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Flexible regression models for ROC
and risk analysis, with or without a
gold standard
Adam J. Branscum,a*† Wesley O. Johnson,b Timothy E. Hansonc

and Andre T. Barond

A novel semiparametric regression model is developed for evaluating the covariate-specific accuracy of a
continuous medical test or biomarker. Ideally, studies designed to estimate or compare medical test accuracy will
use a separate, flawless gold-standard procedure to determine the true disease status of sampled individuals. We
treat this as a special case of the more complicated and increasingly common scenario in which disease status
is unknown because a gold-standard procedure does not exist or is too costly or invasive for widespread use. To
compensate for missing data on disease status, covariate information is used to discriminate between diseased
and healthy units. We thus model the probability of disease as a function of ‘disease covariates’. In addition, we
model test/biomarker outcome data to depend on ‘test covariates’, which provides researchers the opportunity
to quantify the impact of covariates on the accuracy of a medical test. We further model the distributions of
test outcomes using flexible semiparametric classes. An important new theoretical result demonstrating model
identifiability under mild conditions is presented. The modeling framework can be used to obtain inferences about
covariate-specific test accuracy and the probability of disease based on subject-specific disease and test covariate
information. The value of the model is illustrated using multiple simulation studies and data on the age-adjusted
ability of soluble epidermal growth factor receptor – a ubiquitous serum protein – to serve as a biomarker of
lung cancer in men. sas code for fitting the model is provided. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The development and statistical evaluation of screening, diagnostic, prognostic, and theragnostic pro-
cedures, such as imaging technologies and biomarker-based medical tests, are of great importance in
public health and medical research. The ability of a biomarker – one based on continuous scale data
– to distinguish diseased from healthy individuals is measured by the separation between distributions
of test outcomes for the two groups. Because parametric models can fail to capture salient features of
test outcome distributions, flexible statistical procedures for discriminant analysis of medical test data
are at a premium [1–14]. We develop a general analytic framework that simultaneously handles two
prominent tasks in the biosciences, namely to measure the performance of a continuous medical test
and to determine an individual’s likelihood of disease, all in the absence of training data based on a sepa-
rate gold-standard (i.e., infallible) procedure. Although we focus on medical applications, the developed
models and methods can be applied in other scientific fields.

Let D denote true disease status (D = 1 for disease present and D = 0 for disease absent, which for
ease of discussion we refer to as ‘healthy’). Let y denote a test outcome, or transformed outcome data
from a medical procedure for diagnosing D. We refer to y as a ‘test score’, but in general, y can be any
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continuous classifier. Without loss of generality, we adhere to the convention that larger values of y are
associated with the presence of disease.

The statistical evaluation of test accuracy often involves estimating the receiver operating characteristic
(ROC) curve and the corresponding area under the curve (AUC). The ROC curve illustrates the trade-off
between a test’s true positive and false positive probabilities across all possible cutoff thresholds k ∈ R

that can be used to convert continuous test scores into dichotomous (positive or negative) outcomes. The
true positive probability is the test’s sensitivity of detection among diseased individuals, Se(k) = Pr(y >

k ∣ D = 1), and the false positive probability is Pr(y > k ∣ D = 0) = 1 − Sp(k), where the specificity
Sp(k) is the proportion of healthy individuals who correctly test negative at cutoff k. The ROC curve is a
plot of true positive versus false positive probabilities across k. The AUC is a summary measure of test
accuracy that equals 0.50 for a test that correctly classifies disease status the same as a decision based
on a fair coin toss and equals 1.0 for a perfect gold-standard test that always gives correct classification.
When training data (i.e., gold-standard data) are available, and test outcome distributions are modeled
parametrically, standard inferential methods apply (e.g., [15, Chapter 5]).

We focus on the more complicated task of estimation when test accuracy differs across covariates
and when available data constitute a sample from a mixture of diseased and healthy individuals; the
latter occurs when true disease status is unknown, which is an increasingly common obstacle that many
studies designed to evaluate medical test accuracy must overcome (see [16] for a recent review). The
methodology we develop has the flexibility to handle data from many different settings because (i) it
allows for the inclusion of covariates related to test score distribution (we refer to these as ‘test covariates’)
and covariates related to disease status (referred to as ‘disease covariates’), (ii) the distributions of test
scores for diseased and healthy populations are arbitrary and modeled using flexible mixture of finite
Polya tree (MFPT) priors, and (iii) standard parametric ROC analysis and risk prediction, with or without
gold-standard data, are available as special cases. In addition to developing a new flexible regression
modeling framework and illustrating its use on simulated and real data, novel contributions of our research
include theoretical results on identifiability and user-friendly sas template code for fitting the model. To
illustrate our new approach with and without gold-standard data, we consider a situation where training
data were indeed collected, but where we analyze the data as if they were collected as a single sample
with unknown disease status. We also analyze the data using the known disease status and compare with
the no-gold-standard analysis. Similar illustrations in dichotomous medical test settings can be found in
the works by Gastwirth and Johnson [17] and Johnson and Gastwirth [18].

1.1. Lung cancer data

We investigate the diagnostic potential of a soluble isoform of the epidermal growth factor receptor
(sEGFR) present in blood as a biomarker for classifying lung cancer status in men. sEGFR is a member
of the human epidermal growth factor receptor (EGFR/HER/ERBB) gene family, which has been linked
to various human cancers, including lung, ovarian, and breast cancers (e.g., [19, 20]). The data were
collected at the Mayo Clinic in Minnesota between 1998 and 2003 using a case-control design; there
were 139 lung cancer cases and 88 controls. A goal of our analysis was to assess if and how test accuracy
of sEGFR depends on age in men.

Several preliminary exploratory analyses were performed. Cases were split into two groups according
to whether their age was below or above the median age (68 years) of cases in the sample. Two groups
were similarly created for controls using their median age (37.5 years) as the cutoff. We found no
clear evidence of a difference in the marginal distributions of y = ln(sEGFR) for younger-aged ver-
sus older-aged cases (Wilcoxon p = 0.18). However, there was evidence of a difference (Wilcoxon
p = 0.0001) in the distribution of y for controls based on age group, whereby older controls had higher
serum sEGFR concentrations; the direction of the difference indicated that test accuracy might increase
with increasing age. Moreover, with standardized age treated as a continuous predictor variable of y, a
simple linear regression analysis using control data showed a significant association (p < 0.0001), while
there was no evidence of a significant association using case data (p = 0.13). We thus included age as a
(continuous) test covariate in our model for the control data.

We also ran a simple logistic regression analysis of disease status (lung cancer) on age and found
that age was a predictor of case versus control status. Specifically, using the standardized age variable
and independent N(0, 1) priors for the two regression coefficients, the posterior median (95% posterior
interval (PI)) for the odds ratio parameter that compares individuals who have standardized age of 0 with
individuals whose age is one standard deviation above the mean was 8.9 (5.5, 15.3). Ideally, the study

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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would have matched on age, but because it did not, any analysis of these data should adjust for age. We
thus regard age as a disease covariate. Finally, the Anderson–Darling test of normality gave p < 0.0001
for lung cancer cases (a kernel density estimate indicated a bimodal distribution for cases), p = 0.06 for
younger controls, and p = 0.19 for older controls. As a result of all of these findings, we believe that
these data are almost ideal for illustrating the need for our methods.

Caveat: Mixture modeling is difficult in general. In the two-group normal–normal setting, a mixture
model with unknown mixing proportion is not identifiable unless it is assumed that one mean is smaller
than the other, for example. In the more general case, with the two distributions being modeled non-
parametrically, even the assumption of stochastic domination of one distribution over the other does not
make the model identifiable. Moreover, in the area of medical classification with multiple binary tests, it
is often the case that models either lack identifiability or require potentially strong assumptions in order
to guarantee identifiability [21, 22]. The approach taken here buys identifiability based on having addi-
tional information, including continuous test outcomes instead of dichotomous outcomes and covariate
information that should be helpful in mitigating the lack of a gold standard. The caveat here, however,
is that the realized identifiability comes with the price of the assumption that the model for the relation-
ship between disease status and disease covariates is at least approximately ‘true’. We hedge our wording
here because we agree with Box [23] that all models are wrong but some are useful. The essence of the
caveat is that there is no free lunch. We either abandon statistical modeling of no-gold-standard data or we
proceed with models like ours that ultimately rest on the ability to discern, in the absence of the benefit
of the previous preliminary analysis, a set of covariates that are related to disease status and would thus
be helpful in achieving identifiability. On the other side of the spectrum, our new method is a valuable
contribution to Bayesian semiparametric ROC regression in the gold-standard case.

