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Abstract

Three possible determinants of typicality were examined
in categories of common household objects: family re-
semblance and an exemplar’s similarity to a geometrical
centroid of the category, either unweighted or weighted
for name frequencies. Similarity to the geometrical cen-
troids in 2- to 6-dimensional spaces outperformed family
resemblance in predicting typicality. Finally, optimizing
the prediction of typicality in an M -dimensional space
resulted in an abstract representation far outside the set
of objects, suggesting that people seem to use a carica-
ture to judge typicality. The position of this external
prototype was most influenced by the typicality of non-
members.

Introduction
Category boundaries are fuzzy rather than clear-cut.
For most concepts, like furniture, there exist border-
line cases, like carpet or desk lamp, that are not con-
sistently assigned to the category. These exemplars are
very atypical of the category furniture, in contrast to
other exemplars, like chair and table, that are very typ-
ical members of furniture. Members of a category vary
in how good an example they are of their category or in
how typical they are of their category (Rips, Shoben &
Smith, 1973; Rosch, 1973). Analogously, nonmembers of
a category vary in how atypical they are of their cate-
gory (Barsalou, 1985). For example, a robin is a better
nonmember of furniture than a sleeping bag. This con-
tinuum of category representativeness, is referred to as
graded structure. Prototype models for concept repre-
sentation provide an account for the graded structure
of categories. They assume that instances of everyday
concepts are compared to an abstract summary or pro-
totype of the concept. Category membership depends on
the degree of similarity to this prototype (Rosch, 1978).

A prototype can be defined in several ways: It is usu-
ally assumed to be the central tendency of the category
(Hampton, 1979, 1993, Smith, Shoben & Rips, 1974),
where central tendency refers to any kind of central sum-
mary information about a category’s instances (e.g. av-
erage value of the category instances, median,...). The
more similar an instance is to the central tendency of
the category, the more typical it is of its category. Ac-
cording to Rosch and Mervis (1975) family resemblances
underlie the prototype structure of categories. Family re-
semblance is defined as an instance’s average similarity
to other category members and its average dissimilarity

to members of contrast categories. The more charac-
teristic features an instance has in common with other
category members and the less characteristic features it
has in common with members of contrast categories, the
higher its family resemblance and the more typical it is
of its category.

In contrast to this feature-based approach to similar-
ity, other approaches evolved from the category learning
tradition, start from a geometrical representation of a
category. Instances of the category are represented as
points in an M -dimensional space. Similarity is defined
in terms of distances in the geometrical space. Small
distances between points correspond to very similar in-
stances, large distances to very dissimilar instances. The
prototype corresponds to the point in the M -dimensional
space that possesses the central tendency of dimen-
sion values, averaging over all of the concept’s instances
(Nosofsky, 1992; see also Minda & Smith, 2001 and Gar-
denfors, 2000 for geometric approaches to similarity and
categorization).

Some researchers have extended the notion of a proto-
type to a caricature of the category, i.e. a prototype with
more extreme values on the dimensions that distinguish
the category from other categories (Goldstone, 1996).

The present study addresses the issue of what proto-
type model best determines typicality . Barsalou (1985)
found different determinants of typicality for common
taxonomic categories and goal-derived categories, in-
cluding an exemplar’s similarity to the central tendency
of its category. The main question in the present pa-
per concerns the difference in prediction quality between
family resemblance and distance-based similarity to a
centroid, using categories of common household objects
(Malt, Sloman, Gennari, Shi & Wang, 1999).

Study

Three different determinants of typicality were exam-
ined: family resemblance and two measures of central
tendency in an M -dimensional space: unweighted and
weighted for name frequencies. Finally, we also looked
at the nature of the abstract representation dictated by
the optimized prediction of typicality.

Method
Materials The categories for which we wanted to
predict graded structure were derived from a previous
naming study with common household objects (Ameel,
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Storms, Malt & Sloman, in press). In that study, speak-
ers of different language groups, Belgian monolingual
speakers of Dutch and French and Dutch-French bilin-
guals, named two sets of objects, bottles and dishes.
For the present study, only four categories were selected
from the linguistic category names generated by Dutch-
speaking monolinguals for the bottles set. The bottles
set contained 73 objects that were selected to be likely
to receive the name bottle or jar in American English, or
else to share one or more salient properties with bottles
and jars. The selection of the categories was based on
the criterion of most frequent dominant name, where the
dominant name of an object is the name that was most
frequently generated for that object. The four linguistic
categories selected were fles, bus pot and brik. Figure 1
shows examples of each of the four categories.

