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Abstract

The dual leucine zipper–bearing kinase (DLK) and leucine zipper–bearing kinase (LZK) are 

evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of 

stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in 

neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their 

function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in 

the multicellular response to injury and in disease. Of particular note is the potential link of these 

kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological 

contexts under which these kinases are activated, as well as the signal transduction mechanisms 

that mediate specific functional outcomes. In this review we first provide a historical overview of 

the biochemical and functional dissection of these kinases. We then discuss recent findings on 

regulating their activity to enhance cellular protection following injury and in disease, focusing on 

but not limited to the nervous system.
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INTRODUCTION

MAPKKKs (or MAP3Ks) are key controllers in signal transduction and act as the upstream 

kinases in the phosphorelay reaction in classical mitogen-activated protein kinase (MAPK) 

cascades. MAPKKKs sense changes in the environment and internal states of cells, 

triggering signal-dependent and cell-specific responses. Around the mid-1990s, during an 
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era of kinase discovery, two closely related brain-enriched kinases were reported: the dual 

leucine zipper– bearing kinase [DLK, also known as zipper protein kinase (ZPK) and 

MAPK-upstream kinase (MUK)] (Holzman et al. 1994) and the leucine zipper–bearing 

kinase (LZK) (Sakuma et al. 1997). Because, in DLK and LZK, subdomains I–VII resemble 

serine/threonine kinases and subdomains VIII–XI more closely resemble tyrosine kinases, 

these kinases are grouped into the family of the mixed-lineage kinases (MLKs) (Gallo & 

Johnson 2002). Another signature of DLK and LZK is the presence of a dual leucine zipper 

(LZ) domain following the kinase domain, and so these kinases compose the DLK subfamily 

of the MLKs. Biochemical studies show that both DLK and LZK are serine/threonine 

kinases and can activate JNK MAPKs and, to some extent, p38 MAPKs. Work in the past 

two decades has revealed these two kinases’ pivotal roles in a variety of biological 

processes, in particular the cellular response to stress and injury in the nervous system, 

making DLK and LZK targets for drug discovery. In this review we begin with an overview 

of the discovery and biochemical properties of DLK and LZK, then explore the functional 

analyses in model organisms, and end by discussing these kinases’ roles in injury and 

disease.

DISCOVERY, BIOCHEMICAL PROPERTIES, AND PROTEIN INTERACTION 

NETWORK

The DLK proteins are represented by two members known as MAP3K12 (or DLK) and 

MAP3K13 (or LZK) in vertebrate genomes and by a single member in most invertebrates 

(Figure 1). Each full-length kinase consists of approximately 900 amino acids, with the 

kinase domain at the N terminus, followed by two LZs and a long C terminus. The sequence 

homology among all members is primarily in the kinase and LZ domains, while the C 

termini are rich in proline, serine, and acidic amino acids but share little sequence similarity 

between DLK and LZK in the same species (Figure 1). LZ domains are found in many 

proteins and generally mediate homo- or heterodimerization. For DLK and LZK, the LZ 

domains are essential for their activation; mutating a single leucine residue in either LZ 

abolishes the activity of these kinases to phosphorylate JNK in transfected cell lines (Ikeda 

et al. 2001b, Nihalani et al. 2000). Furthermore, the LZ domain of DLK and LZK displays 

high selectivity for homomeric interaction, suggesting that regulation of LZ-mediated 

interaction likely plays important roles in signaling specificity. The long C terminus appears 

to be not critical for DLK to activate JNK but is indispensable for LZK to activate its 

downstream kinase, hinting at differential regulation of the two kinase paralogs.

A crystal structure of the kinase domain (aa 148–435) of human DLK was reported at 1.7-Å 

resolution (Patel et al. 2015b). The structure shows a canonical kinase fold, with a disrupted 

α-helix C, due to an Asp residue at a conserved position that normally has a Glu (Figure 1). 

In canonical kinases, the α-helix C forms a salt bridge with a Lys to stabilize ATP binding, 

which is hence critical for kinase activity. It remains to be determined whether the altered α-

helix C is present in the structure of the full-length DLK protein and how such distortion 

contributes to the activity and regulation of DLK in a physiological environment. 

Nonetheless, scaffold-hopping methods (Sun et al. 2012) were applied to this structure, and 

multiple chemical compounds were generated and shown to have high potency to inhibit 
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DLK activity in vitro (Patel et al. 2015b). Several such compounds can cross the blood-brain 

barrier in mice and, as described below, can alleviate some symptoms in mouse models of 

neurological disease (Patel et al. 2015a, 2017). Given the near-identical kinase domain in 

LZK, these compounds likely cause similar inhibition of LZK.

Activation of MAPKKKs is generally under the control of membrane receptors and/or G 

protein pathways that are responsive to external stimuli. Compared with many well-studied 

MAPKKKs, DLK and LZK are readily self-activated upon overexpression, most likely via 

LZ-mediated homomeric interaction and autophosphorylation of the kinase domain (Mata et 

al. 1996, Sakuma et al. 1997). This self-activating property implies that the expression of 

endogenous DLK or LZK protein is normally kept at low levels, which may be why these 

kinases rarely surface in large-scale proteomic databases. Proteins that are consistently 

reported to bind to DLKs include scaffolding proteins, such as JIP1 (Ikeda et al. 2001a, 

Nihalani et al. 2001), JIP3 (Ghosh et al. 2011), and MBIP (Fukuyama et al. 2000) (Figure 

2). These proteins appear to bind to regions N-terminal to the kinase domain, and their 

binding inhibits kinase activity by keeping DLK in a monomeric state.

In developing mouse embryos, DLK displays subcellular localization in various cell types 

(Hirai et al. 2002, 2005). In biochemical analyses of brain protein extracts, DLK was present 

in both the cytosolic and synaptic membrane fractions (Mata et al. 1996, Pozniak et al. 

