken 
to be a continuum divisible into parts; indeed a ratio of however many of 
these parts to the whole is expressed by numbers. (ibid) 

Now, Wallis does think that fractions can be investigated without reference to any 

particular ratio between magnitudes, and indeed that they should be so investigated. In 

his Arithmetica Infinitorum, for example, he famously cements his place in the history of 

the calculus by investigating the sums of certain infinite series of fractions. But at the 

same time, he does not want to admit fractions into the category of genuine numbers. 

Much later in the Mathesis Universalis, he actually devotes a whole chapter to fractions 

-- Chapter XLI, near the conclusion of the work -- whose early paragraphs contain both 

a denial that they are genuine numbers and an explanation of their expressive role very 

similar to the one I have just translated. Katherine Neal notes that Wallis also denies that 

fractions are numbers in other works, for example in the Treatise of Algebra (2002, 154). 

She also notes that in the Treatise of the Angle of Contact, he states that arithmetic and 

algebra can legitimately operate on fractions and even irrational numbers without 



21 

 

reference to particular geometrical magnitudes, but “never clearly states that fractions and 

surds are numbers, merely that one could operate on them” (ibid). As has been noted, 

Wallis carries out exactly such a procedure in his contributions to the invention of the 

calculus. So there appears to be a deep tension in Wallis’ philosophy of arithmetic: on the 

one hand, only the positive integers are genuine numbers, but on the other hand, the 

mathematician can operate on abstract fractions and even abstract irrational numbers -- 

i.e. fractions and irrationals not explicitly grounded in any particular magnitude ratios. 

We will have occasion to examine this tension in more detail when we come to Wallis’ 

conception of mathematical objects, and of the relationship between arithmetic and 

geometry, in the next section. 

3.2. The Metaphysics of Number in the Early Modern Period. Having discussed 

Wallis’ definition of number, we are now in a position to move on to an investigation of 

the way early modern mathematicians took up the other trend in Greek thought that I 

described at the beginning of this chapter -- the fundamental conflict over the ontological 

status of numbers exemplified by the positions of Plato and Aristotle. The question, we 

recall, is whether numbers exist independently of numbered things; I would like to 

suggest that in the early modern period, it finds new expression in the sometimes heated 

debate over the relationship between arithmetic and geometry. This debate, whose 

participants include Barrow, Wallis, and eventually Leibniz himself, is touched off by the 

dissemination of the techniques of the new symbolic algebra, pioneered and enshrined in 

Viete’s 1591 Analytic Art, and the new analytic geometry encapsulated in Descartes’ 
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Geometry, published in 1637. Douglas Jesseph outlines the terms of the dispute succinctly 

in his (1999): 

The advent of analytic methods provoked a philosophical debate on the 
question whether arithmetic or geometry was the genuinely foundational 
discipline in mathematics. Classical mathematicians distinguished 
discrete quantity (“number”) from continuous quantity (“magnitude”), 
declaring the former to be the object of arithmetic and the latter to be the 
proper object of geometry. Classically, then, geometry and arithmetic are 
distinct sciences with no common object, so there is no need to ask which 
is the more fundamental science. This situation changed with the 
development of analytic geometry. Many interpreted algebra as a kind of 
generalization of arithmetic... the basic principles of algebra were seen as 
deriving from arithmetic, and the prominence of algebraic methods in 
analytic geometry led some to conclude that geometry must, in some 
important sense, be based on arithmetic. (37) 

One can quibble with Jesseph’s claim that classical mathematicians all treat geometry and 

arithmetic as “distinct sciences with no common object”, and see “no need to ask which 

is the more fundamental science”. Aristotle does claim, for example, that numbers are in 

some sense more precise than geometrical magnitudes: since the basic element of number 

is the unit, numbers measure numbered collections with a greater degree of precision than 

do geometrical magnitudes (Metaphysics 1052b). And some early modern 

mathematicians, such as Barrow, present themselves as arguing against earlier 

mathematicians who appear to take a stand on the question whether arithmetic or 

geometry is more fundamental. Barrow, in Lecture III of his Mathematical Lectures, 

represents the Hellenistic mathematician Nicomachus and the Renaissance 

mathematician Maurolico as claiming, in one way or another, that arithmetic is more 

fundamental than geometry. But the important point is that Descartes’ marriage of 

algebraic and arithmetical techniques with the study of geometrical magnitudes in the 
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Geometry raises questions about the relationship between arithmetic and geometry. 

Indeed, as Mancosu notes, the new method raises more general questions about the 

interrelation between the three fields, giving rise, as he says, to “endless discussions as 

to the status of algebra -- Is it an art or a science? -- and as to the relationship between 

algebra, arithmetic, and geometry” (1996, 85). 

In the seventeenth century, the debate over the relationship between these fields 

is framed as one about the ultimate subject matter of mathematics, but it also necessarily 

involves deep questions about the nature of mathematical objects such as numbers and 

geometrical magnitudes. Inevitably, the answer one might give to the question of the 

ultimate subject matter of mathematics will presuppose or imply one thesis or another 

about the ontological status of whatever it is that mathematics ultimately studies. Perhaps 

it is fitting, then, that Descartes himself never quite articulates answers to the questions 

that interest us here -- the questions of the definitional characterization and the ontology 

of number. The Geometry itself contains no discussion of these questions, and when 

Descartes does address philosophical issues concerning number -- for example in Rules 

XII and XIV of the Rules for the Direction of the Mind, he is mainly interested in 

questions such as the proper role of the imagination in representing numbers in relation 

to numbered things (CSM 1:61). In general, his philosophy of mathematics, as 

documented, for example, in Sasaki’s comprehensive study (2003), is primarily 

concerned with the nature of mathematical demonstration, mathematical cognition, and 

the epistemology of mathematics. We will have occasion to remark on Leibniz’s rejection 

of certain Cartesian epistemological theses later in this work. 
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It is true that one finds remarks in the Principles to the effect that number is a 

mental entity: for example, “number [differs] from what is numbered, not in reality, but 

only in our conception” (2.8), and that “number, when considered abstractly or generally 

and not in created things, is but a mode of thinking; and the same is true of everything 

called universals” (1.58). Descartes appears to put himself in league with the medieval 

conceptualist tradition, which holds universals to be mental entities, but he does not 

expend much effort exploring these claims in detail. As far as this chapter is concerned, 

Descartes is best understood as igniting -- not directly participating in -- the debate about 

the ultimate subject matter of mathematics, and the related debate about mathematical 

ontology, that finds its most sustained expression in the positions adopted by Barrow and 

Wallis. Barrow couples his reduction of all mathematics to geometry with a position on 

the ontological status of numbers and even a position on the ontological status of 

geometrical magnitude itself, and Wallis adopts his subordination of geometry to 

arithmetic largely because of a position he holds on the nature of numbers. As we will 

see, the metaphysical views of Barrow and Wallis mirror in important ways the two sides 

of the Greek debate over the ontology of number and of mathematical objects more 

generally. 

I begin with an examination of Barrow’s views. As early as Lecture I of his 

Mathematical Lectures, Barrow dismisses what he represents as the ancient division of 

mathematics into the study of magnitude and multitude, locating the ultimate subject 

matter of mathematics in quantity (1860, 30). In Lecture II, he goes on to clarify what he 

means by this -- after all, we might think that multitude is a kind of quantity -- saying that 
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“no other quantity exists different from that which is called magnitude, or continuous 

quantity”, and that this is “the only object of mathematics” (ibid, 39). If the ultimate 

subject matter of mathematics is continuous quantity, then for Barrow, all branches of 

mathematics -- pure and applied -- are just so many ways of doing geometry. There is not 

even a place in Barrow’s framework for arithmetic as a distinct branch of pure 

mathematics; there is no point in studying the properties of numbers in an abstract setting, 

because numbers simply do not exist in themselves. We encountered this line of thought 

in the previous section when we saw Barrow define numbers as signs of magnitude 

without any proper existence of their own. As Mahoney points out, this is a multifaceted 

view. On the one hand, Barrow 

[sees] no need to posit the existence of numbers independent of things 
counted: 2+2 cannot be 4 unless the addends are two each of the same 
things and those things can be combined. The combinatorial properties of 
numbers are rooted in those of the objects being combined, not in the 
numbers themselves. (1990, 186-187) 

Numbers, for Barrow, do not exist independently of numbered discrete collections. But 

mathematics is not the study of discrete collections -- it is the study of continuous quantity 

-- so there is a deeper view about the relationship between numbers and magnitude here. 

Fundamentally, numbers are signs of continuous magnitudes considered in certain ways; 

that is, “they enumerate collections of units precisely equal to one another or they measure 

magnitudes with reference to a common unit... [they] symbolize magnitudes conceived 

of as units, collections of units, or ratios of such collections” (ibid, 187-188). This is 

another way of putting Barrow’s exposition of the way that different kinds of numbers -- 
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integers, fractions, and irrationals -- correspond to different ways of considering 

continuous magnitudes, some of which I translated in the last section. 

The similarities and differences between Barrow’s conception of number and that 

of Stevin, the first mathematician whose work we explored in the last section, are worth 

noting, and will further illuminate Barrow’s metaphysical views. Barrow and Stevin both 

conceive of number in a continuous way: for both of them, all positive real numbers are 

genuine numbers on a conceptual par with one another because each signifies a 

magnitude. Barrow arguably has a more sophisticated view of the precise manner in 

which different kinds of positive real numbers signify magnitudes. But for Stevin, it 

appears that at least what he calls the “arithmetical” numbers do have a kind of existence 

as more than mere signs: recall his somewhat cryptic assertion that numbers are “in” 

magnitude like humidity is in water, and so can be conceived of as separated from 

magnitude, or “without an adjective of size”. He never characterizes numbers as mere 

signs of magnitude the way Barrow does, and one of his major mathematical works -- 

indeed, the one that provides his definition of number -- is called Arithmetic and is largely 

devoted to the study of numbers by themselves. This distinguishes Stevin from Barrow 

despite Stevin’s eventual inability to conceive of irrational numbers in particular as 

separate from magnitudes. For Barrow, on the other hand, all numbers have only what 

we might call a formal existence: there is really nothing to a given number over and above 

the way a particular combination of signs concisely expresses a particular continuous 

magnitude considered in a certain way. Jesseph puts this points quite perspicuously: in 
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Barrow’s framework, “numbers... are mere symbols whose content derives from their 

application to continuous geometric magnitude” (1999, 39). 

It is important to emphasize the extent to which Barrow’s conception of the 

subject matter of mathematics strikes the modern ear as radical. Doing so will reinforce 

a key claim I made in the last section: that despite the revolutionary appearance of 

Barrow’s characterization of number, such that all positive reals count as genuine numbers, 

Barrow’s uncompromisingly reductionist take on the subject matter of mathematics 

ultimately makes this appearance a red herring. I think this point is best put by noting that 

Barrow’s scheme rules out number theory -- taken in a very broad sense -- as a legitimate, 

distinct area of mathematical investigation; indeed, Barrow spends time in Lecture III 

pursuing various lines of thought to the effect that number- theoretic investigations are 

better carried out geometrically, for example when he urges that the study of infinite 

series of numbers will yield better results if we use geometrical figures like line segments 

rather than considering the numbers by themselves (this argument can be found in 1860, 

48-49). In other words, if we consider the numbers in an infinite series as they truly 

are -- i.e. mere signs of magnitudes considered in a certain way -- then we see that the 

properties of the series can be determined by considering the relations between 

magnitudes signified by the terms. Mancosu notes that the reductionist strain in Barrow’s 

mathematical thought goes all the way down to the grounding of continuous quantity 

itself, such that “the reality of geometrical entities is grounded in their material existence” 

(1996, 140). Mancosu provides his own translation of some remarks from Lecture V of 

the Mathematical Lectures on this point: Barrow declares that “all imaginable geometrical 
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figures are really inherent in every particle of matter; I say really inherent in fact and to 

the utmost perfection, though not apparent to the senses...” (Barrow 1860, 84, as quoted 

in Mancosu 1996, 140). So for Barrow, there are no numbers existing independently of 

numbered things, and there are also no geometrical magnitudes existing independently of 

the material constitution of the universe. An investigation of Barrow’s ontology of 

geometry would take us outside the scope of the present work, but I mention it by way of 

illustrating that Barrow’s overall position on mathematical ontology resembles, broadly 

speaking, the option provided to early modern mathematicians by Aristotle: that 

mathematics studies ordinary material objects at a high level of abstraction, or only 

insofar as they have certain features like magnitude and shape. 

In many respects, Barrow’s conception of the subject matter of mathematics, and 

of mathematical ontology, is similar to that of Hobbes, who is remembered primarily as 

a philosopher rather than as a mathematician. Hobbes’ mathematical career involves 

several decades’ worth of debate with Wallis over whether Hobbes had satisfactorily 

solved certain ancient geometrical problems that are now known to be insoluble -- e.g. 

squaring the circle -- which is documented thoroughly in Jesseph’s (1999). Although 

Hobbes contributes nothing to the progress of mathematics proper, he does offer a 

comprehensive materialistic philosophy of mathematics which, like that of Barrow, 

reduces all of mathematics to geometry and grounds geometrical magnitudes in material 

reality. The most thorough description of this philosophy of mathematics can be found in 

De Corpore, where Hobbes “attempt[s] to show how all of mathematics can be interpreted 

as a science of body” such that “mathematics must found all of geometry upon the 
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principles of matter and motion” and “mathematical objects must be interpreted as bodies 

or as things produced by the motion of bodies” (Jesseph 1999, 74, 77). The precise details 

of Hobbes’ philosophy of mathematics involve us in broader questions about the 

architectonic of his whole philosophical system -- particularly the nature of his radical 

materialism -- and I will not attempt to document them here. I mention him to establish 

that Barrow is not the only well-known thinker of the period to identify mathematics with 

geometry and to ground geometrical objects in facts about the material universe. Thus the 

pre-Leibnizian debate about the ultimate subject matter and ontology of mathematics 

involves not just Barrow on one side and Wallis on the other, but Barrow and Hobbes on 

one side and Wallis on the other. Indeed, Barrow mentions aspects of Wallis’ positions 

by name repeatedly in his Mathematical Lectures, and Wallis is embroiled in an 

acrimonious controversy with Hobbes over Hobbes’ putative geometrical achievements 

for good portions of both men’s lives. 

Barrow formulates his metaphysical view of numbers in direct and explicit 

opposition to those who claim that arithmetic is prior to geometry; one such person is 

Wallis. Wallis exemplifies, broadly speaking, the other line of thought that one might 

pursue in the debate inspired by the new analytic geometry. Mancosu suggests that Wallis 

is a “paradigm” for the “analytical mode of thought” (1996, 145), which subordinates 

geometry to arithmetic and tends to view algebra as a branch of mathematics in its own 

right, rather than just a very useful tool for the investigation of relations between 

magnitudes, as Barrow conceives of it. As I mentioned earlier, Wallis freely investigates 

numbers detached from any geometrical magnitudes they might represent, and considers 
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this method to be so reliable that he uses it without hesitation to study the infinite. For 

example, Wallis’ infamous “method of induction” in the Arithmetica Infinitorum involves 

“stud[ying] infinite series by extending to them results obtained... in finite series and 

tr[ying] to apply the arithmetical results thus obtained to the solution of geometrical 

problems”, as Mancosu succinctly puts it (1996, 144). Wallis’ purely arithmetical study 

of series represents the exact opposite of Barrow’s approach, which recommends, as 

we’ve just seen, that mathematicians study series geometrically by investigating the 

relations between magnitudes represented by the terms. Chapters XXIII and XXXV of 

Wallis’ Mathesis Universalis contain, respectively, his attempts to prove the propositions 

of Books II and V of the Elements arithmetically, translating what appear to be relations 

between various geometrical magnitudes into relations between numbers considered 

abstractly. 

The opening pages of the Mathesis Universalis describe Wallis’ conception of 

mathematics as “all those arts or sciences that concern themselves with quantity in a 

special way, either continuous quantity or discrete quantity”. For Wallis, unlike Barrow, 

there is not just one kind of quantity; accordingly, there is not just one branch of 

mathematics. Pure mathematics, says Wallis, is divided into two basic disciplines 

according to the kind of quantity treated; furthermore, one of these disciplines is more 

pure than the other: 

I say that there are two pure mathematical disciplines: arithmetic and 
geometry, of which the one is about discrete quantity, or number; and the 
other about continuous quantity, or magnitude. And indeed of these the 
one is more, the other less pure: for the subject of arithmetic is more pure 
and more abstract than the subject of geometry; therefore it has more 
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universal speculations, which are equally applicable to geometrical things 
and to other things. (1695, 18) 

Wallis thinks that arithmetic is conceptually and ontologically prior to geometry: 

arithmetic studies objects that are “more pure and more abstract” -- i.e. numbers -- than 

those studied in geometry -- i.e. continuous magnitudes. Since the statements of arithmetic 

concern a kind of abstract object, they have a wide scope of application: they can be 

applied to geometrical magnitudes, with the help of a unit of measurement; but they can 

also be applied to discrete collections in general, whatever those collections might consist 

of. In Chapter XI of the Mathesis Universalis, Wallis expounds this general idea with a 

specific example, translated by Jesseph in his (1999): 

If someone asserts that a line of three feet added to a line of two feet makes 
a line five feet long, he asserts this because the numbers two and three 
added together make five... for the assertion of the equality of the number 
five with the numbers two and three taken together is a general assertion, 
applicable to other kinds of things... no less than to geometrical objects. 
For also two angels and three angels make five angels. (1695, 56 as quoted 
in Jesseph 1999, 38-39) 

The contrast between Barrow and Wallis is instructive. We have seen that Barrow 

appears to characterize number in a quite modern way, admitting all positive reals into 

the class of genuine numbers. But we have also seen that his reductive conception of the 

subject matter of mathematics -- reducing numbers to geometric magnitudes and such 

magnitudes to the material constitution of the world -- turns numbers into mere 

combinations of marks and eliminates the study of numbers for its own sake. All 

mathematics is geometry, so there is no way legitimately to study the properties of 

numbers in the abstract: even the study of infinite series, so important to the development 

of the calculus, must be carried out geometrically. So the apparent novelty of Barrow’s 
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conception of number is severely undercut by his conception of what mathematics 

studies. Wallis, by contrast, adheres to an apparently more antiquated conception of 

number that does not even admit fractions, much less surds, into the class of genuine 

numbers. Yet at the same time, his metaphysical view of number as a kind of abstract 

object with many different instantiations yields a conception of the subject matter of 

mathematics that frees the study of numbers from the need for a geometrical basis -- a 

basis in continuous magnitudes. 

Furthermore, Wallis thinks that arithmetic can study fractions and surds even if 

they are not genuine numbers, and even if it is difficult to conceive of them in the abstract 

without initial reference to magnitudes. As many scholars have noticed (e.g. Klein 1968, 

Jesseph 1999, and Neal 2002), he makes this clear in Chapter XXXV of the Mathesis 

Universalis, which contains his attempt to render Book V of the Elements arithmetically. 

Book V contains Euclid’s presentation of the geometrical theory of ratio or proportion, 

conceived as relations between line segments; Wallis thinks that such relations are better 

represented numerically, by fractions and irrational roots. Once we represent ratios in this 

way, we can study them arithmetically, without the “cumbersome and particularized form 

of expression” required when treating them as geometrical relations (Jesseph 1999, 148). 

And we can do this, again, even if fractions and surds do not belong to the class of genuine 

numbers. The point is that they can be treated as detached from any particular magnitude 

relations they might represent, once we understand them as representing relations 

between integers, which are genuine numbers and do exist independently of geometrical 

magnitudes. In sum, Barrow’s apparently modern conception of number is undercut by 
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his reduction of all mathematics to geometry, and Wallis’ apparently antiquated conception 

is enhanced by his metaphysical views and his attendant theory of the scope of arithmetic. 

4. Conclusion: Setting the Stage 

The purpose of this chapter has been to describe the relevant features of the 

intellectual climate surrounding the concept of number in Leibniz's time. This task has 

been necessary because one of the primary goals of this work is to cast Leibniz as 

formulating an account of number that unites the best features of the Barrow-style 

conception of mathematics and the Wallis-style conception of mathematics. As we will 

subsequently see, Leibniz proposes an account of number, in particular, that is designed 

to accommodate all of the positive real numbers -- in line with Barrow's goal -- and to 

liberate the study of number from the study of geometrical magnitude. The next two 

chapters exhibit the way Leibniz does this for the rational numbers, while Chapter 4 

investigates Leibniz's prospects, given his general account of number, for admitting the 

irrationals into the class of genuine numbers without grounding them either ontologically 

or epistemically in geometry, or indeed in any notion of quantity at all.1 

                                                
1 Though this chapter lays out a framework within which to understand Leibniz's account of number, there 
does not appear to be direct evidence that he is deliberately responding to either Wallis or Barrow in 
formulating his own views. The Leibniz-Wallis correspondence, for example, mostly concerns technical 
problems in the foundations of the differential and integral calculus, rather than debate over the concept of 
number or debate over which numbers should count as genuine numbers. Nonetheless, it is valuable to 
situate Leibniz's views on number within their intellectual context, if for no other reason than that doing so 
helps us further appreciate what is philosophically special about those views -- as those views do go a long 
way toward unifying the most promising aspects of Barrow's and Wallis', generating an account of number 
that defines numbers in purely conceptual terms, avoiding geometrical notions, but simultaneously allows 
for at least a large subset of what we now call the irrational numbers into the pantheon of genuine numbers. 
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Chapter 2: Leibniz on the Definition of the Rational Numbers 

1. Introduction 

Leibniz's account of number has gone largely unnoticed by scholars. Few 

treatments of Leibniz's thought make mention of it; the most prominent general work that 

addresses his conception of number is Russell (1937), but it merely mentions Leibniz's 

view, making no attempt to explain it. Furthermore, while there is a large literature on 

particular aspects of Leibniz's philosophy of mathematics -- for example, the nature of 

infinitesimals, the foundations of the calculus,2 and the analysis situs3
 

-- this literature 

barely touches on Leibniz's conception of number.4 The aim of this chapter is to answer 

the first question proposed in my general introduction, with respect to the rational 

numbers. Chapter 3 addresses Leibniz's view on the ontological status of rational 

numbers, and Chapter 4 addresses the more problematic case of the extent to which 

Leibniz's definitional and ontological theses might -- or might not -- allow him to fulfill 

his apparent intention to subsume irrational numbers under his general account of 

number. Here, I first explore how Leibniz defines the positive integers, and then show 

how his definition of them generalizes to all positive rational numbers. In section 2, I 

                                                
2 E.g..Bos (1974); Ishiguro (1990); the chapters collected in Goldenbaum and Jesseph (2008); Mancosu 
(1996); Knobloch (2002). 
3 E.g. De Risi (2007). 
4 E xceptions are found in Grosholz and Yakira (1998) and De Risi (2007). The former attempts to answer 
what I call the “definitional” question in some detail; but it is based on only two texts, and cannot be correct 
for reasons that I describe below. The latter is quite cursory and does not make definitive, detailed 
interpretative claims about Leibniz's conception of number along any of the dimensions I outline in this 
introductory section, and so I will not be concerned with it. 
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begin by analyzing Leibniz's definition of “number in general” and his more specific 

definition of the integers as aggregates of unities. In doing so, I argue that the 

interpretation of Leibniz's definition of the integers found in Grosholz and Yakira (1998) 

cannot be correct on textual grounds. In section 3, I note an apparent inconsistency 

between Leibniz's aggregative definition of the integers and his more general definition 

of number, and I resolve that inconsistency. Finally, in section 4, I explain the way in 

which fractions fall under the aggregative definition and can also be rescued from a 

similar apparent inconsistency. The result is a generalization of Leibniz's internally 

consistent definition of number to all of the positive rationals. 

2. “Number in General” and Positive Integers as Aggregates 

2.1. The Aggregative Conception. Leibniz's earliest reflections on the concept of 

number are found in the Dissertation on the Art of Combinations, published in 1666. Such 

an early work must be read with caution, as Leibniz often changes his views over the 

course of his career. However, in this case, Leibniz advances several core theses on 

numbers and their relation to magnitude that do not change in their essentials. Concerning 

number, he writes: “The concept of unity is abstracted from the concept of one being, and 

the whole itself, abstracted from unities, or the totality, is called number. Quantity is 

therefore the number of parts” (L 76/GP IV 35). A number -- and here Leibniz seems to 

have specifically the positive integers in mind -- has in this early text the role of 

expressing the wholeness of a collection of beings considered as unities. The view that 

such an expression of the wholeness of a collection is a relation -- as I ultimately argue 
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Leibniz holds -- can also be extracted from the Dissertation. Immediately before the text 

just cited, Leibniz writes that “every relation is either one of union or one of harmony. In 

union the things between which there is this relation are called parts, and taken together 

with their union, a whole. This happens whenever we take many things simultaneously 

as one” (L 76/GP IV 35). Leibniz seems to claim here that the basis of the wholeness of 

a collection is a relation; if the positive integers provide such a basis, then they must be 

relations -- specifically, relations of union. 

This conception of the positive integers remains largely constant throughout 

Leibniz's career, except that he later subsumes it under a more general conception of 

number that is designed to accommodate all of the positive real numbers. It is worth 

stressing that the general conception of number under which Leibniz eventually includes 

the positive integers is absent from the Dissertation. I note the view of the positive 

integers that appears in the Dissertation because this view itself remains unchanged in its 

conceptual core; it simply becomes a specific case of the general definition of number 

that Leibniz advances in his mature work, under which he intends to subsume all of the 

positive real numbers. Finally, it is worth noting that Leibniz also provides in the 

Dissertation an early indication of the importance of number within his metaphysical 

framework and within his general philosophy of mathematics: “[T]he Scholastics falsely 

believed that number arises only from the division of the continuum and cannot be applied 

to incorporeal beings. For number is a kind of metaphysical figure, as it were, which 

arises from the union of any beings whatever; for example, God, an angel, a man, and 

motion taken together are four” (L 76-77/GP IV 35). 
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Leibniz's subsequent writings on number build on the basic conception advanced 

in the Dissertation. In many texts, Leibniz says that the positive integers are a certain 

kind of aggregate. I have ordered these texts chronologically to the extent possible: 

(1) Number is a whole composed from unities. (A.VI.4.31; 1677) 

(2) Number is [that which is] homogeneous to unity. A whole number is that of which 

the aliquot part is unity, or a sum of unities. A fraction is a sum of aliquot parts of 

unity. (A.VI.4.421; 1680-84?) 

(3) Number is [that which is] homogeneous to unity, and so it can be compared with 

unity and added to or subtracted from it. And it is either an aggregate of unities, 

which is called an integer... or an aggregate of aliquot parts of unity, which is 

called a fraction. (GM VII 31, undated) 

(4) An integer is a whole collected from unities. (Grosholz and Yakira, 1998, 99; 

c.1700?) 

(5) An integer is a whole collected from unities as parts. (Grosholz and Yakira, 1998, 

88; c.1700?) 

In (1), (4), and (5), Leibniz either defines number in general or the integers specifically 

as wholes composed of unities, mirroring his remarks in the Dissertation. The relational 

aspect of his view is not apparent here. In (2) and (3), he uses slightly different language, 

defining the integers as aggregates of unities. For ease of exposition, I refer to the 

definition of the positive integers in these texts as a definition of them as aggregates of 

unities. Leibniz seems to intend no difference between an aggregate of unities and a 
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“whole collected from unities”, as evidenced by the fact that he uses these terms 

interchangeably over a long stretch of years. 

2.2. Grosholz and Yakira's Interpretation. Two of these texts (4 and 5) are drawn from 

Grosholz and Yakira's study; it is worth pausing to take account of their interpretation of 

Leibniz's conception of the integers in particular (though this chapter concerns all of the 

positive rationals), for the sake of eliminating it before I propose my own reading. 

Grosholz and Yakira outline an interpretation that takes into account only texts (4) and 

(5). The authors claim that text (5) in particular supports the thesis that Leibniz intends 

his definition of number to have an essentially geometric content, such that the “parts” 

Leibniz mentions are to be understood in the same way as the parts of a line. Their main 

textual evidence for the geometrical construal of “part” is Leibniz’s definition of 

magnitude as a number of parts. They hold that in defining magnitude as such, Leibniz 

“associates a number with a geometrical entity” (1998, 80), and that he must think that 

“to understand what a whole number is, one must know not only that it can be composed 

of concatenated units, but also that it can be represented by line segments”, such that 

integers “are understood by analogy with relations among line segments” (1998, 81). My 

reconstruction of Leibniz’s view of number, by contrast, will indicate no detour through 

geometrical notions, at least for the positive integers. 