21

3 4

Figure 1: Black-and-white versions of some of the color
photographs used in the experiment. Object 1 is a very
typical example of the category fles, object 2 of the cat-
egory bus, object 3 of the category pot, and object 4 of
the category brik.

Subjects We used the naming and sorting similarity
data for the objects of the bottles set that were gathered
from thirty-two undergraduate students at the Psychol-
ogy Department of the University of Leuven as part of
the naming study of Ameel et al. (in press). Twenty-
eight undergraduate students provided typicality rat-
ings. Finally, 10 undergraduate students participated
in a feature generation task. All subjects were Dutch-
speaking monolingual Belgians. They participated for
course credit.
Procedure In the naming task, the experimenter
asked subjects to name the 73 objects, presented on indi-
vidual pictures. They could give whatever name seemed
like the best or most natural name, and they were told
that they could give either a single-word name or a name
with more than one word (for more details, see Ameel et
al., in press). In the sorting task, we asked the subjects

to sort the objects into piles based on overall similarity
(for more details, see Ameel et al., in press). To ob-
tain typicality ratings, the subjects were asked to rate
on a 7-point scale the degree to which each of the ob-
jects was a good example of the linguistic categories fles,
bus, pot and brik. The scale ranged from 1 to 7 with 1
labeled very atypical and 7 labeled very typical. The
task was done on a computer and the objects were pre-
sented randomly on the screen. At the top of the screen
appeared the category name. At the bottom of each
picture appeared the 7-point scale. The subjects filled
in one scale number for each object. This procedure
was repeated three times, once for each category. The
order of presentation of the categories was counterbal-
anced across subjects. Finally, in the feature generation
task, constructed to derive a measure of family resem-
blance according to Rosch and Mervis (1975), subjects
were asked to list attributes of the four linguistic cate-
gories fles, bus, pot and brik. Following the procedure
introduced by Hampton (1979), a set of questions was
used for each category in order to encourage subjects to
generate as many different properties as they could (for
more details, see Hampton, 1979).

Results
The results are presented in three sections. Each section
describes a different determinant of typicality.

Family resemblance To derive a measure of family
resemblance, we followed the Rosch and Mervis (1975)
procedure: For each category, we listed all attributes
that were generated at least twice for that category in the
feature generation task. A judge assessed for each object
whether each of the listed features was applicable to the
object. Each attribute received a weight, corresponding
to the number of objects that possessed that attribute.
The basic measure of family resemblance for an object
was the sum of the weighted applicability scores of all
the features that had been generated for its category.
To examine how well family resemblance predicts typ-
icality, Spearman rank-order correlations between the
ranks of the obtained measures of family resemblance
and the ranks of the typicality ratings averaged across
subjects were performed separately for each of the cat-
egories. Note that this measure of family resemblance
does not take into account an object’s dissimilarity to
members of contrast categories. Verbeemen, Vanover-
berghe, Storms and Ruts (2001) showed that contrast
categories generally do not make an independent contri-
bution to within-category structure. The resulting rank-
order correlations between family resemblance and typ-
icality for fles, bus, pot and brik were respectively 0.71,
0.14, 0.77 and 0.49. All were significant (p < .01), except
for the correlation for bus1. The result for fles is compa-
rable to the correlations reported by Rosch and Mervis

1The reason for the low correlation of bus might be found
in the feature generation task. Some subjects generated fea-
tures of brik in the feature generation task of bus, since the
name bus is sometimes used for objects with brik as the dom-
inant name. As a result, the set of features generated for bus
does not reproduce an unequivocal representation of bus.
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for basic level categories (between 0.69 and 0.94, aver-
age of 0.84), while the other correlations are lower. The
lower correlations might be due to the lower number of
generated frequencies. Except for bus, these significant
positive correlations confirm that the more attributes an
object has in common with other objects of the category,
the more it is a representative or typical member of the
category.
Centroid prototypes in an M-dimensional space
unweighted and weighted for name frequencies
The second determinant assumes an underlying M -
dimensional geometrical representation in which the ex-
emplars of a category are embedded. Each exemplar is
represented by a vector of M coordinates, one on each
of the M dimensions. The coordinates of the objects
were obtained by performing multidimensional scaling
(Borg & Groenen, 1997) on the similarity sorting data
that were first transformed to pairwise similarity data.
Pairwise similarity was recovered by counting for each
of the 2628 ( 73∗72

2 ) possible pairs of objects how many
subjects placed that pair of objects in the same pile. A
large number of subjects placing the two objects in a pile
indicates high perceived similarity between the objects
of the pair. Two- to 6-dimensional MDS solutions were
computed.