The remainder of the paper is organized as follows. Section 2 presents background on Polya trees
and discusses previous methods for ROC curve estimation and risk prediction without a gold standard.
Section 3 develops our general semiparametric regression model in the absence of gold-standard data
and discusses several special cases. Methods are illustrated in Section 4 using simulated data and the
sEGFR lung cancer data. Concluding remarks are given in Section 5, and theoretical results on model
identifiability and sas code are provided in the appendices.

2. Background

Standard frequentist and Bayesian approaches to test evaluation are catalogued in the texts by Pepe [24]
and Broemeling [15], respectively; see also [25]. These texts focus primarily on parametric analysis of
gold-standard data.

There is a large body of research on modeling binary medical test data without a gold standard.
However, the literature on modeling continuous test scores without a gold standard is comparatively
small. Frequentist parametric approaches have been developed by Henkelman, Kay, and Bronskill [26],
Beiden et al. [27], and Kupinski et al. [28]. A Bayesian parametric approach was developed by Choi et al.
[29], who used a bivariate two-group normal model for correlated tests in ROC analysis, while Choi,
Johnson, and Thurmond [30] developed methods for risk prediction based on parametric models with-
out a gold-standard test. Collins and Huynh [16] reviewed many frequentist and Bayesian methods for
evaluating the accuracy of binary, ordinal, and continuous tests in the absence of a gold standard.

Hall and Zhou [31] developed a nonparametric approach for estimating the densities associated with
data distributions for diseased and healthy populations, and nonparametric methods for ordinal tests
were developed by Zhou, Castelluccio, and Zhou [32] with follow-up work that incorporated conditional
dependence by Albert [33], all without gold-standard data. However, a limitation of these nonparametric
procedures is the requirement of three or more tests to ensure identifiability. Wang et al. [2] developed a
Bayesian multinomial model for grouped data in ROC studies involving two continuous tests; a related
multinomial modeling approach was used by Fosgate, Scott, and Jordan [3]. A parametric Bayesian model
for no-gold-standard data was developed by Wang et al. [34]; their group also developed methods for
parametric analysis of longitudinal test score data [35], as did Norris, Johnson, and Gardner [36].

Bayesian nonparametric procedures for ROC analysis of gold-standard data have been developed
using Dirichlet process mixtures [1, 5], dependent Dirichlet processes [13], finite or MFPTs [5, 37],
and Gaussian processes [38]. Flexible methods based on multivariate mixtures of Polya trees to model
gold-standard data from multiple continuous tests [6] and the bootstrap [7] have also been successful.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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Pepe [39] and Rodríguez-Álvarez, Tahoces, and Cadarso-Suárez [40] considered the so-called ‘induced
semiparametric location-scale’ models with test covariates, but no disease covariates. These models are
not identifiable in the absence of a gold standard [31].

In contrast, Branscum et al. [4] developed a nonparametric model for continuous no-gold-standard
data that uses flexible MFPT priors for the disease and healthy test score distributions and that relates
disease covariates to latent disease status through a binomial regression model. With dichotomous tests,
Magder and Hughes [41] and McInturff et al. [42] also used disease covariates, in part so that their models
would be identifiable, but also because it was sensible to model disease prevalence as a smoothly varying
function of certain covariates. The extension by Branscum et al. [4] of the model used by Magder and
Hughes is also identifiable (under mild conditions), which we establish in Appendix A.

The new model we develop extends that of [4] to account for the possibility of test covariate informa-
tion. Our model provides inference for covariate-specific ROC curves, AUC, and partial AUC, in addition
to risk prediction of disease based on an individual’s disease covariate vector (𝐱∗), test covariate vector
(𝐱), and scalar test score (y). We expect the discriminatory ability of a test/biomarker to be greatly
enhanced in many situations through the joint use of test and disease covariate information.

3. Methods

The data are {(𝐱i, 𝐱∗i , yi) ∶ i = 1,… , n} ≡ (𝐗,𝐗∗,𝐘). The test covariates, 𝐱i, may be distinct from the
disease covariates, 𝐱∗i , or they may overlap. For example, both might include age as in the lung can-
cer analysis. Continuous test scores (yi) are obtained on n individuals from a population with overall
disease prevalence 𝜋. Test scores are often transformed in parametric ROC analysis in order to con-
form to standard probability models. We denote the data as yi regardless of whether or not they have
been transformed.

In this section, we first discuss the use of Bayesian nonparametric Polya tree priors, then elucidate
our semiparametric model for data analysis with and without a gold standard, and finally discuss how
inferences are made. The modeling is the most interesting part and involves first modeling the latent
disease status for individuals as independent Bernoulli random variables, and then conditional on disease
status, modeling test outcomes. Test outcomes in the diseased and healthy populations are modeled by
location-scale families of distributions that are assigned finite Polya tree priors. The model presented in
the following can be easily adapted to handle a variety of scenarios, including the one needed for the lung
cancer data.

3.1. Basics of MFPT priors

Consider the general case of modeling a continuous test outcome that varies according to an unknown
distribution P. Because we want the outcome distribution to be essentially unconstrained, we do not
force P to be a member of a parametric family, but rather, a family that encompasses a broad class of
distributions. We allow the shape of P to be more-or-less arbitrary, thus allowing for unanticipated
skewness and/or multimodality in the data.

Polya tree priors were discussed by Ferguson [43], with development for statistical modeling and
extensions to mixtures of Polya trees by Lavine [44,45], Hanson and Johnson [46], and Hanson [47]. For
a simple introduction to Polya trees, see Christensen et al. [48, Chapter 15] or Christensen, Hanson, and
Jara [49]. Here, we give the basics of the MFPT prior distribution.

The first step in the definition of a Polya tree involves dyadic partitioning of the sample space. This
involves a tree of partitions that begins with a partition into two sets, then each of those sets gets split
to produce a finer partition of four sets, and so on. Corresponding to each pair of adjacent sets produced
from a split is a pair of branch probabilities that must add to one. The collection of branch probabilities
determines a particular P. Placing independent Dirichlet distributions on the pairs of branch probabilities
results in a random probability distribution P called a Polya tree. The parameters of the Dirichlet distribu-
tions can be selected so that P is absolutely continuous with probability one, and also so that E(P) = P0,
a prior ‘guess’ for P. The parameters of the Dirichlet distributions are determined up to a positive con-
stant, c, where large c leads to a prior for P that is concentrated around P0 and small c leads to higher
prior variability and provides a better opportunity for data-driven flexibility in making inferences. The
dyadic partition is determined by P0, so the only parameters of the Polya tree prior are P0 and c. A finite
Polya tree is obtained by truncating at some level, say J. We say that P ∼ FPTJ(P0, c).

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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To enhance flexibility and smoothness, we replace the single P0 with a family of parametric distribu-
tions,

{
P𝜽 ∶ 𝜽 ∈ }, for some appropriate set . For example, P𝜽 might correspond to a normal family

with unknown mean and variance. In this way, we center the prior on a parametric family, with the weight
parameter c representing our prior confidence in that family as well as influencing the ability of the data
to generate a posterior departure from the family. We complete this part of the model by placing a prior
distribution on 𝜽, p(𝜽), the same as we would if P were specified directly by the parametric family.
The resulting marginal distribution for P is called a MFPT prior. It is common to describe them as
‘nonparametric’ because their flexibility produces robust inference; however, MFPT-based models are
usually parametric with a high-dimensional parameter vector [49].

