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RESEARCH ARTICLE
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Abstract

Although it is well known that phospholipids self-assemble on hydrophilic plasma-oxidized

PMDS surfaces (ox-PDMS) to form cell membrane mimetic bilayers, the temporal stability

of phospholipid membranes on these surfaces is unknown. Here we report that phospholipid

bilayers remain stable on solvent-cleaned ox-PDMS for at least 132 hours after preparation.

Absent solvent cleaning, the bilayers were stable for only 36 hours. We characterized the

phospholipid bilayers, i) through quantitative comparative analysis of the fluorescence inten-

sity of phospholipid bilayers on ox-PDMS and phospholipid monolayers on native PDMS

and, ii) through measurements of the diffusive mobility of the lipids through fluorescence

recovery after photobleaching (FRAP). The fluorescence intensity of the phospholipid layer

remained consistent with that of a bilayer for 132 hours. The evolution of the diffusive mobil-

ity of the phospholipids in the bilayer on ox-PDMS over time was similar to lipids in control

bilayers prepared on glass surfaces. Solvent cleaning was essential for the long-term stabil-

ity of the bilayers on ox-PDMS. Without cleaning in acetone and isopropanol, phospholipid

bilayers prepared on ox-PDMS surfaces peeled off in large patches within 36 hours. Im-

portantly, we find that phospholipid bilayers supported on solvent-cleaned ox-PDMS were

indistinguishable from phospholipid bilayers supported on glass for at least 36 hours after

preparation. Our results provide a link between the two common surfaces used to prepare in

vitro biomimetic phospholipid membranes—i) glass surfaces used predominantly in funda-

mental biophysical experiments, for which there is abundant physicochemical information,

with ii) ox-PDMS, the dominant material used in practical, applications-oriented systems to

build micro-devices, topographically-patterned surfaces, and biosensors where there is a

dearth of information.
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Introduction

Nanometric phospholipid bilayers supported on a solid surface are cell membrane mimetic in
vitro constructs useful for fabricating biosensors[1–6] for studying membrane biophysics[7–

11], and for studying the binding of drugs[12]. Although glass (silicon dioxide) surfaces are

used conventionally to support phospholipid bilayers[13], oxidized poly(dimethyl)siloxane

(PDMS) surfaces—due to its ability to be molded into complex topographies[11,14,15], to be

formed into microfluidic channels[8,16–18], and to be mechanically deformed[19]—are attrac-

tive substrates to support phospholipid bilayers[15,20–22]. Native PDMS is hydrophobic[23–

28], plasma oxidation is required to make the surface of PDMS hydrophilic and thus suitable

for supporting phospholipid bilayers. Over time however, the surface of oxidized-PDMS (ox-

PDMS) regains its hydrophobicity in a process called “hydrophobic recovery”[23–28]. Recovery

is favored thermodynamically, since native PDMS has a lower surface free energy than ox-

PDMS. Conditions of storage, however, determine the rate (i.e. the kinetics) of hydrophobic

recovery: ox-PDMS stored in ambient atmosphere becomes hydrophobic rapidly, while immer-

sion in aqueous environments, certain chemical treatments[25], including adsorption with bio-

molecules[29], decreases and sometimes completely inhibits hydrophobic recovery[23–28].

Although PDMS is used widely in soft-lithography, the temporal stability of phospholipid bilay-

ers on plasma-oxidized PDMS (ox-PDMS) is not known. Such a study is useful, particularly

since the use of ox-PDMS as a biointerface, instead of glass, is advantageous in applications

such as microfluidics[6], applications that require variations in topography and curvature

[8,10,11,14,15,30], and applications that require dynamic changes in surface area[14,19].

In this paper, we study the temporal stability of model 1,2-dioleoyl-sn-glycero-3-phospho-

choline (DOPC) phospholipid layers on ox-PDMS surfaces. As controls, we also prepared

lipid monolayers on native PDMS and lipid bilayers on glass substrates. We quantified the

characteristics of the phospholipid layers on ox-PDMS and the control surfaces over the course

of 132 hours, i) by monitoring the evolution of the fluorescence intensity of the layers obtained

through high-resolution laser scanning confocal microscopy imaging, and ii) by measuring

the diffusive mobility of the phospholipids in the layers through fluorescence recovery after

photobleaching (FRAP). The fusion of fluorescently-labeled small unilamellar vesicles (SUVs)

on these three substrates produced phospholipid layers with qualitatively uniform fluorescence

intensity. Quantitative analysis revealed that the pixel intensities were normally distributed for

both the lipid monolayers on native PDMS and the lipid bilayers on both glass and ox-PDMS.

The fluorescence intensity of phospholipid bilayers on ox-PDMS and phospholipid monolay-

ers on native PDMS were clearly distinguishable from each other: bilayers exhibited twice the

mean intensity of monolayers, and the distribution of pixel intensities of monolayers and

bilayers did not overlap significantly up to ~ 2.5 standard deviations from their respective

mean values.

The measured fluorescence intensity of the lipid layers formed on ox-PDMS was consistent

with the interpretation that the lipid bilayer remained stable on the surface for the duration of

the 132-hour experiment. Diffusion measurements, a second line of evidence independent

from measurements of fluorescence intensity, further supported our observations: the diffusive

mobility of lipids (evaluated through calculations of the diffusion coefficient from FRAP

recovery curves) on ox-PDMS was similar to the diffusive mobility of lipids on glass [13,31].

