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Analytical theory of the hydrophobic effect of solutes in water
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University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 
Ljubljana, Slovenia

Ken A. Dill
Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794-5252, USA

Abstract

We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this 

three-dimensional Mercedes-Benz–like model, two neighboring waters have three possible 

interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-

bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of 

different radii. The model is sufficiently simple that we can calculate the partition function and 

thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. 

Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree 

with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are 

more highly structured than bulk waters, because of hydrogen bonding, and that that structure 

melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it 

can explore a broad range of solvation properties and anomalies of water, at minimal 

computational expense.

I. INTRODUCTION

The solvation properties of the nonpolar molecules in water are sufficiently peculiar that 

they are given their own name, the hydrophobic effect [1–5]. These unusual behaviors are 

particularly reflected in the enthalpies, entropies, heat capacities, and volumes of transfer of 

such solutes into water [1–3]. It has long been of interest to interpret these observations in 

terms of the structures and energies of individual water molecules: their hydrogen bonding, 

tetrahedrality, etc. So a substantial body of work has sought structure-property relationships 

using atomistic potentials with explicit-solvent models sampled by molecular dynamics 

(MD) or Monte Carlo (MC) computer simulations [6–8].

An alternative route to insights is through coarser-grained analytical theory [9–11]. The 

evident downside is that coarse graining throws away some details of molecular structure. 

Those details might matter. However, analytical theories also offer some advantages: (1) 

They can be much faster to compute. So a single study (such as the present one) can explore 

how solvation depends on temperature, pressure, solute radius, and solute energy parameters 

* tomaz.urbic@fkkt.uni-lj.si. 

HHS Public Access
Author manuscript
Phys Rev E. Author manuscript; available in PMC 2018 September 01.

Published in final edited form as:
Phys Rev E. 2017 September ; 96(3-1): 032101. doi:10.1103/PhysRevE.96.032101.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all at the same time, without large computing resources. (2) Analytical models are 

particularly good for exploring principles. In analytical theories, there can be tight logical 

linkages from molecular structure to observable properties. Parameters can be varied—much 

more readily than in atomistic simulations—to test how the macroscopic properties arise 

from microscopic structures. (3) Analytical models often give the best basis for engineering 

models, where there is a need to express observed behaviors fairly accurately with a 

minimum number of physical parameters. (4) And, even the disadvantage—that some details 

of molecular structure must be left out of the model—can actually be an advantage, because 

they provide an opportunity to explore which details matter and which don’t. Here we give 

an analytical model of the hydrophobic effect; it builds upon earlier work by Luksic et al. 
[12].

Hydrophobic hydration has some interesting aspects. Solvation thermodynamics in simpler 

systems is determined by an unfavorable enthalpy change of dissolution. But dissolving 

nonpolar solutes in water has a favorable enthalpy of transfer (ΔHTR < 0) (i.e., enthalpy for 

the process of transferring nonpolar particle from vacuum to bulk water) at low 

temperatures. Dissolving oil in water is unfavorable (ΔGTR > 0) due to the negative entropy 

of transfer ΔSTR < 0 [1,2]. Also unusual is the observation that both the enthalpy and 

entropy change strongly with temperature. This fact is summarized by stating that the heat 

capacity of transfer is high and positive (ΔCp,T R ≫ 0), since

ΔCp, TR =
dΔHTR

dT = T
dΔSTR

dT , (1)

where T is temperature. These features are known as the hydrophobic effect [1–3,13–19]. 

There have been many models for how hydrophobic solvation depends on solute size. 

Among the first, scaled particle theory (SPT) estimates the work necessary to create a 

spherical cavity in water [5,20]. It successfully predicts the free energy of small cavity 

formation and was constructed to give the surface tension of water in the planar limit. 

However, SPT has been criticized for predicting a monotonic increase in the entropy penalty 

of transfer with increasing cavity size and an incorrect temperature dependence in the 

surface tension [5]. Stillinger was perhaps the first to suggest that water solvates large 

nonpolar molecules differently than small molecules [5]. Pratt and Chandler developed an 

integral equation method that used pair correlations of bulk waters to predict the solubilities 

of small solutes [21]. The theory of Lum et al. [17] reduces to Pratt-Chandler theory for 

small solutes but predicts large-scale drying as predicted by Stillinger near larger nonpolar 

surfaces [5]. The hydrophobic effect plays an important role in many common processes in 

nature (e.g., protein folding, ligand binding) and technology (e.g., micelle formation). So it 

has been extensively studied experimentally [22–26]. Hydrophobic solvation as a function of 

solute size has also been studied in computer simulations using explicit and implicit water 

models. A key conclusion from such simulations is that at planar nonpolar surfaces water 

