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Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media 

Michael B. Kowalsky *, George J. Moridis 

Earth Sciences Division, Lawrence Berkeley National Laboratory 

 

Abstract 

In this study we compare the use of kinetic and equilibrium reaction models in the simulation of gas (methane) 
hydrate behavior in porous media. Our objective is to evaluate through numerical simulation the importance of 
employing kinetic versus equilibrium reaction models for predicting the response of hydrate-bearing systems to 
external stimuli, such as changes in pressure and temperature. Specifically, we (1) analyze and compare the 
responses simulated using both reaction models for natural gas production from hydrates in various settings and for 
the case of depressurization in a hydrate-bearing core during extraction; and (2) examine the sensitivity to factors 
such as initial hydrate saturation, hydrate reaction surface area, and numerical discretization. We find that for large-
scale systems undergoing thermal stimulation and depressurization, the calculated responses for both reaction 
models are remarkably similar, though some differences are observed at early times. However, for modeling short-
term processes, such as the rapid recovery of a hydrate-bearing core, kinetic limitations can be important, and 
neglecting them may lead to significant under-prediction of recoverable hydrate. Assuming validity of the most 
accurate kinetic reaction model that is currently available, the use of the equilibrium reaction model often appears to 
be justified and preferred for simulating the behavior of gas hydrates, given that the computational demands for the 
kinetic reaction model far exceed those for the equilibrium reaction model. 

Keywords: Gas hydrates; Dissociation; Kinetics; Depressurization; Thermal stimulation 

 

1. Introduction 

1.1. Background 

Gas hydrates are solid crystalline compounds in which gas molecules (referred to as guests) are lodged within the 
lattices of ice crystals (called hosts). Under suitable conditions of low temperature and high pressure, a gas G will 
react with water to form hydrates according to   

G(g)+NHH2O(w)=G� NHH2O(h), ð1Þ  

where NH is the hydration number and g, w, and h refer to gas, water, and hydrate, respectively. Of particular 
interest are methane hydrates (G = CH4), which represent the majority of natural gas hydrates. 

The amount of hydrocarbons residing in hydrate deposits is estimated to substantially exceed all known 
conventional oil and gas resources [1–3]. Such deposits occur in two distinct geologic settings where the necessary 
low temperatures and high pressures exist for their formation and stability: beneath the permafrost and in ocean 
sediments. 

Because of the sheer size of the resource and the everincreasing energy demand, hydrocarbon hydrates are attracting 
increasing attention as a potential alternative energy resource [4,5]. With hydrates being strong cementing agents, 
the geomechanical behavior of hydrate-bearing sediments in response to thermal and mechanical stresses (natural or 
anthropogenic) is of particular importance in marine systems because it may lead to deteriorating structural integrity 
of the oceanic sediment formations that support structures such as hydrocarbon production platforms [6–8]. There is 
also evidence linking the large-scale behavior of gas hydrates to instances of rapid global warming in the geologic 
past [9,10]. The scientific and economic implications of all these issues have necessitated the development and 
evaluation of models that can accurately predict the behavior of gas hydrates in porous media. 

As Makogon [11] indicated, the three main methods of hydrate dissociation are (1) depressurization, in which the 
pressure P is lowered below the equilibrium pressure Pe for hydrate formation at the prevailing temperature T; (2) 
thermal stimulation, in which T is raised above the equilibrium temperature Te for hydrate formation at the 
prevailing P; and (3) through the use of inhibitors (such as salts and alcohols) which cause a shift in the Pe–Te 
equilibrium because of competition with the hydrate for guest and host molecules. Dissociation results in the 
production of gas and water, with a corresponding reduction in the saturation of the solid hydrate phase. For the case 
of methane hydrates, the endothermic dissociation reaction is: 