Grosholz and Yakira's interpretation can be shown to be inconsistent with other 

views Leibniz holds about mathematics. First, Leibniz holds that arithmetic is 

conceptually prior to geometry. Accordingly, he cannot be understood as intending his 

definitions of number to presuppose any geometrical content. Leibniz writes that 
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“geometry... or the science of extension is.... subordinated to arithmetic, since... there is 

repetition or multitude in extension...” (AG 251-252/GM VI 100). For Leibniz, arithmetic 

is the highest mathematical science, and geometry is subordinate to it. He writes: 

There is an old saying according to which God created everything 
according to weight, measure, and number. But there are things which 
cannot be weighed, those namely which have no force or power. There are 
also things which have no parts and hence admit of no measure. But there 
is nothing which is not subordinate to number. Number is thus a basic 
metaphysical figure, as it were, and arithmetic is a kind of statics of the 
universe by which the powers of things are discovered. (L 221/GP VII 
184) 

Given this, it would be puzzling if Leibniz intended his definition of a basic arithmetical 

entity -- a positive integer -- to presuppose geometrical content. 

Furthermore, when Leibniz says that arithmetic is prior to geometry, one specific 

claim he means to make is that geometrical magnitudes cannot be understood fully 

without recourse to number. This is because we cannot perform certain operations that 

yield understanding of magnitude if we do not first possess number concepts. Grosholz 

and Yakira's claim that Leibniz defines magnitude as a number of parts is true, but this is 

evidence against their interpretation. In defining magnitude as a number of parts, Leibniz 

defines magnitude in terms of number, rendering our understanding of magnitude 

dependent upon our understanding of number. He writes that magnitude is “measured by 

the number of determinate parts” (L 254/GM V 179); the “magnitude in a thing is 

represented by a number of parts” (GM VII 53). He holds that in order to acquire distinct 

knowledge of the size of a given geometrical magnitude, we must have recourse to 

number: “Precise distinctions amongst ideas of extension do not depend upon size: for 

we cannot distinctly recognize sizes without having recourse to whole numbers, or to 
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numbers which are known through whole ones; and so, where distinct knowledge of size 

is sought, we must leave continuous quantity and have recourse to discrete quantity” (RB 

156). Given this, it is implausible to suppose that Leibniz intends to define number in a 

way that presupposes the concept of the division of a line into parts. Leibniz instead holds 

that in order to understand the magnitude of a line, we must understand how to measure 

it, and we must in turn understand numbers in order to do that. 

It is worth elaborating upon this point by drawing on some key texts. Leibniz 

makes it clear in a number of texts that the way we are able to understand the size of any 

continuous magnitude is by conceiving it as a collection of unities (at least those 

magnitudes that can be so conceived -- I leave the status of irrational numbers and 

magnitudes measured by them for chapter 4), which is just to say that we are able to 

understand the size of a continuous magnitude by conceiving the magnitude in terms of 

an integer that specifies how many of a given unit of measure the magnitude contains. 

The integers allow us to recast the question “how much?” in terms of the question “how 

many?”, for any given continuous magnitude. Thus, we must first understand integer 

concepts in order to apply them in determining the size of a continuous magnitude. The 

size of some magnitude cannot be precisely determined unless some other magnitude is 

taken as a unity and then repeated until the original magnitude is exhausted. Leibniz 

writes: 

The quantity of a thing, e.g. of the area ABCD (fig. 7) is expressed by a 
number, e.g. a multiple of four [quaternarium], when it has been assumed 
that some other thing, such as a square foot AEFG, is taken for a primary 
measure or real unity. For ABCD is four square feet. But if some other 
unity AHIK is assumed, which is a half-foot squared, then the quantity of 
the area ABCD would be 16. Thus, for the same quantity a different 
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number is produced, according to the unity that is assumed. And 
consequently quantity is not a definite number, but the material for a 
number, or an indefinite number that is made definite when a certain 
measure is assumed. (GM VII 30-31) 

He elaborates in another text: 

If a foot should be considered as unity, then a thumb will be 1/12, a cubit 
will be 3/2, and the armspan will be 6. If a thumb should be considered as 
unity, then a foot will be 12, a cubit will be 18, and the armspan will be 
72. And in this manner the length of every straight line can indeed be 
represented by a whole number, if the measure has been drawn off several 
times, for example if a foot has been drawn off three times, and nothing is 
left over, then it will be ruled three feet in length. But if something remains 
when the measure, e.g. foot, has been drawn off as many times as can be 
done, for this too the thing to be measured will be able to be obtained by 
a definite part of a foot, for example tenths, which are drawn off afresh 
from this remainder as many times as can be done. (GM VII 36) 

In sum, for Leibniz, we must understand the notion of a collection of unities -- that 

is, the notion of an integer -- in order to be able to measure continuous magnitudes, as 

that measurement consists in the conception of those magnitudes as collections of unities. 

Thus, Grosholz and Yakira's position cannot be correct. In section 4, I show that Leibniz's 

definition of fractions is conceptually parallel to his definition of the integers; as such, 

his definition of fractions cannot presuppose any geometrical content either. 

3. The Consistency of the Aggregative Definition with the General Definition 

3.1. An Apparent Inconsistency. With Grosholz and Yakira's claim about the content 

of Leibniz's definition of number eliminated, I turn back to the statements of that 

definition. Crucially, in texts (2) and (3), Leibniz offers more than a definition of the 

integers as aggregates of unities. He also defines “number in general” as “that which is 
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homogeneous to unity”5, and he subsumes various kinds of number under that definition. 

Concerning the positive integers, two questions arise here: first, is Leibniz consistent in 

offering both the general definition of number as “that which is homogeneous to unity” 

and the specific definition of the positive integers as aggregates of unities? Second, if he 

is consistent, what is the intended relationship between these definitions? A complete 

answer to these two questions will require an explanation of the phrase “that which is 

homogeneous to unity”, but one can discover a partial answer to the first question by 

carefully examining the above texts, without yet investigating the precise meaning of that 

phrase. It appears that Leibniz at least intends the two definitions to be consistent, and 

indeed to fit together in an unspecified manner. In texts (2) and (3), Leibniz characterizes 

the positive integers as aggregates of unities in the very next sentence after characterizing 

number in general as that which is homogeneous to unity. The structure of (2) and (3) is 

nearly the same: Leibniz defines “number in general”, and implies that integers and 

fractions fall under the general definition. This intent is slightly clearer in (3), where 

Leibniz links the definition of number in general with the definition of the integers (and 

of fractions) using “estque”, or “and it is…”, where the antecedent of the pronoun is 

clearly “numerus”. Accordingly, the text reads “number is [that which is] homogeneous 

to unity... And it [i.e. number] is either an aggregate of unities, which is called an integer, 

or an aggregate of aliquot parts of unity, which is called a fraction”. These texts do not 

                                                
5 Translating “numerus est homogeneum unitatis” as “number is that which is homogeneous to unity” is 
required because Leibniz uses the neuter nominative singular “homogeneum” as the predicate for 
“numerus”. “Numerus” is masculine, so “homogeneum” must be acting as a substantive in the neuter 
nominative singular. 
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establish the precise nature of the relationship between the definitions, but it is clear that 

Leibniz intends to offer them as a coherent package, such that the definitions of the 

specific kinds of numbers are consistent with the definition of “number in general”. 

In other texts, Leibniz is more explicit about his intention to include under his 

definition a larger class of numbers than the positive rationals. He appears to countenance 

at least a significantly large class of what we now call the positive real numbers -- including 

those numbers that Leibniz calls “surd” and “transcendental” -- under his general definition 

of number as “that which is homogeneous to unity”. Though I leave the question of what 

exactly that class contains for chapter 4, it is worth foregrounding it here. Leibniz 

evidently intends his general definition of number as that which is homogeneous to unity 

to subsume a variety of kinds of number -- integers, fractions, and at least some irrationals 

-- so that the definition of “number in general” and the definitions of these kinds of 

number are related as genus and species. This is suggested by (2) and (4), but it becomes 

more transparent in the following texts: 

(6) Number is [that which is] homogeneous to unity. And so not only integers are 

numbers but also fractions and surds. (A.VI.4.873, 1687?) 

(7) It is manifest that number in general -- integer, fraction, rational, surd, ordinal, 

transcendental -- can be defined by a general notion, as it is that which is 

homogeneous to unity, or that which is related to unity. (GM VII 24, 1714) 

(8) You may also define number in general, which comprehends integer, fraction, 

surd and transcendental. It is evidently nothing other than [that which is] 

homogeneous to unity. (LCW 173, 1715) 
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What (6) suggests, (7) and (8) explicitly state: Leibniz intends his general definition of 

number to be powerful enough to accommodate the integers, fractions, and at least some 

of the irrational numbers as instances, though as I have just noted, it is beyond the scope 

of this chapter to resolve the question of which irrationals Leibniz intends to 

countenance -- as that question can only be addressed by investigating what Leibniz 

writes about the numbers that he labels “surd” and “transcendental”. In these texts, he 

claims that all these numbers fall under the category picked out by “that which is 

homogeneous to unity”, though it is not yet clear how this is supposed to work. What is 

clear is that he intends the general definition to pick out a genus, number, which subsumes 

specific kinds of number as species. 

It is beyond the scope of this chapter to resolve the issue of how Leibniz intends 

his account of number to accommodate irrational numbers. Instead, I focus on how 

exactly Leibniz’s definition of the positive integers relates to the definition of “number 

in general”. How are the positive integers, as aggregates of unities, a species of “that 

which is homogeneous to unity?” More fundamentally, what does it mean to be 

“homogeneous to unity?” Leibniz defines homogeneous things as “those which are 

similar or can be rendered similar by a transformation” (A.VI.4.872; identical or nearly 

identical language is found at A.VI.4.508 and GM VII 30). The concept of similarity is 

essential to Leibniz's definition of homogeneity; he offers multiple definitions of the term, 

and it is worth noting several of them. In the text from which (3) is taken, he defines 

similar things as those things “in which, considered by themselves, singly, it is not 

possible to find that by which they might be distinguished” (Nearly identical language is 
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found at A.VI.4.514). Another text reads “similar things are those which can be 

distinguished through themselves if they are together” (A.VI.4.155). Yet another reads 

“similar things are those which can be distinguished only by co-perception” (A.VI.4.508). 

The common thread in these definitions is the idea of the indistinguishability of 

two things solely by the examination of the things in isolation from each other: to 

distinguish similar things, one needs to perceive them together. Leibniz's favorite 

example of this property -- discussed in tandem with his definition of similarity in many 

places -- is that of similar geometrical figures: for example, two differently sized triangles 

with the same ratios between their respective sides. According to Leibniz, the only way 

to discern the difference in size is to perceive the two triangles simultaneously, or to use 

a third figure as a measuring device by which to compare them. One cannot distinguish 

them merely by the examination of each figure by itself. These figures are also, according 

to the definitions just examined, homogeneous, because they are similar, fulfilling one of 

the sufficient conditions for homogeneity. But two things are also homogeneous when 

they are able to be rendered similar by a transformation. 

Now, an aggregate of unities is intuitively not similar to unity. It would seem that 

an aggregate of unities can be distinguished from a unity conceptually, and two different 

aggregates of unities can be distinguished from each other, without the aid of simultaneous 

perception. Leibniz is never entirely clear about how this distinguishing is supposed to 

work, but he appears to accept that different aggregates of unities are not similar to one 

another, and presumably, this means that an aggregate of unities is also not similar to 

unity. He contrasts the case of distinct aggregates of unities with the case of distinct lines: 
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“But what of number? One is... not similar to another, for example four is not similar to 

three... [A]lthough three is not similar to four, but a line of three feet is similar to a line 

of four feet” (A.VI.4.933-34). Earlier in the same text, Leibniz provides some indication 

of why aggregates of unities are not similar to each other, in terms of yet another 

definition of similarity: “Similar things are those which... cannot be distinguished one by 

one through truths demonstrable about themselves; or those of which no different 

demonstrable predicates can be assigned. Thus every parabola is similar to every 

parabola, and every circle to every circle... Similar things are those of which all the 

internal predicates are the same...” (A.VI.4.931). In contrast to the truths demonstrable 

about different parabolas or circles, it seems clear both that two aggregates of unities can 

have different truths demonstrable about them, and that different truths are demonstrable 

about unity than are demonstrable about any aggregate of unities. 

3.2. The Apparent Inconsistency Resolved. Despite the lack of similarity between unity 

and an aggregate of unities, the latter is homogeneous to the former because an aggregate 

of unities can be rendered similar to unity. It can be transformed into something that 

cannot be distinguished from unity: something that is only conceivable as a unity, and no 

longer as an aggregate. In text (3) above, Leibniz characterizes the homogeneity to unity 

borne by aggregates of unities as consisting in the fact that such aggregates can be 

“compared with unity and added to or subtracted from it” (GM VII 31). The required 

transformation, then, is a kind of subtraction: specifically, the successive removal of the 

constituents of an aggregate of unities until what remains is simply a unity -- and as such 

is indistinguishable from unity. Thus, an aggregate of unities falls under the category of 
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“that which is homogeneous to unity”, because it can be rendered similar to unity by a 

transformation. Accordingly, Leibniz's definition of the integers is both consistent with 

his general definition of number and related to it in a straightforward way. 

Before closing this section, it must be noted that a selection of other texts might, 

at first glance, undercut the reconstruction proposed here. For example, Leibniz writes 

that a transformation is “a change that takes place in the original situation of the parts, 

none being added or removed” (A.VI.4.508); also that a transformation is “when from 

one thing it becomes another thing, no part having been added or removed” (A.VI.4.628). 

He also writes that numbers “cannot be rendered similar” (A.VI.4.933). The first two 

texts seem to suggest that the addition or removal of the constituents of an aggregate 

would not count as a transformation for Leibniz, and so it would be unclear how an 

aggregate of unities could be rendered similar to unity by a transformation. However, 

Leibniz clearly thinks that this is indeed the kind of transformation in virtue of which 

aggregates are homogeneous to unity: he says this explicitly in text (3), quoted earlier and 

partially reproduced in this paragraph. Aggregates of unities are homogeneous to unity 

because they can be “added to or subtracted from it”. 

How are we to explain this apparent discrepancy? In one of the texts just quoted 

(A.VI.4.508), Leibniz is clearly restricting his discussion to transformations performed 

on continuous bodies: he begins by laying out several definitions (of “homogeneous 

things”, “similar things”, “equal things”, “congruent things”, and “transformation”), and 

then he provides a short discussion of the ways in which bodies can be transformed. This 

text, at least, has no bearing on whether Leibniz thinks transformations can involve the 
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addition or removal of parts, since he says nothing about the question of how aggregates 

might be transformed, limiting himself to transformations of continuous bodies. It is also 

worth noting that my text (3) is undated, whereas the two texts quoted in the previous 

paragraph are from 1682 and 1685, respectively. Perhaps Leibniz begins his career with 

a restricted notion of a transformation and later broadens it to include transformations 

that apply to aggregates. Finally, the text in which Leibniz says that numbers cannot be 

rendered similar directly conflicts with the significant amount of evidence presented in 

this chapter that Leibniz holds that aggregates of unities are homogeneous to unity. If 

aggregates of unities can be rendered similar to unity by removing their constituents, then 

they can also be rendered similar to each other by the same sort of transformation. 

I close this section by noting that the discussion of the integers as aggregates of 

unities provides another way of ruling out the reading of Leibniz's conception of number 

in Grosholz and Yakira's study. Now that Leibniz's notion of homogeneity is understood, 

his remark in texts (2) and (5) that unities are the parts of integers can be cast in the proper 

light. While Grosholz and Yakira read Leibniz's use of “part” as essentially geometrical, 

so that his definition of the integers presupposes geometrical notions, the opposite is true: 

Leibniz understands the relation of part to whole in a general way that is detached from 

geometrical considerations. In several places, Leibniz defines “part” in terms of an 

ontological dependence relation that makes no reference to geometry and does not require 

that parts be understood in terms of continuous magnitude. For example, he writes that 

“a part is a homogeneous ingredient” (GM VII 19), and that “parts are homogeneous 

inexistents” (A.VI.4.932), where an “inexistent” is something that exists in something 
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else. A part, for Leibniz, is something that “is in” something else and is homogeneous to 

it. Parts, then, are a species of inexistents: A is a part of B if A exists in B and is 

homogeneous to B. It should be clear from the argument of this section that Leibniz's 

notion of homogeneity does not presuppose any geometrical content. His notion of “being 

in” [inesse] is similarly general: “We say that an entity is in or is an ingredient of 

something, if, when we posit the latter, we must also be understood, by this very fact and 

immediately... to have posited the entity as well” (GM VII 19). If parts are homogeneous 

inexistents, then Leibniz does not understand “part” geometrically, but rather in a broader 

way that includes as one particular case the way that segments are parts of a line, and as 

another particular case the way that unities are parts of integers6. 

The relation between part and whole, understood in terms of inesse, is explained 

succinctly by Rutherford: “to say that parts 'are in' a whole... is to say that if the latter are 

supposed to exist, the existence of the former can immediately be asserted; conversely, if 

the former are supposed not to exist, it can immediately be asserted that the latter do not 

exist” (1990, 541). Given Leibniz's understanding of parthood in terms of inesse, line 

segments and unities both qualify as “parts” of their respective wholes in that they are 

both homogeneous inexistents of those wholes. They are inexistents in the sense just 

noted: without them, the wholes would not exist; and once the whole (line, integer) is 

posited, the parts (segments, unities) are thereby posited. It is worth reiterating that 

homogeneity is also only not a geometrical notion for Leibniz: it is the notion of one 

                                                
6 The same point is made in Rutherford (1990). For detailed discussion of Leibniz's mereology, see also 
Di Bella (2005). 
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thing's being able to be rendered similar to another by a transformation, where the things 

in question can be non-geometrical entities such as aggregates or geometrical entities 

such as lines, and the transformations can involve the addition or removal of constituents 

(in the case of aggregates) or the lengthening or shortening of segments (in the case of 

lines). Unities are parts of integers in this sense, existing in aggregates and bearing the 

relation of homogeneity to them, since a unity can be transformed into an aggregate by 

the addition of other unities. 

4. Generalizing the Aggregative Definition to all Positive Rational Numbers 

In the previous section, I noted that Leibniz characterizes fractions as aggregates 

of parts of unity, rather than as aggregates of unities. Now that his definition of the 

integers has been understood, and shown to be consistent with his general definition of 

number as “that which is homogeneous to unity”, his account of fractions becomes 

straightforward -- both in its conceptual details and in its consistency with the general 

definition. 

Since aggregates of unities form whole numbers, it is not surprising that Leibniz 

defines fractions the way he does: whole numbers are larger than one, whereas fractions 

are smaller than one; and so fractions cannot, by Leibniz's own lights, be formed by the 

aggregation of unities. They must be formed by the aggregation of entities smaller than 

unity. Even fractions larger than one -- such as, for example, 5/3 -- cannot be formed by 

the aggregation of unities, since fractions larger than one are not whole numbers. In the 

following, I treat these two cases in turn. 
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It should be noted at the outset that Leibniz does not hold unity itself to be “an 

aggregate of fractions into which it can be broken up” (S 129/GP II 268); fractions smaller 

than one represent the many different ways in which unity may be conceived of as broken 

up into parts, and the ways in which those parts may be aggregated to form numbers less 

than one. The parts of unity are “completely indefinite” (ibid): a unity can be conceived 

of as divided into any desired series of fractions, but it is not actually divided into any 

particular series of fractions. Leibniz writes: 

[T]he unity in arithmetic... is a purely intellectual or ideal entity divisible 
into parts,as for example into fractions, which are not actually in unity 
itself (otherwise it would be reducible to minimal parts that are not present 
in numbers at all), but depends on how we have designated fractions (S 
54-55/E 746) 

Leibniz is also careful to note that the concept of a fraction presupposes the concept of 

an integer: 

The analysis of necessities, which is that of essences, proceeds from the 
posterior by nature to the prior by nature, and it is in this sense that 
numbers are analyzed into unities…. It is true that the concept of numbers 
is finally resolvable into the concept of unity, which is not further 
analyzable and can be considered the primitive number…. When I say that 
unity is not further analyzable, I mean that it cannot have parts whose 
concept is simpler than it. Unity is divisible but not resolvable, for 
fractions, which are parts of unity, have less simple concepts than whole 
numbers, which are less simple than unity, since whole numbers always 
enter into the concepts of fractions. (L 664-65/GP III 583) 

Integers, Leibniz says, always enter into the concepts of fractions: the fraction 3/5, 

for example, presupposes the concept of 3 and the concept of 5; the fraction itself is 

formed when unity is conceived of as divided into 5 equal parts, and a part of that unity 

is specified by the aggregation of 3 of those equal parts. It is worth noting here that this 

line of thought illustrates that Leibniz intends fractions to be understood non-
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geometrically, just as he intends the integers to be so understood, and in fact intends 

fractions to be presupposed in measurement similarly to how the integers are 

presupposed. As I argued earlier in this chapter, integer concepts are presupposed in the 

measurement of geometrical quantities; and this is equally true for measuring magnitudes 

in terms of a unit, and for distinctly specifying a part of a magnitude where the whole 

magnitude has been taken as a unity -- i.e. to specify a part of the magnitude expressed 

by a fraction. In order to mark out 3/5 of a line, for example, we need to first count out 5 

equal parts of the line. Only then can we specify a part of the line that consists of three of 

these equal parts. 

The reason why fractions cannot be understood through geometrical notions is the 

same as the reason why integers cannot be: the definition of magnitude as a number of 

parts. This definition is what entails the need to understand integer concepts in order to 

measure magnitudes in terms of a unit, as I have explained. But the marking off of a 

number of equal parts using an integer is also required in order to be able to determine a 

specific part of the magnitude in relation to the whole -- in other words, to specify a ratio. 

One must have marked off five equal parts, and understood oneself as having divided the 

line into fifths, in order then to count off three of these as constituting 3/5 of the line. This 

is why Leibniz says that the concepts of fractions are understood through the concepts of 

whole numbers. One has to possess the concept of an integer in order to divide the line in 

terms of that integer, and only when one has done this can one identify a part of the line 

that is expressed by a fraction with that integer as its denominator. 
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I close this section by treating improper fractions, or fractions greater than one. 

Now that fractions less than one have been understood as aggregates of parts of 

unity -- where “parts of unity” means, for Leibniz, that unity is conceived of as divided 

into an collection of equal parts -- fractions greater than one can also be so understood. 

Consider the fraction 5/3: here, on Leibniz's account, unity is conceived of as divided into 

three equal parts, and then five of those equal parts are aggregated. This yields a number 

greater than one, but a number that is not an integer. Something similar can be said of the 

number 1 2/3, which is equal to 5/3 but is expressed differently. Here, on Leibniz's 

account, unity is conceived of as divided into two equal parts, and then two of those parts 

are added to unity itself. This, again, yields a number greater than one, but a number that 

is not whole. 

A crucial outstanding question remains at this stage: how are fractions -- both 

those less than one and those greater than one -- homogeneous to unity? This question 

must be resolved for fractions for the same reason it needed to be resolved for the integers: 

Leibniz clearly intends to subsume his more specific definition of fractions under his 

general definition of number as “that which is homogeneous to unity”. Fortunately, we 

can use the conceptual tools developed earlier in this chapter in order to see how Leibniz 

is able to do this. Recall that to be homogeneous to unity is to be similar to unity or able 

to be rendered similar to unity by a transformation. In the case of the integers, we saw 

that the relevant transformation is subtraction: integers, as aggregates of unities, can be 

rendered similar to unity by the removal of their constituent unities until only unity 

remains. This renders a given integer similar to unity in the sense of indistinguishability 
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from unity, as explained above. For fractions smaller than one, the relevant 

transformation will be the opposite of subtraction -- i.e. addition. Here, unity is conceived 

of as divided into a given number of equal parts, and some of those parts are aggregated 

to form a number less than one. In order to render that aggregate similar to unity -- where 

we will have similarity again in the sense of indistinguishability -- we simply add the 

required additional number of equal parts, giving us unity, and rendering the original 

fraction indistinguishable from unity. Thus, fractions less than one straightforwardly 

qualify as homogeneous to unity. Fractions greater than one qualify in a similarly 

straightforward way: again, unity is conceived of as divided into a certain number of equal 

parts, but in this case, those parts are aggregated in a way that yields a number greater 

than one. In order to render such a number similar to unity, we simply remove the extra 

unities, rendering the aggregate indistinguishable from unity. At this stage, then, we can 

see that Leibniz has a definition of number that coherently and consistently yields all of 

the positive rational numbers: the integers, fractions less than one, and numbers greater 

than one that are not integers but can be expressed as fractions. 
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Chapter 3: Leibniz on the Ontology of the Rationals as Relations 

1. Introduction 

My goal in this chapter is to argue that Leibniz's definition of number -- explored 

in the previous chapter -- entails that at least the positive rationals have a well-defined 

place in Leibniz's metaphysics. Specifically, I argue that Leibniz conceives of these 

numbers as relations7; and that as relations, they have the ontological status of divine 

ideas, expressing certain kinds of possibilities and providing the basis for a class of 

necessary truths. Establishing the first of these points will require reconciling two sets of 

texts that appear to define numbers in different ways. One set of texts, analyzed in the 

previous chapter, leaves the impression that Leibniz conceives of the rationals as 

aggregates. Another set of texts -- the set I investigate here -- indicates that Leibniz 

conceives of numbers in general -- not only the rationals -- as examples of a distinctive 

type of relation. 

I begin by providing a brief overview in section 2 of Leibniz's theory of relations. 

In section 3, I show how these texts can be reconciled, establishing that Leibniz ultimately 

conceives of the positive rationals as relations that provide the basis for the wholeness 

and size of aggregates of things taken as unities or parts of unity. I then turn to the 

question of the ontological status of the rationals for Leibniz, given that they are relations. 

In section 4, I argue that as a kind of relation, the rationals have a natural place in Leibniz's 

                                                
7 Russell (1937, 14) notes this, but only in a cursory way and without attempting to explicate the content 
of Leibniz's relational conception of number. 
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ontological framework, expressing possibilities and grounding a class of necessary truths, 

as ideas in God's mind. In the course of this argument, I address the challenge my 

reconstruction faces from Mates (1986). The nominalist reading of Leibniz's 

metaphysics -- especially as formulated by Mates -- has been the subject of a good deal 

of critical scrutiny8, and it is not my goal to criticize this reading in detail. Instead, I only 

aim to show that Mates' reading does not represent a serious challenge to my 

interpretation of Leibniz's position on the ontological status of the rational numbers. 

2. A Brief Primer on Leibniz's Theory of Relations 

In the previous chapter, I explicated Leibniz's definition of the positive rational 

numbers as a certain kind of abstract aggregate. However, I also signaled that I would 

ultimately argue that this definition is equivalent, for Leibniz, to the view that these 

numbers are relations. In this chapter, I make that argument. However, before doing so, 

it is necessary to provide a brief exposition of Leibniz's general theory of relations. 

Leibniz writes much about relations throughout his career; in his fifth letter to Clarke, he 

makes remarks that reveal the content of his theory to a first approximation. When 

discussing the relation between a longer line L and a shorter line M, he first points out 

that “the ratio... may be considered in three several ways: as a ratio of the greater L to the 

lesser M; as a ratio of the lesser M to the greater L; and lastly as something abstracted 

from both, that is, the ratio between L and M without considering which is the antecedent 

or which the consequent” (LC 47/GP VII 401). In the first two cases, Leibniz says, L and 

                                                
8 .E.g. in Mondadori (1990); Hill (2008); and Ishiguro (1990). 
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M are respectively “the subject of that accident which philosophers call relation” (ibid), 

in that each line is said to have a relational accident that relates it to the other line. But in 

the third case, 

It cannot be said that both of them... are the subject of such an accident; 
for if so, we should have an accident in two subjects, with one leg in one 
and the other in the other, which is contrary to the notion of accidents. 
Therefore we must say that this relation, in this third way of considering 
it, is indeed out of the subjects; but being neither a substance nor an 
accident, it must be a mere ideal thing... (ibid) 

Because the created world consists only of substances and their individual accidents, 

relations -- conceived either as accidents with “legs” in multiple particular subjects or in 

a more abstract fashion without regard to any particular subjects -- must be mere “ideal 

things”. As Mugnai (1992) and (2012) demonstrates through an extensive marshaling of 

texts, Leibniz believes that relations as such are “mental beings and that they ‘result’ or 

‘supervene’ when two or more things ‘are thought of simultaneously’” (2012, 182). For 

Leibniz, “no multiple inherence is admitted” in the world of substances and modifications 

(ibid, 184), so that relations are mental entities, arising in thought when the mind 

considers the appropriate individuals as related in a certain way. As Mugnai puts it, “it is 

precisely the polyadic nature” of relations that “reveals that they are ‘purely mental 

beings’” (ibid). For example, when the mind considers two blue things, insofar as they 

are both blue, it thinks of the two as related by the relation of similarity, and it apprehends 

the relational fact that the two things are similar. 

