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ABSTRACT OF THE DISSERTATION

Essays on Asset Pricing and Financial Institutions

Patrick Christian Kiefer

Doctor of Philosophy in Management

University of California, Los Angeles, 2018

Professor Mark S. Grinblatt, Chair

Chapter 1 Abstract. Forecasts of risk prices at alternative time scales can be used to con-

solidate history dependence in asset return time series. The resulting Markovian structure

identifies a martingale component in the latent transition dynamics. I apply the model to

U.S. stock markets and find the concentration of return volatility on the martingale compo-

nent - the spectral gap - is countercyclical, and predicts annual market returns out-of-sample

(o.o.s.) with an R2 of 10.8%. Value (HML) predictability is concave and front-heavy, peak-

ing at a one-year 14.7% o.o.s. R2. In contrast, the momentum predictability term structure

is convex, insignificant on the short end, but accelerates to 31.4% o.o.s. R2 at the three-year

horizon. I form timing portfolios to investigate the risk content of the aggregate forecasts.

Incremental gains from timing value are compensation for bearing systematic shocks to time-

varying expected returns. Exposure to the market timing portfolio is cross-sectionally priced,

while gains from timing size (SMB) are not. The findings provide new restrictions for para-

metric asset pricing theories.
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Chapter 2 Abstract. Incomplete human capital markets induce unexpected rebalancing costs

that are mitigated by a bank. Ex-ante, the bank exchanges risky endowments for demand-

able liabilities. An ex-post withdrawal corresponds to exercising a put option on the market,

used to resolve an unexpected portfolio choice problem. Portfolio choice opens a risk aver-

sion channel that distinguishes our predictions from Diamond and Dybvig (1983) and related

models. In these models, deposits resolve consumption-timing tensions by accommodating

the investor’s intertemporal elasticity of substitution (IES). The inclusion of risk-based in-

centives allow us to characterize the endogenous link between the intermediary balance sheet

and the preference-based pricing kernel. Moreover, ex-post rebalancing incentives relax en-

forcement problems for ex-ante optimal policies in incomplete markets. This provides a

justification for the coexistence of intermediation and market institutions.
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Chapter 1

The Factor Structure of Time-Series

Predictability

1.1 Introduction

Linear risk factor models reduce large complex markets to a handful of portfolios, making

empirical and theoretical studies of asset markets tractable and efficient. Dimension re-

duction is a structural implication of equilibrium asset pricing theory - the so-called factor

replicating portfolios are sufficient because the distribution of any security’s returns can be

characterized in terms of its exposure to these portfolios. While this simplification is ex-

ploited routinely in the context of unconditional factor modeling, it is rarely used to reduce

complexity in problems of predictability.

This is not because equilibrium asset pricing theory is silent on reducing dimension in

the time series. A well known implication is easily seen in a constant relative risk aversion

(CRRA) representative agent economy with stochastic volatility. In this model, the condi-

tional volatility of the pricing kernel is simply the risk aversion coefficient times the volatility

of aggregate consumption growth. Predictable variation of any asset’s excess return is given

by its beta times the conditional volatility of the pricing kernel. The dimension reduction in

this model’s forecasting problem underscores a general implication. If the conditional means
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of the factor replicating portfolios vary through time, forecasts of these means are sufficient

to forecast the excess returns of arbitrary portfolios.

We exploit these implications to produce a parsimonious method for characterizing con-

ditional mean returns in real time. The method is simple to implement using principal

components analysis (PCA) and single-lag vector autoregressions VAR(1), making it acces-

sible to practitioners and regulators. By appealing to the pricing kernel structure in the

time series, we exploit the theoretical implication linking the dynamics of aggregate risk

to the systematic components of predictability. Several positive implications related to the

method’s success are presented.

The primary challenge to implementing such a model empirically is the estimation of

conditional means. We address this by exploiting a first-order transition representation

for the underlying dynamics. A key ingredient is the information set for realized returns

that collapses higher-order history-dependence into a Markov state vector. This information

set includes projections of historical returns. From here, a decomposition of the transition

dynamics separates martingale shocks from transitory variation. The common sources of

transitory variation identify the factor structure of time-varying expected returns.

We show that a simple statistic constructed from the latent expected return factors - the

spectral gap - predicts the market with an out-of-sample R2 of 10.8% annually. The spectral

gap is also used to predict portfolio returns. We forecast the value (HML) and momentum

(UMD) premia with annual o.o.s. R2 ’s of 14.7% and 6.7% respectively. The forecasts high-

light cross-sectional differences in predictability term structures. At the two -year horizon,

momentum predictability reaches 14.5%. While market and momentum forecasts exhibit

increasing rates of explained variation, the value premium is most predictable at a 1-year

horizon.

We investigate the theoretical implications of our findings in two ways. First, for each of

the Fama and French risk factors, we replicate the predictive series obtained from the spec-

tral gap within the space of test assets. This allows us to quantify the efficiency gains relative
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to the underlying factor models. Like the forecasts, the timing portfolios are constructed

in real time. Unlike the forecasts, the timing portfolios are tradeable. We find returns to

the timing portfolios have higher ex-ante Sharpe ratios and higher average realized Sharpe

ratios than the underlying factors.

Second, we construct a time series of conditionally unpredictable returns from each of

the timing portfolios. We test whether exposures to these shocks can explain cross-sectional

variation in returns. In particular, using the underlying factor replicating portfolios as bench-

marks, we isolate incremental changes to cross-sectional performance. Gains in efficiency

from the market, momentum and value timing portfolios are priced in the cross-section,

while gains from size (SMB) timing portfolios are not.

Classically, an empirical risk factor is formed in two steps. Traded assets are sorted into

bins according to a characteristic, such as book-to-market equity. Then, a zero-cost port-

folio is formed by shorting the lowest bin and buying the highest bin. When the sorting

characteristic proxies for exposure to an undiversifiable source of risk, mean returns to the

zero-cost portfolio are proportional to the unconditional price of exposure to this risk. The

resulting factor replicating portfolios form the basis of empirical risk factor models.

However, conditional and unconditional expected returns differ systematically. The div-

idend yield, cay, and other variables forecast market returns, producing estimates of the

time-varying expected returns.1 In equilibrium the expected excess return on the market is

equal to the market risk price squared (uniquely up to changes in basis). Similarly, portfolio-

level forecasts can be used to estimate time-varying risk prices for value (HML), size (SMB),

momentum (UMD) and other non-market factors. Importantly, systematic variation in ex-

pected returns contains the time-variation in factor risk prices. When all systematic variation

is priced, the two are equivalent.

Evidence suggests the term structure of equity risk is not flat, and that the sign of the

1The series cay is constructed in Lettau and Ludvigson (2001) to capture deviations in the consumption-
wealth ratio from its long-run mean.
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slope changes depending on economic conditions.2 Information in the full term structure

may be relevant for forecasting single-period returns, but the exact term structure is not

observed and no consensus estimation method exists. To capture this information while

remaining agnostic about the structural model, we construct return forecasts of priced risk

factors for several horizons separately. Henceforth we refer to these forecasts as nominal

forecasts.

To estimate time-varying risk prices, we augment asset returns with nominal forecast er-

rors, fitted within each rolling window separately for several horizons. The nominal forecasts

we use are fitted values of Fama-French risk-factor returns on standard (lagged) predictors,

such as the dividend yield and past returns. We reject two important null hypotheses that

characterize nominal forecasts. The first is that nominal forecasts over different horizons are

deterministic functions of each other. The second is that every nominal forecast is replicable

in the space of (contemporaneous) test assets.

The signals in the nominal forecast errors are a key input for extracting the latent factors

and risk price estimates. Consider an event of the sort: “nominal market forecast errors at

the 4-year horizon tend to be high when one-month HML returns are low.” The information

in this event is not contained in contemporaneous realized returns if the sequence of nominal

4-year market forecast errors cannot be replicated by a portfolio of test assets.3 Conditioning

on these events is valuable empirically. In addition to refining the information set, nominal

forecast errors are chosen in exactly the linear combinations of past returns that justify a

Markov representation.

Given a Markov representation of returns - including past returns, in the case of U.S.

equities - we run a classical principal components analysis for each period over a fixed history

length. The PCA maps to a decomposition of a generic vector Euler equation when dynamics

2Binsbergen and Koijen (2016) provide a thorough survey.

3Specifically, today’s realization of the nominal 4-year market forecast error is the difference between
today’s one-period realized market return and the prediction of that return made 4-years ago.
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are Markovian.4 The history length is chosen to isolate fluctuations at a particular distance

from statistical equilibrium, controlled by the so-called mixing times. The representation is

updated in each period by repeating this construction.

The construction captures changes in the risk price and composition of transitory factors

while keeping the scale of the average transitory fluctuation fixed at a constant fraction

of total volatility. Technically, for a given threshold, we keep the mean mixing time fixed.

Changes in the risk price and composition of transitory factors correspond to systematic

fluctuations in expected returns. We find that while an average of 86% of quarterly re-

turn volatility is concentrated on permanent shocks to market capitalization, the forecasting

power comes from incorporating the systematic predictable variation in expected returns -

the expected return factors.

Writing the Euler equation in terms of decomposed returns shows the spectral gap is

informative about future expected returns. A naive test of predictability using the lagged

spectral gap predicts quarterly, semi-annual and annual market returns with out-of-sample

R2s of 3.8%, 6.5% and 10.8%. More sophisticated statistics and existing predictors are no

better than the lagged spectral gap out of sample, with cay coming in second with at an

annual o.o.s. R2 of 7.6%. Gap statistics also forecast portfolio returns, predicting value

(HML) with an annual out of sample R2 of 14.7% and Momentum (UMD) with an R2 of

6.4% (16.1% biannually).

Portfolio-level predictability term structures are significantly heterogeneous. Explained

variation increases monotonically with horizon for the market and momentum risk factors.

For value, explained variation is hump-shaped, with a maximum R2 corresponding to the

one-year forecasting horizon and decreasing afterward. We find the market loads with a co-

efficient 0.98 on shocks to the leading component. The leading component’s autoregressive

coefficient is indistinguishable from zero (the point estimate is 0.089 with s.e. 0.072). In

contrast, value returns load significantly on the penultimate factor. The penultimate factor

4A formal description of this procedure is given in section 5.5.1.
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tracks common variation in expected returns - the autoregressive coefficient is 0.649 with an

adjusted standard error of 0.092.

In addition to the concave predictability term structure for the value premium, we find

the momentum term structure is increasing and convex. Forecast horizons inside of 1 year

feature rapidly increasing predictability in the value premium, while momentum is almost

unpredictable. Forecast horizons longer than one year feature decreasing predictability of

the value premium and simultaneous rapid increases in predictability of the momentum pre-

mium. Predictability of market expected returns increase linearly over the same forecasting

horizons.

Value-weighted dividend yields play a key role in the construction of productive nominal

forecasts. Using the value weighted CRSP index ex-dividend in place of dividend yields

when constructing the nominal forecasts significantly restricts the predictive power for each

factor other than size. However, predictability for the market picks up at the long end,

suggesting capital gains have a small but significant role in positively predicting aggregate

expected returns over lower frequencies. The equal-weighted CRSP ex-dividend index input

generates predictive power for size but insignificant predictive power for the value premium,

and significantly reduced predictive power for the market and momentum premiums.

Our findings are consistent with existing evidence on predictability and dividend yields.

Nominal forecasts using single lags of dividend yields produce factor return forecasts that

are inferior but nonetheless dominate dividend yield forecasting directly. Dividend yields are

highly persistent, fluctuating with a half-life of roughly 15 years, and forecast returns. From

this standpoint, that the full term structure of forecast errors is informative about expected

returns is unsurprising - it is certainly informative about future yields.

We find the spectral gap is a meaningful macroeconomic indicator on its own. Dynamics

of the spectral gap measure changes in the concentration of volatility on the leading priced

risk factor. In the US stock markets, we find return volatility concentrates countercycli-

cally on permanent, or “long-run” shocks. These findings have implications for parametric
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stochastic discount factor (SDF) models. Because the spectral gap is an accessible object

in any Markov model of asset prices, these findings can help discriminate among competing

parametric theories.

The prices of incremental gains from timing portfolios are informative about the risk con-

tent of the underlying factor. By projecting the factor forecasts back on to the space of test

assets, we limit our analysis to changes in the distribution of risk across portfolios because

the total risk is constrained to be the value-weighted excess returns of the test assets. Rel-

ative efficiency gains measure the intensive margin of factor risk. Marginal efficiency gains

arise when marginal and average risk prices diverge. We reject that the marginal prices of

exposure to the value and momentum portfolio returns are zero. We cannot reject that the

marginal price of exposure to size is zero.

The study proceeds with a discussion of the literature, followed by a Markov model of

asset returns. Section 4 describes the empirical tests derived from the Markov model. The

data and empirical results are reported in sections 4.3 and 4.4. Appendices contain technical

details and a handful of ancillary charts and tables.

1.2 Related Work

Alvarez and Jermann (AJ) (2005), and Hansen and Scheinkman (2011) factorize the pricing

kernel into martingale and transitory components. (AJ) find that volatility of the growth

rate of the martingale is roughly 90% of the volatility of the stochastic discount factor.

Hansen and Scheinkman (2011) use the Perron-Frobenius theory to isolate the asymptotic

risk-return tradeoff for an aggregate payoff functional when the underlying dynamics are

Markovian. Borovicka, Hansen and Scheinkman (2016) point out the structure and interpre-

tation of the Perron-Frobenius estimate depends heavily on model specification. We use a

Perron-Frobenius decomposition to identify predictable fluctuations in latent factors that are

7



Figure 1.1: Decomposition over Finite State Space

X X

x1

x2
...
xS

x1

x2
...
xS

p2,1

p2,2

...
p2,S

x2x2 x1

p2,1 = µ0(x1) + γ21

Probability Decomposition

p2,1

µ0(x1)

γ21

− p2,1

−· µ0(x1)
− · · γ21

(a) Predictable fluctuations are identified using a decomposition of transition probabilities. The
probability of moving to x1 given the current state x2 is p2,1 = µ0(x1) + γ21. The invariant
probability µ0(x1) does not depend on x2, and dominates forecasts asymptotically. The transitory
correction γ21 becomes negligible in large time, but contributes importantly to local dynamics.
Perron-Frobenius and spectral theories provide decompositions of the signed measures ν : X×X 7→
R rather than the state space X itself. This point is clear for finite-state ergodic processes, pictured
here, where it does not make sense to claim subsets of finitely many points are transitory: all points
in an ergodic set are visited with probability one in large time.

negligible asymptotically. These components constitute roughly 15% of the total variation

in returns, corroborating findings in (AJ).

Chen, Roll and Ross (1986) find that exposure to innovations in the term spread, credit

spread, and industrial productivity help explain cross-sectional variation in average stock re-

turns. Hansen and Jagannathan (1991), (AJ), Ross (2015), and Backus and Chernov (2008)

argue that while important work is done using macroeconomic variables to understand asset

prices, it is also the case that equilibrium prices reveal information about the macroeconomy.

In particular, Hansen and Jagannathan (1991) study restrictions placed by observed prices

on the mean and variance of the pricing kernel and argue the pricing kernel must be an

order of magnitude more volatile than consumption growth to justify the observed Sharpe

ratios. Backus and Chernov (2008) study restrictions on pricing kernel cumulants implied by

observed prices and use evidence of higher moments to rule out symmetric dynamics. Ross

(2015) argues for recovery of the underlying physical transition dynamics from returns. To
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our knowledge, identification of persistent dynamics in the pricing kernel from the covariance

matrix of returns is a novel contribution.

Koijen, Lustig and Van Nieuwerburgh (2017) propose a three-factor with a separate role

for business-cycle fluctuations to explain average returns to stock portfolios sorted on book-

to-market equity and maturity-sorted treasury portfolios. Cochrane and Piazzesi (CP) show

a single bond factor constructed from a linear combination of forward rates predicts returns

on bond portfolios of any maturity and forecasts returns in equity markets. The (CP) factor

describes transitory fluctuations in the Koijen, Lustig and Van Nieuwerburgh economy; the

market factor captures permanent shocks to cash flow levels, and the third factor updates

inflation expectations. Our findings corroborate and extend their classification of factors.

We show over 90% of the variation in the market and the momentum (UMD) factor is driven

by innovations with no transitory content, while over 70% of the variation in value (HML)

is explained by the transitory factors.

Fama and French (1992, 1993) and Asness (1994) document the importance of book-

to-market equity for explaining cross-sectional variability in average returns and establish

the value (HML) and size (SMB) factors to augment the single-factor (CAPM) model. Je-

gadeesh and Titman (1993) and Moskowitz and Grinblatt (1999) study momentum by asset

and industry, respectively, and find a cross-sectional ranking of past winners and losers in-

crementally improves dynamic efficiency properties of the Fama-French three factor models.

Berk (1995) points out that if size is the expected cash flow level, and two firms have identical

“size” but one has lower market cap, it is because it has a higher discount rate. Mechanically,

size inversely predicts average returns and will appear to be priced whenever a true factor

is missing. We find incremental efficiency gains from timing size are not priced, while gains

from timing the market, momentum and value are priced.

Several papers argue for improvements in the prevailing constructions of Fama-French

factors. Gerokos and Lihnnainmaa (2012) argue that the HML factor returns can be decom-

posed into price-driven and book-driven elements, and that only the price-driven component
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of the HML factor returns can explain cross-sectional variation in returns. Asness and Frazz-

ini (2013) argue that HML contains about 20% momentum, and propose a construction of

HML that isolates the “pure value” component. Lihnnainmaa (2015, 2016) finds accrual, in-

vestment, and profitability factor constructions that are preferred to the Fama French (2015)

constructions for cross-sectional asset pricing. We find evidence the value premium is com-

pensation for shocks to the persistence of expected returns. In contrast, we find momentum

is compensation for i.i.d. shocks to realized returns.

Binsbergen, Brandt, and Koijen (2012) synthesize dividend strips at various maturities

to analyze the term structure of equity risk. They find that short-run cash flows have higher

average returns that the market, implying a downward-sloping term structure of equity pre-

mia. Ait-Sahalia, Karaman, and Mancini (2015) provide evidence that the sign of the slope is

time-varying and procyclical. Schulz (2016) argues the downward sloping term structure be-

comes insignificant when tax rates specific to dividend income are considered. Weber (2016)

sorts stocks based on a measure of cash flow duration and finds high-duration stocks earn

roughly a one-percent premium monthly over low-duration stocks, providing term-structure

evidence that does not rely on synthesizing dividend payments. This set of findings motivate

us to study nominal forecasts of returns on equity portfolios separately at different horizons.

Bandi and Tamoni (2015) implement a time-scale decomposition of returns and consump-

tion growth by projection on the Haar basis. The result is a representation of the time-series

of returns as the sum of moving averages over J non-intersecting intervals of increasing scale

2j j ∈ {0, 1, ..., J}. Severino (2014) shows existence of time-series decompositions based on

the sequential application of an isometric operator. The decomposition splits a Hilbert space

into an infinite direct sum of rank-one prediction-error subspaces and that sum’s (possibly

empty) orthogonal complement. The derivation generalizes the Wold representation. Our

decomposition is most related methodologically to Bandi and Tamoni (2015) and Severino

(2014). The functional basis in our decomposition is identified from a PCA of a generalized

covariance matrix of realized returns.
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Bansal and Yaron (2005), and Hansen, Heaton and Li (2008) propose and evaluate slow-

moving latent growth factors as explanations for unconditional risk premia. Bansal, Kiku and

Yaron (2010) sharply characterize the distinction between long run risk - captured by shocks

to persistent levels driving growth, and business cycle risk - captured by shocks to persistent

growth directly. Hansen and Sargent (2007, 2016) outline the similarities between long-run

risk and the implications of robust control policies in financial markets. The authors show

the long-run risk model is the model a robust Epstein-Zinn investor would appear to have

referenced ex-post. We contribute to this discussion by quantifying slow moving changes in

the concentration of return volatility on long-run shocks. Estimates of this quantity predict

portfolio returns and contribute to priced factor risk, suggesting a new layer of tests from

within parametric long-run-risk or ambiguity aversion models.

Jagannathan and Wang (JW) (1996) take a CAPM model with conditionally dependent

parameters and condition down. It is well known that the unconditional version includes

correction parameters capturing the correlation between time- varying exposures and time-

varying risk prices. JW circumvent the problem of obtaining conditional estimates directly

by using the BAA − AAA credit spread as a proxy for the time-varying risk price. They

provide GMM estimates that support the conditional CAPM over the implied constant pa-

rameter CAPM tested classically. In U.S. stocks, we provide evidence the latent pricing

kernel contains the required forecasting variables itself. As a diagnostic, we find including

the BAA−AAA credit spread in the calculation of the covariance matrix generates forecasts

with o.o.s. R2 gains of 0% to 2% annually, depending on the portfolio and subsample.

Cochrane (2011) surveys the in-sample evidence suggesting that, across many asset

classes, low yields (high prices) today predict low returns in the future - and not cash flow

growth. The importance of jointly restricting cash flow and yield parameters in a vector-

autoregression (VAR) for evaluating the predictability of discount rates is given by Cochrane

(2008). Santa Clara (2015) finds evidence that dividend yields in fact predict cash flows the

portfolio-level. Brennan and Taylor (2016) find aggregate and portfolio-level return pre-
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dictability out of sample. The authors distinguish risk-based sources of predictability from

potentially non-equilibrium present-value predictors by comparing variables obtained from

the covariance matrix with those obtained from replicating portfolios for present values of

cash flow news and discount rate shocks. We base aggregate and portfolio-level o.o.s. fore-

casts on a small number of common factors - also advocated by Cochrane (2011). To quantify

the risk content of our predictors, we test whether the incremental efficiency gains, measured

by the difference in returns between a forecast replicating portfolio and the underlying target

portfolio, are priced in the cross-section.

Chen (2005) points out that out of sample (o.o.s.) tests of predictability are well suited

for studying time series containing one or more discrete structural breaks. Chen finds that

o.o.s. predictive statistics capture discrete structural breaks in Taiwanese savings rates

that predict declines in investment rates that followed. Importantly, the author shows an

in-sample vector-autoregression model misses the break and fails to to reject the null of no-

predictability. We provide diagnostics in section (5.5) indicating our o.o.s. predictors react

to structural breaks quickly relative to rolling beta and rolling naive PCA models.

Goyal and Welch (2008) provide evidence that predictors in the literature perform poorly

out of sample, and that prediction quality in-sample is often confined to crisis periods. How-

ever, although low in absolute terms, Goyal and Welch (2003) and (2008) find the relative

forecasting power of the dividend-price ratio is highest using out of sample predictions over

the postwar sample ending in 1990. They argue the incremental efficacy of the forecasts

arise through the ability of rolling beta estimates to pick up changes in the data generating

process (DGP). Similarly to Chen (2005), the authors find a constant coefficient VAR model

fails to generate a significantly non-zero R2. Our predictive efficacy is not limited to crises,

suggesting we capture important cases where the underlying model changes smoothly but

manifests as a significantly distinct process along sufficiently non-overlapping subsamples.

Kelly and Pruiit (2013) implement a three-pass filter to forecast portfolio returns using

a large cross-section of predictor variables. They report test statistics derived to account
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for the fitting procedure, and measure out-of-sample predictive R2 by fitting the model to

data omitting the target period and predicting the target period. R2s on annual market

predictability reach 13%. We report comparable but lower annual market R2 of 10.8% with-

out using cross-sectional data and without using future data. Thus, our decomposition is

informative in real time. However, the predictive regressions proposed by Kelly and Pruiit

(2013) apply to predictive settings where a Markov structure may not be warranted, while

our identification relies on this structure.

Bryzgolva (2014) advocates for traded (price-based) proxies for risk factors over macro

factors for statistical reasons. A constrained LASSO-style regression penalizes candidate risk

factors with poorly measured exposures. Traded factor returns have low levels of idiosyn-

cratic noise, making exposures easier to measure and thus the LASSO procedure penalizes

traded proxies less. This helps rationalize the incremental gain in statistical significance

from the timing portfolio returns over the extracted latent process. Simultaneously, it un-

derscores the improvements in significance and precision of the timing portfolios relative to

the conventional factor replicating portfolios.

Shrinkage estimation procedures - such as the LASSO for the covariance matrix - are

a potentially relevant exercise in our setting. We avoid this by first considering the factor

returns only, rather than the rank-deficient cross-sections with many test assets. However,

the inclusion of nominal forecasts in the generalized covariance matrix estimation introduces

rank deficiency. Moreover, one may shrink towards a target horizon Sharpe ratio when

the data matrix includes many horizon-specific forecasts. For the purposes of this paper,

we manage rank deficiency and sparseness by exploiting the inner-unitary properties of the

rotation matrices from a singular value decomposition. Cases of explicit shrinkage are dele-

gated to future work.

We draw on tools from Markov processes, large deviations and random matrix theory.

The modern theory of large deviations is due to Donsker and Varadhan (1975a, 1975b) and

Gartner (1977), building on Cramer (1938) and Sanov (1957). Exponentially unlikely devi-
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ations of Markov processes are described by the Perron-Frobenius theory (Varadhan (1983,

2008), Hansen (2011), Borovicka, Hansen and Scheinkman (2016)). Brownian dynamics for

the spectra of random matrices were introduced by Dyson (1962a, 1962b). Erdos and Yao

(2017) and Tao (2011) characterize spectral dynamics for sequences of random matrices and

nest Dyson Brownian motion as a special case. Knowles, Yao and Yin (2014) provide asymp-

totics for outlying eigenvalues of covariance matrices when the parameter dimension grows

proportionally to sample size.

Interest in Markov-Chain Monte-Carlo (MCMC) methods drove a better understanding of

convergence rates for finite-state Markov chains. Estimates have been characterized in terms

of the log-Sobolev inequality (Diaconis and Saloff-Coste (1996a)), the Poincare inequality on

graph representations (Diaconis and Strook (1991), Tuominen and Tweedie (1994)), and the

spectral gap (Diaconis and Saloff-Coste (1996b), Saloff-Coste (2004)). Each of these build on

Doob (1959), Nash (1958) and more recently Anderson (1989). Diaconis (2009) provides an

excellent discussion of related developments. Fukushima (2010) emphasizes quadratic and

bilinear form representations of Markov processes on general state spaces and touches on

their spectral content. Chen, Hansen and Scheinkman (2007) make this connection explicit

for the Feynman-Kac semigroup.

1.3 A Markov Model of Returns

We construct an empirical model to use for forecasting. Sections 3.1 and 3.2 describe the

process environment and specify asset prices and a risk-neutral measure. Section 3.3 reviews

the decomposition. Section 3.4 provides an example to highlight the economics of equilib-

rium prices and transitory fluctuations. 3.5 - 3.6 present the spectral gap, relates it to a

martingale representation, and characterizes the identification of the spectral gap from the

empirical covariance matrix.
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The lag operator and composition of the lag and Markov operators are defined on the

path space of the Markov chain, so some technical statements cannot be avoided. Extensive

derivations are left for the section (7) appendix, along with the complete set of proofs.

1.3.1 Market Prices

Undiversifiable risk arises from S - state Markov jump dynamics taking values in a finite

ordered set xt ∈ X := {x[1], ..., x[S] } ⊂ RS. Time is discrete. We take each x[j] ∈ {0, 1} so

the state at time t, xt = x[j] is characterized by the index {[j] : x[j] = 1}. Local dynamics of

the Markov chain Xt are described by the kernel function m(x[i], x[j]) := Pr(Xt = x[j]|Xt−1 =

x[i]).

Sequentially traded state-contingent securities dn ∈ F (X) ⊂ RS are sufficient to build

up rich dynamically complete cross-sections as in Arrow (1953). We specialize asset n = 0

to d0 = (1, 1, ..., 1)′.5 We will extend the marketable security space to include long-lived

securities recursively, but we first establish the benchmark asset prices.

Market equilibrium implies a positive pricing kernel exists and can be used in lieu of

replication to price arbitrary cash flows (Ross (1976), Harrison and Kreps (1979)). Let

sj,t = sj(wj(xt), t) = βtj s̃j(wj(xt)) be the marginal value of wealth for investor j, where

βj ∈ (0, 1) captures time discounting. For any asset n and market prices pn,t, individual

optimality requires

sj,tpn,t = Et[sj,t+1dn(Xt+1)] (3.1.1)

5Contingencies dn are assumed to satisfy νdnd
′
n < ∞, which in finite dimensions under any positive

probability measure ν is equivalent to dn · ei ≤M <∞ for every n, 0 ≤ i ≤ S and some fixed scalar M ∈ R,
where {ei} , 0 ≤ i ≤ S denotes the standard basis in RS .
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in each period t. In equilibrium, the stochastic discount factor (SDF) St,t+1 = S(Xt+1|xt, 1)

encodes market-wide preferences in observed prices, enforcing

sj,tEt[St,t+1di(Xt+1)] = Et[sj,t+1di(Xt+1)]

for any unconstrained investor j, and arbitrary i, t. In particular, 3.1.1 becomes

pn,t = Et[St,t+1dn(Xt+1)] (3.1.2a)

for every n given t and every t. We follow the convention in Alvarez and Jermann (2005)

by modeling the SDF as the ratio of the pricing kernels St,t+k = st+k/st = βks̃t+k/s̃t. Then,

the pricing kernel is the particular SDF when the reference period wealth is the numeraire

st = S0,t = S(Xt|x0, t), s0 ≡ 1. For the asset n = 0, p0,t = Et[St,t+1] = 1/rf,t is the price of a

one-period default free bond per unit of face value.

1.3.2 Decomposition

A first-order transition distribution can be decomposed into two orthogonal components.6

Each transition probability m(j, k) is comprised of a local transitory and a non-local perma-

nent component. The local components contains state-dependent transitioning information.

The non-local component completely determines asymptotic forecasts. Both components are

important in finite samples.

Let ι = 1S×1; then by our convention, Mι = ι. We assume the chain (X,M) is ergodic,

which implies a unique invariant µ′0 = µ′0M. The pair (µ0, ι) are the left and right eigen-

vectors of M, respectively, normalized so that µ0 is a probability measure µ′0ι = 1. From

6See proposition (7.1) parts I.− III. and corollaries (7.4)− (7.9)).
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these assumptions, we obtain the representation for the dynamics of distributions over X

M′ = µ0ι
′ +M′

γ

Asset return dynamics inherit this representation

E[Rn,t+1(Xt+1)|xt,k] = 1(xt,k)
′Mrn

= rn + 1(xt,k)
′Mγrn

where rn := rn · µ0 = 1(xt,k)
′(µ0ι

′)′rn is the long-run mean return for asset n. The operator

M′
γ drives purely transitory variation.7 In corollary (7.6), we establish the classic Wold

representation applied to returns,

Rn,t+1 = rn + rn ·
∞∑
s=0

(M′
γ)s1(ut+1−s)

In lemma (7.2), we identify ν = M′1(x·,k) with probability measures over X given x·,k for

any k . Hence, the decomposition states that any transition probability can be written

pi,j = µj + γi,j (3.3a)

for order pairs x[i], x[j]. 3.3a indicates that conditioning on xt,i we arrive at xt+1,j with prob-

ability equal to the long-run occupation rate of the coordinate j plus a correction term γi,j.

In corollary 7.1.2, we show that Mγι = 0, i.e.,
∑

j γi,j = 0. Hence, if any individual term

γi,j is nonzero for a given i, then at least one of the entries is negative for that i.

7We assume throughout that the columns of M′ are not each identically µ0, so the decomposition is
nontrivial (i.e., M′γ 6= 0).
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1.3.3 The Spectral Gap

The spectral gap measures the difference in levels between the two largest eigenvalues of a

Markov operator. The spectral gap provides a parsimonious statistic for finite sample de-

viations from stationarity. If asset returns are commensurate with Markov dynamics, the

spectral gap measures the difference in the squared prices of risk associated with the positive-

supply market factor and the next largest source of common variation.

Transition dynamics in general are distinct from dynamics of conditioning information,

but can be characterized tractably. Using proposition (7.1) and corollaries (7.2)-(7.3), ex-

pected return dynamics are

Et[Rt+k]− Et−1[Rt−1+k] = ∆[(M′)
k
xt−1]

= ∆
(
M′

γ

)k
xt−1 + ∆Êt−1,k

The term ∆
(
M′

γ

)k
captures changes in transition probabilities conditionally. Following

Dyson (1962), or Tao (2010), the leading order terms for dynamics of
(
M′

γ

)k
are

∆[
(
M′

γ

)k
] = −(1− λ2)−kγγ′ + o (·) (3.1s)

The kernel function γ of Mγ can be viewed as the left eigenvectors of I −Mγ , even if M

is not reversible. Lower eigenvalues of M are eigenvalues of Mγ . We show this in sections

7.4-7.5. Setting 〈γ, 1〉 = γ, and ∆Êt−1,k = 0 and conditioning,

Et[Rt+1]− Et−1[Rt] = −ζ−1
t γγxt−1 (3.2s)

describes time-varying mean returns. ζt = λ1 − λ2 = 1− λ2 is the spectral gap of M.

The dynamics of spectral data provide a summary for the dynamics of the risk prices

because in equilibrium the risk prices are eigenvalues. We consider a fixed known covariance

matrix plus mean zero i.i.d. random perturbations.
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1.3.4 Identification with Empirical Covariance

The process for expected returns is described by the dynamics of the spectral gap. We

identify the spectral gap from the PCA of the asset return variance-covariance matrix. We

obtain two expressions. The first is from the Markov generator,

V(R) = UD1−λU
′Σ

where D1−λ := (I −Λ)−1 and Λ contains the singular values of data generated by M. The

second is from a singular-value decomposition (SVD) of observed asset returns,

V(R) = VΛPCAV
′

Equating expressions

VΛPCAV
′ = UD1−λU

′CC ′

where CC ′ = Σ is the Cholesky decomposition of the covariance matrix of forecast errors

ut+1 = r(xt+1) − (Mr)(xt). For the benchmark CC ′ = Σ = I, pointwise identification can

be stated

ζ−1 = (D1−λ)2,2 = (ΛPCA)2,2

We will use this ζt to define the changes of measure h. From here, we can represent the em-

pirical time series of returns in the forms 3.2b, 3.2s and in the Wold form (corollary (7.6)).

We do not recover “true” physical transition dynamics from the identification as debated

in Ross (2015) and Borovicka, Hansen and Scheinkman (2017), although clearly we use re-

lated machinery. Instead we recover incremental changes to the balance of deviations from

the Perron-Frobenius limit. The technical identification of the Markov components from the
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PCA of asset returns, developed in sections (7.3.1) and (7.4) of the appendix, provides the

complete details.

1.4 Empirical Implementation

1.4.1 Nominal Forecasts

We construct nominal risk factor return forecasts within each rolling window for several

horizons k separately. Nominal forecasts are fitted values of factor returns on past dividend

yields and past returns. The sample window is truncated for each t depending on k, so that

the effective windows for nominal forecasts are τm(t, k) := [t − (TM − k), t]. In the main

test results reported, we reduce the window for all returns and forecasting series to that of

the maximum horizon k nominal forecast series, τm(t, k). More nuanced procedures do not

improve the performance significantly.

Nominal forecasts should not be confused with the forecasts made using the decompo-

sition, which are the basis of the o.o.s. tests. The derived forecasts perform significantly

better than the nominal forecasts used as inputs because the nominal forecasting procedures

exploit none of the Markov structure of equilibrium asset returns.

