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PROCEEDINGS Open Access

Quantification and clustering of phenotypic
screening data using time-series analysis for
chemotherapy of schistosomiasis
Hyokyeong Lee1†, Asher Moody-Davis1, Utsab Saha2, Brian M Suzuki3, Daniel Asarnow4, Steven Chen5,
Michelle Arkin5, Conor R Caffrey3,6, Rahul Singh1*†

From The Tenth Asia Pacific Bioinformatics Conference (APBC 2012)
Melbourne, Australia. 17-19 January 2012

Abstract

Background: Neglected tropical diseases, especially those caused by helminths, constitute some of the most
common infections of the world’s poorest people. Development of techniques for automated, high-throughput
drug screening against these diseases, especially in whole-organism settings, constitutes one of the great
challenges of modern drug discovery.

Method: We present a method for enabling high-throughput phenotypic drug screening against diseases caused
by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the
systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic
responses. This method consists of two key parts: first, biological image analysis is employed to automatically
monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent
these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using
techniques of time-series analysis.

Results: We present results on a number of algorithmic issues pertinent to the time-series representation of
phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different
time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering
such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying
the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our
method to recognize and rigorously group parasites based on the variability of their phenotypic response to
different drugs.

Conclusions: The methods and results presented in this paper enable automatic and quantitative scoring of high-
throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze
and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a
significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be
extended to other helmintic diseases which together afflict a large part of humankind.
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Background
Neglected tropical diseases (NTDs) constitute the most
common infections of the world’s poorest people. This
class of diseases encompasses a number of infection
categories including helminth infections (schistosomia-
sis, lymphatic filariasis, onchocerciasis), protozoan infec-
tions (leishmaniasis, Chagas’ disease, African
trypanosomiasis), bacterial infections (cholera, leprosy,
bovine tuberculosis), viral infections (dengue fever,
rabies, yellow fever), fungal infections (Mycetoma, para-
coccidiomycosis), and ectoparasitic infections (scabies,
myiasis). Various studies have indicated NTDs to be the
prime factors behind depriving the affected populations,
especially women and children, of their health and eco-
nomic potential [1,2]. This paper proposes a novel algo-
rithmic approach to drug screening against
schistosomiasis based on time-series analysis of pheno-
types exhibited by parasites in response to different drug
molecules. These phenotypes are themselves determined
by automatically analyzing images from high-throughput
screens.
Schistosomiasis in humans is caused by three major

species of trematodes, Schistosoma mansoni, Schisto-
soma haematobium and Schistosoma japonicum. Affect-
ing over 200 million people (with 20 million suffering
severe effects) and placing over 800 million people at
risk, schistosomiasis ranks second only behind malaria
in terms of socio-economic and public health impact in
developing countries. The disease starts as an inflamma-
tory response to the eggs of the parasites and leads to
fibrotic granulomatous, causing portal vein hypertension
or occlusion (intestinal schistosomiasis caused by S.
mansoni) or hydronephrosis and squamous bladder can-
cer (urinary schistosomiasis caused by S. haematobium).
Greatest infection intensities occur among children and
adolescents, and the disease is known to undermine
social and economic development in areas of high trans-
mission [3-5]. Over the last 30 years, treatment and con-
trol of schistosomiasis have come to rely on a single
chemotherapeutic called praziquantel (PZQ). PZQ is
given orally as a single-dose, has few side effects, and
has bioactivity against the aforementioned three major
species infecting humans. In spite of the advantages of
PZQ, the reliance on a single drug to treat over 200 mil-
lion people raises several serious problems. First, the
emergence of drug resistance and possible drug failure
is a major concern [3,6-8]. Indeed, increased parasite
tolerance for the drug has been selected for in rodent
hosts [9] and has been reported clinically in Egypt and
sub-Saharan Africa [10-13]. Second, PZQ has important
deficiencies in its therapeutic profile; cure rates vary
usually between 60 - 90% [6-8]. Furthermore, the drug
acts preferentially against the adult parasite, being mark-
edly less effective (by 60 - 100%) against the juvenile

schistosomula between 21 and 28 days old [14-16]. This
decreased efficacy necessitates the re-treatment of indi-
viduals harboring previously juvenile parasites and
potentiates the risk for resistance by exposing (partially)
refractory parasites to sub-curative doses [7,17]. The
World Health Organization (WHO) has therefore
declared schistosomiasis a disease for which new thera-
pies are urgently needed [18].
Modern drug discovery conventionally begins by iden-

tifying a molecular target (typically a protein or an
enzyme) associated with a disease. Next, a large number
of putative drug molecules are screened for activity
against the target in in-vitro high-throughput screens
(HTS) to identify “hits” which are passed onto later
stages of the drug discovery pipeline for chemical opti-
mization, optimization of the drug pharmacokinetics
and pharmacodynamics, and ultimately clinical trials.
The initial screening stage can typically involve a very
large number of molecules (hundreds of thousands to
millions), since even small variations in structure can
significantly influence activity against the target. Given
this context, we note that HTS platforms for Schisto-
soma, using purified protein targets are almost
unknown, with the very recent exception of a target-
based campaign to identify inhibitors of S. mansoni
thioredoxin/glutathione reductase (TGR) [19]. Tradi-
tionally, researchers have tried to ameliorate this impe-
diment by directly screening against the pathogen, in
what can be termed as whole-organism screens. In such
screens, typically a small number of molecules are tested
by exposing the pathogen to them in vitro and the
effects of the drug are captured using manual observa-
tions. Against schistosomiasis, examples of such screens
include [20-24] and have led to the discovery of drugs
such as praziquantel and artemisinin [6].
The whole-organism screening approach differs from

the conventional HTS-based strategy. HTS is built
around the use of in-vitro single enzyme activity-based
screens, single read-out cell-based assays, and involves
very large number of molecules which are tested in par-
allel using 96-, 384- or 1536-well plates. The distinctions
of whole-organism screening from HTS, lead to both
advantages and disadvantages. A crucial advantage is
that the effect of a drug molecule can be studied in
terms of the cumulative systemic effects it introduces in
the parasite, rather than just in terms of how it interacts
with a specific protein or enzyme in isolation. That is,
the effects of the drug on the totality of targets and
pathways can be explored in whole-organism screens.
This can be expected to reduce the possibility of late-
stage attrition of hits found through such screens. On
the other hand, whole organism screens tend to be low
throughput and are not easily extendable to HTS set-
tings. This constrains, both in terms of diversity and
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density, the exploration of the chemical space during
lead-identification. Finally, as multi-cellular organisms,
schistosomes display multiple and changing phenotypes
in response to how compounds interfere with their nor-
mal bio-chemical functioning. (see Figure 1). Capturing
and quantifying the activity of a drug in terms of such
rich and time-varying responses involves overcoming
challenges of data processing, analysis, and modeling
that are significantly more complex than those encoun-
tered in single end-point assays common to biochemical
target-based or cell-based screens [25].