Although the bilayers on ox-PDMS developed a mottled appearance 36 hours after prepara-

tion, our analysis revealed that the pixel intensities remained consistent with those of lipid

bilayers.

The stability of the bilayer on ox-PDMS was highly dependent on cleaning prior to deposi-

tion of the bilayer. Without a three-step sequential sonic cleaning in acetone, isopropanol, and
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water prior to plasma oxidation, lipid bilayers on ox-PDMS degraded after 36 hours. Large

patches of lipids peeled off the surface. In contrast, the properties of phospholipid bilayers sup-

ported on ox-PDMS that was cleaned with the three-step sonication procedure were indistin-

guishable, other than the mottled appearance, from the properties of phospholipid bilayers

supported on glass surfaces up to 132 hours after preparation. Our results demonstrate that

ox-PDMS may be used interchangeably with glass for applications requiring short and

medium term stability of supported-lipid bilayers.

Materials and Methods

Materials

Sylgard 184 poly(dimethyl)siloxane silicone elastomer base and silicone elastomer curing

agent (Dow Corning, 0.5 kg kit) was purchased from Krayden, Inc. (Denver, CO). Polystyrene

Petri dishes (135 mm diameter), acetone (certified ACS grade), isopropanol (laboratory

grade), glass slides (Corning Inc.) were all purchased from Fisher Scientific (Pittsburg, PA).

Chloroform (anhydrous,� 99% contains 0.5–1.0% ethanol as stabilizer), 1.0 M calcium chlo-

ride (CaCl2) solution (BioUltra, for molecular biology) were purchased from Sigma Aldrich

(Missouri, MO). Ultrapure water (18.2 MΩ cm resistivity) was obtained from an ELGA Pure-

lab Ultra water purification system (Woodridge, IL).1,2-dioleoyl-sn-glycero-3-phosphocholine

(DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfo-

nyl) (ammonium salt) (Rh-DPPE) were all purchased from Avanti Polar Phospholipids (Ala-

baster, AL). Tris Buffered Saline (TBS) tablets (ultra pure grade) was purchased from VWR

(Radnor, PA).

Procedure for preparation of PDMS substrates

We mixed nine parts of elastomer to one part of curing agent and poured 6.8 g of the mixture

into a 135 mm diameter Petri dish. After degassing in a vacuum chamber for 30 minutes (to

remove trapped air bubbles) and curing for three hours in an oven set at 65˚ C, we obtained a

PDMS disk that was 135 mm in diameter and 1 mm thick. To clean the surface, we sonicated

the PDMS disk, sequentially, for a duration of 15 minutes each, in neat acetone and neat iso-

propanol. At the end of the procedure, the PDMS appeared slightly opaque due to the swelling

of the elastomeric chains with the non-polar solvent molecules. The PDMS disk was rinsed

with ultrapure water several times and then sonicated for a final 15 minutes in fresh ultrapure

water before being placed overnight in an oven at 65˚ C. This step was to evaporate residual

solvent and water—the PDMS regained its optical clarity. In one series of experiments, we

omitted the cleaning steps to determine the effect of cleaning on the behavior of phospholipid

layers on PDMS.

Procedure for preparing SUVs

Small unilamellar vesicles (SUVs) were prepared using a previously disclosed method [14].

Briefly, we evaporated a given volume of phospholipid solution at a concentration of 10 mg/

mL in a clean 4 mL glass vial (Wheaton) under a gentle stream of ultrapure nitrogen to obtain

4 mg of phospholipids as a dried film. We placed the vial in a vacuum chamber overnight to

remove all traces of residual solvent. We rehydrated the film with 4 mL of Tris-HCl buffer at

pH 7.5 with 2 mM CaCl2 for at least 15 minutes under vigorous manual agitation to dislodge

the phospholipids from the wall to form multilamellar vesicles. We then sonicated the turbid

suspension of multilamellar vesicles using a QSonic probe sonicator at an amplitude of 5% for

10 minutes. The vial was placed in an ice bath to limit heating. The solution turned translucent
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as the multilamellar vesicles broke into SUVs. We transferred the suspension of SUVs into 1.5

mL Eppendorf tubes and centrifuged the suspension for 10 minutes at 21.1 × G to pellet tita-

nium particles that were dislodged from the sonicator tip. The supernatant, which contained

the SUVs, was transferred to clean Eppendorf tubes and used within 1 week of preparation.

Procedure for preparing self-assembled phospholipid layers on the

substrates

We cut 12. 7 mm (½ inch) diameter disks of PDMS out of the larger pieces using biopsy

punches and placed the substrates in the middle of a chamber made from a ring-shaped PDMS

gasket 22 mm in diameter that was permanently bonded to a glass slide. The whole setup did

not contain any glues or grease which might affect the properties of a supported bilayer.