2013). Cytosolic DLK was detected as being phosphorylated, while the synaptic membrane–

enriched DLK was unphosphorylated and migrated as a high-molecular-weight complex 

(Mata et al. 1996). In neuronal-glial cultures, treatment with cyclosporin A, an inhibitor of 

the calcium/calmodulin-dependent protein phosphatase calcineurin, inhibited 

dephosphorylation of DLK induced by membrane depolarization, suggesting that DLK 

activation may be regulated by intracellular calcium and calcineurin. Phosphorylation of 

several serine and threonine residues in DLK has been reported to depend on protein kinase 

A (PKA) (Hao et al. 2016), AKT (Wu et al. 2015), or activated JNK (Huntwork-Rodriguez 

et al. 2013) (Figure 1). Such phosphorylation differentially modulates DLK activity. In 

particular, phosphorylation of Ser302 by PKA within the activation loop of DLK is required 

for kinase activity in mouse dorsal root ganglion (DRG) neurons and Drosophila motor 

neurons (Hao et al. 2016). In contrast, AKT-mediated phosphorylation restrains DLK’s 

function in the self-renewal of mouse stem cells (Wu et al. 2015). Additionally, DLK is 

palmitoylated at a conserved cysteine in the N-terminal domain (Holland et al. 2016) (Figure 

1). Palmitoylation is a major form of posttranslational modification enabling protein 

association with membranous vesicles. Palmitoylation of DLK can regulate its binding with 

JIPs (Holland et al. 2016), which may influence their interaction with motor proteins 

(Horiuchi et al. 2007). Palmitoylation also facilitates DLK interaction with the axonal 

survival factor NMNAT2 (Summers et al. 2018).

Little is known about the subcellular expression pattern of endogenous LZK, and when 

expressed in COS cells, LZK also shows cytosolic and membrane association (Sakuma et al. 

1997). LZK was shown to be phosphorylated at multiple serine and threonine residues 

(Sakuma et al. 1997), but the functional relevance of such phosphorylation events remains 

unknown. LZK, in addition to its demonstrated role in activating JNK and p38, is implicated 

in NF-κB activation and regulation of the tumor suppressor p53 and the oncogene Myc in 
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cancer cells (Edwards et al. 2017, Han et al. 2016, Masaki et al. 2003) (Figure 2c). LZK was 

reported to bind antioxidant protein-1 (AOP-1), a mitochondrial protein, and such interaction 

enhanced LZK involvement in NF-κB activation (Masaki et al. 2003) (Figure 2c). LZK and 

DLK can bind each other, and such binding involves the N-terminal region and not the LZ 

domain (Nihalani et al. 2000). Endogenous LZK was also found to be associated with DLK 

in mouse brain protein extracts (Pozniak et al. 2013), and as described below, emerging 

evidence has begun to depict the overlapping functions of these kinases, suggesting that they 

may be subject to cross-regulation under specific stress conditions.

FUNCTION AND REGULATION OF DLKs IN NEURONAL DEVELOPMENT

Invertebrate DLKs: Caenorhabditis elegans DLK-1 and Drosophila Wallenda/DLK

First insights into the in vivo function of the DLKs came from genetic studies of the 

invertebrate members, namely Caenorhabditis elegans DLK-1 (Nakata et al. 2005) and 

Drosophila Wallenda (Wnd) (Collins et al. 2006). These invertebrate DLKs were discovered 

for their roles in synapse development, where they were shown to be the substrates of the 

synaptic ubiquitin E3 ligases, C. elegans RPM-1, and Drosophila Highwire (Hiw) (Schaefer 

et al. 2000, Wan et al. 2000, Zhen et al. 2000). These E3 ligases, also known as PHR 

proteins, include the human protein Pam and the mouse protein PHR. PHR proteins are 

unusually large (close to or more than 4,000 aa), with a RING finger domain at the C 

terminus that constitutes a noncanonical E3 ligase (Grill et al. 2016). Null mutants of C. 
elegans rpm-1 and Drosophila hiw exhibit distinct defects in synapse morphology and 

number (Schaefer et al. 2000, Wan et al. 2000, Zhen et al. 2000). Isolation of genetic 

mutations that suppressed the synapse defects of rpm-1 and hiw independently uncovered 

loss-of-function mutations in C. elegans dlk-1 (Nakata et al. 2005) and Drosophila wnd 
(Collins et al. 2006). DLK-1 and Wnd/DLK are expressed predominantly in neurons. The 

overall levels of DLK-1 and Wnd/DLK were increased in rpm-1 and hiw mutants, 

respectively, and overexpression of wild-type (WT) DLK-1 and Wnd/DLK altered synapse 

development, resembling the phenotypes observed in rpm-1 and hiw mutants, respectively. 

On the basis of this and other evidence, DLK-1 and Wnd are in vivo substrates for RPM-1- 

and Hiw-dependent protein degradation (Figure 2a,b). Nonetheless, animals with complete 

loss of DLK-1 or Wnd/DLK develop normally (Schaefer et al. 2000, Wan et al. 2000, Zhen 

et al. 2000).

Analyses of other genetic suppressor mutations of rpm-1 in C. elegans further revealed that 

DLK-1 acts upstream of a p38 MAPK cascade (Nakata et al. 2005) (Figure 2a). Studies in 

Drosophila identified Wnd/DLK to be upstream of a JNK MAPK (Collins et al. 2006) 

(Figure 2b). These downstream MAPK cascades regulate gene expression via the b-Zip 

domain transcriptional factors CEBP-1 in C. elegans (Yan et al. 2009) and Fos in Drosophila 
(Collins et al. 2006) (Figure 2a,b). The use of p38 or JNK in DLK-dependent signal 

transduction may reflect an evolutionary divergence or the context-dependent specificity of 

stress kinases (Andrusiak & Jin 2016). Indeed, studies demonstrate that these stress-

responsive MAPKs exhibit considerable cross talk and cell type specificity (Klinedinst et al. 

2013, Nix et al. 2011).
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Vertebrate DLK and LZK

Despite the near-simultaneous identification of DLK and LZK as brain-enriched kinases 

with comparable biochemical activity for phosphorylation of JNK (Holzman et al. 1994, 

Sakuma et al. 1997), progress toward understanding their in vivo function has mostly 

focused on DLK/MAP3K12. Expression data show that DLK displays differential 

developmental and temporal regulation in various tissues (Blouin et al. 1996, Hirai et al. 

2005, Suenaga et al. 2006). Within the nervous system, DLK is broadly expressed in many 

neuronal types from embryo to adult. In cerebellar cortex, DLK expression is high in 

postmitotic migratory neurons and is downregulated postnatally (Suenaga et al. 2006). In 

developing neurons, DLK proteins are more abundantly present in axons and growth cones 

than in the soma and dendrites, displaying a high degree of colocalization with neuron-

specific tubulins (Hirai et al. 2005, Lewcock et al. 2007). A proteomic analysis of 

immunoprecipitated protein complex for endogenous DLK from 15-week-old mouse brains 

also revealed that most proteins associated with DLK are cytoskeletal (Pozniak et al. 2013). 