1.4.2 Sample Window and Mixing

A distinction is made between the window size Tm and the mixing times N(ε0) for threshold

ε0 > 0. As a benchmark, the fixed window size Tm proxies for the stationary mixing times

Nt(ε0) = N(ε0, Rt−Tm,t). The mixing time at t is defined

Nt(ε0) := min
s

{
R+ 3 s ≥ t : max

x∈X
‖ ĥt,t+s(x)− µ0(x) ‖≤ ε0

}
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In words, the mixing time is the shortest amount of time it can take for the maximum total

variation distance between rows of the transition matrix to be within a threshold of size ε0.

Using the convergence results from proposition (7.1) part (II), we can bound the mixing time

N∗t (ε0) = log(ζ0,t)
−1[log(ε0)− log(χt)] (4.2)

where χ0µ0 = ĥ0,0 is the initial statistical likelihood ratio of the conditional to the uncondi-

tional distributions. Changes in the window size Tm are justified by changes in Nt(ε0), which

for fixed ε0 > 0 varies through estimates of χt and ζ0,t. We verify ex-post that we cannot

distinguish the sequence of mixing times Nt(ε0), t ∈ [0, T ] from a covariance stationary pro-

cess.

It is also possible to choose the window size in each period Tm = Tm(t) to minimize the

`2- distance between the mixing time estimate for that period and a fixed target mixing time

N0(ε0). Here, the mixing time estimator is formally a transformation of a random sample.

This objective corresponds to a well-defined extremum estimator. However, empirically we

find this step produces very little movement in the window size Tm(t) over t.

1.4.3 Data

For priced risk factors, we use monthly returns data on the Fama-French three-factor, Fama

French three factor plus momentum (Carhart), and Fama-French 5- factor models. The

Fama-French three factors are the Market, Value (HML) and size (SMB), rebalanced annu-

ally. Details are in Fama and French (1993). Momentum is constructed from a portfolio long

2-12 month winners and short 2-12 month losers ranked in the cross-section and truncated

at the 30% and 70% percentiles. Each reported momentum sorted portfolio is an average of

small and large-cap momentum stocks. Momentum is rebalanced monthly.

We consider several cross sections of test assets including the 25 size-BTM portfolios,

21



the 25 size-BTM plus 10 Momentum portfolios, the 25 size -operating profit portfolios and

the 32 size-BTM-OP portfolios. The size-BTM portfolios are annually rebalanced and are

comprised of the intersection between five market-cap sorted stocks with five book-equity

to market-equity (BTM) sorted stocks. The size-BTM plus Momentum add 10 portfolios

sorted on 2-12 month returns cross-sectional rankings. The size-OP portfolios sort annually

on operating profits (OP): “annual revenues minus COGS, interest expense, and SG&A”,

normalized by trailing book-equity, and intersect with size. The factor returns data and the

test asset returns data are obtained from Ken French’s website.8

We use predictor variables from Goyal and Welch (2008). Data are available on Amit

Goyal’s website.9 We use monthly data for the rolling average 12-month dividends, the rolling

average 12-month earnings, and the index level for the S&P500. Data are from 1926-2016.

Monthly value-weighted and equal- weighted index total returns and ex-dividend returns over

1926-2016 are from CRSP. 18 portfolios sorted by cash flow to market capitalization and 18

sorted by dividend to market capitalization over the same period are from Ken French. We

form three high-low portfolios for cash flow and three for dividends, leveraging the cash flow

spread at denary, quinary and tertiary scales. The breakpoints are available on Ken French’s

website.

1.5 Empirical Results

1.5.1 Latent Factor Dynamics

Persistence estimates for the leading and penultimate latent factors are reported in Table

1. We report coefficient estimates from a first-order autoregression for the demeaned factor

processes. The leading factor exhibits no predictable deviation from its mean. In contrast,

8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

9http://www.hec.unil.ch/agoyal/
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Figure 1.2: Predictability Term Structures for the Carhart Factors
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(a) Out of sample forecast performance for each of the Carhart four factors. Value is forecasted
by the volatility of the spectral gap. The spectral gap is calculated up to time t using data from
[Tm − t, t] and used to forecast returns for various t + k, including returns between periods t + 1
and t+n+ 1 for n = 1, 2, 4, 8, 12. Top panel has Tm = 8yrs. Lower panel has Tm = 12yrs. Carhart
Factors are the Fama-French Market, Value and Size factors plus the Momentum factor (UMD).
Quarterly data Q1 1967 to Q3 2015 are compounded monthly factor returns from Ken French’s
website.
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the penultimate factor is highly persistent. Fluctuations around the mean of the penulti-

mate factor are predictable, stationary and statistically significant. GMM standard errors

adjust for serial correlation. The sharp contrast in predictability between the leading and

penultimate factors is consistent with the predictions of the Markov asset pricing model with

nonzero stationary mixing times.

Dynamics of the factors of realized returns are plotted in Figure 2. Figure 2 in combi-

nation with Table 1 restate the findings in Alvarez and Jermann (2005) that the bulk of

pricing kernel variation comes from the permanent factor. Transitory factors are plotted in

Figure 3, which shows the time series of the time-varying expected return factors. Figure 1

charts the empirical densities of conditional risk prices. Figure 4 plots the dynamics of the

empirical spectral gap. The spectral gap is strongly countercylical. The interpretation of

Figure 4 is that volatility increases in bad times, but so does the concentration of volatility

on the permanent factor.

Latent and Conventional Factor Composition

The martingale factor captures 84% of the common time series variation in asset returns.

The market and the martingale factor are almost identical. The conventional value (HML)

factor provides a striking contrast to the market factor. Table 8 breaks down the market and

HML loadings on the latent expected return components. Variation in returns to the value

factor load significantly on the leading expected returns factor, which drives transitory pre-

dictable fluctuations in mean returns. The conventional market factor does not significantly

load on the expected return factors.
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Table 1.1: Market Return Predictability by Dividend Yield, cay and the Spectral Gap

Panel I shows out of sample predictability of market returns by the spectral gap. The spectral gap
is the difference between the conditional volatilities of the permanent and first transitory factors,
measured by the second conditional eigenvalue of the empirical decomposition of asset returns.
II. shows the out of sample predictability for the dividend yield. Panel III. shows out of sample
prediction statistics for cay. The spectral gap excluding non-market volatility is given in panel IV .
The 12-month moving average of monthly dividends, the market index level and cay are from Goyal
and Welch. Fama and French factor returns quarterly are from Ken French. Data are quarterly
from 1967 Q1 to 2015 Q3.

Full Sample Estimates Out of Sample Statistics

Predictor k (quarters) coefficient
φ̂j,k

t : H0(0) R2 adj.R2

I. 1 2.39∗∗ 2.770 0.038 0.033
Spectral
Gap

2 4.51∗∗ 3.650 0.065 0.060

4 8.01∗∗∗ 4.805 0.108 0.104
8 14.76∗∗∗ 6.893 0.203 0.199

II. 1 64.066 1.256 0.008
Dividend 2 143.25∗ 1.929 0.019
Yield 4 243.69∗ 2.385 0.029

8 355.27∗∗ 2.555 0.034

III. 1 47.51∗ 1.944 0.019
cay 2 101.01∗∗ 2.821 0.040

4 196.51∗∗∗ 3.974 0.076
8 388.12∗∗∗ 5.901 0.157

IV. 1 1.48∗ 2.136 0.023
Market Gap 2 2.90∗∗ 2.895 0.042

4 5.29∗∗ 3.896 0.074
8 9.15∗∗∗ 5.095 0.122
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Table 1.2: Persistence of first and second components of realized returns.

The first component is not predictable, while the second and trailing components are predictable
when expected returns are time-varying. For the j’th component of returns we report the estimated
autoregressions

xt,j = φ0,j + φ1,jxt−1,j + ut,j

The components are obtained over rolling Tm = 15 year samples of realized returns supplemented
with the forecast errors from dividend yields over several horizons. A singular value decomposition
of the generalized covariance matrix orders orthogonal components by contribution to variation
in realized returns and lower frequency variation from surprises to historical forecasts. We report
autoregressions over the full sample for components j = 1, 2.

coefficient estimate s.e

Leading Factor φ̂0,1 0.312 0.624

φ̂1,1 0.089 0.072

Trailing Factor φ̂0,2 −0.059 0.032

φ̂1,2 0.649∗∗∗ 0.055

(a) The penultimate component of the realized returns is the leading component of expected returns.
Returns data are quarterly from Q1 1967 to Q3 2015. Fama French and Carhart factor model
returns are from Ken French’s website.
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Figure 1.3: Time Varying Components for the Market, Momentum and Value
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(a) Dynamics for the components of common variation for the market, momentum and value expected
returns, expressed as a percentage of the total variation of factor returns. Expected return variation comprises
roughly 20% of the variation in total returns. Expected return variation comprising market returns contribute
an average of less than 14% of variation in total returns, and comprising momentum returns contribute an
average of less that 5% of the variation in total returns. Quarterly data Q1 1967 to Q3 2015. Fama French
and Carhart factor model returns are from Ken French’s website. NBER recessions are in blue.
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Table 1.3: HML Return Predictability

(a) Value return predictability, assessed over the entire sample using a time-series of forecasts made
out of sample. The predictive regression is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t ∈ {σ1/σ, σ2}. The rolling Tm samples are augmented with information contained in
the nominal forecast errors at lags 2k, k ∈ [0, 5] ∩ N. Nominal inputs are listed. Data are from Q1
1967 to Q3 2015 from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

Nominal
Input

horizon
(quarters)

predictor estimate t : H0(0) R2 adj.R2

DP & 1 σ2 4.97 1.339 0.009 0.004
10-1 CF σ1/σ −7.37 −1.272 0.008
Portfolio 2 σ2 24.29 ∗∗∗ 4.505 0.096 0.092

σ1/σ −38.41 ∗∗∗ −4.573 0.099
4 σ2 40.14 ∗∗∗ 5.229 0.127 0.122

σ1/σ −67.46 ∗∗∗ −5.702 0.147
8 σ2 46.41 ∗∗∗ 4.31 0.092 0.087

σ1/σ −80.96 ∗∗∗ −4.887 0.115
12 σ2 46.15 ∗∗ 3.830 0.075 0.070

σ1/σ −84.34 ∗∗∗ −4.560 0.104

DP 1 σ2 28.84 1.501 0.012 0.006
σ1/σ −79.50 −1.427 0.010 −

2 σ2 125.66 ∗∗∗ 4.508 0.097 0.092
σ1/σ −370.56

∗∗∗
−4.598 0.100 −

4 σ2 191.03 ∗∗∗ 4.768 0.108 0.103
σ1/σ −576.42

∗∗∗
−4.993 0.117 −

8 σ2 214.77 ∗∗ 3.831 0.074 0.069
σ1/σ −666.78

∗∗∗
−4.131 0.085 −

12 σ2 122.28 ∗ 1.941 0.020 0.015
σ1/σ −383.66 ∗∗ −2.107 0.024 −
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1.5.2 Forecasting

We use the common sources of transitory variation to predict factor returns out of sample.

Results are reported in Table 2. The spectral gap (lagged for predictive regressions) forecasts

the market returns with an o.o.s. R2 of 3.8% quarterly, 6.5% semiannually, 10.8% annually

and 20.3% biannually. Other variants of the spectral gap, including the common negative

exponential transform, perform similarly but no better. cay performs relatively well, giving

an out of sample R2 of 7.6% on an annual basis, while the dividend yield generates forecasts

with o.o.s. R2 of only 2.9%.

This latter number contrasts with conventional wisdom because it is an out-of-sample

estimate. The original predictability studies by Campbell and Shiller (1989) were estimated

in sample (see Goyal and Welch, 2008). The roughly 10% R2 reported by Cochrane (2008)

is calculated using the Campbell-Shiller decomposition, which jointly restricts cash flow and

discount rates by design. The forecasts in Cochrane (2008) are necessarily evaluated in

sample using fitted values from a vector-autoregression (VAR).

In fact, our evidence corroborates the importance of an aggregate measure of dividend

yields for forecasting risk premiums. While the short-horizon performance of the dividend

yield is poor out of sample, explained variation grows monotonically, resulting in the stylized

fact that low yields today (high prices) are followed by low returns tomorrow. As emphasized

by Cochrane (2011), variation in the dividend yield corresponds entirely to variation in mean

returns (at the aggregated level), and more so at the long end.

Our benchmark nominal forecast variable is the dividend yield for the CRSP value-

weighted index. We construct a rich information space for our decomposition by calculating

optimal return forecasts using the dividend yield, separately for lags of 2k, k = 0, 1, 2, ..., k+.

Surprises from different lag lengths are calculated separately. An AR(1) generates signals

that are all deterministic functions of each other, eliminating signals relevant over different

time scales when they exist.

We also find that constructing nominal forecasts using the CRSP ex-dividend value-
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weighted index return translates into significantly poorer performance. Value in this case

cannot be forecasted. The explained variability in market returns does not exceed 10%

out of sample at any horizon in this case. Interestingly, an equally-weighted dividend yield

used to generate nominal forecasts also results in diminished efficacy. Unsurprisingly, size

is hit least by this distinction. At the three-year horizon, the value weighted dividend yield

nominal input predicts 34.7% of the variation in returns to the SMB portfolio. Using the

equal -weighted yield generates an R2 of 30.5%.

Several features of the value forecasts reported in Table 3 are striking. First, at the annual

horizon, the variation in value (HML) returns is 14.7% predictable, and semiannually, 9.9%

predictable. Because HML is a priced risk factor, these percentages measure the fraction

of the variability in value premia that are predictable. Said another way, they capture

the time-varying price of risk for exposure to innovations in the HML replicating portfolio.

Second, unlike market predictors, which, as emphasized by Cochrane (2008, 2011), increase

in explanatory power monotonically with horizon, the value predictors have a half-life of

about a year. In every case, the two year prediction is less effective than the one year

prediction.

The shape of the term structure of the time-varying value premium is robust to the

choice of predictor as long as the predictor works. We report two normalizations of the sec-

ond moment of the spectral gap that forecast HML returns. Every other priced risk factor we

forecast has an upward sloping term structure of predictability, making the value premium

unique among priced sources of risk in U.S. equity markets. This finding is also consistent

with the findings in Koijen, Lustig and Van Nieuwerburgh, showing value returns load on

the transitory variation picked up by the Cochrane-Piazzesi factor.

From Table 4. the momentum factor returns are predictable. The first two years ex-

plained variation is low, but accelerates after the second year to meet or exceed market

predictability after the 3-year horizon. Momentum predictability jumps from 6.4% at one-

year to 16.1% and 31.4% at the two- and three- year horizons, respectively. The curvature
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Table 1.4: Market Return Predictability

(a) The spectral gap predicts market returns. Predictability regressions are calculated over the
entire sample. The predictor series ζ̂t is constructed using data up to t for forecasts of returns at
t+k or t+1+k, k ∈ {1, 2, 4, 8} on rolling windows of Tm =15yr histories. The predictive regression
is

Rt+k,j = a0 + a1Gj(ζ̂t) + εt

where Gj(ζ̂t) is a functional of the spectral gap time series that can vary only by portfolio, indexed
by j. The rolling Tm samples are augmented with information contained in the forecast errors
from forecasts made at various lags. The variable ζ̂ is shorthand for the empirical estimate of the
spectral gap. Tr1 is the (non-normalized) largest contribution to the trace of the covariance matrix.
Monthly dividend yields, Fama -French 3-factor and Carhart model returns and cay data are from
Q1 1967 to Q3 2015 from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

horizon
(quarters)

target predictor estimate t : H0(0) R2 adj.R2

1 RM ζ̂ 2.546 2.983 0.044
(Tr)1 1.354 1.893 0.018 −
ζ̂ + (Tr)1 1.169 2.683 0.036 0.031

2 RM,2 ζ̂ 3.827 3.065 0.047
(Tr)1 2.357 2.257 0.026

ζ̂ + (Tr)1 1.879 2.956 0.044 0.039

4 RM,4 ζ̂ 7.708 4.486 0.098
(Tr)1 4.682 3.249 0.054

ζ̂ + (Tr)1 3.778 4.320 0.091 0.086

8 RM,8 ζ̂ 13.181 5.626 0.151
(Tr)1 7.013 3.568 0.067

ζ̂ + (Tr)1 6.167 5.142 0.129 0.124

12 RM,12 ζ̂ 18.307 6.480 0.198
(Tr)1 9.032 3.791 0.078

ζ̂ + (Tr)1 8.494 5.800 0.165 0.160
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of momentum predictability is increasing and convex and in this way stands out from the

nearly linear term structure of market predictability. Standard market predictors do poorly

with momentum, reported in Table (10). Earnings to price, cay and the dividend yields all

predict less than 3% of the variation in momentum return at any horizon.

Figure (1) contrasts the term structures of return predictability for the value (HML),

Momentum (UMD), market and size (SMB) factor replicating portfolio returns. Explained

variation grows monotonically in forecast horizon for the market, momentum and size. Time-

varying expected returns to value are predictable in the short-run, but become negligible in

asymptotic forecasts. The market term structure is nearly linear. The momentum term

structure is a locally increasing convex function of horizon while value predictability is a

concave function with a local maximum at the one-year horizon. Forecasts are given by

the lagged spectral gap normalized to match the fit of the realized factor returns on rolling

historical Tm = 15 year samples.

These forecasts meet or exceed existing predictors in the literature to our knowledge,

with the exception of Kelly and Pruiit (2013) in the case of market returns. Kelly et. al find

an o.o.s R2 of 13% for the market, omitting windows in a neighborhood the forecast target.10

In the case of momentum returns. Huang (2016) reports a monthly out of sample R2 of 0.5%

for momentum returns using the cross-sectional dispersion of moving average annual returns

(the “momentum gap”). This compares roughly to the spectral gap’s forecast R2 of 6.4%

when scaled to the one-year horizon.

Using the CRSP value-weighted index ex-dividend as the nominal input produces limited

forecasting power but has interesting implications for the market. The market o.o.s. R2’s of

2.8% and 6.9% at the 1 - and 2 -year horizons accelerate to 16.3% at 3-years. At 3 years we

report a significant time-series coefficient point estimate 15.54 with t- statistic 5.76%. This

suggests capital gains have a non-negligible role forecasting aggregate returns over longer

10Using future observations implies these forecasts cannot be implemented in real time. However, they
may be a better measure of the forecasting ability of a theoretical investor within the model. Kelly et. al
can also be implemented in non-Markovian settings.
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Table 1.5: Size (SMB) and Momentum (UMD) Out of Sample Predictability

(a) Predictability regressions are calculated over the entire sample. The predictor series ζ̂t is
constructed using data up to t for forecasts of returns at t+ k or t+ 1 + k, k ∈ {1, 2, 4, 8, 12}. The
predictive regression is Rt+k,j = a0 + a1ζ̂t + εt, where ζ̂t is the spectral gap time series. The rolling
Tm = 15yr samples are augmented with nominal forecast errors from forecasts made at various
lags. Q1 1967 to Q3 2015 data from Ken French, Goyal and Welch (2008) and CRSP.

Full Sample Estimates Out of Sample Statistics

Portfolio quarters k variable â1 t : H0 = 0 R2

Size 1 ζ̂ 1.067 2.252 0.026

(SMB) 2 ζ̂ 1.819 2.787 0.039

4 ζ̂ 4.175 4.507 0.098

8 ζ̂ 8.495 6.363 0.185

12 ζ̂ 12.874 7.485 0.248

Momentum 1 ζ̂ −0.544 −1.305 0.009

(UMD) 2 ζ̂ −1.207 −2.070 0.022

4 ζ̂ −2.939 −3.566 0.064

8 ζ̂ −6.209 −5.854 0.161

12 ζ̂ −10.395 −8.820 0.314
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horizons. Using the equally weighted CRSP ex-dividend index to construct nominal forecast

inputs unsurprisingly allows our model to forecast size, although not quite as well as with

nominal dividend yield inputs. The former and latter 3-year o.o.s. R2 for size are 30.05%

and 34.7% respectively.

We reproduce the analysis shifted forward an extra period to address potential concerns

about systematic measurement error. If prices are measured with error in a persistent direc-

tion then returns from contiguous intervals are spuriously correlated. This problem is not

as likely in liquid stock markets as over the counter or emerging markets contexts. This is

confirmed in table 10 for the case of momentum returns, where the annualized point estimate

for forecasts from t+ 1 7→ t+ 1 +k is equal to the point estimate obtained from t 7→ t+k up

to one significant digit. We calculate the staggered forecasts for each of the portfolio returns

we analyze and find no significant discrepancies.

The patterns of predictability extend to the full sample of available U.S. equity data,

beginning in 1926 when the NYSE emerged as a dominant national exchange, among other

reasons.11. The term structure of momentum is convex and increasing beyond the 1-2 year

horizon. Value is concave and decreasing after the 1-year horizon, both as in the primary

sample. The long-end of the value term structure decreases more slowly and from a slightly

lower rate of predictability, maximized at an out of sample R2 of 11.2%.

Cochrane (2011) emphasizes the importance of measuring the volatility of the expeted

return estimates in addition to the standard errors of the estimators. Below, we report a

test case for the market out of sample expected expected return series by calculating the

volatility over the sample. As in Cochrane, the volatility is the same order of magnitude as

the level. The tradeoff is smoother here than Cochrane’s (2011) in sample VAR estimates,

generating a Sharp ratio of over 0.7 in each test case.

11Brown, Mulherin, and Weidenmier (2006) discuss the pre-1926 history of the stock exchange industry in
the U.S.
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Table 1.6: Means and volatilities of Market forecasts under 4 regimes: Full sample 1967-2017
and pre-crisis 1967-2006 periods, under Carhart and CRSP HLCF earnings spread nominal
inputs.

Model Variable Standard Deviation Mean Forecast Sharpe Ratio

Carhart Full Forecast 9.924 7.084 0.714
resid. 13.786 −

Carhart Pre-Crisis Forecast 9.742 7.084 0.727
resid. 13.915 −

HLCF Full Forecast 9.410 7.084 0.753
resid. 14.142 −

HLCF Pre Forecast 9.064 7.084 0.782
resid. 14.366 −

1.5.3 Carhart Model Factor Replication

The timing portfolio returns for a particular factor are not identical to the sequence of

conditional forecasts obtained for that factor. This is because the conditional forecasts are

constructed by exploiting information in the errors from past nominal forecasts that are not

replicable in the space of the factors’ test assets. Nonetheless, a projection of the conditional

forecasts onto the test asset space improves the efficiency properties of the factor replicating

portfolios.

The timing portfolio for HML returns can be split into two components. The raw HML

Sharpe ratio over the full sample is 0.177, while the first HML timing component achieves

0.230 and the second component achieves 0.283. Results are stated in Table 5. The hybrid

timing component replicates HML returns but with lower volatility, producing a Sharpe ra-

tio of 0.301 over the full sample. HML does better prior to the 2007 financial crisis with a

Sharpe ratio of 0.190. The timing portfolio components pre-crisis generate Sharpe ratios of

0.259 and 0.223 for the penultimate and trailing components, respectively. The overall tim-

ing portfolio does less well excluding the crisis, but we still detect a significant improvement.

The trailing component - both the trailing factor and the weight of the HML replication on

that factor - drives performance of the HML timing portfolio during the financial crises.

35



When several components are predictable, a simple diversification argument suggests the

hybrid returns will be more efficient than either of the individual component replicating

returns, which is part of what we see here. This intuition is delicate: theory tells us that

investors are willing to sacrifice some mean-variance efficiency for inter-temporal hedging

opportunities represented by the HML factor. We should expect to see a diversification ben-

efit from combining the components within the HML factor, as we do, but it is not obvious

what to expect combining components from different factors with the market.

The momentum factor timing portfolio is concentrated on a single expected return fac-

tor. The Sharpe ratio rises from 28% to 32.8%. The Sharpe ratios, means and volatility are

significantly estimated. Moreover, we reject the null hypothesis that the difference in the

Sharpe ratios is zero. Results are reported in Table 5.

The SMB timing portfolio represents an improvement in mean-variance efficiency of 63%.

Statistics are reported in Table 5, along with the standard factor replicating portfolio statis-

tics for reference. Interestingly, the incremental gains in efficiency do not arise from more

precise estimates of the conditional price of risk for the size factor. This and related findings

are the subject of the proceeding section.

1.5.4 Cross-sectional Implications

We find some of the returns to the timing portfolios provide additional cross-sectional pricing

power. This is consistent with the view that the efficiency gains arise through a better

accounting of time variation in risk prices. Full sample tests are implemented using Fama-

MacBeth, with the expected return factor-based timing portfolio returns treated as risk

factors.

In Table 6, we report cross-sectional pricing implications for the market and value tim-

ing portfolios. Prices of exposure to returns on the market timing portfolio are high and

significant. α’s are indistinguishable from zero. Residual variation in the market is not
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Table 1.7: Sharpe Ratio Comparisons
Value, Momentum, and Size Timing Portfolios

Top: Full sample and pre- 2007 financial crisis Sharpe ratios and t- statistics for HML and HML
timing portfolio by component. Statistics correspond to pre-crisis estimates. Mid: Sharpe ratios for
momentum, the first two components of the expected return factors weighted corresponding to their
contribution to momentum, and the momentum timing strategy. Lower panel: size, size timing
portfolio and market Sharpe ratios. Test assets are the Fama-French FF25 Size/BTM plus 10
momentum portfolios. Factor data are the FF3 plus Momentum factor returns. Data are quarterly
from 1927 Q1 to 2015 Q3.

Strategy Value Penultimate Trailing Value Timing

Monthly SR
Full Sample 0.177 0.230 0.283 0.301
Pre-2007 0.190 0.259 0.223 0.243

(3.403) (2.920) (3.191)

Strategy Momentum Momen. Tim-
ing

Monthly SR
Full Sample 0.2801 0.3283 0.3009 0.3284

(4.055)

Strategy Size Size Timing

Monthly SR
Full Sample 0.1352 0.2138

(2.941)
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Table 1.8: Cross-sectional Pricing for Market and Value Timing Portfolios

In the Fama-French three and Carhart factor model test asset spaces, the Market timing portfolio
contains the pricing power of the market portfolio. The residual variation MKTres is not priced.
Value remains priced in both economies. In the Fama-French three factor model cross-section,
the value timing portfolio is priced and so is the residual variation in the value factor. Market
in this case is not priced. The timing portfolios are projections of the out of sample forecasts of
factor returns made using the spectral data pertaining to a Markov operator. The Markov spectra
are identified from an empirical PCA of asset returns augmented with linear combinations of past
forecast errors that render the effective transition dynamics “memoryless.”

coefficient λ̂M s.e. t−stat λ̂V s.e. t−stat Test
Econ-
omy

α 0.446 1.592 0.280 FF3 +
Market
timing

9.711 2.514 3.862 Market
Timing

HML 1.307 0.426 3.066
Mktres 3.618 1.544 2.344
SMB 0.814 0.506 1.609

α 0.978 1.738 0.563 Carhart
+

Market
timing

7.989 2.627 3.042 Market
Timing

HML 1.394 0.405 3.444
Mktres 2.721 1.790 1.520
UMD 0.662 1.862 0.355
SMB 0.771 0.504 1.529

α 2.293 1.702 1.348 FF3+
Value
timing

9.982 2.507 3.982 Value
Timing

HMLres −0.486 0.182 −2.671
MktRF −0.007 1.593 −0.004
SMB 0.860 0.508 1.692

Coefficients are prices of risk. Factors include the market residual Mktres, HML and SMB (top
panel) and the market residual, HML, SMB, and Momentum (lower panel). UMD is ”up minus
down” for momentum portfolios long on previous year’s winners and short previous year’s losers,
both in cross-sectional ranking. Test assets are the Fama-French FF25 Size/BTM portfolios, with
momentum portfolios in the lower panel. Robust standard errors are Newey-West via GMM. Both
standard errors and t− stats are reported for convenience. Factor data are the FF3 factor returns.
Data are quarterly from 1927 Q1 to 2015 Q3.
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significantly priced when separated from the market timing portfolio, and its effect vanishes

entirely with inclusion of the momentum factor. A similar effect is true for the value timing

portfolio, although the residual variation is not driven out by inclusion of momentum (not

reported). Residual variation in returns is defined as variation in the residuals of an OLS

regression of the factor returns on its corresponding timing portfolio.

1.5.5 Related Econometric Methods

This section provides more detail in the context of contrasting similar decompositions relying

on Principal component analysis (PCA).

PCA

Principal component analysis (PCA) can be implemented on a rolling basis to produce

out-of-sample predictions. A classical linear PCA of the return variance-covariance matrix

produces the representations

Vt(R) = V̂tDtV̂
′
t

where the t indicates we consider PCA calculated on rolling windows for each t. Two

important considerations distinguish our work from these representations. First, we identify

maps from Vt(R) to the second moments of a Markov operator, which we regard as generating

dynamics of asset returns in equilibrium. We denote the outcome of this map Vt(R) = VtΛV
′
t .

Second, to hold mixing times a fixed distance from zero, we build a model of fixed length
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Tm, written V DV ′, constructed as follows

Vt,tDt,tV
′
t,t = Vt,tΛt,tVt,t

Vt,t−1Dt,t−1V
′
t,t−1 = Vt−1,t−1Λt−1,t−1V

′
t−1,t−1

...

Vt,t−(Tm−1)Dt,t−(Tm−1)V
′
t,t−(Tm−1) =

Vt−(Tm−1),t−(Tm−1)Λt−(Tm−1),t−(Tm−1)V
′
t−(Tm−1),t−(Tm−1)

At time t, each of the Tm entries, call them j ∈ [t − (Tm − 1), t], come from the innovation

term in the rolling window PCA at time j, indexed by (j, j) to indicate the front-most entry

in the component series obtained at time j.

Projection onto the empirical bases implies the exact multi-variable representation for

each scalar realization of the time-t returns

Rk,x,t = q̂0,k(x, t) +

N0∑
n=1

q̂n,k(x, t) (3.3a)

where q̂ are the orthogonal components, with in particular q̂n for 1 ≤ n ≤ N0 corresponding

to weighted columns of Vt. N0 ≤ N is the dimension of the representation.

Each period we produce a decomposition of variance over TM = 15- year histories but

use the contemporaneous entry for our representation. The distinctions between a com-

panion rolling PCA arise from changes in the time-effect term in each period, and from

cross-interacting between the components over medium-term histories. These interactions

are prohibited by a classical PCA analysis.

A comparison of a rolling, smoothed PCA our model is illustrated in figure 7. The

sequence of contemporaneous decompositions is more responsive to compositional changes

associated with rare and asymmetric events. This can be seen in the form of violations of

orthogonality between components across the two models. Components of the fixed mixing
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Figure 1.4: Outlying Realized Correlations
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(a) Rolling correlations between principal components and smoothed latent factors. The differences
between the two are highlighted by the outlying correlations between the PCs and the Markov bases.
Downturns in the business cycle are marked by jumps from zero to near one, in absolute value, in
the correlation between the trailing components of the two models.
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model become extremely correlated with cross-components in the PCA model during out-

lying and asymmetric events, while the components within each model are forced to stay

orthogonal, missing some of the news content in the data. As suggested, the sources of this

responsiveness are the time-effect term, and the flexibility of allowing components histori-

cally to be correlated but contemporaneously orthogonal.

1.5.6 Gains in Dimension

Using the full BTM 25 xsection, we compare the dimension of the representation of 97.5%

variation threshold we find the inclusion of the nominal forecasts increases the dimension

between one and three degrees. Heuristically, the dimensions can be thought of as state

variables.

The fact that forecasts improve for horizons inside of four years as we bring the window

Tm down from Tm = 15 to Tm = 12 and Tm = 8 is not surprising if the filtering procedure

is working as expected. These choices represent an increase in the mixing time holding a

threshold fixed. As a result, higher frequency fluctuations are emphasized at the expense of

lower frequency transitory variation.

1.5.7 Summary of Empirical Method

To summarize, pick a threshold ε0 > 0 for the mixing times Nt(ε0) and target N0(ε0). This

choice implies some sample window size Tm such that the mixing time evaluated on the

window τm(t) is near N0(ε0). Within each sample window τm(t), nominal forecasts are fitted

for each of the risk factor returns and combined with the contemporaneous realized returns

to create an augmented panel. Calculate a singular value decomposition (SVD) of the series

in this panel and extract the significant dimensions. Transform the diagonal elements using

Λ 7→ C(Tm)(1−Λ)−1. Forecast the component dimensions t→ t+1 by linear autoregressions
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Figure 1.5: Orthogonal Dimensions Count 85%− 97.5% -thresholds
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(a) The time series of the number of orthogonal dimensions needed to explain each threshold
percentage of the variation from that date on a rolling historical 15-year window. Quarterly Fama
-French 3-factor and Carhart model returns data are from 1967 Q1 to 2016 Q4. NBER recessions
are in blue.
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(do not include the first component in general). Regress the target portfolio returns on the

components in window [Tm − t, t] and keep the coefficient estimates. The latent component

forecasts give forecasts for the target portfolios by weighting the component forecasts with

the portfolio’s coefficient estimates.

The specialized case where the best predictor is the spectral gap follows from equilibrium

asset pricing theory, as described in the modeling sections. However, statistics contained in

the trailing solutions to the eigenvalue problems are myriad. The above described predictive

routine applies generally, as long as a first-order transition representation is justified.

1.6 Conclusion

We extract predictable components from priced risk factors and show these components can

be used to improve allocation efficiency in real time. Latent, transitory components of factor

risk prices contain valuable information about near and medium term evolution of the state

of the economy. Novel evidence connecting time-series predictability and time-varying risk

prices for common factors in equity markets is provided.

The spectral gap measures the fraction of volatility concentrated on long-run shocks,

varies through time and predicts market returns. We use these factors to predict the market

as well as several portfolios including value, size and momentum. For the market and value,

we find out-of-sample R2’s of 10.8% and 14.7% respectively, for annual returns. For size,

annual returns are 13.7% predictable out of sample. Momentum predictability is low at the

short end, but reaches nearly 30% at the three year horizon. More generally, we document a

heterogeneous term structure of predictability across types of portfolios. Most strikingly, the

value premium predictability is concave and most predictable at the one-year horizon, while

momentum predictability is convex. This finding contributes an interesting wrinkle to the

value and momentum “puzzle” regarding the high average returns but significant negative
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correlations of these series.

The discrepancy between the variation of the permanent and transitory components is a

well studied object that emerges in a range of contexts in nature. Because the general repre-

sentation for the concentration of volatility on the leading factor is measured by (one-minus)

the difference between the first two eigenvalues of the Laplacian of a dynamical system,

it is called the spectral gap. In asset markets, the spectral gap and related statistics are

found by specializing a known decomposition of Markov transition dynamics. This decom-

position identifies a factor structure of expected returns from the permanent and transitory

fluctuations. The common sources of transitory fluctuations comprise the expected return

factors. Naturally, the expected return factors are also the common sources of time-series

predictability.

We begin with priced risk factors so we know the benchmark portfolios are priced, and

find that incremental efficiency gains associated with identifying the expected return fac-

tors are also priced. Incremental gains from timing HML are compensation for exposure to

business - cycle news, while timing Momentum compensates for permanent wealth shocks.

Timing gains are not priced for size. We isolate the component of market returns that are

priced but find a residual process with significant variation that has no cross-sectional pricing

power.