3.2. Semiparametric model

Let zi denote latent disease status with zi = 1 if subject i is diseased and zi = 0 otherwise, and let 𝜋i denote
the probability that subject i is diseased. The test score data are modeled independently according to a
mixture distribution with density fi(y) = (1 − 𝜋i)g0(y) + 𝜋ig1(y − 𝐱′i𝜷). In general, the model for healthy
individuals can also depend on covariates, or, as in the case of the lung cancer data, the distribution
of test scores for healthy individuals may depend on test covariates, while the model for data from the
diseased population may not. With gold-standard data, the zi’s are known, and the data are modeled
directly according to densities g0 (healthy population) and g1 (diseased population).

Let G0 and G1 denote the cumulative distribution functions (CDFs) associated with the densities g0
and g1, respectively. Under our sampling model, test scores for healthy individuals vary according to g0,
and a regression model characterizes the distribution of scores for diseased individuals. We present this
particular model for concreteness, and because extensions and variations of it are straightforward. The
model is thus specified as

zi ∼ Bernoulli(𝜋i), 𝜋i = F(𝐱∗′i 𝜶)
f (yi ∣ zi) = (1 − zi)g0(yi) + zig1(yi − 𝐱′i𝜷)

Gj ∼ FPT(Gj𝜽j
, cj), j = 0, 1, p(𝜽0,𝜽1,𝜶, 𝜷) = p(𝜽0)p(𝜽1)p(𝜶)p(𝜷),

where 𝜷 = (𝛽0,… , 𝛽p)′, 𝜶 = (𝛼0,… , 𝛼s)′, and F is a known CDF (for example, the standard normal or
logistic). The distribution G1 is (easily) constrained to have median zero in order to alleviate confounding
between 𝛽0 and the location of G1 [46].

The parametric version of the model (when c0, c1 → ∞), with or without disease covariates, has been
termed a ‘mixture of experts’ model and is identifiable up to some order restrictions [50]. Our argument
for identifiability of the semiparametric model is given in Appendix A. Notably, identifiability is achieved
based primarily on the minor condition that one disease covariate regression coefficient be forced to be
positive (or negative).

Although other distributions can be used, in our applications the parametric models G0𝜽0
and G1𝜽1

are
normal distributions, namely N(𝜇0, 𝜎

2
0) and N(0, 𝜎2

1), respectively, so that 𝜽0 = (𝜇0, 𝜎0)′ and 𝜽1 = 𝜎1.
With gold-standard data, our model is thus centered at the covariate-adjusted binormal model consid-
ered by Faraggi [51]. The independent priors used for the means and standard deviations are 𝜇0 ∼
N(a𝜇0

, b2
𝜇0
), 𝜎0 ∼ Uniform(a𝜎0

, b𝜎0
), and 𝜎1 ∼ Uniform(a𝜎1

, b𝜎1
), where the hyperparameters are fixed

constants. It has become commonplace to set cj equal to 1 or to model it with a prior distribution.
There are many approaches for using expert opinion or previous data to construct priors on 𝜶 and

𝜷, including conditional means priors [52] and partial information priors for regression coefficients in
generalized linear models [48, Chapter 8]. Depending on the setting and data available, opinions of
experts can be pooled for use in analyzing latent disease status [53]. We have found that g-priors for 𝜶
in logistic regression [54] work well in a variety of simulations. In this approach, a multivariate normal
g-prior for 𝜶 is constructed that corresponds to prior information about the probability of disease when
averaged over the set of disease covariates that are included in the logistic regression model. Specifi-
cally, we first place an informative beta prior distribution on 𝜋̃, the (marginal) probability of disease when
averaged over the distribution of disease covariates H(d𝐱∗), that is, 𝜋̃ = ∫ logit−1(𝐱∗′𝜶)H(d𝐱∗). Then,
a g-prior on 𝜶 is obtained that induces a prior on 𝜋̃ that matches the elicited beta distribution by select-
ing appropriate values for g and b in 𝜶 ∼ Ns+1(b e, gn(𝐗∗′𝐗∗)−1), where 𝐗∗ = [𝐱∗1 · · · 𝐱

∗
n]

′ is the design
matrix containing disease covariates. The last s elements of vector e are all zero, and its first element is
one so that a prior mean of b is placed on 𝛼0. Detailed methods and R code for obtaining g and b are
described elsewhere [54], and example SAS code for calculating g and b is in Appendix B.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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When prior information is lacking, prior distributions can be selected to be relatively diffuse. One
approach in the case of a logistic regression model for relating disease status to disease covariates is to
standardize all continuous covariates and place independent N(0, 1) priors on their regression coefficients;
induced priors on probabilities of disease tend to be rather diffuse with this selection [48, 55]. Simple
methods for placing a multivariate normal g-prior on the vector of logistic regression coefficients in the
absence of available prior information are also available [54]. It is common to use g-priors, diffuse normal,
or even improper constant priors for the 𝛽k’s.

3.3. Model implementation and inference

SAS code that can be used as a template for fitting the mixture regression model is in Appendix B. The
code can be easily modified to fit a variety of models using Gibbs sampling by iteratively simulating from
the full conditional distributions of the parameters 𝜇0, 𝜎0, 𝜎1, 𝜶, 𝜷, 𝚷0, and 𝚷1, where 𝚷0 and 𝚷1 denote
the collection of FPT branch probabilities in the priors on G0 and G1, respectively.

After burn-in, the simulated values from the Gibbs sampler are generated from the joint posterior
distribution p(𝜇0, 𝜎0, 𝜎1,𝜶, 𝜷,𝚷0,𝚷1 ∣ 𝐘). The simulated iterates can be used to obtain posterior infer-
ences for any parameter of interest, including covariate-specific ROC curves, ROC(t ∣ 𝐱), and predictive
probabilities of disease for individuals with joint covariate vector (𝐱∗, 𝐱) and scalar test score y, namely
Pr(z = 1 ∣ y, 𝐱∗, 𝐱,𝐘).

The covariate-specific ROC curve is given by

ROC(t ∣ 𝐱) = S1

(
S−1

0 (t) ∣ 𝐱
)
,

where S0(t) = 1 − G0(t), S1(⋅ ∣ 𝐱) = 1 − G1(⋅ ∣ 𝐱), and G1(⋅ ∣ 𝐱) denotes the CDF of 𝐱′𝜷 + 𝜖 when
𝜖 ∼ G1. Hence, G1(v ∣ 𝐱) = G1(v − 𝐱′𝜷), and therefore, S1(v ∣ 𝐱) = 1 − G1(v − 𝐱′𝜷). Realizations at
iteration j of the Gibbs sampler are used to obtain values for S0 and S1, and the corresponding iterate
ROC( j)(t ∣ 𝐱) = S( j)

1 (S−1 ( j)
0 (t) ∣ 𝐱). With m iterates, we obtain a numerical approximation to the ROC

curve by calculating

E (ROC(t ∣ 𝐱) ∣ 𝐘)
.
= 1

m

m∑
j=1

ROC( j)(t ∣ 𝐱)

over a fine grid of values for t ∈ (0, 1). The covariate-specific AUC and partial AUC are obtained as

AUC(𝐱) = ∫
1

0
ROC(t ∣ 𝐱)dt and pAUC(𝐱) = ∫

t1

t0

ROC(t ∣ 𝐱)dt ,

which are evaluated numerically.
In addition to evaluating test accuracy, the model can be used to calculate predictive risk of disease. Let

𝜽 denote the collection of all model parameters. Risk prediction for an individual with inputs (𝐱∗, 𝐱, y) is
determined by the predictive probability

Pr(z = 1 ∣ 𝐱∗, 𝐱, y,𝐘)

= ∫
g1(y − 𝐱′𝜷)F(𝐱∗′𝜶)

g1(y − 𝐱′𝜷)F(𝐱∗′𝜶) + g0(y){1 − F(𝐱∗′𝜶)}
p(d𝜽 ∣ 𝐘)

.
= 1

m

m∑
j=1

g( j)
1 (y − 𝐱′𝜷 ( j))F(𝐱∗′𝜶( j))

g( j)
1

(
y − 𝐱′𝜷 ( j)

)
F(𝐱∗′𝜶( j)) + g( j)

0 (y){1 − F(𝐱∗′𝜶( j))}
.