In contrast, much less is known about endogenous LZK expression, although it is present at 

low levels in select brain regions (Chen et al. 2016). LZK mRNA detected from human brain 

contains long 3’ untranslated regions (3’ UTRs) (Sakuma et al. 1997). Indeed, LZK mRNAs 

are targets of several microRNAs (Lippi et al. 2016). In human cancer cells, miRNA-206 

directly binds LZK mRNAs, leading to decreased LZK expression (Han et al. 2016). This 

interaction may have functional importance for tumor cells that are associated with high 

levels of the Myc oncogene.

Mice lacking DLK die perinatally and show defective axon growth and neuronal migration 

(Hirai et al. 2006), whereas mice lacking LZK are healthy and fertile (Chen et al. 2018, 

Welsbie et al. 2017). Genetic studies on mouse PHR proteins supported their roles in the 

regulation of DLK abundance, similar to the case of the invertebrate orthologs (Figure 2c). 

Several mouse Phr1 mutants were characterized, including a compound chromosomal 

deletion (Burgess et al. 2004), a targeted genetic knockout (KO) (Bloom et al. 2007), and a 

nonsense mutation generated by ENU-induced mutagenesis (Lewcock et al. 2007). Phr1 
mutant mice exhibit broad phenotypes, including defective axonal tracts and guidance, axon 

overextension, and abnormal synaptic position and morphology. Increased DLK proteins 

were observed in some cell types of Phr1 mutants. Some motor axon defects were 

suppressed by treatment with p38 inhibitors (Lewcock et al. 2007); defects of specific 

neuromuscular synapses in Phr1 mutants were also suppressed by loss of Dlk (Bloom et al. 

2007). These observations support mechanistic conservation of DLK inhibition by Phr1. 

However, many defects of Phr mutants remain in Phr1; Dlk double KO animals (Bloom et 

al. 2007), which is also consistent with findings in invertebrates that PHR proteins have roles 

in addition to regulating DLK stability (Grill et al. 2016). Besides being negatively regulated 

by PHR, DLK stability can be regulated by the chaperone heat shock proteins under stress 

and injury (Daviau et al. 2006, Karney-Grobe et al. 2018) (Figure 2c). Whether PHR 

regulates LZK remains unknown.
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FUNCTION AND REGULATION OF DLKs UNDER STRESS AND INJURY IN 

THE MATURE NERVOUS SYSTEM

DLK-Mediated Signaling Pathways

Leveraging powerful molecular genetic tools in invertebrates has allowed for in-depth 

mechanistic assessments regarding how DLK-mediated signaling is regulated in vivo, as 

well as how this signaling in turn regulates cellular function. One major theme is that DLK 

activity is highly responsive to cellular stresses involving changes to the cytoskeleton 

(reviewed in Asghari Adib et al. 2018). For example, treating C. elegans with colchicine, 

which inhibits tubulin polymerization, caused a specific loss of mechanosensation 

(Bounoutas et al. 2009). Such effects were due to altered gene expression, and genetic 

screening revealed that loss of DLK-1 signaling, including signaling to its target, CEBP-1, 

prevented colchicine-induced impairment in neuronal function (Bounoutas et al. 2011). 

DLK-1 also mediates synapse stabilization and neurite branching, which depend on the 

microtubule (MT) minus end binding protein Patronin/CAMSAP (Chuang et al. 2014, 

Marcette et al. 2014, Richardson et al. 2014). Similarly, at Drosophila neuromuscular 

junctions, loss of function in a number of proteins that stabilize actin and MT cytoskeleton, 

such as spectraplakin, α-spectrin, or ankyrin, leads to synaptic terminal overgrowth due to 

activation of Wnd/DLK and downstream Jun/Fos-mediated gene expression (Massaro et al. 

2009, Valakh et al. 2013).

C. elegans DLK-1 and Drosophila Wnd/DLK can also act through downstream factors other 

than their key targets, CEBP-1 and Fos. For example, in the C. elegans locomotor circuit, 

dynamic changes to the MT cytoskeleton facilitate synapse remodeling during larval 

development. Formation of new synapses depends on DLK-1; in this case, activation of 

DLK-1 leads to changes in cellular trafficking independently of CEBP-1 (Kurup et al. 2015). 

Likewise, Drosophila Wnd/DLK can interact with kinesin-1, likely via binding JIP1 

(Horiuchi et al. 2007). Several other factors that can trigger DLK-1 or Wnd/DLK activation 

include changes in mitochondrial energy state, altered G protein signaling, and disruption in 

intracellular trafficking (Chen et al. 2014, Klinedinst et al. 2013, Ma et al. 2016, van der 

Vaart et al. 2015, Wang et al. 2013). Additionally, DLK-1 and Wnd/DLK pathways 

contribute to axon and dendrite outgrowth and guidance by modulating Wnt or other 

signaling pathways (Park & Rongo 2018, Wang et al. 2013). However, the direct targets of 

DLK in these pathways remain unknown.

Many studies from rodent DLK models have underscored the mechanistic conservation of 

DLK signaling across species. For example, in mammalian sensory neurons, treatment with 

cytochalasin D and nocodazole to disrupt the actin and MT cytoskeleton, respectively, 

activates the DLK and JNK pathway, likely via binding to JIP1 (Valakh et al. 2015). DLK 

phosphorylation by PKA plays a conserved role in both fly and mouse neurons under axon 

injury (Hao et al. 2016). Other findings highlight cell type–dependent regulation of DLK 

phosphorylation. Mutating the Ser302 residue to the nonphosphorylatable alanine (S302A) 

in HEK293T cells resulted in a higher degradation rate of mutant DLK relative to WT DLK, 

which was attenuated by coexpression of a deubiquitinating enzyme (Huntwork-Rodriguez 

et al. 2013). However, in the insulin-producing pancreatic islet β-cell HIT line, protein levels 
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of endogenous DLK, or overexpressed DLK (WT), but not DLK (S302A), were decreased 

after treatment with TNFα or IL-1β (Wallbach et al. 2016). In COS cells, DLK activity is 

also not required for protein stability (Daviau et al. 2006). These observations imply cell 

type–dependent and stimuli-dependent regulation of DLK.