Our findings suggest investors are able to allocate capital with more precision using past

returns data alone than previously indicated. This distinction is most relevant in economies

where we distinguish between revisions in state variables given a known, fixed model and

economies where dynamical features require shocks to the model. For example, it is not only

the case that the evolution of technology is uncertain and risky, but also the case that the

way markets equilibrate is uncertain, particularly in the context of the given technological

uncertainty. Because this problem immediately becomes high dimensional, the most natural

device for managing it is high dimensional random variables in the form of random local

transition dynamics. This modeling choice is simplified in practice because the distribution
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of the eigenvalues (and eigenfunctions) of the system are well studied and tractably summa-

rize high dimensional information.

Our characterization of the latent components has implications for economic modeling.

Rational agents making allocations optimally in an asset pricing model must be endowed

with the spectral data. In models where data are initialized at a deterministic invariant

distribution this distinction is immaterial. In more general models, incorporation of spectral

data into the decision makers’ information set can impact model implications.

The predictable component in market returns is related to slow moving cash-flow yields,

placing restrictions on parametrizations of stochastic discount factor models. Two natural

theoretical benchmarks are i.) persistent level shocks to growth under representative Epstein

Zin preferences, and ii.) i.i.d. growth (i.e., output is a random walk) under representative

ambiguity aversion. Hansen (2011) points out that ambiguity averse investors ex-post look

like rational expectations investors if the equilibrium data generating process is the worst-

case model. For plausibly indistinguishable models, the worst case model is the long-run risk

model. The findings and methods in this paper suggest an opportunity to distinguish these

stories in finite samples by looking directly at dynamics in the spectral data (after mak-

ing some assumptions regarding the underlying equilibrium and its data generator). Given

the factor structure of time-varying discount rates, surprise revisions to persistent premia

are priced cross-sectionally (ex-post in finite samples) if the long run risk model is the true

model, but not necessarily when the representative investor is ambiguity averse.

Our analysis revealed the importance of the countercyclical concentration of return

volatility on permanent shocks - both as an economic concept and a convenient modeling

object. This suggests a similar analysis can be fruitful in a variety of other asset mar-

kets. Because these analyses are cast in terms of objects that are common to many asset

pricing models, new empirical evidence implies tractable restrictions to the set of plausible

parametrizations of stochastic discount factor models.
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Chapter 2

Banking with Risky Assets

Introduction

A significant fraction of the typical individual’s net worth is risky but not insurable. This

comes with direct costs, from uninsurable losses, but also indirect costs. Losses in the unin-

surable component of wealth change the composition of an investor’s portfolio. This in turn

requires rebalancing through the remaining, tradeable component of wealth, at prevailing

prices. Direct losses are amplified if market prices are low and selling risky claims is costly.

We model a financial intermediary designed to mitigate these costs. The intermediary

holds the tradeable component of investors’ wealth on it’s balance sheet and issues demand-

able claims as remuneration. Demandability allows bank investors to withdraw up to the

cash value of their deposited endowment in exchange for a pro-rata share reduction in the

risky asset. This arrangement improves welfare when markets are incomplete. The inter-

mediary partially insures shocks directly by facilitating a transfer proportional to one minus

the net capital gain on traded assets. The risk-sharing mechanism links the intermediary’s

balance sheet and the equilibrium pricing kernel. This link provides novel testable implica-

tions.

Investors can rebalance implicitly through the bank rather than directly in securities
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markets when bank assets are risky. To illustrate how this works, note that shocks to the

uninsurable component of wealth are independent of the market, and that ex-ante, each

investor holds her optimal portfolio. Now, ex-post low private income investors have an

unexpectedly high fraction of their total wealth in the risky claim. In response, they liqui-

date risky holdings by exercising the cash option. Ex-post high private income investors are

conversely underexposed to the aggregate claim - but, they acquire a leveraged position in

the risky asset passively. In the simplest case, the net result is that each type attains their

optimal portfolio exactly.

Because the withdrawals are made ex-post based on portfolio demand, state dependence

of the bank’s capital structure reflects a wealth-weighted average of investor’s effective risk

aversion. The ex-post rollover rates capture the representative risk prices in each aggregate

state. Moreover, the ex-ante asset levels capture the representative inter-temporal marginal

rate of substitution (IES). As a result, our theory ties the bank balance sheet to a complete

description of the equilibrium pricing kernel.

A challenge for theories linking intermediation to asset prices through individual prefer-

ences is that intermediary and market institutions should be jointly accessible. In the context

of explaining an institution’s role in resolving incentive conflicts, a common assumption is

to prohibit investors from accessing markets directly. Institutional preferences that reflect

the modified interests of a collection of individuals can then stand-in for a marginal investor.

However, the market restriction is empirically implausible.1 Resulting explanations for equi-

librium asset prices are tenuous. A theory linking banks to asset prices through individual

preferences cannot rely on restricting access of individuals to markets.2

1For exchange-traded equities and indices, the assumption is implausible. The importance of the incre-
mental effort required to access options markets, bond markets, REITs etc, is debatable. In the latter case,
lower observed participation rates are not because of inability to access, but rather a choice not to access.

2In full nuance, the theory cannot produce a representative agent that is restricted. Subtler forms of
heterogeneity in place of blanket restrictions, e.g., the Lucas family device (Lucas 1990), can produce a
plausible theory. Lucas (1990) models a representative “family” by restricting family members to certain
tasks within each period, but then aggregating decisions at the family level. We do not require this device.
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Alternatively, by abstracting from preferences in the population, the institution can be en-

dowed directly with preferences or interests and used as the representative agent.3 However,

this abstraction becomes costly in the face of welfare, benchmarking and policy analyses.4

In contrast, a theory linking intermediation to the preferences of an investing population can

be productively integrated in the normative space.

The theory presented in this paper links the intermediary balance sheet to investor pref-

erences, and allows investors access to exchange and banking institutions simultaneously.

This trade-off in each period is what keeps a positive measure of investors positioned in the

bank. Moreover, the rebalancing motive is risk-based, while the deposit motive is IES-based.

Together, they address the problem of time-consistent policies. Investors’ ex-post policies

are optimal solutions to the contemporaneous portfolio-choice problem. Thus, the mecha-

nism addresses the enforcement problem in incomplete markets in addition to the verification

problem.

Haubrich and King (1990) critique the view that banks uniquely produce liquidation

options the are credible because of fragility. They argue that the bank services can be bro-

ken into a liquidity component, that can be provided in ex-post securities markets, and an

insurance component, that can be replicated by a mutual fund with the right configuration

of coupon payments and share purchases. However, our setting relies on aggregate risk for

asset pricing. The securities markets do not provide liquidity when market price depend

on the aggregate state. Although their original analysis is not done with aggregate risk, in

principle a mutual could announce any coupon and share purchase policy made contingent

on the aggregate state and thus may be able to reproduce the bank system allocations. We

show that replication by a mutual is in fact not possible.

The key mechanism in our theory precluding replication by a mutual or other market

3Krishnamurthy (2014) models the intermediary’s marginal value of reputation.

4Welfare ideally incorporates the effects on individual utility and efficiency including endogenous equi-
librium effects, ruled out by this abstraction. Benchmarking against competing or complementary theories
based on individual optimization is also limited.
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institution is the synthetic leverage generated by the bank to accommodate the various

claimants to its assets. When a bank financier makes a withdrawal, the bank debits the

residual capital account. Bank capital becomes leveraged and the corresponding changes

in bank capital risk are synthetic, because the bank does not need to clear its shares and

liabilities in the market contemporaneously. In contrast, the mutual marks-to-market, in

that changes in its liabilities must correspond to changes in its assets. Both the mutual and

the economy are unlevered in equilibrium. The bank precludes contemporaneous unwinding

of synthesized leverage, and generates both the concentrated risk and the negative cash po-

sition high types need to be indifferent to rolling over the bank position.

2.0.1 Related Work

This paper is motivated by at least two areas of research. The first is the theoretical literature

on bank liability design based on Diamond and Dybvig (1983). This literature constitutes

the basis for understanding endogenous intermediation liquidity creation. The second is the

literature on asset pricing and financial intermediation, beginning with empirical work by

Adrian, Etula and Muir (2015). Drawing on methodologies and outstanding questions from

each of these areas, we show portfolio choice motives are sufficient to microfound a financial

intermediary. Because the intermediary microfounded in this way is financed dynamically

based on preferences for risk, the intermediary balance sheet is linked to the incomplete

markets stochastic discount factor (SDF).

Diamond and Dybvig (1983) model a bank deposit contract that solves the ex-ante allo-

cation problem for a large economy of individuals who are uncertain about the timing of their

consumption needs, and where capital is only productive in the long term. Ex-post popu-

lation frequencies of near and long term consumption are known and there is no aggregate

risk. Deposits allow investors to delay their commitment to an allocation between short and

long term investments until their consumption timing preference is revealed. Knowledge of
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the ex-post population frequencies permits the bank to allocate the deposits between short

and long term investments more efficiently ex-ante.

Haubrich and King (1990) argue that ex-post securities markets can provide the same

liquidity as deposits when there is no aggregate risk. Moreover, they argue the bank per-se

is not preferred over a mutual unless transactions in securities markets between individuals

are restricted. We show that the ex-post securities market does not provide this liquidity

when there is aggregate risk and prices vary across states ex-post. As a result, preference

for the intermediary does not rely on restricted access to markets for aggregate claims. In

fact, there is no need for the bank to price discriminate based on timing, because the trade-

off between ex-post market prices and the common initial price of the bank claim ensures

investors adjust ex-post funding predictably.

Using constant elasticity of substitution (CES) utility, Haubrich and King (1990) ar-

gue deposit contracts driven by consumption timing, such Diamond and Dybvig (1983), are

driven by the inter-temporal elasticity of substitution (IES). Our theory extends the work of

earlier theories to portfolio allocation motives. We show our ex-post withdrawal policies are

set from a portfolio rebalancing motive rather than a consumption-savings motive. Ex-ante,

the IES drives savings policy and impacts bank deposit levels, but ex-post, the withdrawal

policy is a function of risk aversion only. Through this channel, the bank’s capital structure

is connected to risk-based asset pricing, and hence the equilibrium SDF.

The Diamond and Dybvig (1983) model and its progeny use a sequential timing protocol

for deposit withdraws to show coexistence of inefficient bank-run equilibria. Multiple equi-

libria led to an insight about the fragility of a bank funding structure as the source of its

strength. Depositors en-masse credibly threaten runs simply by owning the demandability

option, thus providing a source of discipline for banks. If a bank makes a promise ex-ante

to honor ex-post withdrawals, the threat of runs prevents the banks from reneging on their

promise. Common knowledge of this device ex-ante makes formation of the bank possible.

We do not use a sequential service constraint. However, the rebalancing motive gives
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novel insight into bank funding trade-offs. Risky assets that have near-zero cash flows with

positive probability preclude bank formation. Disaster risk impacts the ability of the bank

to credibly produce liquidity, requiring the bank hold a cash buffer. In contrast, risky assets

in the absence of disaster risk can improve the efficiency of liquidity production. While runs

as sunspot equilibria are not a feature of our model, we show bank funding is contingent on

the competitiveness of its expected return.

Our study has implications for the coexistence of intermediation and securities markets

with unrestricted access. Allen and Gale (2010) study an economy with aggregate risk where

investors have restricted access to securities markets, and derive the constrained-optimal as-

set holdings for a financial intermediary. We find that when intermediation appeals to

portfolio motives, investors trade-off bank financing with direct trade in securities markets

based on the direction of their trade and market prices. Expected utility is maximized when

both institutions are accessible.

Our investigation is influenced by the recent literature connecting intermediary balance

sheet dynamics and asset prices. A key empirical contribution is Adrian, Etula and Muir

(2015), who find that asset return exposure to shocks to dealer leverage can explain cross-

sectional variation in average returns. He, Kelly and Manilla (2017) find that a measure of

bank capital can be used to explain the cross-sections of asset classes outside of equity and

bond markets. Adrian et al (2012) shows a related measure of leverage has predictive power

for market returns.

The empirical literature also studies the balance sheet dynamics of financial institutions.

Adrian et al (2010), and Boyarchenko et al (2011), document leverage dynamics of broker

dealers and commercial banks respectively, each of which are liquidity producers. Krishna-

murhty et al (2014) document that commercial banks take on debt to acquire risky assets in

bad times, which are being sold off by non-liquidity producing investment institutions like

hedge funds, mutual funds, pensions and others. In Fig.1, we plot the rate of high-risk assets

to liquid liabilities. We see a sharp downturn in every recession, as well as a low frequency
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Figure 2.1: Ratio of High-Risk Assets to Liquid Liabilities
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(a) The rate at which the highest risk assets contribute to liability-side liquidity production drops sharply
in recessions. Separately, the rate exhibits a secular trend downward. Quarterly balance sheet data from
1967 Q1 to 2012 Q4 are from the Flow of Funds, Board of Governors of the Federal Reserve. We use private
depository institutions, issuers of asset-backed securities, and securities brokers and dealers to measure
liquidity production. The ratio of high risk assets to liquid liabilities is calculated by classifying liquid
liabilities as large time deposits, uninsured checkable and savings deposits, asset backed commercial paper
(ABCP) and repurchase agreements. Risky assets are corporate equities, mutual fund shares, and private
residential and commercial mortgage-backed securities (MBS). NBER recessions are in blue.

trend downwards.

A theoretical literature in this area includes and Krishnamurthy (2013), Brunnermeier

and Sannikov (2015) and Adrian and Boyarchenko (2015). Our theory differs in emphasis

and methodology, and as such the two approaches are complementary. IAP theories do not

aim to justify the intermediary in equilibrium. These theories extend dynamic asset pricing

models designed to produce quantitative statements about the dynamics of asset returns

in a variety of experimental settings to cases where a financial intermediary is marginal in

securities markets. They also provide economic insight into how financial intermediation

impacts risk and return.

In our model economy the financial intermediary is endogenous. The asset pricing im-

plications in our model arise because of the connection between a preference for holding

risky assets in the cross-section and the aggregate bank capital structure. This connection

is an equilibrium outcome. The cost of this insight is that quantitative exercises in our styl-

ized model are difficult to justify. However, qualitative predictions from our model generate
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testable implications that are valid in dynamic settings. We provide reduced-form empirical

evidence that supports our theory.

2.0.2 Example

To highlight the economic mechanism we present an example. The rigorous description of

the model begins in section 1.

The Setting Consider two investors, I1 and I2, who each own equal claims 1
2
V0 to a project

valued V0. The project pays an uncertain amount Y two periods from today. Each investor

i is also entitled to an uncertain cash payment ni that cannot be insured. The investors

have log utility over final wealth. For simplicity we assume ni ∈ {−∆,∆} and n1 + n2 = 0.

Each of the two configurations occurs with equal probability. The investors begin with equal

stores of “cash” 1
2
C > 0 and have access to a storage technology with per-period gross return

normalized to one. Total initial wealth is W0 = V0 + C.

Timing In the first period t = 1, the payments ni are revealed. Prospects for the project

payout Y are also revealed through a signal m ∈ {L,H} corresponding to low and high

productivity. In t = 2, the realization Ym is either above (denoted “A”) or below (“B”) its

conditional forecast Ym,A > E[Ym,k|m], or Ym,B < E[Ym,k|m]. Claims to the project output

are traded competitively in periods t = 0, 1. Time t = 1 prices are Vm.

Implications Because the investors are identical ex-ante, and the income ni is uninsur-

able, there is no incentive to modify holdings at time-zero. Each investor’s initial portfolio

Π0 can be written Π0 = (α0W0, (1 − α0)W0) for initial wealth W0. When normalized by

wealth, the first entry corresponds to the fraction of wealth invested in equity at t = 0, and

the second entry is the fraction of wealth held in cash. With no trade, α0 = V0/W0.

At t = 1, idiosyncratic income nj is realized, along with the news about productivity
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m. We let i = 1 correspond to the unexpectedly wealthy investor: n1 = ∆ > 0. The two

investors have identical shares of the risky asset at the beginning of the first period a0 = 1
2
.

However, idiosyncratic shocks produce heterogeneous wealth levels Wj = a0Vm + 1
2
C + nj.

As a result, the unlucky investor has an oversized rate of investment in the risky project

a0Vm/W2 > a0Vm/W1.

Securities Trading The investors adjust positions until investment rates are equalized

at the end of the first period, i.e., Π1,1/W1,1 = (α1, (1 − α1)) = Π1,2/W1,2. Subscripts

(t, i) in Wt,i,Πt,i indicate the period and the investor, respectively. The market clearing

share is α1 = Vm [C + Vm]−1. Changes in individual wealth levels do not impact individual

portfolio weights α. With log utility, each investor splits their idiosyncratic income pro-rata

ni = [α1ni]Equity + [(1− α1)ni]Cash. Transactions are made at the ex-post market prices.

Written with terms gathered by position, the final wealth shares are

W1,m,1 = Vm

[
1

2
+

∆

W1,m

]
+ C

[
1

2
+

∆

W1,m

]
(WS.0)

W1,m,2 = Vm

[
1

2
− ∆

W1,m

]
+ C

[
1

2
− ∆

W1,m

]

The first term, scaled by the share price Vm, is the market value of each investors equity

position. The second term is the risk-free position. Anticipation of the ex-post distribution

of net-worth in WS.0 is reflected in initial prices.

The Bank The investors instead create the following arrangement. The investors deposit

their claims in a bank, and allow the bank to hold the risky claim as an asset. The investors

now hold the liabilities of the bank instead of the claim to the project. In turn the bank

includes provisions in the liabilities that allow the investors to withdraw any amount of the

cash value of their deposit before the project matures, at which point the proceeds are paid

to the residual claimants of the bank assets, and the bank is dissolved.
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Implications with the Bank For simplicity, investors deposit the cash value b0 = α0∆

of their risky endowment, or equivalently, α0
∆
V0

shares of their risky endowment, in the bank.

This leaves a direct equity position with cash value [1
2
− α0

∆
V0

]V0, and the cash position 1
2
C.

Write b = 2∆α0

V0
for the fraction of the risky claim intermediated at time-zero.

Now, at t = 1, in a recession m = R, the investor with n2 = −∆ < 0 withdraws cash

from the bank in the amount of b0. This transaction liquidates α0

V0
∆ shares with market value

α0

V0
∆Vm < α0

V0
∆. The low type has no remaining exposure to the bank. We can calculate her

shares explicitly: b0−α0∆
2b0−α0∆

= 0. The high type passively acquires the residual bank position:

b0
2b0−α0∆

= 1. With no further action, the resulting portfolios are

Π1,1

W b
1,1

=

[
1

2
− α0∆

V0

]
Vm︸ ︷︷ ︸

Direct Equity

, bVm︸ ︷︷ ︸
Bank Liabilities

,
1

2
C + ∆(1− α0)︸ ︷︷ ︸

Cash

Π1,2

W b
1,2

=

[
1

2
− α0∆

V0

]
Vm︸ ︷︷ ︸

Direct Equity

, 0︸ ︷︷ ︸
Bank Liabilities

,
1

2
C −∆(1− α0)︸ ︷︷ ︸

Cash

By combining the bank and direct equity exposures into a single equity position, we can

write the portfolios

Π1,j

W b
1,j

= α1, (1− α1) j = 1, 2

for wealth shares W b
1,j = W1

(
1
2

+ (−1)j−1∆
)
. Through the bank’s balance sheet, the with-

drawal policy of the unlucky investor successfully implements her required portfolio adjust-

ment, as well as the portfolio adjustments of the lucky investor.

Remark Relative to the incomplete markets wealth share W1,2 = 1
2
W1 −∆, the low-type

saves ∆[V0 − Vm] > 0. Gains arise because the low income investor liquidates risky holdings

at cost α0∆
V1,R

V0
< α0∆, thereby implementing an implicit share transfer from the ex-post

high type. The high income investor is indifferent to this transfer at prevailing prices.
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Discussion In this example, the converted payment is in the form of an I.O.U. in the

amount of the withdrawal α0∆, to be paid when the output is realized. Residual claimants

are entitled to the output net of the I.O.U., and the residual claimant’s position is com-

mensurately more concentrated. The change in exposure for investor I1 is 0.5b0[b0]−1 7→

b0[2b0 − α0∆]−1 > 0.5b0[b0]−1. Passive rebalancing works when bank assets are risky by

allowing exercised cash options to leverage residual exposures.

Policies in the m = G Case In this example, the low-type can liquidate the risky claim

at a better rate on the market directly when net capital gains are positive. The high type

cannot acquire assets through the intermediary balance sheet unless the low-types exercise

cash options. As a result, bank exposures remain symmetric, and rebalancing is carried out

in securities markets.5

Put Option on Bank Assets The ex-post transfer ∆[V0−Vm] can be written ex-ante as

a put option on the bank’s assets

τ = [K∗ − S1]+1{n1=−∆}∆

The liabilities embed an option that will only be exercised by investors with negative id-

iosyncratic shocks in bad times, when net capital gains are negative. Liquidity is created by

allowing bank financiers to lock-in the ex-ante share price, through the strike K = V0, as a

contingency for the event that an ex-post liquidation is needed when market prices are low.

Remark For an ε-fee on deposits, investors will finance the bank by exactly the amount

they will need to withdraw in the bad aggregate state. The reason is that, in the good state,

the low type would prefer to liquidate risk claims on the market because the implied share

5In a more general setting, in good times, the ex-post high type can exercise a call option on bank assets
by supplying new cash funding for the bank. This policy leaves the low-type indifferent given their exposure
to the risky assets is diluted proportionally.
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price of her bank deposit is lower.

2.0.3 Organization

Complete markets, incomplete markets and intermediated incomplete markets versions of the

model are developed for contrast. Section 1 details the resources, participants and market

arrangements that serve as a benchmark to each of the versions we develop. Section 1.4

specializes to the economy with financial intermediation and derives equilibrium allocations

and prices. The complete and incomplete markets environments are specialized and solved

in A.0. Section 2 details comparative implications. Proofs based on standard arguments are

relegated to Appendix A. The final section 4 discusses a handful of applications, including

policy implications.

2.1 The Model

2.1.1 Environment

There is a continuum I := [0, 1] of ex-ante identical investors. Investors have log util-

ity over terminal wealth and are endowed with equal claims e0 to terminal output Y . Y

can take four possible values Y ∈ {YGA, YGB, YRA, YRB} =: Y , where YGA > YRA and

YGB > YRB. Uncertainty is resolved over two periods. In the first period, a public sig-

nal indicates growth G or recession R. In the final period, realized output Y will will be

above or below market expectations. For example, YGB corresponds to below expected out-

put in the growth regime. Aggregate states are denoted sm for t = 1 and sm,k ∈ S for

t = T with indices m = R,G; k = A,B. We write Y (sm,k) =: Ym,k = Y . Probabili-

ties are mutually independent, Pr(sm,k) = πm,k = πmπk, with marginals Pr(sm) = πm and

Pr(sm,k|m = R)+Pr(sm,k|m = G) = πk.

Each investor is also endowed with a nontradeable claim to income nj distributed ac-
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cording to

nj =


∆0 + ∆ with Pr(nj = ∆0 + ∆) = 1

2

∆0 −∆ otherwise

with |∆| < ∆0. The random variable nj is revealed in the intermediate period. nj is

independent of the aggregate signal m ∈ {R,G} and i.i.d. in the cross-section. Joint

probabilities for (sm,k, nj) are πm,k,nj = 1
2
πm,k. There is no aggregate income risk. Total

income is Ym,k,0 := ∆0 + Ym,k in every state. The resolution of uncertainty is depicted by a

binomial tree in Figure 3.

An equity claim on output Y is traded at t = 0 and t = 1. Equity shares are fixed at

one. Equity prices V0 and V1,m are determined equilibrium. Time-zero share purchases in

excess of the endowment are written a0. After time-zero, share adjustments are denoted aj.

We write gross positions as a proportion of individual wealth α0 and αj. Allocations a, α

are functions of time, individual wealth and the aggregate state.6.

Finally, investors are endowed with equal deterministic amounts of a durable numeraire,

“cash,” written ω0 > 0. A riskless storage technology in infinitely elastic supply yields gross

return normalized to R = 1. The securities markets open in response to news, as depicted

in Figure 1.

Expenditures at time-zero are constrained by tradeable wealth W0 = ω0 + e0 where

e0 = EQ[Y ]. The risk-neutral measure Q is determined in equilibrium. Investors can adjust

their initial positions e0 in the risky claim through choice of a0 subject to a0V0 − e0 ≤ ω0.

Investors will forego trade if it is optimal.

6The shorthand a0 = a(0, ·, ·) emphasizes initially identical policies, while aj = a(1, nj ,m) emphasizes
the type-j dependence of allocations made at t = 1 given signal m. The same applies to α0, αj .
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2.1.2 Equilibrium

Sequences

Write the investor’s initial endowments q0 = (V0, ω0)′ and define q0 = q′0 · 1. The condition

e0 = V0 gives q0 = W0, the initial level of tradeable wealth. We summarize each investor’s

final cash position ωj,m := ω0 − a0V0 + n1,j − ajV1,m, and the corresponding equity position

Aj := (1 + a0 + aj). Write θT,j for the period-T gross return on one dollar invested at

time-zero for ex-post type j. θT,j is cum-income. It includes the income in t = 1, nj, and

the associated gain or loss on that investment between t = 1 and t = T .

Individual optimization problems are

J(q0;V0) = max
a

E [log(θT,j)] (1.A)

s.t. a0V0 − V0 ≤ ω0

ajV1,m − (1 + a0)V1,m ≤ (ω0 − a0V0) + n1,j

θT,j = AjYm,k + ωj,m

where a := (a0, {aj}j). The second inequality is reproduced for every (n1,j,m) ∈ {n1,1, n1,2}×

{R,G} and the final equality for each k ∈ {D,U}|(ni,j,m). Expectations are with respect

to the joint distribution of productivity, prices and income (Y , V, {nj}j).

The recursive analogue 1.B to the objective 1.A is provided in section 6.0.1.

Normalization We normalize W0 ≡ 1 without loss of generality. Investors with log utility

over final wealth care only about single-period gross returns. Aggregate wealth is not a state

variable, although market incompleteness requires that individual wealth qt,j = qt,jW
−1
0 is

a state variable for every individual. Standard arguments based on homothetic preferences,

given in section 6.0.1 of Appendix A, justify this choice of state vector.

60



Resources

Put Y m,k := Ym,k,0 + ω0. In what follows, we distinguish between expectations over idiosyn-

cratic income states and ex-post aggregation across population types by writing Enj and∑
j πj, respectively.

Equilibrium The equilibrium is determined when every trader optimizes 1.A or 1.B and

the following markets clear:

∑
j

a0,j = 0 (1.C)

1

2

∑
j

αjW̃1,j = V1,m m ∈ {R,G}

1

2

∑
j

θ2,j = Y m,k k ∈ {U,D}|m

where we have applied πj = 1
2
. The first two lines ensure securities markets clear at times

t = 0, 1. The first line is simply a0 = 0, or equivalently, e0 = V0, implying W0 = ω0 +V0. The

second line states total shares are fixed at 1 = 1
2

∑
j aj = 1

2

∑
j
αjW1,j

V1,m
. The third line is the

final accounting for resources in terms of goods supply Ym,k and cash ω0. When k ∈ {A,B}

is realized, output Ym,k is distributed according to the equity holdings Aj. Dependence on

m is suppressed in some notation, e.g., W1,j = W1,j,m.

2.1.3 Discussion

Heterogeneous Wealth To highlight the rebalancing policies aj = aj(n1,j,m), we write

the beginning of period wealth W−
1,j for each ex-post type j,

W−
1,j = W0 α0

V1,m

V0︸ ︷︷ ︸
Equity Capital Gain

+ W0 (1− α0)︸ ︷︷ ︸
Storage

+ n1,j︸ ︷︷ ︸
Non-tradeable Income

= W1 + n1,j
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In the first line, the first two terms are identical for every investor, suggesting we take

R0 := R0,j − n1,j and write W1 = W0R0, giving the second line.7 Now, write the end of

period wealth W+
1,j, for each ex-post type j

W+
1,j = ajV1,m + (1 + a0)V1,m︸ ︷︷ ︸

Equity Position

+ ω0 − a0V0 + n1,j − ajV1,m︸ ︷︷ ︸
Cash Position

W+
1,j captures the composition of the investor’s outgoing portfolio, expressed in terms of

share policies aj.
8 The first term is the value of their equity position after rebalancing at

market prices V1,m, and the second term is the value of the cash position. 9

Securities Markets Take j : nj = ∆ > 0 and i 6= j : ni = −∆ < 0. Clearly a∗j > 0 > a∗i .

From the incoming portfolios W−
1,j > W−

1,i, together with the identical initial positions a0, we

see that a0V1,m/W
−
1,j < a0V1,m/W

−
1,i. Type j has a relatively lower incoming equity invest-

ment rate than type i. Since W+
1,h = W−

1,h for any h, rebalancing operates entirely through ah.

With log preferences, the policies a∗j > 0 > a∗i are chosen to equalize the equity investment

rates αj = αi across types.

Benchmark Implications

In Appendix A.0, we solve the model with log utility the for complete and incomplete mar-

kets cases and detail the implications. Complete markets naturally produce a degenerate

wealth distribution and a representative agent pricing kernel. Incomplete markets imply the

ex-post wealth distribution is bimodal with support that varies with the aggregate state.

7α0W0 = (1 + a0)V0 relates the fraction of equity a0 to the fraction of wealth invested in equity α0.
Therefore W0(1 − α0) = ω0 − a0V0 is the total cash position. Policies with subscript 0 are identical across
investors.

8Policies a0 = α0W0V
−1
0 − 1 > 0 correspond to an increase in the investor’s risky position at time zero,

a0 < 0 represents a decrease, and a0 = 0 gives the time-zero no-trade allocation.

9Recall that policies aj > 0 represent an increase in equity levels while policies aj < 0 indicate a decrease.
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The corresponding pricing kernel takes the form of the complete markets kernel scaled mul-

tiplicatively by a term accounting for the wealth distribution. Details of the incomplete

markets asset prices are reproduced alongside the intermediated-economy asset prices, in

section 2.2. The intermediary economy is formalized in section 1.4.

2.1.4 Intermediated Markets

Technology

The bank allows investors to deposit a fraction of their tradeable endowment e0, denoted

in levels by b0 ≤ e0, in exchange for a claim to bank assets. The claim embeds the option

to convert any amount kj = k(nj, b0), up to the cash value of the deposit kj ≤ b0, into a

certain payment. Total bank financing aggregates b0 over investors and is written b. The

financing level b acquires b
V0

shares of the risky claim for intermediation. The remaining

shares 1
V0

(V0 − b) are held directly by investors. In each period, investors can access both

the bank and the market directly. At time-zero, bank investors bear identical exposures to

the bank asset risk.

Ex-post, an individual financier i has the option to respond to ni via the rollover policy

k(ni, b0). However, the rollover policies en-masse {kj}j∈I control the risk composition of the

residual claim to bank assets. Thus, an optimal funding policy can only be evaluated given

an assessment of the aggregate effect of all funding policies on the residual capital.

Bank Capital For total withdrawals κ :=
∑

j kjπj, an infinitesimal investor j0 choosing

kj0 ∈ [0, b0] acquires the residual exposure

k+(kj0 ,κ) =
b0 − kj0
b− κ

(K.1)

The quantity k+ reports the fraction of total claims to bank assets. An investment of

one dollar at time zero corresponds to a b−1 ownership stake in the bank. Ex-post, with
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no withdrawal by the dollar investor and an economy-wide withdrawal of κ, the dollar

investment corresponds to a [b−κ]−1 > b−1 ownership stake. For initial investment b0 and

ex-post policy kj0 , we obtain K.1. From the stake k+, we can calculate its market value at

time t = 1, k+(kj0 ,κ)V1,m
b
V0

and the corresponding ownership stake in equity k+(kj0 ,κ) b
V0

.

Payments to residual claimants are net of the bank’s obligatory payments κ, which are

also deducted pro-rata. We define the dividend paid to a marginal unit of bank capital

Dk := [ b
V0
Ym,k − κ]. Naturally, the residual position k+ entitles an owner to the cash flows

k+ Dk in each final state k ∈ {B,A}.10

An individual financier i’s rollover policy ki therefore depends on the ex-post bank capital

structure in addition to the income realization ni. We occasionally write kj = k(nj, b0,κ)

to emphasize this dependence. Optimal policies and the ex-post population frequencies

πj j = 1, 2 are common knowledge. An individual investor has no market power. Her

optimal rollover policy takes the ex-post capital structure (κ,b) as given, where κ = κ(m).

The resolution of uncertainty is illustrated in Figure 2, along with the timing of allocation

decisions.

Preferences

In the appendix A.7.1 we discuss a nonseparable preference specification for the banking

model. A simple modification to the endowment to include a proportional dividend allows

us to define preferences over consumption streams, which is a more natural specification for

recursive utility. Below, we continue our analysis with logarithmic preferences.

10A k without index or argument always refers to final stage uncertainty k ∈ {B,A}, while indexed or
functional kj = k(nj , b0,κ) are always contingent rollover policies.
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Equilibrium

We invoke the result that a0 ≡ 0. After incorporating the bank technology, every investor’s

time-zero objective can be written

J(q0;V0) = max
a,b

E [log(θT,j)] (B.1)

s.t. b0 ≤ V0

ajV1,m −
[
1− b0

V0

+ k+(kj,κ)
b

V0

]
V1,m ≤ ω0 + nj + k(nj, b0,κ)

k(nj, b0,κ) ≤ b0

θT,j = Aj,m(b)Ym,k + k+(kj,κ)Dk + ωj,m + kj

where Aj,m(b) := [1− b
V0

+ aj] is the fraction of equity held directly by investor j.

Resources In the banking economy, market clearing conditions 1.C interact with the def-

initions of b0, b and kj because ownership of the equity claim is partially intermediated.11

We restate the market clearing conditions below and discuss the role of bank variables in

equilibration. Having already imposed a0 ≡ 012, we can write

∑
j

aj = 0 (2.C)

1

2

∑
j

θ2,j = Y m,k k|m

11The definitions of {b0, b, kj , κ} along with market clearing criteria from the incomplete markets model,
1.C, are alone sufficient for a well-defined equilibrium.

12The equivalent conditions for wealth rates αt attain via the obvious substitution aj = αtWt,j/Vt,m − 1.
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The first term in 2.C says net time t = 1 modifications through the market aj are zero. A

key definition is worth restating

1

[b− κ]

1

2

∑
j

[b0 − kj] = 1 (Re.1)

The resource constraint
∑

j aj = 0, together with Re.1, is equivalent to enforcing that

equity is in fixed supply with shares normalized to one. Re.1 also ensures the total output

paid to the bank is b
V0
Ym,k, which, together with the share accounting for direct holdings

(1 − b
V0

+ 1
2

∑
j aj), ensures total output distributed is Ym,k. Finally, from Re.1 and the

definition of Dk, the total level of precedent payments owed by bank capital owners is κ.

The second term in 2.C is an accounting of final payouts made to individuals. It is

identical to the third term in 1.C with the exception that θ2,j, given in B.1, is a function of

bank policies kj, {k−j}−j∈J . The first term in the original clearing list1.C is subsumed by

the fact that a0 ≡ 0 and the definition b = 1
2

∑
j b0.