Hydrophobic (native) PDMS surfaces were cleaned using the three-step sonication proce-

dure and were used as is. We added 900 μL of the Tris-HCl buffer with 2 mM of CaCl2 and

45 μL of the SUV suspension into the chamber. After a 60-minute incubation period, we

washed the surface of the PDMS by pipetting vigorously and exchanging the buffer in the

chamber 10 times to remove excess unfused SUVs from the bulk. The glass cover slip and ox-

PDMS were exposed to an air plasma in a Harrick Plasma PDC-002 plasma cleaner (high RF

power) for 30 seconds before preparing the lipid layer according to the procedure described

above.

Conditions for imaging

We used a Zeiss LSM700 laser scanning confocal microscope mounted on an upright AxioOb-

server stand equipped with a W-Plan-Apochromat 63× water dipping objective with a numeri-

cal aperture of 1.0 to image all our samples. To conduct quantitative studies, we imaged all our

samples identically: we excited our samples with a 555 nm diode laser at 1.0% power, and used

a 585 nm longpass filter to collect the fluorescence emission of the rhodamine fluorophore.

Each image was 50.7μm × 50.7 μm with a pixel size of 100 nm. We set the pinhole to 1.0 Airy

Unit (corresponding to a slice thickness of 0.59 μm) and the PMT gain was set to 800. Images

were captured at 12-bits which allowed intensity values to range from 0 to 4096 (arbitrary

units).

For fluorescence recovery after photobleaching studies (FRAP), we chose imaging condi-

tions that would lead to fast acquisition times to capture the dynamics of fluorescence recov-

ery. We set our frame size to 148 × 148 pixels, and used a maximum rate of scanning with

bidirectional acquisition. Each 20.2 μm × 20.2 μm image was acquired in 58.6 ms. Bleaching

was carried out over a circular region with a nominal diameter of five μm with the 555 nm

laser set at 100% laser power. The 555 nm laser was set at the lowest power (0.2%) to minimize

acquisition photobleaching. The total time of 23.44 seconds for each FRAP experiment con-

sisted of five images before the bleach pulse, a 10 millisecond bleach pulse, followed by 400

frames after the bleach pulse.

FRAP analysis

We wrote a custom Matlab script to obtain the diffusion coefficients of the phospholipid layers

from FRAP experiments[32]. The pixel intensities, f(x) along the diagonal (radial distance, x)

of the first image post bleach was fitted with Eq 1 using the method of non-linear least squares

to obtain the effective radius of the bleached area, re and the bleach depth, K.

f xð Þ ¼ 1 � Kexp �
2x2

r2
e

� �

Eq 1

Stability of Lipid Bilayers on PDMS

PLOS ONE | DOI:10.1371/journal.pone.0169487 January 4, 2017 4 / 16



A linear interpolation method was used to obtain the half-time of recovery, t1
2

from the

FRAP recovery curves. The half-time of recovery, effective radius of bleaching, and the nomi-

nal radius of bleaching, rn, were then utilized to compute the diffusion coefficient (D) of the

species (Eq 2).

D ¼ r2

n þ r2

e

� �=8t1
2

Eq 2

The results that we obtained were similar to those obtained by fitting solutions of the diffu-

sion equation to the recovery data[22] (data not shown).

Results and Discussion

Temporal evolution of fluorescence intensity of phospholipid layers on

ox-PDMS, PDMS, and glass

The phospholipid layers were prepared on ox-PDMS, PDMS, and glass through the fusion of

small unilamellar vesicles (SUVs) composed of 99.9 mol % DOPC and 0.1mol % of the fluores-

cent phospholipid rhodamine-PE in Tris-HCl buffer containing 2 mM Ca2+. Fig 1A shows

confocal fluorescence images of self-assembled phospholipid layers on, ox-PDMS, PDMS,

and glass. On all surfaces, the fluorescent layer of adsorbed phospholipids appeared uniform.

Small bright spots corresponded to adsorbed unfused SUVs. The phospholipid layer on PDMS

appeared less bright than the layer on ox-PDMS and glass. The difference in intensity is consis-

tent with the phospholipids forming a monolayer on the hydrophobic native PDMS and a

bilayer on the hydrophilic ox-PDMS[21] (Fig 1B). It is known that fusion of SUVs produces

phospholipid bilayers on hydrophilic glass surfaces[13,31].

Fig 1. Representative confocal fluorescence images of lipid layers formed on PDMS, ox-PDMS, and glass immediately after

preparation. A uniformly fluorescent lipid layer was present on all the surfaces after the fusion of SUVs. The layer on PDMS appeared to have

a qualitatively lower intensity compared to the layers on ox-PDMS and glass. Unfused small unilamellar vesicles (SUV) appeared as bright

compact spots on the lipid layers. The lower images are schematic diagrams of the configuration of the lipid molecules on the respective

surfaces. Lipids form a monolayer on the PDMS, bilayers on ox-PDMS, and bilayers on glass. Scale bar 10 μm.

doi:10.1371/journal.pone.0169487.g001
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We observed the three samples in parallel over the course of 132 hours. We imaged ten dif-

ferent locations on each of the surfaces to obtain representative snapshots of the evolution of

the phospholipid layers. Fig 2 shows representative images of the phospholipid layers, at 12

hours, 60 hours, and 132 hours. The phospholipid layers looked uniformly fluorescent on both

native PDMS (Fig 2A) and glass (Fig 2C) over 132 hours, though the number of adsorbed

small vesicles grew particularly numerous on the glass surfaces over time (Fig 2C). On ox-

PDMS, the phospholipid layer, which was initially uniform, appeared mottled at 36 hours (Fig

2B). The mottled appearance persisted for 132 hours.