Additional molecules acting upstream and downstream of DLK include MAP4K and G 

protein regulators, most of which have either modulatory or redundant effects. In a mouse 

DRG neuron degeneration model induced by trophic factor withdrawal, several MAP4Ks of 

the Ste20 family act redundantly as upstream activators of DLK (Larhammar et al. 2017b). 

In this same neuronal model, PERK (PKR-like endoplasmic reticulum kinase) acts 

downstream of DLK, in parallel with JNK (Larhammar et al. 2017a). Another study 

identified LZK and DLK to act synergistically in retinal ganglion cell (RGC) death 

following axotomy (Welsbie et al. 2017). Furthermore, four transcription factors (JUN, 

ATF2, MEF2A, and SO11) are downstream effectors of both DLK and LZK (Figure 2c). 

The in vivo roles of these upstream and downstream factors in various injury and disease 

models remain to be fully tested. Nonetheless, these observations highlight the exceedingly 

redundant and complex regulatory network involving DLK and LZK.

Conserved Roles of DLK in Axon Regeneration

Studies in C. elegans provided the first evidence for a role of DLK family kinases in 

neuronal response to injury, in particular axon regeneration. Technological development of 

femtosecond laser axotomy in C. elegans opened the door to identifying novel factors in 

axon injury response (Yanik et al. 2004). Injured axons display robust response within a few 

hours to reform growth cones and extend some distances in an error-prone manner (Wu et al. 

2007). Axons can also break due to lack of β-spectrin, and the broken axons display 

spontaneous regrowth (Hammarlund et al. 2007). Using these two assays to screen for 

molecules affecting axon regrowth initiation and regeneration, two groups independently 

identified dlk-1 and its downstream kinases to be essential for the formation of regenerative 

growth cones (Hammarlund et al. 2009, Yan et al. 2009). Moreover, MAK-2, a MAPKAP 

kinase downstream of PMK-3/p38, can regulate levels of cebp-1 through 3’UTR-mediated 

mRNA stability (Yan et al. 2009). Injury to axons induces a rapid calcium influx (Ghosh-

Roy et al. 2010). A systematic study of dlk-1 genetic mutations revealed an autoinhibitory 

mechanism mediated by an endogenously generated short isoform of DLK-1, and 

furthermore, an injury-induced calcium increase could regulate DLK-1 dimerization state 

(Yan & Jin 2012). Interestingly, C. elegans DLK-1 shares with mammalian LZK, but not 

with mammalian DLK, a conserved hexapeptide in the C terminus (Figure 1) that 

contributes to calcium-mediated regulation of DLK-1 activation. Expression of human LZK 

in C. elegans neurons could partially rescue axon developmental phenotypes due to loss of 

worm dlk-1, suggesting the functional equivalence of these kinases.

Several axon injury models, including pinching or crushing of the larval nerve cord, 

transection of wing nerves, and laser axotomy, were similarly developed in Drosophila 
(Brace & DiAntonio 2017). Drosophila Wnd/DLK is required for larval CNS motor axon 

regeneration (Xiong et al. 2010). Injury to axons increases expression of Wnd/DLK protein 

and simultaneous downregulation of its E3 ligase, Hiw/Phr. Persistent DLK expression 
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triggers retrograde signaling to activate nuclear transcription. In the Drosophila PNS, laser 

axotomy to dendritic arborization (da) neurons induces a regenerative response dependent on 

the site of severing and sensory neuron types. When the axon is severed close to the soma, a 

new axon is generated from a neighboring dendrite, and when the axon is severed at a 

distance, regrowth initiates from the remaining axonal stump (Stone et al. 2010). Each injury 

paradigm triggers distinct changes in the MT cytoskeleton. Moreover, while class IV da 

neurons show a robust response to injury, class I and III da neurons display little 

regeneration (Song et al. 2012). In da neurons, Wnd/DLK is necessary for axon 

regeneration, but not for dendrite regeneration (Stone et al. 2014). In adult wing axons, 

following transection by laser, axon stumps generally fail to grow beyond the injury site; 

surprisingly, inhibiting the JNK pathway enhanced the wing axon regenerative response 

(Soares et al. 2014). Such cell type–dependent signaling output likely represents the tip of 

the iceberg in the ongoing efforts toward understanding the heterogeneity in neuronal 

responses to injury at both the molecular and physiological levels.

In adult mice, inducible pan-tissue deletion of Dlk does not cause lethality or gross 

abnormality (Pozniak et al. 2013). Early evidence using a mouse Dlk gene trap line hinted at 

a role of DLK in regulating axon regenerative response to injury (Itoh et al. 2009). Neurite 

growth of cultured DRG neurons from this Dlk mutant was reduced compared with WT 

controls. Dlk mutant neurons showed less c-JUN phosphorylation after nerve injury, 

suggesting that DLK may mediate the injury response. Subsequent in vivo analyses using 

Dlk conditional KO mice demonstrated that DLK is required for efficient axon regeneration 

after peripheral nerve injury (Shin et al. 2012). A well-known preconditioning effect 

involves a prior peripheral injury that primes DRG neurons for an enhanced regenerative 

response upon a second axonal injury (McQuarrie & Grafstein 1973). This enhanced 

regeneration primed by a prior injury was substantially reduced in Dlk conditional KO mice. 

Additionally, axon regeneration following a single peripheral nerve injury was also 

significantly delayed in Dlk conditional KO mice compared with WT controls. One 

underlying mechanism involves retrograde transport of injury signals, as represented by 

phosphorylated STAT3 (Shin et al. 2012). Together, these data indicate that DLK promotes a 

peripheral axon regenerative response (Figure 3a).

In the CNS, evidence for DLK in neuronal response to axon injury has come mainly from 

studies of RGCs (Watkins et al. 2013, Welsbie et al. 2013). Following optic nerve crush 

injury, DLK is rapidly upregulated first in axons and then in cell bodies of RGCs. Optic 

nerve injury typically results in significant death of RGCs. Dlk gene deletion protected 

RGCs from axotomy-induced apoptosis (Watkins et al. 2013). Whereas deletion of Pten 
resulted in exuberant RGC axon regeneration (Park et al. 2008), simultaneously deleting Dlk 
substantially reduced RGC axon regeneration induced by Pten deletion (Watkins et al. 

