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ABSTRACT OF THE DISSERTATION

Single-Image 2D to 3D Understanding

by

Sainan Liu
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Professor Zhuowen Tu, Chair
Professor Hao Su, Co-Chair

Visual perception plays an essential role in the human recognition system. We heavily

rely on visual cues to accomplish daily tasks. Inspired by human vision and human recognition,

computer vision has been widely studied in recent decades to assist human activities better. It

has been proven to be highly beneficial to help everyday computer tasks, such as smartphone

applications, robotics, and autonomous driving. The fundamental question of computer vision is to

understand 3D information from 2D images. Over the years, using machine learning techniques,

learning from a single image, research in this area has progressed from 2D recognition to

predicting 2.5D images to 3D objects to complete room/street layout prediction. For computer
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vision to apply to daily tasks, we believe this is the perfect time to introduce the concept of

panoptic 3D parsing, which puts the long-studied sub-problems into unified metrics.

In this dissertation, we first decompose the problem into two subcategories: 1. How

to learn better effective priors to recognize objects in 3D. 2. How to enable computer vision

neural networks to recognize objects in 2D from unseen views using 3D prior information with

techniques inspired by the cognitive science community. In the final chapter, we present a set

of networks that unify the understanding of 3D information from a single image thanks to the

exploding development in modeling and computing and the availability of large-scale datasets.
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Chapter 1

Introduction

Human perception is a complex process that transforms multiple sensory data, such as

touch, sound, and visual, into abstract concepts ranging from the position or size to the category

or application of the object. It is an essential part of our daily life since it directly influences our

behavior. Among the different types of perception, we heavily rely on visual perception, which is

a challenging topic on its own due to the diversity of the image perception caused by illumination,

viewing angles, the context of objects, memory, and emotion.

Inspired by human vision, thanks to advanced imaging technology and reduced storage

costs, computer vision has become an essential part of modern technologies, such as smartphone

applications, robotics, and autonomous driving. In contrast to vision problems studied in Cognitive

Science or Neuroscience, which focus on understanding human perception via human eyes,

computer vision investigates the fundamental question: how to extract 3D information (structurally

and perceptually) from 2D images captured by cameras. In contrast to human eyes, the camera

captures images with certain limitations in the color spectrum, size, resolution, and illumination

range. Additionally, available images are often stochastic in terms of timelines, and stereo or

multi-view images are often unavailable for computers. The majority of the computer vision

research community has focused on two main aspects: recognition and reconstruction.
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This dissertation focuses on 2D (RGB images) and 3D (point cloud) object recognition

tasks and incorporates scene recognition and scene reconstruction in computer vision with

single-view image input. We hope our results can inspire others to move in this direction.

1.1 Point cloud recognition

Convolutional neural networks (CNN) [LBD+89, KSH12, SZ15, SLJ+15, HZRS16a]

and their improvements [SVI+16, HLvdMW17, XGD+17, ZL17] have significantly advanced

the state-of-the-art for a wide range of applications in computer vision. Areas like classification,

detection [GDDM14, RHGS15], and segmentation [LSD15, HGDG17] for 2D images have wit-

nessed the a tremendous advancement. Extending 2D-based convolution to 3D-based convolution

for 3D computer vision applications such as 3D medical imaging [PM15, DYC+17], though

still effective, is arguably less explosive than the 2D cases. This observation becomes more

evident when applying 3D convolution to videos [TBF+15, CZ17, TWT+17, XSH+17] where

2D frames are stacked together to form a 3D matrix. Innate priors induced from careful study and

understanding of the task at hand are often necessary.

The development of large datasets of 2D static images like ImageNet [DDS+09] is

critical in the recent development of deep learning technologies. Similarly, the emergence of

3D shape-based datasets such as ShapeNet [CFG+15] has attracted significnat attention and

stimulated 3D shape classification and recognition advancement. As lidar technology matures,

large-scale scanned point cloud datasets (e.g. ScanNet [DCS+17]) and autonomous driving

point cloud datasets (e.g. KITTI [GLSU13] and Waymo [way19]) become available. The social

impact of point cloud recognition in Computer Vision becomes increasingly prominent. The 3D

shape classification and recognition problem have been extensively studied in computer graphics

[CTSO03, GZC15, SYS+16] and robotics [RBB09, WP15]. Unlike 2D images, shapes encoded

by 3D point clouds [WSK+15, YKC+16] do not have a well-positioned strict grid structure, nor
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is there an intensity value associated with each point. The unstructured and unordered nature

makes the point cloud recognition problem extremely challenging.

Previous works [BSA17, BGLA18] have converted point clouds to RGB or RGB-D

images to take full advantage of 2D convolutional neural networks. They first convert the point

cloud to multi-view representations. Then project back to 3D to acquire the 3D semantic labeling.

Another group of work [JXYY13, YKC+16, SMKLM15, WSK+15, TCA+17] in which scattered

3D points are assigned to individual cells in a well-structured 3D grid framework. Instead of

binary 3D volumetric data, [MGLM18] utilizes a radial basis function combined with a variational

autoencoder to obtain enriched voxel representations. This type of conversion from 3D points to

3D volumetric data can facilitate the extension from 2D CNN to 3D CNN , but it also loses the

intrinsic geometric property of the point cloud.

A pioneering work, PointNet [CSKG17], addresses the fundamental representation prob-

lem for the point cloud by obtaining the intrinsic invariance of the point ordering. Well-guided

procedures are undertaken to capture the invariance within point permutations for learning an

effective network, achieving state-of-the-art results with many desirable properties. However,

one potential problem with PointNet is that the concepts of parts and receptive fields are not

explicitly addressed, because the point features in PointNet are treated independently before

the final aggregation (pooling) layer. An improved work, PointNet++ [QYSG17], has been

developed to incorporate the global shape information using special modules such as farthest

point sampling and geometric grouping. Many follow-up works build their base network structure

on top of PointNet. Such as PointSIFT [JWL18], which designed a SIFT-like module for all

PointNet-based models that provide orientation embedding in 8 directions. [LS17] uses PointNet

structure as a basic embedding for its super point (represents relationships between object parts.).

[YZW+18, WLS+19] both build on top of PointNet to achieve instance segmentation tasks.

[LVC+19] utilizes PointNet structure to encode features for each column space for autonomous

driving datasets.
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Instead of using multi-layer perceptron as the main architecture [CSKG17], Convolu-

tional Neural Networks have also been widely explored. [KZH19, LFXP19, WQL19, XSW+20,

LBSC18] designed advanced operators to capture local neighborhood information. Additionally,

many novel network architectures have been explored. For example, RNN network structures

[YLH+18, HWN18] have been used to explore local features. Other structures are used to ex-

plore on non-local features, such as adaptive sampling modules[HYX+19, YZL+20], transformer

structures [YZN+19, ZX19, GCL+20] and graph networks [LS17, WSL+18, THGZ18], or a

combination of the two [WHH+19].

1.2 Single-view object recognition

Identifying a familiar object seems effortless for humans has proven to be a reasonably

complex task in computer vision.

2D object single-view recognition is commonly defined as a classification problem in

computer vision. The input is a single RGB image, and the output is a class label. Convolu-

tional neural networks have been a driving force for tackling this problem [KSH12, HZRS16b,

GPAM+14, GBC16]. As more and more single-view image data become available [DDS+09,

LMB+14, COR+16], deep convolutional neural networks have shown remarkable performance

on the 2D object single-view recognition task. However, human recognition often combines

multiple sensory inputs other than a single RGB view of an object. At a high level, the other

sensors provide a certain level of 3D perception that allows us to infer novel views of novel

objects from the same seen category. In human recognition, such perception has been shown to

be providing object-centric information.

Similarly, other sensory such as lidar or ultrasound in computer vision provides a cer-

tain degree of 3D information. Hence 3D object recognition is also an essential part of object

recognition. Many forms of 3D object representations have been widely studied, such as ex-
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plicit volumetric voxel[WSK+15], mesh [WZL+18], point cloud [CSKG17], implicit surface

[XWC+19], and implicit functions [MST+20a].

Objects are three-dimensional in the physical world, but the recognition tasks in computer

vision have been primarily performed on 2D natural images [DDS+09]. Despite the great

success of the deep convolutional neural networks (CNNs) [KSH12, SLJ+15, SZ15, HZRS16a,

XGD+17], a standard CNN model that represents images in the 2D image space only tends to

suffer from a “mental rotation” [SM71] like effect [Bas93], as shown in Figure 3.3. Namely, when

training a network with a limited number of views of an object instance, it may have difficulty

recognizing the same object instance from an unseen viewpoint. There are two schools of thought

regarding object representations. For biological vision systems, there has been a long-time

debate [LPP95] in cognitive psychology about whether objects are fundamentally encoded by

object-centered or viewer-centered representations [TV02, Hay12]. In David Marr’s pioneering

vision paradigm [Mar82], object recognition is carried out primarily in an object-centered manner

in which objects are represented either by explicit 3D primitives (e.g. cylinders) [Bie87] or by

features that are invariant to viewpoint changes [BS83]. However, the theory of object-centered

representation has been challenged in the past. Psychophysical and computational neural studies

have shown evidence that viewer-centered representations [RD87, LP95, DM97] play a significant

role in object recognition.

Implementations of both viewpoint-independent [LPS07, LSS08] and viewpoint-dependent

[Bas93, BBZ+16] systems are present in computer and machine vision literature. An object-

centered system typically encodes and stores a representation with viewpoint-independent (object-

centric) features [KFR03] that are invariant to viewpoint changes. During test time, representa-

tions with viewpoint-independent features are computed for a query object under a novel view to

match the stored features. A viewer-centered system instead stores a set of viewpoint-dependent

features from typical viewing angles. A new view of an object instance is matched to the known

features of trained viewpoints during testing.
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An object-centered representation has the advantage of maintaining rotation-invariant

features that are insensitive to viewpoint changes; however, it relies on the presence of faithful

3D reconstructions or effective invariant features that are usually difficult to obtain from a single

view image [Hay12]. Conversely, a viewer-centered representation typically stores features that

are sensitive to viewpoint changes; viewpoint-dependent features are usually straightforward to

compute and learn.

Studies that combine both object-centered and viewer-centered representations also exist

[MF91, BM00, Mil12]. However, there has been limited success in the computer vision literature

to build a hybrid system [KT03]. Additionally, systematic novel-view evaluation metrics are

rarely used to evaluate the new state-of-the-art recognition systems.

1.3 Scene Reconstruction and Parsing

Humans have the remarkable capability of recognizing and understanding 3D objects

and scenes in diverse environments and configurations. This capability has been attributed to

effective representations that encode the intrinsic 3D world for the 2D projections [LPP95]

(though still, the mechanisms of forming these representations are not fully understood). A

grand challenge in computer vision is to reach the same capabilities through machine perception.

Though the task of translating the perceptual abilities of humans to machines is deeply rooted

in decades of development in computer vision [Sze10] and photogrammetry [Lin09], it has

only recently become practically feasible thanks to the exploding growth in modeling and

computing[KSH12, HZRS16b, GPAM+14, GBC16] and the availability of large-scale datasets

[DDS+09, LMB+14, COR+16, CFG+15, FJG+20].

As subproblems of computer vision, such as 2D recognition, 3D recognition, and 3D

reconstruction, have been widely studied, tremendous success has been acquired in recent years.

Scene reconstruction and scene understanding have also undergone revolutionary progress.
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Recent works have focused on indoor scenes or autonomous driving 3D reconstruction

along with 3D instance recognition. They achieve multi-object reconstruction in a scene via shape

retrieval [ISS17, HQZ+18, YLH+18, YLH+18, KALD20, ERLF21] or directly reconstruct a

type of shape representations [TGF+18, GMJ19, NHG+20, SZW19, PBF20, ZCZ+21].

For retrieval-based methods, IM2CAD [ISS17] is one of the pioneer works that utilizes

object detection and scene segmentation information to predict box layout estimation and pose of

objects to assist the retrieval of CAD models directly from a database. The output is a scene-level

CAD model that is ready to use for computer graphic applications. A non-differentiable second-

stage optimization step will then match the rendered scene reconstruction with the input image.

[HQZ+18] additionally models the scene as a hierarchical graph and optimizes reconstruction and

input image with the estimated surface normal, the depth map, and the object mask. [ISS17] and

[HQZ+18] use 2D bounding boxes for the detection step. In contrast, [KALD20] and [ERLF21]

use center prediction instead, which makes the detection step simpler. Comparing to [KALD20],

[ERLF21] does not require object depth at test time for object pose prediction. It supports

object stretching, and it includes collision loss which respects more of reconstructed object

boundaries. [ERLF21] has shown impressive results on the Pix3D dataset. However, [KALD20]

and [ERLF21] do not provide an end-to-end solution for joint layout prediction. The methods

developed for indoor scenes can work relatively well for close-range predictions and are rarely

evaluated for long-range environments, possibly due to limited annotations for outdoor city scenes.

The majority of work for long-range detection is done for autonomous driving datasets. One

such work is 3D-RCNN [YLH+18], which represents the shape using a linear basis from the

training dataset, suitable for categories that share significant similarities within each class, such

as pedestrians and cars.

All retrieval methods tend to produce visually good results. However, it is less likely to be

able to generalize towards novel categories and novel shapes. Hence, another group of researchers

focuses on reconstructed shapes when it comes to 3D scene understanding. Factored3D [TGF+18]
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first proposed a volumetric prediction network that combines 3D unoccluded layout depth with

reconstructed 3D volumetric furniture for indoor synthetic single-view images. Later, Mesh

R-CNN [GMJ19] provided an end-to-end system that detects and reconstructs the 3D instances

for a scene. However, they did not offer layout 3D information due to dataset limitations, nor

do their instance reconstructions have correct relative 3D positioning, given that they do not

resolve the scale/depth ambiguity. Total3DUnderstanding [NHG+20] can predict 3D object

reconstruction with better 3D relative positioning; however, only a simplified box prediction

is used to estimate the indoor layout environment. In addition to [NHG+20], [ZCZ+21] uses

implicit 3D representation, Signed Distance Function (SDF), and a scene graph convolutional

network to model the relative relationships between objects. Comparing to [NHG+20], [ZCZ+21]

is capable of generating watertight, and better-aligned scenes. However, both [NHG+20] and

[ZCZ+21] heavily rely on an external 2D bounding box detector. In contrast, [PBF20] does

not use any detector as the first step. With a fixed 1283 voxel grid, the network can address

reconstruction of multiple objects simultaneously. The voxel grid also enables quantitative

evaluation for multi-object scenes with new pairs and triplets ShapeNet datasets. However, when

it comes to natural scenes, it tends to predict holes and errors. These networks require heavy

annotations on the 3D side during training, which makes the network pipeline complicated and

hard to optimize with multi-modalities during training. Most recently, researchers have been

focusing on unsupervised generative models. Implicit scene representations with neural rendering

techniques have been widely explored. [SZW19] proposed scene representation networks, which

map (x, y, z) world coordinates to a feature representation at that position and uses a neural

renderer to facilitate novel synthesis. Later, a variety of NeRF-based [MST+20b] networks have

been explored for implicit scene understanding tasks using multi-view inputs. NeRF models learn

a multi-layer perceptron that maps (x, y, z) coordinates to color and density values via neural

volume rendering techniques. For example, using dynamic surveillance video footage, [OMT+20]

can model the background and individual cars on the street with different NeRF-based structures
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and a shared volume renderer. Although NeRF-based models do not rely on 3D annotations, it

requires multi-view inputs for the learning process. The camera information is often needed and

generalization towards novel scenes are still an open topic. Additionally, it provides a continuous

3D representation, but it sacrifices the ready-to-use discrete geometry output without guaranteeing

watertight object shapes. The separation between objects and their environment needs to rely

on the availability of dynamic video sequences, 2D segmentation masks, or 3D bounding box

predictions.

Scene reconstruction and 3D panoptic (non-overlapping semantic and instance) under-

standing for both long-range and short-range environments is still an significant step forward to

providing unified metrics for both reconstruction and semantic/instance segmentation with indoor

and outdoor scenes.

1.4 Overview of This Dissertation

In this dissertation, we explore the problems of computer recognition. The research first

focuses on sub-problems of 3D and 2D recognition. Then it asks the fundamental question of

computer vision: how to extract 3D information from natural 2D images in the wild.