Fig 2. Representative confocal fluorescence images of the lipid layers on PDMS, ox-PDMS, and glass over time. Twelve hours after

formation, all the lipid layers appeared similar to when they were first prepared. A) The monolayer on PDMS remained homogeneous and

unchanged for 132 hours. B) The lipid bilayer on ox-PDMS appeared mottled at 60 hours. C) The homogeneity of the lipid bilayer on glass

remains largely unchanged over the course of 132 hours. A large number of adsorbed SUVs form on the surface. Scale bar 10 μm.

doi:10.1371/journal.pone.0169487.g002
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Quantitative analysis of the fluorescence intensity of lipid layers

In principle, monitoring the evolution of lipid layers is straightforward—obtain the fluores-

cence intensity of the lipid layer over time and compare it with integer multiples of the inten-

sity of lipid monolayers. Lipid monolayers have one lipid leaflet, whereas lipid bilayers have

two lipid leaflets. Thus, the intensity of the lipid bilayer should be twice that of the lipid mono-

layer. In practice, since the fluorescence emission is from a relatively uniform molecularly thin

film on a flat surface, even slight variations in the location of the surface with respect to the

focal plane of the microscope will result in differences in apparent fluorescence intensity.

We demonstrate this effect in Fig 3A, which is a three-dimensional plot of the pixel intensi-

ties of a confocal image of a lipid bilayer on ox-PDMS immediately after preparation. Along

with pixel-to-pixel variations in intensity (and large peaks that corresponded to adsorbed

SUVs), there is a gradient in the values of the intensity. Such gradients, which are present in all

the images what we obtained (S1 Fig), is due to variations in the position of the surfaces within

the focal plane.

Since we have a sub-resolution fluorescent layer on a non-fluorescent substrate, it is rational

that the maximum intensity, after averaging out for pixel-to-pixel variations, corresponds to

where the surface is in best-focus. Away from the region of best-focus, the intensity would

decrease. With this in mind, we performed a non-linear least-squares fit of a plane to the

Fig 3. Correction for the effects of surface position on the values of intensity. A) Three dimensional

representation of raw pixel intensities from a confocal image of a lipid bilayer on ox-PDMS. The x- and y-axis

correspond to the pixel numbers while the z-axis corresponds to the intensity of the pixels. The image was

50.7 μm × 50.7 μm. It is clear that there are pixel-to pixel variations and a large-scale gradient that makes the plane

of intensity values appear ‘tilted’. The tilt angle is relatively small ~ O(0.01) radians. Large peaks significantly above

the mean fluctuation of the pixel intensities correspond to adsorbed SUVs. B) The result of a plane fit to the pixel

intensities. The plane is a good representation of the position z(x,y) of the surface. C) A three-dimensional

representation of the corresponding matrix of correction factors C(x,y) to account for the non-planar position of the

substrate. D) The intensities after multiplication with the correction factors, demonstrating the removal of the large-

scale gradient due to the varying position of the surface, while preserving the pixel-to-pixel fluctuations. S1 Fig.

doi:10.1371/journal.pone.0169487.g003
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intensities to determine the location of the surface z(x,y) (Fig 3B). We then obtained a matrix

of correction factors, C(x,y) = zmax/z(x,y,), where zmax is the maximum value of z (Fig 3C).

Multiplying C(x,y) with the raw intensity values corrects for the large-scale gradient while pre-

serving pixel-to-pixel fluctuations in intensity (Fig 3D).

Fig 4 shows a histogram of pixel intensities from ten images of phospholipid bilayers on ox-

PDMS and phospholipid monolayers on native PDMS immediately after preparation (each

histogram consists of the intensity values of ~ 2.6 × 106 pixels). Please see S2 Fig for the histo-

gram from images not processed to remove gradients in intensity due to variations in the posi-

tion of the surfaces. Despite the images appearing uniform qualitatively, the intensity of the

pixels shows a clear distribution in values. The pixel intensities were well described by a nor-

mal distribution with a single mean, μ, and standard deviation, σ. The mean intensity of the

Fig 4. Histogram of pixel intensities of lipid bilayers on ox-PDMS and lipid monolayers on PDMS. Each histogram is obtained from N = 10 images,

corresponding to a total count of ~ 2.6 × 106 pixels per histogram. The orange continuous line is a fit of a normal distribution to the histogram for the

monolayers. The green continuous line is a fit of a normal distribution to the histogram for the bilayers. The mean intensity of the monolayer, μm = 1360 is half

the mean intensity of the bilayer, μb = 2591. The histogram of pixel intensities between the bilayers and monolayers do not overlap up to ~ 2.5σ from the mean.

The clear separation of the distribution of pixel intensities allows classification of pixels as being monolayers or bilayers in images that potentially have mixed

compositions of monolayers and bilayers.

doi:10.1371/journal.pone.0169487.g004
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bilayer, μb, was, as expected, about 50 percent higher than the mean intensity of the monolayer,

μm. The distribution of intensities was also narrower for the monolayer, σm = 157 than the

bilayer, σb = 312. The distribution of intensities was not limited to layers prepared on PDMS,

pixel intensities of phospholipid bilayers prepared on glass surfaces were also normally distrib-

uted (S3 Fig).