In the category-learning tradition (Nosofsky, 1984,
1992; Minda & Smith, 2001), the prototype of a cate-
gory is assumed to be a single point in the space repre-
sentation. As mentioned earlier, this point could be the
centroid of all category exemplars, a vector of modal val-
ues over all category exemplars, a vector of ideal values,
etc (Barsalou, 1985). In the case of an assumed underly-
ing M-dimensional space, these different definitions are
reflected in the way the coordinates of the prototype are
computed: as the mean of the coordinates of all category
exemplars on each dimension, as the modal coordinate
on each dimension, as the ’ideal’ coordinate on each di-
mension, etc. The closer an instance is to the prototype,
the more typical it is of its category.

The coordinates of the centroids for fles, bus, pot and
brik were calculated as follows. Two different versions of
the centroid prototypes were computed: an unweighted
version and a weighted version. In the unweighted ver-
sion the coordinates of the centroid of the category are
based on the average coordinates of all the objects with
the category name as dominant name. For instance,
the coordinates for the centroid of fles were the average
of the coordinates of all the objects with fles as domi-
nant name. However, by looking at the dominant names,
some information present in the data might be lost. Only
five objects were unanimously called by the same name.
The remaining objects were named by at least two dif-
ferent names. An object that has been called bus more
often than fles, is assigned to the category bus and will
not be taken into account in the computation of the co-
ordinates of the centroid prototype of fles. Therefore,
in the weighted version of centroids all the objects that
were at least called once with the category name were
involved in the computation of the coordinates of the
centroids of the four categories. This was done by av-

eraging over the coordinates of each object weighted for
the frequency with which each object was called by the
category name concerned. Thus, the more an object was
called fles, the larger was its effect on the averaged co-
ordinates of the centroid of fles. The same holds for the
other centroids.

To examine how well typicality can be predicted by
the two geometrical prototype models, the euclidean dis-
tances to the weighted and unweighted centroids of each
category, calculated in 2 to 6 dimensions, were corre-
lated with the mean typicality ratings of the objects.
The euclidean distance is computed by formula 1:

√√√√
n∑

i=1

(xij − x
ip

)2, (1)

with n the number of dimensions, xij the coordinate of
object j on dimension i and xip the coordinate of pro-
totype p on dimension i. Table 1 shows the correlations
between the mean typicality ratings and the distances
calculated in 2 to 6 dimensions for the unweighted cen-
troids. Table 2 contains the corresponding correlations
for the weighted centroids.

Table 1: Correlations between typicality and distance to
the unweighted centroids.

Number of prototypes
dimensions fles bus pot brik

2 -0.76 -0.58 -0.66 -0.67
3 -0.76 -0.67 -0.76 -0.89
4 -0.83 -0.69 -0.79 -0.91
5 -0.85 -0.66 -0.79 -0.93
6 -0.87 -0.75 -0.85 -0.94

Table 2: Correlations between typicality and distance to
the weighted centroids.

Number of prototypes
dimensions fles bus pot brik

2 -0.75 -0.57 -0.59 -0.67
3 -0.75 -0.62 -0.69 -0.89
4 -0.85 -0.66 -0.79 -0.93
5 -0.85 -0.61 -0.71 -0.93
6 -0.87 -0.67 -0.74 -0.94

As seen in Table 1 and 2, all correlations are negative:
the smaller the distance from an object to the centroid
of a category, the more typical the object is for the cat-
egory. The correlations between typicality and the dis-
tance to the centroid generally increase from two to six
dimensions for the four categories. The correlations be-
tween typicality and distance to the unweighted centroid
do not differ significantly from the corresponding corre-
lations between typicality and distance to the weighted
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centroid for the four categories. Apparently, the extra
information provided by the name frequencies does not
help to construct a better prototype.

When comparing the correlations for these centroids
to the family-resemblance-based correlations, it is clear
that the correlations for the centroids exceed the family-
resemblance-based correlations, except for fles where
only the correlation in six dimensions is slightly though
not significantly higher than the family-resemblance-
based correlation. In general, a centroid prototype rep-
resented in a multidimensional space appears to explain
more of the graded structure of categories than a family-
resemblance-based prototype.