Equilibrium with Intermediation An equilibrium with intermediary financing is a set

of allocation policies aj, b0, kj and prices V0, Vt,m such that every investor optimizes B.1,

markets clear according to 2.C, and the policies k(nj, b0) and ex-post population frequencies

π1, π2 are common knowledge.

2.2 Implications

We develop the portfolio and bank funding policy implications of our theory, along with

the corresponding asset pricing implications. Implications for industrial organization in the

financial sector are postponed to section 2.4. We first state some key results.

Proposition 2.2.1 (Bank Financing Equilibrium) An equilibrium in the economy with

bank liability production exists and exhibits the following properties

1. Trade in the initial period organizes the bank, leading to welfare gains
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2. Ex-post policies implement rebalancing through the bank’s balance sheet when market

prices are low k(n1,κ(sR)) = 0,k(n2,κ(sR)) = α0∆, and through securities markets

when market prices are high k(n1,κ(sG)) = k(n2,κ(sG)) = 0

3. Prices in the intermediated economy can be written in terms of the Lucas kernel

M[(sm,k)]IAP =
[
M [Y m,k]Lucas

]
e−sm,kηs−s0sm,kζs

4. Relative to the incomplete markets benchmark, the distribution of subjective valuations

is more dispersed but with lower mean, and the distribution of wealth is less dispersed

2.2.1 Policies

Heterogeneous Wealth We revisit the wealth expressions from section 1.3 in the context

of the banking economy. With incomplete markets, incoming positions are symmetric up to

the shocks nj. In the banking economy, the positions b0 = b0(V0) nest a put option on risky

assets that separates ex-post investors by type in bad times. When exercised, the options

induce portfolio heterogeneity by implementing the ex-post swap of cash for risky claims at

prices set ex-ante.

We can write the incoming and outgoing expressions from 1.3 in terms of intermediary

positions b0 and rollover policies kj

W−
1,j =

Market Position︷ ︸︸ ︷
[V0 − b0]

V1,m

V0

+

Bank Deposit︷ ︸︸ ︷
b0
V1,m

V0︸ ︷︷ ︸
Combined Capital Gain

+ ω0︸ ︷︷ ︸
Cash

+ n1,j︸ ︷︷ ︸
Non-tradeable Income

(W.B.1)

W+
1,j = [aj + 1]V1,m︸ ︷︷ ︸

Market Position

+
b

V0

k+(kj,κ)V1,m︸ ︷︷ ︸
Bank Capital

+ ω0 + n1,j − ajV1,m + kj − κk+︸ ︷︷ ︸
Cash Position

where the residual claim is k+(kj,κ)=
b0−kj
b−κ defined in K.1.
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Rollover Policies For a withdrawal kj, the investor rolls-over a fraction b−1
0 [b0 − kj] of

her initial stake in the bank. The level kj augments the Cash Position of the investor’s

portfolio, illustrated in W+
1,j of W.B.1. The corresponding increase in exposure to asset risk

is consolidated in the Bank Capital ledger from the same expression, and is written
b0−kj
b−κ

b
V0

,

or equivalently, k+ b
V0

. The residual claims to bank assets k+(kj,κ) are by definition the

bank capital.13 For any withdrawal policy short of full divestment kj < b0, a third portfolio

implication accounts for the precedent payments κ nested in the bank dividend Dk. These

payments are recorded as the final entry in the Cash Position ledger, written −κk+, as

a liability corresponding to the rollover policy kj. Each of the three portfolio components

corresponding to kj are illustrated in W.B.1 via W+
1,j.

Remark Investors implement the optimal allocation policy αj = αi through a combination

of intermediary leverage and direct trade in securities markets. In equilibrium, α1,h = α1 =

V1,m [V1,m + C]−1 for each h ∈ {1, 2} as in the incomplete markets economy. However, the

corresponding price levels and wealth shares differ. The implementation of αi = αj is ex-post

less costly for high marginal utility types, and therefore ex-ante expected to be less costly

for every investor.

2.2.2 Asset Prices

We present and discuss asset pricing implications from the incomplete markets economy and

the intermediated economy. Proofs and background details are given in Appendix A.6.0.

Time-zero We can express the time-zero incomplete markets NC pricing kernel in terms

of the expected wealth distribution. One-period asset prices in the complete and incomplete

13We use the term bank capital to refer to the market value of equity for the bank, consistent with the
nomenclature in banking. In this model, equity is only defined implicitly ex-ante, but following the aggregate
withdrawals, we unambiguously refer to the residual claims as bank capital.
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markets economies are described by

M [Y m]Lucas = [ν0]−1W−1
1,mπm (L.0)

M [θ1,h(sm)]NC = [ν0]−1 [θ−1
1,j + θ−1

1,−j]
1

2
πm (NC)

= [ν0]−1W1,m[(W1,m + ∆)(W1,m −∆)]−1 πm

where W1,m = V1,m + ω0. The proof, given in section 6.2.4, uses the t = 1 marginal value

of wealth [∂J1,j]
−1 = θ1,j for each j, that are consistent with backward induction from the

final-period shares I.θ. The shares simultaneously obey the time-zero Euler equations.14

Oversaving The NC kernel includes a component correcting for the distribution of wealth

that strictly raises state prices relative to the complete markets benchmark. The additional

component vanishes as income transfers become negligible

[(W1,m + ∆)(W1,m −∆)]−1 −W−2
1,m > 0 ∆ > 0

lim
∆↘0

W1,m[(W1,m + ∆)(W1,m −∆)]−1 = W−1
1,m

NC reduces to L.0 with ∆ ↘ 0. NC accommodates higher demand for savings when some

states of the world are uninsurable. 15,16

Time-one Market prices at time t = 1 are complete markets prices, but with heterogeneous

investors. With log utility, the representative and heterogeneous-investor pricing kernels are

14Time-consistency for incomplete markets, in the sense of Marcet and Marimon (1997),(2012), requires
ex-post optimal policies agree with the policies that made ex-ante allocations optimal.

15Over-saving in incomplete markets with convex marginal utility is well studied, see e.g., Weil (1989) and
Mankiw (1986).

16Demand for savings grows proportionally with the fraction of net-worth that is nontradeable. State prices
rise in equilibrium because the market cost of postponing consumption must offset its increased demand.
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equivalent

M [Y m,k|m]Lucas = [∂J1]−1 Y
−1

m,kπm,k (L.1)

M [θ2,j(sm,k)]Hetero =
θ−1

2,j

∂J1,j

πm,k =
θ−1

2,−j

∂J1,−j
πm,k (H)

=
1

2
[∂J−1

1,j + ∂J−1
1,−j]Y

−1

m,kπm,k

= [∂J1]−1Y
−1

m,kπm,k

at time t = 1, for each sm,k.

Log utility gives [∂J1,j]
−1 + [∂J1,−j]

−1 = 2[∂J1]−1 with [∂J1,j]
−1 = W1,m + n1,j and

[∂J1]−1 = W1,m. The first line for MHetero equates valuations by type. The second line

uses the wealth shares θ2,j and represents the kernel by averaging ∂J1,j and θ−1
2,j over types

and then normalizing. The third line is true for any aggregation rule, e.g., averaging after

normalization.17

Lucas Exchange Model The incomplete markets pricing kernel can be written in terms

of the Lucas kernel and a multiplicative term reflecting imperfect risk sharing in the cross-

section of the investing population. Write
√
σ∆(sm) := ∆/W1,m(sm). We express the incom-

plete kernel NC in terms of L.0:

M [θ1,h(sm)]NC =
[
M [Y m]Lucas

]
e− log[(1+∆/W1,m)(1−∆/W1,m)](sm)

=
[
M [Y m]Lucas

]
eσ∆(sm)(1+ 1

2
σ∆(sm))−o( 1

∆
)

The rate σ∆(sm)(1 + 1
2
σ∆(sm)) summarizes the distributional risks for ∆ > 0 up to a fourth-

order expansion of log(1 +
√
σ∆(sm)) + log(1 −√σ∆(sm)). Exposure to higher moments of

the wealth distribution is priced in the incomplete economy, even with myopic investors.

17The two aggregation rules produce identical pricing kernels because [∂J1,j ]
−1 + [∂J1,−j ]

−1 = [∂J1,j +

∂J1,−j ] (∂J1,j∂J1,−j)
−1

.
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Distributional risk becomes negligible as ∆W−1
1,m ↘ 0.

Remarks

I. V1,m can be reconstructed V1,m =
∑

k∈{D,U}M [Y m,k]Lucas Ym,k πk for each m ∈ {R,G}.

Because W1,m = V1,m + ω0, the time-zero prices for payouts at maturity obtain by plugging

V1,m into NC, or L.0 for the complete-markets case. The state price kernels M [ · ] are a

more flexible description of the economy than V1,m in part because, with log utility, the

discount rate on a claim to aggregate consumption reduces to the subjective rate of time

preference.18,19

II. In incomplete markets, investors with a negative shock are compelled to “take the hit,”

by renormalizing their marginal utility growth rates to be in line with market prices, but

at higher individual marginal utility levels. Investors with low private income become poor

relative to expectations. Proportionally, the loss of net worth is larger when aggregate pro-

ductivity is low, holding the level |∆| fixed. In the incomplete markets equilibrium, the

cross-sectional dispersion of subjective valuations is countercyclical.

2.2.3 Asset Prices with Intermediation

Every investor’s time-zero allocations are identical. Ex-post, each type j = 1, 2 trades-off the

market and the intermediary differently depending on the state of the economy. Consider

18In the finite horizon model without intermediate consumption, we set 1 + β = 1.

19In an endowment economy with log utility defined over a perishable numeraire c, risk premia on the
aggregate claim collapse with a representative agent because c(st)d log(c(st)) = dc(st) state-by-state. The
same would be true in an economy with a durable numeraire and utility defined over wealth, such as ours,
if cash was in zero net supply. Notably, in either case, the incomplete markets pricing kernel retains the
distributional term when pricing the aggregate claim.
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the Euler equations for the low-type j = 2, i.e., n2 −∆0 = −∆. During a recession m = R,

∂J1,j
VR
V0

− E
[
θ2(k+, kj, sR,k))

−1Y (sR,k)
]

= 0

∂J1,j VR − E
[
θ2(k+, kj, sR,k))

−1Y (sR,k)
]
≤ 0

where now ∂J1,j = [W1,j(k
+, kj)]

−1. Consider the high-type j = 1 in a recession,

−∂J1,j
VR
V0

+ E
[
θ1(k+, kj, sR,k))

−1Y (sR,k)
]
≥ 0

−∂J1,j VR + E
[
θ1(k+, kj, sR,k))

−1Y (sR,k)
]

= 0

whose incentives for trade in each institution are the complement of the low type. The high

income investor needs to acquire more risky claims and in a recession they are cheaper on

the market. In contrast, the low type must liquidate the claims, and can turn each share into

more cash by pulling bank funds. The caveat is that the high type must also not withdraw,

but she will never withdraw given her portfolio needs, unless limited liability is jeopardized.

Recall that k+ is the equilibrating variable for aggregating bank policies. Equating the

marginal conditions from the two types gives

E
[
θ1(k+, k1, sR,k))

−1Y (sR,k)
]

∂J1,1

= V0

E
[
θ2(k+, k2, sR,k))

−1Y (sR,k)
]

∂J1,2

(Eq.1)

Equation Eq.1 says that market forces relax the imposition on low types that their marginal

utility growth equal that of the high type, given their unexpectedly high marginal utility

level today. The Euler equation ensures the low type is not raising marginal utility today

to make this happen, so the scale factor corresponds to lower marginal utility of wealth

tomorrow, i.e., higher ex-post low-type wealth. The relaxation factor is the scale V0 < 1.

The single-period pricing kernel can be written in terms of the Lucas kernel as in the
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incomplete markets economy. The kernels are

M[(sm)]IAP = [M [(sm)]Lucas] e
σ∆[1−o( 1

∆
)](sm,k+)

The exponential terms parametrize an equivalent change of measure that distinctly charac-

terizes the asset pricing implications of our financial intermediary.

The Price of Risk

At time-zero, the economy optimally reorganizes to include intermediation. Relative to com-

plete markets, price levels are lower in equilibrium because of a decrease in the over-saving

propensity. In addition to the level effect, a covariance effect activates when nontradeable

income levels are conditionally independent of aggregate output in the time-series.20 We

model nontradeable income additively which, in conjunction with independence from the

aggregate state, satisfies this criterion. Other possibly dependent specifications can also be

tailored to violate Krueger and Lustig (2010).

To illustrate, consider nL < E[n] < nH and evaluate the excess Euler equations prior to

trade. These are equalities at the allocations in expectation. The thought experiment is to

consider the effect of news about private income only

−[∂JL,t]
−1E[∂JL,t+1]rf + [∂JL,t]

−1E
[
∂JL,t+1

Yt+1

Pt

]
< 0

−[∂JH,t]
−1E[∂JH,t+1]rf + [∂JH,t]

−1E
[
∂JH,t+1

Yt+1

Pt

]
> 0

With the additive private income specification, convex marginal utility induces not simply

rebalancing incentives from changes in wealth, but also relative over-and-under valued types

of assets delineated by risk. In contrast, consider a private income process Nj that scales

output Y to determine the income level nj = NjY , subject to the appropriate goods clearing

20This violates the criteria for risk-indifference in Krueger and Lustig (2010).
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protocol. The same thought experiment generates the above Euler equations that are still

equalized after realizing n. The reason is that with homogeneous preferences, multiplicative

income factors out just like aggregate wealth, so that marginal effects from income shocks

are constant across asset types.

The Wealth Distribution

We analyse the ex-post wealth distribution in the banking economy against benchmark com-

plete and incomplete markets wealth distributions. Naturally, the complete markets ex-post

wealth distribution is degenerate with all mass located at the level of realized output Y (sm,k)

in each state sm,k. A contrasting limit is given by the incomplete markets model, where the

wealth distribution is bimodal in each state of aggregate cash flows. The distribution has

two atoms of equal mass separated by length 2∆ for each sm,k, but the absolute horizontal

position of the atoms moves with Y (sm,k).

2.2.4 Organizational Implications

We state a handful of implications for industrial organization in the financial sector implied

by the benchmark case of our theory.

Corollary 2.2.2 (Banks are always Capitalized) b0 > 0 and P(ω(j) = b0, j = 1, 2) < 1

Investors allocate strictly positive wealth levels to bank financing, and claim the bank’s resid-

ual assets with strictly positive probability.

Corollary 3.1 follows from proposition 2.3. Investors always allocate strictly positive wealth

to bank formation initially, b0 > 0. Ex-ante, each investor places positive probability on the

event: “retain exposure” to bank assets. Ex-post, the population mass π1 > 0 holds bank
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capital optimally, in bad times. The bank is always formed ex-ante, and always capitalized

ex-post.

Remark This result fails for some changes of model assumptions. If the distribution of

private income is not deterministic and P(π1 = 0) > 0, the bank may not be capitalized

ex-post. If the distribution of aggregate output incorporates disasters, i.e., realized output

of Ymin = ε > 0 has P(Ym,k = Ymin) > 0, the bank may not be formed ex-ante.

Corollary 2.2.3 (No Market Segmentation) Banks coexist with markets: the demand

for risky asset intermediation does not rely on restricted access to markets.

2.2.3 follows from corollary 2.2.2. Investors demand intermediation because risky assets are

a necessary input for liquidity production.

Corollary 2.2.4 (Variation in the Investment Opportunity Set) The demand for fi-

nancial intermediation is distinct from hedging demand. Myopic investment policies that are

indifferent to shocks that impact future productivity nonetheless finance the bank.

Corollary 3.3 follows immediately from log preferences. Myopic investors prefer one-step

ahead contingency plans to mitigate liquidation expenses.

Random Capital Structure The bank has a random capital structure in the sense that

at any time t assets At are financed by a combination of debt and capital that is not known

until t+ 1 when population rollover policies are observed and exposures net of liabilities can

be computed. The residual claims are risky not only because the cash flows generated by

assets are risky but also because the amount of debt financing that survives until residual

payments are made is uncertain.
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2.3 Conclusion

The formation of a bank improves welfare over an incomplete markets economy when a large

risk-averse population faces uninsurable shocks to net worth. Narrow banking precludes this

mechanism in its strictest form. Relatively risky assets facilitate the creation of liquidity and

hence the impetus for the risk sharing through banks. Bank financing does not in general

achieve the first-best allocation because bank liabilities do not allow digital contingencies

to be assigned ex-ante. Several interesting implications emerge. We show banks are always

capitalized under the assumptions of our economy, even for myopic investors. A corollary to

this is that banks and financial markets always coexist in this economy, even when investors

have unrestricted access to both. This prediction has evaded a long literature in corporate

finance and is worthy of further scrutiny.

The principal thrust of the preceding investigation was to link dynamics of institutional

capital structure to the preferences of investors making decisions on the margin who ulti-

mately possess the wealth in the economy. The mechanism can be understood through a

key intuitive ingredient that distinguishes a narrow class of institutions including banks from

others: the random capital structure. Why is bank capital structure risky and why is this

unique to banks? Within our stylized economy the answer is: bank capital structure is risky

because of the production of liquid liabilities, and only institutions that produce liquidity in

the same way exhibit the same patterns in equilibrium. Production of liquid liabilities is a

function unique to banks and dealers, each of which contribute uniquely to our understand-

ing of asset prices.

On any day, the assets on the bank’s balance sheet are funded by a mix of equity and

liabilities. But the mix is uncertain ex-ante. Before any obligatory or residual payments are

made, liquidity holders can convert their investment to the numeraire corresponding to the

time of their investment. When they do this, the component of the risky assets that their in-

vestment effectively financed is transferred pro-rata to the residual owners, who then become

liable for the numeraire payment. Based on the investments today, residual claimants face
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ex-post leverage restrictions on their cash flow - the same asset has an effective leverage ratio

for each state tomorrow in general. Bank and dealer balance sheets are unique in that, in

addition to the cash flow risk from the assets, owners bear the risk embedded in the demand

options of other liability holders.

The allocations and prices are characterized in several stylized economies for comparison.

Asset prices reflect the quality of risk-sharing in the cross-section of the investment popu-

lation. In each ex-post contingency, the wealth-weighted marginal valuations of investors

determine the realized leverage ratio. As a result, changes in bank capitalization rates mea-

sure innovations to the average marginal value of wealth in the cross-section of investors. The

risk sharing is improved over incomplete markets, which means a reduction in over-savings

reflected in the stochastic discount factor.

The implications contribute to understanding the empirical successes of intermediary as-

set pricing tests. The model provides specific additional implications that can help reject

this or other theoretical proposals. A discussion of the implications and evidence are dis-

cussed in the appendix. It is useful that the candidate explanation presented in this paper

is an outcome in a general equilibrium with minimal primitive assumptions. Indispensable

assumptions are few: investors are risk averse and experience uncertainty about the present

value of their lifetime productivity, and the markets for the idiosyncratic shocks to valua-

tions are not operational. We assume the income shocks are purely distributional, but the

results do not depend on this assumption. The theoretical implications in this paper are

transparently prone to rejection by new empirical tests, while exiting models rely on stark

assumptions to replicate existing empirical evidence at the expense of generating productive

testable implications.
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Chapter 3

A False Sense of Security?

An Empirical Investigation of Modern Banking

in the United States

with Professor Pryiank Gandhi (Notre Dame University) and Professor Alberto Plazzi

(The Swiss Finance Institute)

Extant models of financial intermediation suggest banks diversify out of traditionally core

activities to improve risk-taking and profitability margins. Diversified banks appear to ben-

efit from “coinsurance.” These banks are more profitable, less financially constrained, and

supply more credit. However, diversification benefits accrue during periods of normal to high

economic growth. Diversified banks are more exposed to systematic risk: their lending is

more sensitive to macroeconomic conditions. These banks are also more prone to the risk

that nominally correlated activities become highly correlated in bad times. Moreover, we

find that banks with higher probability of financial distress diversify more aggressively, sug-

gesting the subset of banks most exposed to systemic shocks are the least equipped to handle

them. Our findings are relevant for understanding the optimal scope of banking activities

and highlight a novel channel through which noncore banking activities impact credit supply

and the real economy.
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3.1 Introduction

Traditionally, banks have engaged in just two distinct types of activities: deposit-taking and

lending. Modern banks, alternatively, engage in a myriad of activities including trading,

brokerage, investment banking, market-making, advisory, underwriting, insurance, and ven-

ture capital. Income from these additional activities, once viewed as non-core for banks, has

increased significantly, and now accounts for the majority of total income of all U.S. banks.1

Conventional wisdom suggests that, for nonfinancial firms, diversification destroys value

and adversely affects firm performance Thus, at first sight, U.S. banks’ increasing diversifi-

cation is puzzling. However, banks are different from nonfinancial firms in many respects.

Banks are typically highly levered. Banks also serve as delegated monitors for borrowers.

Extant literature suggests that, due to these differences, banks should actually strive to be

as diversified as possible. Diversification can reduce banks’ chance of costly financial distress

. It can also make it cheaper for banks to achieve credibility in their role as screeners of

borrowers . Finally, since several non-core activities are related to (i.e. require similar “finan-

cial” skills as) banks’ traditional activities, horizontal diversification into non-core activities

may generate a diversification premium for banks.

Empirically, significant controversy in the literature still remains about the effects of

banks’ diversification into non-core activities on their operations. Regulators and bankers

also disagree regarding the benefits of diversification . To our knowledge, existing litera-

ture has not examined what effect, if any, does banks’ diversification have on their core

intermediation capabilities (i.e. lending or credit supply).

In this paper we examine the drivers and consequences of U.S. banks’ diversification into

1For all U.S. banks, non-core income accounted for only 18% of total income in 1988 but was 55% in
2014.
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non-core activities.2 We address two central questions: (a) “What are the determinants

of banks’ decision to diversify into non-core activities?” and (b) “What effect does such

diversification have on banks’ core intermediation capabilities?”. We study these questions

using a panel data set of about 3,000 unique U.S. banks over the 1987 to 2014 period. The

sample includes the 2007 to 2009 financial crisis and therefore allows us to analyze the effect

of diversification on bank’s performance during all three types of market regimes – pre-crisis,

crisis, and post-crisis.

We begin by analyzing the ratio of non-core to total income to document the extent of

diversification into non-core activities by all U.S. banks. Over 1987 to 2014, non-core income

accounts on average for 37% of total income. This ratio has increased steadily over time from

18.06% (in March 1987) to 54.96% (in March 2014). However, the extent of diversification

varies considerably in the cross-section. The ratio of non-core to total income ranges from

nearly zero to 80% across individual banks, and is highest for largest banks, defined as those

in the top quintile by total book value of assets.

We use the cross-sectional heterogeneity in the degree of diversification at U.S. banks to

investigate which factors drive a bank’s decision to diversify into non-core activities. That

is, using a panel regression framework we relate a bank’s extent of diversification into non-

core activities to a large set of bank-level and aggregate macroeconomic characteristics. We

find that size, as measured by total assets, is significantly positively related to the extent of

diversification. Thus, large banks are found to diversify more. The banking literature tends

to presume that diversification and size go hand in hand. Our results demonstrate empirically

that this presumption is valid. As predicted by theories of delegated monitoring, banks with

a high distress costs are also more likely to diversify. Diversification is more pronounced for

banks facing higher costs of raising external capital, such as banks with lower deposit ratios

and privately-owned banks. Consistent with theories of agency costs of free cash flow, we

2Throughout this paper, diversification refers to banks’ decision to participate in non-core activities and
not the diversification of their loan portfolios.
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also document that banks’ likelihood to diversify increases in profitability. Finally, we find

that managerial incentives, measured by the sensitivity of executive compensation to bank’s

stock price, are an important determinant of bank diversification. Overall, our findings are

consistent with traditional models of financial intermediation and risk management, that

suggest banks diversify to lower (idiosyncratic) risk and the cost of delegated monitoring.

Next, we examine whether diversification into non-core activities generates synergistic

benefits for banks. For this, we look at the correlation between core and non-core income.

For all U.S. banks, over the full sample the correlation between core and non-core income

is negative at −0.40, and peaks at −0.72 in the pre-crisis period.3 Such economically and

statistically significant correlations suggest that diversified banks on average benefit from

“coinsurance”, defined as an imperfect correlation between cash flows generated by different

subsidiaries. However, we also observe that the distribution of coinsurance varies across

banks and over time as nearly 40% of banks show positive correlation at some point in time.

Thus, not all banks in our sample are able to (or choose to) benefit from such coinsurance

at all times.

In imperfect markets, coinsurance in bank’s activities can have real effects on banks’

operations, if it helps banks avoid deadweight financial costs. Many of these costs arise fol-

lowing low internal cash flow realizations (i.e. “financial shortfalls”). For example, consider

the deadweight (transaction) costs of raising external finance. If external finance is costly,

banks facing financing shortfalls would forego profitable investment opportunities. Coinsur-

ance enables a diversified bank to transfer resources from cash-rich units to cash-poor units

in some states to avoid financing shortfalls that standalone banks cannot avoid on their own.

Thus, diversified banks should miss (forego) fewer investment opportunities, supply more

credit, and be more profitable. These effects should depend on the extent of diversification

3We also separately analyze the role of trading income, as it accounts for a large fraction (about 40%
in 2014) of non-core income and, in the aftermath of the credit crisis of 2007, was considered as its most
controversial component. We find that trading income has a large negative correlation of about −0.77 with
core income over the full sample, and −0.86 in the pre-crisis period. We define the times series of core,
non-core, and trading income explicitly in our description of the data.
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and coinsurance among a diversified banks’ income streams.

We test these predictions by exploiting the significant variation in the extent of diver-

sification and coinsurance in the cross-section of U.S. banks. Indeed, better coinsurance is

associated with lower financial constraints and higher average credit supply. In particular,

banks with a higher proportion of non-core to total income and better coinsurance (i.e. a

more negative correlation between income streams) are able to issue more credit after con-

trolling for capital, deposit growth, profitability and growth opportunities. The effect is sta-

tistically as well as economically significant, as a 1% increase in coinsurance is accompanied

with a 2.7% increase in credit supply. Further, consistent with the idea that diversification

and coinsurance help relax financial constraints, we find that diversified banks with better

coinsurance are more profitable, issue more dividends, and that their credit supply is less

sensitive to changes in internal cash flows.

Taken together, these findings imply that diversification is beneficial. Banks that should

theoretically benefit from engaging in non-core activities are the ones that tend to diversify

and benefit the most from it. This conclusion, however, begs the obvious question why don’t

all banks participate (or participate more) in non-core activities. A natural explanation

is that the additional investments required to prepare and support diversification (such as

hiring skilled personnel, investing in systems that monitor and report risk across subsidiaries,

etc.) are costs that some banks find prohibitive, especially in times when profit margins on

non-core activities are low.

In this paper, we provide evidence of a complementary, risk-based channel that may

outweigh the benefits of bank diversification and suggests that diversified banks may be

operating under a false sense of security. For the subset of traded banks, we find that

diversification reduces idiosyncratic risk, but increases systematic as well as total risk. In

particular, diversification increases banks’ exposure to “correlation” risk. Correlation risk

arises because of unexpected changes in the relationship between core and non-core incomes,

which tend to coincide with times of aggregate shocks. In other words, even if banks design
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their non-core activities to provide diversification benefits, they expose themselves to unex-

pected shocks in correlation that may override the hedging role of this additional income.

This is exactly what occurred during the crisis period of 2007 to 2009 when the correlation

between core and non-core income turns positive (and it again later becomes negative in the

post-crisis period). Thus, diversification benefits are limited to good times and the diversifi-

cation and coinsurance mechanisms (whereby banks rely on incomes generated by diversified

business units) can and does break down, precisely when it’s most needed.

To the extent that exposure to correlation (systematic) risk is priced in the market,

diversification raises the cost of capital of diversified banks and this tends to happen in times

when the economy faces aggregate shocks. Consistent with this argument, we show that the

adverse effect of diversification on banks’ cost of capital in bad times impacts their credit

supply. Moreover, the sensitivity of credit supply to macroeconomic conditions (measured

by GDP growth) is highest for banks that diversify the most, and are therefore more exposed

to changes in the investment opportunity set (i.e., they are more systematically risky).

Are bank managers aware of these costs of diversification? If yes, why do they still

choose to diversify bank activities? One possibility is that diversification allows banks to

grow rapidly beyond a certain size threshold. Large banks benefit from a lower cost of capi-

tal due to implicit and explicit government guarantees. Hence, it is possible that managers

diversify to receive benefits of implicit guarantee and this exceeds the costs of diversification

outlined above. In fact, we show that benefits of implicit government guarantees (as mea-

sured by the loadings on the size factor of Gandhi and Lustig (2015) increase monotonically

in diversification.

Our paper relates to the growing literature that analyzes how diversification into non-

core activities affects banks’ operations. Our paper differs from these other papers as it is

the first to use information not only on the proportion, but also on the correlation between

core and non-core income. Thus, we present evidence for why and under what circumstances

does diversification affect bank operations. We are also the first to relate diversification to
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idiosyncratic and systemic components of bank risk and show that U.S. banks’ diversification

increases exposure to correlation risk.

Our findings are quite timely given the regulatory debate on optimal scope of bank activ-

ities. We highlight novel channels through which diversification impacts banks’ credit supply

and therefore the real economy. In the aftermath of the credit crisis, existing regulatory pro-

posals in the U.S. and many other countries advocate the separation of deposit-taking and

lending from many activities that are traditionally considered as non-core for the banking

sector (“ring-fencing”). These proposals are opposed on the grounds that diversification into

non-core activities helps banks manage cash flow risk and improves their overall safety. Our

paper provides additional information that academics, regulators and practitioners can use

to assess the costs (and benefits) of banks’ participation in non-core activities.

3.2 Data description

3.2.1 Sample selection

We collect balance sheet data from the ‘Report for Condition and Income’ (henceforth the

Call Report) required to be filed by all FDIC-insured bank holding companies (henceforth

banks). In the U.S., banks with total book value above $500 million file this report quarterly

whereas other banks file this report semi-annually. We restrict our sample to banks which file

the Call Reports quarterly. This restriction implies that our sample includes 2,978 unique

banks (i.e. 67%) of 4,460 banks in existence in the U.S. as of December 2014. The benefit

is that it allows us to analyze financial data at the highest frequency possible. Our sample

includes large and medium banks which collectively account for more than 90% of book value

of assets for all U.S. banks. Since diversification into non-core income is positively correlated

with size, as our subsequent analysis shows, we expect our sample to be well representative

of the average bank that engages in such activities. Call Report data starts in September

1987, and this determines the start date of our sample.

84



A typical bank in the sample owns multiple subsidiaries that provide commercial banking

or other financial services. Banks can also have stakes in non-financial firms although such

ownership cannot exceed 5% of the non-financial firm’s outstanding equity. For Call Reports,

a bank is required to aggregate data only for subsidiaries that provide commercial banking

or other financial services. Thus, by definition our data excludes non-financial subsidiaries

owned by a bank, if any.

A drawback of our aggregated data is that we are unable to say how diversification within

an individual commercial banking subsidiary impacts its operations. However, since most

banks with several subsidiaries manage capital centrally our aggregated data provides the

ideal empirical setting for our analysis.4

3.2.2 Measuring the extent of bank diversification

We begin by computing the income from core, non-core, and trading activities. Income from a

bank’s core activities is simply the total interest income, adjusted for loan-loss provisions, less

any interest income generated by a bank’s trading assets. We adjust for loan-loss provisions

as these are an estimate of expected losses on a bank’s loan portfolio. Hence, our definition

of core income results in a measure of actual cash flows that a bank expects to receive from

its core activities.5

Income from non-core activities is the total non-interest income generated by the bank.

We also separately define the time-series of the most controversial type of non-core income

i.e. trading income. The Call Reports lists several items that could serve as a proxy for a

bank’s trading income. The obvious starting point is the banks reported trading revenues.

To this, we add interest income from trading assets. We also add realized gains or losses

4In addition, for all banks in our sample, traded equity prices reference the entire firm, and not individual
subsidiaries. Were we to use data only for individual commercial banking subsidiaries, we would be unable
to carry the analysis that relies on traded equity.

5Banks may manipulate provisions to smooth earnings. Our central empirical results are robust to
computation of core income with or without adjustment for loan loss provisions.
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from held-to-maturity and available-for-sale securities. Note that, unless explicitly specified,

income from non-core activities will always include trading income.6

To summarize, our measures of core, non-core, and trading incomes in a given bank-

quarter are given by:

Core Income = Interest - Interest on trading assets - Provisions

Non-Core Income = Non-interest (including Trading)

Trading Income = Trading revenue + Interest on trading assets + Realized gains/losses

Armed with these series, we compute various measures of the extent of banks’ diversifica-

tion into non-core activities. First, we look at the ratio of non-core income and separately, of

its trading income component to total income. We denote these ratios for bank j in quarter

t by NonCorej,t and TRAj,t, respectively. The ratios reflect how much of a bank’s overall

income originates from non-core activities. Banks with low ratios possess a lower degree of

diversification.

These income ratios, however, provide only a partial view of the potential benefits from

diversification, as they ignore how the two income streams co-move. Portfolio theory im-

plies that lower correlations allows one to achieve better risk-return combinations (holding

volatilities fixed). For this reason, we next compute the sample correlation between core

and non-core income, and treat it as an inverse measure of the extent of diversification syn-

ergies (i.e. coinsurance) provided by non-core activities. Higher correlation is associated

with lower diversification synergies and coinsurance benefits. In other words, banks with

better coinsurance are those with lower (or negative) values of correlation. We denote the

unconditional correlation between core and non-core income for bank j by ρj .

6Due to changing reporting requirements, some of the Call Report items used for computation of core,
non-core, and trading incomes are not comparable across quarters. We follow instructions provided by
the Chicago Federal Reserve Bank to form consistent time-series for all our variables, available at http:

//www.chicagofed.org/webpages/banking/financial_institution_reports/bhc_data.cfm.
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We also construct a conditional version of correlation, which we denote by ρj,t. At each

quarter t, ρj,t is computed in a rolling fashion using income data over each of the 20 quarters

preceding and including t, i.e. from t− 20 to t. This conditional measure allow us to track

time variation in a bank’s degree of coinsurance, and to relate it to lending decisions and

profitability. For consistency and direct comparability, in the empirical tests that use ρj,t

we also average the proportions (NonCorej,t and TRAj,t) over the same 20-quarter period.

3.2.3 Descriptive statistics

Table 3.1 presents summary statistics for core, non-core, and trading incomes expressed as a

percentage of total income. The last row in each panel reports the fraction of trading assets

to total book value of assets. Panel A reports statistics for the aggregate U.S. bank sector

as well as banks sorted into five groups by size. To obtain the time series for the aggregate

bank sector, we sum up the incomes across all U.S. banks in a given quarter. Similarly, to

get time series for the size-sorted groups of banks, in each quarter, we first rank banks into

quintiles based on the total book value of assets. Group 1 refers to banks in the lowest total

book value of assets quintile. We then sum up the incomes across all U.S. banks in a given

quarter in a given group. We report the (time-series) mean and standard deviation of these

series.