CH4 � NHH2O(h)=CH4(g)+NHH2O(w), ð2Þ  

where the hydration number NH is approximately 6. Depending on the thermodynamic state, the water produced in 
the reaction of Eq. (2) can exist as liquid (the common product of dissociation in geologic systems) or ice. Two 
approaches are possible for predicting hydrate dissociation. The first considers the reaction of Eq. (2) to occur at 
chemical equilibrium, while the second treats it as a kinetic reaction. The equilibrium relationship between Pe and 
Te is described by Fig. 1 [4]. In the equilibrium model, the system is composed of heat and two mass components 
(CH4 and H2O) that are distributed among four possible phases: the gas phase (composed of CH4 and H2O vapor), 
the aqueous phase (composed of H2O and dissolved CH4), the solid ice phase (involving exclusively H2O), and the 
solid hydrate phase. Thus, the system always exists at equilibrium, with the occurrence of the various phases and 
phase transitions determined by the availability and relative distribution of heat and of the two components. 

In the kinetic model, the system is composed of heat and three mass components: CH4, H2O, and CH4 Æ NHH2O. 
As opposed to the equilibrium model, the hydrate is not treated as a thermodynamic state of CH4 and H2O but as a 
third distinct compound. In this case the solid hydrate phase is considered to be composed exclusively of the CH4 Æ 
NHH2O component. Phase changes and transitions are determined by a kinetic rate of dissociation or formation, 
which acts as a source/sink term and is given by the equation of Kim et al. [12]: 

dmH dt ¼ K0 exp � E RT �  � F AAðfe �  f Þ; ð3Þ 

where f and fe are the values of fugacity (Pa) for the pressure at temperature T (� C) in the gas phase and at 
equilibrium, respectively; E is the hydration activation energy (J mol� 1); K0 is the hydration reaction constant (kg 
m� 2 Pa� 1 s� 1); A is the surface area (m2) for the reaction; FA is the area adjustment factor [dimensionless], 
which accounts for deviations from the assumption of grain sphericity used in calculating A [5]; and R is the 
universal gas constant (J mol� 1 C� 1). Values of K0 and the E which are used in this study have been determined 
from laboratory data in pure hydrate systems [12,13] and in hydrate-bearing media [14]. 

It is difficult to know a priori which reaction model, equilibrium or kinetic, is most appropriate for the description of 
problems of hydrate dissociation in porous media. While the kinetic model may more accurately model hydrate 
dissociation, the use of the equilibrium model may be justified in some cases due to its computational efficiency (as 
it involves one less equation per grid block than the kinetic one) and because predictions made using both models 
are in many cases remarkably similar [5]. Prior to this study, we worked with the assumption that, in general, 
thermalstimulation-induced production is accurately described by an equilibrium model, while a kinetic model may 
be more appropriate for depressurization-induced dissociation. 

 

1.2. Objectives 

The objective of this study is to investigate through numerical simulation the conditions under which the use of each 
of the two models (equilibrium and kinetic) is appropriate, and to evaluate differences in predictions from the two 
models. Specifically, we aim (1) to investigate whether the rate of CH4–hydrate dissociation in a variety of realistic 
situations is limited by kinetics; (2) to compare model predictions obtained by using the kinetic and equilibrium 
models of dissociation for a wide range of production scenarios and geological settings; and (3) to investigate the 
relative sensitivity of the two dissociation models to a number of parameters, including numerical discretization, 
initial hydrate saturation and the area adjustment factor FA (Eq. (3)). 

 

1.3. Test cases 

We investigate four test cases (A–D). The first two cases involve production from a Class 3 hydrate accumulation 
[15], which is characterized by a hydrate-bearing layer (HBL) underlain and overlain by impermeable layers. In Case 
A dissociation is induced by thermal stimulation, in which the temperature of the HBL is increased above Te at the 
prevailing pressure (Fig. 1), while in Case B dissociation is induced by depressurization, in which the pressure of 
the HBL is reduced below the Pe at the prevailing temperature (Fig. 1). In Case C we examine production at a 
constant rate from a Class 1 hydrate accumulation. This type of accumulation is characterized by a HBL overlain by 
an impermeable layer and underlain by a two-phase zone of water and mobile gas, and it has been identified as a 
particularly promising target for gas production [15,16]. In Case D, we simulate the response of a hydrate-bearing 
core as it is extracted from depth (in situ conditions) and transported to the surface. 