Problem characteristics and proposed solutions
An important long-term goal in the development of
drugs against NTDs in general and schistosomiasis in
particular, involves the development of high-throughput
whole-organism screening methods. In the following, we
enumerate some of the key challenges towards solving
this problem and summarize the contribution of this
paper towards addressing each of the challenges:
1. Facilitating automated high-throughput data cap-

ture and quantitative phenotype representation: The use
of single end-point measurement of ‘live or death’ (e.g.,
ED50 value) is over-simplistic when dealing with a
multi-cellular and complex macro-parasites that can
manifest a variety of temporally varying phenotypes.
The need to screen compound libraries based on quan-
tification of complex phenotypic responses of pathogens
is also underlined by the fact that a drug may not neces-
sarily lead to immediate death yet nonetheless perturb
the parasite’s ability to survive, e.g., through disruption
of the larval migration program, tegumental perturba-
tions releasing antigens targeted by the immune system,
or the ability of adult worms to maintain position within
the predilection site. As an example, the drug PZQ pro-
duces both tetanic paralysis of the musculature, result-
ing in loss of position as well as tegumental damage,

and the exposure of surface proteins that then contri-
bute to an immune system-mediated attack on the para-
sites. We propose an image analysis-based approach for
automatic segmentation and tracking of parasites and
computation of descriptors that capture phenotypic
responses in terms of changes in parasite shape, appear-
ance, and motion. These descriptors are represented as
time-series and provide a multi-dimensional time-vary-
ing representation of parasite phenotypes.
2. Analysis of phenotypes over time: We propose the

use of time-series clustering to compare, differentiate
and analyze the phenotypic response of parasites to dif-
ferent drugs. Given the high-dimensional nature of the
data and its sheer quantity, we investigate both numeric
and symbolic representations of phenotypic time-series.
We also investigate the applicability of different distance
measures for comparing phenotypic responses.
3. Dealing with variability of phenotypic responses: A

challenge in analyzing data from whole-organism
screens involving schistosomes is that they cannot yet
be cloned. Furthermore, schistosome development in
culture is asynchronous. Consequently, the response to
a drug can show much greater variability than what is
seen in molecular-target based or cell-based screening
due to factors such as genetic variability, lack of syn-
chronization, gender, stochastic noise, epigentics, and
possibly the differentiated levels of resistance amongst
individuals. Using the formalism of time-series cluster-
ing, we show how this issue can be rigorously analyzed
and examine the question of possible stratification of
the phenotypic responses of different parasites that are
exposed to the same drug molecule.
4. Identification of representative phenotypic models:

Given the inherent genotypic-phenotypic variability of
parasites, identification of representative phenotypic
models can be valuable for understanding the core
trends in the data. From a statistical perspective, a

Figure 1 Examples of phenotypes exhibited by the schistosomula; (A) control (B) when exposed to the drug Lovastatin, and (C) when
exposed to the drug Praziquantel (PZQ).
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representative time-series can also be perceived as a
description of the central tendencies in the data. We
cast the problem of determining phenotypic models as
that of finding representative time series for each phe-
notype cluster in the data. We present different algorith-
mic methods to address this question, and discuss case
studies that show its usefulness for information sum-
marization and presentation.

Distinctions from prior research
The use of quantitative phenotyping in biology and drug
discovery has occurred along two directions. The first of
these involves the study of phenotypic variations in
model organisms such as C. elegans, as a function of
gene-knockouts or changes in environmental conditions.
The second direction involves dug screening based on
cytological profiling. The distinctions of our problem
formulations, methods, and results from research in
both these directions are significant. Compared to the
C. elegans mutants [26-30], the morphology and appear-
ance of schistosomula are more complex and undergo a
greater variety of changes when exposed to different
compounds as clones of genotypically identical schisto-
somes do not exist. Furthermore, our input data consists
of images and video of multiple parasites residing in
multi-well plates used in HTS. This leads to imaging
conditions very different than those used for C. elegans
(which typically involve large Petri-dishes with only few
worms per dish). Our problem formulation shares the
goal of lead identification with cytological screening
[31-33]. However, our challenges are more acute and
complex: the phenotypic response of (genetically
diverse) parasites tends to be both more nuanced as
well as more diverse than what is observed in cell-based
screens. Furthermore, analysis of cellular phenotypes
can use simplified models of cell shape. As we shall dis-
cuss in the next section, such models cannot be easily
obtained for Schistosoma.
The investigations and results presented in this paper

extend the framework proposed by Singh et al. for auto-
mated phenotypic screening [34]. The method proposed
in [34] used mean-shift-based segmentation & tracking
of parasites. In it, phenotypes were classified using clas-
sification and regression trees (CART). The method pre-
sented in this paper differs from [34] in terms of the
algorithmic approach used for parasite segmentation
and tracking. Further, in this paper, we use the entire
response of the parasite (represented as a time-series)
for phenotype analysis. In [34] on the other hand,
CART-based classification was performed on each indi-
vidual frame of the video. Finally, to the best of our
knowledge, neither time-series analysis, nor the specific
problems investigated by us in terms of representation
and analysis of phenotypic variability have been

considered either for investigation of C. elegans pheno-
types or for cytological profiling.

Method
Parasite identification by image segmentation
In contrast to cellular segmentation, a topic that has
received considerable attention in bio-image analysis,
the problem of segmenting schistosomula in drug
screens presents certain specific challenges. First, unlike
cells, a geometric or appearance-based model of parasite
shape cannot be assumed a priori. This is due to a num-
ber of factors including the fact that the movement of
the schistosomula is based on elongation and contrac-
tion of their musculature. Therefore, the shape of the
parasite’s body can change considerably within a single
movement cycle. Furthermore, drug action can distort
the parasite body and appearance in unique manners (as
can be seen in Figure 1). Second, parasites contain visi-
ble “inner” anatomical structures that complicate seg-
mentation by creating edges that do not correspond to
the boundaries of the body. Third, parasites often touch
each other in varying configurations. This often compli-
cates identification of individuals. Finally, observation
periods can be long (days) and debris in the background
can accumulate leading to an increase in the false posi-
tives. Our approach to parasite segmentation builds on
prior research on segmentation of cells and parasites in
biological images [34-36]. The basic idea involves a
multi-step process, where the first step distinguishes
between the foreground (corresponding to the parasites)
and the background. In the second step, the foreground
objects are analyzed and filtered to remove false posi-
tives. In the final step, a series of morphological opera-
tors are applied to separate individual parasites. In the
following, we describe each of these steps in detail.
In order to distinguish the background from the para-

site, we modify and extend the region-based voting
approach from [36]. First a low-pass filter is applied to
the image to remove noise and smooth the image. Next
an adjustable threshold g which is described later in this
section is subtracted from the image. The result is
asymptotically bounded using a sigmoid function to
restrict values to between +1 and -1, resulting in pixel
values below the threshold g being skewed towards the
background because they have a higher weight. Subse-
quently, in a manner similar to [36], a region-based dis-
tributing function (RDF) R1 defined in Eq.(1), is applied
to the image. The purpose of this function is to rapidly
identify the background by assigning a higher weight to
background pixels. The functional form of the RDF used
by us differs from the one proposed in [36] in two ways:
first, Eq.(1) contains only a single parameter g and sec-
ond, this parameter is interpreted in our approach as a
threshold on the intensity difference between the
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background and foreground.