Chapter 2 describes 3D recognition in computer vision. More specifically, we tackle the

problem of point cloud recognition. Unlike previous approaches where a point cloud is either

converted into a volume/image or represented independently in a permutation-invariant set, we

develop a new representation by adopting the concept of shape context as the building block in

our network design. The resulting model, called ShapeContextNet, consists of a hierarchy with

modules not relying on a fixed grid while still enjoying properties similar to those in convolutional

neural networks — being able to capture and propagate the object part information. In addition,

we find inspiration from self-attention based models to include a simple yet effective contextual

modeling mechanism — making the contextual region selection, the feature aggregation, and the
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feature transformation process fully automatic. ShapeContextNet is an end-to-end model that

can be applied to the general point cloud classification and segmentation problems. We observe

competitive results on a number of benchmark datasets.

Chapter 3 describes 2D recognition assisted with both object-centered and viewer-centered

representations. In this paper, we tackle an important task in computer vision: any view object

recognition. In both training and testing, for each object instance, we are only given its 2D image

viewed from an unknown angle. We propose a computational framework by designing object

and viewer-centered neural networks (OVCNet) to recognize an object instance viewed from

an arbitrary unknown angle. OVCNet consists of three branches that respectively implement

object-centered, 3D viewer-centered, and in-plane viewer-centered recognition. We evaluate our

proposed OVCNet using two metrics with unseen views from both seen and novel object instances.

Experimental results demonstrate the advantages of OVCNet over classic 2D-image-based CNN

classifiers, 3D-object (inferred from 2D image) classifiers, and competing multi-view based

approaches. It gives rise to a viable and practical computing framework that combines both

viewpoint-dependent and viewpoint-independent features for object recognition from any view.

Chapter 4 describes the first approach that tries to interpret 3D panoptic scene parsing in

the wild from a single 2D input image. In this paper, we present Panoptic 3D Parsing (Panoptic3D),

the first system of its kind (to the best of our knowledge) for a single-view natural image in the wild

that jointly performs dense semantic segmentation, object detection, instance segmentation, object

3D shape reconstruction, and 3D layout estimation altogether. We combat the issue under the

absence of complete sets of multi-modality ground-truths for segmentation/objects/3D shapes/3D

layout by developing a stage-wise system to maximize the generalization and robustness of the

system where ground-truths are separately available for training the individual modules. We also

present an alternative Panoptic3D system that can be trained end-to-end using synthetic data

where a complete set of multi-modality ground-truth annotations for the 2D segmentation and 3D

reconstruction can be generated synthetically. We show results on both indoor and outdoor scenes
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from COCO and Cityscapes as well as quantitative panoptic 3D results on a fully annotated

synthetic indoor dataset. Our proposed Panoptic3D framework points to a viable direction in

computer vision and it can be applied to a wide range of applications. A system demo1 is available

at http://35.82.89.112:443.

1The demo is put up for review purpose with light use.
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Chapter 2

3D Point Cloud Recognition

2.1 Introduction

Figure 2.1: A motivating example to illustrate how the basic building block of our proposed
algorithm, the shape context kernel, is applied to a 3D point cloud to capture the contexual shape
information.

This chapter focuses on developing a deep learning architecture for point cloud classifica-
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(a) (b)

Figure 2.2: An illustration of our shape context kernel displayed in a spherical coordinate
system. (a) the shape context kernel, the number of bins on polar angle (φ), number of bins on
azimuthal angle (θ) and number of bins on radial distance (r) are manually specified. Different
colors of edges represent different binary affinity matrices indicating different bins. (b) the
attentional shape context “kernel”, where there is no predefined bins, and the soft affinity matrix,
or attention weights (indicated by edge thickness) are learned during training.
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tion that connects the classic idea of shape context [BMP02] to the learning and computational

power of hierarchical deep neural networks [LBD+89]. We name our algorithm ShapeContextNet

(SCN) and a motivating example is shown in Figure 2.1.

Before the deep learning era [KSH12], carefully designed features like shape context

[BMP02] and inner distances [LJ07] were successfully applied to the problem of shape matching

and recognition. In shape context, an object is composed of a number of scattered points and there

is a well-designed disc with unevenly divided cells to account for the number of neighborhood

points falling into each cell; the overall features based on the occurrences of the points within

every individual cells give rise to a rich representation for the object parts and shapes. Shape

context was widely used before but kept relatively distant to the deep learning techniques.

Motivated by the rich representational power of shape context [BMP02], as well as the

recent success in deep convolutional neural networks [KSH12], we propose a new method,

ShapeContextNet (SCN) that adopts shape context as the basic building block acting like con-

volution in CNN. The basic network architecture of SCN is illustrated in Figure 2.4 with the

basic shape context descriptor shown in Figure 2.2. We do not force a given set of points into

volumetric data, nor do we remove the spatial relationship of the points. Instead, we build layers

of shape context to account for the local and the global contextual information in a hierarchy

learned by an end-to-end procedure. In order to incorporate the local shape context descriptor into

a neural network, we break a shape context block into three key components, namely selection,

aggregation, and transformation. For a point pi in the point cloud {p1, p2, . . . , pi, . . . , pN}, the set

of all N−1 points forms a rich context depicting the shape information centered at pi. However,

using all the neighborhood points might be computational and spatially unattractive. We instead

design shape context kernel with distributed bins in the log-polar space, shown in Figure 2.2

which is inspired by the shape context descriptor [BMP02]. The selection operation thus decides

a set of neighboring points of pi to define coarse groups of neighboring points for pi to attend to.

The aggregation operation (such as histogram, or pooling) builds a robust descriptor that captures
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the distribution over relative positions. The transformation operation projects the descriptor to a

high-dimensional feature space by fusing features from different neighboring points or groups.

Like in the standard CNN, SCN propagates the local part information through hierarchical layers

to capture the rich local and global shape information.

Although the concept of building deep shape context is simple, we still face many

implementation choices in practice: how to design the shape context bins and handle the additional

computation cost for computing “point to bin” relationships, how to choose an aggregation

operation that preserves feature discriminability, etc. We are inspired by the recent development

in attention-based models that are mainly applied in natural language processing tasks such as

sequence-to-sequence modeling [BCB15, XBK+15]. A self-attention approach is proposed in

[VSP+17] and achieves state-of-the-art results on the neural machine translation task with an

architecture design that consists of a stack of self-attention blocks. The dot-product self-attention

block has no recurrence — keys, values and queries come from the same place and is highly

efficient in computation. We connect the self-attention idea with shape context within a supervised

learning setting. Self-attention combines the selection and aggregation process into a single soft

alignment operation. The resulting model enjoys the property of shape context and is an end-

to-end trainable architecture without the bells and whistles of a handcrafted selection operation

(bins). We call it Attentional ShapeContextNet (A-SCN).

We apply SCN and A-SCN to 3D point shape classification and segmentation datasets

[WSK+15, YKC+16] and observe improved results over the PointNet [CSKG17] model.

2.2 Our Approach

2.2.1 Revisiting the Shape Context Descriptor

We first briefly describe the classic shape context descriptor, which was introduced

in a seminal work [BMP02] for 2D shape matching and recognition. One main contribution
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in [BMP02] is the design of the shape context descriptor with spatially inhomogeneous cells.

The neighborhood information for every point in a set is captured by counting the number of

neighboring points falling inside each cell. The shape descriptor for each point is thus a feature

vector (histogram) of the same dimension as the number of the cells with each feature dimension

depicting the number of points (normalized) within each cell. The shape context descriptor

encodes the rich contextual shape information using a high-dimensional vector (histogram) which

is particularly suited for matching and recognition objects in the form of scattered points. For

each point pi in a give point set,

shape context computes a coarse histogram hi of the relative coordinates of the neighboring

point,

hi(l) = #{p j 6= pi : (p j− pi) ∈ bin(l)}. (2.1)

Shape context uses a log-polar coordinate system to design the bins. Figure 2.3 shows a

basic 2D shape context descriptor used in our method (note that we make the center cells larger

which is slightly different to the original shape context [BMP02] design where the center cells

are relatively small).

Figure 2.3: Example of a 2D shape context kernel with 24 bins (nr = 3 and nθ = 8).

There were also attempts to extend shape context to 3D. In [KPNK03] concentric shells,
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Figure 2.4: ShapeContextNet (SCN) and Attentional ShapeContextNet (A-SCN) architec-
tures. The classification network has 5 ShapeContext blocks; each block takes N point feature
vectors as input, and applies the selection, aggregation and transformation operations sequen-
tially. The ShapeContext blocks can be implemented by hand-designed shape context kernels
(SCN block), or a self-attention mechanism learned from data (A-SCN block). See text in
Section 2.2 for details.

polar angle φ and azimuthal angle θ are considered to divide the space into different quadrants.

We use a similar design for our bins, as is shown in Figure 2.2 (a). Although shape context is

considered as one of the most successful descriptors in computer vision, its integration into the

modern deep learning framework has been under-explored.

2.2.2 A General Formulation

In this section, we introduce a generalized formulation for shape context to build our deep

ShapeContextNet. Let a given point set (cloud) for one shape be P = {p1, p2, · · · , pi, · · · , pN}.

17



Each pi ∈ R 3 is a point represented by its 3D coordinates. Our proposed ShapeContextNet (SCN)

is a neural network architecture (shown in Figure 2.4) with its basic building block being SCN

block (illustrated in Figure 2.2 (a)). Each SCN block consists of three operations: selection,

aggregation, and transformation, which will be explained in detail below.

Selection. For a point cloud P of N points, the selection operation is to produce an affinity

matrix A ∈ {0,1}N×N , where A(i, j) = 1 indicates that a point p j has an edge to a reference

point pi, while A(i, j) = 0 indicates that a point p j has no connection to point pi. The connected

component centered at point pi is a representation of the global shape arrangement. In the

original shape context, the selection operation first divides the space into L bins. In that case,

instead of having a single affinity matrix, we build L disjoint affinity matrices simultaneously,

and Al(i, j) = 1 means p j ∈ bin(l) of the reference point pi, for l = 1, · · · ,L. Note that the

selection operations do not necessarily rely on any predefined partitioning of space, and can be

automatically learned in the same vein as attention mechanism, where the A is the N×N attention

weight. The attentional selection operation can either be hard or soft assignments.

Aggregation. After the selection operations, to form a compact representation of shape

arrangement at a reference point pi, we need to aggregate the information from the selected points.

We denote an aggregation function as m. In original shape context, for N points and L bins, and

a reference point pi, we have L aggregation functions ml
i, l = 1, · · · ,L, which together form the

histogram representation. Each ml
i is a counting function that counts the number of points in

bin(l), which can be represented as a sum pooling function ml
i = ∑ j1[Al(i, j) = 1].

In a more general form, m can be a weighted sum operator (dot product) such that

mi = ∑ j A(i, j) · p̂ j using the learned attention weights A. p̂ j could be simply the input coordinates

p j, or any arbitrary feature vector associated with that point.

Transformation. Now we have an aggregated representation for the reference point pi.

It is natural to add a feature transformation function f to incorporate additional non-linearity and

increase the capacity of the model. In the original shape context, after a local descriptor is built, a
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discriminative classifier, e.g. a support vector machine, can be added for the final classification

task. The transformation can be realized by a kernel function such as a radial basis function. In

the context of deep neural networks, an MLP, or convolutional layer with a non-linear activation

function can be used for the feature transformation purpose.

Shape context block. After we introduce the above three operations, the shape context

descriptor SC can be formulated as,

SCi = f (hi) = f ([hi(1), · · · ,hi(L)]) = f ([m1
i , · · · ,mL

i ]) (2.2)

where ml
i =∑ j1[Al(i, j)= 1]. Note that every components in this formulation can be implemented

by a backpropagatable neural network module, and thus, similar to a convolutional layer, SC is a

compositional block that can be used to build a shape context network,

SCNet = SCi(SCi(SCi(· · ·))) (2.3)

2.2.3 ShapeContextNet

Shape context kernel. Similar to [KPNK03], we use concentric shells to design the

shape context kernel. The kernel is adjustable with three parameters: polar angle φ, azimuthal

angle θ and radial distance r (Figure 2.2 (a)). In our setting, φ and θ are evenly divided into

different sectors, while for r, a logarithmic parametrization of the shell radii is used. We also set

a maximum radius of the sphere max R, which defines the receptive field size for a single shape

context kernel. Thus the design of the shape context kernel is paramerized by the maximum radius

(max R), the number of bins for radius r (nr), angles θ (nθ) and angles φ (nφ). The combined

number of bins for a shape context kernel is equal to nr×nθ×nφ.

Selection. With the L bins induced by a shape context kernel, the selection operation

builds L disjoint affinity matrices A1, · · · ,AL, where each matrix is corresponding to a specific bin.
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We generate the affinity matrices online during training and share them across different layers.

Aggregation. Following original shape context, the aggregation operation is simply a

sum-pooling layer that aggregates points (associated with D-dimensional feature vectors) within

each bin. Note that the sum-pooling layer can be implemented by L parallel matrix multiplications,

as AL is binary. The aggregation operation results in L sets of pooled features, thus the output is a

tensor of shape N×L×D.

Transformation. Finally the transformation operation is realized by a convolutional layer

with a [L,1] kernel that fuses L sets of feature points and projects them to (higher dimensional)

output feature vectors of Dout . A ShapeContext block consists of above operations and our

ShapeContextNet is a stack of ShapeContext blocks with increasing output dimensions of Dout .

We follow the overall network configuration of PointNet and use Dout = (64,64,64,128,1024)

as the output dimensions for each ShapeContext block.

Limitations. While being conceptually simple and enjoying good properties of classic

shape context descriptors such as translation-invariance, handcrafting shape context kernels are

not straight-forward and hard to generalize across different point cloud datasets which usually

have varying size and density. This motivates us to propose the following attention-based model.

2.2.4 Attentional ShapeContextNet

We now introduce a different approach inspired by research in natural language processing

(sequence-to-sequence) tasks. Traditional sequence-to-sequence models usually adopt recurrent

neural networks (e.g. LSTM[HS97]), external memory or temporal convolutions to capture the

context information. The dot-product self-attention proposed in [VSP+17] is a model that handles

long path-length contextual modeling by a light-weight gating mechanism, where the attention

weight matrix is generated using a simple dot-product. It is worth-noting that self-attention is also

invariant to the input ordering. Unlike traditional attention-based sequence-to-sequence models,

in a self-attention block, query vector Q ∈ R DQ , key vector K ∈ R DK (usually DQ = DK) and
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value vector V ∈ R DV are learned from the same input. In a supervised classification setting, one

can think Q, K and V are just three feature vectors learned by three independent MLP layers.

Attention weights are computed by a dot product of Q and K, and then multiplied with V to obtain

the transformed representation.

Figure 2.2 shows the similarities and differences between manually specified shape context

kernels and the automatically learnable self-attention mechanism: They all aim to capture the

distribution over relative positions; they are unified under the same formulation in Section 2.2.2;

the selection operation in self-attention does not rely on hand-designed bin partitioning as it can

be learned from data; self-attention has better modeling capability by adopting a weighted sum

aggregation function, in contrast to using a simple sum-pooling function.

Selection and Aggregation. We consider computing self-attention on the whole point

cloud P of size N. The selection operation produces a soft affinity matrix, which is the self-

attention weight matrix A of size N×N, the aggregation operation is transforming the value

vector V with weight matrix A by a dot product,

Attention(Q,V,K) = Softmax(
QKT√

DQ
) ·V (2.4)

Transformation. MLPs with ReLU activation function can be added as a feature transfor-

mation operation after each self-attention operation (Equation 2.4). To further improve the model

expressiveness, we add a simple feature gating layer to the MLP, similar to [DFAG17, PSdV+18].

2.3 Experiments

2.3.1 ShapeContextNets: 2D case

We first showcase the effectiveness of deep ShapeContextNet which has a stack of shape

context blocks.
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Figure 2.5: Ablation analysis on the number of ShapeContext blocks. The error rates
obtained by increasing the number of ShapeContext blocks. Metric is overall accuracy on 2D
MNIST test set (N = 256). The bin configuration is: max R = 0.5, nr = 3, nθ = 12.

Table 2.1: 2D point cloud classification results on the MNIST dataset. ShapeContextNet
achieves better performance than PointNet showing the effectiveness of contextual information;
the shape context local model consists of only one shape context block.