The pixel intensities of monolayers were well-separated from those of bilayers. There is no

overlap in the lower distribution of the intensities of bilayers up to– 2.3σb from μb and in the

upper distribution of the intensities of the monolayer up to +2.4σm from μm. This lack of over-

lap in intensities allows us to assign unambiguously pixels as being monolayers or bilayers. We

assigned the region of overlap beyond 2.5σ as being indeterminate. Table 1 lists the criteria

that we used to assign identities to pixels based on their intensities. 1) Pixels were classified as

bilayers when (μb—2.3 σb)< intensity < (μb + 2.3 σb). 2) Pixels were classified as monolayers

when (μm− 5.1 σm)< intensity < (μm + 2.4 σm). 3) Pixels were classified as indeterminate

Table 1. Table of intensity values employed to classify pixels in lipid layers.

Classification Intensity criteria Intensity range (a.u.)

Hole 0 < Intensity < (μm− 5.1 σm) 0–500

Monolayer (μm− 5.1 σm) < Intensity < (μm + 2.4 σm) 500–1680

Indeterminate (μm + 2.4 σm) < Intensity < (μb—2.3 σb) 1680–1880

Bilayer (μb—2.3 σb) < Intensity < (μb + 2.3 σb) 1880–3308

SUV Intensity > (μb + 2.3 σb) 3308–4096

doi:10.1371/journal.pone.0169487.t001

Fig 5. Quantification of the evolution of lipid bilayers on ox-PDMS as a function of time. A) The normalized area fraction of pixels with intensities

consistent with lipid bilayers are represented by solid squares (■), the normalized area fraction of pixels with intensities consistent with lipid monolayers are

represented by solid triangles (▲), and the normalized area fraction of pixels with indeterminate intensities are represented by solid circles (●). Standard

deviations of the mean are represented by the corresponding error bars. The area fraction of bilayer was close to 100 percent for the duration of the 132-hour

experiment. B) Plot of the histogram of pixel intensities (from N = 10 images at each time point) of lipid layers on ox-PDMS at 0 hours, 60 hours, and 132 hours

after preparation. The peak of the distribution shifts with time signifying that the layer as a whole becomes less bright. The distributions show a longer right tail.

The combination of movement of the peak of the distribution towards lower values and the development of a right tail should result in regions that are brighter

when compared to the background, i.e. the mottled appearance of the layer. Note however, that the majority of pixels had intensities consistent with bilayers.

The number of pixels classified as indeterminate increases slightly, and none of the pixels had intensities consistent with monolayers.

doi:10.1371/journal.pone.0169487.g005
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Fig 6. Measurement of the diffusive mobility of lipids on the lipid layers. Plot of the fluorescence recovery curves on, A) ox-PDMS,

and B) glass, immediately after preparation of the lipid bilayers. Each plot shows recovery curves from FRAP measurements on ten

different locations. The recovery curves are highly reproducible. Insets are representative images before the bleach pulse, the first image

after the bleach pulse, and the final image of the time series at 24 seconds. Scale bars 2 μm. C) Plot of the diffusion coefficient versus the

time since preparation of the lipid layer. The black bars are for the bilayers on ox-PDMS, the gray bars are for bilayers on glass, and the

cross-hatched bars are for monolayers on native PDMS. The diffusion coefficient does not change significantly for the lipid monolayers

over the course of 132 hours. The diffusion coefficient of the lipids in the bilayer on ox-PDMS and glass were similar and higher than the
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when (μm + 2.4 σm)< intensity < (μb—2.3 σb). Dark pixels (intensities < 500) were classified

as holes, and bright pixels (intensities > 3308) were classified as adsorbed SUVs.

Using the classification listed in Table 1, we analyzed the ten images for each time point

obtained at 24-hour intervals and normalized the results of our calculations by the total num-

ber of pixels per image to obtain an area fraction (Fig 5A). The area fraction of phospholipid

bilayer on the ox-PDMS surfaces was close to 100 percent for 132 hours. Hardly any pixels

developed intensities consistent with monolayers. Thus, our analysis suggests that the phos-

pholipid bilayers are stable on ox-PDMS surfaces for 132 hours.

To analyze our images further, we calculate and plot the histogram of pixel intensities of the

lipid layer on ox-PDMS at 60 hours and 132 hours (Fig 5B). With aging, the peak of the distri-

butions shifted towards lower values and the distributions exhibit a long right tail. A combina-

tion of the shift of the peak of the distribution of pixel intensities towards lower values, and the

development of a right tail rationalizes the mottled appearance of the layer after 36 hours.

Regions that are brighter (right tail values of the distribution) when compared to the back-

ground (the peak and lower values of the distribution) should lead to the appearance of bright

and dark regions in the layer. Despite the shift in the distribution, the majority of pixels had

intensities consistent with bilayers. The number of pixels classified as indeterminate increased

slightly over time, but none of the pixels had intensities consistent with monolayers (Fig 5B).