R1(n) = −sig((f ⊗ h)(n) − γ ) (1)

γ = min{(Imax − Imin)/2, λ} (2)

In Eq.(1), f denotes the image, h the low-pass filter, ⊗
the convolution operator and sig(.) the sigmoid function.
The starting threshold g is determined as per Eq.(2),
where Imax and Imin denote the highest and lowest
intensity values in the image. The value of the cutoff l
in Eq.(2) was empirically established to be 50 based on
an intensity range of [0, 255]. The region-based distri-
buting function is iteratively applied with a decreasing
threshold. As the threshold g decreases, that is, as the
difference in the foreground and background intensities
becomes smaller, the segmented results increasingly
begin to include regions with intensity values closer to
the background intensity. Initially, this increases the
number of true positives (parasites) and progressively
false positives occur. In the limit, the number of fore-
ground objects decreases to one (as the entire image is
treated as the foreground). Thus, a graph of the number
of foreground objects has a left-shifted single mode. We
found that tolerating a certain amount of false positives
led to segmentations with the largest number of actual
parasites correctly distinguished. Consequently, the
threshold value which leads to the greatest increase in
the number of segmented regions in the image is used
to define g. The false positives generated as a conse-
quence of the oversegmentation tend to be small regions
(of less than 200 pixels) representing debris from the
background and are removed using region-size-based fil-
tering. An intensity-based filter is subsequently applied
as part of the filtering process. In it, the average inten-
sity of each foreground region is compared to the over-
all average intensity of all the foreground regions.
Regions with values outside of one and half times the
standard deviation are considered background and
removed.
In the final step of the segmentation, morphological

processing is employed to separate touching parasites. It
begins by detecting the edges of the original image. For
this, the Canny edge operator [37] is used and the
detected edges are subtracted from the foreground
image. A dilation-erosion step is next applied to remove
internal gaps that might have occurred due to edge sub-
traction. Next, relevant edge pixels are found and sub-
tracted from the foreground. These pixels correspond to
edges that separate connected components. In terms of
image connectivity this means that every such edge
pixel in the labeled image must have at least two differ-
ent labels in its 8 neighbors. The removal of relevant
edges results in separation of two different regions that

are touching. The results from different stages of this
method are shown in Figure 2 (top row). The first
image in Figure 2 (bottom row) shows the final segmen-
tation result. Other images in the bottom row illustrate
the complexity of the segmentation problem by present-
ing results obtained on this image using three well
known segmentation techniques: mean-shift [38], JSEG
[39], and active-mask [36]. As can be seen, all of these
methods face difficulty in distinguishing touching
parasites.

Parasite tracking
The ability to analyze time-varying phenotypic response
of parasites requires tracking each parasite across the
entire video sequence. Given an initial segmentation, for
each parasite, this involves establishing a correspon-
dence between its positions in successive frames. Once
the parasites are tracked across the video, their appear-
ance, shape, and motion can be described quantitatively.
In designing a tracking system for the parasites in HTS,
the following challenges have to be addressed:

1. Robust handling of the erroneous or ambiguous
segmentation of the parasites. Specifically, due to
their tendency to mingle, errors in segmentation can
result in clusters of parasites merging and splitting
in a variety of ambiguous combinations (see Figure 3
(a)). A closely related problem involves dealing with
cases, where one parasite is incorrectly segmented
into two regions.
2. Precision in defining individual parasites, so that
the phenotypes can be accurately measured over the
entire duration of observation. This is especially
important since we plan to use the entire phenotypic
response of the parasite in our analysis.
3. Accounting for the unique motion characteristics
of the parasites; unlike many problems in vision-
based tracking where the object being tracked moves
rapidly, schistosomula can exhibit significant move-
ment due to twists and turns of their bodies, without
appreciable translation of their body positions.

We design our tracking approach to consist of three
conceptual levels: the segmentation level, the blob level,
and the parasite level. The segmentation method
described in the previous section constitutes the seg-
mentation level. The blob level is based on a graph-the-
oretic approach to track blobs proposed in [40]. This
method offers a data-driven model for representing the
merging and splitting behavior of regions. However, this
approach assumes that objects can be reliably separated
from the background based on motion and does not
deal with issues arising out of segmentation errors that
can occur in cluttered settings, such as when a single
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parasite is erroneously split across multiple regions or
when multiple parasites are too close to be separated.
We propose a novel approach to deal with these chal-
lenges in the parasite level. In the following, we describe
the blob and parasite levels.
In the blob level, each distinct foreground region

(putatively representing a parasite) is represented using

its bounding box in the xy-coordinate (image) plane. In
the following, we call each such region a blob. Next, an
undirected bipartite graph Gi(Vi,Ei) is used to model
associations between blobs in consecutive frames such
that Vi=Bi∪Bi-1, where Bi and Bi-1 are sets of vertices
corresponding to blobs in frames i and i-1. Specifically,
an association between a blob u in frame i-1 and a blob

Figure 2 Illustration of the segmentation results and comparison with other methods. Top row from left-to-right: The original image
(note that the bottom right region has a shadow), results of the region-based distributing function showing oversegmentation, relevant edges,
and the image after filtering of debris and small regions. Bottom row from left-to-right: Final results with the proposed method after closing
and filling holes in regions and separation of touching parasites, results obtained by mean-shift segmentation [7], results of JSEG segmentation
[9], and results from the active-mask segmentation method [35].

Figure 3 (a) Parasites can be located in close proximity to each other in manners that lead to segmentation errors. (b) Bipartite graph
describing the splitting of a blob (containing two parasites) into two blobs containing a single parasite each. (c) Group of four parasites,
erroneously assigned to a single blob after segmentation. Analysis of the various combinations of intensity-boxes leads to the recovery of one of
the four parasites from this blob.
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v in frame i is represented as an edge (u, v) in Gi. In
this graph, two blobs that share an edge are called
neighbors and the set of neighbors of a vertex (blob) u
is denoted by Ni(u). Further, the number of associations
of a blob u is described by its degree, deg(u). Figure 3
(b)) illustrates an example graph of blob associations.
The advantage of the blobs model is that it allows for
the definition of many-to-many relationship between
blobs throughout the video, such that blobs can merge,
split, appear, or vanish depending on the information
obtained from the segmentation level. Following [40],
two constraints are used to reduce the set of edges in
Gi: the locality constraint, requiring that two blobs be
sufficiently close to each other in order to be considered
as neighbors and the parent structure constraint requir-
ing that a blob not merge and split simultaneously.
Finally, the correspondence between blobs is determined
by enumerating the set of all edges between blobs in
frame i-1 and those in frame i and ranking the resulting
graphs to choose the most viable correspondence. To
design a cost function for ranking graphs, two disjoint
sets, called parents Pi and descendants Di, are defined
Eq(3)-Eq(5). Of these, Eq.(3) and Eq.(4) are straightfor-
ward. Eq.(5) captures the relationship that the parent set
can be computed by taking all vertices of degree greater
than one, all vertices of degree zero, and all vertices of
degree one which are only in blob Bi-1.

Vi = Pi ∪ Di (3)

Di = ∪Ni(u), u ∈ Pi (4)

Pi = u| deg(u) > 1 ∪ v| deg(v) = 0 ∪ w| deg(w) = 1 ∧ w ∈ Bi−1 (5)

The cost function used to rank the graphs is shown in
Eq.(6). In this equation, A(u) denotes the area of blob u,
the summation corresponds to the total area occupied
by the neighboring blobs of blob u, and Pi denotes the
parent set. This function penalizes graphs in which a
significant change occurs between the sizes of corre-
sponding blobs. As can be seen from this equation, in a
perfect match, the blob size would be unchanged.