Model N Error rate (%)
PointNet[CSKG17] 256 0.78

PointNet++[QYSG17] 512 0.51
shape context local 256 1.18
ShapeContextNet 256 0.60
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2D point set is generated for MNIST dataset following the same protocol as used in

PointNet[CSKG17], where 256 points are sampled for each digit. We use a shape context kernel

with max R = 0.5, nr = 3 and nθ = 12, thus 36 bins in total.

Table 2.1 shows that a simple 5-layer SCN achieves better performance than PointNet,

showing that using the distribution over relative positions as a context feature is indeed helpful

for the shape recognition task. The performance of SCN is also competitive to the recent

PointNet++[QYSG17] model which uses 512 points as input. shape context local is a model

that consists of only one shape context block, which resembles the “feature extraction and

classifier learning” pipeline in traditional computer vision. To better understand the importance

of hierarchical learning in ShapeContextNet, in Figure 2.5, we vary the number of shape context

blocks from 0 to 5 in the network (Figure 2.4), where the 5-layer model is our ShapeContextNet,

the 1-layer model is the shape context local model, and 0 means no shape context block. We

observe that as the number of shape context blocks increases, the error rate decreases.

2.3.2 ShapeContextNets: 3D case

We evaluate the 3D shape classification performance of SCN on the ModelNet40 dataset

[WSK+15], with point cloud data from 12,311 CAD models in 40 categories. We use 9,843

for training and 2,468 for testing. Following [CSKG17], 1,024 points are sampled for each

training/testing instance. Table 2.2 summarizes the impact of different shape context kernel

design choices parametrized by max R, nr, nθ and nφ.

We obtain the best results with max R = 0.5. Note that the coordinates of point cloud in

ModelNet40 are normalized to [−1,1]. This means the receptive field of a single shape context

kernel covers around a quarter of the entire point cloud. With the same radius bin configuration, the

test accuracy peaks when nr = nθ = nφ = 3. Empirically, the number of r bins has the least impact

on the test accuracy, whereas the number of θ bins appears to be crucial for the performance. With

minimal change in architecture to a vanilla PointNet (by replacing the MLP layers to carefully
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Table 2.2: Ablation analysis on shape context kernel design in ShapeContextNet. We
evaluate SCN models with different kernel configurations (model (A)-(I)). max R is the maximum
local radius for the sphere shape context kernel at each reference point. nr, nθ and nφ are the
number of different shell and angle bins. Unlisted values are identical to those of the preceding
model. We report averaged and overall accuracy on ModelNet40 test set (N=1024).

max No. of No. of No. of accuracy accuracy
R r bins θ bins φ bins avg. class overall

PointNet vanilla[CSKG17] - - - - - 87.1
PointNet[CSKG17] - - - - 86.2 89.2

PointNet++[QYSG17] - - - - - 90.7
(A) 0.25 3 3 3 86.2 89.3
(B) 1 84.8 88.6
(C) 0.5 2 86.7 89.6
(D) 4 86.5 89.6
(E) 3 2 81.4 84.8
(F) 4 82.2 84.2
(G) 3 2 85.5 88.9
(H) 4 87.5 89.7

SCN (I) 0.5 3 3 3 87.6 90.0

designed shape context kernels), ShapeContextNet (model (I)) achieves better or competitive

results compared to full PointNet model (with additional input/feature transformation layers), and

the recent PointNet++ model (with special sampling/grouping modules).

Table 2.3: Ablation analysis on the Attentional ShapeContextNet architecture. We evaluate
the Attentional ShapeContextNet model on ModelNet40 dataset with different hyperparameter
settings (model (A)-(G)). We report class-averaged and overall accuracy on test set. Unlisted
values are identical to those of the preceding model. Q, K and V here represent the feature
vectors learned in an A-SCN block (Figure 2.4).

ReLU BN residual Num of accuracy accuracy
A-SCN Q=K? Q/K/V Q/K/V connect. heads avg. class overall
(A) 3 3/3/3 3/3/3 3 1 85.7 89.0
(B) 7 28.2 36.7
(C) 7 3 85.7 89.1
(D) 7/7/7 86.1 89.2
(E) 7/7/3 87.4 89.8
(F) 2 86.3 89.2
(G) 4 87.2 89.8
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Table 2.4: Segmentation results on ShapeNet part dataset. We compared the results
with Wu [WSWL14], Yi [YKC+16], 3DCNN from [CSKG17], PointNet [CSKG17] and recent
PointNet++[QYSG17] which uses additional normal direction features. The results are evaluated with
mean IoUs(%) metric on points. Our A-SCN model achieves competitive performance for point cloud part
segmentation.

mean aero bag cap car chair ear guitarknife lamp laptopmotormugpistolrocketskate table
phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Wu [WSWL14] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8
Yi [YKC+16] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.985.9 53.1 69.8 75.3
3DCNN[CSKG17] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.876.4 51.2 65.3 77.1
PointNet++[QYSG17] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.181.3 58.7 76.4 82.6
PointNet[CSKG17] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.081.2 57.9 72.8 80.6
A-SCN (ours) 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.882.5 62.9 74.4 80.8

Figure 2.6: Attention weights learned by A-SCN on three shape models: a plane, a chair and a toilet.
First column in each row shows the original point cloud. The other columns visualize learned weights for
one randomly sampled reference point. Higher value indicates stronger connection to the reference point.
Attention weights learned by A-SCN are diverse, sparse, and semantically meaningful and a reference
point learns to attend to discriminative parts of a model.
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Block 1 Block 2 Block 3 Block 4
Figure 2.7: Attention weights learned on different levels. In A-SCN, shape information is
propagated and condensed into a compact representation through a multi-level network structure.
From left to right are attention weights, for a fixed reference point, learned in the first, second,
third and fourth attentional shape context block. Attention becomes increasingly sparse, and
focuses on smaller areas with compact representations.

2.3.3 Attentional ShapeContextNet

ModelNet40 Shape Classification. The architecture of Attentional ShapeContextNet

(A-SCN) follows the general design of ShapeContextNet (SCN). In contrast to using hand-crafted

shape context kernels, we adopt the self-attention module as the shape context block in the

network (Figure 2.4). Q, K and V feature vectors are learned from the input using three MLPs.

We use DK = DQ = (32,32,32,32,64) and DV = Dout = (64,64,64,128,1024) for each block.

Attention weight matrix of shape N ×N is computed according to Equation 2.4. Table 2.3

summarizes the performance of A-SCN with different hyperparameters. The choices of different

hyperparameters are generally aligned with those in [VSP+17] on the machine translation task.

For example, the residual connection is necessary in order to learn a good model, and learning

Q and K vectors independently is better than weight-sharing. Note that similar to SCN where L

affinity matrices are used, we can also learn multiple attention weights in parallel for A-SCN. This

is called multi-head attention in [VSP+17]. However, empirically we find that using multi-head
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Input Scene Ground Truth PointNet A-SCN

Figure 2.8: Visualization of semantic segmentation results by A-SCN. From left to right: original input
scenes; ground truth point cloud segmentation; PointNet[CSKG17] segmentation results and Attentional
ShapeContextNet (A-SCN) segmentation results. Color mappings are red: chairs, purple: tables , orange:
sofa, gray: board, green: bookcase, blue: floors, violet: windows, yellow: beam, magenta: column, khaki:
doors and black: clutters.

attention does not yield better performance comparing to the one-head model, and introduces

additional computation overhead. Therefore, in this paper A-SCN refers to our one-head model

(model (E)). A-SCN is able to achieve 89.8% overall accuracy, which is on par with SCN, but

with a simpler design and fewer critical hyper-parameter to set.

In Figure 2.6 we show surprisingly diverse and semantically meaningful behavior of the

learned attention weights. For a reference point, it oftentimes attends to areas far away to itself.

The selected areas are usually descriptive and discriminative parts of a model, e.g. back or legs of

a chair. Figure 2.7 visualizes how shape information is propagated and condensed into a compact

representation in a multi-level neural network. For a fixed reference points, attention becomes

increasingly sparse, and focuses on smaller areas when the level gets higher.

27



ShapeNet Part Segmentation. Part segmentation is a challenging task in 3D object

recognition domain. Given a set of points of a 3D shape model (e.g. a plane), the part segmentation

task is to label each point in the set as one of the model’s part (e.g. engine, body, wing and tail).

We follow the experimental setup in [CSKG17], and defines the task as a point-wise classification

problem.

Our model (A-SCN) is trained and evaluated on ShapeNet part dataset following the data

split from [CFG+15]. ShapeNet part dataset [YKC+16] consists of 16,881 object from 16 object

categories, where each object category is labeled with 2-5 parts. During training, we randomly

sample 1024 points from the 3D point cloud of each object and use cross-entropy as our loss

function. We also followed the settings from [YKC+16], which assume the object category labels

are known and encoded by one-hot encoding. During testing, we test the model on all the points

from each object and evaluated using point mean intersection over union (mIoU), which averages

IoU across all part classes similar to [CSKG17]. Our A-SCN model outperforms PointNet over

most categories, and is on par with the recent PointNet++ model which augment the input points

with additional normal information. Full results for part segmentation are listed in Table 2.4.

S3DIS Semantic Segmentation. Stanford 3D indoor scene dataset[ASZ+16] includes

6 large scale areas that in total have 271 indoor scenes. Each point in the scene point cloud is

associated with one label in 13 categories. We follow [CSKG17] for data pre-processing, dividing

the scene point cloud into small blocks. We also use the same k-fold strategy for training and

testing. We randomly sample 2,048 points from each block for training and use all the points for

testing. For each point, we use the XYZ coordinates, RGB value and the normalized coordinates

as its input vector.

The evaluation results of our method are in Figure 2.5. By taking into account the global

shape context in a hierarchical learning way, our A-SCN model achieves 52.72% in mean IoU

and 81.59% in point-wise accuracy, improving the results by PointNet in both metrics. Some of
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Table 2.5: Results on scene semantic segmentation. Mean IoU(%) on and point-wise accuracy
are reported. Our Attentional ShapeContextNet model outperforms PointNet in both metrics.

mean IoU(%) overall accuracy (%)
PointNet [CSKG17] 47.71 78.62
A-SCN (ours) 52.72 81.59

our segmentation results are visualized in Figure 2.8.

2.4 Conclusion

To tackle the recognition problem for 3D/2D point clouds, we develop a new neural

network based algorithm by adopting the concept of shape context to build our basic building

block, shape context kernel. The resulting model, named as ShapeContextNet (SCN), consists of

hierarchical modules that are able to represent the intrinsic property of object points by capturing

and propagating both the local part and the global shape information. In addition, we propose

an Attentional ShapeContextNet (A-SCN) model to automate the process for contextual region

selection, feature aggregation, and feature transformation. We validated the effectiveness of our

model on a number of benchmark datasets and observed encouraging results.

This chapter is based on the material as it appears in the Conference on Computer Vision

and Pattern Recognition (CVPR), 2018 (Sainan Liu*, Saining Xie*, Zeyu Chen and Zhuowen

Tu, "Attentional ShapeCOntextNet for Point Cloud Recognition"). The dissertation author is the

co-primary investigator and author of this material.
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Chapter 3

Unseen View 2D Recognition with 3D Prior

3.1 Introduction

Figure 3.1: Problem illustration. Our task is to recognize an object from any view. In both
training and testing, we only see 2D images without knowing the viewing angles and depth.

Inspired by the theories of object-centered and viewer-centered object recognition [Mar82,

LPP95] as well as recent deep learning approaches for object recognition [SJS+18, CGKW18], in
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this chapter, we propose a new algorithm: object and viewer-centered neural networks (OVCNet)

for object recognition from any view. OVCNet has several attractive properties: 1) It adopts a

pretrained Generalizable Reconstruction (GenRe) model [ZZZ+18] to reconstruct 3D images

from a single view image. We take advantage of the property of GenRe generalizing well to unseen

object classes beyond the three classes (“plane”, “car”, and “chair”) that it was trained on. Hence,

we are able to infer the shape of a novel instance without additional object-specific 3D shape

information. 2) OVCNet consists of three object recognition branches/modules by respectively

implementing object-centric, 3D viewer-centric, and in-plane viewer-centric recognition to

better perform the task. 3) We show that by adding sparse viewer-centered representations, we

can further assist feature learning in the object-centered sub-module through spherical CNNs

[CGKW18]. The resulting OVCNet is an integrated framework that learns viewpoint-independent

and viewpoint-dependent features from an arbitrary view, and it can recognize novel views from

both seen (familiar) and novel object instances.

In cognitive psychology, Marr initially proposed the definition [Mar82] of object-centered

and viewer-centered representation for object recognition. Since then, further interpretations are

provided in [Hay12, LPP95, LPP95, TV02] emphasizing that a viewer-centered representation

captures shapes at a particular view, whereas an object-centered representation represents the

intrinsic 3D shape. Inspired by these cognitive psychology findings, we ask for the following

properties for an object-centered module in our network design: 1) 3D model based

(e.g. volumetric, mesh, point-cloud or spherical maps);

2) rotation invariant; 3) absent pose alignment. Here, we characterize some of the

methods [WSK+15, CSKG17, SMKLM15, Kan18, CGKW18] referred in this paper in Table 3.1.

Although these individual approaches in comparison have their own merits, our experiments show

that each method alone does not produce satisfactory recognition result on 3D-reconstruction

derived from an arbitrary view image.

To evaluate OVCNet, we use a real object grayscale multi-view dataset [Kan18], a
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virtual object grayscale multi-view dataset generated from ShapeNet [CFG+15], and a natural-

colored dataset (a subset of the Pascal VOC dataset [EVGW+]). We split the views of different

object instances into training and testing. In training, the dataset consists of one 2D image

per object instance from an unspecified viewing angle; in testing, we perform classification on

two sets of images from novel viewpoints of both seen (familiar) and novel object instances,

respectively. Compared to a 2D image-based object recognition system such as AlexNet [KSH12]

and ResNet [HZRS16a] as well as several 3D object recognition methods [CGKW18, CSKG17,

WSK+15] following a single-view reconstruction module, OVCNet shows its clear advantage in

the performance observed, especially on the relatively larger dataset, gMIVO. Furthermore, we

also show that our algorithm outperforms standard ResNet18 by a large margin on a subset of

Pascal VOC natural images.

In comparison with standard image classification tasks such as ImageNet [DDS+09],

their metrics concern with generalization to novel instances, whereas our paradigm introduces

generalization to novel views as well. Our contributions are listed as follows.

• We study the problem of object recognition from any view (single-arbitrary-view training

and novel-view-novel-object-instance testing) by developing an algorithm that jointly

encodes object-centered and viewer-centered representations.

• We create an object and viewer-centered network (OVCNet) with three branches, each spe-

cializing in either object-centered, viewer-centered (3D), or viewer-centered (2D) learning.

The proposed OVCNet consists of a combination of spherical CNNs, ResNet, and attention

structures.

• Between object-centered and viewer-centered 3D branches, we develop a new network

structure that enables integrated learning of both object-centered and viewer-centered

representations with a communicating pathway between the two.

• We provide a new multi-view dataset generated from a subset of models of ShapeNetCoreV2
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3D models.

Figure 3.2: Network structure for our object and viewer-centered neural network, OVCNet. Dur-
ing training, each input is a 2D image of an object instance. OVCNet consists of 3 branches. For
the top two branches, single-view 3D reconstruction using GenRe [ZZZ+18] is performed first.
The first branch (Object-Centered) builds a representation using spherical maps [CGKW18];
the second branch (Viewer-Centered (3D)) builds a 2D CNN classifier with data augmentation
using novel-view image syntheses. The third branch (Viewer-Centered (2D)) executes 2D based
image classification with in-plane rotation for data augmentation. The final fusion layer provides
a weighted sum of the outputs from the three branches/modules. Please see Section 3.3.5 for
details about the three branches/modules, as well as the fusion layer.

3.2 Related Work

In this section, we briefly discuss the existing literature and methods related to object-

centered and viewer-centered object recognition.

3D object recognition. With various 3D object datasets [CFG+15, WSK+15, XKC+16,

CGKW18] being created and becoming increasingly popular, 3D object recognition [XRT12,

SSFFS09, SMKLM15, Kan18, QSN+16, WSK+15, CSKG17, XLCT18, QYSG17, SJS+18,

33



Table 3.1: Properties as an object-centered representation for different methods.