For fixed (𝐱∗, 𝐱, y), the odds of disease are given by g1(y − 𝐱′𝜷)F(𝐱∗′𝜶)[g0(y){1 − F(𝐱∗′𝜶)}]−1, which
can be estimated similarly using a numerical approximation of the posterior mean

∫
g1(y − 𝐱′𝜷)F(𝐱∗′𝜶)
g0(y){1 − F(𝐱∗′𝜶)}

p(d𝜽 ∣ 𝐘).

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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Note that for logistic regression, exp(𝛼k) is the odds ratio obtained by letting variable k in the vector 𝐱∗
increase by one unit, while all other variables (including y and 𝐱) are the same for the two groups under
comparison, when no interaction is present.

Although not of primary interest, posterior inference for the population prevalence 𝜋 can be obtained
using {Z( j) ∶ j = 1,… ,m}, where Z( j) = (z( j)

1 ,… , z( j)
n ). Because a random sample of individu-

als was drawn from the population, 1
m

∑m
j=1

{
1
n

∑n
i=1 z( j)

i

}
provides an estimate of 𝜋̂ ≡ 1

n

∑n
i=1 zi, the

unknown sample proportion of diseased individuals, which is in turn a point estimate of the population
prevalence 𝜋.

4. Illustrations

For covariate-specific ROC analysis, decisions about which covariates to include in a model are made
based on consultations between data analysts and subject-matter experts. This may result in the inclusion
of a small number of unnecessary covariates. The simulation in Section 4.2 was therefore conducted
to illustrate the robustness of estimates from our model when irrelevant disease and test covariates are
included in an analysis. Section 4.3 presents a simulation study of data from nonstandard distributions,
and we compare models that have different tree lengths, weight parameters, and centering distributions.
We study the use of diffuse priors and increasing sample sizes of simulated data sets in Section 4.4. We
begin this section by using our methods to estimate ROC curves and AUCs for the lung cancer study.

4.1. Lung cancer data

We investigated the potential of sEGFR to be a diagnostic biomarker for lung cancer in men. The data
were obtained from a case-control study, with 139 cases and 88 controls. To illustrate our models in
settings with and without a gold standard, we analyzed the data as if disease status were unknown, using
age (the only other variable available to us) as both a disease and test covariate, and we made comparisons
with a gold-standard data analysis. Ages (in years) ranged from 35 to 88 for cases and from 24 to 79 for
controls. The median (standard deviation) age for controls was 37.5 years (14 years), and for cases, it
was 68 years (11 years). Hereafter, age is treated as a continuous variable that has been standardized to
have a mean of 0 and a standard deviation of 1. Posterior estimates were based on every 30th iterate from
a chain of 100,000 samples, after 5000 draws were discarded as burn-in.

As described in Section 1.1, we found distinct differences in test outcome distributions among controls
of different age, but not for the cases. We also found that age may play an important role in helping to
discern lung cancer status. We considered a semiparametric model for no-gold-standard data that used
age as a test covariate for controls (x = age) and used age as a disease covariate (x∗ = age).

We knew beforehand that test accuracy is expected to increase with age and that values of sEGFR tend
to be lower for lung cancer cases than controls. Hence, we let z = 1 for controls and z = 0 for cases. For
the no-gold-standard analysis, the sampling models for the natural log-transformed test scores and latent
disease status were

zi ∼ Bernoulli(𝜋i), logit(𝜋i) = 𝛼0 + 𝛼1x∗i ,

f (yi ∣ zi) = (1 − zi)g0(yi) + zig1(yi − 𝛽0 − 𝛽1xi).

For lung cancer cases, the prior G0 ∣ (𝜇0, 𝜎0) ∼ FPTJ0
(N(𝜇0, 𝜎

2
0), c0) was used, with 𝜇0 ∼ N(8, 400)

and 𝜎0 ∼ Uniform(0, 50). The prior mean for 𝜇0 was chosen because 8 was approximately the sample
mean of y for female lung cancer cases in the study, but we allowed for a high degree of prior uncertainty
about the value of 𝜇0 through the large variance of 400. The independent prior on the residual distribution
was G1 ∣ 𝜎1 ∼ FPTJ1

(N(0, 𝜎2
1), c1), where G1 was constrained to have median 0 because otherwise its

location would have been confounded with 𝛽0. The prior on 𝜎1 was Uniform(0, 50), with 𝛽0 ∼ N(8, 400)
and 𝛽1 ∼ N(0, 400). We compared models with different tree lengths and weight parameters. Specifi-
cally, we used J0 = J1 equal to 4 or 5, and c0 = c1 = 1 or c0, c1 ∼ Gamma(5, 1). Using the same priors,
we also considered the underlying parametric normal models. For the parametric analyses, the compo-
nent distributions in the mixture model were both Gaussian, with g0(⋅) being a normal density function
with unknown mean 𝜇0 and variance 𝜎2

0 , and g1(⋅) being a mean-zero normal density with unknown
variance 𝜎2

1 .
For gold-standard data analysis, the zi’s are known. The data from cases were modeled as indepen-

dent and identically distributed according to G0. The regression model for the data from controls was
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yi = 𝛽0 + 𝛽1xi + 𝜖i, with 𝜖i ∣ 𝜎1 ∼ G1. In the semiparametric analysis, the unknown parameters G0 and
G1 were modeled with the same MFPT priors as in the no-gold-standard data analysis. Similarly, the
parametric analysis used the same normal distributions and priors.

Model selection was based on the log pseudo-marginal likelihood (LPML) and corresponding pseudo
Bayes factor [48,56]. In the no-gold-standard analysis, the negative LPML (smaller is better) for the para-
metric normal model was 439, and it was lower for all semiparametric models considered. The negative
LPML statistics for the semiparametric models were 422 (J0 = J1 = 4, c0 = c1 = 1), 426 (J0 = J1 =
5, c0, c1 ∼ Γ(5, 1)), 429 (J0 = J1 = 5, c0 = c1 = 1), and 437 (J0 = J1 = 4, c0, c1 ∼ Gamma(5, 1)).
Compared with the parametric model, the pseudo-Bayes factor of e17 decisively supports the selected
semiparametric model, which produces data-driven estimates of the component mixture distributions,
ROC curves, and AUCs.

Age was found to be a statistically important predictor of disease status, with lung cancer cases tending
to be older in age. From the selected semiparametric model applied to no-gold-standard data, the poste-
rior median and 95% PI for 𝛼1 were −1.6 and (−2.4,−1.0), respectively, and Pr(𝛼1 < 0 ∣ 𝐘)

.
= 1. We

also found that the median of the biomarker distribution increases with age and the association
between age and sEGFR is statistically important; posterior inferences for 𝛽1 were 0.3 (0.1, 0.6) from the
no-gold-standard data analysis, and they were 0.4 (0.2, 0.6) from the gold-standard data analysis.

The accuracy of the biomarker was estimated for 40-, 55-, and 70-year-old men. These ages were
the approximate 2.5, 50, and 97.5 empirical percentiles of the age distribution for men in the study.
Estimated ROC curves from the gold-standard and no-gold-standard analyses are similar (Figure 1;
see also the estimated AUCs in Table I). Discriminatory ability was greater for older men, with semipara-
metric no-gold-standard estimates of AUC equal to 79%, 83%, and 86% for 40-, 55-, and 70-year-old
men, respectively. Differences in AUCs across age were statistically important, since Pr(AUC70 > AUCj ∣
𝐘)

.
= 1 for j = 40, 55, and Pr(AUC55 > AUC40 ∣ 𝐘)

.
= 1.

Inferences for age-specific test accuracy based on the parametric normal analysis of no-gold-standard
data were different, which underscores the value of a more flexible model for these data; recall that the

Figure 1. Semiparametric estimates of receiver operating characteristic (ROC) curves for 40- (top-left panel),
55- (top-right panel), and 70-year-old (bottom-left panel) men, when using ln(sEGFR) as a biomarker for lung
cancer in a no-gold-standard (solid lines) and gold-standard (dashed lines) data analysis. For ease of com-
parison across age, the bottom-right panel reproduces the estimated ROC curves from the semiparametric

no-gold-standard analysis.
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Table I. Semiparametric estimates (posterior median and 95% interval)
of AUC and difference in AUC for 40-, 55-, and 70-year-old men, when
using ln(sEGFR) as a biomarker of lung cancer in a gold-standard or
no-gold-standard data analysis.