Cost(Gi) =
∑
b∈Pi

A(u) − ∑
v∈Pi

A(v)

max{A(u),
∑
v∈Pi

A(v)} (6)

v(u) = 1 if N ≥ k ∗ log A, v(u) = 0, otherwise (7)

In the parasite level, our approach takes a different
strategy than that proposed in [40] to be able to address
issues occurring due to the closeness of parasites in the
scene. The parasites level processing begins by assuming
the association of exactly one parasite with each blob in

the first frame of the video. Next, we iterate through the
video and associate the parasites with their respective
blobs in each frame. Specifically, if a parasite is asso-
ciated with a blob in frame i-1, then it is also associated
with all neighbors of that blob in frame i. Recall that the
neighbors of each blob are given by the blob bipartite
graphs computed at the blobs level. At this point, we
estimate the number and location of parasites occurring
within groups, where the results from the segmentation
layer may not be highly accurate, based on a notion we
call the volatility factor and denote by v(u) for a blob u.
The volatility factor v(u) is determined based on the
fraction of frames in which the blob u participates in
splits or merges (See Eq.(7)). In this equation, A denotes
the area of the blob (in pixels), k is a coefficient, and N
defines the threshold number of frames. If a blob parti-
cipates in splits/merges in large number of frames
(exceeding a number N), then it is deemed to be vola-
tile. Our hypothesis is that a blob having a high volatility
factor is more likely to include erroneously segmented
parasites than the one which has a low volatility factor.
Operationally, to use this idea, we divide the blobs into
three groups: small, medium, and large. Following Eq.
(7), for small blobs, a split in approximately 20% of the
frames was empirically determined to be the threshold
for volatility. Similarly, for medium blobs, a split in 6%
or more of the frames was used as the volatility thresh-
old. Finally, for large blobs, a split in 1% of the frames
was used as the threshold. Once the volatile blobs are
identified, the tracker re-analyzes them starting with the
first frame. To estimate the number and position of
parasites in each blob, corresponding blobs from succes-
sive frames are overlaid and the underlying intensity
values are superimposed to create a heat-map represent-
ing the possible locations of parasites. The bounding
boxes of the blobs are then weighted and ranked based
on the size of the box and the frequency of occurrence:
a high scoring intensity box is expected to be close in
size to the average bounding box of a single parasite.
Excessively large intensity boxes are likely to contain
multiple parasites, and very small intensity boxes are
likely due to noise. The highest scoring intensity boxes
are then considered in various combinations. For small
blobs, combinations of two intensity boxes are consid-
ered, for medium blobs the combinations include up to
three intensity boxes. Finally for large blobs, combina-
tions of up to four intensity boxes are analyzed. These
combinations are ranked to favor: (1) configurations
where the participating intensity boxes are reasonably
spread out (minimal overlap), (2) configurations where
the total area of the combined intensity boxes is close to
the area of the original parasite, (3) configurations where
the bounding box of the combined intensity boxes
roughly matches the dimensions of the bounding box of
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the original volatile blob. The highest ranked combina-
tion represents the most likely dimensions and locations
of the new parasites. Figure 3(c) shows an example of a
group of 4 parasites that was erroneously segmented as
a single region in the initial frame of the video. For this
case, ranking the combination of intensity boxes allowed
the recovery of 1 of the 4 parasites.

Quantitative description of phenotypes
In Table 1 we list the descriptors that capture the
size, shape, motion (speed of movement), and appear-
ance (intensity, color, and texture) of the parasites at
every frame. These descriptors constitute the time-
series representation of phenotypes used hereafter.

Five classes of descriptors are used: size, shape, move-
ment, texture, and color. Size descriptors measure the
size of a parasite by the total number of pixels of the
body of the parasite and the area change of the para-
site between two consecutive time steps. The shape
descriptor is calculated by dividing the length between
two end points of the skeleton of the parasite by the
skeleton length so that the ratio indicates how curved
the parasite’s body is. The movement of the parasite
is measured by the pixel difference between two con-
secutive time steps: large changes in parasite shape or
position lead to large difference value. Finally, color
and texture descriptors capture the parasite
appearance.

Table 1 Quantitative phenotype descriptors and their descriptions

Descriptor name Formula Description

Size

Area See description The total number of pixels identified during segmentation.

Change in area Area(t) - Area(t-1) The area of the parasite in the current frame at time t minus the area of the parasite in the
previous frame (time t-1).

Shape

End point length/
Skeleton length

See description Ratio of the Euclidean length of the shortest line between the two endpoints of the skeleton to
the length of the skeleton. The skeleton is created by thinning the segmented region until it is
represented by a line corresponding to the curve of the body. Branching of the skeleton is
handled by iteratively applying the MATLAB spur operator that identifies and removes isolated
edge points until only two edges remain [47].

Movement

Image difference Image(t-1) - Image(t) The number of pixels that moved from time t-1 to t of the parasite.

Perimeter (also for
description of size)

See description The number of pixels representing the boundary of the segmented region.

Axis ratio (also for shape
description)

MinorAxisLength/
MajorAxisLength

Ratio of the minor axis length to the major axis length. The major and minor axes are
computed for an ellipse with the same normalized second central moments as the region.

Texture

Entropy -sum(p.*log2p) Statistical measure of randomness related to the texture of an image where p contains the
grayscale histogram.

Contrast Σ|i-j|2p(i,j) The intensity contrast between a pixel and its neighbors throughout the region.

Correlation
∑

i,j

(i − μi)(j − μj)p(i, j)
σiσj

The intensity correlation between a pixel and its neighbors.

Energy
∑

i,j

p(i, j)2
The sum of the squared elements in the GLCM (gray-level co-occurrence matrix). The GLCM
measures how often two intensities occur side by side.

Homogeneity
∑

i,j

p(i, j)
1 + |i − j| Measures the closeness of the distribution of the elements in the GLCM to the GLCM diagonal.

Color

Average grayscale See description The mean intensity value and standard deviation found in the region.

Average red

Average green

Average blue

Grayscale histogram See description A histogram with bins 0-255 representing the count of each intensity value present in the
region.

Red histogram

Green histogram

Blue histogram
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Time series analysis of phenotypes
In analyzing the phenotypic responses of individual para-
sites, our goal is to identify groups of similar phenotypic
patterns. Conceptually, this problem requires clustering
the phenotypes over time. However, when the time
dimension is involved, the clustering problem becomes
harder because each data point is not an individual
instance but a sequence of data (collected over time).
This implies that we are dealing with very high-dimen-
sional data. Furthermore, given that our solution needs
to work in high-throughput settings over large data sets,
efficiency becomes a paramount consideration. Repre-
senting a time series symbolically constitutes one of the
well known ways of complexity reduction. This approach,
called SAX, has also been shown to improve clustering
due to the smoothing effect of dimensionality reduction
[41]. We briefly review the SAX approach (Section “Sym-
bolic representation of time series (SAX)”). Then we
show why the idea of representing a time-series with a
fixed number of piece-wise linear segments as done in
SAX is not directly applicable to our situation and pro-
pose a data-driven solution (Section “Automatic determi-
nation of piecewise aggregate approximation”). We
discuss different distance measures for comparing the
time-series generated in our problem (Section “Definition
of a similarity measure between time-series”). The results
from the aforementioned sections allow us to formulate
the clustering techniques we use in this work to quantita-
tively analyze and differentiate the phenotypic response
of parasites (Section “Clustering time series representa-
tion of phenotypes”). Finally, given clusters of similar
phenotypic responses, we consider the questions of

finding representative phenotypic models (Section “Iden-
tifying representative time series”).
Symbolic representation of time series (SAX)
SAX [41] represents a time series of arbitrary length n
in a string of arbitrary length w (w <n, typically w <<n).
This method consists of two steps. The first step
involves a normalization of the original data to N(0,1),
and then a transformation of the normalized data into a
piecewise aggregate approximation (PAA) is performed.
In the second step, the PAA is converted into a discrete
string. Figure 4 shows an example of how a given time
series of length n is represented in a w-dimensional
space using the above steps. Each segment in the PAA
indicates the average of the data points (PAA coeffi-
cient) along the segment. In this example, the length of
the original data was 120 and the sequence was reduced
to length 8. In the second step, a discrete representation
is obtained based on producing symbols with equal
probability. Given the normalized time series with Gaus-
sian distribution from the first step, breakpoints are
determined to divide the Gaussian curve into a equal-
sized areas. These breakpoints are determined by look-
ing up in a statistical table. Table 2 shows the break-
points for values from 3 to 10. Once the breakpoints are
obtained, a time series is discretized such that all PAA
coefficients below the smallest breakpoint are mapped
to the symbol “a”, all coefficients greater than or equal
to the smallest breakpoint and less than the second
smallest breakpoint are mapped to the symbol “b”, and
so on. The three horizontal lines in Figure 4(b) repre-
sent the three breakpoints that produce four equal-sized
areas under the Gaussian curve.