Method 3D model Rotation- No pose
based invariant alignment

3DShapeNet [WSK+15] 3

PointNet [CSKG17] 3 3

MVCNN [SMKLM15] 3 3

RotationNet [Kan18] 3

Spherical CNNs [CGKW18] 3 3 3

CGKW18] has become a highly discussed topic in computer vision. Existing systems rely on

given ground-truth 3D data in the form of either volumetric shapes [WSK+15], point-cloud sets

[CSKG17], spherical maps [CGKW18], or multi-view images [SSFFS09, SMKLM15, QSN+16,

Kan18]. In contrast, we utilize these network structures as our recognition module following a

single-view 3D reconstruction module.

2D Image-based object recognition. Viewer-centered feature learning has previously

been addressed [Bas93]. Broadly speaking, the recent common practice of data-augmentation

can be considered viewer-centered feature learning where no new views are generated since the

augmentation is mainly implemented in the 2D image plane.

Hybrid 2D and 3D object recognition. SPLATNet [SJS+18] is a hybrid system that

integrates both 2D and 3D features for object classification and segmentation and is closely

related to ours. However, SplatNet takes two modalities of inputs: a point-cloud based 3D shape

and 2D multi-view images. Hence the scope of SplatNet is very different from ours.

Data-augmentation for transfer learning. There have been recent works in transfer

learning [SGMN13, RL17, LNH14, DKNV17, LWD+18] where data-augmentation is performed

subject to certain domain adaption and regularization. These approaches address a fairly different

problem compared to ours. We focus on the basic problem for 3D single image classification

instead of a multi-task prediction problem.

Single-view 3D reconstruction. In the field of single-view 3D reconstruction, an object-

centered network outputs 3D information in a canonical view of the object. In contrast, a viewer-
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centered network’s 3D output is relative to the input view [SFH18, TRR+19]. This definition is

significantly different from what we define previously for recognition tasks. Nonetheless, for

better reconstruction, Shin et al. and Tatarchenko et al. have shown that using 3D-supervision

in a viewer-centered coordinate system tends to generalize better against unseen classes. Better

generalization for unseen categories allows us to acquire 3D shape priors for new instances in an

image without any 3D shape information during training. We adopt the state-of-the-art method

for unseen class reconstruction, GenRe [ZZZ+18], to reconstruct 3D shape from a 2D single

image, but GenRe itself does not perform image recognition.

Spherical CNNs. We build our chosen object-centered representation based on spherical

CNNs [CGKW18], which is an effective and efficient way to obtain 3D shape representation for

the 3D object classification tasks. Spherical CNNs themselves do not perform object recognition

from any view, and a 3D input is required to generate the spherical map that spherical CNNs

need.

To summarize, we focus on a challenging problem setting for object recognition from any

view using object and viewer -centered representations.

3.3 Our Approach

3.3.1 Problem Formulation

In this section, we focus on the any view object classification task. During training, the

input is an arbitrary single view per training object instance, and the output is the ground truth

class label. Every object instance is seen only once. We evaluate the effectiveness of OVCNet

in two aspects: 1) SeenInstances: the ability to recognize novel views of seen (familiar) object

instances (instances that are used in training) and 2) NovelInstances: the ability to recognize

arbitrary views of novel/unseen object instances (instances absent from the training set). We

present results from two experiments corresponding to these two aspects.
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(a)

(b) trained on view 1

(c) trained on view 90

Figure 3.3: (a) is an example of viewpoints used for generating viewpoint dependent images
for the Viewer-Centered (3D) module (Section 3.3.4) similar to [Kan18]. (b) and (c) show the
classification accuracies across all viewpoints for a ResNet18 model trained only on view 1
(b) and view 90 (c) (highlighted) of the objects, respectively, on the MIRO dataset [Kan18].
Without seeing other views, classic 2D CNNs have unsatisfactory performances on novel views.

36



3.3.2 Single-view shape prior

Given a single view of an object instance, we first use a state-of-the-art algorithm, GenRe

[ZZZ+18], to generate 3D object reconstruction from a 2D image. GenRe separates reconstruction

into three sub-tasks: depth estimation, spherical map inpainting, and voxel refinement. The

separation of these tasks enables reasonable reconstruction for unseen objects/classes. Therefore,

no additional object-specific information is needed. The pretrained GenRe model is only trained

on three object classes (“plane”, “car”, and “chair”) for reconstruction, but GenRe has shown

great potential when it is evaluated on a wide variety of unseen object categories [ZZZ+18]. In

our classification task on the gMIVO dataset, we include plane, car, chair, as well as other object

classes such as lamp, pistol, motorbike, knife, laptop, guitar, and table. We adopt the trained

GenRe model [ZZZ+18] directly to perform 3D reconstruction for a 2D image and add texture

information to the final 3D model. We sample the texture information from the seen side with the

nearest neighbor search algorithm using a k-d tree. This approach may result in different texture

patterns due to different vertex ordering. A better texture filling approach should be explored in

future studies.

3.3.3 Object-centered representation (OC module)

We utilize existing 3D recognition network structures as our classification module follow-

ing GenRe’s 3D shape estimation. We evaluate all three 3D shape-based recognition networks in

Table 3.1: 3D CNNs, PointNet [CSKG17], and spherical CNNs [CGKW18], respectively. 3D

CNNs is a 3D convolutional network inspired by 3DShapeNet [WSK+15] and built on top of

[Lin]. Among them, spherical CNNs match the most with our object-centered definition for the

following reasons.

First, spherical CNNs model is a 3D shape-based method. Object classification is carried

out based on distance spherical maps along with cosine and sine of surface signals from 3D
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objects and their convex hulls. With spherical information of 3D models as input, the results of

spherical CNNs on ShapeNet SHREC17 [CFG+15] are close to the state-of-the-art [CGKW18].

One can generate a spherical distance map by shooting a ray from the surface of a sphere (with a

fixed radius) to the center of the object. The distance between the sphere surface and the object

surface becomes the distance value captured by the spherical distance map [CGKW18]. Second,

spherical CNNs use convolutions directly in the spherical harmonic domain, which keeps 3D

rotation-equivariance of the spherical signals. See discussions about an empirical support for

rotation-invariance in [CGKW18]. More discussion on its rotation-invariant capability is provided

in Appendix A.2. Third, the network does not require any pose alignment.

In our overall model, we refer to the object-centered module branch with spherical CNNs

as the OCb module, where the superscript b indicates that it is a base module.

3.3.4 Viewer-centered representation (VC module)

For viewer-centered representations, different modules with two different inputs are used:

1) the original view VC (2D) module; 2) views re-projected using 3D viewpoint augmentation

from the 3D output of the GenRe VC (3D) module. For both tasks, we find that ResNet18 works

well as a 2D image classifier compared to other classic convolutional neural networks. To select

augmented views, we implement three options for the view selection layer (discussed in detail in

Section 3.3.5).

VC (2D) module. This module uses 2D augmentation with in-plane rotation. We evaluate

ResNet18 with different angles of rotation augmentation, including intervals of 90, 30, 10, 5, and

1 degrees for gMIRO. We observe that the evaluation accuracy stops increasing as we provide

denser angle augmentations. Rotation ablation studies (Appendix A.1) show that ResNet18’s

accuracy plateaus when we augment the input view with 2D in-plane rotations at 30-degree

intervals for the gMIRO dataset. In contrast, for gMIVO, the network performance plateaus

with augmentations of 90-degree intervals. We use these numbers in our later experiments. If
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trained under identical views, ResNet18, as shown in Figure 3.3.b and c, experiences difficulties

recognizing images from new angles for the same set of objects. We refer to this effect as “ mental

rotation”.

VC (3D) module. This module uses 2D augmentation from 3D viewpoints. We augment

images with 10 evenly divided elevation angles and 16 evenly divided azimuth angles, yielding

160 views per object. The viewpoint augmentation setting is shown in Figure 3.3.a [Kan18]. The

viewpoint layout imitates the organization of object views in the dataset, starting from the input

view. Additionally, we add in-plane (2D) rotation augmentations in 90-degree intervals to each

augmented viewpoint.

For the VC (3D) module, we explore three types of view selection methods: 1) the nearest

neighbor approach where the network only uses the augmented image that is closest to the input

viewpoint for testing; 2) a simple selection layer where the network learns a set of weights for

all augmented views; 3) an attention layer where the network learns a set of attention weights

based on the input information. Option 1 is the most suitable for a dataset that has limited training

views, such as gMIRO, and is the most efficient in terms of runtime. For options 2 and 3, we

further divide the training views into a sub-training set1 and set2. We first use set1 for training

ResNet18 and then use the set2 to train the selection network. We observe an improvement in

average accuracy using a view selection network compared to a simple ensemble of all augmented

views. However, given the limitation of the 3D reconstruction and size of the dataset, for the

gMIRO dataset, using the input viewpoint alone outperforms the other options.

Other augmentations are also considered. We include 20 views taken from the 20 vertices

of a dodecahedron around the object [SMKLM15, Kan18] for a GenRe [ZZZ+18] + multi-view

baseline. We also include 36 viewpoints from a sampling grid of spherical maps with a bandwidth

of 3 [CGKW18] for a viewer-centered assisted object-centered module, OC (Section 3.3.5).

For the multi-view baseline, we include GenRe + multi-view CNN[SMKLM15] (MVCNN)

and GenRe + RotationNet [Kan18]. A 20-view version of MVCNN is used due to memory con-
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straint. The best performing backbones are VGG for MVCNN and ResNet18 for RotationNet.

The results are encouraging for GenRe + MVCNN. However, MVCNN uses pretrained weights

and requires 20-view augmentation during test. In contrast, we train our model with a single

view and from scratch to avoid prior knowledge of unseen instances learned from the pretrained

dataset.

3.3.5 Fused representation (OVCNet)

In summary, our overall network (Figure 3.2) includes 3 branches: OCb branch (GenRetext

+ spherical CNNs [CGKW18]), VC (3D) branch (GenRetext + ResNet18 [HZRS16a] + view

selection), and VC (2D) branch (ResNet18).

To fuse the OCb base module with the VC (3D) module, we create an OC module

(Figure 3.2). In this module, in addition to the 160-view set, we use the information from 36

augmented views to reduce the number of views needed for training. We then organize the

learned ResNet features into a grid and pass them into an ancillary spherical CNNs with an input

bandwidth of 3. This new branch is then trained with the original OCb base module fused by a

fully connected layer as the final OC module. The result of gMIRO is shown in Table 3.3.

To fuse the output of OC and VC modules, we experiment with 3 options. The first option

is to train a fully connected fusion layer with or without each module frozen. The second option

is to learn an attention layer to fuse the three results. The third option is to use a set of weights

found through a grid search using a validation set. Our experiment has shown that the third

option works the best for the gMIRO dataset. Two reasons may contribute to this: 1) different

branches have different learning rates due to diverse input and module modalities; 2) Even with

the three branches frozen, the simpler fusion method adapts better when we have limited training

information. We find the learned weights from option 3 are stable, e.g., around 0.2, 0.3, and 0.5

for combining OC module, VC (3D) module, and VC (2D) module on both gMIRO and gMIVO

datasets.
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Please see Appendix A.4 for details on runtime analysis.

3.4 Experiments

3.4.1 Baselines

Next, we report the results of various baseline classifiers as well as those by our OVCNet.

Traditional image classification networks. We learn 2D image classification using con-

volutional neural networks including AlexNet [KSH12], ResNet18 [HZRS16a], and ResNet152

[HZRS16a] directly on the input views. For AlexNet and ResNet18, the batch size for training is

96. For ResNet152, a batch size of 32 is used due to memory constraint. We start with an initial

learning rate of 0.01 and decay by 10 every 30 epochs. ResNet18 seems to generalize better and

has more efficient memory usage.

3D shape-based classification networks. We convert the reconstructed 3D object from

GenRe to voxels (30× 30× 30 or 128× 128× 128), point sets (2500 point samples), and

distance spherical maps in order to run 3D CNNs [Lin], PointNet [CSKG17], and spherical

CNNs [CGKW18], respectively, without texture information.

Re-projected viewer-centered classification networks. For re-projections from GenRe’s

output, as a baseline for VC (3D) module, we evaluate ResNet18 with a different number of view

augmentations. Although our algorithm only uses a single view during testing in the overall model,

we also show our results with 20 views during evaluation with GenRe [ZZZ+18] + RotationNet

[Kan18] and GenRe + MVCNN [SMKLM15] as a multi-view module baseline.

Object and viewer-centered network. Since OVCNet combines three modules, for a

fair comparison, we include two ensemble strategies of three VC (2D) modules and report the

results in Table 3.2 (ResNet18rot30/90 Ensemble I, II). To compare with the ensemble results,

we randomly select six VC (2D) modules and report the average over two sets of ensemble

results. For a fair comparison with OVCNet, we randomly select one VC (2D) module from
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the ensemble set to combine with our OC module and VC (3D) module. Ensemble I uses three

equally weighted random models of the same type. Ensemble II trains additional fusing weights

for the three random models.

Table 3.2: Results summary. ResNet18*: a standard 2D image data augmentation [KSH12].
ResNet18rot[d]: 2D in-plane rotation augmentation with multiples of d degree rotation. GenRetex:
texture is used for 3D viewpoint augmentation. RotationNetpre and MVCNNpre: using pre-
trained weights. Ensemble I uses an equally weighted ensemble of three models. Ensemble II
includes learned fusing weights for the three random models. Two repeats for OVCNet and the
ensembles.The proposed OVCNet performs the best here.

accuracy overall (%) accuracy overall (%)
SeenInstances NovelInstances

gMIRO
AlexNet [KSH12] 24.61 ± 3.02 27.40 ± 2.13

ResNet152 [HZRS16a] 45.97 ± 1.08 43.68 ± 1.91
ResNet18 [HZRS16a] 51.34 ± 0.52 44.04 ± 1.31

ResNet18* 45.08 ± 0.98 38.70 ± 2.09
ResNet18r30(VC (2D)) 68.34 ± 1.57 53.27 ± 0.89

ResNet18rot30 (Ensemble I) 70.56 ± 0.56 54.91 ± 1.85
ResNet18rot30 (Ensemble II) 70.91 ± 0.34 55.74 ± 2.52

GenRe [ZZZ+18] + PointNet [CSKG17] 27.33 ± 0.48 27.67 ± 0.80
GenRe + 3D CNNs [Lin] 30.26 ± 0.62 30.01 ± 0.75

GenRetex + RotationNetpre [Kan18] 46.55 ± 3.97 46.44 ± 4.54
GenRetex + MVCNNpre [SMKLM15] 58.68 ± 0.59 54.56 ± 0.41

OVCNet (ours) 73.24 ± 0.08 65.85 ± 0.14
gMIVO (ShapeNetCoreV2 subset)

ResNet18rot90 (VC (2D)) 64.40 ± 0.45 64.86 ± 0.43
ResNet18rot90 (Ensemble I) 65.70 ± 0.25 66.25 ± 0.59
ResNet18rot90 (Ensemble II) 65.73 ± 0.18 66.27 ± 0.44

OVCNet (ours) 79.24 ± 0.12 75.03 ± 0.30

3.4.2 Datasets

We adopt the following three datasets: a grayscale version of the MIRO dataset [Kan18]

(gMIRO), our new dataset, grayscale multi-view images of virtual objects (gMIVO), and natural-

colored images from Pascal VOC [EVGW+].
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gMIRO. We use preprocessed grayscale images from the MIRO dataset [Kan18] (gMIRO) as

our primary dataset for ablation studies. This dataset contains 12 classes with 10 object instances

for each class. For each object, there are 160 views (10 elevations × 16 azimuth angles) from

real objects with empty backgrounds. We randomly select 80% of the instances as familiar object

instances. For each object, we randomly select an arbitrary single view to use in the training set

(12 classes×10 ob jects×80% seen split×1 view = 96 images). We use the remaining views

of the familiar instances as the first test set that evaluates how well the model generalizes towards

unseen views of seen object instances (SeenInstances). The final test is done utilizing all the

views from the remaining 20% new instances, where we can evaluate the generalization towards

views from all 160 angles of the unseen object instances (NovelInstances).

gMIVO. gMIVO is a larger dataset with a similar setup as gMIRO. A subset of ShapeNet-

Core v2 is selected to generate this dataset. We do not use ModelNet [WSK+15] directly for

this paper because an aligned ModelNet40 was not available at the time the project first started.