Parameter Gold standard No gold standard

AUC40 0.78 (0.72, 0.84) 0.79 (0.71, 0.86)
AUC55 0.83 (0.77, 0.88) 0.83 (0.75, 0.89)
AUC70 0.87 (0.81, 0.92) 0.86 (0.77, 0.92)
AUC70 − AUC40 0.08 (0.05, 0.13) 0.06 (0.02, 0.10)
AUC70 − AUC55 0.04 (0.02, 0.05) 0.03 (0.01, 0.05)
AUC55 − AUC40 0.05 (0.03, 0.07) 0.03 (0.01, 0.06)

AUC, area under the curve.

pseudo-Bayes factor strongly supports the Polya tree model. The estimated AUCs from the parametric
analyses were 77%, 80%, and 83%, respectively, and all three 95% PIs for pairwise differences between
AUCs contained 0. In contrast, none of the three 95% PIs for differences between AUCs contained 0
from the semiparametric analyses.

Our argument for including age as a test covariate for only the non-lung cancer population was based
on gold-standard data, which will often be unavailable. In the absence of gold-standard data or strong
prior information to support excluding it as a test covariate from the lung cancer population, we would
have proceeded by modeling y to depend on age for both the cases and controls. Thus, the previous model
of g0(yi) for lung cancer cases would be changed to g0(yi − 𝛾0 − 𝛾1xi). The posterior results support the
previous model because the 95% PI for 𝛾1, (−0.30, 1.30), covers 0. Moreover, the negative LPML for
this model is 442, compared with 422 for the previous model (pseudo-Bayes factor = e20 in favor of the
previous model). Also, estimates of 𝛼1 (posterior median = −1.7; 95% PI: −2.5,−1.1), 𝛽1 (posterior
median = 0.3; 95% PI: 0.1, 0.5), and the other model parameters were very similar to estimates from
the previous analysis.

4.2. Simulated data: irrelevant covariates

This simulation was set up according to a scenario where the separation between disease and healthy
data distributions increases with a covariate, say ai for age, and the disease probability also increases
with ai. The goal of this simulation study was to investigate if and how estimates change when irrelevant
disease and test covariates are included in the model. Three data sets were generated, each with n = 1000
where about half the data were from the healthy population and half from the diseased population. In
each case, test score data for the healthy population were simulated from the 70–30% mixture of two
normal distributions that has density function 0.7(1.5−1)𝜙(1.5−1(y − 4.5)) + 0.3𝜙(y − 5.5). The notation
𝜙(y) indicates the standard normal density function evaluated at y.

The first simulated data set contained five disease covariates, one of which was ai and the other four
were simulated independently from N(0, 1). Latent disease status was simulated independently from
Bernoulli(𝜋i), where logit(𝜋i) = 𝛼0 + 𝛼1x1i + 𝛼2x2i + 𝛼3x3i + 𝛼4x4i + 𝛼5ai, for 𝜶 = (−5,−3,−2,−4, 2, 1)′.
Test score data for diseased individuals were generated from age-specific normal mixture densities of the
form 0.5𝜙(y−𝛽0 −𝛽1ai, 1)+0.5𝜙(y−𝛽0 −𝛽1ai −4, 1), where 𝜷 = (5, 1)′ and the test covariates a1,… , an
were simulated independently from the Uniform(0, 10) distribution. In case 1, the correct disease and test
covariates were included in the model.

Case 2 added two irrelevant disease covariates (x5 and x6) to the setting in case 1. The additional covari-
ates were simulated independently from the standard normal distribution, and the true logistic regression
coefficient vector was 𝜶 = (−5,−3,−2,−4, 2, 1, 0, 0)′. Case 3 extended the second case by adding an
irrelevant binary test covariate (simulated as bi ∼ Bernoulli(0.5)) with true 𝜷 = (5, 1, 0)′.

The following inputs were used in all three cases. Tree levels were J0 = J1 = 5 and c0 = c1 = 1.
The MFPT prior for g0 was centered at N(𝜇0, 𝜎

2
0), while the flexible prior for g1 was constrained to

have median 0 and centered on N(0, 𝜎2
1). A multivariate normal g-prior for 𝜶 was matched to the

beta(8, 8), and the other priors were 𝜇0 ∼ Γ(2, 0.33), 𝛽0 ∼ Γ(3, 0.33), 𝛽1, 𝛽2 ∼ N(0, 100), and 𝜎0, 𝜎1 ∼
Uniform(0, 20). Posterior distributions were approximated using 2000 iterates thinned from 50,000 after
a burn-in of 2000.

For a = b = 0, Figure 2 shows that pointwise posterior means of densities and ROC curves are very
accurate in all three cases. The true AUC is 0.76, and posterior medians and 95% PIs for AUC are 0.74
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Figure 2. Estimates (solid lines) of density and receiver operating characteristic (ROC) curves when fitting
a model that contains (i) the correct five disease covariates and one test covariate (row 1), (ii) seven disease
covariates, two of which are insignificant, and the correct test covariate (row 2), and (iii) seven disease covariates,

two of which are insignificant, and two test covariates, one of which is insignificant (row 3).

(0.70, 0.78) for case 1, 0.76 (0.71, 0.80) for case 2, and 0.77 (0.69, 0.82) for case 3. Case 2 had true
𝛼6 = 𝛼7 = 0, and the posterior means and 95% highest posterior density intervals for 𝛼6 and 𝛼7 were−0.04
(−0.20, 0.12) and −0.05 (−0.20, 0.12), respectively. We note that both of these intervals contain 0, while
the 95% highest posterior density intervals for the other five (nonzero) logistic regression coefficients
did not contain 0, and those parameters were accurately estimated. Similar conclusions were found for
case 3, where the regression coefficients corresponding to the two irrelevant disease covariates and one
irrelevant test covariate were estimated to be −0.04 (−0.21, 0.11) for 𝛼6, −0.06 (−0.22, 0.11) for 𝛼7, and
−0.01 (−0.24, 0.28) for 𝛽2. The other disease and test covariates in case 3 had regression coefficients that
were correctly identified as statistically important, and they were accurately estimated.

4.3. Simulated data: heavy-tail, asymmetric, mixture distributions

In this simulation study, we compared models that contain different tree lengths, weight parameters,
and centering families using data (n = 1000) generated from distributions that simultaneously have
three nonstandard features, namely data from heavy-tailed, skewed mixture distributions. In particular,
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g0 was a two-component 70–30% mixture of noncentral t densities with 10 degrees of freedom; the
mixture components had noncentrality parameters of 4.5 and 5.5. Test score data for diseased individuals
were generated as in Section 4.2; only noncentral t densities with 10 degrees of freedom were used
for mixture components instead of normal densities; that is, data were randomly generated from the
mixture density 0.5pt(y, 10, 𝛽0 + 𝛽1a) + 0.5pt(y, 10, 𝛽0 + 𝛽1a+ 4). Five disease covariates were generated
using the same specification as in case 1 in Section 4.2. The priors in the previous section were used
here, except 𝛽1 was modeled by a uniform(0, 20) prior (similar results were obtained using lognormal
priors that had means of 4.5 or 12 and variances of 35 or 255). Models were fit using at least a 5000
iteration burn-in and between 20,000 to 200,000 post burn-in samples that were thinned by 0, 10, or
50 iterates.

The models under comparison specified equal tree lengths (J0 = J1) of 4, 5, or 6, with the same
normal centering families used in the previous section. The weight parameters were c0 = c1 = 1 or
c0, c1 ∼ Gamma(5, 1). Negative LPML statistics ranged from a high of 2602 when J0 = J1 = 4 and
c0 = c1 = 1 to a low of 2560 for the selected model that used J0 = J1 = 5 and c0, c1 ∼ Gamma(5, 1).
The second lowest negative LPML of 2564 was shared for the model with tree lengths of 4 and gamma
priors on the weight parameters and the model with J0 = J1 = 5 and c0 = c1 = 1. Pseudo-Bayes factors
were >55 in support of the selected model over the other five models.

