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Abstract

Convex Geometric Tools in Information Theory

by

Varun Suhas Jog

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

The areas of information theory and geometry mirror each other in remarkable
ways, with several concepts in geometry having analogues in information theory. These
observations provide a simple way to posit theorems in one area by translating the cor-
responding theorems in the other. However, the analogy does not extended fully, and
the proof techniques often do not carry over without substantial modification. One rea-
son for this is that information theoretic quantities are often defined asymptotically, as
the dimension tends to infinity. This is in contrast to the setting in geometry, where
the dimension is usually fixed. In this dissertation, we try to bridge the gap between
these two areas by studying the asymptotic geometric properties of sequences of sets.
Our main contribution is developing a theory to study the growth rates of intrinsic
volumes for sequences of convex sets satisfying some natural growth constraints. As an
illustration of the usefulness of our techniques, we consider two specific problems. The
first problem is that of analyzing the Shannon capacities of power-constrained commu-
nication channels. In particular, we study a power-constrained channel arising out of
the energy harvesting communication model, called the (σ, ρ)-power constrained addi-
tive white Gaussian noise (AWGN) channel. Our second problem deals with forging
new connections between geometry and information theory by studying the intrinsic
volumes of sequences of typical sets. For log-concave distributions, we show the ex-
istence of a new quantity called the intrinsic entropy, which can be interpreted as a
generalization of differential entropy.
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Chapter 1

Introduction

Concepts in geometry often have parallels in information theory; for example, volume
and entropy, surface area and Fisher information, sphere-packing and channel coding,
and Euclidean balls and Gaussian distributions, to name a few. This connection is
perhaps best exemplified by a striking similarity between two fundamental inequalities
in the fields:

• Entropy power inequality (EPI) [33]: For independent random vectors X and Y
over Rn,

e
2
n
h(X) + e

2
n
h(Y) ≤ e

2
n
h(X+Y).

• Brunn-Minkowski inequality (BMI) [14]: For convex sets A,B ⊆ Rn,

Vol(A)1/n + Vol(B)1/n ≤ Vol(A⊕B)1/n,

where A⊕B denotes the Minkowski sum of A and B.

Further similarities can be found in the area of isoperimetric inequalities. In geome-
try, the isoperimetric inequality states that amongst all bodies having a fixed volume
the Euclidean ball has the least surface area. The analogue of this is the entropic
isoperimetric inequality which states that among all distributions with a fixed entropy,
the Gaussian distribution has the least Fisher information. Yet another example is
that of Costa’s EPI [6] in information theory which implies the concavity of entropy
power described as follows: For an Rn valued random variable X and white Gaussian
Z ∼ N (0, I), the function

h(t) = exp

(
2

n
h(X +

√
tZ)

)
is concave in t. Costa and Cover [5] observed an analogous concavity of the normalized
volume function

v(t) = |A⊕ tB|1/n
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where A ⊆ Rn is a compact convex set and B is the Euclidean unit ball in Rn.
Such similarities between geometry and information theory provide a simple way

to posit theorems in one area by translating the corresponding theorems in the other.
Our starting point in this dissertation is a sequence of sets, {Kn ⊂ Rn : n ≥ 1}.
Although geometry normally deals with sets in a fixed dimension, such sequences show
up naturally in information theory. For example, Kn may be the typical set of a
probability distribution in dimension n, or Kn may be the set of all allowable codewords
of length n for an input-constrained communication channel. When it exists, the
growth rate of volume given by v := limn→∞

1
n

log Vol(Kn), is a very useful quantity
in information theory. When Kn is a sequence of typical sets, v equals the differential
entropy of the distribution. When Kn is the sequence of allowed codewords for a power-
constrained channel coding, v can lead to asymptotically tight bounds on channel
capacity. This gives rise to the following question: Are there are any other “useful”
properties, besides volume?