Over the sample period, for all banks in the U.S., we see that non-core income accounts

for nearly one-third of total income. Further, trading income accounts for 13% of total

income and trading assets are on average about 7% of total U.S. bank assets. There is,

however, considerable time-series variation, and these ratios have been generally increasing

over the second half of the sample period. In levels, quarterly core income has grown from

$35 billion to $79 billion over 1987 to 2014. In contrast, non-core income has grown from

$7 billion to $56 billion over the same period. We also note that the ratio of non-core and

trading incomes to total incomes are positively related to size. Banks in the lowest size

quintile generate on average about 18% of their income from non-core and about 5% of their
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Table 3.1: Summary statistics for the proportion of core, non-core, and trading income

Notes: This table presents summary statistics for core, non-core, and trading incomes (all normalized by total income) as well
as trading assets (normalized by total book value of assets). Panel A reports the statistics for the aggregate quarterly series,
and for the size-sorted groups of banks. In each quarter, we sort banks into 5 groups based on total book value of assets. Group
1 refers to banks with the smallest total book value of assets. Panel B reports statistics for the cross-sectional distribution of
the ratios across all banks in our sample. Quarterly data, September 1987 to December 2014.

Panel A: Aggregate

All banks Size-sorted banks
Mean Std 1 2 3 4 5

Core 63.00 15.31 82.43 84.26 82.57 79.91 61.92
Non-core 37.00 15.31 17.57 15.74 17.43 20.09 38.08
Trading 12.96 10.87 5.35 5.40 5.74 5.47 13.33
Trading assets 7.12 3.90 0.03 0.04 0.05 0.10 7.56

Panel B: Cross-section

Core 84.18 86.91 10.94 22.74 79.97 91.51 101.02
Non-core 15.82 13.09 10.94 −1.02 8.49 20.03 77.26
Trading 6.01 0.67 9.76 −3.64 0.00 8.85 60.66
Trading assets 0.08 0.00 0.40 0.00 0.00 0.00 5.14

income from trading activities. These figures more than double for the largest banks, with

a ratio of non-core (trading) to total income of about 38% (13%).

Panel B of the table presents the cross-sectional distribution of the diversification ratios.

While for the average bank in the sample non-core activities account for about 16% of overall

income, the dispersion is quite large with a standard deviation of nearly 11%. In addition,

the interquartile range varies from 8% to 20%. Over our sample period, the ratio of non-core

to total income peaks at 77%. Similar conclusions apply to the ratio of trading to total

income. While the average is 6%, the distribution is highly skewed. A quarter of the banks

exhibit no income in a given quarter, while for some others the ratio peaks at 60%.

To understand how the cross-sectional distribution evolves over time, we plot the pro-

portion of banks for whom non-core income accounts for less than 10% of total income in

any given quarter. As is clear from the graph, this proportion has steadily decreased over

time from above 50% in the early part of the sample to as low as 13% in the most recent

period. The Gramm-Leach-Bliley Act – which was passed by the U.S. Congress in 1999

and allowed bank holding companies to participate in insurance, securities, and investment

banking activities – is accompanied by a decrease by about 30% in this proportion. This

evidence confirms our statement that U.S. banks have increasingly diversified into activities
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Figure 3.1: Banks with low non-core income
This figure plots the proportion (in %) of banks for whom non-core income is less than 10% of total income. Quarterly data,
September 1987 to December 2014.

historically considered non-core for the banking sector.

Table 3.2 presents the summary statistics for the correlation between core, non-core,

and trading incomes. Panel A presents the correlation between core, non-core, and trading

incomes for the aggregate U.S. bank sector across different sample periods. In the first column

correlations are computed over 1987 to 2014. For this period, the correlation between core

and non-core income is negative at −0.40, while that between core and trading income is even

more pronounced at −0.77. Thus, overall it appears that banks’ diversification into non-core

activities provides significant synergistic benefits. However, such diversification synergies

vary considerably over time. The next three columns in Panel A break down the correlation

between the pre-crisis period (1987:Q3-2006:Q4), crisis period (2007:Q1-2009:Q1), and post-

crisis period (2009:Q2-2014:Q4). While the correlation between core and non-core incomes

is negative in the pre- and post-crisis periods at −0.72 and −0.31 respectively, it turns

positive at 0.34 (albeit not statistically significant) during the recent financial crisis. The

impact of the crisis is even more pronounced on the correlation between core and trading

incomes. Many of the synergies even in banks’ core businesses broke down during the recent

crisis. Overall, the evidence that emerges from these statistics lends preliminary support to

the following mechanism: U.S. banks benefit from diversification synergies as they increase
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reliance on non-core activities. However, any coinsurance provided by non-core activities

can break down, and this can happen precisely when such coinsurance is needed most.

Panel B reports summary statistics for the distribution of the time-varying, conditional

correlations ρj,t (defined above). A unit of observation in this panel is a bank-quarter

combination. The average correlation between core and non-core income is negative at −0.05

and that between core and trading income is even more pronounced at −0.20. However,

there is significant variation in the extent of coinsurance between core and non-core income

in the cross-section of U.S. banks, as the standard deviation is 0.40. For about 55% of the

observations (i.e. bank-quarters) the correlation between core and non-core (or trading)

incomes is negative. While no bank has zero non-core income (and hence a zero correlation

between core and non-core income), for about 18% of the observations in our sample we

observe zero trading income (and hence zero correlation). We exploit this fact, as well as

the fact that some banks begin participating in trading activities, in our robustness tests

below to provide further causal evidence on the impact of diversification on banks’ core

intermediation capabilities.

The picture that emerges from these statistics is that: i.) non-core activities account for

about one-third of total income during the whole sample; ii.) there is considerable variation

over time and in the cross-section in the extent of diversification and coinsurance; iii.) non-

core income is negatively related to core income, although this correlation turns positive

during the crisis.

The next section discusses how we use this wealth of information to investigate what

determines the extent of bank’s diversification into non-core activities, and what effect does

this have on bank’s operations.
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Table 3.2: Summary statistics for correlation of core, non-core and trading income.

Notes: This table presents summary statistics for the correlation between core and non-core or trading
incomes, where all incomes are normalized by total income. Panel A reports the correlation for the aggre-
gate quarterly series over different sample periods: full sample; pre-crisis period (1987:Q3-2006:Q4); crisis
period (2007:Q1-2009:Q1); and post-crisis period (2009:Q2-2014:Q4). Panel B reports statistics for the cross-
sectional distribution of the conditional correlation ρj,t. ‘Negative’ is the fraction of negative correlations;
‘Zero’ is fraction of zero correlations (i.e. no non-core or trading income over the 5-year period); and ‘Posi-
tive’ is the fraction of positive correlations. Statistical significance at the 10%, 5% and 1% levels is denoted
by *, **, and *** respectively. Quarterly data, September 1987 to December 2014.

Panel A: Aggregate

Full sample Pre-crisis Crisis Post-crisis

Non-core income −0.3967∗∗∗ −0.7235∗∗∗ 0.3441 −0.3081∗∗∗

Trading income −0.7721∗∗∗ −0.8647∗∗∗ 0.3166 −0.5445∗∗∗

Panel B: Cross-section of ρj,t

Mean Std 25th Median 75th Neg. Zero Pos.
Non-core −0.0530 0.4064 −0.3735 −0.0628 0.2541 0.5525 0.0001 0.4474
Trading −0.1996 0.3998 −0.5336 −0.1057 0.0002 0.5670 0.1829 0.2502

3.3 Hypotheses and variables construction

3.3.1 Determinants of banks’ decision to diversify

Diamond (1984) develops a theory of financial intermediation in which banks have a com-

parative advantage over individual savers in their ability to monitor the credit quality of

borrowers. An implication of this family of models is that diversification within a bank low-

ers the cost of monitoring. This is one of several channels through which, unlike nonfinancial

firms, banks may find it optimal to diversify. Moreover, this incentive should increase with

size.

Pursuing this line of reasoning: if some credit risk is only partially diversifiable, banks

may choose not only to hold diversified loan portfolios, but also to diversify into financial

activities traditionally considered as non-core. Thus, economies of scale and scope provide

incentives for banks to diversify. These arguments suggest that the extent of diversification

is driven by bank size, which we measure by the log total value of assets (Size).
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Generally, the literature on risk management shows that hedging increases firm value

by reducing the volatility of firm’s cash flows , lowering the expected cost of bankruptcy,

expanding the debt-capacity for firms , reducing investment distortions, and helping firms

avoid deadweight transaction costs due to costly external finance . Thus, we expect banks

facing a higher cost of financial distress or higher cost of external finance to be more likely to

diversify their cash flows. We capture the cost of financial distress using the ratio of income

variability to expected equity capital, and denote it DistressCosts.7 We proxy for the cost

of raising external capital by the bank’s listing status. Publicly-listed banks can easily tap

equity markets to raise capital and may have a lower cost of raising external finance than

privately-held banks. Thus, our analysis includes a dummy variable Listed that equals one

for public banks, and zero otherwise.

It is likely that banks that rely more on deposit financing have access to a (more) stable

source of funding. These banks would also face a lower cost of raising external finance (due

to deposit insurance), and may therefore have a lower incentive to diversify into non-core

activities. To capture this effect, we include a bank’s deposit ratio, DepositRatio, computed

as the ratio of deposits to total assets.

Theoretically, high-growth banks are more likely to face financing shortfalls and therefore

have a stronger motivation to diversify in order to avoid the cost of raising external capital.

For this reason, we consider the average quarterly growth rate of a bank, LoanGrowth,

computed as the percentage growth in loans over the past four quarters.

Bank profitability should also impact the management decision to diversify. Managers

at more profitable banks will not only have the resources to expand beyond core banking

activities, but due to agency costs will also have a propensity to invest to grow banks beyond

their optimal size and scope. We measure profitability by income growth, IncomeGrowth,

defined as the quarterly change in net income scaled by total assets.

7To be precise, the measure is computed as the variance of quarterly net income to the square of equity
capital plus average quarterly net income.
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Finally, we control for managerial incentives and agency costs that are embedded in

manager’s compensation. Theory predicts that the incentive to manage risks (i.e. diversify)

should be positively related to the sensitivity of managerial wealth to stock prices, and

negatively related to its sensitivity to stock return volatility. For the subset of publicly-

listed banks that are covered by the COMPUSTAT executive compensation database, we

compute the Delta and V ega of the top management share and option holdings following

the procedure in CM (2016). We expect diversification to relate positively to Delta but

negatively to V ega.

Note that our paper takes the degree of coinsurance (i.e. correlation) between core and

non-core income as given, and does not investigate why this varies across banks. The reason

for this is data limitations. We do not observe the exact nature of transactions that comprise

a particular bank’s core, non-core, and trading income. Hence, we are unable to comment

on what drives the coinsurance and why this coinsurance varies across banks.8

We speculate that the degree of coinsurance between core and non-core income varies

across banks and over time as it is a choice (design) variable for bank managers.Further, we

assume that bank managers make this choice rationally based on all available information.

For example, consider the decision by a bank to participate in proprietary trading activities.

Proprietary trading in options and derivatives may allow bank managers to directly control

correlation exposures and as a result the degree of coinsurance between core and non-core

incomes. In fact, this view would be consistent with Atkeson, Eisfeldt and Weill (2015),

who develop a model for a bank that trades derivative securities to hedge heterogeneous

exposures to loan default risk. In their model, a bank actively hedges loan default risk via

trading positions.

The cross-sectional variation in the degree of coinsurance between core and non-core

income could also be driven by costs of banks’ participation in non-core activities. These

costs include but are not limited to hiring skilled personnel, investing in systems that monitor

8Data that allows researchers to comment on this are hard to get even for regulators.
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and report risk across subsidiaries, etc, and are difficult to observe for all banks in our sample.

3.3.2 Impact of diversification on banks’ operations

We relate our two measures of diversification i.e. the ratio of non-core to total income

and coinsurance to five aspects of banks’ operations namely, their profitability, financial

constraints, credit supply, risk profile, and response to changes in business conditions.

Diamond (1984) argues that diversified banks incur a lower cost of delegated monitoring

and hence should be more profitable. The model of financial intermediation in BHW (1995)

also suggests that diversified banks generate higher profits for the same level of risk. Further,

if bank managers are rational profit-maximizers, non-core activities pursued by banks should,

on average, enhance profits. Finally, the banking literature assumes that non-core activities,

which are often fee-based, do not expose banks to interest rate risk, improve profitability

and reduce earnings volatility. Therefore, we analyze how diversification impacts the level

and volatility of bank profitability. Profitability is measured by the ratio of net income to

total book value of assets. We denote the level of profitability by P and the volatility of

profitability by σP , respectively.

Minton and Schrand (MS) (1999) show that for nonfinancial firms, higher cash flow

volatility is associated with lower investment. This is because firms with higher cash flow

volatility are more likely to face periods of internal cash flow shortfalls. Evidence in MS 1999

indicates that firms react to these shortfalls not by simply changing the timing of investments

to match cash flow realizations but by forgoing investments altogether. If diversification

improves profitability and lowers earnings volatility for banks, then diversified banks should

provide more credit. Further, in the cross-section this effect should depend on the extent of

diversification/coinsurance. In our analysis, we use four separate proxies for credit supplied

by banks namely, total credit (Total), commercial and industrial credit (Commercial), real

estate credit (Real), and credit provided via commitments (Commit). For each bank, all

four measures of credit are normalized by beginning of period book value of assets.
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Current research often stresses the efficiency-enhancing role of internal capital markets in

diversified firms. These studies suggest that internal capital allocations in diversified banks

can provide an intertemporal insurance function against financing shortfalls and financial

constraints. We investigate the link between diversification and financial constraints faced

by banks. We measure the financial constraints status of a given bank by the dividend payout

ratio and by the sensitivity of its credit supply (i.e. its allocation of funds or investment) to

its internal cash flows. Dividend payout ratio, denoted by DIV , is computed as the ratio of

total dividends to net income.

Next, we examine the link between diversification and measures of bank risk. A fun-

damental implication of modern portfolio theory is that diversification reduces the return

variance of a portfolio of financial assets. Applied to banking, portfolio theory suggests that

diversification can potentially reduce the probability of failure and make banks less risky.

However, due to managerial incentives (especially agency costs) banks can also misuse their

diversification advantages and operate with more leverage or pursue riskier activities. For

example, if diversification improves profitability, managers at better diversified banks will

have the resources to invest to grow banks beyond their optimal size and scope. For our

analysis, we use various market based measures of risk derived from equity returns such as

total risk, idiosyncratic risk, and systematic risk.

Finally, diversification should also impact how bank credit supply reacts to changes in

business (macroeconomic) conditions. Kayshap and Stein (2000) show that the credit sup-

ply of banks facing tougher financial constraints is more responsive to changes in business

conditions and monetary policy.In addition, the theoretical model of Diamond (1984) also

suggests that credit supply of better diversified banks is less sensitive to aggregate shocks.

These studies suggest that by relaxing financial constraints and improving liquidity, diver-

sification can provide a direct advantage to banks, and can insulate its credit supply from

sudden changes in business conditions. Alternatively, (as suggested above) if coinsurance

benefits vary over time and reverse exactly when they are needed most, diversification could
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increase bank’s cost of capital in times of aggregate shocks, and amplify the sensitivity of

bank credit supply to changes in business conditions. To proxy for macroeconomic conditions

we use the year-on-year growth of the gross domestic product (GDP ). This variable allows

us to document how diversification impacts the relationship between bank credit supply and

macroeconomic conditions during different market/macroeconomic regimes.

3.4 Empirical results

In this section, we present our main empirical results. We first investigate the determinants of

bank’s decision to diversify. We then look at the impact of diversification on bank operations.

3.4.1 The determinants of banks’ decision to diversify

We relate the extent of bank’s diversification in non-core activities to the variables outlined

previously using a panel regression. To recap, our analysis includes the following bank-

level determinants along with their expected signs in parentheses: Size (+); DistressCosts

(+); Listed (-); DepositRatio (-); LoanGrowth (+); IncomeGrowth (+); Delta (+); and

V ega (-). In addition, in each regression, we control for four macroeconomic variables that

capture aggregate conditions, as these may affect a bank’s core/non-core income and hence

its incentive to diversify. The level of interest rates (Level, measured by the yield on the

three-month U.S. T-bill) captures macroeconomic conditions and monetary policy stance.

Diversification to avoid a financing shortfall may be particularly relevant when monetary

policy is tight or macroeconomic conditions worsen. Positive shocks to interest rates volatility

(V ol, measured by the first difference in the volatility of daily changes in the three-month

U.S. T-bill in a given quarter) may increase the volatility of a banks’ core income and

thus induce higher diversification incentives. We also include the term spread (TSPR, the

difference between the ten-year and the one-year U.S. bond yields) and the credit spread

(DSPR, the difference between yields on corporate bonds issued by BAA- and AAA-rated
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firms in the U.S.) as these are often regarded as proxies for business cycle fluctuations9.

Table 3.3 presents the estimates for the panel regression as the cross-sectional determi-

nants are progressively included. We observe that bank size is statistically significant across

all specifications with the expected positive sign. Size is also economically significant, as a

1% increase in total assets is accompanied by an increase of 3% in the proportion of non-core

activities.

Expected distress costs also enter the regression with an expected positive loading. The

coefficient is statistically significant at the 1% level for all but the last two specifications.

This may be on account of the fact that, in the last two columns, we restrict our sample

to banks present in the COMPUSTAT executive compensation dataset. This reduces the

number of observations by approximately 90%.

The coefficient on Listed is negative at −0.02, and is again highly significant. This

estimate implies that, ceteris paribus, the proportion of non-core activities of privately-

owned banks is on average 2% higher than that of otherwise identical public banks even

after controlling for size. This result is consistent with existing theories of risk management

that argue that the propensity to diversify is negatively related with the costs of raising

external finance. Similarly, banks with a higher deposit ratio are less likely to diversify into

non-core activities, and the effect is strongly significant in specifications 4 to 6. It seems that

insured deposits indeed provide a stable low cost source of external funds so these banks are

less in the need of diversifying their cash flows.

Turning our attention to loan growth, we see that the coefficient has an unexpected

negative sign which turns insignificant in the sample restricted to publicly-listed firms (i.e.

columns 7 and 8). High loan growth banks are more likely to face financing shortfalls and

therefore have a stronger motivation to diversify to avoid raising external capital. Therefore,

the negative coefficient on loan growth in Table 3.3 appears puzzling. A potential explanation

9An alternative approach is to control away aggregate conditions altogether using time fixed effects. We
verify our results are robust to this alternative.
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Table 3.3: Determinants of bank diversification into non-core activities

Notes: This table presents the results of the panel regression of bank characteristics on the bank’s
decision to diversify into non-core activities. The dependent variable is the proportion of a bank non-core
income. Each column presents the results for a separate specification. Size is the log total book value
of assets; DistressCosts is a measure of expected distress costs; Listed is a dummy variable that equals
one if the bank is publicly listed; DepositRatio is the ratio of deposits to total assets; LoanGrowth is
total loan growth; IncomeGrowth is the change in net income by total assets; Delta and V ega measure
executive incentives; Level is the 3-month U.S. T-bill yield; TSPR is the term spread; DSPR is the default
spread; and V ol is the change in 3-month yield volatility. Quarterly data, September 1987 to December 2014.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

Size 0.0325∗∗∗ 0.0334∗∗∗ 0.0357∗∗∗ 0.0310∗∗∗ 0.0310∗∗∗ 0.0312∗∗∗ 0.0324∗∗∗ 0.0282∗∗∗

(20.44) (19.69) (18.59) (13.01) (13.02) (13.14) (5.31) (4.69)
DistressCosts 0.0111∗∗∗ 0.0100∗∗∗ 0.0108∗∗∗ 0.0104∗∗∗ 0.0140∗∗∗ 0.0402 0.0236

(3.41) (3.06) (3.32) (3.17) (3.74) (1.12) (0.69)
Listed −0.0150∗∗∗−0.0159∗∗∗−0.0158∗∗∗−0.0154∗∗∗

(−3.18) (−3.43) (−3.41) (−3.33)
DepositRatio −0.1414∗∗∗−0.1413∗∗∗−0.1413∗∗∗−0.0911 −0.0682

(−3.35) (−3.35) (−3.36) (−0.83) (−0.61)
LoanGrowth −0.0078 −0.0121 −0.0652∗∗ −0.0649∗∗

(−0.72) (−1.11) (−2.25) (−2.25)
IncomeGrowth 2.2406∗∗ 0.3324 0.0168

(2.04) (0.11) (0.01)
Delta 0.0148∗∗∗ 0.0099∗

(2.71) (1.67)
V ega 0.0171∗∗∗

(2.38)
Level −0.0334∗∗∗−0.0320∗∗∗−0.0309∗∗∗−0.0309∗∗∗−0.0308∗∗∗−0.0312∗∗∗−0.0192∗∗∗−0.0182∗∗∗

(−30.05) (−26.51) (−24.94) (−25.40) (−25.12) (−24.72) (−4.41) (−4.13)
TSPR −0.0280∗∗∗−0.0260∗∗∗−0.0246∗∗∗−0.0238∗∗∗−0.0238∗∗∗−0.0241∗∗∗−0.0041 −0.0033

(−22.03) (−17.90) (−16.60) (−16.66) (−16.68) (−16.64) (−0.78) (−0.62)
DSPR −0.0049∗∗∗−0.0034∗ −0.0030 −0.0060∗∗∗−0.0060∗∗∗−0.0049∗∗ 0.0029 0.0019

(−2.79) (−1.75) (−1.55) (−2.69) (−2.67) (−2.15) (0.41) (0.28)
V ol 0.0222∗∗∗ 0.0374∗∗∗ 0.0370∗∗∗ 0.0259∗∗∗ 0.0256∗∗∗ 0.0232∗∗ 0.0257 0.0191

(2.48) (3.88) (3.84) (2.51) (2.48) (2.25) (0.68) (0.50)

N 59, 941) 51, 024 51, 024 51, 024 51, 024 51, 024 4, 410 4, 410
R2 0.35 0.34 0.34 0.35 0.35 0.35 0.31 0.32
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is that in a bank with high loan growth the loan-granting subsidiary may have stronger

(political) influence over investment decisions.

Column 6 shows that, as expected, income growth is positively related to the decision

to diversify, and that the effect is statistically significant at the 5% level, while it is not

statistically significant in the last two columns. Thus, it appears that profitable banks are

more likely to use their resources to diversify into non-core activities.

Finally, columns 7 and 8 control for managerial incentives for the subset of publicly-listed

banks for whom data is available in COMPUSTAT. We find that the propensity to diversify

into non-core activities is positively correlated with the ‘Delta’ of managerial share and

option holdings. The effect is statistically significant at the 10% level or better. However,

we find that the propensity to diversify also increases in ‘Vega’. This may be on account

of the fact that, for publicly-listed banks, the correlation between ‘Delta’ and ‘Vega’ is very

high at 0.77, which makes it hard to disentangle their effect on banks’ diversification decision.

We also observe that the extent of diversification varies over time in a predictable manner.

It tends to be inversely related to the level of interest rates, the term spread, and the default

spread, and positively related to interest rate volatility.

Overall, our results lend support to the extant models of financial intermediation and risk

management. Economies of scale and scope (i.e. size) play a very important role in banks’

decision to diversify into non-core activities. The incentive to manage risks via diversification

is stronger for banks facing a high cost of raising external finance and those with higher

distress costs. Further, as predicted by models of agency cost, profitable banks are more

likely to invest to grow banks beyond their optimal size and scope, and the propensity

to diversify is also positively correlated with the ‘Delta’ of managerial shares and options

holding.
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3.4.2 Impact of diversification on banks’ operations

For analyzing the impact of diversification on banks’ operations, we note that since data

on instantaneous correlation between core and non-core income is not available, in a given

quarter, for a given bank, we measure coinsurance using data over the past 5 years (i.e. 20

quarters). For consistency, all other (i.e. dependent and control) variables in the regressions

in this section are also measured over the same 5-year period.

Impact of diversification on bank profitability

We test the relationship between bank diversification/coinsurance and bank profitability by

estimating the following pair of panel regressions:

Pj,t = const. + TFE + βPR1 NonCorej,t + βρ1ρj,t + βDG1 DGj,t + βCAP1 CAPj,t + εj,t

σPj,t = const. + TFE + βPR2 NonCorej,t + βρ2ρj,t + βDG2 DGj,t + βCAP2 CAPj,t + εj,t(3.1)

Here, Pj,t denotes total income scaled by total assets for bank j in quarter t, averaged over the

5-year period over which we measure ρj,t and NonCorej,t. The standard deviation of cash

flows, σPj,t, is also computed over the same period. We expect that higher diversification

and coinsurance during a given 5-year period is associated with higher overall cash flows

and lower volatility of cash flows. In the regressions, we control for the average quarterly

growth in deposits (DG), and the average ratio of book value of equity to book value of

assets (CAP ), computed over the same 5-year period. The regressions also include time

fixed effects. Standard errors are clustered by bank.

Estimates of the models are given. The table shows that banks with a higher proportion

of non-core income are not only more profitable, but their cash flows are also more volatile.

Also note that the impact of diversification (i.e. NonCore) on average profitability is not

significant once we control for capital and deposit growth rates.

In contrast, higher coinsurance is associated with higher overall cash flow levels and lower
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Table 3.4: Impact of diversification on bank profitability

Notes: This table presents results of the following panel regressions:

Pj,t = const. + TFE + βPR1 NonCorej,t + βρ1ρj,t + βDG1 DGj,t + βCAP1 CAPj,t + εj,t

σPj,t = const. + TFE + βPR2 NonCorej,t + βρ2ρj,t + βDG2 DGj,t + βCAP2 CAPj,t + εj,t

Here, Pj,t denotes total income scaled by total assets for bank j in quarter t, averaged over the 5-year period over which we
measure ρj,t and NonCorej,t. The standard deviation of cash flow, σPj,t, is also computed over the same period. DG, and
CAP are respectively the quarterly growth rate of deposits, and the ratio of book value of equity to total book value of assets,
averaged over the last 5 years. TFE are time fixed effects. Statistical significance at the 10%, 5% and 1% levels is denoted by
*, **, and *** respectively. In parentheses we report t-statistics based on standard errors clustered by bank. Quarterly data,
September 1987 to December 2014.

P σP P σP

NonCore 0.0009∗∗∗ 0.0009∗∗∗ 0.0005 0.00109∗∗∗

(2.70) (3.40) (1.56) (4.07)
ρ −0.0008 0.0001∗∗∗ −0.0006 ∗ 0.0002∗∗∗

(−0.23) (3.32) (−1.87) (4.40)
DG 0.0189∗∗∗ −0.0176∗∗∗

(13.04) (−11.12)
CAP 0.0188∗∗∗ −0.0043∗∗∗

(17.86) (−3.91)

N 63, 364 63, 364 63, 364 63, 364

volatility of cash flows for banks in our sample. These results are statistically significant at

the 1% level or better. The sign on the control variables is as expected – an increase in

deposits and bank capital is associated with higher average profitability and lower standard

deviation of profitability over the same 5-year period.

Impact of diversification on bank credit supply

Do diversified banks lend more? We test the association between diversification and bank

credit supply through the following panel regression framework:

CREDITj,t = const. + TFE + βPRNonCore+ βρρj,t + βDGDGj,t

+ βCAPCAPj,t + βPAPj,tβ
PSσPj,t + εCREDITt (3.2)

Here, CREDITj,t is one of the four proxies for credit supply for bank j in quarter t: total

credit, commercial credit, real estate credit, and credit commitments. As described above,

all proxies for credit supply are scaled by beginning-of-period book value of assets, and are
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averaged over the same 5-year period over which we measure coinsurance and the ratio of

non-core to total income.Given the evidence above that overall profitability is sensitive to

our measures of diversification, we also include the level and volatility of total income to

capture the effect of diversification on bank’s operations that extents beyond profitability.

Estimates of the model in equation 3.2 are presented below. Each column refers to a

different proxy of credit. Results are reported without (first four columns) and with (last

four columns) control variables. We see that the extent of diversification has a positive

impact on a bank’s credit supply. As the proportion of non-core to total income increases,

credit supplied to customers increases. The results also show that an increase in coinsurance

(i.e. a decrease in ρ) is also robustly associated with an increase in credit. In particular,

a 1% increase in coinsurance is accompanied with a 2.66% increase in credit supply. Note

that overall credit for all banks in our sample stands at $7.06 trillion at the end of 2014. A

2.66% increase implies a $1.88 billion increase in quarterly total loans. Thus the effect is

economically quite large.

Higher coinsurance is associated not only with higher total credit supply but also higher

commercial, real estate, and commitment credit. The coefficients are statistically significant

at the 5% level or better. The fact that the relationship between diversification/coinsurance

and average credit holds over a 5-year period is significant as it indicates that banks with

lower degree of diversification and coinsurance do not simply delay credit supply to match

their cash flow realizations, but that they may forego opportunities to supply credit alto-

gether. It is also noteworthy that the inclusion of the control variables has little impact on

the effect of the diversification and coinsurance measure.

Impact of diversification on financial constraints of banks

We conduct two complementary tests to investigate the impact of diversification on bank’s

financial constraints. First, we check if banks with more diversification pay more dividends.
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We report the estimates of the following panel regression:

DIVj,t = const. + TFE + βPRNonCorej,t + βρρj,t + Controlsj,t + εDIVj,t (3.3)

Here, DIVj,t denotes dividend payout (as a ratio of total income) for bank j in quarter t,

averaged over the 5-year period over which we measure ρj,t and NonCorej,t. In accordance

with if banks with lower diversification/coinsurance are financially constrained, they should

store liquidity, and therefore pay lower dividends. In other words, we expect βPR to be

positive, and βρ to be negative. The results show that while dividends paid to banks’ share-

holders increase in the proportion of non-core income, the relationship between coinsurance

and dividends is not statistically significant. A 1% increase in the proportion of non-core

income increases dividends by 0.35% and the effect is statistically significant at the 1% level.

In contrast, once we control for the proportion of the non-core income, coinsurance does not

have a statistically significant effect on dividends paid.

In our second test we check how diversification affects the sensitivity of bank credit supply

to overall bank cash flow levels. If external finance is costly, banks may become financially

constrained when internal cash flow levels are insufficient. Under these circumstances, bank

credit supply will be sensitive to levels of cash flow generated internally. If coinsurance helps

relieve financial constraints, we expect the sensitivity of bank credit to its internal cash flows

to decrease in the degree of coinsurance. Thus, we estimate the following interacted model:

CREDITj,t = const. + TFE + βPRNonCorej,t + βρρj,t + Controlst (3.4)

+ βPAPj,t + βI1NonCorej,t × Pj,t + βI2ρj,t × Pj,t + εCREDITj,t

Estimates of the model are presented in Table 3.5. The effect of profitability on credit

supply (βPA) is positive, indicating that in markets with costly external finance bank credit

supply depends on the availability of internal cash flows. However, the sensitivity of bank

credit supply to internal cash flows is lower for banks with a higher proportion of non-core
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Table 3.5: Impact of diversification on dividends paid by banks

Notes: This table presents results of the following panel regression:

DIVj,t = const. + TFE + βPRNonCorej,t + βρρj,t + Controlst + εDIVj,t

Here, DIVj,t denotes dividend payout (as a ratio of total income) for bank j in quarter t, averaged over the
5-year period over which we measure ρj,t and NonCorej,t. DG, and CAP are respectively the quarterly
growth rate of deposits, and the ratio of book value of equity to total book value of assets, averaged over the
last 5 years. TFE are time fixed effects. Statistical significance at the 10%, 5% and 1% levels is denoted by
*, **, and *** respectively. In parentheses we report t-statistics based on standard errors clustered by bank.
Quarterly data, September 1987 to December 2013.

(1) (2) (3) (4)

NonCore 0.3480∗∗∗ 0.3530∗∗∗ 0.3040∗∗∗ 0.3250∗∗∗

(3.58) (3.64) (3.19) (3.44)
ρ 0.0056 0.0144 0.0068 0.0147

(0.83) (1.40) (0.66) (1.45)
DG −3.1520∗∗∗ −3.5680∗∗∗

(−8.11) (−9.18)
CAP 1.121∗∗∗ 0.5680∗

(3.99) (1.92)
P 32.6700∗∗∗ 31.9400∗∗∗

(5.55) (5.15)
σP −16.6200∗∗∗ −10.78∗∗

(−3.10) (−1.99)

N 63, 364 63, 364 63, 364 63, 364
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Table 3.6: Impact of coinsurance on sensitivity of credit to internal cash flows

Notes: This table presents results of the following panel regression:

CREDITj,t = const. + TFE + βPRNonCorej,t + βρρj,t + Controlst

+ βPAPj,t + βI1NonCorej,t × Pj,t + βI2ρj,t × Pj,t + εCREDITj,t

Here, CREDIT is either the total credit, commercial credit, real estate credit, or credit commitments for bank j scaled by the
beginning-of-period book value of assets. The ratio of non-core to core income (NonCore) and their correlation ρ are computed
over the last 5 years. Pj,t denotes total income scaled by total assets for bank j in quarter t, averaged over the 5-year period
over which we measure ρj,t and NonCorej,t. The standard deviation of cash flow, σPj,t, is also computed over the same
period. DG, and CAP are respectively the quarterly growth rate of deposits, and the ratio of book value of equity to total
book value of assets, averaged over the last 5 years. TFE are time fixed effects. Statistical significance at the 10%, 5% and
1% levels is denoted by *, **, and *** respectively. In parentheses we report t-statistics based on standard errors clustered by
bank. Quarterly data, September 1987 to December 2014.

Total Commercial Real Commit Total Commercial

NonCore 0.1550∗∗∗ 0.0857∗∗∗ 0.4500∗∗∗ 0.1690∗∗∗ 0.1410∗∗∗ 0.0856∗∗∗

(2.95) (3.22) (8.31) (6.01) (2.55) (3.13)
ρ −0.0161 ∗∗ −0.0118∗∗∗ −0.0053 −0.0025 −0.0150 ∗∗ −0.0117∗∗∗

(−2.24) (−2.62) (−0.66) (−0.59) (−2.09) (−2.61)
DG 1.0900∗∗∗ 0.4690∗∗∗

(7.39) (5.25)
CAP −0.5690∗∗∗ −0.0851

(−4.94) (−1.32)
P 10.5100∗∗∗ 2.1320 14.4100∗∗∗ 0.4230 8.1790∗∗∗ 2.3380

(3.84) (1.26) (5.13) (0.32) (2.90) (1.32)
NonCore× P −2.4570 −1.9890 −2.7790 ∗ −9.1920 −1.9320 −1.4530

(−1.45) (−0.21) (−1.87) (−0.94) (−1.07) (−0.15)
ρ× P 3.9320 2.0510 6.9440 ∗∗ 0.4800 5.0720 ∗ 1.6510

(1.49) (1.23) (2.41) (0.33) (1.90) (0.98)

N 63, 364 63, 364 63, 364 63, 364 63, 364 63, 364

income (that is, βI1 is negative). A similar reasoning (with opposite signs) applies to the

correlation measure ρj,t: less diversified income stream as well as lower coinsurance increase

banks’ financial constraints, thereby making bank credit supply more sensitive to internally

generated cash flows (that is, βI2 is positive). In sum, the sign on the interaction terms are

consistent with the prior that diversification relaxes financial constraints. We conclude that

bank credit supply is not only sensitive to internal cash flows, but this sensitivity decreases

in diversification/coinsurance.

Impact of diversification on bank risk exposures

We analyze how a bank’s diversification into non-core activities impacts its equity idiosyn-

cratic and systematic risk. Our prior is that diversification reduces a bank’s idiosyncratic

risk. However, the effect of diversification on bank’s systematic risk is empirically an open
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question.