Additionally, most of the objects are lacking material and texture information. ShapeNetCore

v2 includes materials and textures and all objects are aligned [CFG+15]. We select a subset

of the objects from ShapeNetCore v2 by referring to the 10 classes with the highest frequency

from DensePoint [CN19] (which uses ShapeNetCore v2 objects with good material and texture

information) and take 160 views of each object. This new dataset contains ten classes where

each class has 110 objects. For each object, 160 views are generated using similar viewpoints

from MIRO [Kan18] as shown in Figure 3.3.a. Our rendering tool is built on top of the Stanford

ShapeNet renderer. During training, we randomly select 80% of the objects for every class as

the familiar objects. The two test sets, SeenInstances and NovelInstances, are set up similarly to

gMIRO.

Pascal VOC. We use a subset of Pascal VOC images [EVGW+] to evaluate the capability

of OVCNet with real color images with background. For training, to use GenRe, we obtain the

masks for each object from [MCL+14]. For testing, an object mask is first obtained through a
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foreground segmentation algorithm using [HCH+19]. We choose images of aeroplane, bicycle,

car, and motorbike because there are fewer occlusions in those images, which allows adequate

3D reconstructions. We randomly select 20% of the images from each category for training and

the remaining for testing.

We start with grayscale images for gMIRO and gMIVO to illustrate the fundamental idea

of OVCNet. We then experiment with colored inputs for MIRO and PASCAL images. Please see

Section 3.4.4 for more details.

3.4.3 Metrics

For both the gMIRO and gMIVO datasets, we partition the data into familiar and novel

instances with an 80%/20% train-test split. If not otherwise specified, we conduct three repeats

for each experiment and averge the results. We report the overall class accuracy (the mean and

standard deviation) for unseen views with seen objects (SeenInstances) and all views with unseen

objects (NovelInstances).

3.4.4 Results and Discussions

Object-centered feature learning. For the object-centered branch, we compare the

results of different representations of the 3D reconstruction using GenRe + 3D CNNs, GenRe +

PointNet, and GenRe + spherical CNNs in Table 3.3. We find that the performance for GenRe +

3D CNNs increases as the voxel resolution increases; however, the network size increases as well.

For GenRe + spherical CNNs, the performance increases as bandwidth increases and plateaus at

bandwidth = 112 for gMIRO. Overall, our OC branch outperforms other combinations in terms

of overall accuracy for both SeenInstances and NovelInstances with comparable network size.

Additionally, the OC module that further integrates information learned from the VC (3D) branch

(bw=3 sgrid) can give OCb baseline module an extra 10% boost on the gMIRO dataset.
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Table 3.3: Ablation study for object-centered network structure (OC) on gMIRO.
GenRetex + spherical CNNs [CGKW18] (with additional approximated texture spherical map
information) is chosen as our OCb module in our OVCNet due to its relative performance
advantage. vx indicates voxel representation, pt indicates point cloud representation, and bw
indicates the bandwidth for spherical signals. The final OC model with an ancillary spherical
pathway integrating the information learned from the VC (3D) module (bw=3 sgrid) performs
the best.

Networks accuracy overall (%)
SeenInstances NovelInstances

GenRe + 3D CNNs [Lin] (30×30×30vx) 20.94 ± 0.41 21.74 ± 0.42
GenRe + 3D CNNs (128×128×128vx) 30.26 ± 0.62 30.01 ± 0.75
GenRe + PointNet [CSKG17] (2500pt) 27.33 ± 0.48 27.67 ± 0.80

GenRe + spherical CNNs [CGKW18] (bw=60) 40.79 ± 1.21 41.50 ± 0.44
GenRe + spherical CNNs (bw=112) 42.43 ± 1.24 40.80 ± 0.51
GenRe + spherical CNNs (bw=128) 40.94 ± 1.88 41.23 ± 0.77

GenRetex + spherical CNNs (bw=112) (OCb) 44.62 ± 0.58 44.65 ± 0.53
OC branch 54.62 ± 0.73 54.21 ± 0.54

Viewer-centered feature learning. For viewer-centered network structures with re-

projected 2D images (VC (3D) module), we compare different 3D viewpoint augmentations

during training, shown in Table 3.4. For GenRe + ResNet18, the performance increases as

the number of training viewpoints increases. Once we introduce texture in the re-projection,

both GenRe + MVCNN and VC (3D) outperform other methods. GenRe + MVCNN uses all

20 different viewpoints for testing. In contrast, VC (3D) only uses one viewpoint during the

evaluation. Hence, it is more efficient than GenRe + MVCNN.

We also experiment with the attention structure as our view-selection layer (Not shown in

tables). Compared to a simple ensemble of all 160 views at test time, we do notice a performance

gain from the attention view selection layer in the Pascal dataset. This result suggests that a

more complex view selection module during inference may boost the performance with increased

training data.

For viewer-centered network structures with original 2D images (VC (2D) module),

we conduct an ablation study on 2D rotation augmentation. In Appendix A.1, we show that,

for gMIRO, the performance of ResNet18 plateaus with rotations of 30-degree intervals (12
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augmented images per input). For gMIVO, we find that the performance of ResNet18 plateaus

with rotations of 90-degree intervals (4 augmented images per input). These results may indicate

that with increasing number of training instances, random viewing angles of similar instances

increase. Hence, less in-plane rotation is needed to boost performance.

Table 3.4: Ablation study for viewer-centered network structures with gMIRO by using
different types of data augmentations. 3D-aug: the number of re-projected images used during
training. Section 3.3.4 offers viewpoint details. GenRetex + MVCNNpre and GenRetex +
RotationNetpre use fine-tuned weights with pre-trained models and 20 views for evaluation,
whereas other methods only use single view. The final VC (3D) model with GenRetex and
ResNet18 trained from scratch performs the best.

3D-aug accuracy overall (%) accuracy overall (%)
1/160/640 SeenInstances NovelInstances

GenRe + ResNet18 1 32.49 ± 0.68 32.95 ± 0.93
GenRe + ResNet18 160 45.15 ± 0.46 40.20 ± 0.51
GenRe + ResNet18 640 51.24 ± 0.23 47.57 ± 0.55

GenRetex + RotationNetpre [Kan18] 20 46.55 ± 3.97 46.44 ± 4.54
GenRetex + MVCNNpre [SMKLM15] 20 58.68 ± 0.59 54.56 ± 0.41

scratch VC (3D) (ours) 640 65.70 ± 0.44 58.27 ± 0.04

Object and viewer-centered network. Finally, we combine the results from both object

(OC) and viewer -centered modules (VCs) for both gMIRO and gMIVO datasets. Through a

simple grid search on the validation sets, the fusion layer outputs a weighted sum of probabilities

from OC, VC (3D), and VC (2D) branches. The results are shown in Table 3.5. Our results show

that the three models are complementary to each other for both datasets.

The advantage of OVCNet over the ensemble of ResNet18s appears to be more significant

for gMIVO. The test accuracy improves by∼ 13.5% for unseen views of familiar object instances

and ∼ 9% for novel object instances in Table 3.2. It suggests that training with more arbitrary

views of instances from the same category helps with classifying views from other viewpoints.

Interestingly, for gMIVO in Table 3.5, the test accuracy of the VC (3D) branch alone is already

higher than that of VC (2D); this further validates the importance of inferring 3D reconstruction

through which our 3D view augmentation is realized.

We also evaluate the average class accuracy for OVCNet and the corresponding ensemble
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baseline (not shown in tables). For gMIVO, for all ten classes, the SeenInstances (other views from

familiar instances) accuracy is raised by 13.41% from 65.89% to 79.36%. The NovelInstances

(all views from novel instances) accuracy is raised by 8.68% from 66.65% to 75.33% (we list

these numbers here in the text directly).

Table 3.5: Ablation study over different model integrations. gMIRO uses an OC module
(see Section 3.3.5), whereas gMIVO uses an OCb module (see Section 3.3.3). For the VC
(3D) branch (see Section 3.3.4), gMIRO uses textured reconstructed 3D models from GenRe to
generate 640 3D viewpoint augmentations per input view, whereas gMIVO uses 160 viewpoints.
For the VC (2D) branch (see Section 3.3.4), gMIRO uses 30-degree intervals whereas gMIVO
uses 90-degree intervals. The three modules are shown to be complementary to each other on
both datasets.

Experiments OC VC (3D) VC (2D) SeenInstances NovelInstances
accuracy (%) accuracy (%)

gMIRO
(1) 3 52.65 53.02
(2) 3 65.70 58.31
(3) 3 69.74 54.11
(4) 3 3 67.24 61.48
(5) 3 3 72.47 62.99
(6) 3 3 72.04 58.57

OVCNet 3 3 3 73.25 65.99
gMIVO (ShapeNetCoreV2 subset)

(1) 3 52.83 50.49
(2) 3 77.00 70.53
(3) 3 63.66 64.50
(4) 3 3 77.60 71.23
(5) 3 3 77.71 74.50
(6) 3 3 67.83 67.63

OVCNet 3 3 3 79.36 75.33

Given that we use a pretrained GenRe model that is trained on three classes from ShapeNet

and our gMIVO dataset is also a subset of ShapeNet, we additionally test on gMIVO after

removing the three classes that are overlapping between the two datasets. Our model shows

a slightly greater improvement compared to using all ten classes. The final OVCNet model

outperforms the ensemble of VC (2D) by 14.45% for unseen views of seen objects and 9.3% for
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Table 3.6: Ablation study with different train-test split percentages. Each column corre-
sponds to a different train-test split for the gMIRO dataset. OVCNet* uses a less optimal
configuration compared to the OVCNet used in Table 3.2. Under varying training sizes, the
trend of OVCNet w.r.t. VC (2D) is consistent as in Table 3.5 and Table 3.2.

80%−20% 50%−50% 20%−80%
test accuracy for SeenInstances (%)

VC (2D) 68.34 ± 1.57 64.42 ± 0.43 64.53 ± 0.84
OVCNet* 69.95 ± 0.35 67.24 ± 0.08 69.13 ± 0.75

test accuracy for NovelInstances (%)
VC (2D) 53.27 ± 0.89 47.36 ± 0.83 36.66 ± 0.54
OVCNet* 59.57 ± 0.28 50.99 ± 0.31 42.09 ± 0.06

all views of unseen objects. We demonstrate that the effectiveness of OVCNet does not depend

on the training classes from GenRe. The improvement may be due to the removed classes being

harder to classify.

Ablation study for train-test split percentages. To evaluate our model’s performance

on the varying training data size, we experiment with two more train-test splits. In addition

to the original split (80% familiar instances vs. 20% new instances), we also test 50%/50%

and 20%/80% train-test splits. Table 3.6 shows the means and standard deviations for the test

accuracies on seen instances and novel instances under multiple repeats. As the number of

familiar instances decreases, the overall classification accuracy also declines, which is typical

when trained on fewer data. However, we see a similar improvement as that in Table 3.5 and Table

3.2 for OVCNet w.r.t. VC (2D) module. These experiments are tested with an earlier version of

OVCNet for gMIRO that uses a less optimal configuration than what is used in Table 3.5 and

Table 3.2.

Color and Natural Images.

Our experiments in Table 3.3 show the results of combining approximated texture

information with the grayscale input. In a similar spirit, we also provide results for colored input

as follows (not shown in tables). We use color images from MIRO to train the VC (2D) module

(ResNet18 with in-plane rotations) as a baseline; we keep OC and VC (3D) the same since they
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Figure 3.4: OVCNet algorithm pipeline for the PASCAL experiment.

mostly concern with shape. Nevertheless, our results show that, for gMIRO, OC, and VC (3D)

modules still provide a consistent boost to the VC (2D) baseline trained with color images from

MIRO. The accuracy improves from 73.23% to 75.64% for SeenInstances (unseen views from

familiar instances) and from 54.53% to 67.66% for NovelInstances (unseen instances). This

improvement validates the benefit of having an object- and viewer-centered representation for

colored images as well.

Table 3.7: Test accuracy for Pascal VOC subset images for the aeroplane, bicycle, car, and
motorbike classes.

test accuracy (%)
OCb (bw=112) 80.08
VC (3D) (160) 82.35

VC (2D) 72.84
VC (2D) (Ensemble I) 75.49
VC (2D) (Ensemble II) 75.91

OVCNet 85.24

An evaluation of natural-colored images with a background (a subset of Pascal VOC)

also shows encouraging results. Experimental results are reported in Table 3.7. We see a 10%
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improvement over the baseline. Random rotation does not improve the performance for VC (2D)

here.

3.5 Conclusion

We have developed a new algorithm for any view object recognition that is inspired by

the object and viewer-centered recognition theories. The resulting OVCNet is an integrated

framework that learns viewpoint-independent and viewpoint-dependent features for an image

from an unknown view, and it can be used to recognize novel instances from novel views. We

show a clear advantage of OVCNet over the object-centered and viewer-centered baselines in

Table 3.2 and 3.5. We also report results on natural-colored images in Table 3.7.

This chapter is based on the material as it appears in the Conference on Computer Vision

and Pattern Recognition (CVPR), 2020 (Sainan Liu, Vincent Nguyen, Issac Rehg, Zhuowen Tu)

The dissertation author is the primary investigator and author of this material.
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Chapter 4

Panoptic 3D Parsing

4.1 Introduction

This chapter focuses on a scientifically important but practically very challenging set-

ting: single-view holistic 3D segmentation and shapes/layout reconstruction. While there are

existing works for 3D shape reconstruction [WSK+15, ZZZ+18, WZL+18, GFK+18, KBJM18,

XWC+19, CNH+20] and 3D layout estimation [TGF+18, ZCSH18], none have tackled the joint

task of single-view 3D scene dense-segmentation/object-detection/shape-reconstruction/layout-

estimation for the natural (both indoor and outdoor) scenes. The following motivations for

panoptic segmentation, layout and depth reconstruction, and object instance reconstruction con-

tribute to the overall strategy for 3D scene understanding proposed by our Panoptic3D paradigm

(shown in Figure 4.2 and Figure 4.3). The contributions of our work are in three broad areas of

problem definition, technical novelty, and datasets:

• We propose a new paradigm, Panoptic 3D Parsing (Panoptic3D) that, to the best of our

knowledge, is the first system of its kind to perform joint panoptic segmentation and 3D

shapes/layout reconstruction for indoor/outdoor scenes from single-view RGB images in

the wild. Furthermore, we combat the issue under the absence of complete sets of multi-
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(a) Illustration on a Cityscapes [COR+16] image.
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(b) Illustration on a COCO [LMB+14] image.

Figure 4.1: Illustration of our Panoptic 3D Parsing (Panoptic3D) system. Given an input
RGB image, Panoptic3D performs joint semantic segmentation, object detection, instance
segmentation, depth estimation, 3D shape reconstruction, and 3D layout estimation.
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modality ground-truths for segmentation/objects/3D shapes/3D layout by developing a

stage-wise system to maximize the generalization and robustness where ground-truths are

separately available for training the individual modules.

• We show that given fully annotated synthetic information, we can train a network in an

end-to-end fashion and provide additional layout or stuff estimation in the 3D space for

similar natural images.

• In addition, we generate a synthetic dataset, based on the 3D-FRONT dataset [FJG+20],

with comprehensive multi-modality ground-truth annotations for panoptic segmentation

and 3D shapes/layout reconstruction to facilitate training and evaluation.

Observing the experiments, we show new, encouraging results for the indoor and outdoor

scenes [LMB+14, COR+16] for the natural and synthetic images [FJG+20] with both qualitative

and quantitative metrics.

4.2 Related Work

We show the comparison with various related work in Table 4.1. Our panoptic 3D parsing

framework produces more complete modalities and is more general than the existing segmentation,

detection, and 3D shapes/layout reconstruction methods.

Single-view 3D scene reconstruction. Single image 3D reconstruction has a long history

[Rob63, HZ04, TGF+18, ZCSH18, HQX+18, NHG+20]. Factored3D [TGF+18] is a closely

related work to ours, which combines indoor scene layout (amodal depth) with 3D shape re-

constructions. Still, no dense labeling is predicted for the scene layout (“stuff”) [TGF+18],

and the object shape reconstruction tends to overfit the canonical shape of known categories.