We also considered models that used t centering families in MFPT priors with J0 = J1 = 4 and either
c0 = c1 = 1 or c0, c1 ∼ Gamma(5, 1). The t distributions considered had 𝜈0 = 𝜈1 = 3 degrees of
freedom or modeled 𝜈0 and 𝜈1 as independent with Gamma(2, 0.33) priors. The negative LPML statistics
were larger for these models compared with all six of the models centered at normal families that were
considered (the LPML statistics were 2642 and 2645 for the models with fixed and random degrees of
freedom, respectively). We note that the models with t centering families required substantially longer
computing time compared with the normal-centered models.

Figure 3 presents the accurate estimates of g0, g1, and ROC curves from the selected model at test
covariates a = 2, 3. The AUCs were accurately estimated across a; true AUCs at a = 0, 1, 2, 3, 4 are 0.74,

Figure 3. Posterior medians (solid lines) as density and receiver operating characteristic (ROC) curve estimates
based on test score data with no gold standard and five disease covariates when the only test covariate is set at

a = 2 (top row) or a = 3 (bottom row). True test-score densities and ROC curves are plotted as dashed lines.
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a b

Figure 4. (a) Estimates of g0(y−𝜇0) (dashed) and truth (solid) for the healthy population. (b) Estimates of g1(y−𝛽0)
(dashed) and truth (solid) for the diseased population.

0.83, 0.90, 0.94, and 0.96, and posterior medians (95% PI) are 0.73 (0.61, 0.79), 0.81 (0.72, 0.86), 0.88
(0.81, 0.93), 0.92 (0.88, 0.95), and 0.95 (0.92, 0.97), respectively.

We personally prefer to use informative priors regardless of whether we have a gold standard or not.
However, we note the nice performance when using diffuse priors in the next subsection.

4.4. Simulated data: diffuse priors

Let 𝐱i = 𝐱∗i = (1, ai)′, and set 𝜶 = (−5, 1)′ and 𝜷 = (5, 1)′. The covariates were generated as ai
iid∼

Uniform(0, 10), and the prevalence 𝜋 was approximately 0.5. Test score data (y) were generated according
to the following true densities that were each a mixture of two normals:

g0(y) = 0.7(1.5−1)𝜙 ((y − 4.5)∕1.5) + 0.3𝜙(y − 5.5) and g1(y) = 0.5𝜙(y) + 0.5𝜙(y − 4).

The simulated test scores from the healthy population were slightly skewed, and the diseased popula-
tion had a test score density with two pronounced modes, perhaps signifying clinical versus subclinical
groups, early stage versus latestage disease, or biological subtypes of malignant lung tumors. For each of
three samples sizes, n = 250, n = 500, and n = 1000, one hundred data sets were simulated according
to the aforementioned specifications, the semiparametric MFPT no-gold-standard model was fit, and
posterior densities were approximated, specifically the posterior means of g0(y) and g1(y) for 1000 y’s
over a fine grid.

Figure 4(a) and 4(b) presents the estimated densities averaged over 100 simulated data sets. Clearly, the
model is doing an excellent job of estimating g0 and g1 as the sample size increases. The estimates appear
to be asymptotically unbiased, and although not reported here, all model parameters were estimated
correctly, and with increasing precision as n increases. The model appears to estimate g0 well at any of the
three sample sizes, which is not surprising given that the MFPT prior is centered at the normal distribution.
The estimates of g1 improve markedly with increasing sample size. Initially, at n = 250, the estimated
densities are smoothed more toward the normal centering distribution. As more data are added at n = 500
and n = 1000, the estimates are able to move closer to the true density (note that roughly half the sample
is going into the estimate of g1, not the whole sample). Note that the bias is greatest at extrema, much like
kernel smoothing.

For these simulations, we used truncation levels J0 = J1 = 5, we modeled c0, c1 ∼ Γ(5, 1), and we used
p(𝜶, 𝜷, 𝜇0) ∝ 1 and p(𝜎2

0 , 𝜎
2
1) ∝ 𝜎−2

0 𝜎−2
1 . For each simulated data set, a Gibbs sampler was run 20,000

iterations beyond a burn-in of 1000; every 10-th iterate was thinned for a total of 2000 iterates.

5. Discussion

We developed a general modeling framework for evaluating the performance of continuous medical tests
or biomarkers and risk analysis. The models and methods are broadly applicable because they can be
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applied to the simple setting involving gold-standard data modeled parametrically without covariates,
and to the complicated setting involving a semiparametric regression analysis of no-gold-standard data,
and everything in between. Accurate estimates of mixture component distributions from simulated data
and ROC curves and AUCs from the lung cancer study were expected given the identifiability of the
parametric and semiparametric models for no-gold-standard data.

When gold-standard data are not available, modeling assumptions have to be made to counteract
the missing information. It is important to reemphasize the fact that the adequacy of available covari-
ates to reasonably predict latent disease status largely drives the (parametric or semiparametric) model’s
ability to accurately estimate ROC curves and AUCs. Determination of which covariates to include
and how to include them in a model can be aided by consultation with subject-matter experts, but such
modeling assumptions can be difficult to verify in this context. Although not considered in this paper
because the lung cancer study had only one covariate (age), in situations where many potential covariates
are available, it is possible to use methods from Bayesian shrinkage regression (e.g., [57,58]) or a sparse-
ness prior that is a mixture of a parametric distribution and point mass at zero. Clearly, the ideal setting is
one in which previous analyses have been performed in the presence of gold-standard data, where it can
be established that certain disease covariates would be useful. For example, a previous study used expen-
sive gold-standard data in the development of models for handling future inexpensive no-gold-standard
data [59].

We have previously developed an ROC regression model for multivariate gold-standard data using
mixtures of multivariate Polya trees [6]. While that model can be extended to handle no-gold-standard
data, our application to the lung cancer study involved a univariate response variable, and an extension to
multivariate response data is beyond the scope of the current paper. However, this topic is an interesting
future line of research.

The utility of semiparametric inference with no-gold-standard data was highlighted in the lung
cancer application, where the semiparametric model that was decisively favored by the pseudo-Bayes
factor produced different inferences than a parametric normal analysis. Specifically, none of the pairwise
differences in AUCs for the three age groups considered were statistically important (based on 95% PIs)
according to the parametric analysis, but the AUCs were found to be statistically different based on the
semiparametric analysis.

A referee asked us to document the advantages of our MFPT model. The basic idea was to embed
traditional parametric models in a broad class of distributions that would allow for departures from
the normal–normal model used in the traditional case. The departures allowed are skewness, heavy
tails, and multimodality. We expect the same kind of flexibility that one would obtain from a mix-
ture of distributions, only without the necessity to select the number of terms in the mixture. The
use of MFPT priors to produce flexible regression models with linear regression structure but much
greater flexibility for the error distribution has been well documented over the last decade [46–49].
In addition to modeling error distributions in linear regression models [46], finite or MFPTs have
been used to model random effects distributions in linear and generalized linear models [60–62] and
to model link functions [47]; they have also been used in nonparametric Rasch models [63] and in
modeling multivariate diagnostic outcome data [36], among many other applications. Many of these
models have been programmed in the suite of R functions, DP Package: Bayesian Nonparametric
Modeling in R, which can be found at http://cran.r-project.org/web/packages/DPpackage/index.html.
Nonparametric frequentist methods for gold-standard ROC analysis using location-scale models are also
available [64].

Appendix A: Identifiability

We provide a heuristic argument for identifiability of our semiparametric model. To accomplish this,
we first begin with its parametric counterpart, which has been asserted in the literature to be identi-
fiable (identifiability of the normal version is proven in [50]). Then we extend the argument to the
semiparametric case.