2013). Expression profiling experiments showed that DLK is an important mediator of most 

injury-induced expression changes in RGCs, including both proapoptotic and 

proregenerative pathways. These data support the notion that DLK is an upstream sensor of 

axonal injury that can lead to divergent neuronal responses (e.g., axon regeneration versus 

cell death), acting in a double-edged sword manner (Tedeschi & Bradke 2013) (Figure 3a).
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Recovery of motor function is a common challenge following traumatic brain injury and 

stroke. Recent work implicated DLK in motor function recovery after stroke. In a mouse 

model for stroke, it was reported that neuronal knockdown of the C-C chemokine receptor 5 

(CCR5) in premotor cortex could promote motor skills recovery after stroke (Joy et al. 

2019). These CCR5 knockdown neurons showed a significant increase in DLK protein. 

Animals receiving shRNA knockdown of DLK after stroke exhibited persisted motor deficits 

relative to controls. Moreover, the recovery effects induced by CCR5 inhibition were 

abrogated by DLK knockdown. These data imply that upregulating DLK may be beneficial 

for regaining motor function in combination with other manipulations following stroke.

Compared with intense investigation on DLK, much less is known about its paralog, LZK, in 

axon regeneration. LZK was implicated as a downstream signaling molecule for Nogo 

(Dickson et al. 2010), a myelin-derived axon growth inhibitor (Geoffroy & Zheng 2014); 

however, the physiological relevance of this biochemical link remains unknown. In cultured 

neurons, LZK signals through MKK4 and JNKs to promote axon growth similarly to DLK 

(Chen et al. 2016). The role of LZK and DLK in axon regeneration in the spinal cord is 

unknown. There is an urgent need to understand the role of DLK and LZK in axonal repair 

after spinal cord injury.

DLK in Axon Degeneration and Neuronal Death

The earliest evidence for the function of mammalian DLK in neuronal response to axonal 

injury has been regarding axon degeneration (Miller et al. 2009). In vitro, Dlk mutant 

neurons were protected from axon degeneration following axotomy and vincristine 

treatment. In vivo, axotomy-induced Wallerian degeneration was significantly delayed in 

DLK null mice (Miller et al. 2009). A subsequent study indicates that DLK acts redundantly 

with two other MAP3Ks (MEKK4 and MLK2) in axon degeneration of RGCs and DRG 

neurons (Yang et al. 2015). Extensive mechanistic dissection has revealed a complex 

interaction of DLK and two key factors, SARM and NMNAT, in pathological axon 

degeneration, which was the focus of an excellent review (Gerdts et al. 2016).

In the study that demonstrated a critical role for DLK in Pten deletion–induced axon 

regeneration from RGCs, DLK was also shown to mediate axotomy-induced RGC death 

(Watkins et al. 2013). An independent RNAi-based screen of 623 kinases also identified 

DLK and its downstream effector MKK7 as the two top candidates responsible for cell death 

of cultured RGCs under neurotrophin deprivation (Welsbie et al. 2013). As in Watkins et al. 

(2013), Dlk conditional KO mice showed enhanced RGC survival after optic nerve injury 

(Welsbie et al. 2013). More recently, LZK was shown to cooperate with DLK to activate 

downstream signaling and cell death through MKK4/7 and JNKs (Welsbie et al. 2017) 

(Figure 3a). Additionally, administering toza-sertib, a small-molecule inhibitor of DLK, 

protected against RGC death following either optic nerve injury or laser-induced ocular 

hypertension, a model for glaucoma (Welsbie et al. 2013). Such corroborating evidence 

highlights the clinical relevance of discoveries involving the DLK signaling pathway.

DLK also mediates excitotoxicity-induced neuronal cell death. Inducible pan-tissue DLK 

KO significantly reduced kainic acid–induced excitotoxic cell death (Pozniak et al. 2013). In 

neonates, DLK or its downstream MAP2K, MKK4, is required for axotomy-induced death 
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of facial motor neurons (Itoh et al. 2014). In a rat model of subarachnoid hemorrhage, 

siRNA-mediated DLK knockdown reduced neuronal apoptosis and improved 

neurobehavioral outcome (Yin et al. 2017). Together, these studies support a more general 

role of DLK in mediating neuronal death across neuronal types and insults.

Roles of LZK and DLK in Glial Cells

Evidence has emerged that LZK and DLK also play roles in glial responses to CNS injury. 

Following injury to the mammalian CNS, astrocytes proliferate, undergo hypertrophy with 

extended processes, and express high levels of astroglial markers such as GFAP and 

vimentin in a process known as astrogliosis, reactive astrogliosis, or the astroglial/astrocytic 

response (Burda & Sofroniew 2014). Reactive astrocytes encircle the lesion core that 

comprises macrophages, fibroblasts/pericytes, and other cell types, thereby limiting the 

spread of inflammation and contributing to wound healing. Two signaling pathways 

important for CNS axon regeneration, the STAT3/SOCS3 pathway (Smith et al. 2009, Sun et 

al. 2011) and the Pten/mTOR pathway (Liu et al. 2010, Park et al. 2008), have been 

implicated in the astroglial response to CNS injury (Chen et al. 2016, Herrmann et al. 2008, 

Okada et al. 2006; see References Added in Proof). Surprisingly, the first in vivo role 

reported for LZK was in the astrocyte response to injury (Chen et al. 2018). Following 

experimental spinal cord injury, LZK was prominently induced in astrocytes. Astrocyte-

specific deletion of Lzk reduced markers of the astroglial response and led to an expanded 

lesion core. Conversely, astrocyte-specific overexpression of LZK enhanced the astroglial 

response, leading to a more compact lesion core. In the absence of an injury, LZK 

overexpression in astrocytes alone, but not in neurons, led to widespread astrogliosis in the 

CNS (Chen et al. 2018). These genetic loss- and gain-of-function analyses support the 

hypothesis that LZK promotes astrogliosis in the mammalian CNS (Figure 3b), a process 

that is prevalent in CNS injury and disease and likely impacts many aspects of cell and tissue 

interactions across a variety of neurological conditions.

Evidence for DLK in glial response to injury has also emerged. In a study that showed a 

protective effect of DLK loss of function in animal models of amyotrophic lateral sclerosis 

(ALS) and Alzheimer’s disease (AD) (discussed more below), Dlk gene deletion attenuated 

microglial activation and astroglial reactivity in SOD1G93A transgenic mice (Le Pichon et al. 

2017). However, because a pan-tissue CAG-CreERT line was used to induce Dlk gene 

deletion in this study, a cell type–specific role for DLK could not be pinpointed. Indeed, the 

authors suggested that the microglial and astrocytic phenotypes are secondary to neuronal 

DLK function (Le Pichon et al. 2017).