We begin by matching the Call Report Data for all publicly-listed banks in our sample

to monthly data for their equity returns available from the Center for Research in Security

Prices (CRSP).10 We build portfolios of bank stocks using the standard portfolio formation

strategy of Fama and French (1993). In each month, we rank banks in quintiles based on

the extent of bank’s diversification into non-core activities, measured alternatively by (a)

the ratio of non-core to total income, and (b) the degree of coinsurance i.e. ρ. We track

the bank return in any given quintile in the subsequent month, and calculate value-weighted

returns for each portfolio. This procedure results in monthly value-weighted returns for five

diversification-sorted portfolios.

To obtain systematic risk exposures, we follow a standard performance-attribution ap-

proach. We regress returns to each diversification-sorted portfolio j in excess of the one-

month risk-free rate on a set of risk factors ft:

rj,t − rf,t = αj + βjft + εj,t (3.5)

The vector ft contains six factors that have been previously documented to capture differ-

ences in average returns to nonfinancial stocks and bonds, ft = [market smb hml ltg crd liq].

The variables market, smb, and hml represent the returns on the three Fama French stock

factors. The factors are constructed using the six value-weighted portfolios of all stocks

on NYSE, Amex and NASDAQ (including financials) formed on size and book-to-market.

We capture market excess returns using the value-weighted return on all NYSE, Amex and

NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Asso-

ciates). A bank manages a portfolio of bonds of varying maturities and credit risk. Therefore,

we augment the model with two additional bond factors: ltg, the excess returns on an index

of 10-year bonds issued by the U.S. Treasury (from Global Financial Data); and crd, the

10For matching, we use the link file maintained by the Federal Reserve Bank of New York containing the
CRSP permanent number codes for publicly-listed banks.
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excess returns on an index of investment grade corporate bonds (maintained by Dow Jones).

Finally, we include the Pastor and Stambaugh (2003) liquidity risk factor, denoted liq.

For brevity, we show loadings only on market risk factors and the adjusted R2. Each

panel refers to a different measure of diversification. We begin by looking at Panel A, where

portfolios are sorted by the proportion of non-core income. Portfolio 1 contains the banks

with the lowest proportion of non-core income. We note that the adjusted R2 increases

monotonically from the first quintile to the last quintile. That is, the idiosyncratic risk (or,

1−R2) of banks that derive a higher portion of their income from non-core activities is lower

than the idiosyncratic risk of other banks. This evidence is consistent with the phenome-

nal rise of securitization-driven lending over our sample period. The typical securitization

bundle was structured to diversify away local risk by combining mortgages originated in dif-

ferent parts of the country. If banks that increased the proportion of income from non-core

activities did so by relying more on securitization activity, this would result into a reduction

of idiosyncratic risks, as it does in Table 5

The table also reports the level of total risk of monthly stock returns to diversification-

sorted portfolios, as measured by their sample standard deviation. Clearly, total riskiness

of banks’ equity claims increases in the proportion of income derived from non-core activ-

ities. One possible reason for this result is the fact that non-core income includes income

from hedge funds, venture funds, private equity funds, and trading and income from these

activities are generally more volatile. Thus, despite the secular decline in the total riskiness

of the bank sector over our sample period, banks that increasingly rely on non-core income

boost their total risk exposures compared to others.

To study the dynamics of systematic risk of banks we look at the betas on the value-

weighted market index, that is, their CAPM betas. Market beta increases monotonically

with the proportion of non-core income. Over the entire sample, banks with the largest

proportion of non-core income have a market beta of 1.31 as compared to 0.75 for those with

the lowest proportion of non-core income. It is also important to note that the increase in
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market betas from group 1 to group 5 cannot be explained by balance sheet leverage ratios.

The average ratio of capital to total assets for banks in group 1 is 10.11%, which is very

close to that for banks in group 5 at 10.76%. Overall, these findings show that banks that

rely more on non-core activities have lower idiosyncratic risk, but higher total risk.

Finally, motivated by the evidence from the correlations, that the coinsurance provided

by diversified subsidiaries changes over time, we explore one possible reason for why diver-

sification increases systematic as well as total risk. The last row of Panel A presents the

loading on the correlation risk factor, which is particularly suited to capture risk exposure

to unexpected changes in correlation.11 There is mounting evidence that asset return corre-

lations change over time, and tend to increase at times of aggregate economic uncertainty.

These are precisely the states of nature during which cash flow correlations of banks are also

likely to change. For this reason, we expect the market-based correlation risk measure to be

a good proxy for the cash-flow correlation risk faced by banks. Further, we have shown that

banks derive a significant portion of their non-core income from trading, venture capital, and

hedge funds activities sponsored by banks. These activities allow banks to trade in options

and derivatives and this exposes them directly to market-based correlation risk. We observe

that the loading on the correlation risk factor decreases monotonically in the proportion of

non-core income. In particular, the exposure almost doubles when moving for the lowest

(coefficient of -12.97) to the highest (coefficient of -21.94) diversification-sorted portfolio.

Because of a negative correlation risk premium, so more negative coefficients reveal higher

exposure to correlation risk. Thus, banks which derive a higher proportion of their income

from non-core activities appear to be more exposed.

Are bank managers aware that diversification increases systematic as well as correlation

risk? If yes, why do they still choose to diversify bank activities? One possible answer is

that diversification allows banks to grow rapidly beyond a specific size threshold. A large

literature shows that banks that exceed a particular threshold benefit from implicit and

11We are grateful to the authors for sharing their data with us.
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explicit guarantees provided by regulators. For example, Gandhi and Lustig (2015) find

large banks have a lower cost of capital due to implicit government guarantees. Thus, it is

likely that managers diversify to receive benefits of implicit guarantee and this exceeds the

costs of diversification outlined in this section.

To test if this is the case, we regress returns of diversification-sorted portfolios of banks

on the size factor of Gandhi and Lustig (2015), who show that banks that benefit from an

implicit government guarantee have a more negative loading on the size factor. The last

row in panel B reports the loadings on the size factor for diversification-sorted portfolios of

banks. We see that the loading on the size factor increases near monotonically from portfolio

‘1’ to portfolio ‘5’. Some of this relationship is clearly mechanical as size and diversification

go together. However, the fact that diversified banks benefit more from implicit government

guarantees is consistent with the story that one motivation for banks to diversify is to grow

rapidly beyond a certain size threshold to benefit from implicit government guarantees.

Panel B reports the results for portfolios of banks that are now sorted by the degree

of coinsurance as measured by ρ. Banks with the lowest coinsurance (and hence most

diversified) are in portfolio 1. We find that although banks sorted by ρ also have a significant

exposure to correlation risk, neither the correlation risk exposure nor the proportion of

systematic risk is monotone in ρ. Returns to banks in portfolio 1 have a standard deviation

of 24%, slightly higher than that of banks in portfolio 5 which stand at about 22%. However,

as expected, systematic risk accounts for a lower proportion of total risk for banks in portfolio

1 as compared to those in portfolio 5.

To sum up, as banks increase their reliance on non-core activities, they reduce their

idiosyncratic risk exposures. This pattern is consistent with the argument in models of

financial intermediation that banks’ managers try to diversify idiosyncratic risk to minimize

the cost of delegated monitoring. It also indicates why better diversification is associated

with a higher levels of credit supply, profitability, and lower financial constraints for banks.

However, reliance on non-core activities increases total risk as well as exposure to systematic
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Table 3.7: Risk profile of diversification-sorted portfolios of banks

Notes: This table presents the estimates from the OLS regression of monthly excess returns on diversification-sorted portfolio
of banks on the following six risk factors: market, smb, and hml denote the three Fama-French stock factors; ltg denotes
the excess return on an index of long-term government bonds; crd denotes the excess return on an index of investment-grade
corporate bonds; liq denotes the liquidity risk factor of Pastor and Stambaugh (2003). Results are presented for portfolios
of banks that are sorted in quintiles based on alternatively the proportion of non-core income (Panel A) or the degree of
coinsurance (Panel B). We report the loading on market, the adjusted R2, and the sample standard deviation (σ). We also
report the loading on the correlation risk factor (corr), and on the size factor of Gandhi and Lustig (size factor). Statistical
significance at the 10%, 5% and 1% levels is denoted by *, **, and *** respectively. In parentheses we report t-statistics based
on Newey-West standard errors with 3 lags. Monthly data, September 1987 to December 2014.

Portfolio 1 2 3 4 5

Panel A : Proportion of non-core income

market 0.7499∗∗∗ 0.7616∗∗∗ 0.7190∗∗∗ 1.0218∗∗∗ 1.3117∗∗∗

(10.20) (12.57) (12.18) (15.60) (20.38)
R2(%) 47.66 50.79 48.73 59.02 67.03
σ(%) 20.38 19.50 18.81 23.20 28.29

corr −0.1252∗∗∗ −0.1293 ∗ −0.1621 ∗ −0.1815∗∗∗ −0.1990∗∗∗

(−4.31) (−5.01) (−4.76) (−5.01) (−4.75)

size factor −0.3286∗∗∗ −0.2968 ∗ −0.3802 ∗ −0.4137∗∗∗ −0.4733∗∗∗

(−2.88) (−4.66) (−4.84) (−3.68) (−5.55)

Panel B : Degree of coinsurance

market 1.1200∗∗∗ 1.1400∗∗∗ 0.9900∗∗∗ 1.3900∗∗∗ 1.1800∗∗∗

(14.50) (16.15) (14.13) (16.92) (20.58)
R2 51.89 54.64 50.04 53.99 66.64
σ(%) 24.15 22.82 21.57 28.02 21.60

corr −0.2087∗∗∗ −0.1706∗∗∗ −0.1587∗∗∗ −0.2192∗∗∗ −0.1676∗∗∗

(−5.07) (−4.40) (−4.31) (−4.43) (−4.47)

size factor −0.3690∗∗∗ −0.3619∗∗∗ −0.3671∗∗∗ −0.4333∗∗∗ −0.3793∗∗∗

(−9.16) (−8.72) (−8.66) (−8.78) (−12.04)

risk and in particular correlation risk. Correlation risk arises because of unexpected changes

in the relationship between incomes from diversified subsidiaries, which typically occur during

periods when the benefits of diversification are most needed (i.e. high marginal utility states).

Despite these disadvantages to diversification, bank managers may consider diversification

optimal if it allows their banks to grow large in order to benefit from implicit and explicit

government guarantees. Finally we see that for banks that are careful to design non-core

income to diversify cash flows, total risk is not much higher than other banks and also

systematic risk accounts for a lower proportion of systematic risk.
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Impact of diversification on sensitivity to macroeconomic conditions

The exposure of diversified banks to shocks in correlation, which typically occur in bad times,

suggests that these banks’ operations ought to be more sensitive to changes in the investment

opportunity set. That is, banks with different degree of diversification are expected to react

differently to changes in macroeconomic conditions. We examine this prediction by re-

estimating our baseline panel regression of credit supply where we now replace the time

fixed effects by the change in GDP growth in the previous quarter. The model is estimated

separately for banks with a high proportion of non-core income (banks in portfolio 5, Panel

A) and for banks with a low proportion of non-core income (banks in portfolio 1, Panel B).

We find that for banks with a higher proportion of non-core income, a 1% decrease in

GDP (i.e. worsening business conditions) leads to a 2.177% decrease in total credit. For

banks with a low proportion of non-core income, the magnitude of this effect is much smaller

as a 1% decrease in GDP decreases credit by a modest 0.907%. In sum, the same aggregate

shock has a much more pronounced effect (nearly 2.5 times higher) on banks that rely more

heavily on non-core income compared to less diversified banks. This finding lends further

support to our claim that while diversification reduces idiosyncratic risk, it increases banks’

exposure to systematic risk.

The evidence that, for diversified banks, credit supply is more sensitive to macroeconomic

conditions may appear in contradiction with the fact that these banks on average also supply

more credit. One potential explanation is that the benefits of diversifying into non-core

activities are limited to “good times”, that is, periods of economic expansion. To verify

whether this is indeed the case, we rerun our earlier credit supply analysis, but now interact

both the proportion on non-core income and the correlation with a dummy variable that

equals one for all those quarters in which the U.S. economy is an economic contraction (i.e.

a recession). This allows us to analyze how diversification aids (or hinders) bank credit

supply in and outside periods of aggregate shocks. Results are presented below.

The table shows that the beneficial effects of diversification are limited to periods in which
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Table 3.8: Impact of diversification on bank credit supply in and outside recessions

Notes: This table presents results of the following panel regression:

CREDITj,t = const. + TFE + βPRNonCorej,t + βρρj,t + βI1NonCorej,t ×D + βρρj,t ×D
+ βDGDGj,t + βCAPCAPj,t + εCREDITj,t

Here, CREDIT is either the total credit, commercial credit, real estate credit, or credit commitments
for bank j scaled by the beginning-of-period book value of assets. The ratio of non-core to core income
(NonCore) and their correlation ρ are computed over the last 5 years. CREDIT , DG, and CAP are
respectively credit supply, the quarterly growth rate of deposits, and the ratio of book value of equity to
total book value of assets, averaged over the last 5 years. D is a dummy variable that equals TFE are time
fixed effects. Statistical significance at the 10%, 5% and 1% levels is denoted by *, **, and *** respectively.
In parentheses we report t-statistics based on standard errors clustered by bank. Quarterly data, September
1987 to December 2014.

Total Commercial Real Commit Total Commercial

NC 0.0797∗∗ 0.0953∗∗∗ 0.3760∗∗∗ 0.1500∗∗∗ 0.0792∗ 0.0934∗∗∗

(2.08) (4.90) (10.65) (7.55) (1.97) (4.66)
ρ −0.0263∗∗∗ −0.0061∗∗∗ −0.0234∗∗∗ −0.0008 −0.0284∗∗∗ −0.0071∗∗∗

(−6.89) (−2.71) (−5.71) (−0.50) (−7.57) (−3.16)
NC ×D −0.1180∗∗∗ −0.0479∗∗∗ −0.0543∗∗ −0.0688∗∗∗ −0.0951∗∗∗ −0.0406∗∗∗

(−4.35) (−3.41) (−2.04) (−4.04) (−3.44) (−2.77)
ρ×D 0.0028 −0.0046 0.0050 −0.0030 0.0084 −0.0026

(0.43) (−1.19) (0.68) (−0.76) (1.30) (−0.69)
DG 0.9730∗∗∗ 0.4280∗∗∗

(6.85) (5.00)
CAP −0.6800∗∗∗ −0.1250∗∗

(−6.24) (−2.07)

N 63, 364 63, 364 63, 364 63, 364 63, 364 63, 364
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the U.S. economy does not face an aggregate economic shock. While banks with a higher

proportion of non-core income on average supply more credit, in recessions they supply less

credit as compared to less-diversified banks. Similarly, the beneficial effects of correlation

are also limited to periods in which the U.S. economy is not in recession. In recessions,

coinsurance is not positively associated with a higher credit supply and the effect is not not

statistically significant in any specification. The fact that the U.S. economy has just spent

10% of the time in recessions during our sample period, explains why diversification is on

average associated with higher credit and profitability.

Thus, we conclude that the beneficial effects of diversification are limited to good times,

when perhaps financial constraints on banks are not likely to bind in any case. The evidence

is consistent with the analysis in the previous section that shows diversified banks are more

exposed to correlation risk. This exposure likely increases the cost of capital of diversified

banks in recessions, and as a result providing credit is costly (or uncompetitive) for such

banks.

3.5 Robustness tests

A potential concern with our methodology is reverse causality or endogeneity among some of

our key variables. For example, consider the relationship between profitability and diversifi-

cation. On one hand, existing agency cost models suggest that managers of more profitable

banks, with cash flow in excess of that required to fund positive NPV projects, are likely

to invest such cash flow inefficiently, to grow banks beyond optimal size and scope. On the

other hand, existing risk management models suggest that diversification can help improve

profitability, for example, by helping banks avoid deadweight financial costs.

Thus, profitability can be a determinant (due to agency costs) or the result (due to effec-

tive risk management) of banks’ decision to diversify. However, there are crucial differences.

While agency theory suggests that past profitability impacts banks’ decision to diversify, risk
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management theory suggests that diversification impacts future profitability. In addition,

while agency theory implies a negative relationship between diversification decisions and

future profitability, risk management implies a positive relationship between these variables.

As another example, consider the relationship between growth rates and diversification.

On one hand, banks with high growth rates have a high probability of facing financing

shortfalls, and will benefit most from diversification. On the other hand, diversification

synergies result in lower volatility of cash flows and higher growth rates. Thus, (as is the

case with profitability above) growth rates can both be a cause and effect of diversification.

However, again there are crucial differences in the timing and the direction of the effect. One

strand of the literature relates past growth rates to diversification, whereas the other strand

relates diversification to future growth rates. Further, bank diversification should positively

impact future growth rates, only if it’s value enhancing.

In light of this discussion, in our analysis, we are careful in distinguishing between the

impact of ex-ante and ex-post variables on banks’ decision to diversify into non-core activities.

In addition, in this section we carry out a battery of robustness checks to dispel endogeneity

concerns.

3.5.1 Difference-in-difference test

We examine what effect, if any, does initiation of banks’ participation in non-core activities

have on their core intermediation capabilities (i.e. credit supply). Unfortunately, none of

the banks in our sample “initiate” participation in non-core income. However, some banks

do begin participating in trading activities. The correlations show that (like other non-core

activities) trading income is also negatively correlated with core income and therefore also

provides coinsurance benefits. In addition, since trading is one of the largest and most

controversial component of non-core income, the effect of trading activities on banks’ core

intermediation capabilities is of independent interest.

We identify banks that initiate trading activities as follows. In any given quarter t, a
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bank is said to be participating in trading activities if it either has non-zero trading income

or non-zero trading assets. In the same quarter, a bank with zero trading assets and income

may still be classified as participating in trading activities, if it was classified as such in any

one of the 4 previous quarters (i.e. from t− 4 to t).

We consider the period that spans from four quarters before to four quarters after a bank

begins participating in trading activities using a difference-in-difference approach. This

approach allows us to compare credit supply policy of banks that begin participating in

trading activities with their credit supply policy right before initiation, and to other banks

that are simultaneously not participating in trading activities. Specifically, we estimate the

following regression:

CREDITj,t = const. +
i=−4∑
i=4

θi +DGj,t + CAPj,t + εCREDITt (3.6)

Here, the dummy variables θi take values 1 in the ith quarter before or after a bank starts

trading, and is zero otherwise. Negative values of i refer to quarters before a bank starts

trading. The quarter in which a bank initiates trading activities is normalized to i = 0.

We plot the estimates for these dummy variables θi. Each panel refers to a separate proxy

of credit supply. The top left panel presents the results for total credit. The figure shows

how initiation of trading activities impacts the average supply of credit for banks in our

sample. Average credit supply increases sharply after a bank begins participation in trading

activities. The difference is statistically significant, that is, the confidence intervals on θi

measured before and after initiation of trading activities do not overlap. The effect is most

pronounced for real estate credit and credit commitments. The fact that banks lend more

via commitments (after initiation of trading trading activities) is consistent not only with an

improvement in current liquidity constraints, but also with an increase in banks’ confidence

in managing liquidity constraints in the future. This likely makes them more comfortable

lending via credit commitments.
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Figure 3.2: Average credit supply before and after banks start trading
This figure plots the average credit supply for banks in our sample before and after initiation of trading activities. We normalize
the quarter in which each bank in our sample starts trading to 0. A bank is classified to be participating in trading activities if
it has non-zero trading income or non-zero trading assets. In any quarter, a bank with zero trading assets and trading income
may still be classified as participating in trading activities if it was classified as such in any one of the 4 previous quarters.
Each panel plots the values of the dummy variables from the diff-in-diff specification for a different proxy of credit. The bar
indicates plus and minus two standard error bands. Quarterly data, September 1987 to December 2014.

While the difference-in-difference exercise is the closest we can get in terms of establishing

causality, it does not obviously alleviate the issue of endogeneity in the decision to participate

in trading activities. Also, the analysis can only be applied to the decision of a bank to

participate in trading activities, as the extent of coinsurance provided by trading activities

is not a binary variable and cannot be taken into account.

The results of the difference-in-difference should not be viewed as a comprehensive as-

sessment of the costs and benefits of bank’s participation in trading activities. These results

also do not imply that all banks should participate in trading activities. The beneficial

effects of scope-diversification are limited to periods in which the U.S. economy is not in

recession. Our results do suggest that, in taking the decision whether to engage in such

activities managers should balance the benefits with the implicit costs we outlined above.

3.5.2 Endogeneity concerns and additional robustness checks

In all our previous tests, correlation and average credit are measured over the same 5-year

period. This may bias our inference in the presence of endogeneity. Correlation could be
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driven by lending, and not viceversa. In addition, as argued above, there is the issue of

reverse causality. Ideally, we would like to observe exogenous shocks to a variable correlated

with our coinsurance statistic. Unfortunately, there are no opportunities to exploit this

approach in our data.

Below, we run different specifications of our main model which all aim at ameliorating

concerns regarding endogneity and robustness. In column titled ‘Baseline’, the dependent

variable, i.e. credit supply, is computed using data one quarter after the computation of

NonCore and ρ. In other words, NonCore and ρ is estimated using backward-looking 5-

year data over t − 20 to t, while the left-hand-side variables are measured only using data

in quarter t+ 1. The control variables (deposit growth and capital) are also measured at t,

and are not averaged over t − 20 to t. In the column entitled ‘Non-overlap’, we report the

results for a deliberately conservative approach, wherein we estimate diversification measures

on non-overlapping 5-year windows. This check addresses concerns about persistence and

proper computation of standard errors on overlapping series. The column titled ‘3-year’

use correlation estimated over 3-year window (i.e. from t − 12 to t) instead of the 5-year

correlations that are used in all our tests. Finally, the column titled ‘Covariance’ uses the

covariance as a measure of coinsurance between banks’ core and non-core income, thereby

simultaneously taking into account the size and correlation of the income generated by these

activities. Given our previous findings, in all specifications we include a dummy variable D

that equals one whenever the U.S. economy is a recession as classified by the NBER. The

table shows that our central conclusions remain unchanged. Diversification into non-core

activities helps banks but the benefits are limited to periods in which the U.S. economy does

not face aggregate shocks.
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Table 3.9: Robustness checks

Notes: This table presents the results for different robustness checks. In the first column, we estimate
equation Panel Credit when the dependent variables are computed in quarter t+ 1 only and the coinsurance
ρ is measured over the period from t− 20 to t. In the second column, we estimate equation Panel Credit on
non-overlapping 5-year periods. In the third column, we use data for lagged 3 years (instead of the usual 5
years) to estimate our diversification measures. In the last column, we estimate equation Panel Credit but
now measure coinsurance by covariance, rather than correlation, between core and non-core incomes over the
last 5 years. Statistical significance at the 10%, 5% and 1% levels is denoted by *, **, and *** respectively.
In parentheses we report t-statistics based on standard errors clustered by bank. Quarterly data, September
1987 to December 2014.

Baseline Non-overlap 3-year Covariance

NonCore 0.0833∗∗ 0.0443 0.0658∗∗ 0.0789∗

2.0400 1.0700 1.9700 1.9400
ρ −0.0281∗∗∗ −0.0287∗∗∗ −0.0219∗∗∗ −2.5330∗∗∗

−7.3000 −6.2800 −8.6600 −3.5100
NonCore×D −0.0902∗∗∗ −0.1300∗ −0.1090∗∗∗ −0.1160∗∗∗

−3.6000 −1.8400 −4.0500 −4.2600
ρ×D 0.0023 −0.0059 0.0129∗∗∗ −0.2410

0.3500 −0.4600 2.6900 −0.1300
DG 0.9530∗∗∗ 1.0370∗∗∗ 0.7850∗∗∗ 0.9100∗∗∗

6.5300 7.2000 8.2700 6.3100
CAP −0.6800∗∗∗ −0.6740∗∗∗ −0.6600∗∗∗ −0.7070∗∗∗

−6.1200 −6.4400 −7.3500 −6.4000

N 61, 302 4, 021 81, 550 63, 364
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3.6 Conclusion

Over 1987 to 2014, U.S. banks have increasingly diversified into non-core activities such

that income from these activities now accounts for a majority of bank sector income. This

behavior appears to run counter to existing corporate finance literature that suggests diversi-

fication destroys firm value, but is consistent with extant models of financial intermediation

that suggest banks diversify to reduce idiosyncratic risk and achieve credibility as monitors

of borrowers. Indeed, as predicted by this literature, large banks, banks with high distress

costs, and banks facing high cost of raising external finance diversify more aggressively.

For the average bank, non-core income offsets risks elsewhere in its balance sheet. That

is, the average bank that engages in non-core activities benefits from coinsurance on account

of the imperfect correlation between cash flows from core and non-core activities. Better

diversification/coinsurance for banks is associated with higher profitability, higher average

credit supply, and lower financial constraints.

However, diversification has not translated into real reductions in risk. For one, the

benefits of diversification/coinsurance listed above are limited to good times (periods when

the U.S. economy is not in recessions), when such benefits are needed least and financial

constraints are likely not binding. In addition, we find that, for publicly listed banks, di-

versification increases their exposure to correlation risk. Correlation risk arises because of

an unexpected change in the relationship between core and non-core incomes, which can

be linked to an adverse evolution of diversification opportunities. This is precisely what

happened during the credit crisis of 2007 to 2009.

Future researchers can address important questions related to our results. In particular,

what actually causes the degree of coinsurance to vary across banks and how this may

relate to the costs of participating in non-core activities are questions we have not yet fully

answered.

In the wake of the financial crises, a regulatory debate is now centered on the optimal

scope of banking activities. The Volcker Rule advocates the segregation of some activities
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from traditional banking operations. Similar rules to compel banks to divest their non-core

activities have been proposed in the United Kingdom and several other countries. These

proposals are opposed by banks on the grounds that diversification helps banks diversify

cash flows and manage risks in a way that improves overall bank sector safety. Our results

indicate that benefits to diversification may be limited, providing additional information to

academics, regulators and practitioners to assess the costs and benefits of participating in

non-core activities.

We collect balance sheet data for banks from the ‘Report for Condition and Income’

(henceforth Call Reports) required to be filed by all FDIC-insured bank holding compa-

nies in the U.S. This data is available at https://www.chicagofed.org/applications/

bhc_data/bhcdata_index.cfm. Definitions for the variables are available at http://www.

federalreserve.gov/apps/mdrm/. Banks with total book value of assets above $500 mil-

lion file this report quarterly. Other banks file this report only semi-annually. We restrict

our sample to banks which file the Call Reports quarterly and report a positive book value of

assets. Between September 1987 and December 2014, this yields 160,761 observations. The

actual number of observations in our analysis is less for several reasons. First, we require

that the banks in our sample have five consecutive years (20 quarters) of data continuously

available. This leaves us with 128,953 bank-quarters. Next, in order to make sure that out-

liers are not driving our results, we eliminate any observations in which the quarterly growth

rate in the total book value of assets is more than three standard deviations from its mean.

This leaves us with 123,487 observations. Finally, since our regressions involve correlations

computed over 20 quarters (5 years), we lose the initial 20 observations for each bank in our

sample so that our total sample size is 60,335.

The data present a number of challenges in terms of creating a consistent time-series.

Due to changing reporting requirements, some of the data items in the Call Reports used

for the construction of key variables in our analysis are not comparable across quarters.

The Chicago Federal Reserve Bank provides instructions for the construction of consistent
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time-series for the data in the Call Report. These instructions are available at http://www.

chicagofed.org/webpages/banking/financial_institution_reports/bhc_data.cfm.

Once we define time-series for individual banks, we also compute data for all U.S. banks

(i.e. the aggregate U.S. bank sector) to report summary statistics in the data section. To

compute the time-series for all U.S. banks, we start with data for individual banks. We

filter the top and bottom 1-percentile of banks based on the quarterly growth rate in total

book value of assets. This filter removes observations for those bank-quarters in which banks

are involved in significant mergers. For aggregation, we require that in each quarter, banks

included in our sample have call report data available for at least 12 previous quarters (3

years). We also require that for each quarter Call Report data for a particular bank is

available for the previous and current quarters. This requirement ensures that the time-

series of core, non-core, and trading incomes are not affected by entry or exit of banks. This

requirement also means that the actual number of banks used in any quarter to compute the

time-series for all U.S. banks varies over time.
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Appendix A

Proofs of Propositions 1.2.1.

A.0.1 Technical Environment

Invariant Measure on X The kernel of an homogeneous Markov chain is a time-invariant
function m(x[i], x[j]) : X × 2X −→ [0, 1] containing the transition probabilities for Xt,
Pr(Xt = x[j]|Xt−1 = x[i]) =: m(x[i], x[j]) for every ordered pair of states. Let S = #X;

then
∑S

k=1m(x[i], x[k]) = 1 for each i. The transition matrix induced by the kernel has en-
tries (M)i,j = m(x[i], x[j]).

We assume the chain is irreducible, i.e., m(x[k], x[j]) > 0 for every 0 ≤ k, j ≤ S. We also
assume M is aperiodic: gcd{n : m(x[j], x[j])n > 0} = 1 for each x[j] ∈ X (“gcd” finds
the greatest common divisor). In finite states irreducibility and aperiodicity reduce to irre-
ducibility for every n ∈ N, m(x[k], x[j])n > 0, where j = k captures the aperiodicity condition
(cf., Hairer, 2006, E3.9 p.14).

Define the space of probability measures over X

Fµ :=

q =


q1

q2
...
qS

 :
S∑
i=1

qi = 1, qi ∈ [0, 1]

 ⊂ RS

Let {ei , 1 ≤ i ≤ S} be standard basis vectors for RS.

Proposition A.0.1 There is a unique invariant measure µ0 ∈ Fµ satisfying µ′0 = µ′0MN

for every N ≥ 1 and ei · µ0 > 0 for every 0 ≤ i ≤ S.

Proof Levin, Peres and Wilmer (2008), p. 12 Proposition 1.14
�

Consider a sequence of elements hn ∈ Fµ generated byM′ and denote the k’th outcome hk.

It is clear that when h0 = µ0, (M′)K h0 =: hK = µ0 for every K ∈ N.
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The Path Space Fix a probability space (Ω,F ,P). Define the product space Z := {X}N =
X ×X × ... =

∏
n∈NXn. Z contains all infinite sequences of elements of X. A path zs s ∈ N

is an arithmetic function z : N → R. A sample path is a finite sequence of elements in
X, zs≤N ∈ {X}N on the truncated domain {0, 1, 2, ..., N}. Events ω ∈ Ω realize as paths
ω 7→ Z, which we occasionally emphasize by writing {z}(ω) : Ω −→ Z ⊂ RSN.

We use the discrete σ- field for X, written 2X . A sequence of refinements to (Ω,�) =: F0,
FN ⊂ FN+1, is generated by the sample-path events {ω : {z}N(ω) ∈ σ({X}N)} ∈ FN for
every N . Each F0 ⊂ Fn ⊂ F for n <∞. We write σ({X}N) = (2X)N for finite N .

Lemma A.0.2 σ(
∏

n∈NXn) := σ(XN) = σ(X)N

Proof The countable product of finite sets, 2X , in this case given by (2X)N = σ(X)N, is
countable. Hence, using Theorem 4.44, Aliprantis and Border (2006), p.149, for countable
σ- fields, σ(

∏
n∈NXn) =

∏
n∈N σn(X).

�

In words, the σ -field generated by the countable product space is equivalent to the countable
product of the σ -fields generated by the state space X (which is not true in general). The
implication is that any event in the sequence space can be written as the countable product
of elements in 2X , or equivalently, some countable product of elements of X.

Denote the finite-dimensional distributions of the Markov chain Pµ,N(b), b ∈ (2X)N for
each initial distribution over X, µ(x). The Dirac mass δx on points in X is a particular
initial distribution, in which case we write Px,·. The probability of a particular sample path
(2X)N 3 zN : x0  xN is written

h0({zN}) = µ(x0)m(x0, x1)m(x1, x2)...m(xN−1, xN)

for initial distribution µ.

The probability of any event bN ∈ (2X)N can be written as the sum of probabilities of paths
{zN} where it is true, Pµ,N(bN) =

∑
{zN}∈bN h0({zN}), which themselves can be enumerated.

To track the paths where bN is true, each ordered configuration j in the set of configurations
J(bN) is written as a path index, x1(j), x2(j), ..., xN(j), where the notation is shorthand for

xt(j) = x
k(j)
t . The set J(bN) is finite for N < ∞, and at most countable for N = ∞. The

probability of any sample event is a sum of finite products of the kernel

Pµ,N(bN) = µ(x)
∑

j∈J(bN )

N∏
n(j)=1

m(xn(j)−1, xn(j))

The preceding argument ensures the sample distributions are consistent,

Pµ,N+1(b1, b2, ..., bN , X) = µ(x)

 ∑
j∈J(b)

N∏
n(j)=1

m(xn(j)−1, xn(j))

 S∑
i=1

m(xN , x
[i]
N+1)

= Pµ,N(b1, b2, ..., bN) (7.1a)
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for bi ∈ σ({X}i), every finite N and for b := (b1, b2, ..., bN) ∈ (2X) × (2X)2 × ... × (2X)N .
This definition of consistency is standard (cf. Durrett (2010, p. 366)). The product measure
of the chain is given by the pushforward,

Pµ(b) := P ◦ {z}−1(b) = P(ω : {z}(ω) ∈ b)

for every initial distribution µ on X.

Proposition A.0.3 The product measure Pµ exists and is uniquely characterized by the
finite-dimensional distributions.

Proof By application of the Kolmogorov extension theorem, lettingN →∞ in 7.1a (Durrett
(2010), p. 366, Theorem A.3.1)

�

Definition: Define the tail σ -field T :=
⋂
n≥1{σ(

⋃
m≥nFm)}. An ergodic set{

B ⊂ (2X)N : {ω : {z}(ω) ∈ B} ⊂ T

}
is a subset of a state space that has Px(b) := P ◦ {z}−1(b) ∈ {0, 1} for every b ∈ B and each
initial x ∈ X. A Markov process is ergodic if its state space is an ergodic set.

Corollary A.0.4 An irreducible aperiodioc finite-state Markov chain is ergodic

Proof Tuominen and Tweedie (1994), pp. 779-780, Theorem 2.3.
�

A.0.2 Decomposition and Wold Representation

Remark: A reversible Markov operator admits a positive real point spectral decompo-
sition. Important departures from reversibility are of economic interest, so we avoid the
assumption of reversibility. See Hansen and Scheinkman (1995) for an early discussion of
irreversible Markov models in asset pricing.

Definition: The dual of F (X) written F (X∗) is the space of linear functionals ηf on F (X),
ηf : F (X) −→ R.

Proposition A.0.5 (Decomposition)
I.
The image of X∗ under M′ is the direct sum of an invariant subspace I0 = I (µ0) and its
orthogonal complement I ⊥

0 ,

R(M′) = I0

⊕
I ⊥

0

Moreover, for any integer k ≥ 0, the image space R([M′]k) admits a decomposition into I0

and a space that depends on k

R([M′]k) = I0

⊕
(I ⊥

0 )k
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In particular, for M′
γ : Span(M′

γ) = I ⊥
0 ⊂ R(M′) and 1 ≤ k ∈ N,

(I ⊥
0 )k = Span

(
[M′

γ ]k
)

II.
The columns of (M′

γ)k, k ∈ N converge to the origin in the operator norm topology

((M′
γ)k),j −→k−→∞

0
...
0


Each column (M′) ,j of M′ converges

(M′)k,j −→ µ0

in total variation to a distribution µ0 that is independent of j.