This account naturally yields three “levels” at which one can talk about relations 

and relata: (1) individual things with their individual accidents, serving as the foundations 

of relations; (2) individual things, with the relevant individual accidents, considered by 
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the mind as related in a particular way; and (3) relations in abstracto, considered without 

regard to any particular individuals they might relate. For example, if we have two blue 

things, we can talk about them in sense (1), as individuals each of which has an individual 

accident of blue-ness; in sense (2) insofar as some mind thinks about them and their 

relevant individual accidents, and considers them as similar to one another insofar as they 

are both blue; and in sense (3), we can talk about the relation of similarity in the abstract, 

ignoring any particular similar things. 

Of particular interest to us here is the ontological status of relations in abstracto: 

relations considered without regard to any particular relata, such as the relation of 

similarity in our example. For Leibniz, it may appear that relations depend entirely on the 

operations of created minds, since they arise in minds insofar as the appropriate subjects 

are thought as related in a certain way, so that certain relational facts about the subjects 

obtain. But Leibniz thinks relations would result even if no created mind were there to 

think about the subjects. In the New Essays, he makes multiple remarks that reveal the 

ultimate independence of relations and relational truths from the operations of the human 

intellect. For example, he writes that “although relations are the work of the 

understanding they are not baseless and unreal. The primordial understanding is the 

source of things...” (RB 146); and that concerning relations, “one can say that their reality, 

like that of eternal truths and of possibilities, comes from the Supreme Reason” (ibid, 

227). He also says in the same work that “the reality of relations is dependent on mind... 

but they do not depend on the human mind, as there is a supreme intelligence that 

determines all of them from all time” (ibid, 265). In his commentary on a book by Aloys 
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Temmick, translated in Mugnai (1992), Leibniz says that “their reality [of relations] does 

not depend on our understanding -- they inhere without anyone being required to think of 

them. Their reality comes from the divine understanding...” (1992, 155). In other words, 

the relational truths about a given collection of individuals obtain objectively, 

independently of any human thought -- so relations do have a kind of reality. This is 

because individuals would still be thought of as united by relations in God’s mind even 

if no finite mind did so in any given case. This thesis generalizes to the status of relations 

in abstracto. If God thinks of objects as related even if no human mind is present to do 

so, so that relational truths are grounded in the operations of the divine mind, then 

presumably the reality of relations in abstracto is also founded in the divine mind. This 

point is made especially clear when Leibniz compares the reality of relations to the reality 

of eternal truths and possibilities. Subsequently, when I explicate the sense in which 

numbers are relations, I will revisit what I have said in this section, expanding upon it in 

light of additional textual evidence to argue that numbers, as relations in abstracto, are in 

fact expressions of possibilities in God’s mind. 

3. The Relational Conception 

It is not yet clear on what grounds Leibniz conceives of the rational numbers as 

relations. All that has been established thus far is that the definitions of the positive 

integers as aggregates of unities, and of fractions as aggregates of parts of unity, are 

consistent with, and indeed a species of, the definition of “number in general” as “that 

which is homogeneous to unity”. The aim of this section is to show that Leibniz should 
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be understood as holding that the rational numbers are indeed relations; furthermore, it 

turns out that his aggregative definitions of the rationals actually entails that they are 

relations. 

In the previous chapter, I noted a text from the Dissertation on the Art of 

Combinations that seems to provide a version of the thesis that the integers are relations. 

There, Leibniz says that some relations are relations of union, which unite several things 

in a whole, and the way he characterizes the integers in the Dissertation seems to place 

them in the category of relations of union. However, in several places in his mature 

writings Leibniz more explicitly characterizes numbers in general as relations: 

(9) [N]umber or time are only orders or relations pertaining to the possibility and 

the eternal truths of things. (GP II 268-269, 1704) 

(10) Numbers… have the nature of relations. And to that extent in some way they 

can be called beings. (GP II 304, 1706) 

(11) Place and position, quantity -- such as number, proportion -- are nothing but 

relations, results from other things. (C 9, undated). 

Limiting the focus to the rationals, this way of characterizing number appears to conflict 

with the aggregative definitions of the rationals: an aggregate of unities or parts of unity 

is not, at least intuitively, a relation. It is difficult, in the absence of further evidence, to 

see how Leibniz's claim that numbers are relations might be reconciled with his claim 

that the rationals are aggregates. Prima facie, a number cannot be both a relation and an 

aggregate. 
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Fortunately, supplementary evidence is forthcoming in the form of Leibniz's view 

of aggregates. In Leibniz’s metaphysics, something can only be an aggregate on the basis 

of the relatedness of its constituents. An aggregate of unities, for example, is only a whole 

-- it is only one thing -- because of a certain relation among its constituents. This view is 

evident in its infancy in the Dissertation. It is straightforward to apply Leibniz's concept 

of relations of union to aggregates, since aggregates are composed of several things united 

in some way: what makes them a whole is a relation of union among their constituents. 

But Leibniz makes the view explicit in the following late remark from his comments on 

a book by Aloys Temmick: “Bare relations are not creatable things, and arise in the divine 

intellect alone... and such things are whatever results from posits, such as the totality of 

an aggregate” (my translation of a text found in Mugnai (1992, 156)). In the New Essays, 

Leibniz makes much the same point: “[The] unity of the idea of an aggregate is a very 

genuine one; but fundamentally we have to admit that this unity that collections have is 

merely a respect or relation” (RB 146). Aggregates, for Leibniz, are a kind of relational 

being: an aggregate only exists in virtue of a relation that provides the basis for uniting 

certain parts as a whole. 

I now argue that in Leibniz's terms, if the rationals are aggregates, then they must 

also be relations. I treat the case of the integers first, and then run a parallel argument for 

fractions. If the positive integers are aggregates of unities, then several possibilities arise 

as to the meaning of that claim, for example: 

(1) A given integer is identical to a particular aggregate of concrete things taken as 

unities, e.g. {Leibniz, Spinoza, Locke}. 
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(2) A given integer is identical to the set of all aggregates of concrete things taken as 

unities that can be put in a one-to-one correspondence, e.g. all aggregates that can 

be put in a one-to-one correspondence with {Leibniz, Spinoza, Locke}. 

(3) A given integer is identical to an aggregate of unities taken in abstraction, e.g. 

{unity, unity, unity}. 

Option (1) is not a serious contender for a conception of number: it is not plausible to 

maintain that the number five is identical with a particular collection of concrete things. 

Even if it were plausible, there is no textual evidence that Leibniz ever considered this 

kind of view. Option (2) is more plausible, but there is again no evidence that it is 

Leibniz’s view. In Leibnizian terms, the number three is not identical with a either a 

particular aggregate or the collection of all aggregates that can be put in a one-to-one 

correspondence with a given aggrgeate {Leibniz, Spinoza, Locke}. 

Thus, if Leibniz thinks of the integers as aggregates, then he must conceive of 

them in terms of option (3): as aggregates of unities taken in abstraction. However, (3) is 

equivalent, in Leibnizian terms, to the claim that the integers are relations. Consider the 

content of an aggregate of unities taken in abstraction: no particular aggregate is signified, 

only a general possibility of -- or basis for -- aggregation. In an aggregate of concrete 

things taken as unities, some determinate concrete aggreganda are unified by some 

relation. By contrast, in an aggregate of abstract unities, the aggreganda are merely 

unities taken in abstraction. Unities taken in abstraction are nothing more than 

placeholders for individual things; an aggregate of unities taken in abstraction, then, 

signifies nothing more than the possibility of taking individual things together in a certain 
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way. But it is relations, for Leibniz, that provide the basis for, or underlie, the possibility 

of aggregation -- the possibility of taking things together. Thus, an aggregate of unities 

taken in abstraction can only be understood as a relation. This line of thought is captured 

in Leibniz's remark in the New Essays that, “It may be that dozen and score are merely 

relations and exist only with respect to the understanding. The units are separate and the 

understanding takes them together, however scattered they may be” (RB 145). The taking 

together of things in an aggregate is nothing more than the consideration of a certain 

relation among them. 

A parallel argument to the one establishing that an aggregate of unities is 

ultimately a relation can be used to establish that an aggregate of parts of unity is also 

ultimately a relation -- and hence that fractions both less than and greater than one are 

relations, since it was established in the previous chapter that both sorts of fraction are 

aggregates of parts of unity on Leibniz's view. When Leibniz defines a fraction as an 

aggregate of parts of unity, he might have one of three things in mind, in parallel to the 

options canvassed earlier for what he might mean in defining an integer as an aggregate 

of unities: 

(1) A given fraction is identical to a particular aggregate of concrete things taken as 

parts of some unity. 

(2) A given fraction is identical to a set of aggregates of concrete things taken as parts 

of some unity that can be put in 1-1 correspondence. 

(3) A given number is identical to an aggregate of parts of unity taken in abstraction. 



64 

 

The first two options can be rejected for the same reasons that their counterparts were 

rejected above: (1) is not a plausible view of number, and there is no textual evidence that 

Leibniz ever considered (2), even if (2) may be more plausible than (1). Thus, in defining 

a fraction as an aggregate of parts of unity, Leibniz must have in mind an aggregate of 

parts of unity taken in abstraction. But the same considerations apply to an aggregate of 

parts of unity taken in abstraction that applied to an aggregate of unities taken in 

abstraction. Parts of unity taken in abstraction are nothing more than placeholders for 

things; thus, an aggregate of parts of unity taken in abstraction signifies nothing more 

than the possibility of taking things together in a certain way. But for Leibniz, relations 

provide the basis for, or underlie, the possibility of taking things together in a certain way. 

Therefore, an aggregate of parts of unity taken in abstraction can only be understood as a 

relation. 

In sum, according to Leibniz, the integers are the relations that provide the basis 

for the wholeness, and express the size, of aggregates insofar as those aggregates are 

composed of unities, whereas fractions are the relations that provide the basis for the 

wholeness, and express the size, of aggregates insofar as those aggregates are composed 

of parts of unity. And so Leibniz turns out to have a unified account of all positive rational 

numbers as relations, though I will elaborate on the way in which fractions (both greater 

and less than one) are a different sort of relation from integers. 

I have previously noted that the positive integers provide the basis for the 

measurement of continuous magnitudes by allowing us to conceive of those magnitudes 

in terms of collections of unities. The integers can now be understood more generally as 
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providing the basis for the counting of collections of things, expressing the wholeness of 

those collections and answering the question “how many?” with respect to them. In the 

continuous case, some magnitude is taken as a unity and repeated until the original 

magnitude has been re-cast as an aggregate of unities; in the case of the counting of 

individual things, the “measure” is just the notion of unity itself. Each thing is taken as a 

unity, and the resulting number counts the aggregate in terms of the question “how many 

unities?”. At bottom, then, the positive integers are those relations that express the 

homogeneity to unity possessed by aggregates of things taken as unities, signifying that 

such aggregates are composed of unities and can be reduced to unity by successively 

removing their constituents. This is not to identify a positive integer with a relation as 

exemplified by any particular aggregate. Positive integers, rather than being identified 

with some collection or other, are the relations of homogeneity that any collection may 

have to unity, expressing the size of the collection in terms of an answer to the question 

“how many?”. 

As we have now seen repeatedly, a parallel account can be given on Leibniz's 

behalf of fractions both greater and less than one. If the integers can be understood as 

those relations that express the homogeneity to unity possessed by aggregates of things 

taken as unities, then fractions can be understood as those relations that express the 

homogeneity to unity of aggregates of things taken as parts of unity. An example of a 

continuous case and an example of a discrete case will both be instructive here. Consider 

an arbitrary line, designated as having a magnitude of one. If we take that line as a unity, 

and conceive of it as divided into five equal parts, then the fraction 3/5 expresses the 
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homogeneity to unity possessed by those three equal parts of the line. Now consider an 

aggregate of five arbitrary things taken as unities: the fraction 3/5 expresses the 

homogeneity to unity possessed by three of those unities taken as an aggregate. 

Interestingly, however, in both of these cases it can be seen (as I have noted previously) 

that the ability of the fraction to express the relevant sense of homogeneity to unity 

presupposes integer concepts. This is in line with Leibniz's explicit remarks (quoted in 

the previous chapter) that fractions conceptually presuppose integers, but it also indicates 

that fractions are a different sort of relation. Integers, on Leibniz's account, are a “first-

order” relation, obtaining between aggregates of unities and unity itself. Fractions, in the 

final analysis, appear to be relations between integers, as integers are presupposed in the 

arbitrary division of a unity into equal parts. Thus, on Leibniz's account, fractions are 

relations between relations, and so may be labeled “second-order” relations. However, 

the crucial point is that both integers and fractions are relations, and so enjoy whatever 

ontological status Leibniz confers on that sort of entity. As I show in the next section, it 

turns out that the difference in order between integers and fractions makes no difference 

with respect to their ontological status, and that Leibniz has a unified account of the 

ontology of the positive rationals. 

4. Positive Rationals as Divine Ideas 

4.1. The Reality of the Rationals as Relations. Having answered the definitional question, 

I turn to the question of the ontological status of the rationals. If Leibniz conceives 

of these numbers as relations, then it is plausible to think that he confers the same 
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ontological status on them that he confers on other relations. But this leaves open several 

options for Leibniz: does he think of the rationals, as relations, along the lines of Platonic 

abstract objects? Does he think of them as some sort of mental entity? Does he even think 

that they have any reality at all? Are they part of his metaphysical picture of the world? 

As noted earlier, Leibniz is clear throughout his corpus that relations have a 

particular ontological status: they are divine ideas, contents of God's mind. Given this, 

the rationals, as relations, should be understood as contents of God's mind. As such, they 

inhabit the top level of what is widely accepted to be Leibniz's “three-tiered” ontology, 

consisting of monads at the fundamental level, possessing the most inherent reality, 

phenomena (such as bodies) in the middle (grounded on monads), and ideal entities at the 

top9. Though ideal entities possess the least fundamental or inherent reality in Leibniz's 

ontology, given how Leibniz conceives of God's mind, these numbers should be 

understood along Platonistic lines, in the sense that they have timeless reality independent 

of the created world. The precise content of Leibniz's theory of relations has been the 

subject of much scholarship 10 , and we have had occasion to examine its relevant 

highlights in a previous section. For our purposes, a recapitulation of key texts will suffice 

to make the point that matters here. Following the terminology of Mugnai, relations in 

abstracto, or relations considered in the abstract, independently of any particular relata, 

are contents of the divine mind according to Leibniz. For example, Leibniz writes that 

“although relations are the work of the understanding they are not baseless and unreal. 

                                                
9 The locus classicus for this interpretation of Leibniz's ontology (from which I borrow the phrases just 
quoted) is Hartz and Cover (1988) 
10 In addition to Mugnai (1992), see also Mugnai (2012); Ishiguro (1990); and Mates (1986) 
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The primordial understanding is the source of things...” (RB 145); and that concerning 

relations, “one can say that their reality, like that of eternal truths and of possibilities, 

comes from the Supreme Reason” (RB 227). He also says in the same work that “the 

reality of relations is dependent on mind... but they do not depend on the human mind, as 

there is a supreme intelligence that determines all of them from all time” (RB 265). In his 

commentary on Aloys Temmick, Leibniz writes that “their reality [of relations] does not 

depend on our understanding -- they inhere without anyone being required to think of 

them. Their reality comes from the divine understanding...” (Mugnai 1992, 155). 

Thus the positive rationals, as relations, have their ultimate ground in God's mind. 

In turn, God's mind, for Leibniz, is the realm where possibilities are expressed and the 

ground of necessary truths is provided. If the rationals are divine mental contents, then 

they express possibilities and form the basis of a class of necessary truths. That they 

occupy this place in Leibniz's metaphysics was telegraphed earlier by the excerpt from 

his letter to De Volder, where Leibniz says that numbers “pertain to the possibility and 

the eternal truths of things”. But Leibniz is explicit in many texts that the realm of divine 

ideas is the realm of that which expresses possibility and provides the basis for necessary 

truths. The following passage represents a typical statement of Leibniz’s conception of 

the realm of divine ideas: 

Essences, truths, or objective realities of concepts do not depend either on 
the existence of subjects or on our thinking, but even if no one thinks about 
them and no examples of them existed, nevertheless in the region of ideas 
or truths, as I would say, i.e. objectively, it would remain true that these 
possibilities or essences actually exist, as do the eternal truths resulting 
from them... As in the region of eternal truths, or in the realm of ideas that 
exists objectively, there subsist unity, the circle, power, equality, heat, the 
rose, and other realities or forms or perfections, even if no individual beings 
exist, and these universals were not thought about. (S 185/A.II.1.392) 
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The contents of the divine mind have reality independent of the created world; they 

express possibilities; and they form the basis of eternal truths: 

Neither... essences nor the so-called eternal truths pertaining to them are 
fictitious. Rather, they exist in a certain realm of ideas, so to speak, namely 
in God himself, the source of every essence and of the existence of the 
rest... It is necessary that eternal truths have their existence in a certain 
absolute or metaphysically necessary subject, that is, in God, through 
whom those things which would otherwise be imaginary are realized. (AG 
151-152/GP VII 305) 

Thus, the rationals, as relations, and so as inhabitants of the divine mind, have 

reality independent of the created world, express metaphysical possibility, and are the 

subject of necessary truths. The positive integers express the possible ways in which 

aggregates of things taken as unities can be homogeneous to unity, which is to say they 

express the possible sizes of such aggregates in terms of their composition out of things 

taken as unities. Positive fractions express the possible ways in which aggregates of 

things taken as parts of unity can be homogeneous to unity, which is to say they express 

the possible sizes of such aggregates in terms of their composition out of things taken as 

parts of unity. As inhabitants of the divine mind, the positive rational numbers also 

provide the basis for a class of necessary truths: the truths of arithmetic. Each positive 

integer is a first-order relation, and some of the truths of arithmetic concern relations 

between integers; these truths, for Leibniz, ultimately concern second-order relations -- 

in other words, relations between relations. Second-order relations, in this framework, 

express ways in which possible groups of related things can be with regard to each other, 

insofar as the given groups are united by particular first-order relations. So the eternal 

truth that 2+3=5, for example, expresses a relation between 2 and 3, such that any 
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aggregate related to unity by the number 2 is related to any aggregate related to unity by 

the number 3 in such a way that their combination yields an aggregate related to unity by 

the number 5. Now, as I have noted, fractions are also second-order relations, as they are 

ultimately relations between integers. Some of the truths of arithmetic concern relations 

between fractions; these truths, then, concern third-order relations. Thus, for example, 

the eternal truth that 3/5+1/5=4/5 expresses a relation between 3/5 and 1/5, such that any 

aggregate related to unity by the number 3/5 is related to any aggregate related to unity 

by the number 1/5 in such a way that their combination yields an aggregate related to 

unity by the number 4/5. But once again, in the case of fractions, integer concepts are 

presupposed, and so the relations between fractions can be called third-order -- and it is 

to these sorts of relations that the truths about fractions correspond. 

4.2. Meeting the Nominalist Challenge. It seems, then, that Leibniz's answer to the 

ontological question is clear: though numbers are a kind of mental entity, they are the 

kind of mental entity that gives them the status of something like Platonic abstract objects. 

They are not merely contents of human minds, but of God's mind; as such, they exist 

timelessly and independently of the created world. This reconstruction, however, faces a 

challenge based on the reading of Leibniz's metaphysics proposed by Benson Mates. 

Mates characterizes Leibniz as a “nominalist,” claiming that Leibniz denies a 

fundamental reality to anything other than concrete individual substances and their 

modifications: in other words, Leibniz excludes everything other than these entities from 

his fundamental picture of the world. According to Mates, 
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There can be little doubt that [Leibniz] was a nominalist... [in] the sense it 
bears in current Anglo-American philosophical discussion about so-called 
ontological commitment. According to this, a nominalist, as contrasted 
with a Platonist, is one who denies that there are abstract entities, asserts 
that only concrete individuals exist, and in consequence considers that all 
meaningful statements appearing to be about abstract entities must 
somehow be rephraseable as statements more clearly concerning concrete 
individuals only. (1986, 170) 

On this interpretation, Leibniz rejects all manner of abstract entities, including those 

entities that are the subject of this chapter: 

Leibniz would agree wholeheartedly with that notorious pronouncement 
of present-day nominalism: “We do not believe in abstract entities.” He 
does not believe in numbers, geometric figures, or other mathematical 
entities, nor does he accept abstractions like heat, light, justice, goodness, 
beauty, space or time, nor again does he allow any reality to metaphysical 
paraphenalia such as concepts, propositions, properties, possible objects, 
and so on. The only entities in his ontology are individuals-cum-accidents, 
and sometimes he even has his doubts about the accidents. (1986, 173) 

For Mates, then, Leibniz’s variety of nominalism consists in two theses: first, the denial 

that abstract entities exist, and second, the thesis that statements about those entities can 

be rewritten in a way that refers only to concrete individuals. I address these in turn. 

Mates' evidence in favor of the first thesis consists in Leibniz's oft-repeated 

remark that anything that is not a concrete individual substance or modification thereof 

has whatever being it has solely as a content of the divine mind11. What is at issue here is 

the meaning of that thesis. Mates holds that it amounts to an elimination or rejection of 

whatever is identified with a divine idea. His interpretative strategy is to argue that such 

a move is intended to reduce everything that is not either an individual substance or a 

                                                
11 The thesis that everything besides individual substances and their individual accidents exists only in 
God’s mind appears repeatedly in Leibniz’s corpus. Mates cites GP VII 305/L 488 and GP VI 614-616/L 
647-648 in particular. 
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modification thereof to certain divine dispositions. Mates proposes that “what [Leibniz] 

intends is not that there are two kinds of existence, namely, in the mind of God and out 

of the mind of God, but rather that statements purporting to be about these kinds of entities 

are only compendia loquendi for statements about God's capacities, intentions, and 

decrees” (1986, 177). In other words, talk of abstract objects, universals, or relations is 

just talk about certain of God's concepts or ideas, which in turn is nothing more than talk 

of God's mental dispositions. Crucially, for Mates, such a reduction amounts to an 

elimination of the entity from Leibniz's ontology. If divine ideas are ultimately 

dispositional, Mates' reasoning goes, then Leibniz must intend to eliminate from his 

fundamental ontology everything that he characterizes as a divine idea. 

The rest of this section makes two claims: (1) Mates' proposed reduction lacks a 

textual basis, and in fact Leibniz holds the exact opposite view of the nature of divine 

ideas to that required by Mates' strategy; (2) even if Mates' proposed reduction had textual 

support, it still would not be the kind of eliminative reduction that his nominalist reading 

requires, and the abstract entities identified with divine ideas would still have timeless 

reality independent of the created world and would provide the basis for classes of 

necessary truths. 

Mates' proposed reduction relies on Leibniz's well-known identification, for the 

human mind, of the idea of something with the disposition to think about that thing. For 

example, Leibniz writes: “In my opinion, namely, an idea consists, not in some act, but 

in the faculty of thinking, and we are said to have an idea of a thing even if we do not 

think of it, if only, on a given occasion, we can think of it” (L 206/GP VII 263). Our ideas 
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are not mental acts, but dispositions to perform mental acts. However, it is well-

documented that Leibniz does not think God's ideas are the same kind of thing as our 

ideas. God's ideas cannot be identified with his dispositions to perform mental acts, since 

God has no dispositions and is in fact purely active. Mondadori puts the point as follows 

in his review of Mates' study: 

[T]he view according to which 'having an idea at a given time does not 
require having an actual thought at that time, but only a disposition to 
think' cannot apply to divine ideas: for the (infinite) totality of God's 
thoughts includes 'all at once', as actually thought, everything that can be 
thought by an infinite understanding... Hence, we need not ascribe to God 
any (modally non-vacuous) dispositions to think; hence, divine ideas must 
be something other than dispositions to think; hence, they cannot be 
explained away by appealing to dispositions; hence, the reductive scheme 
put forth by Mates cannot be made to work, since it crucially depends on 
the claim that talk of ideas is in fact talk of dispositions to think. (1990, 
622) 

In short, God does not have any dispositions to think about anything: God is always 

(timelessly) thinking about everything, “all at once”. Mondadori marshals a variety of 

texts that clearly establish this point; one that is particularly forceful reads: “God 

expresses everything perfectly, all at once, possible and existent, present and future” (GP 

IV 533, undated). In short, Leibniz cannot plausibly be understood as reducing divine 

ideas to divine dispositions, and so he cannot be understood as reducing to divine 

dispositions the abstract entities that he identifies with certain divine ideas. 

However, even if Mates' proposal did have textual support, and Leibniz could be 

read as reducing divine ideas to divine mental dispositions, the reduction would lend little 

support to the nominalist reading. If divine ideas were reducible to divine dispositions, 

then those dispositions would still have all the features that Leibniz ascribes to the realm 
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of divine ideas in the passages analyzed earlier in this section. Those dispositions would 

have timeless reality independent of the created world and would provide the basis for 

classes of necessary truths; and so the abstract entities identified with those dispositions 

would still have these features. The place of relations in abstracto, and so the place of the 

rationals, in Leibniz's metaphysical framework remains the same regardless of whether 

the divine ideas are purely actual or are reduced to dispositions. Furthermore, although 

the contents of the divine mind are ideas, and so whatever entities Leibniz relegates to 

the divine mind are “mental entities” to that extent, this does not amount to a denial of 

their reality. This class of entities would exist even if there were no created world of 

individual substances, and even if no finite, created mind ever thought about them. 

Although it is certainly the case that these entities do not exist in the same way that 

individual substances exist -- as Ishiguro puts it, when we refer to relations, for example, 

we are not referring to “entities which are the basic constituents of the world in the manner 

that individual substances are” (1990, 140) -- it is a mistake to infer from this that they 

do not exist at all. Thus, it is evident that when Mates claims Leibniz does not have two 

senses of “existence” in mind -- one sense in God's mind and another sense out of God's 

mind -- he deviates considerably from the textual evidence. It seems that Leibniz does 

have exactly this in mind. In the created world of individual substances, one will not find 

any abstract entities; but one will find them in the divine mind, and one would find them 

there even if God had never created the actual world or any other world. 

Mates’ argument for his second thesis -- that Leibniz believes reference to abstract 

entities can be paraphrased out of discourse -- turns on Leibniz's various “rewriting 
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projects”: his lifelong efforts to reform language either by rewriting all Latin sentences 

in subject-predicate form or by inventing an artificial language to facilitate deduction and 

the discovery of new truths. The former is pertinent here. Mates writes that Leibniz's 

nominalistic metaphysics provides the basis and motivation for much of 
what [he] says about language. If the real world consists exclusively of 
substances-with-accidents, it is natural to suppose that it could in principle 
be completely described by a set of propositions of 'A ist B' form, where 
A is the complete individual concept of a given substance, and B is a 
concept underwhich the substance falls at time t by virtue of one or more 
of its accidents. (1986, 178) 

The claim is twofold: on the one hand, Leibniz's supposed nominalism must have 

motivated his efforts to rewrite Latin sentences in a nominalistically acceptable way, and 

on the other hand, the existence of such a rewriting project is evidence of his nominalism. 

His efforts to reduce all sentences to those of subject-predicate form reveals, to Mates, an 

intention to deny any reality to anything other than individual substances and their 

individual modifications, for the rewriting projects eliminate from discourse all reference 

to things like universals, both monadic and relational, and individual relational properties. 

Importantly, there's a further premise in Mates's reconstruction to the effect that the 

elimination from discourse of reference to such items tracks an elimination from reality 

of the items themselves: Leibniz's reduction of sentences involving these items reveals a 

thesis that they do not exist in any sense whatsoever. 