 



1.4. Numerical simulator 

The numerical studies in this paper were conducted using TOUGH-Fx/HYDRATE [5], which models the 
nonisothermal hydration reaction, phase behavior and flow of fluids and heat under conditions typical of natural 
CH4–hydrate deposits in complex formations. It includes both equilibrium and kinetic models of hydrate formation 
and dissociation and can handle any combination of the possible hydrate dissociation mechanisms (i.e., 
depressurization, thermal stimulation, and inhibitor-induced effects). TOUGH-Fx/HYDRATE accounts for heat and 
up to four mass components (i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols) that 
are partitioned among four possible phases (gas, liquid, ice or hydrate phases, which may exist individually or in 
any of 12 possible combinations). 

 

2. Case A: thermal-stimulation-induced production in hydrate accumulation  

The HBL of the Class 3 hydrate accumulation in this case has a thickness of 10 m and involves a cylindrical 
domain with maximum radius rmax = 1000 m. The domain was divided into 600 grid blocks in the radial 
direction, beginning at the well radius rw = 7.5 cm, and employing a spacing that is Dr = 0.05 m near the well and 
that increases logarithmically away from the well. The initial hydrate and aqueous phase saturations (Sh and Sa, 
respectively) are spatially uniform, with Sh = Sa = 0.5, and the gas phase saturation Sg = 0. The most relevant 
properties of the model are listed in Table 1. 

Thermal dissociation is expected to be most useful for cases in which the HBL contains high initial Sh, 
corresponding to drastically reduced permeability (rendering depressurization methods impractical). Thermal 
stimulation is accomplished by maintaining the well at a constant pressure (equal to the initial HBL pressure) and 
an elevated temperature of TW = 45 _C (see Table 1). Heat flows from the well into the HBL mainly by conduction 
at a rate that declines over time as the temperature in the vicinity of the well increases. 

 

2.1. Pressure, temperature and phase saturations 

Fig. 2 shows the radial distributions of pressure, temperature, and phase saturations after 30 days of heating, as 
obtained from simulations performed using the kinetic and equilibrium reaction models. 

By this time, the temperature front (Fig. 2a) has propagated into the HBL and induced dissociation over a distance 
of 1.3 m, resulting in the evolution of gas (originating exclusively from the hydrate, Fig. 2b) and an increase in 
pressure (Fig. 2a). In the region behind the dissociation front (r < 1.3 m), the hydrate has completely dissociated 
(Sh = 0), while Sw and Sg have both increased (as water and gas are products of dissociation) from their initial 
values (Fig. 2b). We observe a sharp increase in Sh over a short distance immediately ahead of the dissociation front 
(r > 1.3 m), mirrored by a corresponding sharp decline in Sa. This is caused by secondary hydrate formation ahead 
of the advancing front, caused by (a) outward flow of a fraction of the released gas (toward the HBL outer boundaries) 
and (b) the increased pressure (Fig. 2a) at the dissociation front caused by the gas release. Beyond these saturation 
spikes, the phase saturations remain nearly equal to the initial conditions. Note that the pressure rise at the 
dissociation front indicates fluid flow in both directions and that the temperature distribution (Fig. 2a) is marked by 
a slight discontinuity in the vicinity of the front. The most important observation from reviewing Fig. 2 is that, 
although slight deviations in the phase saturations and pressure are observed near the dissociation front (where the 
saturation spikes are observed), the profiles obtained from the kinetic and equilibrium reaction models are nearly 
identical. 

 

2.2. Gas release and production patterns 

Fig. 3 shows the gas release and production patterns for the kinetic and equilibrium dissociation models during the 
30-day heating period. Specifically, the following quantities are examined: (a) the volumetric rate QR of CH4 release 
into the formation (Fig. 3a); (b) the volumetric rate QP of CH4 production at the well (Fig. 3b); and (c) the 
cumulative volumes VR and VP of CH4 released in the formation and produced at the well, respectively (Fig. 3c).  