We first state a lemma we will need. A general proof is provided in section 7.3.2.

Lemma A.0.6 Recall the dual space X∗ contains the linear functionals η on the range of
X under M. Then,

• We can identify X∗ with the space of probability measures Fµ(X) over X, Fµ(X) ≡ X∗

• The adjointM′ is a continuous automorphism on Fν (X ×X). In particular, each row
of M′ takes Fµ(X) −→ Fµ(X)

Remark: In the matrix case, this point is easy to illustrate. Consider a stochastic matrix
S and a probability distribution ν on RN , with N equal to the column count of S. Then for
1N×1 =: 1, S1 = 1 and ν ′1 = 1. Consider ν̂ = S ′ν. Then

ν̂ ′1 = (S ′ν)′1 = ν ′S1 = ν ′1 = 1

so the rows of S ′ take probability measures to probability measures.

Proof of part I. By the Perron-Frobenius theorem, M has largest eigenvalue λ0 = 1 with
corresponding left and right eigenvectors µ′0 and ι = 1S×1, respectively.

Eigenvectors exhibit a scale symmetry Mι = ι ⇔ cMι = cι, 0 6= c ∈ R, and equivalently
c∗µ′0 = c∗µ′0M for any 0 6= c∗ ∈ R. Without loss of generality, we pick the the unitary scale
normalization c∗ = c−1 so that ι′µ0 = 1 so µ0 is a probability distribution. Because the
stochastic matrix restricts c ≡ 1, this choice of scale pins down the absolute scale c∗ = 1.

Write the algebraic multiplicity of eigenvalue j as χ({j}), and the geometric multiplicity
g({j}). Denoting the largest eigenvalue j = 0, another appeal to the Perron-Frobenius the-
orem gives χ({0}) = g({0}) = 1. We can now claim the following.
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Lemma A.0.7 µ0ι
′ is a rank-one projection.

Proof of lemma 7.7 The linear operation µ0ι
′ is idempotent

µ0ι
′(µ0ι

′) = µ0(ι′µ0)ι′ = µ0ι
′

which immediately implies that I − µ0ι
′ is orthogonal to µ0ι

′,

(I − µ0ι
′)µ0ι

′ = µ0ι
′ − µ0ι

′ = 0

so µ0ι
′ and I − µ0ι

′ are projections. That g({0}) = 1 implies that the subspace

E0 := {µ̂ : (M′ − λ0I)µ̂ = 0}

has dimension one, hence rank(µ0ι
′) = 1 and µ0ι

′ is a rank-one projection.
�

To prove part I. of proposition (7.1), note that if rank(M′) = 1, the result is trivial with
I ⊥

0 empty. Suppose rank(M′) > 1. Put

M′
γ =M′ − µ0ι

′

Denote Span(µ0ι
′) =: I0. We intend to characterize I ⊥

0 ⊂ R(M′) in terms of M′
γ .

We can see that

M′
γµ0ι

′ = (M′ − µ0ι
′)µ0ι

′ =M′(IS − µ0ι
′)µ0ι

′ = 0 (6.a)

The second equality has used the right-eigenvector of the adjoint M′µ0 = µ0, and the final
equality follows given µ0ι

′ is a rank-one projection.

We verify that, in addition,

µ0ι
′M′

γ = (Mγιµ
′
0)′ = ((M− ιµ′0)ιµ′0)′ = (M(IS − ιµ′0)ιµ′0)′ = 0 (6.b)

using the right-eigenvector ι =Mι, and the facts that rank(µ0ι
′) = rank(ιµ′0) and µ0ι

′ is a
rank-one projection.

The image ofM′ takes the form R(M′) = I0

⊕
Span(M′

γ), because in (6.a)-(6.b), we have

shown I ⊥
0 = Span(M′

γ).

Now define M′
γ,k = (M′)k − µ0ι

′. By definition of the invariant measure µ0, we have the
right-eigenvector arguments for integer powers k,

(M′)kµ0 = µ0 (6.c)

(M)kι = ι

Combining the first identity in (6.c) with the arguments (6.a), we obtain

M′
γ,kµ0ι

′ = [(M′)k − µ0ι
′]µ0ι

′ = (M′)k(IS − µ0ι
′)µ0ι

′ = 0
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Repeating the arguments in (6.b) using the second identity in (6.c), and the and the elemen-
tary fact ((M)k)′ = (M′)k,

µ0ι
′M′

γ,k = ([(M′)k − µ0ι
′]′ιµ′0)′ = (Mk(IS − ιµ′0)ιµ′0)′ = 0

Finally, for 0 < k ∈ N, it is clear that

(M′
γ)k = (M′)k(IS − µ0ι

′)k

= (M′)k(IS − µ0ι
′)

= (M′)k − µ0ι
′

=M′
γ,k

We conclude that for any integer k ≥ 1, (I ⊥
0 )k = Span(M′

γ,k) with M′
γ,k = (M′

γ)k and

M′
γ =M′ − µ0ι

′. In particular, R((M′)k) = I0

⊕
Span((M′

γ)k).

�

Before proving part II., we state some useful corollaries.

Corollary A.0.8 µ0ι
′ and M′

γ commute.

Corollary A.0.9 (Chapman-Kolmogorov) The operators {(M′)n, n ∈ Z+} form an abelian
semigroup under (matrix) multiplication. Every k- decomposition is contained in the semi-
group. An identical statement is true for the operators {(M)n, n ∈ Z+}.

Proof Pick finite positive integers n1, n2 and denote N = n1 + n2. Then,

(M′)n1(M′)n2 = (µ0ι
′ +M′

γ)N

=
N∑
n=0

(
N

n

)
(µ0ι

′)N−n(M′
γ)n = µ0ι

′ + (M′
γ)N

The first line is trivial, and shows the semigroup property (M′)n1(M′)n2 = (M′)N and hence
commutativity (M′)N = (M′)n2(M′)n1 . The second line applies the results from proposition
(7.1) finitely many times to extend the semigroup property to the decomposition.

�

Corollary A.0.10 (γ- Semigroup) The operators {(M′
γ)n, n ∈ Z+} form an abelian semi-

group under matrix multiplication.

Corollary A.0.11 (Wold Time Series Representation) Under the assumptions needed
to decompose (M′)k = µ0ι

′ + (M′
γ)k, the classic Wold representation is justified.

Proof First, recall each RS 3 1(xt,·) is a degenerate probability distribution with mass on
the coordinate of the realized element xt,· ∈ X. Recall the definitions Rn,t+1 = rn ·Xt+1, and
hence xt+1 = ι′M′1(xt,·) + ut+1. Equivalently,

1(xt) =M′1(xt−1) + 1(ut)
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IfM′ ≡ µ0ι
′, the decomposition is rn ·Xt+1 = rn ·µ0 +ut+1 for every t. Consider Rank(M′) >

1. Then,

rn ·Xt+1 = rn · (M′1(xt) + 1(ut+1))

= rn ·
(
[µ0ι

′ +M′
γ ]1(xt) + 1(ut+1)

)
= rn · µ0 + rn ·

(
M′

γ1(xt) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ (M′1(xt−1) + 1(ut)) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ([µ0ι
′ +M′

γ ]1(xt−1) + 1(ut)) + 1(ut+1)
)

= rn · µ0 + rn ·
(
M′

γ(M′
γ1(xt−1) + 1(ut)) + 1(ut+1)

)
= rn · µ0 + rn ·

(
M′

γ(M′
γ (M′1(xt−2) + 1(ut−1)) + 1(ut)) + 1(ut+1)

)
...

= rn · µ0 + rn ·
∞∑
s=0

(M′
γ)s1(ut+1−s)

�

Remark: The Wold representation expresses the path {z}(ω) in terms of its martingale-
difference (i.e., white-noise) basis. A finite sample version is obtained as a special case. For
generalized Wold representations of isometric operators, see Severino (2014).

Remark: The µ0ι
′ shocks are permanent in the sense that µ0ι

′1(ut) = (M′)Nµ0ι
′1(ut) for

every horizon N .

Corollary A.0.12 (Preservation of Probabilities) The rows ofMγ sum to zero. When
Rank(M) > 1, there are nontrivial payoff vectors dn ∈ F (K) such that

|ei · M′
γdn| > 0

for some i ∈ {1, ..., S}

Proof Put 1 = 1S×1 (= ι). Recall the right eigenvector of Mι = ι, so that

1 =Mι = (ιµ′0 +Mγ)ι = ιµ′0ι+Mγι = 1 +Mγι

Clearly, Mγι = 0.

Given the invariant µ′0 = µ′0M, the matrix Mγ is identically zero when M is identically
(µ0ι

′)′. Given µ0, a necessary and sufficient condition for Rank(M) = 1 is that the rows of
M are constant multiples of µ′0.

Take M′ such that Rank(M′) > 1, and consider dn s.t. |dn · ei| > 0 for some i ∈ {1, ..., S}.
ThenM′dn = µ0ι

′dn +M′
γdn and 0 ≤ |ei · (M′− µ0ι

′)dn| = |ei ·M′
γdn| for every 1 ≤ i ≤ S.
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Suppose for a contradiction that ei · (M′ − µ0ι
′)dn = 0 for every i. In other words, M′dn =

µ0ι
′dn for every nonzero dn ∈ Fd(K). Because M′µ0 = µ0, these together imply

M′(µ0 − dn) = µ0(1− ι′dn) (1.a)

= µ0ι
′( 1
S
ι− dn)

The condition Rank(M′) > 1 ensures M′ is not identically µ0ι
′. In particular, in R(M′) =

I0

⊕
I ⊥

0 , the I ⊥
0 is nonempty. So, (1.a) implies dn = µ0 = 1

S
ι, the uniform distribution

over ZS. If µ0 is not uniform, we are done. If µ0 is uniform, then M′ι = ι, so M′ is doubly
stochastic. As a result,M′dn = µ0ι

′dn = 1
S
ιι′dn, which implies each row ofM′ is identically

the uniform distribution. Hence, contrary to our assumption, Rank(M′) = 1. Thus, for
some i ∈ {1, ..., S}, 0 < |ei · (M′ − µ0ι

′)dn| = |ei · M′
γdn|.

�

Remark: M′
γ redistributes probability within the transition dynamics. Relative to dy-

namics under µ0ι
′, M′

γ generates non-negligible distortions to asset payoffs locally in time.

It turns out these distortions are limited to risky assets.

Corollary A.0.13 (State Dependent Payoffs) Every nontrivial constant payoff is in the
image space of µ0ι

′. In particular, the uniform distribution is never the range of M′
γ.

Proof Take Rank(M′) > 1 so Rank(M′
γ) ≥ 1. Put

Ker(Mγ) := {v ∈ CK(X) : Mγv = 0S×1}

Recall 1S×1 = ι and cMγι = 0 for any scalar c ∈ R. It follows that

b0 := {v ∈ CK(X) : v = c ι , 0 6= c ∈ R} ⊂ Ker(Mγ)

Now, using1

R(M′
γ) = Ker(Mγ)⊥

we conclude that b0 * R(M′
γ). In particular, b0 ⊂ I0.

�

A.0.3 Convergence Rates

To study convergence, we review a few definitions and known results. A handful of purely analytical
definitions are relegated to section (7.6.1.).

Definition: The total variation of a signed measure is

‖ η ‖TV := sup
A∈B(X)

|η(A)|

1e.g., Luendberger, sec 6.6 pp 155, theorem 1.
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Definition: The total variation distance between two probability measures µ, ν is

d(µ, ν)TV =‖ µ− ν ‖TV = sup
b∈(2X)N

|µ(b)− ν(b)|

which itself takes values in [0, 1].

Lemma A.0.14 The set of probability measures Fµ is metrized by total variation d = dTV . In
particular (Fµ, dTV ) inherits the topology induced by total variation. Now write σ(Fµ) for the Borel
σ -field on Fµ with open sets generated by the total variation distance dTV . Then (Fµ, σ(Fµ)) is a
measurable space.

Proof Den Hollander (2011), p.13 II.1
�

Lemma A.0.15 On countable state space, total variation distance is equivalent to

sup
b∈(2X)N

|µ(b)− ν(b)| = 1

2

∑
a∈X
|µ(a)− ν(a)|

Proof Levin, Peres and Wilmer, 2008, Proposition 4.2.
�

An immediate corollary of lemma (7.7) is that for finite X, total variation is an `1 norm∑
a∈2X

|h0(a)− µ0(a)| =
∑
a∈2X

|h0(a)− 1|µ0(a)

=‖ h0 − ι ‖`1(µ0)

under µ0, where the elementwise quotient h0 = h0/µ0 is the likelihood of h0 with respect to µ0.

Definition: The operator norm ‖ · ‖Op for operator T is

‖ T ‖Op := sup
{v∈D(T) , ‖v‖`1=1}

‖ Tv ‖`1

Lemma A.0.16 For continuous linear operators T, S

‖ T′T ‖Op=‖ T ‖2Op (a.)

‖ ST ‖Op≤‖ S ‖Op‖ T ‖Op (b.)

Proof
(a.) Lax (2002), Theorem 14., section 19.7, p. 222
(b.) Lax (2002) Theorem 8., section 15.4, p. 168

�

Proof of Prop. 7.1 part II. We need only consider the nontrivial case Rank(M′) > 1.

Pick an initial probability over X given by ĥ0. Then ĥ′0,k = ĥ′0Mk, equivalently (M′)kĥ0 =

ĥ0,k. Define the likelihood h0 = ĥ/µ0 with the quotient elementwise as before. Consider first

the case ĥ0 6= µ0. We are interested in ‖ (M′)kĥ0 − µ0 ‖TV . From part I.,

(M′)kĥ0 − µ0 = µ0ι
′ĥ0 + (M′

γ)kĥ0 − µ0

= (M′
γ)kĥ0 + µ0(ι′ĥ0 − 1)

= (M′
γ)kĥ0
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The third equality is simply ι′ĥ0 = 1 because ĥ0 is a probability measure. We can now write

2 ‖ (M′)kĥ0 − µ0 ‖2
TV = 2 ‖ (M′

γ)kĥ0 ‖2
TV

=‖ (M′
γ)kh0 ‖2

`1(µ0)

≤‖ (M′
γ)2k1 ‖`1(µ0)‖ h2

0 ‖`1(µ0)

using Cauchy-Schwarz.

We showed in corollary 7.13 that the condition Mγι = M′
γι imposes that M is doubly

stochastic and therefore that µ0 is uniform µ0 = 1
S
ι and have ruled this case out. Because

1(c) := {v : v = c1 0 6= c ∈ R} ⊂ Ker(Mγ), we conclude M′
γ1 is not trivial. Proceeding

‖ (M′
γ)2k1 ‖`1(µ0)‖ h2

0 ‖`1(µ0) = 2 ‖ (M′
γ)2k1 ‖`1(µ0)‖ ĥ2

0 ‖TV
≤ 2 ‖ (M′

γ)2k1 ‖`1(µ0) (6.1.a)

because the total variation distance is no greater than one.

The operator M′
γ is a contraction for every k ∈ N and is therefore uniformly bounded.

Because it is also linear, by the open mapping theorem it is continuous in the operator norm
topology (e.g., Lax (2002), Theorem 12. p. 170). Now define Mγ :=MγM′

γ . The operator
Mγ is linear, uniformly bounded in k and symmetric. We have

2 ‖ (M′
γ)2k1 ‖`1(µ0) ≤ 2 max

||v||=1
‖ (M′

γ)2kv ‖`1(µ0)

= 2 ‖ (M′
γ)2k ‖Op

≤ 2 ‖ M′
γ ‖2k

Op

= 2 ‖ MγM′
γ ‖kOp

= 2 ‖Mγ ‖kOp
≤ 2ρ(Mγ)

k (6.1.b)

where ρ(Mγ) is the spectral radius of Mγ, and we have used submultiplicativity and part
(a.) in lemma 7.18.

When rank(M′) > 1, the symmetric positive definite operatorMM′ has at least two eigen-
values. In particular, ρ(Mγ) is bounded above by the second largest eigenvalue of MM′.
Because Mι = ι, the largest eigenvalue of MM′ is one. The second largest eigenvalue ζ of
M is strictly less than one. Moreover, if Mψ = ζ1/2ψ for Re(ζ1/2) < 1, then

Mψ = ιµ′0ψ +Mγψ =Mγψ = ζ1/2ψ

Consider ϕ′M = ϕ′ιµ′0 + ϕ′Mγ and ϕ′ψ = ζ1/2, so that

‖ M′ϕ ‖=‖ µ0ι
′ϕ+M′

γϕ ‖=‖ M′
γϕ ‖≤ |ζ1/2||ϕ′ψ| = ζ
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We conclude

ρ(Mγ) ≤ ζ < 1 (6.1.c)

Combining (6.1.a) - (6.1.c), we have

‖ (M′)kĥ0 − µ0 ‖TV≤ ζk/2 −→ 0 k →∞

Now, the case not yet considered is when h0 = µ0 but M is not identically ιµ′0. We are
interested in the rate at which

‖ ι′Mkf − µ′0f ‖TV−→ 0 k →∞

However, it is straightforward to bound this deviation using the same radius ρ(Mγ). Expe-
diting the argument using details in (6.1.a)-(6.1.c),

2 ‖ ι′Mkf − µ′0f ‖2
TV = 2 ‖ (ι′Mk − µ′0)f ‖2

TV

=‖ (ι′Mk − µ′0)f ‖2
`1

≤‖ M2k
γ ‖`1‖ f 2 ‖`1

≤ 2 ‖ Mγ ‖2k
Op

= 2 ‖Mγ ‖kOp
≤ 2ρ(Mγ)

k

Hence,

‖ ι′Mkf − µ′0f ‖TV≤ ζk/2 −→ 0 k →∞

�

Remark: A square root is natural when ζ is viewed as a singular value of M′, in which
case the corresponding eigenvalue of M′ is ζ1/2.

Remark: The generator L inherits a decomposition,

(L′h)(x) = (M′
γh)(x) + ((µ0ι

′ − I)h)(x)

from proposition 7.1. A function g is γ - harmonic when

0 = ((M′
γ − I)g)(x)

= (L′g)(x)− (µ0ι
′g)(x)

emphasizing that such a g has conditionally mean-zero transitory contributions.

Definition: ν - harmonics A function h such that (Lh)(x) = 0 for every x is harmonic
with respect the measure νM on X ′ when in addition, 〈Lh, 1〉ν(M) = 〈h,L∗〉ν(M).

Proposition A.0.17 Then,
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• Every harmonic function h with respect to νM is a martingale under PνM as a function
of the initial conditions

• Every martingale is contained in the kernel ofM′
γ - i.e., every νM - harmonic function

is γ -harmonic when Mγ decomposes M and ν ′M = ν ′MM

Proof Part i) is given by Doob (1959). Part ii) follows from lemma (7.8) and Ker(A) =
R(A′)⊥.

�

A.0.4 Covariance Matrix of Returns

Define

E (φ) =‖ φ ‖2
`2(µ0) − ‖ M′φ ‖2

`2(µ0)

We will make use of a variational representation of the spectral gap given by Diaconis and
Strook 1991,

ζ := 1− λ1 = inf
φ

{
E (φ)

‖ φ ‖2
`2(µ0)

s.t. ‖ φ ‖2
`2(µ0)> 0

}

We now unpack the contents of E (φ) in terms of realized returns data.

Inner Product To compare any two sequences a and b in Z, we consider the natural inner
product 〈{za}, {zb}〉 on `2 and the normalized inner product 〈{za}, {zb}〉µ0 .

Lemma A.0.18 The path space appended with either of these inner products is a Hilbert
space.

Proof Strook, 2014, p. 139
�

We occasionally write φ for paths of the Markov chain. Recall EM(φ) = EM(φ, φ) := 〈φ, (I−
MM′)φ〉µ, and that for real operators B, the adjoint operator is B′, 〈Bφ, φ〉µ = 〈φ,B′φ〉µ.
EM(φ) rearranges,

EM(φ, φ) = 〈φ, (I −MM′)φ〉µ
= 〈φ, φ〉µ − 〈φ,MM′φ〉µ
= E[φφ′]− 〈M′φ,M′φ〉µ
= E[φφ′]− V(M′φ)

Furthermore, E[φφ′] = 〈φ, φ〉µ = V(φ) + µ0µ
′
0, where V(φ) is the variance of φ, and V(M′φ)

is the variance of the conditional mean of φ.
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Define the lag operator Lφt+1 = φt. Each path realization is an `2 sequence of the form
φ = {z}(ω) = (a0u0), (a1u1), (a2u2), ... =: A0W0. The uj are serially uncorrelated 〈uj, uk〉 = 0
for j 6= k. The lag operator L maps Z → Z via the shift LA0W0 7→ A0W−1. The adjoint of
the lag operator L∗ maps L∗A0W0 7→ A1W0. Heuristically,

〈LAtWt, AtWt〉 = 〈AtWt−1, AtWt〉 = A′t+1At
〈AtWt, L

∗AtWt〉 = 〈AtWt, At+1Wt〉 = A′tAt+1

as required.

Lemma A.0.19 (Lag Operator Isometry) With this construction, L : Z → Z is an
isometry on (Z, µ0, || · ||`2).

Proof We sketch a proof here for intuition. A detailed proof and discussion is given in
Severino (2014). An isometric operator leaves norms and inner products unchanged when
applied symmetrically. Notice

〈LAtWt, LAtWt〉 = 〈AtWt−1, AtWt−1〉
= A′tAt
= 〈AtWt, AtWt〉

The same argument shifting coefficients At in place of Wt shows the adjoint L∗ is also an
isometry.

�

Proposition A.0.20 The form EM(φ) measures the unconditional variance of the forecast
errors generated by M′.

Proof Recall

ut+1 = φt+1 −M′φt = (I −M′L)φt+1

The forecast errors are conditionally mean-zero by construction. The unconditional mean is
also zero,

E0[ut+1] = µ0ι
′φt+1 − µ0ι

′M′Lφt+1

= µ0ι
′φt+1 − µ0ι

′Lφt+1 − µ0ι
′M′

γLφt+1

= µ0ι
′(φt+1 − φt)

= 0 (7.10.a)

because the span of M′
γ is orthogonal to I0 and the lag operator is identity on I0.
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Using (7.10.a), the unconditional variance is of the form

V(u) = 〈u, u〉µ = 〈(I −M′L)φ, (I −M′L)φ〉µ
= 〈φ, (I −M′L)′(I −M′L)φ〉µ
= 〈φ, (I − IM′L− L′MI + L′MM′L)φ〉µ
= E[φφ′] + 〈M′Lφ,M′Lφ〉µ − 〈φ,M′Lφ〉µ − 〈φ, L′Mφ〉µ
= E[φφ′] + V(M′φ)− 〈φ,M′Lφ〉µ − 〈φ, L′Mφ〉µ
= E[φφ′] + V(M′φ)− 〈φ,M′Lφ〉µ − 〈M′Lφ, φ〉µ

where we have used the isometry of the lag operator L to get from the fourth to the fifth
line, and the adjoint (M′L)′ = L′M. Now

〈M′Lφ, φ〉µ = 〈M′φt, φt+1〉µ
= 〈φt+1 − ut+1, φt+1〉µ
= 〈φt+1, φt+1〉µ − 〈ut+1, φt+1〉µ

Using the Wold representation for the second term in the last equality,

〈ut+1, φt+1〉µ = 〈ut+1, µ0ι
′ +

∞∑
s=0

(Mγ)
s ut+1−s〉µ

= 〈ut+1, ut+1〉µ

so

〈M′φt, φt+1〉µ = 〈φt+1, φt+1〉µ − 〈ut+1, ut+1〉µ

Applying a symmetric argument to 〈φ,M′Lφ〉µ, we have

〈φt,M′φt+1〉µ = 〈φt+1, φt+1〉µ − 〈ut+1, ut+1〉µ

Consolidating terms gives

〈u, u〉µ = E[φφ′] + V(M′φ)− 〈φ,M′φ〉µ − 〈M′φ, φ〉µ
= E[φφ′] + V(M′φ)− 2〈φ, φ〉µ + 2〈u, u〉µ

=⇒
−〈u, u〉µ = V(M′φ)− E[φφ′]

= −EM(φ, φ)

�

Remark: Explicit time indices indicate material distinctions. For example, we have not
shown 〈M′φ, φ〉 = 〈φ,M′φ〉, rather 〈M′φt, φt+1〉 = 〈φt+1,M′φt〉.
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Wold Representations for Second Moments

For ε > 0, each ς ∈ (0, 1 + ε] defines an operator

(Rγ(ς)φ)(x) = ς−1

∞∑
n=0

(
ς−1(Mγφ)(x)

)n
We will also consider the resolvent as a function of ς,

Rγ(ς) = ς−1

∞∑
n=0

(
ς−1Mγ

)n
Because ρ(Mγ) < 1, we have Rγ(ς) = (ςI −Mγ)

−1 for ς ∈ (ρ(Mγ), 1 + ε], and

Rγ(1)(I −Mγ) = I

A proof for the case of Neumann series is given in Lax ((2010), Theorem 3 p. 195).

A.0.5 Identification of Spectral Gap from Realized Returns

Proposition A.0.21 (Identification) Consider the Markov environment above with rank(M) >
1. The singular value decomposition of a panel of realized returns can be expressed in terms
of the Markov transition

ΛPCA + V′D1−λΣV

where + reads “unitarily equivalent” and where

Rγ(1) = UD1−λU
′

(D1−λ)i,j =

{
1

1−λj i = j

0 i 6= j

Proof Recall that for any integer k, µ0ι
′Mk

γ = 0, and for any s > 0, 〈ut, ut−s〉 = 0. In
particular, we have

V(Rt) =
〈
Rt −R,Rt −R

〉
= 〈

∞∑
s=0

(M′
γ)sut−s,

∞∑
s=0

(M′
γ)sut−s〉

= 〈ut, ut〉+ 〈
∞∑
s=1

(M′
γ)sut−s,

∞∑
s=1

(M′
γ)sut−s〉

= 〈ut, ut〉+
〈
M′

γut−1,M′
γut−1

〉
+ 〈

∞∑
s=2

(M′
γ)sut−s,

∞∑
s=2

(M′
γ)sut−s〉
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Now, 〈
M′

γut−1,M′
γut−1

〉
=
〈
M′

γLut,M′
γLut

〉
=
〈
M′

γut,M′
γut
〉

=
〈
MγM′

γut, ut
〉

= 〈Mγut, ut〉

using the lag operator isometry and the adjoint operation. Then,

V(Rt) = 〈ut, ut〉+ 〈Mγut, ut〉+
〈
(M′

γ)2ut−2, (M′
γ)2ut−2

〉
+ ...

Similarly for the second order case,〈
(M′

γ)2ut−2, (M′
γ)2ut−2

〉
=
〈
(M′

γ)2LLut, (M′
γ)2LLut

〉
=
〈
(M′

γ)2Lut, (M′
γ)2Lut

〉
=
〈
(M′

γ)2ut, (M′
γ)2ut

〉
=
〈
Mγ(M′

γ)2ut,M′
γut
〉

=
〈
(Mγ)2(M′

γ)2ut, ut
〉

=
〈
(Mγ)

2ut, ut
〉

using associativity. Continuing,

V(Rt) = 〈ut, ut〉+ 〈Mγut, ut〉+
〈
(Mγ)

2ut, ut
〉

+
〈
(M′

γ)3ut−3, (M′
γ)3ut−3

〉
+ ...

...

= lim
N→∞

N∑
s=0

〈(Mγ)
sut, ut〉

This sum is absolutely convergent because the eigenvalues are bounded inside the unit circle
uniformly in parameter k ∈ N.

Write
∑∞

n=0 mn =
∫
Rm(n)ν(dn) for the counting measure ν̂(n) = nν(n). Now invoke Fu-

bini’s theorem to change the order of integration. This justifies applying bilinearity of the
inner product countably many times

∞∑
s=0

〈(Mγ)
sut, ut〉 =

〈
∞∑
s=0

(Mγ)
sut, ut

〉
= 〈Rγ(1)ut, ut〉

Because the series is convergent, the operatorRγ(1) can be written concisely in Mγ: Rγ(1) =
(I −Mγ)

−1.

We require the following

Lemma A.0.22 The operator Mγ admits a positive real weak point spectral decomposition
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Mγ = UΛγU
′ such that every eigenvalue is bounded on unit interval 1 > m ≥ (Λγ)j,j ≥ 0.

Furthermore, at least one eigenvalue is strictly positive.

Proof The operator M′
γ =M′ − µ0ι

′ has a zero eigenvalue. Moreover, any nonzero eigen-
value φj has real part strictly bounded inside of the unit interval [−1 + ε−, 1 − ε+], for
1 > ε > 0, by the Perron-Frobenius theorem. Hence by orthogonality any eigenvalue of Mγ

is bounded inside the same interval. To see this, note that λj, φj such that Mφj = λj and
j 6= 0,

Mφj = ιµ′0φj +Mγφj =Mγφj = λjφj

because the dual bases of different eigenspaces are orthogonal by construction (for every
j 6= i, φ′iφj = 0; in this case, the long run expected value of φj is zero, written µ′0φj = 0).
Because rank(M) > 1, there is at least one nonzero eigenvalue ofM′

γ , λ∗j , with eigenvectors
ψj,

M′
γψj = λ∗jψj λ∗j ∈ C (8.j)

Clearly, any ψj satisfying 8.j gives

[M′
γψj]

′M′
γψj = ψ′jMγM′

γψj

= λ∗2j ψ
′
jψj > 0

We conclude that 0 < λ∗2j < 1. Recall Mγ :=MγM′
γ and write the above condition

〈ψ′j, ψ′jM′〉 = λ∗2j 〈ψ′j, ψ′j〉

That it is an eigenvalue of Mγ follows from

λ∗2j =
‖ M′

γψj ‖
‖ ψj ‖

≥
‖ M′

γψ ‖
‖ ψ ‖

for any ψ 6= ψj since ψj is an eigenvalue of M′
γ .

�

Now, using Rγ(1)(I − UΛγU
′) = I, and the unitary identity U′ = U−1, we have

(I −Mγ)
−1 = (I − UΛγU

′)
−1

= (UU′ − UΛγU
′)
−1

=
(
U[U′ − ΛγU

′]
)−1

=
(
U[I − Λγ ]U′

)−1

= U′
[
I − Λγ

]−1
U

where we have used U′ = U−1 in the second and fifth equality and that I − Λγ is diagonal.
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Define

(D1−λ)i,j :=

{
1

1−λj i = j

0 i 6= j

We have shown

(I −Mγ)
−1 = U′D1−λU

Returning to the resolvent decomposition,

V(φt) = 〈UD1−λU
′u, u〉

= 〈D1/2
1−λU

′u,D
1/2
1−λU

′u〉
= 〈D1/2

1−λu,D
1/2
1−λu〉

= D
1/2
1−λ〈u, u〉D

1/2
1−λ

= D1−λΣ

Write R ·µ0 = R0 and consider the SVD of the sample fluctuations of realized returns around
their mean: Rt−T,t −RT = VD1/2W′. The covariance matrix is simply

V(Rt) := 〈Rt, Rt〉 −R0R0

= VD1/2W′WD1/2V′

= VDV′

Of course, D = ΛPCA. Hence,

VΛPCAV
′ = D1−λCC

′

〈VΛ
1/2
PCA,VΛ

1/2
PCA〉 = 〈UD1/2

1−λu,UD
1/2
1−λu〉

�

Remark: From the proof of proposition (7.2.1), we can see the unitarily equivalent bundles
specified by + can be summarized by the equalities

VΛPCAV
′ = D1−λUΣU′

= D
1/2
1−λΣD

1/2
1−λ

= U′D1−λUΣ

Martingale Representation

Markov dynamics define a serially uncorrelated mean-zero process ut+1 = r(xt+1)−(Mr)(xt)
with boundary u0 = 0. We construct a martingale u∗t recursively u∗t = ut+u

∗
t−1 with boundary

u∗0 = r(x0). Using the definition of ut+1 and the operator (Lr)(xt) = (Mr)(xt)− r(xt), the
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martingale takes the form

u∗t+1 = r(xt+1)−
t∑

s=0

(Lr)(xt−s) (3.2a)

The generator L =M−I takes martingales ofM to its kernel. BecauseM has eigenvalues in
the closed unit circle, −L has eigenvalues in [0, 1). For values near zero andMψj = λj(x)ψj,

Lψj = −e−iλj(x)ψj

is a good first-order approximation. Hence, the spectral gap is equivalently the smallest
nonzero eigenvalue of the (negative) generator.

Write ζ̂−1
t := ζ−1

t γγxt−1. From the construction of the martingale u∗t+1 in 3.2a, we see that
the cumulative process associated with the changes in expected returns is, unsurprisingly,
the expected return itself. Using 3.2a with ∆Êt−1,1 ≡ 0, we can express the expected return
process

Et[Rt+1] = ζ̂−1
t (xt)−

t−1∑
n=0

(Lζ̂−1
t−1−n)(xt−1−n) (3.2b)

in terms of first differences of the inverse spectral gap.

Covariance Matrix with Non-Centered SVD

The noncentered SVD puts φ = AΛ1B
′. Then,

E[φ− Eφ][φ− Eφ]′ = E
[
AΛ1B

′(I − 1
T

11′)
(
AΛ1B

′(I − 1
T

11′)
)′]

= E[AΛ1B
′I1I

′
1BΛA′]

The matrix I1 := I − 1
T

11′ is symmetric, hence I1I
′
1 = (I1)2. Element-wise,

(I1)2
i,i = (1− T−1)2 + T−2(T − 1) = 1− T−1 = (I1)i,i, and,

(I1)2
i,j = −2(1− T−1)T−1 + T−2(T − 2) = −T−1 = (I1)i,j

so I1 is a projection. Hence ET [AΛ1B
′I1I

′
1BΛA′] = T−1AΛ1B

′I [T ]BΛA′ where I [T ] =
TIT×T − 1T1′T = TI1.

Under mild restrictions,
T−1AΛ1B

′I [T ]BΛA′ −→T→∞ V(φ)

where V(φ) is the population covariance of φ.
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A.0.6 Changes of Measure using Deviations from µ0

The process has long run mean µ0. We calculate the empirical distribution ĥt = 1
T
ht where

ht =
∑T

s=1 δx(s) which is different than µ0 in almost every finite sample. Precisely, for
aε := µ0 + ε,

P(ht ≥ Taε) ≤ e−kTaεE[ek ht ]

= e−TI(aε)−o(T
−1)

where I(aε) = supk{kaε − log(E[ek ht ])}.

Remark: In the standard normal case, optimality puts k = ε. Hence I(x) = 1
2
x2 and

I(0) = I ′(0) = 0. I(0) = 0 expresses the law of large numbers, while I ′(0) = 0 captures the
inflection point of I(x), which locally measures the rate at which the large-time outcomes
can deviate from their limiting behavior. I(x) is dubbed the rate function; see Veradhan
(1979, 2008).