A natural response to this line of thought would be to say that the elimination from 

language of all reference to abstract things only implies their elimination from reality if 

some further principle is explicitly adduced, to the effect that whatever is eliminated from 

the perfect language does not really exist. A recent article by Christopher Hill (2008) 
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takes up the task of spelling out this response, in the context of Leibniz's attempts to 

reduce sentences that explicitly refer to relations and relational properties. The idea, as 

seen in Mates' book, is that the effort to rewrite relational sentences as non-relational 

sentences entails or reveals an ontological commitment to the unreality of relations and 

relational properties. Hill challenges this thesis on two grounds: first, a philosopher's 

reduction of sentences mentioning entity X to sentences not mentioning X does not 

necessarily entail her rejection of X, unless there is independent evidence that the 

philosopher believes in a certain kind of eliminative reduction principle: namely, that if 

statements mentioning X can be rewritten as statements not mentioning X, then X is not 

real. Hill notes the pervasive acceptance, without much attempt at justification, of the 

thesis that Leibniz does believe in this sort of eliminative reduction principle, and not 

only in Mates, but in much of the literature concerning Leibniz's theory of relations. A 

similar point could be made about the reduction of sentences involving non-relational 

universals, like heat or redness: Leibniz's efforts to transform sentences mentioning such 

things into sentences that do not mention them only implies his outright rejection of such 

entities in the presence of the eliminative reduction principle, which it is merely assumed 

that Leibniz held. 

Hill's challenge goes deeper, though, focusing on the rewritten Latin sentences 

themselves. Leibniz uses certain Latin connectives in rewriting relational 

sentences -- namely, quatenus and et eo ipso, which roughly translate to “insofar as” and 

“and by this very fact”, respectively. These connectives have the function of eliminating 

explicit reference to relations; but as Hill points out, the connectives themselves are 
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implicitly relational; if they were not, i.e. if they did not imply a relation between the 

subjects they connect, then the rewritten sentence would not say the same thing as the 

original sentence, and the purported reduction would not be a reduction at all. To take 

one of Leibniz's favorite examples, “Paris is a lover, et eo ipso Helen is a loved one” fails 

to say the same thing as “Paris loves Helen” unless the connective implies some sort of 

relation between Paris's being a lover and Helen's being a loved one. In other words, the 

content of the connective “and by this very fact” is itself relational -- otherwise, the 

rewritten sentence would no longer be elliptical for “Paris loves Helen”. 

Ultimately, it is clear that the rationals do have a kind of reality for Leibniz, and 

the reality they have resembles that which the Platonist confers upon numbers, though 

Leibniz's account differs in its details. As I have argued, the rationals are a kind of mental 

entity for Leibniz, but they are not the kind of mental entity that one would naturally think 

of -- indeed, they are just the sort of mental entity that a Platonist would envision. As 

contents of God's mind, the rationals have a robust ontological status, possessing reality 

independent of the created world, expressing possibilities for the aggregation of things in 

the created world, and providing the basis for a class of necessary truths. 

1. Conclusion: The Philosophical Significance of Leibniz's Account of the Rationals 

At this stage, one might ask what, if any, philosophical import Leibniz's account 

of the rationals as relations might have. It is worth concluding this chapter by briefly 

foregrounding an answer to this question, though I leave a full exposition of the 

philosophical significance of Leibniz's views for chapter 6. 
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His account appears to be philosophically significant along two major dimensions. 

First, his conception appears to contain elements of both the cardinal and ordinal 

conceptions of number, which is developed explicitly by later thinkers (such as, for 

example, Cantor), but whose roots one can see here. Leibniz's account simultaneously 

characterizes the rational numbers as cardinals and ordinals: as cardinals, in the way the 

rationals are relations that count the possible sizes of collections and answer the question 

“how many?”; as ordinals, in the way it puts at least the integers into something 

resembling an ordered set, given that each integer is related to its predecessor and to its 

successor by the operations of addition and subtraction. I leave a detailed treatment of 

this aspect of Leibniz's view for chapter 6, but it is worth foregrounding here. 

The second, and perhaps the more major, philosophical contribution of Leibniz's 

view lies in its characterization of numbers (at least the rationals) in purely conceptual 

terms. As I have shown, his account presupposes no geometrical notions, and entails that 

numbers are conceptually prior to any such notions. This way of characterizing number 

bears a striking resemblance to that advanced by the logicists in the late 19th
 

and early 

20th
 

centuries. As with the treatment of the cardinal and ordinal aspects of Leibniz's 

account, I leave the analysis of that resemblance for chapter 6 
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Chapter 4: Leibniz on Non-Rational Numbers 

1. Introduction 

In previous chapters, I have noted that my account of Leibniz's views on number 

does not straightforwardly apply to the case of irrational numbers -- numbers which, in 

contemporary terms, cannot be expressed as a ratio of two integers. In several passages 

quoted therein, Leibniz signals a desire to subsume under his account of number those 

numbers which he labels “surd” and “transcendental”, but it is not immediately clear what 

he means by those terms. Additionally, Leibniz's views on the conceptual and ontological 

status of other sorts of numbers -- for example, negative and complex numbers -- remains 

unclear on the interpretation I have offered thus far. The purpose of this chapter is to 

explore two broad questions for four kinds of non-rational number (in addition to the case 

of negative rational numbers): irrationals, complex numbers, infinite cardinals, and 

infinitesimals. For each sort of non-rational number, that question bifurcates into two 

parts: (1) does Leibniz intend to admit a given sort of number into the class of genuine 

numbers? and (2) given that intent, to what extent is Leibniz able to admit (or exclude) 

that sort of number, given his general account of number? 

It turns out that these two questions involve Leibniz, and any interpretation of his 

account of number, in a great deal of philosophical difficulty. On the one hand, Leibniz 

appears to intend to countenance at least some of what we now call irrational numbers, 

but it ultimately remains unclear which of these he is referring to. At the same time, 

Leibniz appears to be committed to the existence of algebraic irrationals without realizing 
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he is so committed, while his account of the concept of an irrational number is only able 

to provide a partial understanding of how any irrational number might qualify as 

homogeneous to unity. Even more intriguingly, Leibniz also appears to be committed to 

the existence of negative and complex numbers, despite his explicitly stated desire to 

exclude them from the class of numbers that he considers genuine. Finally, despite the 

difficulties involved in Leibniz's account of irrationals, negative numbers, and complex 

numbers, his general account of number appears to be consistent with his explicit 

rejection of infinite cardinals and infinitesimals -- even providing a way of understanding 

that rejection that is not advanced in the literature. 

I proceed as follows. In the next section, I outline the difficulties presented by 

Leibniz's uses of various terms that are now technical terms corresponding to different 

sorts of irrational number. In section 3, I argue that Leibniz is committed to the existence 

of algebraic irrationals, but that his conceptual account of irrational numbers in terms of 

infinite series ultimately falls short of demonstrating precisely how they count as 

homogeneous to unity. In section 4, I argue that Leibniz is also committed to the existence 

of negative and complex numbers, despite his statements to the contrary. In section 5, I 

argue that Leibniz's general account of number helps us make further sense of his 

rejection of infinite cardinals and infinitesimals. 

2. Different Kinds of Irrationals in Leibniz's Mathematical Writings 

Before attempting any reconstruction of Leibniz's views on irrational numbers, 

we must survey the various ways he treats them in his mathematical work. It turns out 
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that what Leibniz means by terms such as “surd” and “transcendental” remains unclear. 

Furthermore, Leibniz uses other terms to refer to what we now call irrational 

numbers -- terms whose meaning remains nearly opaque. 

In contemporary usage of the term “transcendental”, a transcendental number is a 

number that cannot be a root of any non-zero polynomial equation with rational 

coefficients. Leibniz appears to be aware of the difference between this kind of number 

and an irrational number that can be the root of such an equation: for example, Richard 

Arthur credits Leibniz with the discovery that pi is transcendental in the modern sense. 

But Leibniz also uses the word “transcendental” to refer to other mathematical concepts. 

For example, he uses it to refer to a difference between two kinds of equation or algebraic 

expression. It is not clear precisely what Leibniz has in mind here: for example, he writes 

that “the quadrature of the circle may require an expression of the kind I call 

‘transcendental’ (A.III.1.203), and that “I call those [equations] transcendental which 

transcend all algebraic degrees” (GM IV 26). In another text, he speaks of a “geometry 

of transcendentals”, which has to do with “the quadratures of figures” and “the discovery 

of centers of gravity” (GM VII 12); this usage has the sense of mathematical procedures 

that transcend or “go beyond” the existing Cartesian methods for dealing with curves and 

rectification, whose inadequacy provides much of the inspiration for Leibniz's invention 

of the differential and integral calculus. The term “transcendental” [transcendens] occurs 
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regularly when Leibniz refers to the sorts of curves and rectification procedures that his 

calculus can treat, which are left out of Descartes' Geometrie.12 

In other places, Leibniz explicitly refers to “transcendental quantities”, for 

example: “And transcendental quantities are granted, which I might call “more surd than 

surds” [surdis surdiores]” (GM VII 68). Leibniz seems to have in mind here certain 

expressions involving roots: in the New Essays, he distinguishes between “surd” and 

“super-surd”: surd numbers are “representable by means of an ordinary equation”, while 

“super-surd” numbers are only representable “by means of an extraordinary one which 

introduce[s] irrationals” or the unknown itself into the exponent” (RB 377). As Remnant 

and Bennett point out, Leibniz never makes himself entirely clear on what exactly 

distinguishes surd from “more-than-surd”/”super-surd”. Since he identifies “more-than-

surds” with “transcendental quantities”, one can say that he never ultimately clarifies the 

general difference between irrational and transcendental numbers on his view. Remnant 

and Bennett refer to a passage in GM IV, a letter to Wallis in which Leibniz introduces 

the phrase “geometrice-irrationalia” [geometrically irrational] and says the following 

about this category: 

I distinguish these from transcendentals, as genus from species. Thus I 
make two genera from these geometrice-irrationalia:: some are of a 
definite degree, but irrational, of which the exponent is a surd number, 
such as [the root-2th

 

root of the square root of 2], or the power of 2 whose 
exponent is (1/sqrt(2)); and I call these intercendentia, because their 
degree falls between rational degrees: but they should be able to be called, 
in a stricter sense, geometrically (or if you prefer, algebraically) irrational. 

                                                
12 One representative example of this phenomenon is the text that Gerhardt titles “Inventorium 
Mathematicum” (GM VII, 12-17) 
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The others are truly of an indefinite degree, such as x^y: and I call these 
transcendental more properly. (GM IV 27-28) 

Despite Leibniz's efforts to make distinctions among various kinds of irrational numbers 

in this passage, he ultimately renders his view of what constitutes a “transcendental 

quantity” even less clear, for he seems to identify them with expressions in which both 

base and exponent are variables. But it is unclear why such an expression need be treated 

as “of indefinite degree”: for example, if we substitute 2 for x, and 3 for y, we get 2^3, 

which is not of “indefinite degree” and in fact yields the integer 8. Furthermore, this 

passage seems in conflict with the one just cited from the New Essays, where Leibniz 

identifies a broader class of numbers to be called “super- surds”, namely those which 

either have an irrational number as exponent or have “the unknown itself” as exponent. 

In the letter to Wallis, he identifies only the latter as “super-surd”, assuming that “super-

surd” is synonymous with “transcendental”, which has just been shown. 

In the texts where Leibniz defines number -- surveyed in earlier chapters -- he 

does not mention any of the distinctions just described, but does use the terms “surd” and 

“transcendental”. He does adduce familiar examples of what we now call algebraic 

irrational and transcendental numbers, such as the square root of 2 (which is algebraic 

irrational) and pi (which is transcendental), but makes no effort to provide separate 

definitions for algebraic irrationals transcendentals. Furthermore, he does not even 

mention or any of the other sorts of numbers I have just surveyed. This leaves us puzzled 

at the outset when attempting to understand which sorts of irrationals Leibniz intends to 

admit, and to what extent his general account of number might allow him to admit them. 
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3. Leibniz on Algebraic and Other Irrationals 

Given the results of the previous chapters, it is fairly easy to see how the rational 

numbers count as real for Leibniz, and it is similarly easy to see how he understands them 

as homogeneous to unity. Integers and fractions, as we have seen, qualify as 

homogeneous to unity because they can be rendered similar to unity by a transformation. 

Crucially, Leibniz explicitly lists the kinds of operations that count as “transformations” 

that yield numbers in the following text: “Numbers are... generated by operations which 

are either synthetic (addition, multiplication, raising to a power) or analytic (subtraction, 

division, extraction of roots)” (GM VII 208). Along these lines, Leibniz provides a 

deceptively simple division of integers, fractions, and irrationals into separate instances 

of the general category of that which is homogeneous to unity: 

Number is that which is homogeneous to Unity, and so it can be compared 
with unity and added to or subtracted from it. And it is either an aggregate 
of unities, which is called an integer, like 2 (i.e. 1+1), likewise 3, 4 (i.e. 
2+1 or 1+1+1), or an aggregate of several parts of unity, which is called a 
fraction... [N]umber is in some way determined through a relation to unity, 
which relations can indeed be infinite, but they are most often found 
through roots... For example, let there be the number 4... there is sought 
its square root... that is, the number which multiplied by itself makes 4; 
this number will be 2, and so since 2x2... is 4, √4 is 2. And in this case the 
root can be reduced to a common, or rational, number. But sometimes this 
reduction does not succeed. For example, if a number is sought, which 
multiplied by itself makes 2, this is not an integer (for otherwise, since it 
is necessary that it be less than 2, it would be unity, and unity multiplied 
by itself makes 1); nor is it a fraction, since any fraction multiplied by 
itself produces some other fraction, as 3/2 produces 9/4, or 2 +1/4. (GM 
VII 31) 

Here, as we have seen previously, Leibniz defines the integers as aggregates of 

unities and fractions as aggregates of parts of unity. However, he also appears to define 

what are now called irrational numbers as those numbers which cannot be understood by 
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means of integers or fractions, though they are still “in some way determined through a 

relation to unity” -- though the precise extension of the class of numbers he intends to 

characterize this way shall remain unclear, given the results of the previous section. 

Before discussing the way in which irrational numbers are so determined, it is 

worth noting the general structure of Leibniz's definition of number. Leibniz takes two 

basic notions -- the notions of unity and homogeneity -- and uses them in a recursive way 

to define the three different kinds of positive real number. The integers are understood as 

those numbers which bear the most basic relation to unity: they are simply those numbers 

that are intelligible using unity and the operation of addition (such as how the number 5 

is intelligible as (1+1+1+1+1)). The notion of a fraction is built upon the notion of an 

integer: in characterizing a fraction in terms of a relation to unity, we first need to be able 

to conceive of unity as divided into an integral number of parts. For example, in order to 

render the fraction 3/5 intelligible in terms of some operation on unity, we first need to 

be able to divide unity into five parts, and then to add three of those parts together. Leibniz 

understands the integers in a way that resembles Euclid's conception, defining them as 

aggregates of unities; of course, the difference between Leibniz's conception and Euclid's 

is that Leibniz holds that aggregates of unities are only one kind of number, while Euclid 

holds that they are the only kind of number. On Leibniz's view, integers qualify as 

homogeneous to unity simply because they are understood as collections of unities, which 

are generated from unity by addition and can be turned back into unity by subtraction. 

Every integer is intelligible in terms of the question “how many ones?” -- for example, as 

noted above, the number 5 can be resolved into (1+1+1+1+1). Similarly, fractions qualify 
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as homogeneous to unity in a straightforward way. Generated from unity by division and 

addition, fractions are intelligible in terms of the question “how many equal parts of 

one?”: for example, the fraction 3/5 can be resolved into (1/5+1/5+1/5), and can be turned 

back into unity by further addition. 

Now, recalling Leibniz's remark that numbers are generated by operations 

including “raising to a power” and “extraction of roots”, it is noteworthy that he appears 

to be committed to the view that all algebraic irrational numbers count as numbers. These 

are irrational numbers which can be solutions to algebraic equations, and they include all 

of the irrational roots, such as Leibniz's own example of the square root of 2. Although 

he writes that the relation to unity through which an irrational number is determined “may 

be infinite”, his definition of number appears to entail that regardless of the exact nature 

of its relation to unity, any nth root counts as a number. This is best illustrated by example. 

Consider the square root of 2. This number is generated by one of Leibniz's listed 

operations: the extraction of a square root, performed on the number 2. If anything that 

can be generated by one of Leibniz's operations counts as a number, then we can see that 

any root counts as a number, rational or not. The square root of 3, which is also irrational, 

is generated by the same operation -- the extraction of a square root -- performed on the 

number 3. Crucially, Leibniz does not limit the scope of root extraction merely to the 

extraction of square roots: he only notes the extraction of roots in general. Thus, he is 

committed to the view that, for example, the cube root of 2 is a number, as it is generated 

from 2 by the operation of extracting the cube root. The upshot is that before Leibniz says 

anything specific about how irrational roots are understood in terms of unity, he is already 
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committed to the claim that these numbers exist, contrary to the received view of number 

that is undergoing challenge in the seventeenth century. 

However, there is a prima facie difference between rational numbers and 

irrational roots in terms of the relation of homogeneity they bear to unity. The number 2 

is understood as homogeneous to unity because it can be turned into the number 1 directly, 

by the operation of subtraction. The number 3/5 is so understood, again, because it can 

be turned into the number 1 directly, by the operations of addition or multiplication. 

Similarly, the numbers 2 and 3/5 can be generated from the number 1 by addition and 

division. But the square root of 2 -- or any other irrational root, square or not -- cannot be 

transformed into the number 1 by means of these arithmetical operations, and cannot be 

generated from the number 1 except by means of an infinite series that has the root as its 

sum. Nonetheless, Leibniz appears to hold that these count as numbers because they can 

be generated from rationals by the extraction of roots, even though they are not directly 

intelligible in terms of unity in the same way that rationals are. This suggests that Leibniz 

holds that homogeneity is transitive: if to be a number is to be homogeneous to unity, and 

irrational roots count as numbers even though they cannot be directly generated from or 

directly transformed into unity, then they must count as numbers because they are 

homogeneous to numbers that are directly generable from and transformable into unity. 

This, again, is best illustrated by example. The square root of 2 cannot be generated from 

unity except by means of an infinite series; but it can be generated from a number that is 

generable from unity by simple addition -- to wit, the number 2. The square root of 2, in 

other words, is homogeneous to 2, because it is generable from and transformable into 2, 
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by the extraction of roots and by squaring, respectively. And 2 is homogeneous to unity 

because it is generable from and transformable into unity by addition and subtraction, 

respectively. Leibniz cannot claim that the square root of 2 is homogeneous to unity in 

the same direct way as the number 2; but since he clearly holds that the square root of 2 

is a number, he must hold that homogeneity is transitive. 

In order to see that Leibniz must endorse the transitivity of homogeneity for his 

definition of number to countenance irrational roots, we can run the following argument. 

This argument will show that given Leibniz's definition of number, together with the 

assumption that homogeneity is transitive, the nth root of any integer is also a number. 

Here, “x” stands for an integer: 

(1) Something is a number if and only if it is homogeneous to unity 

(2) A is homogeneous to B if and only if A can be rendered similar to B by a 

transformation 

(3) If A is homogeneous to B, and B is homogeneous to C, then A is homogeneous 

to C 

(4) The nth root of x can be rendered similar to x by the operation of raising to the 

nth power 

(5) Therefore, the nth root of x is homogeneous to x 

(6) x can be rendered similar to unity by the operation of subtraction 

(7) Therefore, x is homogeneous to unity 

(8) Therefore, the nth root of x is homogeneous to unity Therefore, the nth root of x 

is a number 



89 

 

Thus, the nth root of any integer counts as a number on Leibniz's conception, but only on 

the assumption that homogeneity is transitive. 

Despite Leibniz's commitment to the existence of algebraic irrationals, he is 

unable to give a fully fleshed-out account of how any irrational number might be 

intelligible in terms of homogeneity to unity. It is one thing for him to be able to claim, 

given his definition, that a given kind of irrational number should be subsumed under his 

general account; it is quite another for him to specify what it means, precisely, to say that 

they are homogeneous to unity, beyond simply formulating a definition which entails that 

they are. In a passage quoted above, Leibniz makes the tantalizing remark that irrational 

numbers are determined through relations to unity that “may be infinite”. One may be 

inclined to interpret this remark through the lens of contemporary mathematics, in which 

every irrational number is the sum of an infinite series. Unfortunately, in the vast volumes 

of Leibniz's work on infinite series, he appears only to even begin carrying out this kind 

of analysis of irrational numbers in one case: that of pi, which is transcendental, rather 

than algebraic. Nonetheless, it is worth examining this case in tandem with other evidence 

in attempting to determine how sophisticated Leibniz's understanding of irrational 

numbers might be. 

At the outset, it is worth noting that pi is not among the numbers whose existence 

is entailed by Leibniz's definition of number together with the assumption that 

homogeneity is transitive. Pi is not generable from any number via any of the operations 

Leibniz lists; as a transcendental number, pi is not the solution to any algebraic equation. 

Nonetheless, pi represents the case in which Leibniz gives his clearest direct expression 
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of an irrational number via an infinite series. In particular, Leibniz is noted for discovering 

an infinite series whose sum is pi/4 -- the so-called “Leibniz Series”. For Leibniz, this 

number bears an “infinite” relation to unity in the sense that it is only expressible in terms 

of unity as the sum of an infinite series of rational numbers: (1 -- 1/3 + 1/5 -- 1/7 + 1/9...). 

In this series, pi/4 is generated from 1, and so is understood in terms of unity, in the sense 

that it is the sum of an infinite series of rational numbers beginning with 1. 

Interestingly, Leibniz appears to have a similar conception of the way in which 

the square root of 2 is related to unity, though he expresses it less directly. In the course 

of discussing the relation between the diagonal of a square and the side, where the side is 

stipulated to be of length 1, Leibniz writes: “since therefore we have defined number as 

that which is homogeneous to unity, and indeed there must be some number, of which 

this [i.e. the diagonal] is the relation to unity... there must be a number by which the 

quantity of [the diagonal] itself is expressed, which is said to be √2”. Just as pi is the 

number that expresses the relation between a circle’s circumference and its diameter, 

where the diameter is 1, the square root of 2 is the number that expresses the relation 

between a square's diagonal and its side, where the side is length 1. In both of these cases, 

just as the diagonal is incommensurable with the side, and the circumference with the 

diameter, the numbers that express the diagonal and the side are incommensurable with 

1, in the sense that they cannot be generated from 1 by any finite sum of rational numbers. 

What is particularly suggestive about these cases is that Leibniz actually defines irrational 

numbers in general -- without restricting himself to any specific examples -- as those 

numbers that are “incommensurable with unity” (GM VII 73; A.VI.4.419). In turn, 
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Leibniz appears to hold that “incommensurable with X” just means “only expressible in 

terms of X by means of an infinite series”. He writes: 

Proportion is containment of a smaller quantity in a larger or of an equal 
in an equal. It is shown by displaying the relation of the numbers through 
the analysis of both terms into common quantities. This analysis is either 
finite or infinite. If it is finite, it is said to be the discovery of a common 
measure or a commensuration; and the proportion is expressible, for it is 
reduced to congruence with respect to the same repeated measure... But if 
the analysis proceeds to infinity and never attains completion then the 
proportion is unexpressible, one which has an infinite number of quotients, 
but in such a way that there is always something that remains, a new 
remainder that furnishes a new quotient. Moreover, the analysis continued 
yields an infinite series... (AG 98-99/C 1-2) 

Here, Leibniz suggests that he understands incommensurability in terms of 

infinite series. In turn, if he defines irrational numbers as those numbers which are 

incommensurable with unity, then it is reasonable to believe that he understands these 

numbers as intelligible in terms of unity only by means of infinite series. However, as I 

have noted, Leibniz does not explicitly provide infinite series for irrational numbers other 

than pi in his mathematical writings. Thus, although there is some evidence to suggest 

that he understands other irrational numbers in terms of unity in the way that he 

understands pi, it is not possible to establish for certain that Leibniz has more than a 

general conception of irrationals as related to unity by means of infinite series, rather than 

a sophisticated account of how to analyze particular irrational numbers by means of 

infinite series of rationals. 

Ultimately, on Leibniz's view, it appears that irrational numbers -- both those that 

we now call algebraic and those that we now call transcendental -- are supposed to qualify 

as homogeneous to unity even though the way they are related to unity is “infinite,” 



92 

 

suggesting a conception of irrational numbers on which they qualify as homogeneous to 

unity by way of some sort of infinite process. However, Leibniz lacks the technical tools 

to give a mathematically acceptable account of what that infinite process involves. 

Nonetheless, it is worth exploring the extent to which Leibniz does provide a conceptual 

account of what we now call irrational numbers in these terms. 

First, it is worth exploring exactly why irrationals cannot be understood in terms 

of unity by means of a finite process in Leibnizian terms. They cannot be so understood 

because they do not qualify as expressing proper aggregates, given Leibniz's conception 

of the latter. In the previous chapter, it was established that Leibniz conceives of the 

rational numbers as relations that unite the constituents of actual or possible aggregates 

insofar as the latter are composed of unities or parts of unity, where these relations express 

the wholeness and size of those aggregates by answering the question “how many?”. 

Positive integers express the wholeness and size of aggregates of unities; fractions 

express the wholeness and size of aggregates of parts of unity, where parts of unity are 

specified relative to a chosen unit object. Prima facie, a problem arises for Leibniz in 

subsuming irrational numbers under this analysis. The aggregates, actual or possible, that 

are united by rational numbers are all finite: every positive integer and fraction expresses 

the size of an aggregate whose constituents can be finitely enumerated. But it is the 

defining characteristic of irrational numbers that they cannot do this. Irrational numbers 

cannot be resolved into any finite combination of operations on rational numbers. 

For Leibniz, the foregoing amounts to the claim that irrational numbers cannot be 

relations that express aggregates, since he repeatedly denies that there are any infinite 
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aggregates. The aggregate expressed by an infinite series would presumably be infinite, 

and so it would fail to be a genuine aggregate. Leibniz writes that “an infinity of things is 

not one whole, i.e... there is no aggregate of them” (A.VI.3.504/LOC 101). He rejects 

infinite aggregates for the specific reason that they violate the part-whole axiom. There 

are several instances of this line of argument Leibniz's corpus. One particularly lucid 

example is the following: 

[I]f the infinite number of all unities, or what is the same thing, the infinite 
number of all numbers, is a whole, it will follow that one of its parts is 
equal to it; which is absurd. I will show the force of this consequence as 
follows. The number of all square numbers is a part of the number of all 
numbers: but any number is the root of some square number, for if it is 
multiplied into itself, it makes a square number. But the same number 
cannot be the root of different squares, nor can the same square have 
different roots. Therefore there are as many numbers as there are square 
numbers, that is, the number of numbers is equal to the number of squares, 
the whole to the part, which is absurd. (A.VI.3.98/LOC 13) 

Another instance worth noting occurs in Leibniz's 1672 notes on Galileo's Two New 

Sciences: 

[Galileo] thinks that one infinity is not only not greater than another 
infinity, but not greater than a finite quantity. And the demonstration is 
worth noting: Among numbers there  are infinite roots, infinite squares, 
infinite cubes. Moreover, there are as many roots as numbers. And there 
are as many squares as roots. Therefore there are as many squares as 
numbers, that is to say, there are as many square numbers as there are 
numbers in the universe. Which is impossible. Hence it follows either that 
in the infinite the whole is not greater than the part, which is the opinion 
of Galileo... and which I cannot accept; or that infinity itself is nothing, 
i.e. that it is not one and not a whole. (A.VI.3.168/LOC 9) 

Leibniz points out that if a number expresses how many positive integers there are, that 

same number will express how many squares there are -- in modern terms, the set of all 

positive integers is equinumerous with one of its proper subsets, a violation of the axiom 
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that the part is smaller than the whole. For Leibniz, working before set theory, such a 

conclusion is absurd, implying the incoherence of supposing that there is a number of all 

positive integers. But the violation of the part-whole axiom applies to infinite aggregates 

in a general sense: infinite aggregates cannot be genuine wholes because they are 

equinumerous with some of their proper parts. 