Fluorescence recovery after photobleaching (FRAP) measurements of

phospholipid layers on PDMS

As a second independent means of characterizing the evolution of phospholipid bilayers on

ox-PDMS, we measured the diffusive mobility of the phospholipids[33,34] in the lipid layers

on ox-PDMS, PDMS, and glass using fluorescence recovery after photobleaching (FRAP).

On ox-PDMS, PDMS, and glass, the fluorescence intensity of 5-μm diameter circular spots

recovered rapidly after photobleaching. The recovery in intensity demonstrated that the phos-

pholipids formed a continuous layer with free diffusive exchange of phospholipids within the

plane of the membrane (Fig 6A and 6B). Fig 6C shows the diffusion coefficient calculated

from the recovery curves. Each data point is an average of ten FRAP experiments. We find that

on native PDMS the phospholipid monolayer exhibited D = 1.18 ± 0.04 μm2/s immediately

after preparation. D did not change significantly over the course of 36 hours. At 60 hours after

formation, we measured an increase in D of about ~ 4% to 1.20 ± 0.04 μm2/s. D remained in

this elevated range for the remainder of our experiments. The diffusion coefficient measured

on the phospholipid bilayer on ox-PDMS, D = 1.42 ± 0.03 μm2/s immediately after formation,

was similar to that of bilayers on glass, D = 1.39 ± 0.05 μm2/s. For the first 36 hours, the diffu-

sion coefficient of the bilayers on glass and ox-PDMS was higher than the diffusion coefficient

of lipids on monolayers on native PDMS. This observation was consistent with those reported

in the literature—phospholipids in monolayers appear to diffuse more slowly than phospholip-

ids in bilayers. By one measure[33], fluorescent probes in DOPC phospholipid bilayers had a

diffusion coefficient, D = 1.7 μm2/s on ox-PDMS, whereas similar probes in phospholipids

monolayers on native PDMS had a diffusion coefficient, D = 0.9 μm2/s. The absence of a thin

water layer that separates (and lubricates) the phospholipid headgroups from the solid support

was attributed to the lowered mobility of the phospholipids in solid-supported monolayers in

comparison to phospholipid bilayers[33].

diffusion coefficient of the lipids in monolayers on native PDMS for the first 36 hours. The diffusion coefficient however, dropped by 20

percent at 60 hours and then matched those of the lipid monolayers prepared on PDMS. Each bar is a mean of N = 10 measurements.

The error bars are standard deviations of the mean.

doi:10.1371/journal.pone.0169487.g006
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After 36 hours, the diffusion coefficient of lipids on both the glass and ox-PDMS decreased

by approximately 20 percent and became indistinguishable from that of the monolayer. Since

lipid bilayers are reported to be stable indefinitely on glass[13,31], it is possible that the

FRAP experiments are detecting changes in the lipids over time. One possibility is that the

unsaturated double bonds in the alkylchains of DOPC was oxidizing due to prolonged expo-

sure to an aqueous environment[35]. Increased saturation of the alkyl chain of lipids is known

to increase the viscosity of lipid layers[34,36]. A higher viscosity causes a decrease in the appar-

ent diffusion coefficient of the phospholipids[34,36]. Such a decrease would thus be indepen-

dent of the characteristics of the substrate or the number of leaflets present in the lipid layer.

We can conclude however, that the diffusive behavior of lipids in bilayers on ox-PDMS is

indistinguishable from the diffusive behavior of lipids in bilayers on glass surfaces.

The cleaning procedure significantly improved the quality of the bilayer

on ox-PDMS

We wished to determine if the cleaning procedure we employed had a discernible effect on the

stability of phospholipid bilayers on ox-PDMS. Fig 7 shows representative images, at 0 hours,

60 hours and 132 hours after preparation of phospholipid layers on ox-PDMS that was not

subjected to the cleaning procedure. Similar to ox-PDMS that was solvent cleaned, a uniformly

fluorescent phospholipid bilayer formed on the surface. After 36 hours however, large dark

regions with no fluorescence appeared. These dark regions grew in size over the course of 132

hours. The dark regions are consistent with the phospholipid layer peeling off the surface of

the PDMS. We conclude that solvent cleaning was essential to preserve the stability of lipid

bilayers on ox-PDMS surfaces. It is known that unreacted monomers and oligomers that are

present in the PDMS can diffuse through bulk PDMS and form a layer on ox-PDMS. Such a

migration is favored thermodynamically in air and other non-polar environments since the

hydrophobic monomers have a lower surface energy than the oxidized PDMS surface[23–28].

These monomers and oligomers contribute to the hydrophobic recovery of PDMS. We specu-

late that the unreacted monomers in the bulk, which were not removed since the PDMS was

not sonicated in acetone and isopropanol, displaced the phospholipid molecules from the sur-

face of PDMS. Since the bilayers supported on non-solvent cleaned ox-PDMS were of quality

not suitable for most applications, we did not undertake a statistical study of growth of the

defects or the diffusive characteristics of the lipids on these surfaces.