Holistic3D [HQZ+18] performs 3D layout and object detection jointly, but it does not perform

dense foreground and “stuff” segmentation or shape reconstruction for novel objects. Instead, it
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Table 4.1: Comparison for different 3D reconstruction methods. †For Mesh-RCNN [GMJ19], training
is based on a single object instance per image but its inference allows outputs of multi-object components;
nevertheless, efforts are still required to enable the multi-object module in an end-to-end pipeline for both
training and evaluation.

Method 3D Single Layout Panoptic Outdoor Multiple
image 3D segmentation scenes objects

[ZZZ+18, KBJM18, GFK+18, XWC+19] 3 3

[GMJ19] 3 3 †
[HZ04] 3 3 3

[TGF+18, ZCSH18, HQX+18, NHG+20] 3 3 3 3

[LS18] 3 3 3

[AW18] 3 3 3 3

[PKVG99, PNF+08] 3 3 3 3

[KHG+18, KGHD19, XLZ+19, LLT19] 3 3 3 3

Panoptic3DParsing (ours) 3 3 3 3 3 3

conducts a retrieval task from existing CAD models, something that would not scale to natural

images of outdoor scenes. Total3DUnderstanding [NHG+20] generates 3D shape reconstruction

results on natural indoor photos; however, it predicts a box layout without flexible structures and

layout semantic segmentation. None of the methods above simultaneously perform holistic 3D

shapes/layout reconstruction and panoptic segmentation for indoor and outdoor natural RGB

images.

Single image depth estimation. The 2.5D depth representation was pioneered by David

Marr [Mar82]. Depth estimation from a single image can be performed in a supervised way and

has been extensively studied in the literature [SSN09, EPF14]. Development in deep learning

[LSD15] has expedited the progress in depth estimation [BRG16, LS18].

However, these methods do not provide semantic information along side with the depth

prediction or instance reconstruction for “stuff” that could be especially useful for reconstructing

challenging scenes in the wild – a strategy that we employ for Panoptic3D.

Datasets. Natural scene image datasets are absent from existing comprehensive 2D and 3D

annotations for semantic segmentation [LMB+14, COR+16, SLX15], amodal segmentation

[QJL+19], and 3D shapes [SWZ+18]/layout reconstruction. Furthermore, the existing natural
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image datasets either do not provide panoptic segmentation annotations or lack sufficient 3D

ground-truth annotations. In this paper, we create a synthetic dataset for training/evaluating the

end-to-end Panoptic3D pipeline [FJG+20].

Single-view single object 3D reconstruction.Existing single image single object 3D

shape reconstruction methods can typically be divided into voxel-based [WSK+15, ZZZ+18,

CNH+20], mesh-based [WZL+18, GFK+18, KBJM18], and implicit function based [XWC+19]

methods. In this paper, we adopt unseen class reconstruction, GenRe[ZZZ+18], for multi-object

reconstruction for natural image reconstruction when well-aligned ground truth 3D mesh models

are unavailable. Moreover, inspired by Mesh R-CNN [GMJ19] for multi-object shape prediction,

we can perform supervised end-to-end single image 3D panoptic parsing.

Panoptic and instance segmentation. There is a renewed interest in semantic and object

segmentation (Image Parsing [TCYZ05]), called panoptic segmentation [KHG+18, KGHD19,

XLZ+19, LLT19]. Panoptic segmentation [KHG+18] or image parsing [TCYZ05] combines

semantic segmentation and instance detection/segmentation. However, existing panoptic segmen-

tation methods [KHG+18, XLZ+19] are focused on performing 2D image segmentation/detection

only. In our work, we adopt UPSNet as our panoptic segmentation module for the primary network

and combine it with the work from Zhan et al. [ZPD+20] to better assist 3D reconstruction with

amodal masks on natural images. For our end-to-end approach, we adopt a semantic segmentation

head [KGHD19] to train amodal segmentation for stuff in the scene, enabling un-occluded layout

segmentation. We also reference the panoptic head from UPSNet [XLZ+19] to assist unique

object detection from input view. Additionally, we predict the un-occluded amodal masks and

their corresponding 3D reconstructions for “things”. The final end-to-end network enables the

joint training for 3D “things” shape reconstruction and panoptic segmentation.
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4.3 Our Approach

4.3.1 Stage-wise System

We design a stage-wise system for natural images (such as Cityscapes and COCO) where

training data contain annotated ground-truths for panoptic segmentation but lack 3D information.

The method comprises four main parts: 1). single-image depth estimation; 2). panoptic segmenta-

tion; 3). instance amodal completion; and 4). single object 3D shape reconstruction for unseen

classes. Features from various state-of-the-art algorithms are adopted for the individual modules.

We show the network pipeline in Figure 4.2. The system first predicts the panoptic segmentation

(UPSNet [XLZ+19]) and the depth (DenseDepth [AW18], a transfer learning depth predictor). It

then passes the modal masks to the de-occlusion net [ZPD+20] to acquire amodal masks. The

instance meshes are then reconstructed based on the amodal masks using GenRe [ZZZ+18].

Since GenRe only predicts normalized meshes centered at the origin, the final module aligns

individual shapes in the z-direction using depth estimation. It then aligns each mesh instance in

the x-y direction using the corresponding amodal mask. Finally, we place instance meshes and

stuff point clouds in the same coordinate system to render the panoptic 3D parsing results for

visualization. The inference time takes a few seconds for images of size 1048×2048.

The network demonstrates good generalizability on novel images even with unseen shapes.

However, there is still room to improve, such as adding better modules for layout completion

that would respect the mesh instances in the space. Adopting RGB completion results from

the de-occlusion network does not facilitate a reasonable amodal layout depth and semantic

segmentation completion at the moment. The segmentation completion appears unrealistic, and

the layout depth completion tends to overlap with instance shapes in the 3D space. Furthermore,

there is a lack of layout/stuff segmentation and depth annotation in the wild and the photorealistic

synthetic datasets. Therefore, we introduce a synthetic indoor dataset with complete annotation

and our end-to-end approach next.
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Figure 4.2: Network architecture for our stage-wise system of panoptic 3D parsing. Here we
adopt DenseDepth [AW18] for depth prediction, UPSNet [XLZ+19] for panoptic segmentation,
de-occlusion network [ZPD+20] for amodal mask completion, and GenRe [ZZZ+18] to perform
instance based single image 3D reconstruction. The layout alignment module outputs the image
on the bottom. The network produces meshes for the individual objects, shown as point clouds
for illustration.
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Figure 4.3: Network architecture for our end-to-end system pipeline of panoptic 3D parsing.
dz: means depth extent. Red stop sign indicates that during training, only predictions with valid
ground truth shapes are used for regression. Dotted connection indicates optional path in this
end-to-end network.

4.3.2 End-to-end System

We develop an end-to-end system that can be trained on a set of ground-truth annotations

for 3D scenes. Our system has 6 main components: 1). instance segmentation head; 2). multi-

object training enabled shape heads; 3). amodal “stuff” semantic segmentation head; 4). amodal

“stuff” depth, 5). relative object z center prediction branch, and 6). panoptic segmentation head.

The network is trained end-to-end. The overview of the network structure is shown in Figure 4.3.

For instance segmentation and multi-object shape prediction, we enable the Mesh R-CNN

model for multi-object training and evaluation and it comprises the first two components. Then,

we add a FPN module, which is commonly used for modal semantic segmentation [KGHD19], to

perform amodal “stuff” semantic segmentation. The joint training demonstrates that the network

is capable of “hallucinating” the semantic information for “stuff” structures that are unseen

without disrupting other tasks. We use inverse depth value, which is similar to Factored3D

[TGF+18], for layout depth instead of the absolute value as it is imperially more effective during
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Figure 4.4: Qualitative results of z center head ablation studies for panoptic 3D parsing.
The front and top view comparison of the predicted geometries. By adding z center prediction
for each instance, our model can place objects in a relatively reasonable depth in both natural
and synthetic images. In contrast, Mesh R-CNN uses a simple estimation of z center based on
dz prediction; the top view from Mesh R-CNN shows that predicted instances tend to clutter
into a line.

joint training. The amodal “stuff” depth is estimated using an encoder-decoder structure. In our

network, we use the lower level features from the backbone network as our "shared context"

for amodal depth prediction and the inverse depth [TGF+18] value for training. Mesh R-CNN

[GMJ19] defines their scale-normalized depth extent as: d̄z = dz
zc
· f

h . Here h is the height of the

object’s bounding box, f is the focal length, dz is the depth extent, and d̄z is the prediction. This

allows the network to recover an estimated scale-normalized thickness of the object in the z

direction. However, Mesh R-CNN is not able to predict relative positions of objects in the same

scene. We add the fifth component, a z center head, to predict where objects are on the z axis.

The inverse z center value is used for training, described as 1
zc

in the equation for d̄z. In Figure 4.4

we can see that comparing to Mesh R-CNN (meshrcnn://meshrcnn_R50.pth), by adding z center

head, our model predicts shapes that gives a more reasonable top view. Mesh R-CNN uses a

simple z center assumption which tends to line up the shapes at an arbitrary depth.

With the first five components, we can perform a reasonable 3D panoptic prediction.

However, there is no algorithm in place that reasons about the uniqueness of space occupancy
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Figure 4.5: Qualitative results of panoptic head ablation studies for panoptic 3D parsing.
The effect of panoptic head. With a panoptic head, our model can remove some duplicated
objects.

in 3D. Multiple predictions may occur for the same object. Admittedly, it is non-trivial to

calculate space overlap in 3D. The generalizability of the network will suffer if we choose

panoptic 3D voxels as the scene representations. Additionally, the network does not guarantee

a watertight mesh prediction, which prevents us from reasoning about space occupancy by

converting the final predictions to solid voxels. Therefore, we introduce the last component with

a panoptic segmentation head that help us predict unique objects in 3D that are linked to unique

2D detections in the input image. In Figure 4.5, we show that it effectively removed a duplicated

couch prediction.

4.3.3 Datasets

Related DatasetsTo our best knowledge, no available dataset is accurately annotated with

amodal instance segmentation, panoptic segmentation, amodal 2.5D information for “stuff”, and

3D meshes for “things”. Thanks to the availability of the 3D-FRONT dataset [FJG+20], we are
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Table 4.2: Datasets comparison. For other benchmark datasets comparison for 3D-FUTURE/3D-FRONT,
please refer to their report [FJG+20]. The last row shows the panoptic 3D 3D-FRONT dataset rendered
and annotated by us. † available via purchase.

Amodal Amodal
Dataset Instance Semantic Panoptic Depth Semantic Depth 3D “things” 3D “stuff” Alignment

SUN-RGBD[SLX15] 3 3 - 3 - - 0 - -
AI2Thor[KMH+] 3 3 3 3 - - 100 3 3

ScanNet[DCS+17] 3 3 - 3 - - 14225/1160[ADD+19] - approx.[ADD+19]
3D-FUTURE[FJG+20] 3 - - - - - 9992 - 3

3D-FRONT[FJG+20] - - - - - - 9992 3 3

Hypersim[RP20] 3 3 3 3 - - approx. 50k† 3† 3

Panoptic 3D 3D-FRONT 3 3 3 3 3 3 9992 3 3

able to generate a first version of the panoptic 3D parsing dataset. We originally attempted to

use a natural image dataset but met difficulties. The majority of natural image datasets either do

not provide panoptic segmentation annotations or suffer from low diversity or low quantity for

corresponding 3D mesh annotations. ScanNet [DCS+17] provides indoor images with diverse

environment, it has large number of images annotated with both semantic and instance segmenta-

tion, and contains annotations for corresponding 3D meshes. Unfortunately, ScanNet does not

contain amodal layout information. Also, the mesh annotations on ScanNet do not have good

alignment with their masks, hence it is difficult to produce aligned amodal masks. Additionally,

our attempt to generate panoptic segmentation information for ScanNet suffers from significant

human errors that reside in both instance and semantic segmentation annotations. Therefore,

we are not able to work on ScanNet for the current end-to-end supervised system. We are also

aware of other existing 3D datasets such as SUN-RGBD [SLX15], AI2Thor [KMH+], ScanNet

[DCS+17], Scan2CAD [ADD+19], 3D-FUTURE [FJG+20], and most recently Hypersim[RP20]

(via Purchase). We show in Table 4.2 that the natural datasets, such as SUN-RGBD and ScanNet,

do not precisely align 3D “stuff” or “things”.

Generation Details The 3D-FRONT scenes and 3D-FUTURE models can be obtained

for free by signing the license agreement from the official release website: https://tianchi.

aliyun.com/specials/promotion/alibaba-3d-scene-dataset.

We build a panoptic 3D dataset from the 3D-FRONT dataset [FJG+20] with COCO-style

annotations, which include 2D amodal instance and panoptic segmentations, modal and amodal
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(layout) depth/semantic information, as well as corresponding 3D mesh information and voxelized

3D panoptic scene for every image. Referenced from the 3D-FUTURE dataset [FJG+20], we

adopt 34 instance categories representing all of the countable objects as “things”, and add 37

categories representing walls, ceilings, floors, etc. as “stuff”.

We adopt the rendering pipeline from BlenderProc [DSW+19], which uses blender

[Com18] to generate photorealistic images with realistic camera angles.

We have separated the dataset into 27 subsets with each set contains images from 250

scenes, and the last set contains 63 scenes all from the 3D-FRONT dataset. The training set

contains 10 subsets, and test set contains 3 subsets. A total of 15031 images are used for training

our final model, there are, on average, 2 centered and 2.7 boundary objects per image. We used 3

subsets for evaluation. Object shapes that are used for training and that touch the boundary of the

image are excluded from the test sets. More details of the dataset is shown in the supplementary.

In terms of energy consumption. The rendering for each subset takes approximately 4

days on a single Titan X GPU, and the post-processing step that mostly happens on CPU takes

approximately half a day.

We use binvox [NT03, Min19] and Open3d [ZPK18] for scene voxelization. Binvox

is used to perform solid voxelization of each object with 128 as an edge size. The voxelized

objects are then converted to dense point cloud. Each pixel in the layout depth map is also

mapped to a point cloud. Finally, Open3D is used to voxelize the entire scene using the combined

points from both things and stuff. The scene voxelization is done referencing the metrics used

in SSCNet[SYZ+16]. The scene is bounded within a 240×240×340 volume with a unit voxel

size of 0.02. We exclude occluded objects from the voxelization. Each scene is in its own camera

coordinate system, so the corresponding panoptic 2D annotation can be used to color each point.

We modified Open3D so that color sampling is based on the maximum points occupying each

voxel. The voxelized scenes are only used for panoptic 3D evaluation.

We also use the COCO [LMB+14] and Cityscapes [COR+16] mainly for qualitative
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Figure 4.6: Qualitative comparison for cross-domain evaluation on indoor and outdoor images. We
show amodal/modal depth, mesh predictions, and 3D panoptic estimations from three types of images:
Left: an 3D-FRONT image [FJG+20], Middle: a COCO Indoor image [LMB+14], Right: a COCO
outdoor image [LMB+14]. From top-down, we compare our models with the state-of-art methods: Mesh
R-CNN [GMJ19] and Total3DUnderstanding [NHG+20]. We leave the area empty if no results can be
acquired. Comparing to Mesh R-CNN [GMJ19] and Total3DUnderstanding [NHG+20], our stage-wise
model(last row) is the only one that can provide inference on all three types of input images with reasonable
output.

evaluation. COCO panoptic [KHG+18], 3D-FRONT [FJG+20] and 4000 SUNRGBD [SLX15]

images are also used for quantitative evaluation.

4.4 Experiments

4.4.1 Stage-wise Network

Experiment Details The stage-wise pipeline is shown in Figure 4.2. We utilize the

pretrained weights for UPSNet [XLZ+19], de-occlusion network [ZPD+20], depth network

[AW18], and unseen classes object reconstruction network [ZZZ+18] for our pipeline. This
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stage-wise framework takes an RGB image and predicts the 3D panoptic parsing of the scene

in point cloud (for “stuff”) and meshes (for “ things”). First, the network takes panoptic results

from UPSNet and depth estimation from DenseDepth. It then passes the modal masks to the

de-occlusion net to acquire amodal masks. GenRe is then used to reconstruct the instance meshes

based on the amodal masks. Then, the module maps panoptic labels to depth pixels and uses the

camera intrinsics estimation to inverse project depth into point clouds. For the Cityscapes dataset,

we compute its camera intrinsics with FOV = 60, height = 1024 and width = 2048 [COR+16].