The rate of CH4 released to the system during thermal stimulation is shown in Fig. 3a. To allow comparison 
between the kinetic and equilibrium release rates QR for the kinetic case is averaged in time using a moving window 
of 5 days. For both cases, QR is similar, approximately 50 m3/day. Without performing such averaging for the 
kinetic case of QR, the fluctuations are so strong and drastic that a meaningful comparison can not be made with the 
equilibrium case. 



The periodic nature of QR in the equilibrium case (Fig. 3a) is related to the spatial discretization of the domain. As 
the temperature front propagates through the system, individual grid blocks begin to warm sequentially. 
Dissociation in a given grid block begins when T increases above Te at the prevailing pressure P. QR initially 
increases with time as the grid block warms, and continues increasing until hydrate dissociation has reduced Sh to a 
point at which an increasing fraction of the incoming heat is expended in increasing the temperature of the porous 
medium rather than fueling dissociation. QR begins to decrease past that point. Dissociation does not progress 
significantly into the next grid block because of the steepness of the dissociation front (see Fig. 2). Thus, the hydrate 
dissociation pattern exhibits the periodic pattern observed in Fig. 3a and b, coinciding with the time for dissociation 
of individual grid blocks in the 1D radial system. 

Note that QR becomes negative at some times (Fig. 3a). This phenomenon results from the fact that the pressure 
increase caused by dissociation in a grid block causes gas to migrate into the adjacent grid block beyond the 
dissociation front, where the temperature is still relatively low, causing hydrate formation due to the increased 
pressure. This explains why Sh increases to nearly 0.8 near the dissociation front in Fig. 2b. The rate at which CH4 
is produced at the well (QP) is expected to be lower than QR since what is released to the formation does not reach 
the production well instantaneously, if at all. Fig. 3b shows that for both the kinetic and equilibrium cases, the 
production rates are very similar. 

Similarly, the total volumes released from the formation and produced at the well (VR and VP, respectively) are 
found to be nearly identical for the kinetic and equilibrium models (Fig. 3c). Similar to the discussion above, VP 
comprises the volume of gas that reached the well by a given time, and is therefore less than what is released to the 
entire system by that time. 

 

2.3. Sensitivity to initial hydrate saturation, spatial discretization and reaction area 

In addition to the reference case with Sh = 0.5, we considered two additional values in order to determine the effect 
of hydrate saturation on the system response using the equilibrium and kinetic models. The VR and VP predictions 
made using the equilibrium and the kinetic models follow the same pattern as those discussed above for the reference 
case (Fig. 4). The predictions made when employing the equilibrium model are practically identical to those from 
the kinetic model for Sh = 0.75, while the two predictions exhibit only very minor differences for an initial Sh = 
0.25. 

In order to examine the sensitivity of the results to spatial discretization, we performed a simulation with coarser 
near-well discretization (0.10 m). In this case the QR and QP rates and the VR and VP volumes are similar for both 
dissociation models (Fig. 3d–f). Compared to the simulation performed using finer discretization, the periodicity of 
QR approximately doubled (mirroring the increase in Dr) because of the longer time needed for the dissociation front 
to propagate through the length of individual grid blocks. However, the total volumes released to the system and 
produced at the well are similar to the finer discretization case. 

Since the area available for heat transfer in the hydration reaction could conceivably cause differences between 
predictions made using the kinetic and equilibrium reaction models, we conducted a series of simulations with 
decreasing values of the area adjustment factor FA (varying from the reference value of 1–0.001) to investigate the 
issue. The results in Fig. 5a indicate that a kinetic model with decreasing FA results in correspondingly lower 
production rates QP than those predicted in the equilibrium case. However, the QP predictions differ substantially 
only at very early times, and appear to converge for times greater than 1 day. Thus, with the exception of at early 
times or for very short study periods (e.g., which might apply to laboratory studies), QP appears to be independent 
of FA (Fig. 5a) in this scenario of thermally induced dissociation. Note that the early QP differences observed for 
different FA values appear inconsequential in the prediction of the overall production volume VP in Fig. 5b, which 
shows almost complete insensitivity to FA. This is because the early QP differences persist for a very short time and 
involve very small volumes. 