In a spared nerve injury model of neuropathic pain, strong microgliosis is typically induced 

in the ipsilateral dorsal horn of the spinal cord, distant from the injury site, as assessed with 

Iba1 immunoreactivity (Wlaschin et al. 2018). Inducible DLK KO mice exhibited greatly 

diminished microgliosis and mechanical allodynia in this model. Furthermore, 

pharmacological inhibition of DLK mimicked genetic DLK KO in reduction of both pain 

sensation and microgliosis (Figure 3c). Again, due to the use of a pan-tissue inducible Cre 

line, it remains unknown which cell types were responsible for the observed effects of DLK 

loss of function (Wlaschin et al. 2018). Knockdown of DLK by shRNA has also been 

Jin and Zheng Page 10

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported to reduce neuropathic pain in a chronic constrictive nerve injury model (Sheu et al. 

2018). This role in neuropathic pain expands the clinical relevance of DLK in nervous 

system response to injury and insult.

Involvement of DLK in Neurodegenerative Diseases

Besides the abovementioned roles of DLK under acute and traumatic injury, recent studies 

have begun to probe into the involvement of DLK and its signaling pathway in 

neurodegenerative diseases. AD is associated with several genetic risk factors. One such 

factor includes the ApoE lipid-binding proteins, which are highly expressed in brain and 

primarily in astrocytes. Humans express three ApoE protein isoforms (E2, E3, and E4) that 

differ in only two amino acids and are associated with different predispositions to AD. The 

ApoE4 allele increases risk for AD, whereas the ApoE2 allele is protective against AD 

(Holtzman et al. 2012, Strittmatter et al. 1993). Despite decades of studies that revealed the 

interaction of ApoE isoforms with several membrane receptors and amyloid-β (Aβ) 

peptides, how such isoforms predispose to AD is poorly understood. Using embryonic stem 

(ES) cell–derived human neurons, a recent study showed that addition of purified 

recombinant ApoE proteins increased DLK protein levels, causing DLK activation (Huang 

et al. 2017). Unexpectedly, the downstream MAPK target of DLK was identified to be Erk, 

which then stimulated phosphorylation of cFos to promote transcription of the gene 

encoding amyloid precursor protein (APP) (Figure 4a), while the widely characterized 

MKK4-JNK axis activated under traumatic injury to the adult PNS and CNS was unaffected. 

The induction of the DLK-Erk cascade by ApoE isoforms mirrored their effects on Aβ 
production and AD pathogenesis, with ApoE4 showing higher potency. In mouse neuron/

glial cultures, DLK knockdown reduced phosphorylation of MKK7 and Erk and decreased 

APP transcription; conversely, overexpressing DLK and MKK7 increased levels of APP 

mRNAs and proteins. Furthermore, adeno-associated virus (AAV)-mediated gene delivery 

into newborn mouse cortex of dominant-negative cFos or CRISPRi that targeted the AP-1 

binding site of the App promoter significantly suppressed APP expression.

Studies using other mouse AD models, such as PS2APP and Tau(P301L), also implicated 

DLK, which then activates the JNK pathway to regulate c-Jun phosphorylation (Le Pichon et 

al. 2017). At ages greater than 6 months, these AD animals showed elevated levels of 

phospho-c-Jun (p-c-Jun). Conditional removal of DLK from young AD mice (10-week-old 

adults) caused a reduction of phospho-JNK and phospho-MKK4 and significantly reduced 

cortical p-c-Jun at 9 months of age (Figure 4a). As synapse loss near Aβ plaques is a 

symptomatic hallmark of these AD mice, this study further examined synapses in 

hippocampus and found that PS2APP;DLK(KO) neurons had 30% less spine loss, proximal 

to Aβ plaques, relative to PS2APP;DLK(WT) neurons. Moreover, behavioral analyses 

reported noticeable protection in some cognitive function in PS2APP;DLK(KO) mice. In 6-

month-old PS2APP mice, in which Aβ/plaque deposition had already begun, deletion of Dlk 
also improved active avoidance learning, although Aβ42 production and plaque load were 

not reduced. This evidence supports DLK activation to be causally linked to AD. It remains 

to be addressed whether the use of Erk versus JNK as its downstream kinase reflects the 

stage dependency or impact of different genetic factors in cellular pathogenesis.

Jin and Zheng Page 11

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Investigation on other models for neurodegenerative diseases also reveals beneficial effects 

following DLK inhibition. For example, inhibiting DLK function by AAV-mediated 

overexpression of two different dominant-negative constructs in a neurotoxin-mediated 

Parkinson animal model enhanced long-term survival of dopamine neurons; interestingly, 

inhibition by a kinase-dead form of DLK also showed trophic effects (Chen et al. 2008). 

Pharmacological inhibition of DLK using GNE-8505 and GNE-3511 (Patel et al. 2015a) in a 

mouse model for ALS, SOD1(G93A), reduced cortical p-c-Jun in a dose-dependent manner. 

Chronic administration of GNE-3511 by food intake to SOD1(G93A) mice delayed 

neuromuscular junction denervation by ~10% relative to the vehicle control. These 

observations encourage continued efforts to target DLK in neurodegenerative diseases (Siu 

et al. 2018) but also point to the complexity of drug or gene intervention. Thus, it would be 

important to rigorously examine the effects and underlying mechanisms of manipulating 

DLK in specific contexts.

DLK Signaling in Reactivation of Herpes Simplex Virus

Herpes simplex viruses (HSVs) are ubiquitous pathogens that persist for the life of infected 

individuals. The ability of these viruses to develop lifelong infections is due to a latent pool 

of dormant virus in terminally differentiated neurons, most commonly in the peripheral 

ganglia. During latent infection, the expression of the viral lytic genes is under epigenetic 

repression on their promoters. Latent HSVs can enter the lytic phase under a number of 

conditions, including treatment with interferons, nerve growth factor (NGF) deprivation, and 

inhibition of PI3K signaling (Suzich & Cliffe 2018). Multiple experimental models, mostly 

employing primary cell cultures, have been used to investigate the mechanisms of HSV 

reactivation (Camarena et al. 2010, Wilcox & Johnson 1987). One study reported an 

induction of DLK-JNK signaling during the early phase of HSV reactivation in cultured 

sympathetic and sensory neurons following NGF deprivation (Cliffe et al. 2015). This DLK-

JNK activation triggered a histone methyl/phospho switch on the promoters of viral lytic 

genes (Figure 4b). Depletion of DLK or its binding protein JIP3 blocked the earliest 

detectable upregulation of lytic gene expression. Interestingly, during this HSV reactivation, 

JNK was present on viral promoters, which may permit lytic gene expression despite the 

presence of repressive lysine modifications on their promoters. It would be of future interest 

to elucidate the underlying mechanism.