A.1 Parametric case

Let (𝐘,𝐗,𝐗∗, 𝐳) denote the augmented data, where 𝐘 is an n × 1 vector of observed test scores, 𝐗 is an
n × (p + 1) matrix of test covariate values, 𝐗∗ is an n × (s + 1) matrix of disease covariate values, and z
denotes the latent vector that provides disease status for each individual in the sample. Matrices 𝐗 and
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𝐗∗ contain a first column of all ones to accommodate intercepts. We assume that the (column) ranks of
𝐗 and 𝐗∗ are full, and that individuals are sampled independently. Furthermore, we assume a generic
model for the moment with

g(𝐘, z ∣ 𝜽) =
n∏

i=1

g(yi, zi ∣ 𝐱i, 𝐱∗i ,𝜽) =
n∏

i=1

g(yi ∣ 𝐱i, zi,𝜽)g(zi ∣ 𝐱∗i ,𝜽),

where 𝜽 is a parameter vector that encompasses the entire model. We assume

zi ∼ Bernoulli(F(𝐱∗′i 𝜶)),

where F(⋅) is a CDF and is usually selected as the standard logistic, which results in a logistic regression
model for latent disease status. We also define

g(yi ∣ 𝐱i, zi = 0,𝜽) = g0(yi − 𝜇 ∣ 𝝀0) and g(yi ∣ 𝐱i, zi = 1,𝜽) = g1(yi − 𝐱′i𝜷 ∣ 𝝀1),

where 𝜽 = (𝜇,𝜶, 𝜷,𝝀0,𝝀1). The parameter vectors 𝝀0 and 𝝀1 are regarded as corresponding to, for exam-
ple, scale and skewness. For example, with both g0 and g1 as normal densities, 𝝀0 and 𝝀1 are variance
parameters. Thus, g0 and g1 are not necessarily in the same family, but they are parametric location fam-
ily densities. Moreover, the model corresponding to g0 is free of covariates, and the model corresponding
to g1 depends on 𝐱′i𝜷, which is a location parameter on the scale of the data (or transformed data) yi. The
marginal model for yi ∣ 𝐱∗i , 𝐱i,𝜽 is thus

g(yi ∣ 𝐱∗i , 𝐱i,𝜽) = F(𝐱∗′i 𝜶)g1(yi − 𝐱′i𝜷 ∣ 𝝀1) + {1 − F(𝐱∗′i 𝜶)}g0(yi − 𝜇 ∣ 𝝀0).

We assume that the marginal models, g0(⋅ ∣ 𝝀0) and g1(⋅ ∣ 𝝀1), are identifiable. Specifically, with given
(𝝀01,𝝀11) and (𝝀02,𝝀12), if we have gj(u ∣ 𝝀j1) = gj(u ∣ 𝝀j2) for all possible scalars u, then we must have
(𝝀01,𝝀11) = (𝝀02,𝝀12), for j = 0, 1.

Now consider two parameter vectors, 𝜽1 and 𝜽2, where 𝜽k = (𝜇k,𝜶k, 𝜷k,𝝀0k,𝝀1k) for k = 1, 2.
Assume that

g(𝐘 ∣ 𝐱, 𝐱∗,𝜽1) = g(𝐘 ∣ 𝐱, 𝐱∗,𝜽2), (A.1)

for all possible vectors 𝐘. Our goal is to find conditions under which this cannot happen unless 𝜽1 = 𝜽2. If
F(𝐱∗′i 𝜶) = 𝜋 for all i, and if the only distinction between g0 and g1 is an unknown location, it is well known
that the aforementioned mixture model lacks identifiability. The model is identifiable if it is constrained
to have one of the locations smaller than the other. This is the classic ‘label-switching’ problem. It is
also known that if there are no covariates, and if g0 and g1 are modeled nonparametrically, then the
corresponding mixture model lacks identifiability, even if one distribution stochastically dominates the
other. We proceed to argue that the aforementioned model with dependence on covariates is identifiable
under some mild conditions.

Under our assumptions, it follows that (A.1) holds if and only if

∏n

i=1

[
{1 − F(𝐱∗′i 𝜶1)}g0(yi − 𝜇1 ∣ 𝜽1) + F(𝐱∗′i 𝜶1)g1(yi − 𝐱′i𝜷1 ∣ 𝜽1)

]

=
∏n

i=1

[
{1 − F(𝐱∗′i 𝜶2)}g0(yi − 𝜇2 ∣ 𝜽2) + F(𝐱∗′i 𝜶2)g1(yi − 𝐱′i𝜷2 ∣ 𝜽2)

]
,

which holds if and only if

∑
𝐙∈{0,1}n

[∏n

i=1

{
F(𝐱∗′i 𝜶1)zi(1 − F(𝐱∗′i 𝜶1))1−zi g1(yi − 𝐱′i𝜷1 ∣ 𝜽1)zi g0(yi − 𝜇1 ∣ 𝜽1)1−zi

}]

=
∑

𝐙∈{0,1}n

[∏n

i=1

{
F(𝐱∗′i 𝜶2)zi(1 − F(𝐱∗′i 𝜶2))1−zi g1(yi − 𝐱′i𝜷2 ∣ 𝜽2)zi g0(yi − 𝜇2 ∣ 𝜽2)1−zi

}]
.

This equation will hold in two cases, namely if and only if, for all i,

F(𝐱∗′i 𝜶1) = F(𝐱∗′i 𝜶2), g1(yi − 𝐱′i𝜷1 ∣ 𝝀11) = g1(yi − 𝐱′i𝜷2 ∣ 𝝀12), g0(yi − 𝜇1 ∣ 𝝀01) = g0(yi − 𝜇2 ∣ 𝝀02),
(A.2)
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or

F(𝐱∗′i 𝜶1) = 1 − F(𝐱∗′i 𝜶2), g1(yi − 𝐱′i𝜷1 ∣ 𝝀11) = g0(yi − 𝜇2 ∣ 𝝀02), g1(yi − 𝐱′i𝜷2 ∣ 𝝀12) = g0(yi − 𝜇1 ∣ 𝝀01).
(A.3)

Case (A.2) can only occur if 𝐱∗′𝜶1 = 𝐱∗′𝜶2, and if 𝝀j1 = 𝝀j2 for j = 0, 1, 𝐱′𝜷1 = 𝐱′𝜷2, and 𝜇1 = 𝜇2.
Therefore, case (A.2) requires that 𝜽1 = 𝜽2.

Case (A.3) cannot hold unless g0 = g1 and 𝝀j1 = 𝝀j2 for j = 0, 1. However, if g0 = g1 and 𝝀1 = 𝝀2, then
the equalities in (A.3) can only occur if 𝐱∗′𝜶1 = −𝐱∗′𝜶2, for symmetric F, and 𝐱′𝜷1 = 𝐱′𝜷2 = 𝜇1 = 𝜇2.
Then we must have 𝜶1 = −𝜶2, for symmetric F, and 𝜷1 = 𝜷2, because 𝐱∗ and 𝐱 have full column rank. If
the rank and dimension of both 𝐱∗ and 𝐱 are one, then the model clearly lacks identifiability since we are
in the previously described label-switching situation. We make the label switching impossible by forcing
𝜇 ⩽ 𝛽0, where 𝛽0 is the intercept (and location parameter) for the g1 population. Under this constraint,
(A.3) is vacuous, and thus, the model is identifiable.

When the rank of 𝐱∗ is greater than 1, we can restrict the model in such a way that it is impossi-
ble for 𝜶2 = −𝜶1, in which case (A.3) is again vacuous and the model will be identifiable. We could
merely constrain one of the coefficients to be positive based on subjective considerations. This kind
of lack of identifiability is quite mild and would rarely show up in applications as problematic even
without any restrictions, provided informative priors were used for the disease covariate regression coef-
ficients. We also note that this result implies there would be two sets of maximum likelihood estimates
(MLEs). For example, if (𝜇̂, 𝜶̂, 𝜷̂,𝜽∗) is an MLE for 𝜽, then so is (𝜇̂,−𝜶̂, 𝜷̂,𝜽∗). Thus, if one obtained
an MLE for 𝜶 that made no sense while the negative of it did, one would simply use the version that did
make sense.

Concluding results: (i) If g0 = g1 and the rank of 𝐱∗ is greater than 1, with symmetric F, and with a
constraint on𝜶 that eliminates the possibility that𝜶2 = −𝜶1, the parametric mixture model is identifiable.
(ii) If g0 ≠ g1, the model is automatically identifiable because (A.3) is void in this case and the only way
that (A.2) can hold is if 𝜽1 = 𝜽2. For instance, if we model g0 as normal and g1 as Weibull, the model
will be identifiable without any restrictions. (iii) If F is not symmetric and the rank of 𝐱∗ is greater than
one, the model is identifiable.