Predictions of thermally induced gas dissociation and production are practically indistinguishable when using either 
the kinetic or the equilibrium model (including for varied levels of initial hydrate saturation, near-well discretization, 
and reaction area in the kinetic model), implying that there is no kinetic limitation to gas production from HBL by 
means of thermal stimulation. 

 

 

 



3. Case B: depressurization-induced production in hydrate accumulation 

The main difference between Cases A and B is the production method. In Case B production is induced by 
depressurization, an approach which is suitable in Class 3 hydrate accumulations if reasonably high fluid flow rates 
through the HBL are possible (i.e., for reasonably high intrinsic permeability and low initial hydrate saturation). By 
withdrawing reservoir fluids at the well, the pressure in the HBL is made to decrease. Depressurization begins when 
the pressure in the HBL falls below the hydration pressure at the prevailing temperature in the HBL. Because the 
dissociation reaction is highly endothermic, the system can cool rapidly during depressurization, potentially creating 
ice, which can dramatically reduce the permeability of the system. To mitigate this effect by maintaining a warmer 
temperature, a constant source of heat is added at the well (in this case this is accomplished in the model by setting 
a constant temperature at the well). 

The HBL has a thickness of 10 m and is modeled in this case using radial coordinates with a maximum radius of 
10,000 m and a total of 254 grid blocks. Radial spacing Dr begins at 5 cm and increases logarithmically away from 
the well. The initial phase saturations are similar to the previous case (Sh = Sa = 0.5, and Sg = 0). The most 
relevant properties of the model are listed in Table 1. Below we discuss the overall behavior of a HBL undergoing 
depressurization-induced dissociation and evaluate the sensitivity of the predictions to the initial hydrate saturation 
and the area adjustment factor FA. 

 

3.1. Pressure, temperature and phase saturations  

The distributions of pressure and temperature are shown in Fig. 6a for a simulation time of 30 days after the onset of 
depressurization. Whereas a sharp dissociation front (spanning a fraction of a meter) was evident in the case of 
thermal stimulation (Case A, Fig. 2), depressurization results in a wide zone of dissociation (spanning tens of 
meters). This occurs because the propagation speed of the pressure front in a depressurization regime significantly 
exceeds that of the temperature front in thermal stimulation, thus inducing dissociation over large regions (spanning 
multiple grid blocks). As expected, the temperature decreases in the zone of dissociation (Fig. 6a) due to the 
endothermic nature of the hydrate dissociation reaction. 

The corresponding phase saturation profiles indicate that the hydrate has been completely dissociated for radii less 
than 3 m, while the region between 3 m and 80 m is still undergoing dissociation (Fig. 6b). Note that the 
distributions are nearly identical for both the equilibrium and kinetic models. Ice formation did not occur during this 
simulation. 

 

3.2. Gas release and production patterns 

The CH4 release and production rates QR and QP and total volumes VR and VP for this case are shown in Fig. 7a–
c. Averaging of QR for the kinetic case was again performed using a moving window of 5 days in order to facilitate 
comparison of the kinetic and equilibrium cases (Fig. 7a). 

The production rate QP declines smoothly with time (Fig. 7b), as opposed to the periodic response observed in the 
case of thermal stimulation (Case A, Fig. 3b). This is caused by the wide dissociation zone created during 
depressurization which allows dissociation to occur simultaneously over a large region (and a large number of grid 
blocks). 

The rates QP and QR are similar for both the kinetic and equilibrium reactions models (Fig. 7c), as are the volumes 
VR and VP (Fig. 7c). A slight difference in the volumes VR is seen, though the relative difference decreases with 
time. 

 

3.3. Sensitivity to initial hydrate saturation and reaction area 

Analogous to Fig. 7a–c, the sensitivity of the differences between reaction models for lower initial hydrate 
saturation is shown in Fig. 7d–f. The overall affect of decreasing the initial Sh from 0.5 to 0.25 is a decline in VP, 
which results from the decreased amount of hydrate available for dissociation (compare Fig. 7b and e). Note that 
lower Sh leads to larger QR discrepancies, though still relatively small, between kinetic and equilibrium predictions. 