DLK Function in Stem Cells and Nonneuronal Cells

Besides strong expression in the brain, DLK is expressed in a variety of embryonic and adult 

organs, including the skin, intestine, pancreas, and kidney (Hirai et al. 2006, Nadeau et al. 

1997). Upon terminal differentiation, DLK expression is upregulated in the insulin-

producing β-cells within the pancreatic islets of Langerhans, adipocytes, kidney, lung, and 

differentiating keratinocytes (Douziech et al. 1998, 1999; Hirai et al. 2006). These 

nonneuronal cells employ both the familiar actions of DLK signaling pathways and novel 

modes of regulation.

Embryonic stem cells.—DLK protein levels are low in undifferentiated mouse ES cells 

but increase upon embryoid body formation. A high-throughput kinase screen implicated a 

role of DLK in self-renewal of mouse ES cells (Wu et al. 2015). Knockdown of DLK 
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elevated the expression of Nanog proteins and increased ES cell numbers, whereas DLK 

overexpression reduced ES cell self-renewal (Figure 4c). ES cell differentiation utilizes 

PI3K/AKT signaling. DLK is phosphorylated by AKT at Ser584 and Thr659 located at the 

C terminus (Figure 1). Inhibition of PI3K/Akt or mutating these residues to Ala elevated 

DLK activity in vitro and significantly reduced self-renewal of ES cells. It remains to be 

tested whether this AKT-dependent regulation of DLK occurs in other cell types.

Keratinocytes.—The terminal differentiation of epidermal cells is a complex multistep 

process that is tightly linked to cell cycle withdrawal, culminating in the formation of the 

cornified layer. In human skin, DLK mRNA and protein are specifically expressed in the 

differentiated granular layer of epidermis (Robitaille et al. 2005). In cultured keratinocytes, 

DLK overexpression causes morphological and biochemical changes, including induction of 

late differentiation markers, such as the cyclin-dependent kinase inhibitor p21cip1/waf1, and 

increased activity of transglutaminase, a cross-linking enzyme essential for the formation of 

cornified cell envelopes (Figure 4d). In keratinocyte differentiation, DLK also induces 

Hsp27 phosphorylation in a manner dependent on Erk. The DLK-Erk signaling axis 

regulates the interaction of the MT regulator LIS1 and HSP27, which can trigger the 

assembly of noncentrosomal MTs to promote MT stabilization and cytoskeleton 

redistribution (Robitaille et al. 2010). Epidermal cells in Dlk KO mouse embryos displayed 

desmosomal and tight junction defects, likely due to MT disruption. Together, these data 

highlight DLK as a key regulator of keratinocyte differentiation and maintenance of 

epidermal desmosomal and tight junction integrity (Simard-Bisson et al. 2017).

Adipocytes.—Peroxisome proliferator–activated receptor γ (PPARγ) is a type II nuclear 

receptor and plays a crucial role in the maintenance of glucose homeostasis and adipocyte-

related metabolism. In obese patients with type 2 diabetes, PPARγ activation results in an 

increase in insulin sensitivity and thus in glucose clearance (Nolan et al. 1994). 

Transcriptional regulation of DLK (here, not to be confused with Delta-like kinase, which is 

also a key player in adipogenesis) is directly controlled by PPARγ (Couture & Blouin 2011) 

(Figure 4e). ChIP-PCR analysis of 3T3-L1 preadipocyte cells showed the direct association 

of PPARγ and RNA polymerase II with PPAR response elements on the DLK promoter. The 

binding of RNA polymerase II to the DLK promoter increased after treatment with the 

PPARγ agonist rosiglitazone. Female mice treated with rosiglitazone also showed a 

significant increase in DLK protein levels in mesenteric white adipose tissue and, to a lesser 

extent, in brown adipose tissue. Increased DLK expression in turn upregulates the expression 

of C/EBPα and PPARγ, two master transcriptional regulators of adipogenesis, resulting in 

lipid accumulation (Couture et al. 2009). PPARγ is also expressed in the brain, and data 

from N2a neuroblastoma cells suggest that PPARγ may regulate DLK levels (Couture & 

Blouin 2011). It would be interesting to examine whether this transcriptional regulation 

operates in the nervous system and how PPARγ-dependent DLK regulation contributes to 

DLK-mediated neuronal stress response.

Insulin-secreting pancreatic β-cells.—DLK is expressed in pancreatic β-cells, whose 

dysfunction leads to diabetes mellitus. These β-cells are electrically excitable. Elevations in 

blood glucose provide the most potent stimulus for β-cells to secrete insulin via CREB 
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(cAMP response element binding)-mediated transcriptional regulation of the insulin gene 

(Oetjen et al. 2006). Upon glucose uptake into β-cells, glucose oxidation induces closure of 

KATP channels, membrane depolarization, calcium entry, and activation of calcineurin, 

leading to phosphorylation and activation of CREB. DLK can negatively regulate insulin 

gene transcription by affecting the CREB coactivators CBP and TORC (Phu do et al. 2011) 

(Figure 4f). In the insulin-producing cell line HIT, downregulation of endogenous DLK 

increased, whereas overexpression of DLK decreased, human insulin gene transcription. A 

DLK-responsive element in the human insulin gene matches the DNA binding site for the β-

cell-specific transcription factor MafA (Stahnke et al. 2014). DLK-JNK activation led to 

phosphorylation of MafA and decreased its protein content. Surprisingly, the pancreatic islet 

β-cells in C57BL6/J mice that were fed with high-fat diet and developed a prediabetic 

condition showed an accumulation of DLK in the nuclei (Wallbach et al. 2016). HIT cells 

treated with either TNFα or IL-1β also showed nuclear localization of DLK (Borchers et al. 

2017). A bipartite nuclear localization signal in mouse DLK was located at aa 185 to aa 200, 

the exact region of ATP binding (Figure 1). The nuclear localization of DLK in HIT cells 

depends on ATP binding but does not require homodimerization. These data present novel 

regulatory mechanisms concerning DLK, raising the possibility that DLK inhibition may 

preserve β-cell function and delay the development of type 2 diabetes.