will waste a hydrogen bond by pointing the bond directly at the surface, in contrast to small 

nonpolar surfaces, where water conserves hydrogen bonds by pointing those bonds in 

directions that straddle the solute. Explicit models (such as TIP or SPC) can be 
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computationally expensive, precluding the calculation of full temperature or pressure 

dependencies. And computer simulation results are, in general, susceptible to large statistical 

errors, causing difficulties in determining certain quantities accurately, such as the heat 

capacity [27,28]. Implicit models are faster, but the trade-off is sometimes physical 

inaccuracies. There exist also many other waterlike models that were used for treating 

hydrophbic effect. Core softened [29] or Jagla fluids [30] possess waterlike structural, 

dynamic, and thermodynamic anomalies, and these fluids also display waterlike solvation 

thermodynamics. Another aspect of structure-based coarse graining relies on matching the 

pair correlation functions of a reference (atomistic) and coarse-grained system [31,32]. It 

was demonstrated that it can be generalized for inhomogeneous systems as well as solvation. 

Coarse gaining performed in inhomogeneous systems improves thermodynamic properties 

and the structure of interfaces without significant alterations to the local structure of the bulk 

liquid.

Here we adapt a Mercedes-Benz (MB)-like model of water, which has previously been 

studied in two and three dimensions [9–11] to study the three-dimensional (3D) hydration of 

a nonpolar solute. The idea behind the model originated with Ben-Naim in the 1970s [33–

36]. Recently, it has been developed further by Bizjak et al. [27,37] and Dias et al. [38,39], 

and studied using computer simulations [27,37–39] and integral equation theory [37]. The 

MB models of water are toy models that have the advantage of explaining in a simple way 

interplay of thermodynamic properties and the angle-dependent potential, but cannot be used 

for qualitative prediction of properties. The analytical theories for MB-like models allow the 

inclusion of orientation-dependent hydrogen bonding within a framework that is simple and 

nearly analytical. According to the 3D MB model, each water molecule is a Lennard-Jones 

(LJ) sphere with four arms, oriented tetrahedrally to mimic formation of hydrogen bonds. In 

a statistical mechanical model, which is based on the two-dimensional (2D) Urbic and Dill 

(UD) model being directly descended from a treatment of Truskett and Dill (TD), who 

developed a nearly analytical version of the 2D MB model [40,41], each water molecule 

interacts with its neighboring waters through a van derWaals interaction and an orientation-

dependent interaction that models hydrogen bonds. A related analytical treatment was 

developed by Coronas et al. [42] and was also studied by Monte Carlo simulations. It is a 

coarse-grained model for bulk water that includes many-body interactions associated with 

water cooperativity. It possesses waterlike anomalies and the liquid-liquid phase transition 

also present in our analytical treatment of water. The main difference between the two 

models is that in ours, energy is a continuous function of the relative orientation θ of two 

water molecules, while in the other the hydrogen-bonding (HB) energy is a discontinuous 

function of the relative configurations, but both models possess similar features. For 

hydrophobic hydration, Xu and Dill [43] proposed a very simple analytical theory of the 

hydrophobic effect in two dimensions which builds on a 2D MB model of water. Starting 

from the statistical partition functions for a water molecule in the bulk and a water in the 

first solvation shell around a hydrophobe, the theory reproduces the main characteristics of 

the hydrophobic effect and accounts for different solute size effects. The theory in Ref. [43] 

required the results of a reference Monte Carlo simulation of pure bulk water phase. That 

approach was improved by Luksic et al. [12], which is simpler and circumvents any 

computer simulation steps by using an analytical model of the pure phase of water. Both 
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solvation methods were for 2D cases. In this work, we apply theory to a 3D MB model of 

water. In addition to moving the theory to three dimensions, we implement additional 

improvements by assuming that water properties in the first solvation shell change due to 

higher density because of interaction between water and solute. The new version of the 

theory can be used in all liquid regions of the 3D MB model, including the supercooled 

region where computer simulations cannot obtain solvation properties due to crystallization 

and convergence problems.

Here we start from an analytical 3D UD theory of water [10]. A partition function for a 

water molecule in the bulk and the first hydration shell of a hydrophobic solute is then built 

using the expressions for average energies of different states of the water molecule 

(hydrogen-bonded, van der Waals, and open), upon considering the geometric restrictions 

through which a solute dictates the formation or breakage of the hydrogen bonds between 

water molecules in the first solvation shell. Finally, from statistical mechanical and 

thermodynamical relations, we calculate the ΔG, ΔH, TΔS, and ΔCp. In order to explore the 

performance of the analytical theory in describing the hydrophobic hydration, we used 

existing computer simulation data [44,45] for the simplified water model, a 3D version of 

the Ben-Naim water model (3D MB) [27]. The MB model has previously been shown to 

capture the essential physics of water, namely, van der Waals interaction and hydrogen 

bonding, which are essential for hydrophobic hydration [14,16–18,28]. Here we explore the 

performance of the analytical theory for the dependence of the hydrophobic effect on 

temperature, pressure, and solute size.