The early-time (t < 1 day) production rates are given in Fig. 8 for the two cases of initial hydrate saturation and for 
values of the area adjustment factor FA decreasing by up to three orders of magnitude. For the case of initially lower 
Sh (Fig. 8b), the production rate increases at first more rapidly and to a higher value than for the case of initially 



higher Sh (Fig. 8a). The relative permeability of the system is higher in the lower saturation case allowing gas to 
reach the production well more quickly. By simulation time t = 1 day, however, this trend reverses, with the 
production rate for the lower saturation case decreasing faster and remaining lower than for the higher saturation 
case due to the decreased amount of hydrate available for dissociation. Decreasing FA in the kinetic reaction model 
delays and decreases the early-time rise in production relative to the equilibrium case, though the decrease is 
relatively larger with lower hydrate saturation. The effect of FA is seen to only be a factor for early times (t < 0.1 
days). Similar to the case of thermal stimulation, there appears to be no kinetic limitation to gas production from 
Class 3 hydrates by means of depressurization-induced hydrate dissociation over time frames relevant to production. 

 

4. Case C: constant-rate production in hydrate accumulation 

This case involves production in a Class 1 hydrate system in which a 15 m thick HBL underlies an impermeable 
layer and overlies a 15 m thick two-phase zone of gas and water (Fig. 9). The upper and lower impermeable (clay) 
layers permit the flow of heat but not fluids. 

The hydrate system is modeled using a 2D cylindrical domain with a maximum radius of 550 m and a vertical span 
of 90 m. Discretization in the vertical direction equals 25 cm in the HBL and 1 m in the two-phase zone, and ranges 
between 25 cm and 7 m in the impermeable layers. Radial spacing Dr increases gradually from 15 cm to 35 m. 

Fluids are withdrawn at a constant mass rate over a screened portion of the well (see Fig. 9). To alleviate the 
possibility of secondary hydrate formation in the vicinity of the well during production, heat is added to the well 
over this interval of the well at a rate of 12.5 J/s. 

Initially, the hydrate saturation in the HBL equals 0.7. The distributions of aqueous and gas saturation in the HBL 
and in the underlying zone are non-uniform and determined using the equilibration procedure discussed in [16]. In 
order to obtain an equilibrated model that maintains the temperature and position (typically known) at the bottom of 
the HBL, the appropriate boundary conditions and initial conditions must be determined. For this purpose we use a 
two-step equilibration procedure [16]. See Table 2 and Fig. 9 for a description of the most relevant model 
parameters used in this simulation. 

Fig. 10a–c show the phase saturation distributions after 2 months of production. The respective differences between 
the kinetic and equilibrium models are shown in Fig. 10d–f. The main differences occur in the vicinity of the 
dissociation front over a narrow band. Note that the changes in phase saturation due to production occur within 5 m 
of the well, and that at larger radii values, such as at 50 m, the vertical phase saturation distributions reflect those of 
the non-uniform initial conditions. 

 

4.1. System response during production 

The predicted QR curves from the equilibrium and kinetic reaction models over the 2-month simulation period are 
shown in Fig. 11a. During the first day, the QR rates for both models are in close agreement; the rate for the kinetic 
model slightly fluctuates around the smoothly varying rate of the equilibrium model. At later times, QR for the 
kinetic case rises gradually with small-scale fluctuations. In contrast, much larger fluctuations are observed for the 
equilibrium case, beginning at the t = 1 day and continuing for about 45 days, because the equilibrium model is 
less thermodynamically stable than the kinetic model. Small changes in thermophysical properties and conditions 
(pressure, temperature and saturations) can result in abrupt changes, introducing slight overshooting of primary 
variables at a given time step. Though this is corrected in the next time step, in which the imbalance caused by the 
drastic swing is redressed by a state and phase reversal. As shown in Fig. 11 the fluctuations are pronounced during 
the early stages of production (when the most abrupt changes occur). However, the mean of these fluctuations closely 
follows the kinetic prediction. After 45 days, the kinetic and equilibrium models once again tend toward the same 
rate. 