Given Leibniz's denial of infinite aggregates, one would not be out of line in 

objecting that he cannot subsume irrational numbers under his account precisely because 

accommodating irrational numbers would require him to accept the infinite aggregates 

that they express: namely, those that correspond to infinite series. However, even though 

irrational numbers do not express aggregates, Leibniz still appears to conceive of them as 

intelligible in terms of unity: specifically, they are so intelligible by means of infinite 

series of rational numbers. For Leibniz, an infinite series provides us with an intelligible 

conception of an irrational number in the same way that, for example, the finite series 

(1+1+1+1+1) gives us an intelligible conception of the number 5. In both cases, we 

understand the number in terms of some operation on unity. What Leibniz seems to have 

in mind is an account of how irrational numbers are generated from unity using a series 

of transformations -- indeed, an infinite process involving adding together rational 

numbers according to a rule. Ultimately, irrationals qualify as homogeneous to unity for 

Leibniz because they come from unity by means of an intelligible infinite process. 

Unfortunately, as I show presently, Leibniz cannot give a satisfactory account of the 

precise nature of that infinite process. At this point, it must be noted that certain features 

of Leibniz's philosophy of mathematics initially cast doubt on any interpretation of his 
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view of irrational numbers that invokes infinite series. My suggestion that Leibniz 

conceives of irrational numbers in terms of infinite series must be squared with a view 

that he appears to hold about infinite series themselves. Squaring his conception of 

irrationals with his view of infinite series will further illuminate the former. 

The first step in reconciling these views will be to present Leibniz's apparent 

conception of infinite series and their sums. A representative example of his apparent 

view of infinite series occurs in a discussion of the series whose sum is pi/4. Here, he 

writes: 

We must still investigate whether... the square is to the circle as 1 to 1/1 - 
⅓ + ⅕ - 1/7 +1 / 9 - 1/11 +.... For when we say ‘etc.’, ‘...’, or ‘to infinity’, 
the last number is not really understood to be the greatest of the numbers, 
for there isn’t one, but it is still understood to be infinite. But seeing as the 
series is not bounded, how can this be the case? For something must be 
added, even if it is assumed to be an infinite number, so that it must be 
said that this is not rigorously true. And seeing as the circle is nothing, this 
series will of course also be nothing (A.VI.3.502/LOC 97). 

Leibniz here asks what it means to say that an infinite series -- in particular, the kind of 

series we understand as summing to an irrational number -- goes “to infinity.” Levey 

helpfully elaborates on the question Leibniz grapples with. Leibniz, Levey writes, 

recognizes that 

'something must be added' to the infinite series in order to calculate its 
sum. That 'something' does not in fact occur in the series. The 
mathematical conception of the infinite series smuggles in a fictional 
terminus under its interpretation of the rider 'etc.' or 'to infinity'... Since 
that series does not in fact contain a last term, the proposition involving 
its measured form engages directly (if tacitly) in a fiction, and so must be 
said not to be rigorously true” (1998, 80). 
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Leibniz thus raises the question: what does it mean to say that an infinite series -- in 

particular, the kind of series we understand as convergent upon a real number -- goes “to 

infinity”? His remark about the circle at the end of this passage connects the question 

with a view that lies at the heart of Leibniz's calculus. Richard Arthur explains the link 

by way of a passage from De Quadratura Arithmetica: 

This conclusion, that there is no last number in an infinite series, not even 
an infinite one, is very much in keeping with the new interpretation of the 
calculus that Leibniz develops... In his first comprehensive treatise on the 
calculus, written between the fall of 1675 and the summer of 1676, Leibniz 
writes that his readers 'will sense how much the field has been opened up 
when they correctly perceive this one thing, that every curvilinear figure 
is nothing but a polygon with an infinite number of sides, of an infinitely 
small magnitude'” (LOC lv) 

The passage that Arthur quotes occurs in the context of a scholium in which Leibniz 

reflects on “what we have said thus far about infinities and infinitely small things” 

(A.VII.6.585), referring to the subject of the treatise -- the approximation of a circle by 

polygons with increasing numbers of sides. In the course of these reflections, Leibniz 

explicitly states that “it does not matter whether these quantities might exist in the nature 

of things, for it is sufficient that they be introduced by means of a fiction” (ibid). For 

Leibniz, both the infinitely-sided polygon and the sum of an infinite series are fictions or 

fictitious entities. In “Infinite Numbers”, he says this about the circle: 

The circle -- as a polygon greater than any assignable, as if that were 
possible -- is a fictive entity, and so are other things of that kind. So when 
something is said about the circle we understand it to be true of any 
polygon such that there is some polygon in which the error is less than any 
assigned amount a, and another polygon in which the error is less than any 
other definite assigned amount b. However, there will not be a polygon in 
which this error is less than all assignable amounts a and b at once, even 
if it can be said that polygons somehow approach such an entity in 
order. And so if certain polygons are able to increase according to some 
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law, and something is true of them the more they increase, our mind 
imagines some ultimate polygon; and whatever it sees becoming more and 
more so in the individual polygons, it declares to be perfectly so in this 
ultimate one. And even though this ultimate polygon does not exist in the 
nature of things, one can still give an expression for it, for the sake of 
abbreviation of expressions. (A.VI.3.498/LOC 89, emphasis mine) 

“Other things of that kind” include the limit of an infinite series of numbers. Indeed, for 

Leibniz, the issues described in this passage arise whenever one seeks to expound an 

irrational ratio by means of a series. He notes the same issue for the numerical expression 

of the ratio between a square and its diagonal in the same text: “Diagonal to square is a 

certain ratio, since the diagonal is a line, a real quantity, and the side is too. If this is to 

be expounded by means of numbers, there will also be a need for infinite 

numbers -- indeed, for all numbers in general. But to say all numbers is to say nothing; 

and for this reason this ratio also means nothing, unless it is something as close as 

desired” (A.VI.3.502-503/LOC 99, emphasis mine). 

Leibniz's talk of the circle as a kind of “ideal limit” -- to use Arthur's term -- of a 

series of polygons with ever more sides is directly analogous to talk of a given number as 

an ideal limit of a series of ever-diminishing numbers. Leibniz's gloss of the meaning of 

talk of the circle, as being elliptical for talk of polygons in which the error is less than any 

assigned amount, also parallels his gloss of the meaning of talk about the properties of 

infinite series, as Arthur notes. The latter gloss can also be found in “Infinite Numbers”: 

“Whenever it is said that a certain infinite series has a sum, I am of the opinion that all 

that is being said is that any finite series with the same rule has a sum, and that the error 

always diminishes as the series increases, so that it becomes as small as we would like” 

(A.VI.3.503/LOC 99). 
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Thus, it initially appears that for Leibniz, the sum of an infinite series is fraught 

with such conceptual difficulty that he is forced to claim that it can only be understood as 

something ideal, which the mind conceives by extrapolating from features of the series. 

So the convergent series that one might think exhibit irrational numbers face the problem 

of explaining what it means to say that they have a sum -- to say, in other words, that they 

are infinite but somehow bounded or limited. Without an answer to this question, 

Leibniz's intention to confer the status of real numbers upon irrationals appears to be 

incoherent, as irrationals just are such sums. Thus, an objection to my interpretation might 

be put as follows: Leibniz cannot maintain both that irrational numbers are to be 

understood as sums of infinite series and that such numbers exist, as he appears to hold 

that the sums of infinite series do not exist. 

Ultimately, however, it turns out that Leibniz's considered view of infinite series 

yields both a coherent interpretation of his view that at least some irrational numbers are 

intelligible in terms of a relation to unity, and a direct illustration of the limitations of that 

view. At the very least, if Leibniz does understand irrationals in terms of unity by means 

of infinite series, he is not inconsistent in doing so. First, consider again a passage just 

cited: “Whenever it is said that a certain infinite series has a sum, I am of the opinion that 

all that is being said is that any finite series with the same rule has a sum, and that the 

error always diminishes as the series increases, so that it becomes as small as we would 

like” (A.VI.3.503/LOC 99). The fact that the finite series, and the terms therein, are 

generated by the same “rule” is what guarantees that the infinite series with the same rule 

will have a sum, despite the fact that the series “goes to infinity.” Indeed, Leibniz actually 
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appears to reject the notion that an infinite series gets its sum by means of an infinitieth 

term. The idea that infinite series operate according to a rule is crucial for Leibniz; this 

guarantees that infinite series are conceivable to the human mind despite the fact that, 

strictly speaking, they go on without end, lacking a final term. 

Leibniz encapsulates his view that infinite series are intelligible despite “going to 

infinity” in his Principle of Continuity. He formulates the principle differently in different 

texts, but the version that is relevant here can be found in a text on the calculus. There, 

Leibniz advances the following proposition: 

Proposito quocunque transitu continuo in aliquem terminum desinente, 
liceat ratiocinationem communem instituere, qua ultimus terminus 
comprehendatur. (In any proposed continuous transition ending in some 
terminus, it should be permissible to institute a common reasoning, in 
which the final terminus may also be included.) (HODC 40) 

Shortly after this, Leibniz adduces as an example the consideration of a parabola as an 

ellipse that is stretched out to the extent that one of its foci “vanishes or becomes 

impossible” (“evanescat seu fiat impossibilis”) (41). In this case, he says, “it is 

permissible, from our postulate, to include the parabola with the ellipse in one reasoning” 

(41). This is, presumably, structurally similar to considering the circle “in the same 

reasoning” with a polygon whose number of sides is continually increased, and similar to 

considering the sum of an infinite series “in the same reasoning” with the terms that add 

up to it. Later in the text, Leibniz indirectly implies that the consideration of the circle as 

the limit of a sequence of polygons with increasing numbers of sides is an example of his 

principle at work (42). These are far from unintelligible or empty notions, and the mind 

employs them in order to conceptualize the “end” of infinite processes that gradually 
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converge upon a terminus in accordance with some intelligible principle. Leibniz 

elaborates on these points in another text on the calculus: 

[W]hat I call the law of continuity... has long served me as a principle of 
discovery... Some years ago I published an example of this in the 
Nouvelles de le republique des lettres, in which I take equality as a 
particular case of inequality, rest as a special case of motion , parallelism 
as a case of convergence, etc... Although it is not at all rigorously true that 
rest is a kind of motion or that equality is a kind of inequality, any more 
than it is true that a circle is a kind of regular polygon, it can be said, 
nevertheless, that rest, equality, and the circle terminate the motions, the 
inequalities, and the regular polygons which arrive at them by a 
continuous change and vanish in them. And although these terminations 
are excluded, that is, are not included in any rigorous sense in the variables 
which they limit, they nevertheless have the same properties as if they 
were included in the series, in accordance with the language of infinities 
and infinitesimals, which takes the circle, for example, as a regular polygon 
with an infinite number of sides. Otherwise the law of continuity would be 
violated, namely, that since we can move from polygons to a circle by a 
continuous change and without making a leap, it is also necessary not to 
make a leap in passing from the properties of a polygon to those of a circle. 
(GP IV 106/L 546) 

According to this principle, then, we may take the sum of an infinite series -- the 

“final terminus” of the series -- because we do so “in the same reasoning” with which we 

take the terms that add up to it. The human mind, Leibniz appears to think, is able to 

understand the sum of an infinite series because it understands the intelligible rule that 

generates all of the terms in the series. Leibniz does not actually hold that the sum of an 

infinite series expresses the value of a completed infinite collection with a final term; 

indeed, the point of his Principle of Continuity is to say that the addition of a final term 

(which would produce a completed infinite collection) is not required for the 

understanding of the series' sum. Rather than “going to infinity” in the sense of having an 

infinite number of terms, the series “goes to infinity” in the sense that despite lacking an 
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infinitieth term, it has a sum that can be determined via the rule of the series. Each term 

is generated by the same rule, and the difference between them diminishes arbitrarily as 

the series grows. The sum of the whole series, rather than being the result of adding an 

infinitieth term, is simply the value extrapolated from the diminishing differences 

between the terms. In contrast to the view Leibniz initially appears to hold, the sum of an 

infinite series has a perfectly intelligible status in his philosophy of mathematics, and 

does not undermine his inclusion of irrationals in the pantheon of conceptually coherent, 

genuine numbers. Thus, to whatever extent he does understand irrationals in terms of 

infinite series, his understanding is consistent with his considered view of the conceptual 

status of such series. 

Ultimately, however, Leibniz's account of infinite series in terms of the Principle 

of Continuity illustrates how limited his account of irrational numbers turns out to be. 

First, Leibniz lacks a rigorous account of how infinite series might have sums. Despite 

giving primacy to the notion of a rule in his Principle of Continuity, Leibniz never 

provides a method of determining how any given irrational number might be generated 

from unity by means of a rule. Though he appears to understand at least some irrational 

numbers (though it is worth stressing again the unclarity of exactly which irrationals 

Leibniz intends to accommodate) as sums of infinite series of rationals, he lacks anything 

resembling a rule for taking such sums. His Principle of Continuity operates at a merely 

conceptual level, and appears to be intended to elucidate the conceptual coherence of 

whichever irrational numbers Leibniz wants to subsume under his general account of 

number. But a rigorous mathematical procedure it is not, and so Leibniz's understanding 
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of irrationals as homogeneous to unity lacks the transparency -- and the applicability to 

entire classes of numbers -- that his understanding of rationals possesses. It is clear, on 

Leibniz's account of rational numbers, how to generate any given rational number from 

unity; it remains opaque, given Leibniz's Principle of Continuity, how to generate any 

given irrational number from unity. 

4. Leibniz on Negative and Complex Numbers 

It is difficult to understand Leibniz's position on negative and complex numbers, 

both in light of his general conception of number and independently of it. First, Leibniz 

clearly intends to reject negative numbers. When he writes about them, he often shifts 

between talk of quantity and talk of number, but it is clear enough that he wishes to deny 

the legitimacy of both negative quantities and the numbers that would express them. In 

one typical text, he writes that “negative quantities, where a greater is to be subtracted 

from a lesser, often arise in calculation”, indicating that “the question has been conceived 

badly” (GM VII 70). Presumably, this amounts to an outright rejection of the legitimacy 

of negative quantities and the numbers that express them “in calculation”. It is easy 

enough to see why Leibniz wants to reject negative quantities. Recall Leibniz's definition 

of quantity as that which can be understood in terms of a number of parts: a quantity that 

is less than nothing, if it can be understood at all, certainly cannot be understood as 

collection of parts. If it could be so understood -- if it could be divided up into a collection 

of parts in accordance with a unit of measurement -- then it would have to have positive 

size, and would not be less than nothing after all. As the very notion of a negative quantity 
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is incoherent, negative quantities cannot be real quantities, and when they appear to arise 

in calculation, as Leibniz says, they are mere indications that something has gone wrong. 

At this point, one might think that Leibniz rejects negative numbers because such 

numbers purport to express incoherent quantities. But as we have seen, Leibniz defines 

number independently of quantity: he holds that number is conceptually prior to quantity, 

and provides a definition of number that does not make the reality of any number 

dependent on the ability to express a quantity. It is interesting to note, then, that Leibniz's 

definition of number seems to fail to rule out negative numbers, even if negative 

quantities are incoherent. In fact, the definition seems to commit Leibniz to the 

acceptance of negative numbers. This is best illustrated by example: at a first pass, it 

seems that the number -3 qualifies as homogeneous to unity, as it can be rendered back 

into unity by adding 4. The same applies to any negative number, since there is always a 

way to get back to the number 1 by addition. Negative numbers, as Leibniz would say, 

can be compared with unity and added to or subtracted from it. Thus, it seems that 

Leibniz's definition of number by itself cannot straightforwardly rule out negative 

numbers as real, despite Leibniz's clear desire to do so -- indeed, it seems that Leibniz's 

definition should commit him to the view that negative numbers are real. 

Leibniz's treatment of the imaginary root and complex numbers is even more 

difficult to square with his general definition of number. First, Leibniz often runs together 

his treatment of the imaginary root in itself, on the one hand, and his treatment of complex 

numbers that involve a real part. Additionally, as he does for negative numbers, he often 

shifts between talk of quantity and talk of number. In discussing these “impossible or 
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imaginary quantities”, whose “nature is amazing” (GM VII 73), he writes: “[F]or although 

they themselves signify something impossible in itself... but they also, with the assistance 

of themselves, can be expressed by real quantities” (ibid). A few lines later in the same 

text, he writes that expressions such as sqrt(-1) “have this miraculous thing: that in 

calculation, they involve nothing of the absurd or contradictory, and nevertheless they 

cannot be exhibited in the nature of things or concretely” (ibid). In another text, adducing 

examples of the utility of imaginary roots, Leibniz writes: 

Even though these are called imaginary, they continue to be useful and 
even necessary in expressing real magnitudes analytically. For example, it 
is impossible to express the analytic value of a straight line necessary to 
trisect a given angle without the aid of imaginaries... Furthermore, 
imaginary roots likewise have a real foundation. So when I told the late 
Mr. Huygens that sqrt(1+sqrt(-3)) -- sqrt(1-sqrt(-3)) = sqrt(6), he found 
this so remarkable that he replied that there is something incomprehensible 
to us in the matter. (L 544/GM IV 93) 

In these texts, Leibniz is unclear about the status of imaginary roots, complex 

numbers, and the quantities that may or may not be expressed by them. Indeed, at first 

glance, he appears to lean toward admitting both the imaginary root and complex numbers 

as real. He writes that not only are roots of negative numbers indispensable for expressing 

certain mathematical objects when used in tandem with real numbers, but these roots 

themselves also have a “real foundation”, as evidenced by the fact that computations 

involving imaginary roots sometimes yield a real number. Leibniz adduces as an example 

of the latter phenomenon the operation sqrt(1+sqrt(-3)) -- sqrt(1-sqrt(-3)), which is equal 

to sqrt(6). Another example of the “real foundation” of imaginary numbers is found in 

Leibniz's claim that sqrt(-2) is equal to “sqrt(2) multiplied by sqrt(-1)” (GM VII 73); here 

is a case in which the square root of a negative number is generated by an operation 
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involving the square root of a positive number. More precisely, this is a case in which a 

calculation yields the square root of a negative number by an operation involving the 

square root of a positive number. Finally, unlike in the cases canvassed in the previous 

section, Leibniz claims that imaginary roots “involve nothing of the absurd or 

contradictory”. For the reasons explored above, Leibniz seems to hold that infinite 

cardinals and infinitesimals both involve absurdities, and are fictitious; but he states the 

opposite about imaginary roots. 

Prima facie, it would be strange for Leibniz to want to admit imaginary roots as 

real given his desire to exclude negative numbers: if imaginary roots are the square roots 

of negative numbers, and negative numbers are not real numbers, then how could Leibniz 

consistently maintain that imaginary numbers do not themselves fail to exist? Put more 

simply, if negative numbers do not exist, then how can their square roots not also fail to 

exist? However, as was the case with negative numbers, Leibniz's intentions may not line 

up with the implications of his own definition of number. Recall that Leibniz's desire to 

reject negative numbers is not straightforwardly supported by his definition of number, 

and so a rejection of imaginary roots that follows from a rejection of negative numbers 

fails to be supported in the same way. Indeed, if Leibniz's definition of number actually 

commits him to an acceptance of negative numbers as real -- given their apparent 

homogeneity to unity -- then this definition might also commit him to an acceptance of 

complex numbers as real. For example, if -2 counts as a number on Leibniz's conception 

because it can be turned into unity by addition, then why would its square root not also 

count as a number? Given that Leibniz's definition of number seems to commit him to 
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the reality of negative numbers, I suggest that it is not implausible to think that the 

definition might also commit him to the reality of complex numbers. 

Furthermore, if Leibniz is committed to the reality of negative numbers and to the 

transitivity of homogeneity -- which I have argued that he is -- then it may be possible to 

demonstrate rigorously that he is committed to the reality of complex numbers. This can 

be done via an argument analogous to the argument similar to that which demonstrated 

his commitment to the reality of algebraic irrationals. The argument proceeds as follows, 

where x again stands for a positive integer: 

(1) Something is a number if and only if it is homogeneous to unity 

(2) A is homogeneous to B if and only if A can be rendered similar to B by a 

transformation 

(3) If A is homogeneous to B, and B is homogeneous to C, then A is homogeneous 

to C 

(4) The nth root of -x can be rendered similar to x by the operation of raising to the 

nth power 

(5) Therefore, the nth root of -x is homogeneous to -x 

(6) -x can be rendered similar to unity by the operation of addition 

(7) Therefore, -x is homogeneous to unity 

(8) Therefore, the nth root of -x is homogeneous to unity Therefore, the nth root of -

x is a number 

Thus, if Leibniz endorses the transitivity of homogeneity (which I argued earlier that there 

is good reason to think he does), then he is apparently committed to the reality of the roots 
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of negative numbers. This is, again, despite his repeated remarks to the effect that such 

numbers at least cannot be fully real, and despite his repeated remarks that negative 

numbers themselves are completely unreal. 

5. Leibniz's Account of Number and his Rejection of Infinite Cardinals and 
Infinitesimals 

By way of concluding the main body of this chapter, I now investigate what 

bearing Leibniz's account of number might have on his views of infinite cardinals and 

infinitesimals. Leibniz's views on these are well-known: in short, he rejects infinite 

cardinal numbers and infinitesimals. These purported numbers, for Leibniz, are not 

numbers at all. But it is worth exploring his rejection of these numbers from the point of 

view of the general account of number that has been reconstructed on his behalf. 

First, as we have seen, Leibniz rejects infinite aggregates and the numbers that 

purport to express them -- in modern terms, he rejects infinite cardinal numbers -- because 

these entities violate the part-whole axiom, in the sense that they are as large as at least 

one of their proper parts13. Leibniz's rejection of infinite cardinals is consistent with his 

definition of number as that which is homogeneous to unity. An infinite cardinal 

straightforwardly fails to satisfy this definition: an infinite cardinal is not in any way 

intelligible in terms of unity. Whereas an irrational number, in Leibniz's account, is at 

least supposed to be related to unity as the sum of an infinite series of rational numbers 

(though as we have seen, Leibniz only provides a rudimentary account of how this might 

                                                
13 A selection of texts where Leibniz makes this argument, along with helpful commentary, is found in 
LOC 
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actually work), in the case of an infinite cardinal, there is only a series that fails to have 

a sum. Leibniz's series for pi/4 sums to pi/4; the series (1+1+1+1+1+1....), which Leibniz 

thinks of as representing the first infinite cardinal, merely increases without end. This is 

the crucial conceptual difference, for Leibniz between an infinite cardinal and an 

irrational number. An irrational number can be understood in terms of unity for Leibniz 

because it is generated from unity by an intelligible process whose “terminus” is 

conceivable to the human mind. This does not appear to be the case for an infinite 

cardinal, which is not a completed whole because the infinite series of unities composing 

it has no sum. It is merely the notion of the ceaseless iteration of unities, and fails to 

qualify as a number on Leibniz's view. 

Leibniz's rejection of infinitesimals is also well-known and is also consistent with 

the definition of number explored in this chapter. The standard interpretation of Leibniz's 

view is that he denies actual infinitesimals and adopts the language of infinitesimals as a 

useful fiction for the purpose of problems that require the differential calculus14. Talk of 

infinitesimals, for Leibniz, is elliptical for talk of quantities that we can take as small as 

we like while yielding the same results in calculations. Accordingly, talk of any purported 

“number” that would express such a quantity is similarly elliptical. Passages such as these 

are taken to support this interpretation: 

It will be sufficient if, when we speak of... infinitely small quantities... it 
is understood that we mean quantities that are... indefinitely small, i.e... as 
small as you please, so that the error that any one may assign may be less 
than a certain assigned quantity. Also, since in general it will appear that, 
when any small error is assigned, it can be shown that it should be less, it 

                                                
14 This interpretation is articulated by a wide variety of authors; see e.g..Bos (1974); Ishiguro (1990); the 
chapters collected in Goldenbaum and Jesseph (2008); Mancosu (1996); and Knobloch (2002). 
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follows that the error is absolutely nothing; an almost exactly similar kind 
of argument is used in different placed by Euclid, Theodosius and others... 
[I]t will be sufficient simply to make use of [infinitely small quantities] as 
a tool that has advantages for the purpose of calculation, just as the 
algebraists retain imaginary roots with great profit. (HODC xx) 

But at the same time we must consider that these incomparable magnitudes 
themselves, a s commonly understood, are not at all fixed or determined 
but can be taken to be as small as we wish in our geometrical reasoning 
and so have the effect of the infinitely small in the rigorous sense. If any 
opponent tries to contradict this proposition, it follows from our calculus 
that the error will be less than any possible assignable error, since it is in 
our power to make this incomparably small magnitude small enough for 
this purpose, inasmuch as we can always take a magnitude as small as we 
wish... [E]ven if someone refuses to admit infinite and infinitesimal lines 
in a rigorous metaphysical sense and as real things, he can still use them 
with confidence as ideal concepts which shorten his reasoning... (L 
543/GP IV 92) 

Leibniz thus appears to hold that talk of infinitesimals is simply a convenient way of 

expressing that we can take a given quantity as small as we wish during the course of a 

calculation, rather than denoting quantities that are actually infinitely small. 

Just as for infinite cardinals, it is difficult to see how an infinitely small number 

could be the sort of thing that is homogeneous to unity. In the case of a number that is 

finitely small -- 3/100,000,000, say -- we have an aggregate of parts of unity, as Leibniz 

defines fractions. No matter how small a fraction one proposes, we still have something 

that is understood in terms of unity and can be rendered back into unity by means of the 

requisite addition. We have, as Leibniz would once again say, something that is 

comparable to unity and can be added to or subtracted from it. By contrast, a purported 

number that is actually infinitely small, rather than a number that is taken as small as 

needed for the purpose of some calculation, seems by definition to fail to be 

comprehensible in terms of unity. Presumably, the concept of an infinitely small number 
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includes the key feature that the number is not expressible by means of any positive real 

number, no matter how small; if it is not so expressible, then it would seem to fail to be 

comprehensible in terms of unity, as what makes the positive real numbers what they are 

is their intelligibility in terms of unity. Another way of putting the point is to ask: by what 

sort of transformation is an actually infinitely small number related to unity, by means of 

which it might be rendered back into unity? If such a number is smaller than any positive 

real number, and the common feature of all real numbers is that they are transformable 

into unity, then it seems unlikely that any satisfactory answer will be forthcoming. 
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Chapter 5: Leibniz's Mathematical Epistemology 

1. Introduction 

Until now, this work has not been primarily concerned with epistemology. I have 

been mostly concerned with the conceptual details of Leibniz's account of number, the 

ontological implications thereof, and the precise extension of the class of numbers 

Leibniz might be able to subsume therein. The question of how Leibniz thinks we acquire 

knowledge of numbers -- or of mathematics and its objects in general -- has not been my 

focus. The goal of this chapter is to outline an epistemology of mathematics on Leibniz's 

behalf, with a particular focus on number -- though toward the end of the chapter, I 

suggest that Leibniz is committed to a deep epistemological contrast between arithmetic 

and geometry. 

This chapter proceeds in the following way. I first treat Leibniz's general 

epistemology, arguing that it is broadly Platonistic, and that its Platonistic character 

extends to our knowledge of mathematics in general and number in particular. I then shift 

my focus to a pervasive misunderstanding in Leibniz scholarship: the view that the 

imagination has an essential role to play in mathematical -- particularly 

arithmetical -- cognition. Correcting this misunderstanding requires three steps. First, it 

is necessary to understand what the imagination is according to Leibniz. Second, it is 

necessary to understand why scholars have thought that Leibniz's epistemology of 

mathematics gives a primary role to the imagination in mathematical cognition. Finally, 

with this exposition in place, I will be in a position to argue that this view misrepresents 
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Leibniz's epistemological views with respect to mathematics, and that Leibniz is not 

committed to certain ontological claims that he would be committed to if this 

interpretation were accurate. The overarching aim of this chapter is to dispense with this 

view in favor of an interpretation on which the intellect, and not the imagination, is the 

primary engine of mathematical (particularly, arithmetical) cognition for Leibniz, and to 

show that this epistemological thesis squares perfectly with the ontological status that 

Leibniz ascribes to numbers. 