Proofs of Analytic Lemmas

Proof of Lemma 7.2 For each f ∈ F (X), the Riesz representation theorem identifies the linear
functional

η(f) =

∫
fηf = 〈f, ηf 〉

as the inner product of f against a unique function ηf ∈ F (X). We can take η(f) = (Mf)(1) for
consistency, but all linear functionals take the form needed.

First consider the simple functions f =
∑

i 1Ei , for disjoint Ei with
∨
iEi = (2X)N. Using the

countable additivity of the Stieltjes integral, clearly

(η(f))(Ei) =

∫
1Eiηf = Pη(f)(Ei)

is a countably additive set function. Because the path space is countable, the integral is fi-
nite on every subset of (2X)N and trivially regular (Tao 2010, p. 152, 1.10.12). We conclude
by Theorem 1.10.11. in Tao (2010) that for each i, Pη(f)(Ei) is a Radon measure. Moreover,

η(f)(Z) =
∑

i P(Ei) = 1 for any disjoint partition of (2X)N so Pη(f) is a probability measure on

(XN, (2X)N). We conclude each simple function f ∈ F (1X) ⊂ F (X) corresponds to a unique
ηf ∈ F (1X)∗ which itself corresponds to a probability measure Pη(f) (uniquely up to functions that
agree a.e.).

Recall the definition of the adjoint map M′ given M,

〈Mf, g〉 = 〈f,M′g〉

with g = ηMf ∈ F (X ′)∗ and hence M′g = M′ηMf ∈ F (X)∗. The adjoint exists by the Riesz
representation theorem (Tao (2010), p. 54, 1.4.15) and (if necessary) extends to all of X∗ by
the Hahn-Banach theorem. In particular, the adjoint map can be constructed directly for each
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ηf ∈ F (X ′)∗ via the composition

M′ηf = ηf ◦M

(Rudin 1991, p. 98 Theorem 4.10). We conclude that for simple functions f ∈ F (1X), the ad-
joint operator M′ maps the dual of the range of M to the dual of the range of M−1M, (= I on
Hilbert space), and we can identify each element of F (1′X)∗ with a probability measure over R(M).

The collection of simple functions F (1X) is dense in F (X). By the Stone-Weierstrass theorem,
F (X) can be obtained from F (1X) by including the limit points of F (1X). Now, applying the linear
functionals ηf to the limit points of F (1X), it is clear that under the weak∗ topology the collection of
probability measures corresponding to simple functions is dense in the space of probability measures
over R(M). The corresponding limit points are obtained from the weak∗ limits of functionals of
simple functions

η(fn) −→ η(f∞)

The result follows by application of the Stone-Weierstrass theorem to the dual F (X ′)∗ given F (1′X)∗.
�

Following Tao (2010, p.14), the Reisz functional representation η(f) =
∫
fd(ηf ) defines a measure

m such that
∫

dηf =
∫
fdm and for any g,

∫
gηf =

∫
gfdm.

Proof of lemma 7.7b Recall that g({0}) = 1 implies that the subspace

E0 := {µ̂ : (M′ − λ0I)µ̂ = 0}

has dimension one. Any µ̂ such thatM′µ̂ = µ̂ has the form µ̂ = cµ0 for non-zero c ∈ R/{0}. Hence
rank(µ0ι

′) = 1, and in this case, c ≡ 1 for every row of M. Moreover, dim Span(IS) = S. By the
rank-nullity theorem, the kernel of µ0ι

′ has dimension S − 1. Because µ0ι
′ ⊥ I − µ0ι

′, the range
of I − µ0ι

′ coincides with the nullspace of µ0ι
′. Hence rank(I − µ0ι

′) + rank(µ0ι
′) = S. In finite

dimensions, all bases are isometrically isomorphic, so if the rank of two operators are equal, their
span is equivalent (up to unitary maps). We conclude

{v : v =M′u , u ∈ RS} =
{
v = v0 + v1 : v0 = µ0ι

′u , v1 = (I − µ0ι
′)u , u ∈ RS

}
Together, µ0ι

′, (I − µ0ι
′) span the image of X under M′.

�

Remark: The characteristic polynomial of M′ − I can be expressed

det(M′ − λI) = (λ− λ0)χ(0)
N0−1∏
j=1

(λ− λj)χ(j)

with the algebraic multiplicity χ(0) = 1. The characteristic polynomial can also be written

det(M′ − λI) =
(
λ− ι′M′µ0

)χ(0)
N0−1∏
j=1

(
λ− v′jM′νj

)χ(j)

Hence for rank(M) > 1, the Perron-Frobenius theorem implies that for some λ1 < 1,

v′1M′ν1 = λ1
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to ensure the additional singularity outside a neighborhood of λ0 = 1.
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Appendix B

Model Development and Proofs

B.1 Benchmark Results

Here we state and discuss implications from the complete and incomplete markets benchmark

models. We present the results necessary for the comparisons referenced in the body of the

paper, including results on welfare, asset pricing and securities positions, as well as the ex-

post wealth distributions. Some additional results not central to the comparisons above are

listed along with the proofs in section A.1.

B.1.1 Complete Markets

To complete the markets, we include a perfectly enforced Arrow-Debreu contingent claim

a(sm,k, j) for every distinct state of the economy (sm,k, j), m = R,G, k = A,B, j = 1, 2.

Details of the trading technology are provided in section 6.0.1.

Proposition B.1.1 (Complete Markets Benchmark) In the complete markets economy

with ex-ante identical investors and security menu S that spans consumption paths

1. The log-utility representative agent pricing kernel M [(sm,k)] is constructed state-by-

state

ν0M [(sm,k)] = Y
−1

m,k πm,k

for each sm,k ∈ S and time-zero marginal value of wealth ν0.
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2. Efficient allocations can be implemented with assets from the benchmark economy 1

3. The ex-post distribution of wealth is degenerate.

The complete markets implications are well known. In section 6.1 of Appendix A, we give

a constructive proof that provides the equilibrium contracts a∗(smk,j) in terms of the assets

(a0, aj(n1,j,m)) from section 1.1. We state the key constructions here:

Supporting Positions A standard argument, reproduced in 6.1.2, shows the equilibrium

complete markets wealth shares are identical θT,j(sm,k) = θT (sm,k) = Y m,k for all individuals

j ∈ I. Securities positions aj supporting the risk sharing rule are

a(sm,k, nj)Complete =: a0
j = −n1,j[Ym,k − V1,m]−1 (S.0.1)

for every sm,k ∈ S. Supporting positions are derived in section 6.1.3.

Asset Prices From the equilibrium wealth shares θT,j(sm,k), any investor’s marginal value

of wealth recovers the representative Lucas pricing kernel state-by-state

d

dθ
log[θT,j(sm,k)]πm,k = [θT (sm,k)]

−1πm,k = ν0M [Y m,k]Lucas

for each sm,k. The full system of state prices for sm,k ∈ S are obtained in this way. In partic-

ular, q(sm,k, nj) = q(sm,k)πj = ν−1
0 [θT,j(sm,k)]

−1πm,k
1
2

= ν−1
0

1
2
[Y m,k]

−1πm,k = 1
2
M [Y m,k]Lucas.

B.1.2 Incomplete Markets

The set-up is identical to the baseline case presented in section 1.1 The objective is restated

with the proofs in section 6.2 of Appendix A.

1Program 1.A is optimized and markets 1.C clear.
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Proposition B.1.2 (Incomplete Markets Benchmark) For the incomplete markets model

5.2, an equilibrium exhibits the following properties

1. There is a no trade equilibrium at time t = 0.

2. Trade at t = 1 induces a distribution of wealth θT,j(sm,k) with shares for each investor

j proportional to her realized n1,j ∈ {−∆,∆}.

3. The incomplete markets pricing kernel M [θt,j(sm,k)]NC can be written in terms of the

complete markets kernel and the wealth distribution state-by-state

M [θT,j(sm,k)]NC =
[
M [Y m,k]Lucas

]
eσ∆(sm)(1+ 1

2
σ∆(sm))−o( 1

∆
)

for sm,k ∈ S, and where σ∆(sm) =
(

∆
W1,m(sm)

)2

and

M [Y m,k]Lucas =

[
∂J1

ν0

πm

]
Y
−1

m,k

∂J1

πk

(a) Prices are strictly higher than complete markets prices. The difference is propor-

tional to the welfare loss.

Remark The cross-sectional transfers {nt,j}j∈I stimulate rebalancing activities. At time-

zero, expected marginal values are distorted by uncertainty about nt,j. At time 1, the

distribution of wealth is bimodal, with relatively poor and rich populations corresponding

to realizations −∆ and ∆, respectively.

Remark Complete markets S.0.1 represent (sm,k, n1,j) - contingent payments. For exam-

ple, policy a0
j for type j: n1,j = ∆ > 0 requires payment to type −j : n1,−j = −∆ < 0 in

the low productivity state, Ym,k−V1,m < 0. In contrast, for any aggregate state, incomplete

markets policies aj respond to n1,j = ∆ > 0 with acquisitions, while policies a−j respond to

n1,−j = −∆ < 0 with liquidations.

Proof We first show that at time-zero, no-trade is an equilibrium. We then open markets

in response to the realizations n1,j to derive wealth shares, securities positions and prices.

Details omitted from the main text are found in section 6.2 in Appendix A
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No Trade Given that there is no ex-ante heterogeneity, no trade at time-zero can be seen

by assuming every investor consumes her endowment, then using the corresponding (IMRS)

as a price system. The proof is given in section 6.2.1.

We now state the wealth shares and describe the supporting securities positions. Asset prices

are developed in the following section, 2.2.1.

Risk Sharing Using ∂J1,j = ∂
∂aj
J1,j and Y m,k = Ym,k + ω0, wealth shares are written

θ2,j =
∂J1,−j

∂J1,j + ∂J1,−j
Y m,k (I.θ)

The derivation of equilibrium wealth shares is in section 6.2.2 of Appendix A.

Securities Market clearing gives aj = −a−j. Write the wealth shares θ2,j = aj(Ym,k −

V1,m) + n1,j + θ0 with common term θ0 := Y m,k + a0(Ym,k − V0). Put W1,m := V1,m + ω0. For

log utility, ∂J1,j = [W1,m + n1,j]
−1. Using I.θ, these imply [aj − n1,jW

−1
1,m][Ym,k − V1,m] = 0.

We express the reallocation policies aj as a partition of n1,j into two components. One

component corresponds to adjustments in the equity position via ajV1,m, while the other

component maps to “cash.” An implementation of the policy aj can be written, in units of

wealth,

Equity: ajV1,m = n1,j
V1,m

W1,m

= n1,j α1 (S.1.2)

Cash: n1,j − ajV1,m = n1,j[1− α1]

for n1,1 = ∆, n1,2 = −∆ and every sm,k ∈ S, and where α1 is the fraction of aggregate wealth

held in the risky asset in equilibrium.

�
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Remark The partition in S.1.2 captures the myopic policy formation characteristic of log-

utility populations. The response to n1,j simply splits the gain or loss into risky and risk-free

components at the same rate that portfolios hold equity and cash in equilibrium.
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B.2 Proofs

Recursion

We show indifference to initial aggregate wealth W0 > 0 and future levels of aggregate wealth

Wt > 0 t = 1, T . Standard arguments are used, based on homothetic preferences and prop-

erties of log. The additional state variables are discussed.

Proof Recall gross positions as fractions of net worth, αj, and share adjustments aj, are

connected via αjW1,j = (1+a0 +aj)V1,m, for W1,j = (1+a0)V1,m+ω0 +n1,j−a0V0. Similarly

for t = 0, α0W0 = (1+a0)V0. Using wealth shares α define the returns to wealth over periods

0→ 1 and 1→ 2, respectively,

R0,j := R(a0, nj;V1,m) = α0
V1,m

V0

+ (1− α0) +
n1,j

W0

R1,j := R(aj;Ym,k) = αj
Ym,k
V1,m

+ 1− αj

Now, write the wealth process (W1,j,W2,j) in terms of W0 in the natural way. Set W1,j =

W0R0,j and then W2,j = W1,jR1,j = W0R0,jR1,j. For convenience, denote the gross return on

initial wealth θT,j := W2,j.

Log utility decouples today’s allocation policies from cumulative effects of future policies.

Together with the tower property of conditional expectations, and using n1,j i.i.d., it is clear

the objective from program 1.A can be written

max
a,θ

E0[log(θT,j)] = log(W0) + max
a0

E0[log(R0,j)] + Ej
[
max
aj

E1[log(R1,j)]

]
(1.B.1)

The level log(W0) is irrelevant for allocation decisions and therefore irrelevant for asset pric-

ing, from 1.B.1. Moreover, expected utility is unique only up to order preserving transfor-

mations, so we can remove the scale factor log(W0). Equivalently, without loss of generality,
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set W0 = 1.

From 1.B.1 (and 1.B below) we can also disregard future levels of aggregate wealth Wt,

t ≤ T because log investors require only single-period gross returns Rt,j for allocation deci-

sions. Moreover, there is no intermediate consumption. State prices are constructed from

shadow values of one-period gross returns.

�

Write the state vector for every individual

Xj,t :=


qt,j

Vt

T − t

 ∈ R2
++ × {2, 1, 0} (X.1)

for strictly positive prices (qt,j, Vt). At t = 0, the normalization W0 ≡ 1 implies q0 = 1 for

every investor.

Define J(qt,j, Vt, T − t) := Et[log(ΠT−t
s=1Rs(a

∗))] along the optimal policy path a∗. The

additional index in J(qt;Vt, T − t) monitors the number of periods prior to termination,

T − t, although we adopt the conventional shorthand J0 = J(X0) = J(1;V0, 2) and J1,j =

J(Xj,1) = J(qj;V1,m, 1). Indirect utility separates recursively

J(X0) = max
a0

E0 [log(R0,j)] + Ej [J(Xj,1)] (1.B)

J(Xj,1) = max
aj

E1 [log (R1,j))]

Heterogeneity is tracked by treating the ratio of individual wealth to initial wealth qt,jW
−1
0 =

qt,j as a state variable for each individual. This is equivalent to treating private income n1,j

as the individual state following from the fact that, contemporaneously, q1,j = W1,m,j =

W1,m + n1,j. The uninsurable shock n1,j is necessary conditioning information. Policies sat-

isfying 1.A or 1.B / 1.B.1 are made contingent on type j ∈ {1, 2} for t 6= 0.
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Finally, policies are made contingent on aggregate prices. The deterministic probabilities

πm,k,j = πmπk
1
2

are common knowledge. We conclude the vector Xj,t in X.1 is a sufficient

statistic for the state of the economy.

Note that prices are Vt = V ([sm,k]t, T − t, (qt,j, qt,−j)) for [sm,k]1 = sm, [sm,k]2 = sm,k and

[sm,k]0 = null. The endogenous state can be altered in several ways, through a change of

variables, and still produce a valid description of the economy.

B.2.1 Proposition 2.1

Back to Section 2.1

Market Arrangements We complete securities markets by including an Arrow-Debreu

contingent claim a(smk,j) for each smk,j ∈ S := Y×(n1,1, n1,2), the set of all pairs (Ym,k, n1,j).

For example sGB,2 = (YG,B, n1,2). Each claim is traded at time t = 0. Contracts are fully

enforceable. Arrow-Debreu prices are q(sm,k, nj). We nest the positive supply endowments

e0 into the contingent claims menu S. Market clearing for every sm,k is
∑

j a(smk,j)πj =

1
2
a(sm,k, n1,1) + 1

2
a(sm,k, n1,2) = Y m,k.

The Economy

The present value of all expenditures net of endowments must equal zero. Write the objective

J0(q0;V ) = max
a,θ

E [log(W1,j)] (2.0)

s.t.
∑
k

∑
m

q(sm,k)
∑
j=1,2

1

2
a(sm,k, nj)πm,k ≤ ω0 + V0

θ1,j(sm,k) = W1,j
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where now a single time zero budget constraint includes the complete set of marketable

securities spanning aggregate and individual j-shocks. Shares of equity are fixed by the

endowments giving EQ[e0] = V0. θ1,j(sm,k) = θt=1(sm,k, nj) is the gross return to initial wealth

W0 ≡ 1 in state (sm,k, n1,j).
2 For details of the securitization of n1,j see the Securitization

section below.

We can read off the first order conditions by inspection

− ν0 q(sm,k) + [θ1,j(sm,k)]
−1πm,k = 0 (5.a)

for every smk,j, where ν0 = J ′0(q0, V ) is the initial marginal value of wealth, and q(sm,k) is

the price of a claim to one dollar in state sm,k. ν0 is necessarily identical across investors.

Write λ0,j for the Lagrange multiplier on the initial budget constraint for investor j ∈ I. The

envelope is λ0,j = J ′0,j(q0, V ). By ex-ante symmetry, λ0,j = λ0 for j ∈ I, so J ′0,j = J ′0 = ν0.

Wealth Shares

Proof From equation 5.a, for each sm,k ∈ S and any two i, j ∈ {1, 2}, market prices enforce

θT,i(sm,k) = θT,j(sm,k)

Investors all have identical final wealth shares θT,j, which must in turn equal the average

share and the total level

θT,i(smk,i) =
1

2

∑
j

θT,j(smk,j) = ω0 + Ym,k

where the second equality follows by market clearing for terminal wealth. In particular,

for every infinitesimal investor and for all smk,j ∈ S, θT,j(smk,j) = ω0 + Ym,k = Y m,k is the

2θ is a control dummy for final wealth, used for convenience. If a reader prefers to think of utility defined
over consumption of a non-perishable numeraire good at the terminal date, written say, c1(sm,k, nj), then
θ1,j(sm,k, nj) = c1(sm,k, nj).
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complete markets (perfect) risk sharing rule.3 By populations j, for πj = 1/2, the rule is

θ̂1(sk,h, nj) = 1
2

[ω0 + Ym,k].

�

Back to Section 2.1

Supporting Positions

Proof We implement the complete markets risk sharing rule using assets from the bench-

mark economy. We use a completed menu (containing j-contingencies) of the two-step assets

described in the binomial model.4 Individual portfolio realizations for each smk,j, can be

written

θ1,i(smk,i) = ω0 + Aj(smk,j) + n1,j

We recover the allocations by unpacking

Aj(smk,j) = (1 + a0 + aj,m)Ym,k − a0V0 − aj,mV1,m

Using θ1,i(smk,i) = θ1,j(smk,j) and a0 = 0, simple algebra reveals

[aj,m − a−j,m][Ym,k − V1,m] = n1,−j − n1,j

Finally, we appeal to scarce resources 1
2

∑
j(1 + aj,m) = 1, having used a0 = 0. Recalling

that n1,j + n1,−j = 0, the remaining allocations can be expressed, in terms of equilibrium

3It is straightforward that when net private income distributions
∑
j πj∆j =: ∆ 6= 0, shares by type j

are πj
[
ω0 + ∆ + Ym,k

]
.

4These assets are more useful for analyzing the different welfare implications across the three economies
we consider. Unsurprisingly, allocations using (a0, aj) are equivalent for asset pricing and welfare analyses
to allocations using the Arrow-Debreu menu a0 := a(sm,k, nj){m,k,j}. Formalities are addressed in the
Equivalence discussion of this Appendix.
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objects,5

a(sm,k, nj)Complete =: a0
j = −n1,j[Ym,k − V1,m]−1 (S.0.1)

for every sm,k ∈ S.

�

Asset Prices Given the symmetric wealth shares θ2,j(sm,k), any investor’s marginal value

of wealth can be written in terms of aggregates (identically) and used to price assets. See

the Asset Pricing discussion in Section 2.1.

Securitization We can write EQ[e0] = V0 for the unit price of market equity. Note that

EP [nt,j] = 0 for dQ = e−η(s)dP but EP [e−η(s)nt,j] is an equilibrium object.6 There are

several ways to allow nt,j to be marketable. We adopt the simplest case for the present-value

representation of our economy by securitizing claims to nt,j at time zero. The equilibrium

value for a claim to nj is

EQ[nt,j] =
∑
k=U,D

∑
m=R,G

q(sm,k)
∑
j=1,2

nj
2
πm,k = 0 (1n)

Securitizaion of nj has no impact on the level of tradeable wealth at time-zero W0.7

5In terms of model primitives

a(sm,k, nj)Complete = −n1,j
[
Ym,k − E1

[
Ym,k[Ym,k + ω0]−1

]]−1
for every sm,k ∈ S and where E1

[
Ym,k[Ym,k + ω0]−1

]
= V1,mν0 = EQ1 [Ym,k]ν0 with ν0 = 1 for u(W2) =

log(W2) and W0 ≡ 1.

6When nt,j is orthogonal to the pricing kernel, EQ[nt,j ] = 0. In complete markets with private shocks
that are aggregate-neutral this condition is satisfied. The process η(s) has EP [e−η(s)] = 1.

7Of course, the tradeability of nt,j shows up as an additional lever in the allocation policies a = a(sm,k, nj).
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Budget Constraint We use the resource restriction

∑
j

1

2
a(sm,k, nj) = Y (sm,k) sm,k ∈ S

together with 1n to write the investor’s complete markets budget constraint

∑
k

∑
m

q(sm,k)
∑
j

1

2
[a(sm,k, nj)− 2Ym,k]πm,k ≤ ω0

which states the present value of all financed positions net of endowments is zero.

�

Back to Section 2.1

Equivalence Unsurprisingly, the allocations a0 in the time-zero economy are equivalent

to the allocations (a0, aj) in the original two-step economy. By implementing the complete

markets risk-sharing rule with a feasible allocation of assets consistent with the trading

protocol from the two-step economy, we have shown that an allocation in the two-step

economy (â0, âj) is weakly preferred to a0.8 Because a0 is Pareto efficient in a frictionless

economy with resources and time-separable preferences that are identical to those in the

two-step economy, it must also be that a0 is weakly preferred to any (ã0, ãj). Out of these

we pick (â0, âj) and set (a0, aj) = (â0, âj).

�

B.2.2 Incomplete Markets: Proposition 2.2

Back to Section 2.2

8That is, you would never do worse by optimizing in the two-step economy directly.
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The Economy

Each investor faces the objective

J(q0;V0) = max
a,θ

E [log(θ2,j)] (IC.1)

s.t. a0V0 − V0 ≤ ω0

ajV1,m − (1 + a0)V1,m ≤ (ω0 − a0V0) + n1,j

θ2,j = ajYm,k + (ω0 + n1,j − a0V0 − ajV1,m)

where aj = (1 + a0 + aj) and we distinguish the final portfolio value θ2,j = W2,j from the

wealth process W0,W1,j,W2,j. Note that while nt,j cannot be securitized, after n1,j is realized

all wealth is tradeable.

Definition: Incomplete Markets Equilibrium In equilibrium, every investor optimizes

IC.1 and markets clear according to 1.C.

No Trade Equilibrium

Proof Endowments and preferences are identical. Suppose a price system at time-zero for

aggregate states sm,k ∈ S is given by

q(sm,k)ν0 =[
1

2
[ê0 + n1,1]−1 +

1

2
[ê0 + n1,2]−1]πm,k

=
[
[ê0 + ∆]−1 + [ê0 −∆]−1

] 1

2
πm,k

where ê0 = ê0(sm,k, t) is the realization claimed by an investor owning e0 in state sm,k and

period t. In the terminal period, ê0 = Ym,k, while in the interim period t = 1, ê0 is the

capital value V1,m. The gross rate of time discount is 1 + β = 1.

When we propose a no-trade allocation, feasibility is automatic. Every investor holds her
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endowment. Moreover, the two-period horizon circumvents the need to verify transversality

conditions. We are left to verify optimality.

The investors face the same number of contingencies as in the complete markets case, but

they can only access half the number of primitive assets, corresponding to the cardinality of

{sm,k}m,k. Consider an economy with trade and write the wealth shares θt,j(sm,k) for t = 1, 2.

For each tradeable contingency sm,k, first order conditions are

− ν0 qθ(sm,k) + [
1

2
[θt,j(sm,k)]

−1 +
1

2
[θt,j(sm,k)]

−1]πm,k = 0

where 1
2

= πj is used, and ν0 = J ′0(q0, V ) is the initial marginal value of wealth, necessarily

identical across investors.

In contrast, we have proposed prices that correspond to the intertemporal tradeoff

− ν0 q(sm,k) +
[
[ê0 + ∆]−1 + [ê0 −∆]−1

] 1

2
πm,k = 0

for every time-zero investor and any state sm,k ∈ S. The only hope for improving this margin

is to pick a θ1,j to reduce the Jensen cost over states j conditioning on sm,k. By assumption,

there are no securities to trade on the realizations nj ∈ {−∆,∆} and hence, θ1,j is contingent

on nj only through θ1,j = θ∗1 + n1,j where θ∗1 is a control variable at time zero. Investors

still must average over n1,j realizations for each sm,k. Thus, we can take θ1,j = ê0 + n1,j and

qθ = q. The proposed price system is an optimum for every investor, is feasible, and clears

markets.

�

Back to Section 2.2
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Incomplete Markets Wealth Shares

Every investor has an identical portfolio coming in to the first period, prior to realization of

shocks n1,j. In response to n1,j and the signal m investors enter securities markets to arrange

their final portfolios. Outgoing positions take the form

W1,j = V1,maj + V1,m︸ ︷︷ ︸
Equity Claim

+ω0 + n1,j − ajV1,m︸ ︷︷ ︸
Risk Free Holdings

and differ for each m only through the pairs (n1,j, aj).

Proof We derive policies aj by first extracting the risk sharing rules θ2,j. Market prices

enforce

− V1,m
∂

∂aj
J1,j + [θ2,j]

−1Ym,kπm,k = 0

giving the rule

θ2,j
∂

∂aj
J1,j = θ2,−j

∂

∂a−j
J1,−j

Risk sharing is full conditioning on today’s uninsured shock, so variation in the wealth

shares θ2,j across j = 1, 2 is driven by today’s marginal value of wealth. We adopt shorthand

∂J1,j = ∂
∂aj
J1,j and Y m,k = Ym,k + ω0. Wealth shares

θ2,j =
∂J1,−j

∂J1,j + ∂J1,−j
Y m,k

follow from final-period goods market clearing by state sm,k, written θ2,j + θ2,−j = 2Y m,k.

�

Time-zero Shares and State Prices

First-order conditions for an asset that pays 1 in state sm are

ν0 q(sm)− 1

2
θ−1

1,j −
1

2
θ−1

1,−j = 0
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Market clearing gives
∑

j αjW1,m,j πj = V1,m. Then W1,m = V1,m + ω0 and W1,m,j = W1,m +

n1,j. Put θ1,j = ∂J−1
1,j = W1,m,j = W ∗

1,m + n1,j where the ∗ indicates the component can

be controlled from time-zero. Plugging θ1,j = ∂J−1
1,j into the time-one shares and using

1
2

∑
j θ2,j = Y 1,m gives V1,m. Plugging V1,m into time-zero FOCs using θ1,j = W1,m + n1,j

gives

ν0 q(sm) = W1,m ([W1,m + ∆][W1,m −∆])−1 πm

in agreement with NC.

�

Nonseparable Preferences To preserve the comparison in the previous sections, we de-

fine perishable consumption in t = 1 to be a small dividend paid by the productive asset

that is a constant proportion of the expected payout conditioning on that path

c(m; ε) = εE[Y (sm,k)|m]

Then, individual consumption policies are written c = c(j,m). Define

u(c, θT,j) :=
[
c1−1/ψ + θ

1−1/ψ
T,j

]ψ/(ψ−1)

and

U =
1

1− γ
u(q1, θT,j)

1−γ

In addition, resources are now constrained in t = 1 by

1

2

∑
j

c(j,m) = c(m; ε)
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B.3 Empirical Implications and Evidence

Rather than understanding intermediaries as economic actors themselves our theory sug-

gests the bank’s balance sheet uniquely captures demand for liquidity in the cross-section

of investors. The endogenous structure of the banking arrangement suggests a particular

function of the wealth distribution is captured by a particular function of bank balance

sheet. This generates testable implications for a “representative” agent asset pricing theory.

The theory is doubly productive because it provides tests that exploit data on financial insti-

tutions rather than individual-level data on income, net worth, human capital, real estate etc.

The empirical implication of the representative agent prediction is that shocks to the marginal

rate of liquidity production, measured by the rate of risky assets to uninsured liquid liabili-

ties, will have cross-sectional pricing power in markets where assets are accessible broadly to

both institutions and individuals. Assets relevant to our predictions include exchange traded

stocks and indices. Arguably tests are relevant in fixed income and options markets, which

exhibit lower participation rates because of decisions not to enter rather than prohibitions.

The theory also predicts that the component of the pricing kernel that bank balance sheet

statistics capture uniquely arises from inter-temporal hedging motives of the reference in-

vestor.9 In large incomplete markets economies with institutional liquidity production, my-

opic investors induce inter-temporal hedging motives in the SDF through changes in an

aggregate measure of their propensity to over-save reflected in bank financing flows.10,11

Moreover, the wealth distribution channel can operate holding aggregate cash flows fixed,

which highlights the propensity for intermediary balance sheets to generate pure discount

9The term reference is used in place of representative when the marginal investor cannot be recreated
from linear combinations of individual investors in the model.

10Similarly, Chien, Cole and Lustig (2012) and Chien and Lustig (2010) find i.i.d. dynamics can still
produce persistent risk prices in large incomplete markets economies.

11This point is elaborated in a dynamic version of this model, available upon request.
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rate effects in the time series of asset returns. An interesting implication is that a decompo-

sition of the log pricing kernel in this model using the present-value identity (Campbell and

Shiller, 1989) should reflect that the liquidity factor yield does not predict cash flows.

B.3.1 Data

We use data from the Flow of Funds reports by the Federal Reserve for balance sheet infor-

mation. The data are quarterly, and aggregated sector-wide. We collect data from sectors

that finance a significant portion of their assets with demandable liabilities: commercial

banks and broker-dealers. We also collect data for off balance sheet asset-backed commercial

paper (ABCP) activities reported to the Federal Reserve, a significant fraction of which have

bank holding companies or subsidiaries of bank holding companies as their conduits.

We connect repo financing and ABCP-type liabilities to the demandability of deposits. First,

repo are provided by many institutional depositors (Gorton) and almost all of them are ex-

pected to rollover their financing. Commercial paper also tends to have a large number

of buyers, although CP is less often used as a permanent financing policy. The expected

perpetuity property of repo is the same as deposits. Empirically, a key difference is that

deposits are countercyclical, while repo are pro-cyclical.

Hence, the liabilities used for construction of our series are repurchase agreements, large

time deposits, uninsured savings and checkable deposits and ABCP. The exclusion of ABCP

appears to have little effect. The inclusion of insured deposits has significant effects on

the time-series properties and the cross-sectional exposure patterns of the series. Similarly,

repurchase agreements and uninsurable large time deposits are necessary for the series to

produce a viable distribution of exposure in the cross-section of equities. The test-asset cross-

sections data are from Ken French. Risky assets are measured by corporate equities, mutual
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fund shares, and private residential and commercial mortgage-backed securities (MBS). The

productivity series is defined as changes in the ratio of risky assets to liquid liabilities. We

report the β distributions and the liquidity production time series in the charts below.

Table B.1: Cross Sectional Exposure to Changes in Liability-Side Productivity

Portfolio term estimate statistic std.error

1 S1B1 ∆ Liquidity -0.670 -6.678 0.100
5 S1B5 ∆ Liquidity -0.543 -6.731 0.081
6 S2B1 ∆ Liquidity -0.649 -7.577 0.086
10 S2B5 ∆ Liquidity -0.491 -6.808 0.072
11 S3B1 ∆ Liquidity -0.609 -7.881 0.077
15 S3B5 ∆ Liquidity -0.471 -7.206 0.065
16 S4B1 ∆ Liquidity -0.588 -8.641 0.068
20 S4B5 ∆ Liquidity -0.510 -8.134 0.063
21 S5B1 ∆ Liquidity -0.460 -8.806 0.052
25 S5B5 ∆ Liquidity -0.421 -8.287 0.051

(a) The bank balance sheet productivity measures the ratio of high risk assets to liquid liabilities.
Comparison of large-small spread and high-low spread (high-low book to market (BTM) ratios).
Quarterly balance sheet data for commercial banks and broker-dealers from the Flow of Funds,
Board of Governors of the Federal Reserve. We use private depository institutions, issuers of
asset-backed securities, and securities brokers and dealers to measure liquidity production. The
ratio of high risk assets to liquid liabilities is calculated by classifying liquid liabilities as large
time deposits, uninsured checkable and savings deposits, ABCP and repurchase agreements. Risky
assets are corporate equities, mutual fund shares, and private residential and commercial mortgage-
backed securities (MBS). Monthly Fama -French 3-factor and Carhart model returns data are from
1967 Q1 to 2016 Q4.

B.4 Organizational Implications: Internal Diversifica-

tion

In this appendix we present some of the ancillary implications of the theory in more detail.
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Figure B.1: Exposures to Changes in Liability-Side Productivity

(a) The distribution of exposure spreads value and size. Both size and value spreads are large. The
bank factor should not be identical to value, because the motive to save with large banks appears
even for logarithmic investors, and the value premium captures intertemporal hedging demands
(i.e., the HML factor is in zero-net supply). Quarterly balance sheet data for commercial banks
and broker-dealers from the Flow of Funds, Board of Governors of the Federal Reserve. We use
private depository institutions, issuers of asset-backed Securities, and securities brokers and dealers
to measure liquidity production.The ratio of high risk assets to liquid liabilities is calculated by
classifying liquid liabilities as large time deposits, uninsured checkable and savings deposits, ABCP
and repurchase agreements. Inclusion of insured deposits significantly alters the time series. Risky
assets are corporate equities, mutual fund shares, and private residential and commercial mortgage-
backed securities (MBS). Monthly Fama -French 3-factor and Carhart model returns data are from
1967 Q1 to 2016 Q4.

Liquidity Production and Asset Diversification

Banks and other intermediaries hold diversified assets on their balance sheets, but typical

non-financial public firms do not. Conventional wisdom holds that investors are weakly bet-

ter off when individual firms concentrate risk in their area of expertise. Does the expertise

of financial firms require they hold diversified assets, or are these allocations inefficient?

Financial operations carried out by market makers, broker-dealers, prime brokerages, at IB

trading desks, etc, require holding a variety of assets on behalf of clients, or available for

trade, or in some cases for risk-management. Expertise in these businesses entails more

internal diversification than, for example, a bio-tech start-up. However, notably commercial

banks are omitted from this list, yet tend to diversify assets. Moreover, IB balance sheets

are often concentrated via emphasis on a small number of issuances.

A separate function of financial institutions provides an alternative explanation for asset

diversification. Broker-dealers, dealer banks, commercial banks and bank holding companies

effectively use risky assets as inputs for the production of liquidity on their liability-side.

This function is carried out optimally when the balance sheet is both diversified and risky.

Corollary B.4.1 (Liquidity Production and Asset Diversification) Efficiency of liq-
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uidity production increases with asset diversification. In particular, equilibrium liquidity pro-

ducers hold the market.

Value is created when a liquidity producer can consistently peel off average returns from

risky investments - say the market returns - and direct them to the subset of investors with

the highest marginal valuation. Over time this requires calibrating the distribution of asset

returns through portfolio choice. It is costly, on average, to concentrate asset risk: compet-

itive markets for liquidity production will drive out otherwise equivalent institutions with

higher overall asset volatility. The most efficient liquidity producers will hold the most di-

versified asset portfolio, all else equal.
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