For the COCO dataset, since it doesn’t provide its camera information, we estimate its FOV to

be 60 based on heuristics. We pick images with the size of 480×640, which is compatible with

every sub-module of the stage-wise network. GenRe only predicts normalized meshes centering

at the origin. The final module aligns individual shapes in the z-direction using depth estimation

and in the x-y direction using the mask. The module takes the mean of the 98th percentile and

the 2nd percentile of the filtered and sorted per-pixel depth prediction within the predicted mask

region to estimate the z-center depth of an object. Finally, it places meshes and point cloud in the

same coordinate system to render the panoptic 3D parsing results. The general inference time is

within seconds.

Qualitative Evaluation

We show the reconstructed Panoptic3D scene in colors that corresponds to the panoptic

categories defined in 2D annotations for the qualitative measure. Although the pipeline outputs

mesh shapes, here we sample point cloud to show the 3D effect in Figure 4.1 from COCO and

Cityscapes, respectively. More results are demonstrated in Figure 4.7.

We compare our stage-wise and end-to-end models with state-of-art methods, such as

Total3DUnderstanding and Mesh R-CNN in Figure 4.6. 1 We show that our stage-wise network

1Note that Total3DUnderstanding [NHG+20] was trained on SUNRGBD [SLX15] + Pix3D [SWZ+18]; our
end-to-end system was trained on the dataset extended from 3D-FRONT [FJG+20]; our stage-wise system was
trained for its individual modules based on separate datasets (e.g. panoptic segmentation on COCO [LMB+14]),
but not on 3D-FRONT [FJG+20] nor on SUNRGBD [SLX15], Pix3D [SWZ+18]. Our end-to-end model in the
second last row performs less well for outdoor images. Total3DUnderstanding [NHG+20] takes preprocessed images
containing proposed labels known to their pre-trained model. We cannot pass unknown categories from outdoor
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Figure 4.7: Qualitative results of our stage-wise Panoptic3D system for single-view images in the
wild (COCO [LMB+14] and Cityscapes images [COR+16]). Results are taken from an off-angle shot to
show the difference between depth and 3D panoptic results. The point cloud representation is to help with
better visualization of 3D structures. They are sampled from result object meshes.

generalize well on both synthetic and natural images for both indoor and outdoor scenes. Our

end-to-end model is able to generalize to natural images as well. Admittedly, the end-to-end

model does not perform as well on the outdoor image. We hypothesize that adding diverse

synthetic data to the training process will help improve its generalizability towards outdoor

scenes. The third row of Total3DUnderstanding is left blank because the network is a stage-wise

pipeline, and the released model can only be used for preprocessed proposals that contain NYU

labels. We can acquire outdoor proposals, but it is unclear what is a fair way to convert outdoor

labels to NYU labels. Therefore, we are not able to provide a result on the outdoor image from

Total3DUnderstanding. Our instance shape prediction quality is closer to the results from Mesh

R-CNN, which is expected. Total3DUnderstanding produces smoother surfaces. However, we

find that their shape prediction is more class-dependent. For example, in the top image, a 3-person

sofa is predicted as a one-seater. The predicted sofa would be significantly narrower, which

images to acquire a reasonable output due to this label requirement. The depth image inconsistency is introduced by
different rendering software.
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Table 4.3: Comparison of re-projected 2D panoptic qualities from a subset of coco indoor images
between Total3DUnderstanding and Stage-wise network. For Total3DUnderstanding, the re-projection
uses inferred camera extrinsic and we change the predicted layout box into meshes for wall, ceiling, and
floor. Our stage-wise method outperforms Total3DUnderstanding on every metrics.

PQ ↑ SQ ↑ RQ ↑
Methods IOU@.5 IOU@.4 IOU@.3 IOU@.5 IOU@.4 IOU@.3 IOU@.5 IOU@.4 IOU@.3

Total3DUnderstanding 0.043 0.06 0.077 0.046 0.063 0.081 0.065 0.101 0.15
Stage-wise (ours) 0.168 0.176 0.181 0.177 0.184 0.181 0.21 0.220 0.226

becomes visibly inconsistent with the input image. Different depth rendering here is due to the

usage of different rendering software throughout the experiments.

Quantitative Evaluation

We evaluate the network from three perspectives. In the first aspect, using the COCO

dataset, we can project the panoptic 3D results back to the input view and evaluate it against their

ground truth 2D panoptic annotation to show its image parsing capability. We acquired around 300

images from the COCO test set that contains overlapped panoptic labels Total3DUnderstanding.

In Table 4.3, we show that our pipeline outperforms Total3DUnderstanding on reprojected

panoptic segmentation metrics. Additionally, to show 2D to 3D projection accuracy, we use the

predicted masks from SUNRGBD provided by Total3DUnderstanding and evaluate the average

3D bounding box IoUs against their ground truth. The results are in Table 4.4. Our prediction

does not indicate the orientation or rotation of the object; in fairness, we evaluate both our

network and Total3DUnderestanding using camera axis-aligned 3D bounding boxes. Although

our model has never been trained on the SUNRGBD dataset, we show that our stage-wise pipeline

performs reasonably well compared to Total3DUnderstanding [NHG+20]. We provide more

qualitative and quantitative evaluation results in the supplementary material. In terms of 3D

object reconstruction, we compared our stage-wise network with Mesh R-CNN with Chamfer

distance in the supplementary.

Additionally, we generate voxelized 3D panoptic ground truth, which enables evaluating

panoptic metrics [KHG+18] in the 3D space provided in supplementary. A reasonable panoptic

score is hard to acquire given that neither network produces watertight meshes (no solid voxels can
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Table 4.4: Comparison of 3D Bounding Box IOU between our stage-wise network and
Total3DUnderstanding [NHG+20]. The Stage-wise network takes in the 2D mask information
provided by [NHG+20], and final 3D Boxes are adjusted to align with the camera axis.

3DBBox IOU (mean) ↑ 3DBBox IOU (max) ↑
Total3DUnderstanding [NHG+20] 0.26 0.88

Stage-wise (ours) 0.144 0.71

Table 4.5: The average precisions for boxes, masks and meshes increase as more subsets
are used during training for the end-to-end network. Refer to [GMJ19] for metrics details.

# subset boxAP ↑ maskAP ↑ meshAP ↑
1 0.28510 0.25038 0.09610
2 0.34118 0.30417 0.15018
3 0.37947 0.31998 0.17670

be derived from the mesh). We voxelize sampled points from the voxel prediction for panoptic 3D

evaluation during postprocessing. Our voxelization method may cause sparse voxel representation

of things in the predicted space, which affects the panoptic 3D evaluation. For additional scene

level reconstruction comparison, we evaluate point cloud from the voxelized scene with scene

level F1 score and panoptic class average F1 score [TRR+19] in Table B.2. We show that at the

categorical level, the end-to-end model outperforms the stage-wise pipeline, which is expected

since the stage-wise pipeline is not trained on the 3D-FRONT dataset. For scene-level F1 score,

however, using iterative closest point (ICP) [ZPK18] adjusted results from the end-to-end model

does not perform as well as the stage-wise model.

Table 4.6: Comparison on semantic level 3D reconstruction F1 score on 3D-FRONT
dataset between the stage-wise and end-to-end (E2E) networks. ICP [ZPK18] and fscore
threshold 0.01 and 0.02 are used for the stage-wise pipeline. Only overlapped categories are
shown here. The last column refers to the scene level 3D reconstruction F1 score for the
stage-wise pipeline on the 3D-FRONT dataset.

Ceiling-merged Floor-merged Wall-merged Chair Couch Bed Dining table Cabinet_thing Lamp_thing Scene-level
F1 score

ICP + fscore
threshold 0.02 0.056 0.055 0.06 0.13 0.47 0.29 0.12 0.10 0.006 0.173
ICP + fscore

threshold 0.01 0.016 0.016 0.019 0.06 0.199 0.126 0.055 0.041 0.002 0.07
No ICP + fscore
threshold 0.02 0.019 0.011 0.019 0.034 0.202 0.099 0.039 0.016 0.0 0.085

No ICP + fscore
threshold 0.01 0.012 0.009 0.015 0.031 0.192 0.094 0.037 0.014 0.0 0.078

E2E model ICP + fscore
threshold 0.02 0.22 0.37 0.106 0.42 0.29 0.16 0.375 0.41 0.15 0.063
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4.4.2 End-to-end Network

Experiment Details

We train our final network with a base learning rate of 0.0002 for 30000-50000 iterations

with Adam optimizer. Higher learning rates cause the model to diverge. Lower learning rates

prolong the training time, which incurs high energy consumption. We use PyTorch [PGM+19]

for model development and PyTorch3D [RRN+20] for rendering amodal instance masks. The

majority of the experiments are performed on 4 GPUs. For a larger dataset with larger models, 8

GPUs are used for approximately two weeks. The final model uses 16 images per batch which

takes 18 hours to run on 8 Titan X GPUs. The backbone of our network uses ResNet50. Our input

size for the detection backbone is 1024×1024. During inference, if not provided, we assume the

focal length is 27.7, and the field of view is 60.

Mesh R-CNN uses the voxel and meshes representation in a cuboid camera space, which

may deform the edges beyond image boundaries to infinity. Hence we only use non-boundary

objects for training and testing. Our earlier experiments suggest including boundary instances

for training the detection head and the voxel head while only skipping the loss regression for the

mesh head helps the network to predict boundary objects better. However, it also significantly

increases the training time. We include the experiment results in the supplementary.

Qualitative Evaluation

Figure 4.6 shows the qualitative evaluation of natural images (indoor and outdoor) and

synthetic test sets compared to our stage-wise model and other state-of-art models. The end-to-end

network can detect and show promising results on natural images. However, the quality of layout

estimation and shape estimation is visibly less appealing compared to synthetic image prediction.

Admittedly, our end-to-end network cannot predict outdoor scenes and objects that do not exist or

exist less frequently in the training dataset. As diverse synthetic datasets become available, we

expect the network to improve as well.

Quantitative Evaluation
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We evaluate our instance shape reconstruction with meshAP [GMJ19] and show that

as we use more subsets for training, the accuracy increases for the same test set. There is a

trade-off between multi-modality training and meshAP score. The best meshAP can be achieved

by training one object at a time without any other modalities, such as panoptic, z center, and

layout predictions. The model converges faster, which scores a higher meshAP value with less

time. We show in Table 4.5 that the accuracy increases as more subsets are used for training.

The results shown here are trained with a learning rate of 0.02 for 11000 iterations with 2D

detection and shape predictions. However, when we add more modalities, the model does not

converge at this learning rate. As we drop the base learning rate by 100 times, the training time to

achieve similar reconstruction quality grows significantly. We have the training cut-off at 50k

iterations for our final model. With a longer training time, the model can achieve smoother shape

predictions.

We provide 3D voxel IoU based panoptic evaluation results as is shown in the supple-

mentary. A meaningful panoptic3D result is hard to acquire for stuff class, given that they are

created from layout depth, and only a thin layer of voxels can be derived. A slight offset in depth

would introduce significant errors. We additionally, added semantic class average F1score and

scene-level F1score to add additional quantitative measures as is shown in Table B.2. We provide

our baseline metrics using RMSE and RMSE_log for layout estimation and mean IoU, mean

Accuracy for layout semantic segmentation in the supplementary.

4.5 Conclusion

This paper has developed the first (to our best knowledge) practical system for predicting

panoptic 3D scene parsing from a single-view image in the wild. We provide a dataset that allows

3D panoptic evaluation and an end-to-end system that can generalize to natural images similar to

the synthetic dataset. Panoptic 3D parsing for single-view images in the wild points to an exciting
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direction in computer vision. In terms of limitations, the end-to-end system has limitations when

applied to natural outdoor scenes; our systems are still in their early development stage and they

still have a large room to improve.

This chapter is based on the material that has been submitted for publication authored by

Sainan Liu, Yuan Gao, Vincent Nguyen, Subarna Tripathi, Zhuowen Tu. The dissertation author

is the co-primary investigator and author of this material.
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Chapter 5

Discussion

In conclusion, we have described an attentional shapecontext net for point cloud recogni-

tion. We validate that we can also improve 2D recognition by combining viewer-centered and

object-centered representations. Finally, we provided the first approach for panoptic 3D scene

parsing in the wild.

Next, we discuss what we have learned from our experiments and what we think could be

potential future directions for panoptic 3D parsing in the wild.

View dependent and view independent representations for panoptic 3D scene pars-

ing The panoptic 3D scene parsing problem boils down to two main issues: 1. amodal shape

prediction (self-occlusion and external occlusion), 2. alignment (3D to input 2D and relative

positioning). For amodal shape prediction in the wild, view-dependent and view-independent

representations should both be considered to achieve the best outcome. Here the concepts are

slightly different from the definitions we used for recognition tasks. Given that the output is a

3D geometry, here we adopt similar definitions with [TRR+19]. There is a trade-off between

the two types of representations in terms of generalization across categories. On the one hand,

view-dependent representation can reconstruct the shape from the viewing angle to be consistent

with the input view but may lack details for images from unseen viewpoints. On the other hand,
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a view-independent representation may reconstruct a reasonable shape from all views but may

be less consistent with the input view. To infer images with known categories, which have

abundant synthetic 3D shape annotations, acquiring view independent representation could help

capture the canonical features of the class, especially at the time of occlusion. Prior knowledge of

the canonical shape of the same category could help complete the missing geometry in natural

images, especially if amodal masks are not readily available. On the other hand, to infer objects

from unknown categories or known categories with few 3D annotations or amorphous stuff, a

view-dependent representation (often depth-based ) would be beneficial for generalization on

novel geometries. Studying latent code that allows interpolation between view-dependent and

independent representations would be an exciting direction for future research. Additionally, an

attention-based network structure can be applied to automatically adopt the correct combination

of view-dependent and view-independent representations based on the input image content.

Hybrid 3D geometric representations for panoptic 3D scene parsing Inspired by com-

puter graphics, discrete 3D geometries, such as voxel grid, point cloud, and meshes, are commonly

used for scene reconstruction tasks in earlier studies. Voxel grid can naturally adopt convolutional

neural network architectures[TGF+18], and in contrast to the other representations, within the

defined resolution, one can easily reason the uniqueness of 3D occupancy. Therefore, we can

use IoU-based panoptic 3D metrics for evaluation even without watertight prediction. However,

post-processing is needed to acquire a smooth surface. If a 3D convolution network structure is

present, the network does not scale sufficiently when high-resolution output is required. Point

cloud representation is often used as input, such as inferred, ultrasound, and lidar data. As the

reconstruction output, the inverse projection of the depth image is in the form of a point cloud.

The majority of work is on object-level reconstruction using view synthesis with depth inverse

projection [FSG17, MNB18, JSQJ18, MB19]. Mesh representation can offer a smooth surface

on objects [WZL+18], but the predicted mesh is often not watertight if it’s not a template-based

method [GFK+18]. It is nontrivial to trim or grow mesh scenes, whereas voxel grid and point
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cloud representation allow easy cut or extension while working with multi-view or video frames.

In recent years, implicit surface predictions have been proposed, such as truncated signed

distance function (TSDF) [PFS+19, XWC+19] or occupancy volumes [CZ19, MON+19], which

enabled the revolution towards continuous 3D shape representations. Such a method sacrifices

ready-to-use discrete 3D shape output for continuous representation, which allows flexible

resolution. At object-level reconstruction, such a method can generate a watertight prediction

[MON+19], but it still requires 3D shape supervision. If one can achieve watertight free space

estimation at scene-level reconstruction, it may be very beneficial for indoor robotic navigation

tasks. Joint prediction of panoptic segmentation along with TSDF would be an interesting

direction for future research.

As the Computer Vision and its inverse topic, Computer Graphics, evolve, interdisciplinary

problems, such as novel view synthesis, or image-based rendering, provided research space for

novel architecture development. In line with implicit representation in continuous space, NeRF-

based studies exploded within a short half-year period. In addition to novel view synthesis

tasks, the network also learns an implicit shape representation. NeRF utilizes neural rendering

techniques to learn a 3D scene structure from multi-view images with camera intrinsic information.