II. 3D MB WATER MODEL

We applied analytical theory to the 3D MB water model where each water molecule is 

represented as a Lennard-Jones sphere with an additional tetrahedrally dependent potential 

that mimics the hydrogen bonding of true water [27]. The interaction potential between two 

3D MB particles is

U(Xi, Xj) = UL, J
11 (ri j) + UHB(Xi, Xj), (2)

where rij is the distance between centres of particles i and j and Xi is a vector denoting the 

position and orientation of particle i. ULJ
mn is the standard Lennard-Jones potential

ULJ
mn(ri j) = 4εLJ

mn σLJ
mn

ri j

12

−
σLJ

mn

ri j

6

, (3)

where εLJ
mn denotes the well depth and σLJ

mn is the contact parameter. m is 1 if the ith particle is 

water and 2 the ith particle is a solute, and the same goes for n regarding the j th particle. 

The HB term is the sum of interactions over all possible pairs of HB arms
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UHB(Xi, Xj) = ∑
k, l

4
UHB

kl (ri j, Ωi, Ωj), (4)

where UHB
k, l  is the interaction between HB arms k and l on two particles and vector Ωi 

denotes the orientation of particle i. The interaction between two HB arms of different 

particles is

UHB
kl (ri j, Ωi, Ωj) = εHBG(ri j − rHB)G(ikuij − 1)G(jluij + 1) . (5)

Here uij is the unit vector pointing from particle i to particle j, and ik is the unit vector 

representing arm k on particle i. Between vector uij and vectors representing the orientations 

of arms there is dot product. G(x) is the unnormalized Gaussian function [a requirement that 

G(0) = 1]

G(x) = e−x2/2σ2
. (6)

The model does not distinguish between HB donors and acceptors. The width of the 

Gaussian function for distance and angles is the same (σ = 0.085) and was chosen to be 

small enough that a direct hydrogen bond is more favorable than a bifurcated one [27,37]. It 

regards two waters as being hydrogen bonded when their HB arms are collinear with each 

other. The strongest hydrogen bond is formed when two arms are pointing towards each 

other particles’ centers when the centers are separated by rHB [27,38,39]. In the following 

section we will first summarize the theory for pure 3D MB and explain how parameters of 

the model for analytical theory are extracted from continuous potential presented in this 

section.

III. THEORY

A. The model for the pure water reference state

The structure of the liquid state is modeled as a variation of the cell model theory and is a 

perturbation from a hexagonal (ice) lattice (see Fig. 1). One grid point is occupied by only 

one molecule. Our focus is on a single water molecule and its interactions with the 

neighboring molecule. The interaction between a pair of molecules can be one of the three 

possibilities. Note that in our theory we limit interactions from the continuous one to only 

the three most probable interactions, minimas in energy as function of distance for HB and 

LJ interactions and no interaction. We say that each water molecule can be in one of three 

possible orientational states relative to its clockwiselike positioned neighbor on the lattice: 

(1) hydrogen-bonded (HB) state, (2) van derWaals (LJ) state, or (3) nonbonded (NB) state. 
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This is presented in Fig. 2. First, we compute the isothermal-isobaric statistical weights, Δi, 

of the states as a functions of temperature, pressure, and interaction energies [9–11].

In the HB state the test water molecule can point one of its four HB arms at an angle θ to 

within π/3 of the center of its neighbor water. This is an approximation and was determined 

by the condition that one quarter of the total solid angle is occupied per hydrogen bond and 

to keep calculations of integrals analytical. In this case it forms a hydrogen bond [10,11] 

(see Fig. 2), and the interaction energy of the test water with its neighbor is then described 

by this equation

uHB(θ) = − εHB + ks(1 − cos θ)2, 0 < θ < π /3, (7)

where εHB is an HB energy constant of the maximal strength of a hydrogen bond and ks is 

the angular spring constant that describes the weakening of the hydrogen bond with angle. 