2. Leibniz's Platonistic Epistemology of Mathematics 

2.1. Leibniz's General Epistemology. A particularly lucid and concise summary of 

Leibniz's general epistemological scheme appears a 1702 letter to Queen Sophie Charlotte 

of Prussia; in this text, Leibniz explicitly puts himself in league with Plato with regard to 

the structure of human knowledge: 

[W]hat the ancient Platonists have remarked is very true, and very worthy 
of consideration, that the existence of intelligible things... is incomparably 
more certain than the existence of sensible things, and thus, at bottom, 
there should only be these intelligible substances, and that sensible things 
should only be appearances. However, our lack of attention lets us take 
sensible things for the only true things. It is also worth observing that, if 
in dreaming I should discover some demonstrative truth, mathematical or 
otherwise... it would be as certain as if I had been awake. This allows us 
to see the extent to which intelligible truth is independent of the truth or 
the existence of sensible and material things outside of us. (AG 189/GP 
VI 502-503) 

What is notable in the first instance about this passage is Leibniz's separation of the world 

into intelligible and sensible realms, and his claim that the objects populating the former 

realm are “incomparably” better known than those of the latter realm. In other words, we 
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are able to acquire a much greater degree of certainty about intelligible objects than we 

are about sensible ones. This idea, as Leibniz notes, comes from Plato, who posits a 

metaphysical and epistemological distinction between what is known by the senses and 

what is known by the intellect. For Plato, the world divides into two realms -- the 

intelligible and the sensible -- in the following two ways: first, the objects of the sensible 

realm are “less real” than the objects of the intelligible realm (this is the metaphysical 

distinction, which Leibniz also seems to endorse here); second, our knowledge of the 

sensible realm is inferior to our knowledge of the intelligible realm, and these two kinds 

of knowledge are even acquired by different faculties, one of which (sense perception) is 

inferior to the other (reason). Accordingly, for Plato and apparently for Leibniz, the 

acquisition of knowledge about the objects of the intelligible realm, whatever they are, 

proceeds independently of the senses, as encapsulated by Leibniz's remark that we could 

in principle acquire certain knowledge of an intelligible object while dreaming, when no 

veridical sense perception occurs. We should also note that Leibniz explicitly invokes 

mathematical discovery in his dream example, suggesting that mathematical truths are 

one class of truths discoverable independently of the senses, and suggesting in turn that 

the objects of which those truths hold exist in the intelligible realm. 

Elsewhere in the same text, Leibniz uses a different kind of dream example to 

illustrate the distinction he is after, a distinction that accords well with the one he 

attributes to Plato: “Being itself and truth are not known wholly through the senses. For 

it would not be impossible for a creature to have long and orderly dreams resembling our 

life, such that everything it believed it perceived by the senses was nothing but mere 
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appearances. There must therefore be something beyond the senses which distinguishes 

the true from the apparent” (AG 188/GP VI 502). Here, Leibniz employs the example of 

a vivid, orderly, lifelike dream to illustrate the idea that the kind of knowledge acquired 

by the senses is in some sense uncertain or insecure, owing to our inability to distinguish 

between this kind of dream and the actual sensible world in purely sensory terms. In other 

words: sense data, and the various inferences they license, are insufficient to distinguish 

what is real from what is only apparent. Leibniz elaborates on these remarks in the 

following way: 

But the truth of the demonstrative sciences is exempt from these doubts, 
and must even serve to judge the truth of sensible things. For, as able 
ancient and modern philosophers have already remarked, even if 
everything I believed I saw were only a dream, it would always still be 
true that I (who in dreaming thinks) would be something, and would, in 
fact, think in many ways, for which there must always be some reason. 
(AG 188/GP VI 502) 

The metaphysical distinction between “the apparent” and “the true” corresponds to an 

epistemological distinction between two ways of acquiring knowledge -- through sense 

perception, on the one hand, and through “demonstration”, as exemplified by the 

“demonstrative sciences”, on the other. Demonstration yields knowledge of what is true 

independently of the sensible world; it yields knowledge of intelligible objects, which 

would exist as objects of certain knowledge even if our whole sensible lives turned out to 

be a vivid and orderly dream. In other words, there are objects that would exist, objects 

of which we could acquire knowledge and about which many statements would be true 

(and many false), regardless of any particular way the sensible world happened to 

be -- regardless, even, of whether any of our sense-perceptions were veridical. For 
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Leibniz, mathematics is one of the demonstrative sciences, implying that mathematical 

objects are intelligible and our knowledge of them (through demonstration) certain. 

Interestingly, it seems that a fundamental Leibnizian distinction between two 

kinds of truths lines up exactly with the distinctions under scrutiny thus far. He makes a 

very suggestive remark elsewhere in the letter to Sophie Charlotte that illustrates this 

point, in discussing the process of demonstration in the demonstrative sciences: “[T]he 

force of the demonstrations depends upon intelligible notions and truths, which alone are 

capable of allowing us to judge what is necessary” (AG 189/GP VI 504, emphasis mine). 

Here, he indicates a deep connection between the notion of necessity, or that which would 

hold independently of any particular way the world is, and the notion of a truth's being 

discoverable by demonstration. It seems that the demonstrative sciences -- mathematics 

included -- yield knowledge of necessary truths, which makes sense in light of Leibniz's 

claim that the objects of the intelligible realm exist independently of the sensible world 

and any particular way it happens to be. In other words, since intelligible objects are the 

same regardless of how the sensible world is, the truths that hold of them are necessary 

and our knowledge of these truths is certain. For Leibniz, “the senses can, in some way, 

make known what there is, but they cannot make known what must be or what cannot be 

otherwise” (AG 190/GP VI 504). The truths discoverable by the senses are 

contingent -- the sensible world could easily have been otherwise, and the objects of the 

senses constantly undergo change -- whereas the truths discoverable by whatever faculty 

yields knowledge of the sense-independent world are necessary, since the intelligible 

realm could not have been otherwise. Leibniz makes the link between necessity and 
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demonstrative knowledge more explicit in the preface to the New Essays Concerning 

Human Understanding: “[I]t appears that necessary truths, such as we find in pure 

mathematics and particularly in arithmetic and geometry, must have principles whose 

proof does not depend on instances nor, consequently, on the testimony of the senses...” 

(RB 50). 

There is also a corresponding deep connection between necessity and the 

existence of an intelligible part of the world that is immutable and independent of the 

sensible part, as Leibniz makes clear in “On the Ultimate Origination of Things”: 

Neither... essences nor the so-called eternal truths pertaining to them are 
fictitious. Rather, they exist in a certain realm of ideas, so to speak, namely 
in God himself, the source of every essence and of the existence of the 
rest. The very existence of the actual series of things shows that we have 
not spoken without grounds. For the reason for things must be sought in 
metaphysical necessities or in eternal truths, since... it cannot be found in 
the actual series of things. But existing things cannot derive from anything 
but existing things... So it is necessary that eternal truths have their 
existence in a certain absolute or metaphysically necessary subject, that is, 
in God, through whom those things which would otherwise be imaginary 
are realized... (AG 151-152/GP VII 304-305) 

First, Leibniz here confirms that the necessary truths hold of a certain kind of object that 

exists in a domain separate from that of the sensible world. The truths about these things 

are “eternal”, in the sense that these truths could not have been false -- propositions that 

are true of these things are true of them for all time. Indeed, the existence of immutable 

abstract things that are described by necessarily true propositions in some sense grounds 

whatever existence the sensible world does have, even if the latter's constituents are ever-

changing -- and even if the sensible world could have been radically different from the 
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way it is. Leibniz says that the very “reason for things”, i.e. the ontological ground for 

the actually existent series of particulars, “must be sought” in the intelligible realm. 

It is important to note that Leibniz’s intelligible realm is God’s mind, and its 

inhabitants are God’s ideas. Given this, Mondadori argues that they bear some 

resemblance to Plato's Forms, to the extent that they are “representation[s] of what would 

be the case if [they] were exemplified” (1990, 170). Individual concepts, for example, are 

representations of exactly what an individual would be like if it were created. According 

to Plato, sensible objects have their properties by imperfectly resembling various abstract 

things that exist in the intelligible realm. Plato calls these abstracta the “Forms”, and a 

sensible particular (e.g. a red apple) has its properties (e.g. being red) by “participating 

in”, or imperfectly instantiating, the Forms (e.g. the “Form of Redness”). For Plato, the 

series of actually existent particulars is what it is by virtue of instantiating, in a shifting 

and ephemeral way, different Forms at different times. The Forms, however, do not 

change, and their immutability provides both the ontological and epistemological ground 

for the realm of everyday sensory experience. Although knowledge of sensory ephemera 

is inherently uncertain, the properties we observe in particulars at least give us a imperfect 

kind of knowledge of the abstracta on which the properties are grounded, and also trigger 

the mind to start reasoning about these properties by themselves, as opposed to the 

particular ways in which sensibles instantiate them. For Leibniz, too, it seems that the 

immutable intelligible objects ground the very existence of the elements of sensory 

experience, and also the possibility of anything resembling certain knowledge of the 

sensible world -- witness his earlier remark that “the truth of the demonstrative sciences... 
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must even serve to determine the truth of sensible things”. We lack certainty about 

sensible things, but whatever secure knowledge we do have of them comes from knowledge 

of the objects of the demonstrative sciences -- i.e. the objects of the intelligible realm. 

Leibniz’s distinctions among our faculties of knowledge acquisition also become 

pertinent here. Broadly speaking, Leibniz seems to think that the faculty by which we 

acquire knowledge of intelligible things is innate, and that it is only by virtue of this innate 

ability that we are able to get beyond the senses in the first place: 

[T]here is an inborn light within us. For since the senses and induction can 
never teach us truths that are fully universal, nor what is absolutely 
necessary, but only what is, and what is found in particular examples, and 
since, nonetheless, we know some universal and necessary truths in the 
sciences... it follows that we have derived these truths, in part, from what 
is within us. Thus one can lead a child to them in the way that Socrates 
did, by simple questions, without telling him anything, and without having 
him experiment at all about the truth of that which is asked of him. And 
this can very easily be carried out with numbers and other similar matters. 
(AG 191/GP VI 505-506, emphasis in original) 

Here, it is abundantly clear that the senses cannot get us beyond the particulars that they 

allow us to perceive; the senses only license inductive inferences, which never guarantee 

certainty according to Leibniz. Induction can never help us discover necessary truths; this 

kind of discovery requires some other kind of reasoning procedure, which Leibniz seems 

to think of as a kind of deduction. Since the senses give us all of our external inputs, the 

kind of reasoning process that yields necessary truths, licensing conclusions of a universal 

and necessary character, must arise “from what is within us”. Leibniz acknowledges that 

“in the present state, the senses are necessary for our thinking, and that if we did not have 

any, we would not think”; in other words, the senses provide a necessary cognitive 

stimulus for reasoning toward necessary truths that hold of abstracta. But, at the same 
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time, “that which is necessary for something does not, for all that, constitute its essence... 

The senses provide us material for reasoning... but reasoning requires something else 

besides that which is sensible”. The idea that the senses “trigger” reasoning about abstract 

things is, as previously noted, a doctrine whose roots are found in Plato's philosophy. 

Additionally, in the above passage, Leibniz obliquely registers approval of the 

procedure that Plato carries out in the Meno; in that dialogue, the character Socrates leads 

a young slave through a demonstration of some properties of squares, purportedly without 

telling him anything that would give away the conclusion the boy is supposed to draw. 

Plato intends this example to illustrate the idea that we possess a faculty of reasoning that 

can in principle proceed independently of the senses, even if the senses often serve as its 

trigger. It is precisely this faculty that Leibniz calls the “natural light”, and as far as 

necessary truths are concerned, “it is generally true that we know them only by [it], and 

not at all by the experiences of the senses” (AG 189/GP VI 504). Leibniz paints a similar 

picture of his epistemology in other texts, perhaps most notably in the New Essays on 

Human Understanding, in which he intends to establish his epistemological scheme 

against that of Locke and empiricism in general. Leibniz again draws inspiration from 

Plato in arguing against Locke and the latter's supposedly Aristotelian influences: 

There is the question whether the soul in itself is completely blank like a 
writing tablet upon which nothing has as yet been written -- a tabula 
rasa -- as Aristotle and [Locke] maintain, and whether everything which 
is inscribed there comes solely from the senses and experience; or whether 
the soul inherently contains the sources of various notions and doctrines, 
which external objects merely rouse up on suitable occasions, as I believe 
and as do Plato and even the Schoolmen... (RB 48) 
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Here, Leibniz adds a doctrine of innate ideas to his earlier declarations in favor of a 

doctrine of an innate faculty to reason about abstract things. In other words, the mind 

comes equipped both with a robust reasoning faculty and with a set of categories -- “various 

notions and doctrines” -- that allow reason do its work. Leibniz elaborates: 

The Stoics call these sources... fundamental assumptions, or things taken 
for granted in advance. Mathematicians call them common notions... 
Modern philosophers give them other fine names and Julius Scaliger, in 
particular, used to call them 'seeds of eternity' and also zopyra -- meaning 
living fires or flashes of light hidden inside us but made visible by the 
stimulation of the senses, as sparks can be struck from a steel. And we 
have reason to believe that these flashes reveal something divine and 
eternal: this appears especially in the case of necessary truths. (RB 49) 

The mind has access to the objects of the intelligible realm by possessing a combination 

of an innate faculty to reason about abstract things and a set of innate ideas about their 

nature. On this picture, the basic innate categories reveal something to us about the 

general character of the intelligible realm's constituents -- this is what Leibniz means by 

characterizing innate ideas as “flashes of light” that “reveal something eternal” -- while 

the innate faculty of reason allows us to draw conclusions from these revelations. This 

last point is what Leibniz must mean when he says that what the innate categories reveal 

is something that “appears especially in necessary truths”, i.e. in the truths arrived at by 

employing the reasoning faculty. In fact, Leibniz is explicit about the contents of innate 

ideas, claiming that “we include Being, Unity, Substance, Duration, Change, Action, 

Perception, Pleasure, and hosts of other objects of our intellectual ideas” (RB 51). 

Leibniz also affirms in the New Essays the “triggering” doctrine discussed earlier, 

both in the passage from the preface to that work quoted in the last paragraph, and in the 

first few pages of the main text, declaring that “one should in my opinion say that there 
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are ideas and principles which do not reach us through the senses, and which we find in 

ourselves without having formed them, though the senses bring them to our awareness” 

(RB 74, emphasis mine). As has been noted, this idea comes directly from Plato, and 

Leibniz at times explicitly situates himself so closely to Plato that one might think he 

actually adopts something like the latter's theory of recollection, which is roughly the idea 

that innate principles were implanted in the eternal soul at a time prior to its present bodily 

existence. In discussing “the origin of necessary truths, whose source is in the 

understanding” (RB 75), Leibniz suggests that “teaching from outside merely brings to 

life what was already in us” (RB 76), which is what Socrates' examination of the slave in 

the Meno is supposed to illustrate. In defending the coherence of the doctrine of innate 

ideas triggered in some way by sense-perception, Leibniz appeals to the intuitively 

plausible thesis that “we know an infinity of things which we are not aware of all the 

time, even when we need them; it is the function of memory to store them, and of 

recollection to put them before us again... [But] recollection needs some assistance. 

Something must make us revive one rather than another of the multitude of of items of 

knowledge” (RB 77). In other words, there is a sense in which we are remembering 

something we already knew when we derive necessary truths from our innate conceptual 

apparatus. Leibniz makes this explicit when he “grant[s] the point... as applied to 

necessary truths or truths of reason” that “all truths... are already imprinted on the soul” 

(RB 77). 

2.2. General Implications for Mathematics. Leibniz takes pains to indicate the 

implications of these theses for mathematics: “On this view, the whole of arithmetic and 
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of geometry should be regarded as innate, and contained within us in an implicit way, so 

that we can find them within ourselves by attending carefully and methodically to what 

is already in our minds...” (RB 77). He takes Plato to have “showed this, in a dialogue 

where he had Socrates leading a child to abstruse truths just by asking questions and 

without teaching him anything” (RB 77). It should be noted that Leibniz does not agree 

with the full-fledged Platonic theory of recollection -- if our present innate ideas were 

implanted in the soul at an earlier time, then “it is obvious that if there was an earlier 

state, however far back, it too must have involved some innate knowledge, just as our 

present state does: such knowledge must then either have come from a still earlier state 

or else have been innate and created with the soul...” (RB 79). Leibniz opts for the latter 

option on pain of infinite regress. But the point is just that Leibniz seems to regard his 

general epistemological scheme as deriving directly from but improving upon that of 

Plato, and the implications for abstract things, such as the objects of mathematics, are at 

least that Leibniz cannot be the kind of nominalist that Mates has labeled him. 

To reinforce the last claim, it is worth emphasizing the many references to 

mathematics in these passages about the mind's innate abilities, references of a kind found 

repeatedly in investigating Leibniz's epistemological remarks. First, recall the claim that 

one kind of object to which the “natural light” -- the innate faculty of reason -- applies is 

numbers. Also, the example from the Meno that he takes to illustrate the concept of the 

natural light is explicitly mathematical, having to do with the properties of diagonals in 

quadrilaterals. Earlier in the letter to Sophie, he claims that “it is also by this natural light 

that the axioms of mathematics are recognized, for example that if we take away the same 
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quantity from two equal things, the things remaining are equal” (AG 189/GP VI 503, 

emphasis in original). Furthermore, the various branches of mathematics, and of the 

demonstrative sciences in general, rest on these kinds of basic axioms: “[i]t is on such 

foundations that we establish arithmetic, geometry, mechanics, and other demonstrative 

sciences...” (AG 189/GP VI 503). In the New Essays as well, as we saw earlier, the 

“necessary truths, such as we find in pure mathematics and particularly in arithmetic and 

geometry, must have principles whose proof does not depend on... the testimony of the 

senses” (RB 77). These “principles”, it should be clear by now, are grasped as innate 

ideas and employed by the natural light to discover mathematical truths, which are a 

species of necessary truth. 

Leibniz sums this up concisely, with a focus on geometry, in another passage from 

the New Essays: “These ideas which are said to come from more than one sense -- such 

as those of space, figure, motion, rest -- come rather from the common sense, that is, from 

the mind itself; for they are ideas of the pure understanding... and so they admit of 

definitions and of demonstrations” (RB 128). Elsewhere in that work, Leibniz explicitly 

states that “the ideas of numbers are intellectual ones” (RB 81), and once again 

approvingly cites the Meno and declares that all of arithmetic and geometry are 

discoverable independently of experience. In general, for Leibniz, mathematics always 

serves as an exemplar for distinguishing the intelligible realm from the sensible 

realm -- metaphysically, epistemologically, and modally (i.e. in terms of the kinds of 

truths that hold of either realm's objects). The abstract entities of mathematics, in other 

words, exemplify the kind of thing that exists in the intelligible realm, are grasped by 
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innate ideas and sense-independent reasoning, and are correctly described by necessarily 

true statements. 

3. The Problem of the Imagination 

3.1. The Problem Described. In several texts, Leibniz seems to suggest that the 

imagination plays a key role in mathematical thinking -- indeed, that mathematics is 

actually the study of whatever falls under the faculty of imagination.15 On the other hand, 

as detailed in an earlier section of this chapter, Leibniz is clear that the intellect plays a 

primary and decisive role in mathematical thinking. The precise relationship in his 

thought between the imagination and the intellect is not generally well-understood, and 

some prominent secondary literature advances seriously flawed accounts of this material. 

My task in this section is to provide a general reconstruction of Leibniz's view of 

the role of the imagination in arithmetical thought . Ultimately, where numbers are 

concerned, the role of the imagination is nothing more than incidental -- as a “trigger” for 

the intellect to consider certain clear and distinct innate ideas -- and its invocation by 

Leibniz has no bearing on his ontology of number and very little bearing on his 

epistemology of number. Much of what has been said in previous chapters should already 

                                                
15 For example, at A.VI.4.511, he says that “mathematics is the science of imaginable things”. Many of 
Leibniz’s declarations to this effect occur within texts that concern “mathesis universalis”, a lifelong 
unfinished project involving the development of a general science of quantity and quality, from which 
“special mathematics is excluded, concerning numbers, situation, [and] motion” (A.VI.4.513-514). These 
texts are often cryptic and in one instance possibly contradictory: in the “Elementa Nova”, he characterizes 
mathesis universalis as the general science of quantity and quality (A.VI.4.514; see also A.VI.4.362), while 
in another text, he characterizes it as the general science of quantity only, making no mention of quality 
(GM VII 53). It would be a mistake, then, to think that there is a clearly identifiable textual tendency in 
Leibniz’s corpus to assign an essential role to the imagination in “special” mathematics, with one of whose 
branches -- arithmetic -- I am concerned here. 
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suggest this: Leibniz's ontology of number is generally Platonist, and his epistemology of 

number is founded on the intellect's access to the intelligible realm of ideas. Whatever 

bearing the imagination has on Leibniz’s epistemology of number is consistent with 

claims made in an earlier chapter on Leibniz’s purported nominalism: Leibniz endorses 

something like Plato’s thesis that the senses “trigger” the intellect to initiate cognition 

that then proceeds independently of the senses and involves only intellectual 

representations. The imagination plays the role of a mediator in the triggering process. 

Interestingly, many of the clearest examples that Leibniz adduces in discussing the role 

of the imagination in mathematical thought are geometrical, and it is in these examples 

that Leibniz appears to give a more substantive role to the imagination. This feature of 

his argumentation hints at a possible difference between the imagination's roles in 

geometrical and arithmetical thought. This contrast actually constitutes further evidence 

that where arithmetic is concerned, the imagination has little to no essential role even in 

concept formation. Another goal of this section is to highlight this possible contrast. 

Although many of the texts examined in this section may make Leibniz appear at 

first to be a kind of empiricist about mathematics -- such that the “objects” of mathematics 

are certain imaginative abstractions from sensory inputs -- I emphasize that this is not his 

position, at least for arithmetic. Ultimately, while he does think that the imagination is 

prompted by sensory inputs to have certain abstract representations that may in turn 

trigger the intellect, he certainly does not think that the imagination has any role in 

securing distinct ideas of numbers, or knowledge of the properties of numbers and the 

number system. Both of the latter come from the intellect; the imagination, whose 
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representations are based on sensory inputs, cannot supply them. In fact, his considered 

view seems to be that the imagination has no essential role even in our initial conceptual 

access to numbers.16
 

A passage from the Discourse on Metaphysics encapsulates his view: 

“One can also say that we receive knowledge from outside by way of the senses, because 

some external things contain or express more particularly the reasons that determine our 

soul to certain thoughts. But... it is important to recognize the extent and independence of 

our soul, which goes infinitely further than is commonly thought...” (AG 59/GP IV 452). 

3.2. What is the Imagination? The current reconstruction must begin with an account 

of how Leibniz characterizes the imagination in general. One well-known locus for his 

thoughts on the matter is the letter to Queen Sophie Charlotte of Prussia quoted in an 

earlier section. In this letter, Leibniz spells out his conception of the relationship between 

the senses, the imagination, and the intellect, as well as the relationship between the 

objects of these faculties. Leibniz first claims that the senses provide us with clear but 

confused notions; these are notions of certain sensible qualities, like colors, whose 

instances we can recognize, but for which we are unable to give a definition -- a definition 

that would “make another person understand what the thing is” (AG 59/GP IV 452). If 

we could give such a definition, these notions would become clear and distinct notions, 

and it turns out that the senses do furnish us with these notions as well. However, these 

                                                
16 There is some evidence that Leibniz does take the imagination to play an essential role in geometrical 
cognition, in addition to triggering the intellect to consider its clear and distinct ideas. As mentioned in the 
previous paragraph, I will touch on this point, but I will not address it in detail, as my focus in this work is 
on arithmetic. For a comprehensive treatment of Leibniz's philosophy of geometry, containing a case for 
the imagination's role in geometrical cognition, see De Risi (2007) 
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notions do not come from any one particular sense, but from what Leibniz calls the 

“common sense”. He explains: 

Yet we must do justice to the senses by acknowledging that... they allow 
us to recognize other, more manifest, qualities which furnish us with more 
distinct notions. These are the notions we attribute to the common sense 
because there is no external sense to which they are particularly attached 
and belong. It is here that definitions of the terms or words we use can be 
given. Such is the idea of number, which is found equally in sounds, colors 
, and tactile qualities. It is in this way that we also perceive shapes which 
are common to colors and tactile qualities, but which we do not observe 
in sounds. (ibid, emphasis in original) 

So, in addition to the clear but confused notions which come from the individual external 

senses -- as the notions of colors come from sight -- there are certain clear and distinct 

notions that come equally from multiple external senses. It is suggestive that Leibniz 

adduces the ideas of numbers and shapes as prime examples of such notions, but I will 

come to this aspect of his account later. What is important initially is the key difference 

between notions furnished by individual senses and notions furnished equally by several 

senses. 

Leibniz provides a more detailed explanation of this basic distinction between 

notions furnished by the senses in an earlier text, the “Meditations on Knowledge, Truth, 

and Ideas”. It is worth quoting the key passages at some length; of particular interest is 

Leibniz's remark that even though we cannot give definitions of sensible qualities like 

colors, the qualities themselves (and their notions) still have objectively correct 

“resolutions” into their fundamental components: 

[K]nowledge is clear when I have the means for recognizing the thing 
represented. Clear knowledge, again, is either confused or distinct. It is 
confused when I cannot enumerate one by one marks sufficient for 
differentiating a thing from others, even though the thing does indeed have 
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such marks and requisites into which its notion can be resolved. And so 
we recognize colors, smells, tastes, and other particular objects of the 
senses clearly enough, and we distinguish them from one another, but only 
through the simple testimony of the senses, not by way of explicit marks. 
Thus we cannot explain what red is to a blind man, nor can we make such 
things clear to others except by leading them into the presence of the thing 
and making them see, smell, or taste the same thing we do, or, at the very 
least, by reminding them of some past perception that is similar. This is so 
even though it is certain that the notions of these qualities are composite 
and can be resolved because, of course, they do have causes. (AG 24/GP 
IV 422, emphasis in original) 

The first kind of notion given by the senses, then, is the kind that allows us to recognize 

its instances and distinguish them from each other only by “the simple testimony” of the 

senses themselves -- that is, only in terms of the brute impressions that their instances 

make on the senses. So, for example, Leibniz thinks that we are able to distinguish 

instances of red from instances of blue, or instances of different shades of red from one 

another, only in particular cases and only with the aid of some sensory apparatus. We 

cannot distinguish them in general; doing so would require us to be able to give a list of 

marks which distinguish any instance of red from any instance of blue or any other color. 

Consequently, we also cannot provide a general explanation of redness that would make 

anyone understand its notion or even be able to conjure up an image of a red thing -- the 

only way to introduce someone to the color red is to “lead them into the presence” of it. 

As Leibniz puts it in the “General Inquiries about the Analysis of Concepts”, colors and 

the like are things “which we perceive clearly but cannot explain distinctly or define by 

other concepts” (P 51). To do any of this, we would have to be able to give a definition 

of the notion of red, which would involve breaking that notion up into its more primitive 

components. And as has been noted, Leibniz thinks that the notion of red is in fact 
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composite, being built up out of simpler notions; it is just that we are unable to enumerate 

these components. The color red, Leibniz thinks, “has causes”, and giving a definition of 

the notion of red would involve enumerating these causes. 

Immediately after the passage just quoted, Leibniz contrasts the clear but confused 

notions provided by the individual senses with the clear and distinct notions provided 

equally by several senses: 

But a distinct notion is like the notion an assayer has of gold, that is, a 
notion connected with marks and tests sufficient to distinguish a thing 
from all other similar bodies. Notions common to several senses, like 
notions of number, magnitude, shape are usually of such a kind, as are 
those pertaining to many states of mind, such as hope or fear, in a word, 
those that pertain to everything for which we have a nominal definition 
(which is nothing but an enumeration of sufficient marks). (AG 24/GP IV 
423, emphasis in original) 

Note the way in which he seems to take mathematical notions to differ from those 

furnished by individual senses. The notions of shapes are perhaps the most perspicuous 

here. We receive such notions, to the extent that they are furnished by the senses, from 

the sense of sight and the sense of touch. And unlike the case of color notions, for 

example, we are actually able to give definitions of shapes by enumerating the 

components of their notions. We are able to consider shapes at a level of generality 

beyond that at which we can consider colors; for example, we can easily enumerate the 

components of the notion of a triangle, rendering it distinct. Accordingly, we can also 

distinguish one kind of shape from any other kind of shape at a general level, by simply 

enumerating the components of the relevant notions. Finally, we can explain to others 

what the different shapes are, without recourse to any sensory aids or ostension. 
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With these last points in mind, consider again the letter to Sophie. In that text, 

after making the distinction between the two kinds of notions furnished by the senses, 

Leibniz suggests that there must be some mental faculty that allows us to do things with 

these notions even when their instances are not currently being perceived externally: 

Therefore, since our soul compares the numbers and shapes that are in 
color, for example, with the numbers and shapes that are in tactile 
qualities, there must be an internal sense in which the perceptions of these 
different external senses are found united. This is called imagination, 
which contains both the notions of the particular senses, which are clear 
but confused, and the notions of the common sense, which are clear and 
distinct. (AG 187/GP VI 501, emphasis in original) 

The argument is simple: we do in fact manipulate, in various ways, the notions furnished 

by individual senses and those furnished by the common sense, and we can manipulate 

them even when their instances are not present to any of the external senses. We can 

compare shades of red, for example, even when instances of those shades of red are not 

actually present to the eye. And we can compare different shapes, or different numbers, 

even when examples of such shapes or numbers aren't present to any of the external 

senses. In sum, we can do things with sensible notions internally, without the aid of 

concurrent external sensory perception. So Leibniz concludes that there must be an 

independent faculty allowing us to do this, since ex hypothesi the faculty will not be 

identical to any one of the external senses or with any multiple external senses taken 

together. The faculty will be an internal sense that allows us to compare notions furnished 

by the senses, and this is what Leibniz calls the imagination. 