The released volumes VR for the kinetic and the equilibrium models (corresponding to the QR in Fig. 11a) are 
shown in Fig. 11b. The volumes of released gas continuously increase for both cases, though that for the kinetic 
case initially lags slightly behind (the relative difference is 15% at 60 days, and is the maximum deviation to be 
observed during the simulation); the relative difference between released gas volumes is expected to decrease with 
simulation times greater than 60 days, considering that release rates have reached a similar level by 60 days (Fig. 
11a). This is supported by the derivative dVR/dt values, which are nearly the same for the kinetic and equilibrium 
models by 60 days. 



For this case we conclude that (a) measurable (but still small) deviations between kinetic and equilibrium 
predictions are observed only at very early times (at which the deviations are at their maximum level), and (b) 
ultimately there appears to be no kinetic limitation to gas production from hydrates by means of depressurization in 
realistic production scenarios from Class 1 accumulations. The second conclusion is consistent with the 
observations of Hong and Pooladi-Darvish [20] in their study of depressurization-induced production from hydrate 
accumulations. 

 

5. Case D: response of hydrate-bearing core during extraction 

In this case we examine the response of a hydrate core as it is raised from a HBL at a depth of 700 m to the surface. 
Understanding the behavior of hydrate-bearing samples during and after core recovery is of great importance since 
detection of cores is used in practice to infer the presence and amount of hydrate in the subsurface. 

The core modeled in this study has a length L = 3.0 m and a radius of 3.13 cm. Neglecting the effects of gravity 
across the length of the core, we take advantage of symmetry and model only half of it (Fig. 12). Using a very fine 
grid to describe the domain, discretization along the vertical axis ranges between Dz = 0.5 cm and Dz = 1 cm, while 
discretization in the radial direction is even finer, ranging between Dr = 0.1 cm and Dr = 0.2 cm. A description of 
the model properties used in this simulation is given in Table 2. 

The core is assumed to have uniform initial conditions of P = 9.372 MPa and T = 12 _C, and uniform phase 
saturations of Sh = Sa = 0.5 and Sg = 0. The bottom of the core (and the top, given the symmetry) is in contact 
with drilling mud, which is assumed to remain at a constant temperature of 2 _C. (In addition, a thin gap between 
the core and the mud is modeled at the outer radius of the core, allowing additional contact between the drilling 
mud and the core.) 

To simulate the decreasing pressure to which the core is exposed (and which is the main dissociation-inducing 
mechanism) as it is raised in the borehole toward the surface, a time-varying boundary condition was applied to the 
portion of the core in direct contact with the mud. The time-variable boundary involved a linearly decreasing 
pressure from its initial level of P0 = 9.372 MPa to atmospheric pressure (P = 0.101 MPa) over a period of 20 min, 
which is assumed to be the length of time required for the core to reach the surface. 

 

5.1. Evolution of phase saturations 

The evolution of the phase saturations with time, as predicted by the equilibrium model, is shown in Fig. 13. No 
hydrate dissociation is observed in the first 12.5 min of the core ascending the wellbore. At time t = 15 min, the 
effects of dissociation are evident (Fig. 13a), and are most pronounced at the parts of the core in direct contact with 
the variable-pressure boundary, i.e., the core ends (top or bottom, given the symmetry of the problem) and the outer 
perimeter of the core (where the core barrel provides an imperfect seal at approximately r = 3 cm in Fig. 13). Hydrate 
dissociation then proceeds rapidly, advancing by 0.4 m in 2.5 min (from t = 15.0 min to t = 17.5 min), and another 
0.35 m in the next 2.5 min (from t = 17.5 min to t = 20 min). 

This case differs from the previous ones in that the formation of ice occurs. Ice forms because of the rapid temperature 
drop caused by the strongly endothermic reaction of hydrate dissociation (Fig. 13b). The water saturation (Fig. 13c) 
decreases in the regions where both ice formation and gas evolution occur because it is expelled as ice expands. The 
expelled water accumulates near the perimeter of the core barrel and at the ends of the core (only one end is depicted 
in Fig. 13, at the bottom of each plot), where a higher Sa is observed. Note the heterogeneous distribution of the Si 
and Sa once ice begins forming. 