This is a type of hydrogen bond that is called a weak bond [9] because it does not cooperate 

with neighboring hydrogen bonds. The isothermal-isobaric partition function, ΔHB, of this 

state is calculated by integrating this Boltzmann factor over all angles ϕ, θ, and ψ and over 

all the separations x, y, and z of the test molecule relative to its clockwise neighbor. In the 

vdW state, the test water molecule forms a contact with its clockwiselike positioned water, 

but it does not form any hydrogen bond. Energy of this state can be written as

uLJ(θ) = − εLJ . (8)

The isothermal-isobaric partition function, ΔLJ, of this state is obtained using the same 

integration as for the HB state. In the last NB state, the test water molecule does not interact 

with its neighbor, so the energy is equal to zero:

u0(θ) = 0. (9)

By knowing the isobaric-isothermal ensemble partition functions for each state we can write 

the partition function Q1 for a full single hexagon of six waters as

Q1 = (ΔHB + ΔLJ + Δo)6 . (10)

If we include also higher cooperativity in ice [9–11] we can write the total partition function 

for each hexagon as
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Q1 = (ΔHB + ΔLJ + Δo)6 − ΔHB
6 + δΔs

6 . (11)

δ = exp(−βεc) is the Boltzmann factor for the cooperativity energy, εc, that applies only 

when six water molecules all collect together into a full hexagonal cage. The terms on the 

right-hand side of this expression simply replace the statistical weight for each weakly HB 

full hexagonal cage with the statistical weight for a cooperative strongly HB hexagonal cage. 

Δs is the Boltzmann factor for a cooperative hexagonal cage. It differs from ΔHB only in the 

volume per molecule, vs, instead of vHB [9–11]. Now we combine the Boltzmann factors for 

the individual water molecules to get the partition function for the whole system of N 
particles. The population of different states fj can be calculated [9–11] and all the other 

thermodynamic properties from simple derivations of the partition function as described 

previously [9–11,40,41]. The attraction beyond pair terms is treated in the mean-field 

attractive level with energy [46], −Na/v, among hexagons, where a is the van der Waals 

dispersion parameter [9,40,41] and v is the average molar volume. Parameters needed for 

calculations can be obtained directly from the interaction pair potential between two 

3DMBwater particles (εHB=1, rHB=1, εLJ=0.1, σLJ=0.7) [27,37] or from analyzing the angle 

and distance dependence of the 3D MB potential in comparison with the potential used in 

analytical theory (ks = 80, a = 0.045, εc = 0.18).

For modeling the solvation of a nonpolar solute, it is necessary to summarize volumes and to 

calculate additional quantities. Volumes of the states are [10,11]

vs =
8 3rHB

3

9 , (12)

vHB =
vs
xv

, (13)

vLJ = σLJ
3 , (14)

vo =
kBT

p + vLJ . (15)

The xv = 2.5 is chosen empirically to get the proper behavior of the density dependence in 

the original water papers [10,11]. The ensemble average energy, 〈uj 〉, for each of the three 

types of water molecule structures, can be calculated as
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〈u j〉 =
∫ 0

π /3u j sin θ dθ exp [ − (u j + pv j/2)/kBT]
∫ 0

π /3 sin θ dθ exp [ − (u j + pv j/2)/kBT]
. (16)

Integration gives us

〈uHB〉 = − εHB + kT
2 −

kskT

4π exp ( −
ks

4kT )

erf
ks

4kT

, (17)

〈uS〉 = 〈uHB〉 +
εc
6 , (18)

〈uLJ〉 = − εLJ, (19)

〈u0〉 = 0. (20)

The average energy 〈uS〉 is obtained by adding 1/6 of the correlation energy to 〈uHB〉. The 

average energy of a water molecule, summed over the four different water states, can be 

expressed as

〈ε〉b = 2(〈uHB〉 f HB + 〈uS〉 f S + 〈uLJ〉 f LJ) . (21)

B. The model for inserting a nonpolar solute into water

To develop the theory for the solvation of nonpolar solutes, we followed the same steps as in 

Luksic et al. [12]. A nonpolar solute molecule of diameter σs is inserted into water. Now we 

consider what happens with two water molecules in the first hydration shell of the solute 

(see Fig. 3). The presence of the solute imposes a geometric restriction since a solvation-

shell water molecule may be unable to form all four hydrogen bonds with its neighboring 

waters as in the bulk. Let ζ (ϕ,θ,ψ) be the maximum number of hydrogen bonds the water in 

the first solvation shell can form for a specific orientation. ϕ,θ,ψ are Euler angles describing 

the orientation of a water molecule in the first solvation shell, and ζ (ϕ,θ,ψ) is also a 

function of the solute radius. There are different possibilities depending on the size of the 

solute molecule. For smaller solutes, water molecules in the first solvation shell can form a 
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maximum of either three or four hydrogen bonds depending on the orientation. For bigger 

solutes, first-shell water molecules can form a maximum of only one, two, or three hydrogen 

bonds. A critical angle ϕc is defined as angle at which a HB arm points along a tangent to the 

solute (see Fig. 3), and both waters are in the Lennard-Jones minimum

ϕc = arccos
rHB

(σs + σLJ) 26 . (22)