Optimal prediction The centroid conception of a
prototype described above may not be the optimal pro-
totype location in the multidimensional representation
to account for the rated typicality. Therefore, we looked
for the prototype that guarantees a maximal or opti-
mal (negative) correlation between the typicality ratings
and the distances to that prototype. This optimiza-
tion problem was solved by using the steepest ascent
method. This method is shortly explained. M coordi-
nates need to be estimated, corresponding to the number
of dimensions of the geometrical representation. So, the
vector Θ of ’parameters to be estimated’ can be written
as {x1p, .., xnp} with n the number of dimensions. The
vector of coordinates of the category centroid is taken
as the starting point x (0). Next, the correlation is com-
puted between typicality and the distance to point x (0)

as well as the gradient of the function at point x (0). From
that point, as the name of the algorithm suggests, a step
is taken in the direction of the steepest ascent, which is
the direction of the gradient of the function at the point.
This results in a vector x(1), with a higher correlation
than the starting vector. This procedure is repeated (K
times), until vector x(K+1) does not produce a higher
correlation than vector x(K).

The method of the steepest ascent generates iterating
points x(k+1) with formula 2:

x(k+1) = x(k) + β ∗ ∇(f(x(k))). (2)

The variable β indicates the length of the step.
∇(f(x(k))) is the gradient of the function f, where f is the
correlation between typicality and distance to x (k). The
length of the step β is chosen such that f(x(k+1))>f(x(k)).
Iterating points x (k+1) are generated until the gradient
of ∇(f(x(k+1))) equals zero. At that point, the maxi-
mum has been reached, the optimal estimated parame-
ters have been found.

This optimization algorithm was performed for proto-
types in 2 to 6 dimensions. We only discuss the results of
the 2-dimensional optimal points, since the results in two
dimensions are similar to the results in more dimensions
and since the solution in two dimensions can easily be
visualized in contrast to solutions in more dimensions.

Figure 2 shows the 2-dimensional MDS solution. Each
of the four categories is represented. Further, the
weighted centroids for the four categories, respectively,
FLES ct, BUS ct, POT ct and BRIK ct are pictured,

as well as their optimal points, respectively, FLES opt,
BUS opt, POT opt and BRIK opt.

For fles, the optimal correlation between typicality
and distance to the best predicting point in two dimen-
sions was -0.81. This correlation is significantly higher
than the correlations found for the weighted and un-
weighted centroids of fles in two dimensions (see Table
1 and 2, p < .05).
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Figure 2: 2-dimensional MDS representation of the bot-
tles. FLES ct, BUS ct, POT ct and BRIK ct repre-
sent the central tendencies for fles, bus, pot and brik.
FLES opt, BUS opt, POT opt and BRIK opt represent
the optimal prototypes for fles, bus, pot and brik.

Figure 2 shows that the optimal point of fles,
FLES opt, moves away from the centroid FLES ct and
from the set of objects. It is situated outside the cloud
of points representing the objects. Its coordinates on the
two dimensions reach more extreme values than the co-
ordinates of the exemplars of the category fles, indicated
with a black diamond in Figure 2. It seems that people
are using a caricature (more extreme on the dimensions
than the usual typical objects) to judge typicality.

For bus, the optimal correlation reached -0.65, again
higher than the correlations between typicality and dis-
tance to the centroids of bus (see Table 1 and 2, mar-
ginally significant, p < .1). Like for fles, the optimal
point for bus, BUS opt, seems to be a caricature of the
category with more extreme values on the two dimen-
sions (see Figure 2) than the typical exemplars, indicated
by a white square in Figure 2. Also for MDS solutions
in 3- to 6-dimensions, the highest correlations for fles
and bus were obtained with optimal points located far
outside the set of objects (e.g. a correlation of -0.95 for
the 5-dimensional solution of fles).

For pot and brik, the optimal correlations reached -
0.73 and -0.68. Again these values exceed the values
found for the centroids of pot and brik in two dimen-
sions (see Table 1 and 2). This time, the optimal points,
POT opt and BRIK opt are not situated outside the
cloud of objects. However, compared to the position
of their respective centroids POT ct and BRIK ct, they
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do move somewhat away from the object set. The mean
distance of the objects to the optimal point POT opt
is significantly larger than the mean distance of the ob-
jects to the centroid POT ct (t(72) = 8.10, p < .0001).
The same holds for brik (t(72) = 19.49, p < .0001). Al-
though the optimal prototypes for pot and brik do not
seem to occupy an extreme position away from the com-
plete set of objects, both POT opt and BRIK opt lie at
the boundary of the convex hull that covers the exem-
plars of their category. Similar results were obtained for
MDS representations in 3- to 6-dimensions.