The corresponding phase saturation distributions for the kinetic reaction model are shown in Fig. 13d–f. Note that 
the onset of hydrate dissociation is delayed (Fig. 13d) relative to the equilibrium case. Moreover, dissociation now 
occurs over a large zone, creating a smooth transition from the hydrate-free region at the bottom of the core to the 
region where hydrate remains (as opposed to the sharp boundary observed in Fig. 13a). The ice distribution is 
similarly smoothly varying (Fig. 13e), as is the distribution of water saturation (Fig. 13f). 

Similar to Case C, thermodynamic instability and abrupt changes occur in response to the imposition of the 
equilibrium model. Because of the small grid blocks and the sensitivity to pressure and temperature, dissociation 
leads to ice formation and phase distribution adjustments (often abrupt) that satisfy equilibrium. This cannot be 
corrected within the same grid block in the next time step (because of the slow response of the solid phases, 
especially ice), but it is expressed in an adjacent grid block, thus keeping the entire system in balance. Thus, the 
rapid dissociation and emergence of ice significantly change the phase distribution patterns. 



5.2. System response during production 

The rate of methane release from the core during its 20 min ascent to the surface is shown in Fig. 14a. The 
corresponding volume of CH4 released from the core during this process is shown in Fig. 14b. Note that the use of 
the equilibrium reaction model for this case would result in significant overestimation of the amount of hydrate lost 
during core extraction, relative to the prediction made using the kinetic model. 

In a short-term process such as the rapid core recovery, kinetic limitations can be important and ignoring them may 
lead to serious under-predictions of the recoverable hydrate in cores. 

 

6. Summary and conclusions 

The objectives of this paper were to evaluate through numerical simulation the importance of employing kinetic 
versus equilibrium reaction models for predicting the behavior of hydrate-bearing systems in a variety of settings. 
Four test cases were considered. 

The first case (Case A) involved thermal stimulation in a Class 3 hydrate accumulation. Predictions of thermally 
induced gas dissociation and production were practically indistinguishable when using either the kinetic or the 
equilibrium model (including for varied levels of discretization, initial hydrate saturation, and reaction area in the 
kinetic model), and there appears to be no kinetic limitation to gas production from HBL by means of thermal 
stimulation. As seen in the second case (Case B), which also considered a Class 3 hydrate accumulation, there also 
appears to be no kinetic limitation to gas hydrate production from depressurization-induced production. 

The third case (Case C) considered constant-rate production in a Class 1 hydrate accumulation. Small deviations 
between kinetic and equilibrium predictions were observed only at very early times. For time scales of interest in 
production, there appears to be no kinetic limitation to gas production from hydrates in realistic production 
scenarios from Class 1 hydrate accumulations. 

The fourth case (Case D) examined the response of a hydrate-bearing core during rapid core recovery. This case 
represents one scenario in which the choice of reaction model is of great consequence. In a short-term process, such 
as this one, kinetic limitations can be important, and ignoring them may lead to significant under-prediction of the 
recoverable hydrate in cores. 

It should be noted that the kinetic processes describing hydrate dissociation are incompletely understood, and that 
further advances may impact the results described here, though not necessarily the conclusions. For example, it may 
be possible to improve the model developed by Kim and Bishnoi [12], as given in Eq. (3), as it is based on a 
relatively simple first-order rate law, and the dissociation experiments performed in order to develop it were 
conducted under conditions considerably far from equilibrium, which may serve as a potential source of bias. 
Furthermore, the model does not account for potential nucleation phenomena, resulting in instantaneous formation of 
gas hydrates, which may affect the simulated processes we observe occurring at dissociation fronts during 
production. 

In conclusion, assuming validity of the most accurate kinetic model that is currently available for modeling the 
dissociation of gas hydrates in porous media, the results of this study indicate: (1) the equilibrium reaction model is 
a viable alternative to the kinetic model for a wide range of large-scale production simulations; and (2) the kinetic 
reaction model appears to be important for accurately modeling short-term and core-scale simulations. 
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