This is the angle where water can still form a hydrogen bond. A similar definition of this 

angle was used by Chaimovich and Shell in their work [47,48]. Integration over all possible 

orientations of water (over all three Euler angles) is equal to 8π2. The next step is to 

determine the ratio of orientations of water molecules that can form four, three, two, or one 

hydrogen bond. Note that water can always forms at least one hydrogen bond in the first 

solvation shell. Ratios can be determined by sampling over orientations of water in first 

solvation shell and counting the number of hydrogen bonds water can form. This gives us 

ratios of orientations ζi where water can form i hydrogen bonds. A solute molecule does not 

impose just geometric restrictions on first-shell water molecules, but it also perturbs the 

energetics of water-water interactions in the first shell. Water’s density in the first solvation 

shell is higher than in the bulk, depending on the value of the attraction between the solute 

and the water

ρh = ρbexp(βεSW), (23)

where εSW = εLJ is the minimum of the Lennard-Jones interaction between solute and water. 

Since we do not have density as input to the analytical theory, we have to calculate 

properties of water in the first solvation shell by increasing pressure for

Δp =
βεSW

κ , (24)

where κ is compressibility of bulk water. The populations of waters with different states in 

the first solvation shell are now different comparing to the bulk and are equal to f j
h. Note that 

the average energies of different states stay the same, only populations change. The average 

energy of a water molecule in the first solvation shell, summed over the four different water 

states, can be expressed as

〈ε(ϕ, θ, ψ)〉h = 1
2 ζ(ϕ, θ, ψ) 〈uHB〉 f HB

h + 〈uS〉 f S
h + 4〈uLJ〉 f LJ

h − εSW , (25)
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Now we can calculate the partition function of water in the bulk by treating interactions in 

averaged way, namely,

qb = ∬ dϕ dψ∫
0

π /3
sin θ dθ exp −

〈ε〉b + pvmol
b

kT

= 8π2 exp −
〈ε〉b + pvmol

b

kT ,

(26)

where vmol
b  is molar volume of bulk water. The partition function for a water molecule in the 

first shell around a solute molecule can be written as

qh = ∬ dϕ dψ∫
0

π /3
sin θ dθ exp −

〈ε〉h + pvmol
h

kT , (27)

where vmol
h  denotes the molar volume of water in first solvation shell. It is smaller than the 

vmol
b  by the overlap volume Δv (vmol

h = vmol
b − Δv) (see Fig. 4) [12]. We compute the Gibbs 

free energy of transferring a hydrophobic solute into water using [43]

ΔG = − n(σs)kT ln
qh
qb

, (28)

where n(σs) is the average number of water molecules in the first solvation shell. In this 

theory we assumed that n(σs) is proportional to the solvent surface accessible area of the 

solute [12]. Standard thermodynamic relations give the enthalpy and the entropy of transfer 

as

ΔH = n(σs)kT2∂ ln (qh/qb)
∂T , (29)

TΔS = ΔH − ΔG . (30)
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IV. PREDICTIONS OF THE THEORY AND COMPARISONS TO 

CORRESPONDING MONTE CARLO SIMULATIONS

In this section, we give the theory’s predictions for how the hydrophobic effect depends on 

temperature, pressure, and solute size. The analytical results are compared with the Monte 

Carlo simulation results of 3D MB water by Mohoric et al. [44,45]. As has been done 

previously [9–12], we present our results in dimensionless units, normalized to the strength 

of the optimal hydrogen bond εHB and HB separation 

rHB (T∗ = kBT /εHB, uex ∗ = uex/εHB, V∗ = V /rHB
2 , and p∗ = prHB

2 /εHB).

A. Inserting the solute changes the hydrogen bonding of waters in the first solvation shell 
relative waters in the bulk

First, we show the four types of water populations (six water cages, two water H bonded, 

vdW, and nonbonded) of pure bulk water, with no solute, as a function of temperature; see 

Fig. 5. This figure allows us to establish the approximate ranges over which the model acts 

like ice, cold liquid water, hot liquid water, and vapor. Our main interest here is in exploring 

solvation across the range from cold liquid to hot liquid, where solvation anomalies are most 

pronounced. This range of anomalies is best represented in this model by the supercooled 

region of the pT phase diagram reported in previous work [11] where we reported that the 

3D MB model exhibits two critical points; the liquid-gas critical point (C1) at 

TC1
∗ = 0.1166, pC1

∗ = 0.0115, ρC1
∗ = 0.467 and the liquid-liquid critical point (C2) at 

TC2
∗ = 0.0779, pC2

∗ = 0.167, ρC2
∗ = 1.295. There exists also a region of pressures between both 

critical points where we have only one fluid phase, at higher pressures we have two liquid 

phases, and at lower pressures the liquid and the gas phases. So, while we cannot draw a 

precise correspondence with true ambient p and T values, Fig. 5 shows that we can 

approximately regard the model as having ice like behavior below about T* = 0.1, cold 

liquid water up to about T* = 0.1–0.15, hot liquid water up to about T* = 0.15–0.2, and 

vapor above about T* = 0.25.