In other texts, Leibniz elaborates on this basic conception of the imagination as a 

kind of internal sense. One way to approach the imagination, he thinks, is by way of a 
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direct analogy with perception: perception has the same relation to certain external things 

that the imagination has to certain internal things. In particular, while the objects of 

perception are external things present to the various senses, the objects of imagination 

are images that are present internally, in the “mind's eye”. In one text, pursuing this line 

of reasoning, Leibniz writes that “an image is the continuation of a passion in the organ 

although the action of the object has stopped”, and given this definition of an image, 

“imagination is the perception of an image” (A.VI.4.1394). Images, Leibniz thinks, are 

furnished by perception, and thereafter can be conjured up in the imagination even after 

the “action of the object has stopped”. In perceiving a red thing, we get an image of red, 

which we can recall in the imagination long after the red thing is gone. In perceiving an 

instance of a particular shape, we get an image of that shape, which then becomes subject 

to the imagination. It is interesting to note that in the letter to Sophie, Leibniz speaks of 

notions being furnished by the senses and then taken over by the imagination, while in 

this text, he speaks of images in that way. This need not pose an interpretative problem, 

because Leibniz seems to think that perception furnishes both actual images of sensible 

qualities and the general notions of those qualities. For Leibniz, our formation of the ideas 

of sensible qualities seems to go hand in hand with the presentation of those qualities to 

the senses, whether we are talking about that which is present to individual senses or to 

several senses at once. The senses furnish notions of sensible qualities by first giving us 

images of them -- even though ideas, for Leibniz, are not themselves images. In another 

text, Leibniz even declares that “he who is furnished with more images... is, other things 

being equal, furnished with more truths”, because at least some images “contain 
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something of a distinct concept” (A.VI.4.802). And the imagination can manipulate the 

general notions of sensible qualities just as much as it can recall the actual images of their 

instances. 

Admittedly, Leibniz writes very little about the imagination in his corpus. There 

is not much direct exposition of this faculty other than in the texts examined thus far. The 

idea that the imagination is an internal sense that considers and manipulates notions 

furnished by the senses, together with the lack of elaboration on the precise nature of the 

imagination, raises the question whether the imagination and the common sense are really 

distinct. In other words, Leibniz may think that the imagination and the common sense 

are really the same faculty doing two different tasks: we have a particular mental faculty 

that, on the one hand, notices that which is common to sensory inputs of different 

kinds -- for example, number or shape -- and on the other hand, is able to abstract general 

notions from those common features of different sensory modalities. In addition, this 

mental faculty is able to conjure up images of sensory qualities furnished by individual 

senses, and is able to abstract incomplete notions of such qualities from their sensory 

presentation. To be clear, then, I do not wish to claim that Leibniz decisively separates 

the imagination and the common sense -- especially because the question whether he does 

distinguish them sharply is of no particular importance for the rest of my analysis. 

3.3. The Imagination and the “Objects of the Mathematical Sciences,” In the last 

subsection, I said I would leave for later an exploration of Leibniz's use of numbers and 

shapes as examples of clear and distinct notions furnished by several senses, and subject 

to the imagination. I am now in a position to carry out such an investigation, and I shall 
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do so in order to understand the relationship between the imagination and mathematics. 

In the letter to Sophie, Leibniz says the following about the clear and distinct notions 

furnished by the “common sense”: 

And these clear and distinct ideas, subject to imagination, are the objects 
of the mathematical sciences, namely arithmetic and geometry... We also 
see that particular sensible qualities are capable of being explained and 
reasoned about only insofar as they contain what is common to the objects 
of the several external senses, and belong to the internal sense. For those 
who attempt to explain sensible qualities distinctly always have recourse 
to the ideas of mathematics, and these ideas always contain magnitude, or 
multitude of parts. (AG 187-188/GP VI 501) , emphasis in original) 

A cursory reading of this passage may suggest that Leibniz believes the ideas furnished 

by the common sense and subject to the imagination -- e.g. the notions of numbers and 

shapes -- are the subject matter of mathematics. As noted earlier, passages like this one, 

and passages quoted in the previous section, make Leibniz appear to be a kind of 

empiricist about mathematics: the thesis that mathematics studies clear and distinct 

sensory abstractions seems to commit him to the claim that there is nothing to 

mathematical objects over and above the sensory abstractions that constitute them. But 

this cannot be Leibniz’s view. In fact, as noted previously, it is the clear and distinct ideas 

themselves that are the subject matter of mathematics -- not the ideas insofar as they are 

subject to imagination. In particular, it is the clear and distinct ideas of numbers that 

constitute the basic subject matter of arithmetic, not the ideas of numbers insofar as they 

are capable of imaginative representation. Leibniz’s remark that these ideas are “subject 

to imagination” is misleading: it is true that we can produce an imaginative representation 

of the number two, for example, by imagining two objects. And Leibniz does hold that 

such imaginative representations, abstracted from sensory inputs, may have a role in 
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triggering the intellect to consider the corresponding ideas of numbers. But given the 

general philosophy of mathematics outlined in the first section of this chapter, this can be 

the only role of the imagination, and it is incidental to the cognitive machinery and 

physical situation of humans, as the texts previously quoted from the New Essays make 

clear. In principle, mathematical discovery could occur without any sensory input and 

without the corresponding imaginative abstraction. 

Leibniz’s considered view is suggested later in the letter to Sophie Charlotte: 

However, it is true that in order to conceive numbers, and even shapes, 
distinctly, and to build sciences from them, we must have recourse to 
something which the senses cannot provide and which the understanding 
adds to the senses... It is true that the mathematical sciences would not be 
demonstrative and would consist only in simple induction or observation... 
if something higher, something that intelligence alone can provide, did not 
come to the aid of the imagination and senses. (AG 187-188/GP VI 501, 
emphasis in original) 

This line of thought is of a piece with a passage in another text: 

[O]ne has distinct knowledge of an indefinable notion, since it is primitive, 
or its own mark, that is, since it is irresolvable and is understood only 
through itself and therefore lacks requisites. But in composite notions, 
since,again, the individual marks composing them are sometimes 
understood clearly but confusedly, like heaviness, color, solubility in aqua 
fortis, and others, which are among the marks of gold, such knowledge of 
gold may be distinct, yet inadequate. When everything that enters into a 
distinct notion is, again, distinctly known, or when analysis has been 
carried to completion, then knowledge is adequate (I don't know whether 
humans can provide a perfect example of this, although the knowledge of 
numbers certainly approaches it). (AG 24/GP IV 423, emphasis in 
original) 

Mathematical notions, like those of numbers and shapes, are subject to the imagination 

insofar as their instances can be detected by the senses and represented in the imagination; 

but they are also subject to the intellect insofar as they are clear and distinct -- indeed, the 



135 

 

intellect is required if they are to be rendered distinct. To use the example of the notions 

of numbers: such notions are clear and distinct, since their marks can be enumerated in 

such a way that any number can be distinguished from any other at a general level, 

without external sensory input. The intellect, of course, is the faculty that performs this 

task, and not the imagination. 

3.4. The Imagination and the Status of Mathematical Objects. One might now wonder 

how Leibniz's purported realism about numbers might square with his apparent thesis 

that mathematics is the logic of the imagination, and that the ultimate objects of study in 

mathematics are imaginable things. In his (1995), Robert McRae draws what one might 

think is the obvious conclusion from Leibniz's prima facie claim that mathematics is the 

logic of the imagination: namely, that mathematical objects are imaginary things without 

any ultimate mind-independent reality. I now investigate this line of thought with a view 

toward two goals: first, refuting McRae's reading, but more generally, rendering a clear 

verdict on the question of the role the imagination plays in arithmetical thought. 

McRae's claim relies on a mistaken inference from the claim that mathematical 

objects are imaginable to the claim that they are merely imaginary. The latter claim is 

much stronger than the former, and the inference is unwarranted in the absence of 

evidence that Leibniz thinks that anything imaginable is also merely imaginary. McRae's 

line of thought starts with Leibniz's claim that number is like extension and time in being 

incomplete or abstract with regard to the created world: just as numbers presuppose 

numbered things, extension presupposes extended things and time presupposes 

temporally related things. McRae then reasons in the following way: 
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Extension is always the extension or diffusion of something. In the case 
of space, its subject is the diffusion of place... Leibniz calls space, or 
diffusion of place, the primary subject of extension. By virtue of it we are 
able to speak of physical bodies as being situated in space. But what then 
is place? The concept of place is an ideal thing, a being of the imagination 
formed by abstraction... The concept of time, or the temporal continuum, 
is formed in a way analogous to the formation of the concept of space, that 
is, with times like places being formed by abstraction... Number, the subject 
of arithmetic, has the same mental or imaginary status as space and time. 
It is an abstraction from numbered things... Numbers are in the same case 
as space and the surfaces, lines, and points that are conceived in it, that is, 
they are nothing but relations or order and have no ultimate components. 
(1995, 183-184) 

McRae makes two distinct claims here about the ontological status of numbers for 

Leibniz. The first is that numbers are imaginary because they are conceived in the 

imagination by a process of abstraction from particular numbered things. The second is 

that numbers are imaginary because “they are nothing but relations or order and have no 

ultimate components”. 

With regard to the first claim, Leibniz does initially appear to hold that number 

concepts are delivered to the mind through the imagination: as has been noted, a cursory 

reading of the letter to Sophie and associated texts might indicate that the imagination 

initially detaches the abstract concept of the number two, for example, from the 

simultaneous sensory presentation of two objects -- and also that Leibniz believes this 

kind of process is all there is to mathematical concept-formation. But the investigations 

of this chapter have indicated that Leibniz thinks the intellect drives mathematical 

thinking, and arithmetical thinking in particular. The notions of numbers are innate -- or 

at least, the notions required for generating the notions of numbers are innate -- and the 

intellect is the faculty that gives us knowledge of numbers insofar as it allows us to render 
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our notions of them distinct and allows us to discover the way they are systematically and 

necessarily connected to one another. It may be the case that sensory inputs prompt the 

imagination to have certain representations, for example of a discrete quantity that 

represents a positive integer, but the distinct ideas of numbers provided by the intellect 

are not abstractions from sensory inputs. When Leibniz characterizes mathematics as the 

science of imaginable things, he does not mean that it is nothing more than the study of 

imaginative abstractions from the deliverances of the common sense. He means 

something quite different: that mathematics is the study of the clear and distinct ideas, 

provided by the intellect, to which certain imaginative representations happen to 

correspond, or which certain imaginative representations express in a limited way. These 

imaginative representations may act as stimuli for the intellect to begin investigating and 

rendering distinct the ideas to which they correspond, but the representations themselves 

are not the subject matter of mathematics. 

Returning, now, to McRae's first claim -- the inference from Leibniz's account of 

mathematical concept-formation to an account of mathematical ontology -- Leibniz does 

think that in the created world, the number two will not be found apart from any two 

particular concrete things. But he also thinks that numbers ultimately have a robust mind-

independent ontological status as relations in abstracto, or what comes to the same thing, 

possibilities for the way things might be -- possibilities known to the divine mind and 

present to it at all times. So McRae's inference from purported imaginative numerical 

concept-formation to the ultimate status of numbers would be illegitimate even if 

numerical concept-formation did proceed primarily by imaginative abstraction -- which 
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it does not. From the fact that we initially form the concepts of the various positive 

integers by a process of imaginative abstraction (if we did in fact do so), it would not 

follow that Leibniz thinks that numbers are ultimately no more than imaginative 

abstractions from sensory inputs. With regard to McRae's related second claim -- that 

numbers are imaginary because they are relations -- not much more need be said than has 

already been said in previous sections. That numbers are just a particular kind of relation 

in abstracto detracts in no way from their mind-independence or objectivity -- quite the 

opposite, in fact. Though my focus here is not on geometry, I think something similar can 

be said for the “surfaces, lines, and points” about which McRae also attributes to Leibniz 

the claim of ultimate unreality. Just as the objects of arithmetic are a kind of abstract 

relation, the objects of geometry can be understood in Leibnizian terms as possibilities 

for the way things might be with regard to each other in space, without regard to the 

resolution of the quantities of those things by means of numbers. And just as with 

numbers, it is true that abstractly conceived shapes will not be found floating around in 

the created world; but they will be found in the divine mind, insofar as God knows about 

all the possible relations of situation that created things might bear to one another. 

3.5. A Possible Contrast Between Arithmetic and Geometry. It was noted in the 

introduction to this section that the geometrical examples Leibniz uses to illustrate the 

operations of the imagination might indicate a possible contrast in his thought between 

the role the imagination plays in geometrical thought, on the one hand, and arithmetical 

thought, on the other. I have not discussed this point yet because it was necessary to lay 

out the main arguments of the section first. Additionally, my focus in this work is on 
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arithmetic. However, Leibniz does use the example of geometrical shapes repeatedly in his 

discussion of the imagination, and it is worth addressing what his use of these examples, 

together with other considerations, might entail for his account of the role of the 

imagination in geometrical cognition in contrast to its role in arithmetical cognition. 

Two quotations from Wallis' Mathesis Universalis in a previous chapter are worth 

repeating here for the sake of setting the stage: 

I say that there are two pure mathematical disciplines: arithmetic and 
geometry, of which the one is about discrete quantity, or number; and the 
other about continuous quantity, or magnitude. And indeed of these the 
one is more, the other less pure: for the subject of arithmetic is more pure 
and more abstract than the subject of geometry; therefore it has more 
universal speculations, which are equally applicable to geometrical things 
and to other things. (1695, 18) 

If someone asserts that a line of three feet added to a line of two feet makes 
a line five feet long, he asserts this because the numbers two and three 
added together make five... for the assertion of the equality of the number 
five with the numbers two and three taken together is a general assertion, 
applicable to other kinds of things... no less than to geometrical objects. 
For also two angels and three angels make five angels. (1695, 56 as in 
Jesseph 1999, 38-39) 

A certain view of the scope of arithmetic can be seen in these passages: namely, that 

arithmetic is more “pure” than geometry in the sense that it is more abstract and has a 

wider scope of application. Arithmetic, Wallis seems to assert, applies to everything 

countable, while geometry applies only to continuous magnitude. Presumably, the 

domain of the countable is much larger than the domain of continuous magnitude: the 

latter domain, Wallis says, is part of the former. And so arithmetic, we might say, is more 

general than geometry. 
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To tie this line of thought to Leibniz, the following passage, quoted previously, 

indicates that he also views arithmetic as more general than geometry, since arithmetic 

applies more universally: 

There is an old saying according to which God created everything 
according to weight, measure, and number. But there are things which 
cannot be weighed, those namely which have no force or power. There are 
also things which have no parts and hence admit of no measure. But there 
is nothing which is not subordinate to number. Number is thus a basic 
metaphysical figure, as it were, and arithmetic is a kind of statics of the 
universe by which the powers of things are discovered. (L 221/GP VII 
184, emphasis in original) 

In saying that “there is nothing which is not subordinate to number”, Leibniz maintains 

the universal applicability of arithmetic. In other words, he maintains that everything is 

countable. By contrast, geometry is merely “the science of extension”; it is “subordinated 

to arithmetic, since... there is repetition or multitude in extension...” (AG 251-252/GM 

VI 100). There is a suggestive relationship between these views and the role of the 

imagination in geometrical and arithmetical thought. Leibniz says that “qualities 

mediated by corporeal organs are either sensible or common to many organs. The latter 

are number, which is perceived by all the external senses and is the basis of arithmetic, 

and extension with its various modes, which are perceived by sight and touch only and 

are the basis of geometry” (L 89-90, emphasis in original). The fact that number is 

“perceived” by all the external senses, whereas extension is perceived by only sight and 

touch, may be related to the much greater generality of arithmetic, and the subordination 

of the content of geometry to the content of arithmetic. In particular, Leibniz's view seems 

to be that while arithmetic ranges over everything countable, geometry ranges only over 

everything visible or touchable. 
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To explore this line of thought further, it is an important corollary of this view 

that geometrical thought is tied to the senses, and so to the imagination, more closely than 

arithmetic is. Number, as explained earlier, is “subject” to the imagination in that the 

imagination can abstract the idea of number from the common deliverances of all six 

senses. But such abstraction is not an essential part of arithmetical cognition because the 

innate ideas of numbers, as we can now see, range over everything that can possibly be 

counted. Innate number concepts are so general that we require no assistance from the 

imagination in coming to know about them. By contrast, geometrical concepts, though 

innate, are not nearly as general. The imagination can only detect instances of, and 

“abstract”, geometrical concepts through sight and touch. If specific senses, rather than 

no particular senses, are required to generate imaginative representations of shapes, 

thereby “triggering” the intellect to begin reasoning about geometrical concepts, then it 

seems reasonable to suggest that Leibniz thinks the senses, and so the imagination, have 

a more substantive role to play in generating the cognitive processes that yield 

geometrical knowledge. One way to read Leibniz, in other words, is as claiming that the 

senses of sight and touch are indispensable for generating the imaginative representations 

that “trigger” geometrical thought, whereas the imaginative representations that “trigger” 

arithmetical thought require no particular sense, and the content of arithmetical concepts 

is so general -- ranging over everything countable -- that it is unlikely that imaginative 

triggering is even necessary for arithmetical thought. 

As my focus here is solely on arithmetic, I will not explore in detail the role that 

the imagination might play in geometrical thought. But geometry does turn out to be a 



142 

 

useful contrast class for arithmetic, and it is worth clarifying exactly how this is so. 

Leibniz’s claim about the extreme generality of number concepts, in contrast to the more 

restricted domain of shape concepts, is of a piece with his claim that no particular senses 

are required to generate imaginative representations of number concepts, whereas either 

sight or touch is required to do this for shape concepts. Where number concepts are 

concerned, the imagination’s role appears to be incidental for Leibniz, as claimed at the 

beginning of this section. If Leibniz holds that number concepts are so general in their 

range of application that the imagination can detect their presence in representations from 

any sense whatsoever, then he likely also holds that arithmetical thought could begin in 

the human intellect without any sensory triggering at all. Leibniz holds that the human 

intellect is in fact triggered to begin reasoning about its innate arithmetical concepts by 

the generation of imaginative representations, but he is not committed to the view that 

such triggering is necessary for the inception of arithmetical thought. Indeed, given 

Leibniz’s view that there is nothing that fails to be subject to number concepts in some 

way or other, he is committed to the view that the domain of such concepts far outstrips 

the sensory realm. So it would be puzzling for him to maintain that reasoning about such 

concepts is dependent upon the senses and the imagination. 

By contrast, it is more difficult to maintain that Leibniz has the same view of 

geometrical thought: if he holds that geometrical concepts only range over the domain of 

the extended, and only sight and touch can take up features of the extended for the 

generation of imaginative representations, then it is unlikely that Leibniz is as optimistic 

about the prospects for geometrical thought in the absence of a sensory apparatus that 
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includes either sight or touch. Indeed, it seems likely that Leibniz has a view of 

geometrical thought as tied “intermediately” to the senses and imagination: geometrical 

truths are necessarily true, independent of discovery by the human intellect or any other 

intellect, and apply to any possible extended domain, but no intellect -- human or 

otherwise -- without the appropriate sensory apparatus would ever begin to think in a way 

that would allow it to discover geometrical truths. So there may ultimately be a degree of 

truth to what McRae maintains about Leibniz's epistemology of mathematics when it 

comes to geometry. This is emphatically not the case for arithmetic, however. 

At this point, I have gone as far as I reasonably can within the scope of this work 

into Leibniz’s view of geometrical cognition; the primary utility of this line of 

investigation has been to illustrate further the independence of arithmetical thought from 

the deliverances of the senses and the representations of the imagination. However, this 

is not to say that Leibniz’s epistemology of geometry is a subject unworthy of 

investigation, and it is worth repeating here that De Risi (2007) contains a detailed 

treatment of that subject and its relationship to other issues in Leibniz’s philosophy of 

geometry specifically and his philosophy of mathematics in general. One issue in 

particular is worth highlighting: the idea that geometrical truths are necessary, but their 

discovery depends on certain features of sensibility, has a distinctly Kantian flavor. 
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Chapter 6: Leibniz and the Logicists 

1. Introduction 

The main body of this work has been concerned with aspects of Leibniz's 

philosophy of mathematics that scholars have either paid little attention to or have 

misunderstood: foremost, his definition and ontology of number, and the extent to which 

these distinguish him from his predecessors and contemporaries in mathematics and the 

philosophy of mathematics. Chapter 4 also treated epistemological questions: foremost, 

Leibniz's conception of arithmetic as epistemically independent of the senses, such that 

its body of universally applicable concepts and truths can be grasped and known without 

any aid from sensory intuition or the imagination. The material has all been treated either 

specifically as it pertains to Leibniz's own work or in a backward-looking fashion, with 

respect to how various Leibnizian theses improve on the work of his predecessors -- with 

the notable exception of my argument that Leibniz's way of understanding irrational 

numbers has a modern flavor insofar as it anticipates the way contemporary mathematics 

employs infinite series to understand such numbers. The purpose of this final chapter is 

to treat some of the conclusions reached about Leibniz's conception of number in a 

forward-looking fashion, with respect to how aspects of that philosophy anticipate later 

developments in the philosophy of mathematics, particularly the core tenets of the logicist 

program. 

In one sense, Leibniz's general anticipation of logicism, such that he is considered 

the first logicist, is one of the best known aspects of his philosophy: it is “almost 
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universally recognized” that Leibniz is the first to advocate the general logicist thesis that 

mathematics, or some part of it, follows from logical principles (Godwyn and Irvine 2003, 

174). It is not the goal of this chapter to recapitulate this general point about Leibniz's 

broader philosophy. Instead, the goal is to examine how specific aspects of Leibniz's 

philosophy of arithmetic anticipate specific aspects of the way logicism treats numbers 

and arithmetical truths. I investigate two points: first, the extent to which Leibniz's 

epistemological thesis about the knowability of arithmetic mirrors similar theses found in 

Frege, Russell, and Dedekind; and second, the extent to which Leibniz's definition of 

number mirrors in a fundamental way the definitions of number proposed by Frege and 

Russell. I split this chapter into two main parts: the first concerning epistemological issues 

and the second concerning the definition of number. Each part first extracts the relevant 

logicist theses from the work of Dedekind, Frege, and Russell, and then proceeds to 

exhibit the similarities they bear to the relevant Leibnizian claims. 

One of the main claims of this work is that Leibniz is the first philosopher of 

mathematics to combine a general definition of number with background views that 

liberate the study of non- integral numbers from geometrical methods, placing all positive 

real numbers on the same definitional, ontological, and epistemic footing. One might 

think that the features of Leibniz's philosophy of mathematics that allow him to do this 

are precisely those features that most closely resemble aspects of the logicist program: 

for example, his purely conceptual definition of number and his conception of numbers 

as mind-independent abstract relations whose natures can be grasped through pure 

thought alone. The logicists, as I will review, certainly exhibit the former tendency, 
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defining numbers in a way that is philosophically similar to the way Leibniz does. They 

also share Leibniz's epistemological view about arithmetic. Indeed, Leibniz's name 

appears repeatedly in their work, especially Frege's Foundations of Arithmetic (1980). 

But it is also the case that the founding logicists disagree on matters of ontology; in fact, 

their ontological views are the subject of ongoing scholarly debate. So the analogy 

between Leibniz's views and those of the logicists cannot be pushed quite as far as one 

might like. Nevertheless, their views about the definition of number and our epistemic 

access to arithmetic are so similar as to merit an investigation like this one. 

2. Leibniz and the Logicists on Arithmetical Knowledge 

Perhaps the most general way to put the most basic tenet of logicism is that 

mathematics is part of, or reducible to, logic, in some sense to be further specified. This 

means different things to different people: for example, one might claim merely that all 

the theorems of mathematics are provable from merely logical premises, or one might 

claim that all mathematical truths -- theorems or not -- are provable from merely logical 

premises. Logicism has a storied history stretching from the present day back to the late 

nineteenth century, and there are significant differences of detail between the so-called 

neologicists and the original, founding members of the logicist school, usually taken to 

be Dedekind, Frege, and Russell, in chronological order. Furthermore, there are 

significant differences between the logicist programs outlined by the three founding 

members. Nonetheless, there are key similarities in the central philosophical claims about 

mathematics advanced by the three founding members and their successors in the later 
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twentieth and twenty-first centuries. It would be orthogonal to the purpose of this chapter 

to rehearse that history, especially since it has been so well documented. Instead, it will 

be helpful here to extract two central logicist claims: one claim about the place of 

mathematics in the structure of human knowledge, and another about the nature of 

numbers.17
 

For the first claim, we would do well to begin with some remarks due to Dedekind: 

In science nothing capable of proof ought to be accepted without proof. 
Though this demand seems so reasonable yet I cannot regard it as having 
been met even in the most recent methods of laying the foundations of the 
simplest science; viz., that part of logic which deals with the theory of 
numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I 
meant to imply that I consider the number-concept entirely independent of 
the notions or intuitions of space and time, that I consider it an immediate 
consequence of the laws of thought. (1963, 31) 

Dedekind’s remarks here encapsulate the central logicist claim about the place of 

mathematics, specifically arithmetic, in our epistemological scheme: the concept of 

number, and so our eventual knowledge of arithmetic, is “an immediate consequence of 

the laws of thought”, i.e. the laws of logic. The acquisition of number concepts and 

knowledge of arithmetical truths are attainable by attending to such laws alone, without 

appeal to the “notions or intuitions of space and time” -- in direct opposition to the views 

of Kant, who is widely regarded as one of the last important philosophers of mathematics 

                                                
17 Throughout this chapter, when I treat Russell’s views, I deliberately ignore the differences between his 
early and late logicism, where the transition between the two is characterized by the addition of type theory 
in order to avoid paradoxes such as that arising from the class of all classes that do not contain themselves, 
named after Russell himself. The differences between the two involve the technical apparatus used and 
perhaps the ontological commitments entailed; the philosophical views with which I am concerned here 
remain the same through the transition. For a sustained account of the two phases of Russell’s logicism, 
see Godwyn and Irvine (2003). 
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before the inception of logicism, despite having advanced his views some one hundred 

years prior.18
 

For Kant, the acquisition of arithmetical knowledge requires something 

beyond an appeal to the laws of thought; in fact, arithmetical truths are not even analytic, 

not discoverable by conceptual analysis alone: 

To be sure, one might initially think that the proposition '7+5=12' is a 
merely analytic proposition that follows from the concept of a sum of 
seven and five in accordance with the principle of contradiction. Yet if one 
considers it more closely, one finds that the concept of the sum 7 and 5 
contains nothing more than the unification of both numbers in a single one, 
through which it is not at all thought what this single number is which 
comprehends the two of them. The concept of twelve is by no means 
already thought merely by my thinking of that unification of seven and 
five, and no matter how long I analyze my concept of such a possible sum 
I will still not find twelve in it. (CPR B15) 

The poverty of number concepts, says Kant, implies that an appeal to a non-conceptual 

faculty of the mind is required if we are to acquire knowledge of the relations among 

numbers: 

One must go beyond these concepts, seeking assistance in the intuition 
that corresponds to one of the two, one's five fingers, say... and one after 
another add the units of the five given in the intuition to the concept of 
seven. For I take first the number 7, and, as I take the fingers on my hand 
as an intuition for assistance with the concept of 5, to that image of mine 
I now add the units that I have previously taken together in order to 
constitute the number 5 one after another to the number 7, and thus see the 
number 12 arise. (CPR B15-16) 

The logicist project is deeply opposed to such a view of arithmetic -- the view that number 

concepts are too impoverished to yield arithmetical knowledge by their analysis, and the 

                                                
18 The other, arguably, is Mill, who advances an empiricist view of mathematical objects and knowledge. 
Frege explicitly frames his views in the opening sections of Foundations of Arithmetic as reactions to both 
Kant’s view that arithmetical knowledge is partially grounded in perceptual intuition and Mill’s view that 
all of mathematics consists of mere empirical generalizations 
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resulting claim that an appeal to a faculty of perceptual intuition is a crucial in explaining 

our knowledge of arithmetical truths. 