Conclusions

Phospholipid bilayers on ox-PDMS were stable up to 132 hours after preparation, which

makes ox-PDMS a suitable support for the majority of biophysical and single-use biosensor

experiments involving phospholipid bilayers. The appearance of regions of higher fluorescence

intensity after 36 hours was still consistent with these regions being bilayers. Cleaning of the

PDMS with a three-step sonication procedure with acetone, isopropanol, and water proved

essential for prolonging the stability of bilayers on ox-PDMS, and should be standard protocol

for work with phospholipids on PDMS surfaces. Without this cleaning procedure, large

patches of phospholipids came off the surface to reveal dark patches of bare PDMS.

Fig 7. Confocal fluorescence images of the evolution of lipid bilayers on ox-PDMS not subjected to

solvent sonication. A) The bilayer looks uniformly fluorescent immediately after the fusion of SUVs. B) At 60

hours, large areas of lipids seemed to have peeled away, revealing the non-fluorescent PDMS substrate

(black patches). C) The dark regions became more extensive at 132 hours. Scale bar 10 μm.

doi:10.1371/journal.pone.0169487.g007
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Supporting Information

S1 Fig. Raw data demonstrating the presence of gradients in intensity in the majority of

images. The plots in column A) are three-dimensional representations of raw pixel intensities

from five confocal images of a lipid bilayer on ox-PDMS. The plots in column B) are three-

dimensional representations of raw pixel intensities from five confocal image of a lipid mono-

layer on native PDMS.

(TIF)

S2 Fig. Histogram of pixel intensities of lipid bilayers on ox-PDMS and lipid monolayers

on PDMS from raw pixel intensities without correction of the gradients in intensity. The

pixel distributions are broader for both monolayers and bilayers. The distribution for the

bilayer appears to have a secondary peak. The mean intensity of the bilayer (the primary peak)

is approximately double of the mean intensity of the monolayer.

(TIF)

S3 Fig. Histogram of pixel intensities of lipid bilayers on glass. The imaging conditions for

glass was different from those for the PDMS substrates resulting in shifted values for the raw

intensities (555 nm diode laser was set at 1.0% power. The PMT gain was set to 700 whereas

the PMT gain was set to 800 for imaging of PDMS and ox-PDMS). The pixel intensities are

normally distributed however.

(TIF)
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13. Richter RP, Bérat R, Brisson AR. Formation of solid-supported lipid bilayers: An integrated view. Lang-

muir. 2006; 22: 3497–3505. doi: 10.1021/la052687c PMID: 16584220

14. Subramaniam AB, Lecuyer S, Ramamurthi KS, Losick R, Stone HA. Particle/fluid interface replication

as a means of producing topographically patterned polydimethylsiloxane surfaces for deposition of lipid

bilayers. Adv Mater. 2010; 22: 2142–2147. doi: 10.1002/adma.200903625 PMID: 20376852

15. Sanii B, Smith AM, Butti R, Brozell AM, Parikh AN. Bending membranes on demand: Fluid phospholipid

bilayers on topographically deformable substrates. Nano Lett. 2008; 8: 866–871. doi: 10.1021/

nl073085b PMID: 18271562

16. Yang T, Jung SY, Mao H, Cremer PS. Fabrication of phospholipid bilayer-coated microchannels for on-

chip immunoassays. Anal Chem. 2001; 73: 165–169. PMID: 11199961

17. Phillips KS, Cheng Q. Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer

membranes on poly(dimethylsiloxane). Anal Chem. 2005; 77: 327–334. doi: 10.1021/ac049356+ PMID:

15623312

18. Kitazoe K, Wang J, Kaji N, Okamoto Y, Tokeshi M, Kogure K, et al. A touch-and-go lipid wrapping tech-

nique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nano-

devices. Lab Chip. 2011; 11: 3256–62. doi: 10.1039/c1lc20392d PMID: 21829858

19. Staykova M, Holmes DP, Read C, Stone H a. Mechanics of surface area regulation in cells examined

with confined lipid membranes. Proc Natl Acad Sci U S A. 2011; 108: 9084–9088. doi: 10.1073/pnas.

1102358108 PMID: 21562210

20. Hovis JS, Boxer SG. Patterning and composition arrays of supported lipid bilayers by microcontact

printing. Langmuir. 2001; 17: 3400–3405.

21. Lenz P, Ajo-Franklin C, Boxer S. Patterned supported lipid bilayers and monolayers on poly (dimethylsi-

loxane). Langmuir. 2004; 11092–11099. doi: 10.1021/la048450i PMID: 15568862

22. Subramaniam AB, Guidotti G, Manoharan VN, Stone HA. Glycans pattern the phase behaviour of lipid

membranes. Nat Mater. Nature Publishing Group; 2013; 12: 128–33. doi: 10.1038/nmat3492 PMID:

23178266

23. Efimenko K, Wallace WE, Genzer J. Surface modification of Sylgard-184 poly(dimethyl siloxane) net-

works by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci. 2002; 254: 306–315. PMID:

12702402

24. Eddington DT, Puccinelli JP, Beebe DJ. Thermal aging and reduced hydrophobic recovery of polydi-

methylsiloxane. Sensors Actuators, B Chem. 2006; 114: 170–172.

25. Bodas D, Khan-Malek C. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemi-

cal treatments. Microelectron Eng. 2006; 83: 1277–1279.

26. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K. Crosslinked polydimethylsilox-

ane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques.