Figure 4 (a) Original HTS data showing the effect of the drug Imipramine in terms of “Area” for a parasite and its PAA representation,
(b) the symbolic representation. The sequence of length 120 (n = 120) is reduced to 8 dimensions (w = 8) and is represented by the four SAX
symbols (a = 4). X-axis denotes the frame number. The parasite body size (in pixels) is shown on the Y-axis.
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Automatic determination of piecewise aggregate
approximation
Directly applying SAX to large and varied data common
to HTS, requires properly estimating the two control
parameters w and a. Through extensive experiments, we
found that values of the alphabet size a = 5 or a = 6 led
to representations that allowed for good discrimination
without being overly influenced by noise. A similar
observation was also reported in [41]. However, we
could not find any strategy that could consistently esti-
mate a good value of w (the number of segments) a
priori. We therefore propose a strategy to determine w
in a data-dependent manner based on a method that
was originally proposed for shape representation using
optimal polygonal approximation of digital points [42].
This method uses the L1 norm to find the set of longest
line segments, which fit the data with the minimum
sum of absolute errors along each of the line segments.
Given n data points and indices i and j such that i =
1,...,n-2 and j = i+2,...,n, an objective function is defined
as:

Fj = Lj − Ej, (8)

where

Lj =
√

(xj − xi)
2 + (yj − yi)

2 (9)

and

Ej = (
∑j−1

k=i+1
|(yj − yi)xk − (xj − xi)yk − xiyj + xjyi|)/

√
(xj − xi)

2 + (yj − yi)
2, (10)

The goal of the objective function is to maximize the
length of a line segment Lj and to minimize the error Ej
simultaneously. Algorithm 1 is the pseudo code that
finds a set of break-points P(xj,yj) which produces opti-
mal line segments from a given time series. Initially, i =
1 and j starts from i+2. If Fj-1 ≤ Fj, then the value of k is
incremented. Otherwise, j-1 becomes a breakpoint and a
new segment is started with the two end points, i = j-1
and j = i + 2. Since a time series is not a polygon but a

curve along time dimension, we modify the original
algorithm so that the start point of the new segment
occurs after the end point of the previous segment (line
20 in Algorithm 1). Figure 5 shows the optimal seg-
ments and symbolic representation of the time-series
from Figure 4. In it the number of segments can be
seen to have increased from 8 to 32 and the length of
each segment is determined solely by the data it
represents.
Algorithm 1. OptimalSegmentation
1. i = 1
2. breakPoints ¬ {}
3. while i <n
4. j = i + 1
5. if j == n
6. break;
7. end if
8. compute Fj
9. while j <n
10. j = j + 1
11. compute F′

j

12. if Fj ≤ Fj
′

13. Fj ← Fj
′

14. else
15. j ¬ j-1
16. breakPoints ¬ breakPoints ∪j
17. break;
18. end if
19. end while
20. i=j
21. end while
Algorithm 2. ExpandCluster
1. seeds ¬ getNeighbors(D, p, ε)
2. if size(result) >MinPts
3. p.clusterId ¬ none
4. return False;
5. else
6. update p.clusterId
7. seeds ¬ delete(seeds, p)
8. while ~isempty(seeds)
9. currentP ¬ getFirstSeed(seeds)
10. result ¬ getNeighbors(D, currentP, ε)
11. if size(result) >= MinPts
12. for i from 1 to size(result)
13. q ¬ get(result, i)
14. if q.clusterId is unclassified or noise
15. if q.clusterId is unclassified
16. seeds ¬ append(seeds, q)
17. end if
18. update q.clusterId
19. end if
20. end for
21. end if
22. seeds ¬ delete(seeds, currentP)

Table 2 A lookup table that contains the breakpoints

b a

3 4 5 6 7 8 9 10

b1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

b2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

b3 − 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

b4 − − 0.84 0.43 0.18 0 -0.14 -0.25

b5 − − − 0.97 0.57 0.32 0.14 0

b6 − − − − 0.97 0.67 0.43 0.25

b7 − − − − − 1.15 0.76 0.52

b8 − − − − − − 1.22 0.84

b9 − − − − − − − 1.28
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23. end while
24. return True
25. end if

Definition of a similarity measure between time-series
Given two time series Q and C and their symbolic
representations Q̂ and Ĉ, the distance between the two
corresponding strings in SAX is given by Eq.(11):

MINDIST(Q̂, Ĉ) =

√
n
w

√∑w

i=1
(dist(q̂i, ĉi))2 (11)

The dist() function in Eq.(11) is implemented by SAX
using a lookup table defined in Table 3. For a given
alphabet size a, the lookup table needs to be calculated
only once. Figure 6 illustrates how two time series can
be represented using symbols and how their similarity
can be measured using SAX by matching the corre-
sponding symbols. However, this method cannot be
applied to our problem, since a data-driven PAA repre-
sentation can map two time-series to symbolic represen-
tations of different lengths.
For comparing time-series as represented by symbolic

representations of varying lengths, we investigate the
following two distance measures:
• Levenshtein distance measure (LD) [43]: Given a

source string s and a target string t, the LD between the
two strings is defined as the number of deletions, inser-
tions, or substitutions required to transform s into t. If

m is the length of s and n the length of t, then comput-
ing LD requires filling a (m+1)×(n+1) distance matrix D
with a distance between each pair of characters of the
two strings. Initially, the first row of the matrix is set to
0,...,m and the first column of the matrix is set to 0,...,n.
Next, for each cell d[i,j] in D, a value is computed as
shown in Eq.(12). The final distance between the strings
is given by d[m,n].

d[i, j] = min{d[i − 1, j], d[i, j − 1] + 1, d[i − 1, j − 1] + cos t}, (12)

where

i = 0, ..., m, j = 0, ..., n, and cos t =
{

if s[i] == t[j], 0
otherwise, 1

.

• Dynamic time warping (DTW): is an algorithm that
finds an optimal alignment between two sequences. The
warping path is found using dynamic programming
using the following recurrence:

r[i, j] = d[i, j] + min{r[i − 1, j], r[i, j − 1], r[i − 1, j − 1]}, (13)

where d[i,j] is the distance in the current cell and r[i,j]
is the cumulative distance.
Clustering time series representation of phenotypes
We investigate two different clustering methods for
clustering the time-series based description of pheno-
types: agglomerative hierarchical clustering and
DBSCAN. Agglomerative clustering is a well known
method for grouping biological data. DBSCAN [44] is a
density-based clustering method and was originally
developed for large spatial databases with noise. This
method finds clusters with arbitrary shape, that is, it is
not restricted to spherical clusters.
In DBSCAN, given an object p (time series in our

case), an ε-neighborhood is used to denote other objects
(time series) that lie within a radius ε of d. An object p
is called a core object if it has a minimum number of

Figure 5 Optimal segmentation and symbolic representation of the time-series from Figure 4(a). The frame number is shown on the X-
axis and the parasite body size (in pixels) is shown on the Y-axis.