A.2 Semiparametric case

We consider the same situation as in the preceding text, only now we replace 𝝀j with 𝝌 j = (𝚷j,𝝀j) for
j = 0, 1, where 𝚷j is the set of branch probabilities and 𝝀j now is a vector of parameters in the centering
parametric family of the Polya tree for population j. For fixed c, the density g0 is completely determined
by 𝝌0, and similarly, the density g1 is completely determined by 𝝌1. While 𝚷0 and 𝚷1 are theoretically
infinite dimensional, we only use a finite dimensional version, but the dimension of 𝚷j is meant to be
quite large compared with the dimension of 𝝀j. Recall that 𝝌1 is defined so that g1 has median zero; there
is no such constraint on 𝝌0.

Now consider two parameter vectors, 𝜽1 and 𝜽2, where 𝜽k = (𝜶k, 𝜷k,𝝌0k,𝝌1k), for k = 1, 2. Assume
that (A.1) holds for these values. Then, as in the development in the preceding text, this will hold if and
only if, for all i,

F(𝐱∗′i 𝜶1) = F(𝐱∗′i 𝜶2)
g1(yi − 𝐱′i𝜷1 ∣ 𝝌11) = g1(yi − 𝐱′i𝜷2 ∣ 𝝌12), g0(yi ∣ 𝝌01) = g0(yi ∣ 𝝌02),

(A.4)

or
F(𝐱∗′i 𝜶1) = 1 − F(𝐱∗′i 𝜶2)

g1(yi − 𝐱′i𝜷1 ∣ 𝝌11) = g0(yi ∣ 𝝌02), g1(yi − 𝐱′i𝜷2 ∣ 𝝌12) = g0(yi ∣ 𝝌01).
(A.5)

For (A.4) or (A.5) to hold, we must have 𝜶1 = 𝜶2 in the former case, or 𝜶1 = −𝜶2 in the latter case when
F is symmetric. But if F is not symmetric, or if we place a restriction on 𝜶 as discussed in the parametric
case, then (A.5) is void, and we are only concerned with (A.4). But the only way (A.4) can hold is if
𝜶1 = 𝜶2, 𝜷1 = 𝜷2, 𝝌11 = 𝝌12, and 𝝌01 = 𝝌02.

Concluding results: (i) If the rank of 𝐱∗ is greater than 1, and with a constraint on 𝜶 that eliminates
the possibility that 𝜶1 = −𝜶2, the semiparametric mixture model is identifiable. Note that the model is
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still identifiable even if the rank of 𝐱 is one, so there need not be any test covariates. This implies that the
model in [4] is identifiable under a constraint on 𝜶. (ii) Now suppose the model g0(yi) is replaced with
g0(yi − 𝐱′i𝜸 ∣ 𝝌0), that is, suppose there are test covariates that also affect the distribution of outcomes in
the absence of disease. Augment 𝝌 k with 𝜸k, k = 1, 2. Then (A.4) and (A.5) can be suitably modified. We
assume in this instance that g0 has median zero. Condition (A.5) does not exist with suitable constraint on
𝜶. Condition (A.4) is similar as before except now we add that 𝐱̃𝜸1 = 𝐱̃𝜸2, which occurs only if 𝜸1 = 𝜸2.
So adding test covariates leaves identifiability alone, under constraints on 𝜶.

Appendix B: SAS code

sas 9.3 template code to fit the ROC regression model is presented in the succeeding text. As an example,
the code is presented for settings with two disease covariates (d1 and d2) and one test covariate (t); simple
modifications are needed for other settings. In the sas data step (not shown), variables y, d1, d2, and
t are read into a data set that was named ROC. The iml procedure is used to calculate vector be and
matrix 𝚺 = gn(𝐗∗′𝐗∗)−1 in the N3(be,𝚺) g-prior on 𝜶 that matches a beta(a𝜋, b𝜋) distribution of the users
choosing (the user inputs values for api and bpi). The first line of the mcmc procedure instructs sas to
use the data in ROC and specifies options for the number of burn-in iterates (nbi), the number of iterates
to simulate post burn-in (nmc), the amount to thin (thin), and the parameters to monitor for posterior
inference. The next segment of code defines constants that are used in the program. For illustration, tree
levels were set to 3, and weight parameters were set to 1. The branch probability q11 was set to 0.5
to constrain the median of G1 to be 0. The user inputs the values for be and a,b,...,i that were
output by proc iml. Branch probabilities for the healthy and diseased groups are coded by pjk and
qjk, with the appropriate numbers substituted for j and k. The marginal probabilities at level 3 are
named p0k and q0k, where k ranges from 1 to 8. Priors on branch probabilities, regression coefficients,
and parameters of the centering distributions follow. The log likelihood (llike) involves k0 and k1,
which identify the sets each yi belongs to at level 3 of the trees. This code gives the log of the density
fi(y) = (1 − 𝜋i)g0(y) + 𝜋ig1(y − 𝛽0 − 𝛽1ti). The model is fit using Gibbs sampling with block updating
occurring for the groups of parameters that are defined in the parms statements.

proc iml;
use ROC;
read all var{d1 d2} into Xtemp;
n=nrow(Xtemp);
X=(j(n,1,1))||Xtemp; * Adds to Xtemp an nx1 vector of all ones;
p=ncol(X);
api=; bpi=;
b=digamma(api)-digamma(bpi);
g=(trigamma(api)+trigamma(bpi))/p;
S=inv(X‘*X);
be=j(p,1,0); be[1,1]=b;
Sigma=S#(n*g);
print be Sigma;
quit;

proc mcmc data=ROC nbi= nmc= thin= propcov= outpost=out
monitor=(p0 q0 mu0 sigma0 beta0 beta1 sigma1 alpha1 alpha2
alpha3);

begincnst;
J0=3; J1=3; c0=1; c1=1; q11=0.5;
array be[3] (0 0 0);
array S[3,3] (
a b c
d e f
g h i
)
;

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015



A. J. BRANSCUM ET AL.

endcnst;
array alpha[3];
parms p11 p21 p23 p31 p33 p35 p37;
parms q21 q23 q31 q33 q35 q37;
parms mu0 sigma0;
parms beta0 beta1 sigma1;
parms alpha;

array p0[8];
p01=p11*p21*p31; p02=p11*p21*(1-p31);
p03=p11*(1-p21)*p33; p04=p11*(1-p21)*(1-p33);
p05=(1-p11)*p23*p35; p06=(1-p11)*p23*(1-p35);
p07=(1-p11)*(1-p23)*p37; p08=(1-p11)*(1-p23)*(1-p37);

array q0[8];
q01=q11*q21*q31; q02=q11*q21*(1-q31);
q03=q11*(1-q21)*q33; q04=q11*(1-q21)*(1-q33);
q05=(1-q11)*q23*q35; q06=(1-q11)*q23*(1-q35);
q07=(1-q11)*(1-q23)*q37; q08=(1-q11)*(1-q23)*(1-q37);

prior p11 ˜ beta(c0*1**2, c0*1**2);
prior p21 p23 ˜ beta(c0*2**2, c0*2**2);
prior p31 p33 p35 p37 ˜ beta(c0*3**2, c0*3**2);
prior q21 q23 ˜ beta(c1*2**2, c1*2**2);
prior q31 q33 q35 q37 ˜ beta(c1*3**2, c1*3**2);
prior mu0 ˜ ; prior beta0 ˜ ; prior beta1˜ ; prior sigma0 ˜ ;
prior sigma1 ; prior alpha ˜ mvn(be, S);

pi = exp(alpha1+alpha2*d1+alpha3*d2)/(1+exp(alpha1+alpha2*d1
+alpha3*d2));

k0 = int(2**J0 * cdf("normal", y, mu0, sigma0) + 1);
k1 = int(2**J1 * cdf("normal", y-(beta0+beta1*t), 0, sigma1) + 1);
llike = log((1-pi)*(2**J0)*(p0[k0])*pdf("normal",y,mu0,sigma0)

+ pi*(2**J1)*(q0[k1])*pdf("normal",y-(beta0+beta1*t),0,
sigma1));

model general(llike);
run;
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