A plausible reason for the fact that POT opt and
BRIK opt did not move to an extreme position, while
FLES opt and BUS opt did so, might be the difference
in representativeness of the object set for the different
categories. There are two indications for this difference
in representativeness. First, overall, the set of objects is
significantly more typical for the categories fles and bus
than for the categories pot and brik. This can be seen in
the fact that there are more objects with fles (n = 25)
or bus (n = 16) as the dominant name than there are
objects with pot (n = 13) or brik (n = 4) as the dom-
inant name. Second, for fles and bus, the stimulus set
represents the complete continuum of typicality, ranging
from very good exemplars to intermediate to very bad
exemplars. In contrast, for pot or brik, the stimuli in the
set are either extremely good exemplars, or extremely
bad exemplars with no intermediate cases. For instance,
the few objects with brik as the dominant name receive
extremely high mean typicality ratings (average of 5.83
on a scale of 1 to 7, SD = 0.48), while the other 69
objects -the nonmembers- receive extremely low mean
typicality ratings (1.68 on average, SD = 0.79). This
means that the four exemplars of the category brik will
have a relatively large influence on the computation of
the optimized correlation, in contrast to the exemplars
of the contrast categories (i.e. all 69 objects named by a
dominant name different from brik). The optimization
algorithm will focus on the four objects called brik and
try to find the point for which the distances to these four
objects are minimal. This results in a point that comes
very close to the central tendency of the four objects,
since this point guarantees that the squared deviations
from it are minimal. A similar reasoning explains why
the optimal point for pot does not move farther away
from the cloud of data points.

For fles and bus, the mean typicality ratings of the
nonmembers are significantly larger than the means of
the nonmembers for pot and brik (1.91 for fles and 1.96
for bus versus 1.68 for pot and brik, t(288) = 3.71, p <
.01). These larger mean typicality ratings of nonmem-
bers have an extreme influence on the position of the
optimal point: They ’catapult’ the point away from the
centroid that is fully determined by the position of the
members.

Figure 3 visualizes the effect of the mean typicality of
the nonmembers of a category on the position of the op-
timal point relative to the centroid. The mean typicality
ratings of nonmembers for the four categories are plot-
ted against the observed distances between the optimal

point and the centroid. The (regression) line connects
the distances predicted by the mean typicality of non-
members for the different categories.
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Figure 3: Plot of mean typicality ratings of nonmembers
for fles, bus, pot and pot against observed distances be-
tween optimal point and central tendency and distances
predicted by the mean typicality of nonmembers.

As can be seen from Figure 3, the mean typicality rat-
ings of nonmembers do a very good job in predicting
the shift of the optimal prototype. The larger the mean
typicality rating of nonmembers, the larger is the shift
away from the central tendency. However, the number of
data points (n = 4) on which this regression is based, is
too small to draw reliable conclusions. Many more cate-
gories are needed to test this regression effect. Also the
possible additional contribution of other factors (e.g. the
mean typicality of the nonmembers relative to the mean
typicality of members, that might explain the somewhat
larger shift for pot compared to brik and for bus com-
pared to fles) can only be tested on a larger set of data.
Further analyzes are planned with the typicality data of
French-speaking monolinguals and French-Dutch bilin-
guals in order to get a more considerable data set size
and to allow us to test these effects in a more reliable
way.

A set of ’more typical’ nonmembers for brik and pot
would probably lead to an optimal point outside the
cloud of points. However, in real life, people might
also exclusively encounter very typical members and very
atypical nonmembers of brik and pot. Objects of these
categories have a specific shape determined by only a
few covarying features (e.g. for brik : rectangular shape,
specific proportion of height to width; for pot : specific
proportion of height to width). Intermediate positions
(atypical members and typical nonmembers) are rather
rare. In contrast, for fles and bus there does exist a
considerable group of objects occupying the intermedi-
ate positions on the continuum of typicality. So, the
position of the optimal prototype depends on the degree
of graded structure inherent to the category, which is
expressed in the typicality of nonmembers.
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Conclusion
The present study examined different determinants of
the graded structure of categories. We found that geo-
metrical centroids (unweighted and weighted for name
frequencies) in higher-dimensional spaces did a better
job in predicting typicality than family resemblance.
However, an even better prediction was obtained with an
external prototype whose position was based on the typ-
icality ratings of nonmembers of the category. Further
research is required to examine whether these findings
can be generalized to other categories.
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