Table 3 A lookup table used by the MINDIST function, (a
= 4)

a b c d

a 0 0 0.67 1.34

b 0 0 0 0.67

c 0.67 0 0 0

d 1.34 0.67 0 0
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objects, MinPts, in its ε-neighborhood. Given a set of
objects, p is said to be directly density-reachable from a
core object q, if p is within the ε-neighbor of q. Analo-
gously, an object p is density-reachable from object q
with respect to ε and MinPts if there is a chain of
objects p1,..., pn, p1 = q, pn = p such that pi+1 is directly
density-reachable from pi. Finally, an object p is density-
connected to an object q with respect to ε and MinPts if
there is an object o such that both p and q are density-
reachable from o with respect to ε and MinPts.
Our use of DBSCAN starts with an arbitrary time series

p, and retrieves all density-reachable time-series from p
with respect to ε and MinPts. To estimate these para-
meters we analyzed the results from agglomerative clus-
tering. The y-axis of the dendrogram is the distance
between sequences. The linkages visually show which
objects are closely located and helps users approximate
the distances among objects. Therefore, in this paper, ε
was set to the distance of two farthest objects within the
cluster from the dendrogram. For the variable MinPts,
we used the value of 2 or 3 not only to avoid singleton
clusters but also to identify phenotypes that are distant
from other phenotypes. In other words, if singleton is
found, it means that the phenotype is truly distinct. If p
happens to be a core object, then a cluster is generated.
Algorithm 2 shows the pseudo code that checks whether
p is a core object and expands a cluster if so. Initially, all
objects are unclassified. For every unclassified object,
ExpandCluster is called to see if the object is eligible to
be a core object (line 2). If the object is indeed a core
object, then all the neighboring objects within the radius
ε are inserted into a queue (as they are directly density-
reachable). For each object in the seeds any unclassified
object in its ε-neighbors is inserted into the seed queue
and is classified by being assigned a clusterId (line 18). By
doing so, a cluster is formed by a set of density-

connected objects that is maximally density-reachable.
Every object not contained in any cluster is treated as
noise.
We use two data sets to investigate the applicability of

hierarchical clustering and DBSCAN. The first data set is
the synthetic control chart time series from the UCI
machine learning repository. Because the class label of
every sequence is known for this set, we use it for study-
ing the validity of the resulting clusters. Three sequences
of length 60 are selected from each of the three classes;
normal, decreasing, and upward shift. Figure 7 shows
these time series along with the optimally determined
segments and the symbolic representations for each
sequence. For the UCI data set, the dendrograms in Fig-
ure 8 show the clusters found by the agglomerative hier-
archical clustering using four distance functions;
Euclidean, MINDIST, Levenshtein distance, and DTW.
The original time series were used for Euclidean distance
and the symbolic representations were used for the other
distance functions. As the Figure 8(a) shows, the three
normal trends were not properly identified when Eucli-
dean distance was used. For the original SAX method,
the two control parameters were exhaustively explored
and all combinations of alphabet size and segment length
were tried (a = [3-8], w = [5,10,15,20,30]). Among the 30
combinations, the combination of w = 10 and a = 6 (Fig-
ure 8(b)) provided the best clustering with respect to the
ground truth. For Levenshtein distance (Figure 8(c)) and
DTW (Figure 8(d)), the automatically determined opti-
mal segments were used. Calculation of DTW was also
employed to compute distance between two strings.
DBSCAN also found the cluster membership of each
sequence, cluster1 = (1, 2, 3), cluster2 = (4, 5, 6) and clus-
ter3 = (7, 8, 9).
The second data used by us is a control group. For

our experiment, we use the image difference descriptor

Figure 6 (a) Two original time series C and Q (b) PAA representations of the two original sequences using the uniform segmentation
(c) The symbolic representations of the two PAAs from (b). X-axis denotes the frame number and the Y-axis denotes the body size (in
pixels).
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and study 22 parasites. This descriptor corresponds to
the motion exhibited by a parasite; greater the motion,
larger the image difference. Figure 9(a) shows the den-
drogram constructed by the agglomerative hierarchical
clustering using this descriptor. The clusters found by

DBSCAN using DTW were cluster-1 = (4, 12, 14, 16,
17, 19, 20), cluster-2 = (1, 3, 9, 11, 13, 18), cluster-3 =
(7, 8), cluster-4 = (2, 5, 6, 10, 15), and noise = (21, 22)
with ε= 0.0031 and MinPts = 3 for this data set. In
Figure 9(a), cluster-1 and cluster-2 are linked by the

Figure 7 Optimal segmentation and symbolic representation of the sequences from the UCI database with a = 6. The X-axis denotes
the time step and the sequence value is shown on the Y-axis.

Figure 8 Dendrograms constructed by the agglomerative hierarchical clustering for the UCI dataset. The X-axis denotes the sequence
number and the Y-axis denotes values obtained using various distance measures.
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same color (red) but DBSCAN separated them with
the two parameter setting (ε= 0.0031 and MinPts = 3).
For this data set, no significant difference was found

in the results from DBSCAN and agglomerative hier-
archical clustering, indicating the validity of the cluster-
ing results of both methods. A manual inspection of the
data confirmed this conclusion and the clusters that
were obtained.
The third data set captures the effect of the drug Imi-

pramine after parasites had been exposed to it for seven
days. DBSCAN found two clusters for this data set, clus-
ter-1 = (1, 7, 9, 11, 13, 14) and cluster-2 = (2, 3, 4, 5, 6,
8, 10, 11, 12, 15, 16) with ε= 0.03 and MinPts = 3. Clus-
ters that are similar to the two clusters found by
DBSCAN can be found by cutting off the black and the
topmost red links in Figure 9(b). It confirms that there
was no significant difference in clusters found by the
two different clustering methods, DBSCAN and agglom-
erative hierarchical clustering.
Identifying representative time series
Finding a representative time series for a given cluster
requires identifying one of the constituent time series
which best characterizes the phenotypic diversity of the
cluster. Different principles can be used to identify such
a representative. In this paper, we propose two methods
that approach this question from different perspectives.
In the first method, we define the representative to be a
time series that has the minimum sum-of-distances
(MSD) with all the other time series in that cluster. We
use DTW defined over the symbolic time-series repre-
sentations to determine the representative.
The second method used by us is based on the notion

of a low dimensional vector called sketch, which has
been used for discovering approximately repeating

subsequence [45]. The sketch vector �S of length k for a
subsequence vector �tof length n is defined as:

�S[i] =
∑n

j=1
t[j] · vi[j] (14)

In Eq.(13), i=1,..,k and �vi is a random vector. Each ele-
ment of �vi is an independent random variable with nor-
mal distribution N(0,1) and the magnitude of the vector
is normalized to 1. For example, �S of length 2 for
�t = (3, 1, 2, 4) is computed as following: first, two ran-
dom vectors are chosen and then normalized,
�v1 = (−0.6895, 0.1717, −0.2970, −0.8008)T and
�v2 = (0.4708, −0.2446, −0.0450, 0.2179)T. Next, the
sketch vector is computed using Eq. (13). In this exam-
ple, �S = (�t · �v1,�t · �v2) = (−5.6940, 1.9494). In our
method, all the time series in a cluster are transformed
to sketches of length 30. Once a sketch pool is obtained
for the cluster, the L2 norm is applied to identify a
sketch with the least sum of distances to all other
sketches and the time series corresponding to this
sketch is declared as the cluster representative.
In Figure 10 we show the representative time series

identified by DTW and sketching for the two clusters
obtained by cutting the links off around 0.003 in Figure
9(a). As the reader may note, the movement of the
representative parasite in cluster1 is greater than that of
the representative parasite from cluster 2, with both the
methods. This behavior is consistent with manual obser-
vations. In Figure 11, we show the shape change of the
representative parasites from each of the two clusters
(every 45th frame in the observation period is depicted).
Since the movement occurred over the same time-dura-
tion, the reader can see greater motion exhibited by
parasites from the first cluster. Since the parasite

Figure 9 Dendrograms constructed by agglomerative hierarchical clustering using values of the image difference descriptor: (a)
Control group (b) Phenotypes measured on the 7th day after exposed to drug Imipramine. The X-axis: denotes the sequence number
and the Y-axis denotes distance.
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identified using the sketch shows greater mobility than
the one obtained using DTW+MSD, we postulate that
sketching may be a better approach for finding repre-
sentative time series. Figure 12 shows the representative
time series identified by DTW and sketching for the
two clusters obtained on the 7th day after exposed to
the drug Imipramine. Figure 13 shows the shape change
of the representative parasites from each of the two
clusters.