Then, in the following sections below, we show that the analytical model reproduces fairly 

well the temperature dependences of the free energy, enthalpy, entropy, and volumes from 

the underlying model, as determined by Monte Carlo simulations. This is just a validation of 

the analytical theory against the Monte Carlo simulations. Then, in the last section, we show 

how the model’s thermal and volumetric behaviors are explained by the underlying 

microscopic water populations.

B. The thermal and volumetric properties of solvation are captured by the theory

Figure 6 shows the transfer free energy, ΔG*, as a function of temperature for different sizes 

of hydrophobic particles ( σS
∗ = σLJ

22 /rHB). For large solutes see Fig. 6(a); for small ones, see 

Fig. 6(b). The symbols represent the results of the computer simulations, and the lines are 

the results of the analytical theory. In general, the analytical theory gives good agreement 

with the simulations. We observe a qualitative difference between small and large 

hydrophobes. Bigger positive transfer free energies on these plots indicates increasing 

Urbic and Dill Page 11

Phys Rev E. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unfavorability for inserting the solute from vapor into water. The difference is only for very 

small solutes (smaller than size of a water molecule); in that case, inserting a small solute 

into hot water is favorable (ΔG* is negative). These results are in agreement with the 

experimental observation for the thermodynamics of hydration of argon [2] and show 

qualitative differences from the behavior of ΔG* for larger hydrophobes. Increasing the 

solute size increases the unfavorability of dissolving in water. The analytical theory correctly 

captures these subtle differences.

Figure 7 shows the enthalpy and entropy of solute transfer from vacuum into water, ΔH*, 

and transfer entropy, T*ΔS*, for different solute sizes. Both functions first increase, and then 

decrease with temperature, as observed experimentally [2]. The agreement between the 

computer simulation results (symbols) and analytical theory (lines) is quite good in the 

whole temperature range studied, even for the large solutes. Transfer enthalpies are positive 

for large solutes since solute insertion into water requires breaking water-water bonds, and 

since the interaction with the solute does not contribute sufficient energy to compensate. For 

small solutes, transfer enthalpies are negative since small molecules are inserted into empty 

spaces within the water structure and there is no HB breaking required for insertion. The 

transfer entropy is most positive when waters in the first solvation shell have the highest 

density. Analytical theory also predict unexpected behavior at low temperatures where 

transfer enthalpy and entropy increase upon decreasing the temperature. Simulation data are 

not available in this range due to convergence problems, so we cannot verify if this is a 

failure of the theory or not.

Figure 8 shows how the volume ΔV* of the whole system (solute plus solvent) changes as a 

solute is inserted into water as a function of temperature and for different solute sizes. The 

analytical theory gives trends that are consistent with experiments, showing that for 

relatively small solutes, ΔV* increases with temperature [23]. The main contribution to the 

transfer volume is the size of the nonpolar solute, then upon increase of temperature water 

becomes more gaslike and there is more empty space around solutes, which gives an 

additional increase of transfer volume.

C. The theory gives correct trends of solvation thermodynamics versus solute size

Figure 9 summarizes the dependence of the solvation free energy, enthalpy, and entropy on 

the solute radius. Again, there is good general consistency with the simulations for most 

solute sizes. The disagreement is bigger for larger solutes, especially for entropy transfer. 

The reason might be in problems within the theory or bad computer simulation data which 

authors calculated by Widom’s insertion method, which is problematic for insertion of large 

particles. The solvation free energy for large solutes increases linearly with area, while for 

small solutes it increases linearly with volume [14,17,19]. For small solutes, the entropy 

contribution to the change in free energy dominates (TΔS > ΔH), but for larger solutes, TΔS 
< ΔH. Figure 9 shows the transfer free energy, ΔG*, transfer enthalpy, ΔH*, and transfer 

entropy, TΔS*, at two different temperatures, T* = 0.2 (red) and T* = 0.3 (green), as a 

function of solute size. For all three thermodynamic functions describing transfer of a 

hydrophobic particle, there are clearly two distinct areas of behavior, as observed 

experimentally [1,2,22–26,49,50]. In Fig. 10 we plotted the dependence of the solvation free 
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energy, enthalpy, and entropy on solute radius and temperature. We can see from the figure 

the equivalent behavior of the free energy of transfer upon increasing the temperature or 

decreasing the size of the nonpolar solute. Figure 11 shows 3D plots with the following 

temperature- and size-dependent fits through the points:

ΔG∗ = − 7.47906 ∗ T∗ + 1.20461 ∗ σs
∗ + 1.45645, (31)

ΔH∗ = − 4.1216 ∗ T∗ + 1.02603 ∗ σs
∗ + 0.4797, (32)

TΔS∗ = − 15.1371 ∗ T∗ − 0.102591 ∗ σs
∗ + 5.11875. (33)

Figure 12 shows 3D plots with the temperature and size dependences of solute insertion 

thermal properties per unit surface area of the nonpolar solute. Increasing temperature makes 

solute insertion easier. There are two mechanisms of solvation for small and big solutes. The 

figure clearly shows that the solvation free energy for large solutes increases linearly with 

area, while for small solutes it increases linearly with volume at all temperatures.

D. The theory predicts how nonpolar solvation depends on pressure

Figure 13 shows (a) the predicted pressure dependences of the transfer free energy, ΔG*, (b) 

the transfer enthalpy, ΔH*, and (c) the transfer entropy, T*ΔS*, for different sizes of 

hydrophobes. Such quantities are notoriously difficult to obtain from simulations of most 

atomistic models, particularly at high pressures, where it is difficult to obtain reliable results 

from the Wisdom insertion method, while our theory can easily calculate these properties. 

The theory predicts that the free energy of solvation for small solutes becomes linearly more 

unfavorable with pressure, while the enthalpy and entropy of solvation exhibit very little 

pressure dependence for small solutes, consistent with experiments [51–53] and theory [54]. 

For bigger solutes, the situation is different. The free energy of solvation increases more 

strongly with increased pressure, while the entropy and enthalpy show no monotonic 

behavior, but both effects compensate.

The results above show that the present theory reproduces the thermal, volumetric, and 

solute-size dependences of the solvation properties of nonpolar solutes rather well, 

compared to Monte Carlo simulations of the same model [44,45], and both the theory and 

simulations give the experimentally observed trends. Disagreement becomes bigger at large 

solute sizes and low temperatures, which might be either a problem of the theory or 

incomplete convergence of the simulation data.
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E. The solvation properties can be interpreted in terms of first-shell and bulk water 
bonding fractions

In this section, we give a more microscopic explanation of these properties based on the 

different bonding populations. Figure 14(a) shows the temperature dependence of the ratio, 

f j
h/ f j, of the population of waters forming hydrogen bonds in the first shell around a solute, 

relative to the population of waters forming hydrogen bonds in the bulk. Note that we 

omitted ratios of caged populations from the figure since, in most of the ranges, the 

individual cage population is very close to zero and numerical uncertainty is high when 

dividing with numbers close to zero. In the following, we interpret these results with 

increasing temperature, starting from very cold water, to cold water, to hot water.

(1) Very cold water—The theory shows that in very cold water, the first-shell solvating 

waters differ from bulk waters in having more hydrogen bonds, more vdW bonds, and less 

empty space, and those waters are well-packed (〈r〉 ≈ 1) and have low-variance, well-defined 

HB angles [Fig. 14(e)]. These first-shell waters are better structured than waters in the bulk. 

We are seeing a sort of stochastic version of the “iceberg” idea first proposed by Frank and 

Evans in 1945 [55]. The reason for this structuring is clear from the model. Hydrogen 

bonding is a driver of water structure. More hydrogen bonds are formed in first shells than in 

the bulk because the solute restricts the HB angle options more than in the bulk.

(2) Cold water—Increasing the temperature from very cold (T* = 0.16) to just cold water 

(T* = 0.2) melts out vdW interactions, slightly loosening up the water structure, supporting 

an increase in hydrogen bonds.

(3) Hot water—Increasing the temperature further leads to melting out first-shell water 

hydrogen bonds and vdW interactions, increasing the average water spacings and increasing 

the variance in HB angles. Correspondingly, Fig. 14(b) shows how applied pressure affects 

water molecules in the solvation shell relative to the bulk. Applying pressure has the 

following effects on solvation-shell waters, relative to bulk waters: pressure squeezes vdW-

bonded water molecules together in the first shell, it squeezes out empty spaces, and it 

reduces the average water-water spacings in the first shell. At the same time, applying 

pressure increasingly breaks first-shell hydrogen bonds, reducing the excess structure there, 

and reduces the HB angle variance.