Polymer (Guildf). 2000; 41: 6851–6863.

Stability of Lipid Bilayers on PDMS

PLOS ONE | DOI:10.1371/journal.pone.0169487 January 4, 2017 15 / 16

http://dx.doi.org/10.1016/j.tibtech.2007.11.004
http://www.ncbi.nlm.nih.gov/pubmed/18191259
http://dx.doi.org/10.1002/smll.201000644
http://www.ncbi.nlm.nih.gov/pubmed/20925039
http://dx.doi.org/10.1126/science.1191710
http://www.ncbi.nlm.nih.gov/pubmed/20829485
http://dx.doi.org/10.1021/la302205b
http://www.ncbi.nlm.nih.gov/pubmed/22881196
http://dx.doi.org/10.1021/la401011d
http://www.ncbi.nlm.nih.gov/pubmed/23642033
http://dx.doi.org/10.1016/j.jconrel.2014.05.012
http://dx.doi.org/10.1016/j.jconrel.2014.05.012
http://www.ncbi.nlm.nih.gov/pubmed/24859379
http://dx.doi.org/10.1021/la052687c
http://www.ncbi.nlm.nih.gov/pubmed/16584220
http://dx.doi.org/10.1002/adma.200903625
http://www.ncbi.nlm.nih.gov/pubmed/20376852
http://dx.doi.org/10.1021/nl073085b
http://dx.doi.org/10.1021/nl073085b
http://www.ncbi.nlm.nih.gov/pubmed/18271562
http://www.ncbi.nlm.nih.gov/pubmed/11199961
http://dx.doi.org/10.1021/ac049356+
http://www.ncbi.nlm.nih.gov/pubmed/15623312
http://dx.doi.org/10.1039/c1lc20392d
http://www.ncbi.nlm.nih.gov/pubmed/21829858
http://dx.doi.org/10.1073/pnas.1102358108
http://dx.doi.org/10.1073/pnas.1102358108
http://www.ncbi.nlm.nih.gov/pubmed/21562210
http://dx.doi.org/10.1021/la048450i
http://www.ncbi.nlm.nih.gov/pubmed/15568862
http://dx.doi.org/10.1038/nmat3492
http://www.ncbi.nlm.nih.gov/pubmed/23178266
http://www.ncbi.nlm.nih.gov/pubmed/12702402


27. Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton N. Surface modification of poly(dimethylsiloxane)

microfluidic devices by ultraviolet polymer grafting. Anal Chem. 2002; 74: 4117–4123. PMID: 12199582

28. Bodas D, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and

chemical treatment-An SEM investigation. Sensors Actuators, B Chem. 2007; 123: 368–373.

29. Zhao LH, Lee J, Sen PN. Long-term retention of hydrophilic behavior of plasma treated polydimethylsi-

loxane (PDMS) surfaces stored under water and Luria-Bertani broth. Sensors Actuators, A Phys. Else-

vier B.V.; 2012; 181: 33–42.

30. Ogunyankin MO, Longo ML. Compositional sorting dynamics in coexisting lipid bilayer phases with vari-

ations in underlying e-beam formed curvature pattern. Analyst. 2013; 138: 3719–27. doi: 10.1039/

c3an00020f PMID: 23687647

31. Cremer PS, Boxer SG. Formation and Spreading of Lipid Bilayers on Planar Glass Supports. J Phys

Chem B. 1999; 103: 2554–2559.

32. Kang M, Day C a., Kenworthy AK, DiBenedetto E. Simplified equation to extract diffusion coefficients

from confocal FRAP data. Traffic. 2012; 13: 1589–1600. doi: 10.1111/tra.12008 PMID: 22984916

33. Lenz P, Ajo-Franklin CM, Boxer SG. Patterned supported lipid bilayers and monolayers on poly

(dimethylsiloxane). Langmuir. 2004; 20: 11092–11099. doi: 10.1021/la048450i PMID: 15568862

34. Scomparin C, Lecuyer S, Ferreira M, Charitat T, Tinland B. Diffusion in supported lipid bilayers: Influ-

ence of substrate and preparation technique on the internal dynamics. Eur Phys J E. 2009; 28: 211–

220. doi: 10.1140/epje/i2008-10407-3 PMID: 19101741

35. Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo (Brooklyn). 1999; 13: 295–309.

Available: <Go to ISI>://000082009700016

36. Veatch SL, Keller SL. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids

and cholesterol. Biophys J. Elsevier; 2003; 85: 3074–3083.

Stability of Lipid Bilayers on PDMS

PLOS ONE | DOI:10.1371/journal.pone.0169487 January 4, 2017 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/12199582
http://dx.doi.org/10.1039/c3an00020f
http://dx.doi.org/10.1039/c3an00020f
http://www.ncbi.nlm.nih.gov/pubmed/23687647
http://dx.doi.org/10.1111/tra.12008
http://www.ncbi.nlm.nih.gov/pubmed/22984916
http://dx.doi.org/10.1021/la048450i
http://www.ncbi.nlm.nih.gov/pubmed/15568862
http://dx.doi.org/10.1140/epje/i2008-10407-3
http://www.ncbi.nlm.nih.gov/pubmed/19101741