Experiments
In the following, we present a number of experiments
and case studies to validate the proposed method and
apply it to analyze data from phenotypic screens. The
data used in this experiment was generated by screen-
ing six compounds which are shown in Figure 14.

These compounds were chosen from published whole-
organism screening activities to reposition and poten-
tially fast-track known drugs as therapy for schistoso-
miasis. As visually interpreted using the constrained
nomenclature from [20], these compounds elicited
consistent, striking and disparate responses from schis-
tosomula. These responses included: parasite hyper-
motility (induced by the tricyclic neuroactive com-
pounds chlorpromazine and imipramine), darkening
and decreased motility leading to death (induced by
the anti-hypercholesterolemia drugs: lovastatin, pravas-
tatin and simvastatin). Finally, being the current ther-
apy for schistosomiasis, PZQ, was also chosen. This
compound generated a variety of dose-dependent
responses not seen with the other compounds that
included shrinking and degeneration combined with

Figure 10 Representative time series of the two clusters. Note that the magnitude of (a) and (c) are greater than that of (b) and (d). The
frame number is depicted on the X-axis while the Y-axis denotes the change in area.
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hyper-motility. The phenotypes analyzed by us in this
paper were recorded 7 days after the exposure of the
parasites to the drug.
We begin by presenting results that quantify the accu-

racy of the image segmentation and tracking. Next,
experiments related to time series clustering and the
identification of representative time series are presented.
Included in this section are results from a case study
which was conducted to compare the phenotypic
response within two groups of parasites. The control
constituted the first group while the second group was
exposed to the current gold standard drug PZQ. An
important result from this study was that the effect of
PZQ could be stratified in terms of three distinct phe-
notype clusters. Following this, in the section “Cluster
identification using phenotypes from control and multi-
ple compounds”, the ability of the proposed method to
automatically segregate phenotypes arising from the
effect of different compounds is analyzed. A key goal of
this analysis was to find the best combination of the

alphabet size, the segment length and the distance func-
tion for use in subsequent experiments. Results of using
these parameters for classifying the phenotypes elicited
by the six compounds are presented in Section “Cluster-
ing of phenotypes elicited from all compounds”. These
results constitute proof of concept for the proposed
method. Finally, in the section “Identification of repre-
sentative time series” we present a case study that
involves determining the representative phenotype mod-
els for the controls as well as for parasites exposed to
different compounds.

Analysis of the accuracy of image segmentation and
tracking
To determine the effectiveness of the segmentation and
tracking, we manually counted the number of parasites
in five videos (See Table 4). The manual counts repre-
sented the “ground truth” for this sample. Next, the
ground truth was compared to the number of parasites
which were correctly segmented and the number of

Figure 11 Shape change in the parasites corresponding to the representative time series for each cluster. The snapshots depict
parasites at the first frame and at every 45th frame thereafter. As can be seen, based on the rate of shape change, the parasites in (a) and (c) are
more active than those in (b) and (d).
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parasites which were correctly tracked across the video.
The third column of Table 4 (Segmented Parasites)
shows the number of correctly segmented parasites in
the first frame of the corresponding video. The next col-
umn (Tracked Parasites) shows the number of parasites
which were correctly tracked throughout the entire
duration of the video. Overall, the tracker successfully
tracked 224 out of 272 parasites (82.3%). What is nota-
ble about this statistic is that across all the videos only
206 out of 272 parasites (75.7%) were correctly segmen-
ted on the first frame. Thus, these results highlight the
fact that tracking can lead to improved parasite segmen-
tation. Specifically, for the given data set, the overall

improvement in parasite segmentation was about 6.6%.
Additionally, there was a 10.6% false positive rate, due
to errors in tracking.

Data pre-processing and parameters employed in time-
series analysis
The video data was collected and analyzed using the
methods described in Sections “Parasite identification by
image segmentation” and “Parasite tracking”. As is well
known, real-world data tends to be noisy. To reduce the
noise, each value of the descriptor in the time series was
replaced by the mean of neighboring values within a
sliding window and then outliers were smoothed out by

Figure 12 Representative time series of the two clusters. The data was collected on the seventh day after exposure to the drug Imipramine.
Note that the magnitude of (a) is greater than that of (b) and the magnitude of (c) is also greater than that of (d). In this figure the frame
number is depicted on the X-axis and the change in the size of the parasites is shown on the Y-axis.
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a density-based local outlier detection method [46]. If an
object does not have minimum number of neighbors
within certain distance, the object is considered as an
outlier. In all the experiments, the alphabet size used by
us for transformation of the time-series to a symbolic
representation was either 5 or 6. The video recordings
were also manually analyzed by experts using the proto-
col developed in [20] and qualitative descriptors were
assigned to each video. These qualitative descriptors
were used by us for independent validation of our
results.
Case study: analysis of phenotypes of control vs PZQ
In this case study, we analyzed the phenotypic differ-
ences exhibited by control parasites and those exposed
to PZQ. Two clusters were identified for the control
group. Cluster1 was a singleton (n = 1) and cluster 2
was the dominant cluster (n = 40). The standard devia-
tions of cluster 2 (Figure 15(b)) at every 10th frame were
found to be nearly uniform. Figure 16 shows the shape

change of the representative parasites of control group
and the group exposed to PZQ. The reader may note
that the shape descriptor for this data set not only gave
us the shape information but also provided information
regarding the frequency with which the parasite moved
due to the fact that parasite is correlated with change in
shape over time. The clustering result for the control
group means that most parasites in this group had simi-
lar shape over time. On the other hand, the presence of
three clusters amongst the parasites exposed to PZQ
seemed to indicate that the effects of the drug were
manifested differently in different parasites. This is
shown through the snapshots of the three clusters (b, c,
and d in Figure 13).
Cluster identification using phenotypes from control and
multiple compounds
The goal of this experiment was to find the best combi-
nation of the alphabet size, the segment length and the
distance function so as to separate the phenotypic

Figure 13 Snapshots depicting the shape change in the parasites corresponding to the representative time series for each cluster
from Figure 12 at the first frame and every 45th frame thereafter.