PERSPECTIVES

Since the discovery of DLK and LZK genes more than 20 years ago, extensive studies using 

many animal models have provided strong in vivo data establishing the key roles of DLK in 

a variety of developmental, stress-sensing, and disease contexts. With increased efforts to 

target DLK, and likely LZK, in cellular response to injury and in animal models of disease 

(Siu et al. 2018), much more needs to be understood as to how DLK and LZK activity and 

signaling output are regulated in a cell type–dependent, stage-dependent, and context-

dependent manner. Adding to the complexity of the multicellular roles of DLK and LZK, 

they may activate a variety of downstream effectors that have broad functions, such as JNK, 

p38, and Erk. The double-edged sword action of DLK in the decision of cell death versus 

axon regeneration in the retinal system makes it particularly challenging to pinpoint the 

optimal setpoint for the kinase’s activity for precise intervention (Tedeschi & Bradke 2013). 

Another key question is how these kinases sense cellular stress under acute insults versus 

chronic or pathological conditions. Besides the intense focus on the neuron-centric action of 

these kinases, much more needs to be understood regarding coordination between different 

cell types and functional redundancy between DLK and LZK and with other stress-activated 

pathways. Understanding the precise biological roles and mechanisms of action of DLK and 

LZK in a variety of physiological and pathological conditions will aid the development of 

viable therapeutic intervention targeting these two kinases.
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Figure 1. 
Protein structure and known signaling domains of DLKs. Protein sequences are: mouse 

DLK (UniProtKB Q60700), mouse LZK (UniProtKB Q1HKZ5), fly Wallenda (CG8789-

PC), and worm DLK-1 (F33E2.2a). The overall sequence homology of the kinase and LZ 

domain is approximately 61% between vertebrate members and invertebrates. Colored boxes 

correlate with the identified domains. C denotes palmitoylated Cys; the red K is critical for 

ATP binding; the green D may be responsible for the distorted α-helix C; the red S in the 

activation loop is phosphorylated by protein kinase A; the blue S584 and T659 are 

phosphorylated by AKT; and the hexapeptide represents SDGLSD, which is present only in 

Caenorhabditis elegans DLK-1 and vertebrate LZK.
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Figure 2. 
Conserved regulation of DLKs and their signaling cascades. Studies of the PHR E3 ligases 

demonstrate their conserved action to target DLKs for ubiquitin-mediated protein 

degradation. (a) In Caenorhabditis elegans, the major downstream cascade (thick arrows) of 

DLK-1 consists of the MAPKK MKK4 and the p38 MAPK PMK-3 acting on the CEBP-1 

nuclear factor, with partially redundant roles of MLK-1 acting through the MAPKK MEK-1 

and the JNK MAPK KGB-1 (thinner arrows) in specific neurons and injury paradigms. (b) 

In Drosophila, JNK and p38 mediate different effects of Wallenda (Wnd)/DLK in injury and 

synapse development, with the effects partly dependent on the interaction of Wnd/DLK with 

the scaffold proteins JIP1 and JIP3. (c) In mammals, DLK acts mainly through MKK4, 

MKK7, and JNK, with JUN and other transcriptional factors as the main and collaborative 

targets. The chaperone HSP90 also promotes DLK activity. It remains to be tested whether 

LZK is a target of Phr (dashed line). Thus far, LZK is reported to bind the mitochondrial 

protein AOP-1, and most data on LZK downstream signaling have come from studies in 

cancer cells, linking its function to p53 and NF-κB (dashed arrow).
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Figure 3. 
The roles of DLKs and LZKs in neuronal and glial responses to nervous system injury. (a) 

Neuronal responses include axon regeneration, axon degeneration, and cell death. (b) The 

astrocyte response refers to reactive astrogliosis. (c) The microglial response refers to 

reactive microgliosis. Microglia images adapted from Smart Service Medical Art through 

Creative Commons. They are available for reuse under a Creative Commons Attribution 3.0 

Unported License.
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Figure 4. 
Emerging evidence for the role of DLK in neurodegeneration and nonneuronal cells. (a) 

DLK is upregulated (upward arrow) in neurons derived from human embryonic stem cells 

acutely treated by ApoE and in turn activates (thick downward arrows) Erk signal 

transduction (left). DLK is also upregulated in transgenic AD mouse models and activates 

JNK signal transduction (right). (b) DLK is upregulated under reactivation of herpes simplex 

viruses. (c) In mouse embryonic stem cells, DLK inhibits self-renewal and is inhibited by 

phosphorylation by AKT. (d) In keratinocytes, DLK is upregulated upon differentiation, and 

DLK promotes (thick downward arrow) morphological changes via Erk signal transduction. 

(e) In adipocyte differentiation, DLK expression is positively regulated by PPAR signaling, 

and DLK, in turn, activates transcriptional regulation of adipocyte genes. (f) In insulin-

secreting β-cells, DLK expression and subcellular localization are regulated by glucose 

levels and TNFα signaling. Some interactions remain to be tested for relevance in vivo. In 

all panels, upward arrows indicate upregulation of DLK in specific cell types, and thick 

downward arrows depict functional pathways. Abbreviations: AD, Alzheimer’s disease; 

APP, amyloid precursor protein; ES cell, embryonic stem cell; HSV, herpes simplex virus; 

MT, microtubule; PPAR, peroxisome proliferator–activated receptor; TG1, transglutaminase.

Jin and Zheng Page 25

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	DISCOVERY, BIOCHEMICAL PROPERTIES, AND PROTEIN INTERACTION NETWORK
	FUNCTION AND REGULATION OF DLKs IN NEURONAL DEVELOPMENT
	Invertebrate DLKs: Caenorhabditis elegans DLK-1 and Drosophila Wallenda/DLK
	Vertebrate DLK and LZK

	FUNCTION AND REGULATION OF DLKs UNDER STRESS AND INJURY IN THE MATURE NERVOUS SYSTEM
	DLK-Mediated Signaling Pathways
	Conserved Roles of DLK in Axon Regeneration
	DLK in Axon Degeneration and Neuronal Death
	Roles of LZK and DLK in Glial Cells
	Involvement of DLK in Neurodegenerative Diseases
	DLK Signaling in Reactivation of Herpes Simplex Virus
	DLK Function in Stem Cells and Nonneuronal Cells
	Embryonic stem cells.
	Keratinocytes.
	Adipocytes.
	Insulin-secreting pancreatic β-cells.


	PERSPECTIVES
	References
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4