It freed the network from requiring 3D ground truth geometry data since it can represent 3D

geometry based on training images alone. Multi-view images are needed here to compensate

for the lack of annotated 3D geometry. Hence with fewer views, the network struggles to

generalize to novel instances with reasonable 3D shape. Researchers have investigated directions

where geometric priors are used as a 3D scaffold to provide priors for NeRF, which provided

better synthesis results [RMBF21]. Scene decomposition has been studied by [NG21, XPMB21,

YLSL21] and additionally segmentation image synthesis can be learned [SKK21]. However,

without ground truth layout [XPMB21], dynamic instances [OMT+20], or ground truth 3D

geometry, it is hard to inference watertight instance shapes from a scene-level image alone. How

to best integrate object-level shape priors with scene-level multi-view learning would be an
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interesting future direction to achieve better panoptic 3D parsing results.

Despite novel representations, another future research direction is to use hybrid geometric

representations in tandem or parallel. Mesh R-CNN [GMJ19] studied a two-stage representation

system where the shape is first predicted in voxel grid, then to mesh, which enabled an efficient

learning pipeline that can detect and reconstruct multiple objects in a scene. Volumetric scene rep-

resentation is often combined with TSDF [DT20] for efficient scene-level surface reconstruction.

[MON+19] produces implicit continuous watertight 3D surface via decision boundary from either

image, point cloud, or voxel grids at object-level. [RMBF21] can condition on discrete voxel

grid output and produces continuous NeRF-based representation at object-level. At the scene

level, although amortized rendering techniques have been developed [KSZ+21] to combat the

problem of long inference time of NeRF, representing a complex scene with panoptic prediction

concurrently is still a challenging task for in-the-wild images. Nonetheless, NeRF-based hybrid

models could be a promising direction for panoptic 3D parsing representations.

Open Synthetic Dataset Obtaining diverse and photo-realistic synthetic images with

complete corresponding panoptic 3D annotations in 3D is an expensive task. Due to the lack

of such a dataset, as mentioned in Chapter 4, the research community tries to navigate it and

produce impressive results. However, there are still tremendous merits in providing more open

free synthetic indoor and outdoor datasets. For one thing, a synthetic dataset can provide precise

annotations which allow us to evaluate our networks holistically when such annotations are

missing from the real-world dataset, such as the 3D panoptic metrics we mentioned in Chapter 4.

Additionally, as mentioned before, ShapeNet has been proven to be a comprehensive dataset for

learning shape priors to assist object reconstruction tasks with view-independent representations.

Networks trained with ShapeNet have also demonstrated a surprising amount of generalization

capabilities on real images[ZZZ+18]. Furthermore, predictions such as amodal layout geometries

from in-the-wild images can only be estimated via continuous video frames or static scenes

with dynamic object instances. Providing synthetic layout geometries can significantly improve
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disjoint predictions between things and stuff with common scenes [XPMB21]. Finally, if more

and more hybrid 3D geometric representations are used in tandem, having ground-truth 3D scene-

level geometries could help bridge the gap between 3D object reconstruction and scene-level

reconstruction.

In addition to the datasets mentioned in Chapter 4, new datasets that reproduce the layouts

from real-world scenarios, such as OpenRooms [LYS+21] would be beneficial to panoptic 3D

parsing tasks if more amodal information is released. Additionally, potential combinations of

OpenRooms and PartNet [MZC+19] which produces super panoptic 3D parsing annotations,

would be an exciting future dataset direction that provides even more real-life scenarios.
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Appendix A

Object and Viewer-Centered

Representation

A.1 2D In-plane Rotation Ablation Study

We evaluate ResNet18 with different angles of rotation augmentation and observe that the

evaluation accuracy stops increasing as we provide denser angle augmentations as is shown in

Figure A.1.

A.2 Rotation Invariant Analysis

For spherical CNNs, Cohen et al. has shown empirical support for rotation-invariant

learning problems. Here we show in Figure A.2 that the features of spherical CNNs (without any

3D rotation data augmentation) on the 3D reconstruction of a "bus" do demonstrate a certain level

of rotation invariant property.
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Figure A.1: Rotational ablation study for ResNet18. X-axis: the number of rotation over 360
degrees; 0 means no rotation augmentation is applied to the original input view within the 2D
plane. Means and standard deviations are reported over two repeats each. The test accuracy
plateaus as the number of 2D in-plane rotations increases. The accuracy plateaus around 30
degrees for gMIRO and 90 degrees for gMIVO.
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Figure A.2: Demonstration of the achieved rotation-invariance property of spherical CNNs
on 3D reconstruction of an object (“bus”) instance. We train our model with spherical maps
generated from a reconstructed 3D object in its initial orientation from GenRe. The reconstructed
object (top) and features from the trained spherical maps (bottom) are shown in the left-most
column. We then rotate the reconstructed object along 3 different axes over 5 different angle
variations (in degrees) to generate a spherical map test set. The last column shows the axis of
rotation.
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A.3 Experiment details

With the gMIRO dataset, in the OC module (Figure A.3) we train the spherical CNNs for

300 epochs, with the batch size 12, learning rate 0.1 (decay factor=10 for every 100 epochs for

300 epochs), and bandwidth 112; for the ResNet18 part, we use learning rate 0.1, batch size 10

for 500 epochs, and bandwidth of 3.

For the VC (3D) branch, we use 640 3D viewpoint augmentations with texture. We train

ResNet18 for 500 epochs with batch size 512 and learning rate 0.01. For view selection, we

use a nearest neighbor approach. The augmented image that is closest to the input viewpoint is

used for evaluation on gMIRO dataset. When an attention selection layer is used, we first train

a ResNet with 80% of the training data, and then 20% of the remaining training data is used to

train a weighted or attention layer for selection. During the inference time, we use the ResNet

model trained on the entire training set and the trained selection layer.

For the VC (2D) branch, we use online 2D in-plane augmentation with 30-degree rotations,

and train ResNet18 for 1250 epochs with the batch size 512 and learning rate 0.01.

On the gMIVO dataset, for the OC branch, we train the spherical CNNs for 300 epochs,

with the batch size 12, learning rate 0.1 (decay factor=10 for every 100 epochs for 300 epochs),

and bandwidth 112. For the VC (3D) branch, we use 160 3D viewpoint augmentations with

texture, and train ResNet18 for 120 epochs with the batch size 2048 and learning rate 0.1

(decay factor=10 for every 50 epochs). For the VC (2D) module, we use an online 2D in-plane

augmentation with 90-degree rotations. We train ResNet18 for 1250 epochs with the batch size

512 and learning rate 0.1 (decay factor=10 for every 350 epochs).

A.4 Runtime Analysis

Each ResNet18 consists of around 11 million trainable parameters, whereas the largest

spherical CNN has about 1.4 million trainable parameters. The space complexity for training is
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Figure A.3: Network structure for OC baseline module vs. final OC module. c here means the
concatenation of the two branches.
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approximately O(Cn) where C equals 7 spherical signal maps + 3D to 2D projection of input

view × 160/640 + 36 (with 3D-rotation augmentation) + 2D input view × 12 (with every 30

degree 2D-rotation augmentation). During testing, C equals 9 (7 spherical signal maps + 3D

to 2D projection of input view × 1 (or 160 if using attention) + 36 + original input view × 1)

spherical signal maps. The average inference time is always within minutes for the ResNet18s

and spherical CNNs with the gMIRO dataset; it takes 10’s of milliseconds for evaluation. It takes

approximately a day to generate the reconstructions for all of the images from the gMIRO dataset

with 3 Titan Xp GPUs. The texture estimation process uses a k-d tree structure for the nearest

neighbor search, which takes on average O(logV ) in terms of time and O(V ) in terms of space.

V here is the number of voxels in the volumetric representation (128×128×128) obtained from

GenRe. It takes less than a second on average to process one object on a CPU. Both the texture

mapping processes for images and the individual module training can be sped up by parallel

processing.
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Appendix B

Panoptic 3D Parsing

B.1 Indoor Scene Qualitative Ablation Results

Here we provide more indoor scene qualitative ablation comparisons between Total

3D Understanding (Total3D) and our methods. Note that Total3D uses natural indoor datasets

(SUNRGBD and Pix3D) for training. Our end-to-end approach uses ten subsets of the 3D-FRONT

dataset, but it has never seen any natural images. Some submodules of the stage-wise pipeline

use the COCO 2D dataset, but it never uses 3D information regarding either 3D-FRONT or

the COCO dataset. Additionally, to have a fair comparison, we post-process the results from

Total3DUnderstanding by assigning floor, wall, and ceiling labels to the six sides of the predicted

layout bounding box. Total3D does not predict 3D panoptic outputs.

In Figure B.1, with images a, c, d, and e, we show that Total3D’s 3D layout bounding

box predictions often cut through predicted objects, whereas our instance shape predictions align

with the layout better. In image b, we show that Total3D’s shape predictions do not represent the

shape in the input image. For example, a three-seat sofa is predicted as a one-seat in image b,

whereas our methods predict 3D shapes that are visibly consistent with the furniture in the input

image. The results of images c, d, and e show that our models predict the shape orientation more
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consistently with the input image, whereas Total3D predicts 3D shapes and orientations that are

visibly significantly different from the input image.

Admittedly, there is a trade-off between the quality of the reconstruction and the layout

consistency. Total3D’s prediction closely resembles a retrieval method: each instance reconstruc-

tion can be of high quality; However, the orientation could be off, and the shape may not be

consistent with the input image. For example, the shapes of chairs and beds predicted by Total3D

appear very similar across the images a, b, and c, whereas the input images contain very different

beds and chairs.

Stage-Wise

Depth Things Mesh 3D Pan

End-to-End

3D PanStuff Depth Things MeshInput Image

3D
-F

RO
N

T
CO

CO

Total3D

3D PanStuff Depth Things Mesh

a

b

c

d

e

Figure B.1: Qualitative comparison from synthetic and natural indoor images between To-
tal3DUnderstanding and our models. Our models offer object reconstruction that is less inter-
sected with the layout, and is more consistent with the input image.
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B.2 Additional Quantitative Results

B.2.1 Panoptic 3D Evaluation Results

In order to quantitatively evaluate scene level reconstruction, we evaluate three scene-level

metrics: 1). 3D panoptic calculated on voxelized predictions, 2). categorical level and 3). scene

level F1 score between point cloud sampled from the prediction and the ground truth scene voxels

on the 3D-FRONT dataset.

For 3D panoptic evaluation, we design our panoptic metrics similar to the 2D panoptic

metrics following Gkioxari et al. The results in Table B.1 shows the 3D panoptic results between

the end-to-end and stage-wise pipelines. The panoptic 3D metrics are low at IOU threshold = 0.5

for both methods. Given that the stuff results for stage-wise are much lower, we also present the

results for stage-wise at IOU threshold = 0.1. There are two main reasons for low panoptic 3D

scores: 1. the stage-wise pipeline has never seen the 3D-FRONT dataset, and it does not contain

camera pose prediction. In the paper we show that by using iterative closest point (ICP) alignment,

the F1 score can be improved. Here we did not use ICP for fair comparison. 2. As is mentioned

in the paper, the voxelization method for prediction may cause sparse voxel representation of

things in the predicted space, which affects the panoptic 3D evaluation.

Table B.1: 3D Panoptic evaluation with 3D FRONT voxelized scenes for our end-to-end
network. 3D panoptic results are significantly lower than its 2D counter part. We did not
consider free space as a category in this calculation.

E2E (IOU=0.5) Stage-wise(IOU=0.5) Stage-wise(IOU=0.1)
PQ ↑ SQ ↑ RQ ↑ PQ ↑ SQ ↑ RQ ↑ PQ ↑ SQ ↑ RQ ↑

All 0.19 5.87 0.35 0.22 0.3 0.36 1.9 2.1 7.1
Things 0.36 9.77 0.66 0.38 0.5 0.6 3.5 4.0 13
Stuff 0.02 1.85 0.03 0.0 0.0 0.0 0.02 0.02 0.01

One drawback of the panoptic 3D metric is that it does not consider 3D geometric distance

measures. Additionally, we use the equation provided by Tatarchenko and Richter et al. to

calculate the F1 score with a threshold of 0.02. The results in Table B.2 use the direct results

from the prediction without ICP. We show that for categorical F1 score, Our stage-wise model

84



outperforms Total3D, except the "Floor-merged" category. It is understandable given that Total3D

predicts a layout box, which provides a flat surface, whereas the stage-wise pipeline only uses

depth as an estimate. Our end-to-end model outperforms both models. It is expected since the

end-to-end model is trained on 3D-FRONT’s training set. Although the test set does not share

scenes or non-boundary furniture, the test set could share similar image rendering quality. For the

scene-level F1 score, we can see that both of our methods outperform Total3D.

Table B.2: Comparison on semantic level 3D reconstruction F1 score on 3D-FRONT
dataset between the stage-wise and end-to-end (E2E) networks. Our methods outperform
Total3D on almost all metrics, except the Floor-merged category. The fscore threshold is 0.02.
Only overlapped categories are shown here. Total3D does not have Lamp class. The last column
refers to the scene level 3D reconstruction F1 score for all three models on the 3D-FRONT test
dataset.

Ceiling-merged Floor-merged Wall-merged Chair Couch Bed Dining table Cabinet_thing Lamp_thing Scene-level
F1 score

Total3d 0.0 0.06 0.02 0.004 0.001 0.02 0.006 0.0 - 0.013
E2E 0.07 0.06 0.13 0.23 0.21 0.12 0.20 0.1 0.058 0.093

Stage-wise 0.02 0.017 0.02 0.058 0.2 0.17 0.035 0.04 0.002 0.089

B.2.2 Boundary Case

In an earlier version of the dataset, we also did a boundary case study. We find that

including boundary cases for the mask, bounding box, and voxel initialization training while

skipping the loss for meshes can help the overall performance.

The dataset we use for this ablation study is relatively more straightforward. The test

set shares similar camera angles of the layout with the training set, and the lighting is a single

light source from the camera. Table B.3 shows that the average precision for 2D boxes and

masks increases as boundary cases are included during training. In addition, we notice an

average prediction increase for mesh when we have 2D boundary losses, but we did not see an

improvement when we include 3D boundary losses for the voxel branch.

Admittedly, when it comes to training with shapes that exceed the camera frustum, mesh

representation may be disadvantageous if we maintain the prediction shape in a unit cuboid space.
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Voxel or point cloud representations would be more suitable for this task since points that fall

outside of a certain frustum can be easily filtered. In contrast, a mesh cut algorithm is required

for mesh representations and leaves unnatural edges for the network to learn.

Table B.3: Mesh only model comparisons. Our baseline model is Mesh R-CNN with multi-
object training and evaluation enabled for all valid annotations in all three heads (instance, voxel,
mesh); (2): multi-object training with a partial loss on voxel and mesh heads, (3): multi-object
training with expanded partial loss where voxel head includes objects that fell outside of camera
frustum. N indicates the number of annotations used to regress each corresponding head during
training.

N N N APbox APmask APmesh

instances voxels meshes
Mesh R-CNN* 16175 16175 16175 37.8 ± 1.4 34.2 ± 1.9 5.9 ± 0.4

(2) 55216 16176 16175 56.5 ± 0.9 52.6 ± 1.1 8.9 ± 1.5
(3) 55216 28182 16175 58.4 ± 1.2 54.6 ± 1.1 8.9 ± 0.5

B.3 Datasets details

Figure B.3 shows the instance distribution per categories. The top 10 categories for

instances (ranked from most to least) are: dining chair, pendant lamp, double bed, nightstand,

wardrobe, dining table, tea table and tv stand. The top 10 panoptic categories are (ranked from

most to least by number of segments): floor, wallinner, baseboard, dining chair, pocket, pendant

lamp, customizedceiling, double bed, nightstand, wardrobe.

B.3.1 Baseline Multi-modality Results

The RMSE and RMSE_log values for layout depth is 0.142 and 0.518 respectively for

our final model. The 2D panoptic evaluation results for the panoptic branch of the end-to-end

network is shown in Table B.4. Note that the numbers here are shown with ×100.
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Figure B.2: Number of instances per class by centered (red) vs boundary (blue). Data is
collected from the 10 subsets for the training dataset.

Figure B.3: Number of segments per class for panoptic segmentation. Data is collected from
the 10 subsets for the training dataset.

Table B.4: The 2D panoptic evaluation results with 3D FRONT for our end-to-end network.

PQ ↑ SQ ↑ RQ ↑
All 21.17 60.18 25.55

Things 22.93 69.98 28.89
Stuff 19.55 51.18 22.49
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