Figure 14 The structures of the six compounds used in the experiments.
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response of parasites that were exposed to different
compounds. We used the shape descriptor defined as
the ratio of the end-point distance to the length of the
skeleton. This descriptor is especially well suited to dis-
tinguish parasites having normal shape from those that
are straight. Four samples were selected from the three
groups: control, PZQ and Lovastatin. The sampling was
made in the following way. For each group, all of the
time series were optimally segmented and then symboli-
cally represented using our proposed method. Given the
strings, clusters were found by the agglomerative hier-
archical clustering and then four samples were selected
from each one of the clusters. Four distance functions
were tried by the agglomerative hierarchical clustering:
MinDist of the original SAX method, edit distance,
Euclidean distance and DTW. The distance for every
pair of the symbolic representations of time series

sequences was computed by each of the three distance
functions and then the clusters of those time series
sequences were identified based on the distances. When
Euclidean distance was used, the raw data were used
instead of the symbolic representation. A data set was
formed by the total 12 time series from the three
groups; Control = {1, 2, 3, 4}, PZQ = {5, 6, 7, 8}, Lovas-
tatin = {9, 10, 11, 12}. Note that the parasites from the
control group were slim and long, while those treated
with PZQ & Lovastatin had curved and oval shapes
respectively. By doing so, the data set was clearly sepa-
rated and the ability of the method to distinguish the
phenotypes could be tested unambiguously. Three dis-
tance functions were tried to investigate the clustering
accuracy. In Figure 17 we show the dendrograms (Figure
17(1)-(6)) constructed by SAX [41]. For the original
SAX method, the 36 combinations by the six alphabet

Table 4 Image segmentation and tracking accuracy of five groups

Compound Total
parasites

Segmented
parasites

Tracked
parasites

False positives Segmentation
accuracy

Tracked
accuracy

Pravastatin 50 33 41 3 66% 82%

Simvastatin 67 58 62 5 87% 93%

Imipramine 53 43 39 4 81% 74%

PZQ 42 27 31 8 64% 74%

Control 60 45 51 9 75% 85%

Figure 15 Representative time series and standard deviation at every 10th frame, a = 6. (a) Cluster1 is singleton so its standard deviation
is 0. It is therefore not shown in the plot. The cluster size is denoted by n. The X-axis denotes the frame number and the Y-axis denotes the
ratio of the end point length to the skeleton length.
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sizes (a = [3, 4, 5, 6, 7, 8]) and six segment lengths (w =
[3, 7, 17, 21, 51, 119]) were tried. As the dendrograms
show, the parasites from the control and PZQ groups
were clearly identified but the parasites from the Lovas-
tatin group were not clearly separated from the parasites
from the control and PZQ groups. The various combi-
nations of the six alphabet sizes and the six segment
lengths did not make much difference in the clustering
as observed in dendrograms in Figure 17.
Next, the Levenshtein distance was applied to the

symbolic representations of optimally segmented time
series. The parasites from the control group were found
to be well separated but the other two groups were not
properly distinguished (Figure 17(7)-(12)). The results
using the Euclidean distance are shown in Figure 17(13).
The final distance function we investigated was DTW.
The six different alphabet sizes were tried and for all of
them, the three clusters could be clearly identified. As
the results show (Figure 17(14)-(18)), the alphabet size
did not affect the clustering.

Clustering of phenotypes elicited from all compounds
This experiment represented an extension of the one
carried out in the previous section with the random
choice of parasites. Here phenotypic responses of para-
site exposed to each of the compounds were collected
from video observations made on the 7th day. Four para-
sites were randomly selected from each of the seven

groups including the control group as follows: Control =
{1 - 4}, Chlorpromazine = {5 - 8}, Imipramine = {9 - 12},
Lovastatin = {13 -16}, Pravastatin = {17 -20}, PZQ = {21
- 24}, and Simvastatin = {25 - 28}. Perceptually, the
appearance of the parasites constituted the most signifi-
cant phenotype. Consequently, in this experiment the
average grayscale intensity was used as the descriptor.
The agglomerative hierarchical clustering algorithm was
employed using DTW distance. The results of the clus-
tering along with the ground truth and a manual
description of the parasite appearance are shown in
Table 5. A very high accuracy of clustering was obtained
(error rate of 0%) with respect to the ground truth.

Identification of representative time series
In this experiment, we further analyzed the data from
Section “Cluster identification using phenotypes from
control and multiple compounds”, where a shape
descriptor was used to cluster the phenotypes arising as
a response to Lovastatin and PZQ in comparison to the
control. The representative time series of each cluster
(Figure 18) was found by sketching and DTW. The
descriptor values for PZQ (Figure 18(b)) were amongst
the smallest for the three drugs, indicating that the drug
caused the parasite body to curl. The snapshots of the
three parasites of the representative time series for the
three groups are shown in Figure 19. In this figure, the
clear difference in the shape change can be observed.

Figure 16 Shapes of the representative parasites over time. Starting from the first frame, the snapshots are taken every 45th frame. (a)
Representative of the dominant cluster in the control data. (b - d) The representative parasites from each of the three clusters found in the set
that was exposed to PZQ. The reader may note the distinct differences of the phenotypic response of the parasites in each of the clusters.
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Figure 17 Dendrograms constructed by various distance functions, alphabet sizes and segment lengths. Control group = {1, 2, 3, 4}, PZQ
= {5, 6, 7, 8}, Lovastatin = {9, 10, 11, 12}. Dendrograms constructed using SAX and MinDist with varying alphabet sizes and varying number of
segments are shown in parts (1-6). For each case, the six segments (w = [3, 7, 17, 21, 51, 119]) resulted in the same clusters. In parts (7-12)
dendrograms constructed by optimal segmentation and edit distance are shown. The dendrogram constructed using Euclidean distance is
shown in (13). In parts (14-18) dendrograms constructed using the proposed method are depicted. In our method, different alphabet sizes did
not lead to differences in clustering accuracy. In this figure the sequence number is shown on the X-axis and the distance values are shown on
the Y-axis.

Table 5 Clusters obtained for phenotypes elicited from all compounds

Compound Cluster 1 Cluster 2 Manual phenotype assignment
(based on parasite appearance)

Control 1, 2, 3, 4 Light

Chlorpromazine 5, 7 Dark

6, 8 Light

Imipramine 9, 11, 12 Dark

10 Light

Lovastatin 13, 14, 15, 16 Dark

Pravastatin 17, 18, 19, 20 Light

PZQ 21, 22, 23, 24 Light

Simvastatin 25, 26, 27, 28 Dark
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Furthermore, DBSCAN was also clearly able to identify
the membership of each time series with parameters
MinPts = 2 and ε = 0.012; {1, 2, 3, 4}, {5, 6, 7, 8} and {9,
10, 11, 12}. This experiment along with its counterparts
demonstrates that the proposed approach can be used
for accurately grouping and quantifying phenotypic
responses to different drugs. Furthermore, the method
can also provide, automatically, the representative phe-
notype models present in the data.

Conclusions
The research presented in this paper represents a signif-
icant breakthrough towards quantitative phenotypic
drug screening against neglected diseases, such as schis-
tosomiasis, where the effect of a drug on the target
pathogen is manifested through a continuum of

complex phenotypes. The proposed method lies at the
interface of disciplines. From the algorithmic perspec-
tive, a key contribution of this work has been the adap-
tation and extension of techniques from time-series data
analysis for representation and reasoning about pheno-
types exhibited by schistosomula. An important result
from this perspective has been the development of a rig-
orous approach to automatically quantify and character-
ize the phenotypic responses different parasites to a
drug. Consequently, the proposed method can be crucial
for development of high-throughput phenotypic screens
where a much larger fraction of the chemical space can
be explored during lead discovery. Another important
result lies in the ability of the method to detect and
represent variability in the response of different parasites
when they were exposed to the same drug in identical

Figure 18 Representative time series and standard deviation of each cluster, a = 4. The frame number is shown on the X-axis. The Y-axis
depicts the descriptor: End Point Length/Skeleton Length.

Figure 19 Representative parasites for each of the three clusters. The figure shows snapshots that were captured starting at the first frame
and at every 45th frame thereafter.
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environmental conditions. Recognizing such stratifica-
tions in the parasite population may be significant in
more ways than one. Among others, detection of such
variability can play a major role in driving exploration of
the pathogen’s biology and in understanding the devel-
opment of resistance to drugs. Furthermore, the exis-
tence of such variability also underlines the need for
developing new computational and statistical methods
that can robustly analyze highly variable data from high-
throughput phenotypic screens.
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