V. CONCLUSIONS

In this work, we have developed a theory for the hydration thermodynamics of a spherical 

hydrophobe in 3D MB-like water. The results for transfer free energy, transfer enthalpy, 

transfer entropy, and transfer volume obtained by the analytical theory show good agreement 

with the computer simulation results for the same model for all parameters studied. The 

results under these conditions are consistent with the existing experimental and theoretical 

results. In addition, the analytical theory enabled us to study the thermodynamics of 

solvation under the conditions where the computer simulation results were unreliable due to 

the large statistical uncertainty, namely, at high pressures, low temperatures, and large 

solutes. Theory can easily calculate solvation properties in the supercooled region of phase 
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space since we do not have problems with crystallization. This theory describes only liquid 

properties of the 3D MB water model. The present work demonstrates that that general 

anomalies of the hydrophobic effect—which are regarded as arising from the cagelike or 

networklike properties of water—can be captured in a simple theory in which water-water 

interactions are only treated up through two-body nearest-neighbor effects and cooperative 

effects.
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FIG. 1. 
The test water molecule in the context of its water lattice. It shows the principal pair 

neighbor interaction, taken clockwise, to avoid triple counting.
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FIG. 2. 
The three states that define pairwise water-water interactions: (1) hydrogen-bonded, (2) 

Lennard-Jones-bonded (LJ) pairs (no hydrogen bond), or (3) nonbonded (having neither a 

hydrogen bond nor an LJ bond).

Urbic and Dill Page 18

Phys Rev E. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
Definition of the critical angle, ϕc.
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FIG. 4. 
Definition of the overlap volume, Δv.
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FIG. 5. 
The computed pairwise bulk populations fj vs temperature, at p* = 0.12: (black) HB water 

population, (orange) LJ population, (red) NB population, (pink) HB cage population. It 

shows the melting out of HB structure with temperature in the bulk, and its replacement by 

NB.
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FIG. 6. 

Transfer free energy, ΔG*, into water of solutes of different radii. (a) Large solutes: σS
∗ = 0.7

(red), σS
∗ = 1.5 (blue), σS

∗ = 2.0 (green). (b) Smaller solutes: σS
∗ = 0.3 (black), σS

∗ = 0.7 (red). 

Lines show the theory and points show the Monte Carlo results. The larger solutes are most 

opposed to dissolving, and this effect weakens upon heating.
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FIG. 7. 
Transfer enthalpy ΔH* and entropy T*ΔS* into water of large solutes of different radii, for 

σS
∗ = 0.7 (red), σS

∗ = 1.5 (blue), σS
∗ = 2.0 (green). Lines show the theory and points give the 

Monte Carlo results. There is substantial enthalpy-entropy compensation.
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FIG. 8. 

Transfer volume, ΔV*, as a function of temperature, for σS
∗ = 0.7 (red), σS

∗ = 1.5 (blue), 

σS
∗ = 2.0 (green). Not surprisingly, larger solutes have larger excess volumes of insertion. 

Lines show theoretical results, and points Monte Carlo results.
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FIG. 9. 
How the solute insertion thermodynamics depends on solute radius. (a) Transfer free energy, 

ΔG*, (b) transfer free energy per unit surface area of the nonpolar solute, (c) transfer 

enthalpy, ΔH*, and (d) transfer entropy, T*ΔS*, as a function of hydrophobe size ( σS
∗) at two 

different temperatures: T* = 0.2 (red) and T* = 0.3 (blue) at p* = 0.12. Larger solutes are 

more expensive to insert for enthalpy reasons, but are entropically favored in cold water and 

disfavored in hot water. Points are Monte Carlo results, and lines are theoretical results.
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FIG. 10. 
Solute insertion thermal properties vs both temperature and solute radius.
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FIG. 11. 
Same as Fig. 10, but also showing a plane indicating linear fits in both variables in warm 

water.
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FIG. 12. 
Solute insertion thermal properties per unit surface area of the nonpolar solute vs both 

temperature and solute radius. Increasing temperature makes solute insertion easier. There 

are two mechanisms of solvation for small and big solutes.
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FIG. 13. 

Pressure dependences of solute transfer thermal quantities, for solute sizes σS
∗ = 0.7 (red), 

σS
∗ = 1.5 (blue), σS

∗ = 2.0 (green). Applying pressure squeezes the space available, making 

solute insertion more difficult. There is enthalpy-entropy compensation.
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FIG. 14. 
Molecular structure properties vs temperature and pressure for (a) p* = 0.12 and (b) T* = 

0.2. (Top row) Ratio f j
h/ f j of populations of first-shell to bulk waters: (black) HB waters, 

(orange) LJ waters, (red) NB waters. This shows that the shell has more HB and LJ bonds 

than the bulk, and that shell hydrogen bonds melt out faster with increasing temperature than 

bulk ones do. It shows that the first shell is better packed (fewer NB waters). (Middle row) 

〈r〉 is the average separation between waters. Heating warm water increases the water-water 

separations. At all temperatures, pressure pushes waters closer together. (Bottom row) 〈(1 − 

cos θ)2〉 is the variance in HB angles, a measure of “bending flexibility.” Heating increases 

this variance, while pressure decreases it.
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