Frege’s remarks in his Foundations of Arithmetic mirror Dedekind’s in 
their essentials: Arithmetic thus becomes simply a development of logic, 
and every proposition of arithmetic a law of logic, albeit a derivative one… 
The laws of number… are not really applicable to external things; they are 
not laws of nature. They are, however, applicable to judgments holding 
good of things in the external world: they are laws of the laws of nature. 
They assert not connections between phenomena, but connections between 
judgments; and among judgments are included the laws of nature. (1980, 
99) 

For Frege, as for Dedekind, the truths of arithmetic are just so many more truths of logic, 

and so whatever faculty allows us access to the truths of logic, and to their attendant 

concepts, allows us access to the truths of arithmetic and their attendant concepts. Frege 

also points out the high level of generality of arithmetical truths: their application 

includes, but is not limited to, the laws of nature. Interestingly, earlier in the work, Frege 

signals his alignment with what he takes to be Leibniz’s view about what is subject to the 

laws of arithmetic, declaring that “Leibniz long ago rebutted the view of the schoolmen 

that number results from the mere division of the continuum and cannot be applied to 

immaterial things” (52). There is a deep connection between the nature of arithmetical 

knowledge and the generality of arithmetical truths: logic consists of the most general 

laws there are -- laws that range over the widest domain possible -- and so if arithmetic 

is part of logic, then it must consist of similarly general laws. Additionally, since logic 

consists of such laws, it is implausible to maintain that logical knowledge is attained 

through anything like spatiotemporal intuition or the deliverances of the senses, and so 

arithmetic, as part of logic, must similarly be grasped independently of the senses via pure 
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thought, or as Leibniz might say, the intellect. Frege puts this aspect of the logicist 

enterprise eloquently in Foundations: 

The basis of arithmetic lies deeper, it seems, than that of any of the 
empirical sciences, and even than that of geometry. The truths of 
arithmetic govern all that is numerable. This is the widest domain of them 
all; for to it belongs not only the actual, not only the intuitable, but 
everything thinkable. Should not the laws of number, then, be connected 
very intimately with the laws of thought? (1980, 21, emphasis mine) 

In the famous opening sentences of The Principles of Mathematics, his first 

logicist treatise, Russell is even more explicit than Frege about collapsing the domain of 

arithmetic into that of logic: 

Pure Mathematics is the class of all propositions of the form ‘p implies q’, 
where p and q are propositions containing one or more variables, the same 
in the two propositions, and neither p nor q contains any constants except 
logical constants. And logical constants are all notions definable in terms 
of the following: Implication, the relation of a term to a class of which it 
is a member, the notion of such that, the notion of relation, and such 
further notions as may be involved in the general notion of propositions of 
the above form. (1996, 3) 

Russell later elaborates: 

The distinction of mathematics from logic is very arbitrary, but if a 
distinction is desired… Logic consists of the premisses of mathematics, 
together with all other propositions which are concerned exclusively with 
logical constants and with variables but do not fulfil the above definition 
of mathematics. Mathematics consists of all the consequences of the above 
premises which assert formal implications containing variables, together 
with such of the premises themselves that have these marks. (ibid, 9) 

Once again, mathematics is part of logic, implying that mathematical (and so arithmetical) 

knowledge is a species of logical knowledge, and so is not attained through any faculty 

involving the senses, but rather through pure thought alone. Before moving forward, it is 

important to note that none of the three founding logicists, or for that matter any 
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contemporary neologicist, is an empiricist about logic itself. The view that logical 

concepts and eventual logical knowledge are somehow abstracted or generalized from 

empirical phenomena, together with the view that mathematics is part of logic, would 

entail that mathematical concepts and knowledge are also abstractions from empirical 

phenomena. This is emphatically not the view of logic that the logicist adopts; indeed, 

one of the purposes of reducing mathematics to logic, as far as the logicist is concerned, 

is to secure for mathematics the same “a priori certainty” (Godwyn and Irvine 2003, 177) 

that logic enjoys. Thus, the whole enterprise would be futile if the logicist were an 

empiricist about logic, since presumably empirical generalizations do not carry the kind 

of certainty that the logicist seeks for mathematics. 

In sum, for the logicist, some or all of mathematical knowledge is a species of 

logical knowledge, such that whatever faculty of the mind secures logical knowledge also 

secures knowledge of the requisite part of mathematics. However, there are important 

differences between the founding logicists on the subject of just how much of 

mathematics is at stake here: Russell, from the beginning of his logicist career, holds that 

all of mathematics, including such far-flung branches as analysis, projective geometry, 

and even (in his early work The Principles of Mathematics) a sort of a priori dynamics, 

which he thinks can be “considered as a branch of pure mathematics” (1996, xx). As 

Grattan-Guinness puts it, for Russell “mathematical logic (with relations) alone could 

subsume all mathematical notions, objects as well as methods of reasoning”; between 

logic and mathematics -- all of mathematics -- there is “no dividing line” (2003, 58). By 

contrast, Frege’s logicism is much more limited in scope, encompassing only arithmetic 
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and analysis; he explicitly excludes geometry from the part of mathematics that is 

knowable through logical means alone and in fact agrees to a large extent with Kant about 

the grounding of geometrical knowledge in spatial intuition. In the early pages of 

Foundations of Arithmetic, Frege makes this clear: 

We shall do well not to overestimate the extent to which arithmetic is akin 
to geometry... One geometrical point, considered by itself, cannot be 
distinguished in any way from any other; the same applies to lines and 
planes. Only when several points, or lines or planes, are included together 
in a single intuition, do we distinguish them. In geometry, therefore, it is 
quite intelligible that general propositions should be derived from 
intuition… [T]he truths of geometry govern all that is spatially intuitable. 
(1980, 19-20) 

So one of the founding logicists actually agrees with Kant about the epistemic status and 

range of application of geometry, where Kant’s view on this subject is akin to his view 

on arithmetic: to acquire knowledge of geometrical truths, it is insufficient to subject 

geometrical concepts to logical analysis, and “help must here be gotten from intuition, by 

means of which alone” (CPR B16) it is possible to come to know about geometry. But it 

is a core tenet of logicism that at least arithmetical knowledge is a species of logical 

knowledge. 

Now, recalling the results of the second chapter, some striking similarities 

between the relevant Leibnizian and logicist views emerge. The first similarity concerns 

the ultimate source of arithmetical knowledge. Both Leibniz and the logicist intend to 

establish that neither our conceptual access to arithmetical concepts, such as number 

concepts, nor our eventual knowledge of the properties of and relations among the objects 

picked out by these concepts, arises from any faculty of the mind involving the 

deliverances of the senses or abstractions therefrom. The logicists, most explicitly Frege, 
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frame much of their foundational work as a reaction against earlier views, and Kant’s 

views loom the largest. Kant holds that arithmetical knowledge ultimately cannot come 

from pure thought alone -- or what Leibniz would call the intellect -- and that the certainty 

of basic propositions such as 7+5=12 ultimately derives from our ability to “exhibit” them 

in a concrete, singular representation, foe which the faculty of intuition is required . The 

logicist holds that our knowledge of such propositions derives from pure thought alone 

and requires no such exhibition in singular perceptual representations. 

It is no surprise, then, that Frege and Russell both explicitly invoke Leibniz as a 

pre-Kantian inspiration for their own programs. Both Frege and Russell represent Leibniz 

as holding a nascent form of logicism, either about mathematics in general or arithmetic 

specifically. Russell, for his part, declares that “the general doctrine that all mathematics 

is deduction by logical principles from logical principles was strongly advocated by 

Leibniz, who urged constantly that axioms ought to be proved and that all except a few 

fundamental notions ought to be defined” (1996, 5). Frege says that “statements in 

Leibniz can only be taken to mean that the laws of number are analytic” (1980, 21). 

Beyond these general declarations, Frege seems to recognize some of the specifics of 

Leibniz’s arithmetical epistemology. He expresses the outline of my own view about 

Leibniz’s arithmetical epistemology in Foundations of Arithmetic: “Leibniz holds… that 

the necessary truths, such as are found in arithmetic, must have principles whose proof 

does not depend on examples and therefore not on the evidence of the senses, though 

doubtless without the senses it would have occurred to no one to think of them”. (1980, 

17). He also attributes to Leibniz an “inclin[ation] to regard number as an adequate idea, 
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meaning one that which is so clear that every element contained in it is also clear, or at 

least as an almost adequate one” (ibid, 27). It is debatable whether Leibniz thinks humans 

ever acquire any truly adequate ideas, but he at least thinks our ideas of numbers are clear 

and distinct, as was discussed in Chapter Two. And he does say in a passage quoted in 

that chapter that the ideas of numbers are perhaps the closest that human beings can come 

to attaining adequate ideas. 

For Leibniz, though in the actual physical and cognitive situation of human beings 

the senses in fact trigger the intellect to reason arithmetically, our access to and 

knowledge of the “principles” of arithmetic, such as the properties of numbers and the 

relations between numbers, depends in no essential way on the incidental role of the 

senses. The concepts and truths of arithmetic range over the most general domain one can 

think of: everything is countable, including things not actually or possibly sensible. It is 

the intellect that secures access to and knowledge of these concepts, and it is the intellect 

that reasons about the relations among the objects corresponding to them. Though it is 

certainly the case that Leibniz had nothing like the post-Fregean conception of logic -- 

which includes set theory -- at his disposal, the similarity between Leibniz’s view of the 

source of arithmetical knowledge and of the corresponding generality of the range of 

arithmetic, is undeniable. The reason why the early logicists find such inspiration in 

Leibniz’s philosophy of mathematics, even though most of the Leibnizian texts I have 

cited were unknown to them, is that this philosophy is informed by the same fundamental 

intuitions about the nature of arithmetic -- what it is about and where our knowledge of it 

comes from -- as theirs is. Should the issue of what counts as logic or logical knowledge 
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be brought up at this point, it must be stressed that this issue is orthogonal to the basic 

similarities illustrated here, which concern the ultimate source of arithmetical knowledge 

and the range of arithmetical concepts and truths. In the final analysis, Leibniz opposes 

essentially the same view as that against which the logicists frame much of their 

philosophical work about mathematics. 

3. Leibniz and the Logicists on the Analysis of Number 

Another central tenet of logicism, part and parcel of the project of reducing 

mathematics to logic, is that mathematical concepts must be definable through logical 

means alone. As Shapiro (2000) puts it, “the idea is that the concepts and objects of 

mathematics, such as ‘number’, can be defined from logical terminology; and with these 

definitions, the theorems of mathematics can be derived from principles of logic” (108). 

So for a logicist about arithmetic, logic is capable of furnishing the definitions of 

numbers, for example, in a way that allows for purely logical derivations of the truths of 

arithmetic. Different logicists go about defining numbers in different ways, but the 

definitions share the property of having been thought to be purely logical by those 

formulating them. Frege, for example, defines the positive integers in terms of the content 

of number statements of the form “the number of Fs is x”, for example, “the number of 

moons of Mars is two”. The content of such a statement, he argues, is “an assertion about 

a concept” (1980, 67): the statement “the number of moons of Mars is two” is an 

abbreviation of the statement “the number of the concept ‘being a moon of Mars’ is two”. 

His famous definition in these terms -- that “the number which belongs to the concept F 

is the extension of the concept ‘equal to the concept F’” (ibid, 79-80) -- only makes use 
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of vocabulary that Frege takes to be logical, such as “concept” and “extension”, and also 

the concept of one-to- one correspondence: the equality invoked in his definition, he says, 

“must be defined in terms of one-one correlation” (ibid, 74). For Frege, concepts and their 

extensions are part of the province of logic, so this definition satisfies the logicist 

desideratum about the definitions of mathematical concepts. 

Russell’s definition of number in terms of classes has much the same place in his 

own program. Russell defines “the number of a class” as “the class of all classes similar 

to the given class” (1996, 115). The notion of similarity, for Russell, falls within the 

purview of logic, for similarity is a relation. Russell is well known for having done more 

than perhaps anyone else to extend the logic available at the turn of the twentieth century 

to accommodate relations in addition to one-place predicates, and his particular brand of 

logicism is rife with the use of relations to delineate various mathematical notions. His 

Introduction to Mathematical Philosophy explains with particular clarity what it is for 

one class to be similar to another: “One class is said to be ‘similar’ to another when there 

is a one-one relation of which the one class is the domain, while the other is the converse 

domain” (1993, 16). The domain of a relation is simply “the class of those terms that have 

a relation to something” (ibid); the converse domain is simply the class of terms picked 

out by the “something”. So Russell, not unlike Frege, defines number in a way that makes 

essential use of one-to-one correspondence: a Russellian number is a class of classes that 

can be put into one-to-one correspondence. 

Finally, Dedekind’s definition of number should be noted insofar as it differs from 

Frege’s and Russell’s: Dedekind spells out the content of the concept of number ordinally, 
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rather than cardinally. In his Nature and Meaning of Numbers, he offers the following 

definition, which appears to characterize what is most naturally thought of as an ordinal 

number or a system thereof: 

If in the the consideration of a simply infinite system N set in order by a 
transformation phi we entirely neglect the special character of the 
elements; simply retaining their distinguishability and taking into account 
only the relations to one another in which they are placed by the order-
setting transformation phi, then are these elements called positive integers 
or ordinal numbers or simply numbers, and the base-element 1 is called 
the base-number of the number-series N… The relations or laws which… 
are always the same in all ordered simply infinite systems, whatever 
names may happen to be given to the individual elements, form the first 
object of the science of numbers or arithmetic. (1963, 68) 

The definition is easy enough to understand without entering into a discussion of the 

specific meanings for Dedekind of the technical terms such as “transformation”: the 

positive integers are those elements of any appropriately ordered structure, regardless of 

the identity of the elements. This definition takes the notion of ordinal number as primary, 

as the positive integers here do not correspond to the sizes of collections, but rather to the 

elements, up to isomorphism, of a particular set with the appropriate relation defined on 

it. Unsurprisingly, this passage is understood by philosophers of mathematics as the first 

elaboration of a contemporary view known as structuralism, which takes mathematical 

objects such as numbers to be nothing more than elements, up to isomorphism, of a given 

structure, or a set with relations defined on it. On this view, mathematical objects are 

individual things, but they are defined entirely in terms of the relations they bear to other 

things in the appropriate structure, without any non-relational essential properties. So 

Dedekind is usually taken to be the first logicist, but his work also inspires a rather 
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different school of thought.19
 

Like Frege and Russell, Dedekind takes himself to be 

defining number in purely logical terms: and also like Frege and Russell, what is taken as 

purely logical differs significantly from what is taken as such today, in particular the set 

theoretic notions that all three of the founding logicists employ.20 

In sum, the logicist attempts to define number in a way that makes use only of 

concepts in the province of logic. This part of the logicist project is of a piece with the 

logicist’s general enterprise: if some branch of mathematics is part of logic, then the 

concepts and objects of the branch of mathematics must be knowable -- and so definable 

-- by the same means that yield knowledge of logic. Presumably, then, the paraphernalia 

of the given branch of mathematics must be definable, and their properties and relations 

knowable, through means that involve only pure thought, devoid of reference to the 

deliverances of the senses or any kind of intuitive faculty. In particular, the constituents 

of arithmetic and their relations must be definable and knowable using the same means 

that yield definitions of logical concepts and knowledge of logic. Interestingly, Frege 

takes this particular aspect of his project to be inspired by Leibniz just as the general spirit 

of his project is so inspired. He is aware of at least one text in the Erdmann edition 

                                                
19 An elaboration of the Dedekindian roots of structuralism -- as well as an extremely detailed treatment of 
one form of the view itself, and of its purported applications, can be found in Shapiro (1997). Descriptions 
of other forms of the view can be found in Hellman (1989) and Chihara (2004) 
20  There are other notable tensions between the views of Dedekind and the other founding logicists. 
Godwyn and Irvine (2003, 178-180) note that Frege criticizes Dedekind for claiming that “numbers are free 
creations of the human mind” in the previously quoted section from Dedekind’s Nature and Meaning of 
Numbers, and also for employing the notions he does, such as the notion of a “system” and its constituents, 
which Frege apparently takes to be non-logical. The authors also note that the latter criticism is odd, 
especially considering that Frege uses the analogous notions of concept and extension. Finally, they note 
that Dedekind’s apparent claim that numbers are psychological entities may not have the import that Frege 
thinks it does. The details of this debate are beyond the scope of the present work. 
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available at the time where Leibniz “defines number as 1 and 1 and 1 or as units” (1980, 

48), and describes himself as “trying to complete the Leibnizian definitions of the 

individual numbers by giving the definitions of 0 and of 1” (ibid, 67). He does so in a 

way that allows for the definition of each positive integer in terms of the one that precedes 

it. Zero is “the number which belongs to the concept ‘not identical with itself’” (ibid, 87); 

this works because the extension of the concept “equal to the concept ‘not identical with 

itself’” is empty. The number one, then, is “the number which belongs to the concept 

‘identical with 0’” (ibid, 90). Again, exactly one thing falls under the concept ‘identical 

with 0’: namely, 0. The number two will be the number belonging to the concept 

“identical with 0 or identical with 1”, and so on. 

I have omitted many fascinating details of Frege’s definitions in order to illustrate 

a particular property of them: Frege’s general definition of number yields a specific 

characterization of the positive integer system that is recursive. In addition to defining 

“the number of F” in a way that he takes to be purely logical, he is able to produce a 

recursive definition of any given positive integer. Now, recall the analysis in Chapter 

Three of Leibniz’s definition of “number in general” and the way his definition of the 

positive integers is a case of it: number in general is a relation to unity, expressing the 

homogeneity to unity of a given quantity or collection, where homogeneity is the capacity 

to be rendered similar by a transformation. The positive integers are those relations to 

unity that express the wholeness and size of aggregates of individual unities, such that 

these aggregates can be rendered similar to unity by the removal of their constituents until 

the aggregate is indistinguishable from unity. I pointed out in Chapter Three that this 
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analysis of number yields a recursive definition of the positive integers: the number one 

is the degenerate relation to unity, expressing a collection that is already indistinguishable 

from unity. The number two is then defined in terms of the number one: two is the relation 

that expresses that an aggregate needs one constituent removed in order to be 

indistinguishable from unity. The number three is the relation that expresses that a 

collection needs two constituents removed, and so on. So it is with good reason that Frege 

takes himself to be completing a project begun by Leibniz, even if Frege did not realize 

just how close Leibniz’s characterization of the positive integer system is to that desired 

by the logicist. 

Beyond the technical similarities between Frege’s and Leibniz’s definitions, a 

more general philosophical similarity also becomes apparent between Leibniz’s 

definition of number and the general spirit of the logicist’s attempt to define number: the 

logicist defines number in a way that she takes to be purely logical, where one implication 

of the procedure is that the definition employs only concepts and principles on the same 

epistemic plane as the concepts and principles of logic. This means that no concepts or 

principles abstracted from either the deliverances of the senses or the general features of 

sensibility are allowed. This, as I have explained in earlier chapters and recapitulated in 

this one, is very similar to Leibniz’s view that the arithmetical concepts and truths fall 

within the purview of pure thought alone, in the sense that the imagination and the senses 

play merely incidental roles for arithmetical thought. Additionally, it can now be noted 

that Leibniz’s definition of number reflects this view in the same way that any 

logicistically acceptable definition of number reflects the logicist’s view of our access to 
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the concepts and truths of logic, and our corresponding access to the concepts and truths 

of arithmetic. The concepts that Leibniz employs in his own definition mirror those that 

the logicist employs in their generality and their accessibility to the intellect or pure 

thought: where the logicist might employ classes, Leibniz employs aggregates; where the 

logicist might employ equality or one-one correspondence, Leibniz employs 

homogeneity. 

4. Conclusion 

This chapter has been forward-looking, in contrast to the main body of the work. 

I have attempted here to delineate the similarities between Leibniz’s epistemological 

views about arithmetic and his definition of number, and the corresponding logicist views 

about the epistemic status of arithmetic and related efforts to define number. In 

concluding this line of investigation, it is worth noting the absence of ontological issues 

here. I have deliberately avoided the question whether Leibniz’s ontology of number is 

similar to that adopted by the logicist, simply because logicism does not commit one to 

the adoption of any particular ontology of number. This is apparent from the work of the 

early logicists, particularly Frege and Russell. In Foundations, Frege makes claims that 

prima facie seem to commit him to a Platonist view, at least for arithmetic: the subtitle of 

Chapter IV, for example, is “every individual number is a self-subsistent object” (1980, 

67), and Frege’s view that the extensions of concepts are objects seems to commit him to 

the view that numbers are objects, since his famous definition of number has it that 

numbers are extensions of certain concepts. Russell, by contrast, appears to reject 

Platonism, saying that classes are “logical fictions” which are not “part of the ultimate 
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furniture of the world” (1993, 182). But his precise view of their ontological status is 

unclear:21
 

he also says that “if we can find any way of dealing with [classes] as symbolic 

fictions… we avoid the need of assuming that there are classes without being compelled 

to make the opposite assumption that there are no classes. We merely abstain from both 

assumptions” (ibid, 184). 

In sum, logicism by itself does not imply a commitment to any particular ontology 

of number. But as mentioned in the introduction, this matters very little for the purpose 

of this chapter, which has been to show that the general logicist philosophy of arithmetic 

and that of Leibniz are similar in two key respects: in their epistemological view about 

arithmetical concepts and arithmetical knowledge, and in their effort to define number in a 

way that reflects the thesis that arithmetic is accessible to pure conceptual thought alone, 

without recourse to perception, intuition, or any other non-conceptual faculty of the mind. 

For Leibniz and for the logicist, these claims are of a piece . Indeed, the two claims lie at 

the very heart of logicism, to the extent that one can be a logicist about a given branch of 

mathematics only if one adopts these claims. The ontology that a logicist adopts for a 

given branch of mathematics only needs to be consistent with these claims; it only needs 

to ensure that the claims about definition and epistemic access hold for that branch of 

mathematics. As is clear from the work of the founders, more than one ontology will 

fulfill that purpose. Frege and Russell may adopt deeply opposed ontological views of 

number, but they are nonetheless both logicists. To the extent that Leibniz endorses the 

                                                
21 As before, see Godwyn and Irvine (2003) for a useful summary of this issue in Russell interpretation. 
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requisite fundamental claims, I argue that he also counts as a logicist, or at least as having 

anticipated logicism in a striking way. 
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General Conclusion 

The first chapter of this work surveyed several prominent attempts, in antiquity 

and the early modern period, to carry out two tasks: (1) to define “number”, thereby 

delineating the class of legitimate numbers; and (2) to give a philosophical account of the 

nature of number. There, I noted that during the Renaissance, a trend emerges of 

accepting non-integral solutions to algebraic problems without explicitly philosophizing 

about the status of non-integral numbers. Such numbers are accepted implicitly, for the 

purposes of mathematical practice, but little is said explicitly about their ontological 

standing or their legitimacy. 

Following the Renaissance, mathematicians begin to offer explicit theses about 

these numbers. These two tasks sometimes inform one another in deep ways: for example, 

Barrow’s definition of number as the sign of magnitude is intimately related to his 

philosophical account of number -- and of all mathematics -- as fully reducible to 

geometry. Numbers, for Barrow, are merely signs of magnitude because there is nothing 

more to mathematics than the study of magnitude. Furthermore, the reality of geometrical 

magnitude is grounded in the material constitution of the universe. By contrast, for 

Wallis, number is separable from geometrical magnitude -- it is a kind of abstract object 

-- but the only genuine numbers are the positive integers. Arguably, Wallis has so much 

trouble accepting non-integral numbers because unlike Barrow, he lacks the right 
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combination of a sufficiently general definition of number and a philosophy of 

mathematics to support it by metaphysically grounding the different kinds of numbers. 

This work has outlined an interpretation of Leibniz’s definition of “number in 

general” and united it with his ontological claim that numbers are relations. It has become 

clear that Leibniz's approach to tasks (1) and (2) both differs from and represents a 

significant advance over that of his predecessors. Leibniz has both a fully general 

definition of number and a philosophy of mathematics that supports it to a significant 

extent. Barrow has both of these as well, but as I have argued, Barrow’s mathematics is 

distinctly non-modern in reducing all of mathematics to geometry and even geometry to 

the material world. By contrast, Leibniz’s conceptual and ontological characterization of 

number is intended to include all the positive real numbers as equally legitimate and to 

give them robust ontological standing in his philosophical system as relations. While 

Barrow’s approach rules out the study of numbers in any way that is not fully geometrical, 

Leibniz’s approach is intended to allow for the study of numbers without reference to 

geometrical magnitude. The study of number, on Leibniz’s account, is independent of the 

study of quantity. In fact, as we have seen, Leibniz holds that arithmetical knowledge is 

prior to geometrical knowledge -- prior to knowledge of quantity -- insofar as number is 

required for the distinct apprehension of magnitude. Number theory, as the study of the 

properties of the positive integers in a non-geometrical fashion, had existed from 

antiquity. Thus, it can be said that one dimension of the importance of Leibniz’s account 

of number lies in its opening up the possibility of a general study of what we now call the 

real numbers, including the irrational numbers, without reference to quantity. 
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We have also had occasion to observe the deep internal complexity of the account 

of number Leibniz proposes. His twofold treatment of number holds that numbers are 

those entities that fall under the conceptual category of “that which is homogeneous to 

unity”, and, equivalently, that they are relations that express the homogeneity to unity 

borne by possible aggregates or -- in the case of irrationals -- by possible things that 

cannot be understood as aggregates. Ultimately, however, Leibniz's account of number 

only allows him to accommodate irrationals at a purely conceptual level, leaving us 

without a mathematically rigorous procedure for generating any given irrational number 

by means of an infinite series. Additionally, Leibniz's account of number involves him in 

extremely thorny philosophical difficulties concerning the status of negative and complex 

numbers, to the extent that he is logically committed to their existence, though he 

adamantly denies any such commitment in his writings. Finally, I have argued that 

Leibniz's epistemology of mathematics -- and of number in particular -- lines up well with 

his definitional and ontological views on number, and that his definitional and 

epistemological efforts to understand the nature of number anticipate those of the 

founding logicists along several dimensions. 

In the final analysis, I wish the take-home point of this work to be the following. 

Despite Leibniz's inability, on his account of number, to demonstrate exactly how 

irrationals can be understood as conceptually coherent, existent entities, what he offers 

us is an account that represents a significant, original advance over those of his 

predecessors. He threads the eye of the needle insofar as he avoids reducing number to 

quantity, and so trivializing the very concept of number (as Barrow does), while 

simultaneously making a substantial effort to accommodate irrationals. While 



167 

 

Wallis -- who also holds that number is conceptually independent of magnitude -- is 

unsure even whether fractions exist, Leibniz formulates an account that straightforwardly 

accommodates fractions and at least provides a way forward toward understanding the 

nature and status of irrational numbers. 

In closing, I will mirror a remark I made in my general introduction. Leibniz is 

not primarily known, except in certain restricted domains (i.e. insofar as he has well-

known views on the fundamental concepts involved in the calculus) as a philosopher of 

mathematics. He is certainly, at any rate, not known as a philosopher with rich or complex 

views on the nature of number -- on what numbers are, on what numbers count as 

conceptually legitimate, on what ontological status numbers have, or on how we acquire 

knowledge of numbers. If I have established anything conclusive in this work, it should 

be that at the very least, Leibniz should be recognized as a philosopher who has such 

views, and as a philosopher who does not produce them in a vacuum, but rather in 

response to the intellectually chaotic climate in seventeenth-century philosophy of 

mathematics, and in such a way as to bring together the most promising aspects of the 

competing views to which he responds. The result is a philosophical account of number 

that improves upon those which came before it, and which anticipates the modern 

mathematical conception of real number as well as a movement in the philosophy of 

mathematics -- logicism -- that is still popular today in various updated forms. Leibniz is 

often called the last universal genius, and it has been the purpose of this work to expose 

and interpret an aspect of his genius that has gone unnoticed by scholars of all stripes. It 

is my hope, in closing this work, that at the very least, this aspect of his genius can now 

see the light of day. 
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