In this dissertation, we study a class of geometric properties called intrinsic volumes.
Intrinsic volumes are functions defined on the class of compact convex sets, and can
be uniquely extended to polyconvex sets ; i.e., sets which are finite unions of compact
convex sets. We denote the set of compact convex sets in Rn by Cn. A set K ∈ Cn
has n + 1 intrinsic volumes which are denoted by {V0(K), . . . , Vn(K)}. Some of these
intrinsic volumes are known in the literature under alternate names; e.g. V0(K) is the
Euler characteristic, V1(K) is the mean width, Vn−1(K) is proportional to the surface
area, and Vn(K) is the volume. Intrinsic volumes have a number of interpretations
in geometry. We state some of these interpretations as found in Klain & Rota [20].
Intrinsic volumes are valuations on Cn; i.e. for all A,B ∈ Cn such that A∪B ∈ Cn, and
for all 0 ≤ i ≤ n,

Vi(A ∪B) = Vi(A) + Vi(B)− Vi(A ∩B).

Furthermore, these valuations are convex-continuous [30] and invariant under rigid
motions. In fact, Hadwiger’s theorem states that any convex-continuous, rigid-motion
invariant valuation on Cn has to be a linear combination of the intrinsic volume valu-
ations. Here convex-continuity is with respect to the topology on Cn induced by the
Hausdorff metric δ, which gives the distance between A,B ∈ Cn by the relation

δ(A,B) = max(sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|).

Kubota’s theorem or Crofton’s formula implies that the ith intrinsic volume Vi(K) is
proportional to the volume of a random i-dimensional projection or slice of K. Intrinsic
volumes are thus defined by the geometric structure of a set and describe its global
characteristics.

Given a sequence K = {Kn}n≥1 such that Kn ∈ Cn, our primary goal is to identify
the growth rate of intrinsic volumes for this sequence. To be precise, for θ ∈ [0, 1] we



CHAPTER 1. INTRODUCTION 3

want to study the existence of the limit

GK(θ) = lim
n→∞

1

n
log Vbnθc(Kn). (1.1)

The value GK(θ) gives the growth rate of the nθth intrinsic volume of the sequence
K. We call GK the growth function of K, abbreviated as the G-function of K. As an
illustration, we compute the G-function of the sequence for cubes and the sequence of
balls:

Example 1. Consider the sequence of cubes Kn = [0, A]n for some A > 0. The intrinsic
volumes of cubes are known in a closed form [20],

Vi(Kn) =

(
n

i

)
Ai. (1.2)

Taking the appropriate limits, we see that

GK(θ) = H(θ) + logA, (1.3)

where H(θ) = −θ log θ − (1− θ) log(1− θ)1 is the binary entropy function.

Example 2. Consider the sequence of Euclidean balls whose radii grow linearly with
the dimension; i.e. Kn = Bn(

√
nν) for some ν > 0. The ith intrinsic volume of Kn is

given by [20]

Vi(Kn) =

(
n

i

)
ωi
ωn−i

(nν)i/2, (1.4)

where ωi is the volume of the i-dimensional unit ball. Taking the appropriate limits,
we obtain the G-function to be

GK(θ) = H(θ) +
θ

2
log 2πeν +

1− θ
2

log(1− θ). (1.5)

In general, evaluating or even showing the existence of GK is challenging because
intrinsic volumes are notoriously hard to compute, and rarely available in closed form.
We therefore have to identify specific structural properties of K and use these to estab-
lish the existence of a growth rate. In this dissertation, we identify two such properties
which enable us to show the existence of a growth rate for a large class of sequences.

• Sub-convolutive sets: For all m,n ≥ 1, the sequence K satisfies

Km+n ⊆ Km ×Kn. (1.6)

• Super-convolutive sets: For all m,n ≥ 1, the sequence K satisfies

Km ×Kn ⊆ Km+n. (1.7)

1All logarithms are to base e.
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Sub/super convolutive sequences of sets show up naturally in the context of power-
constrained channels in information theory when describing whether or not the con-
catenation of two valid codewords xn and ym is a valid codeword. The amplitude con-
straint or the average power constraint are examples of super-convolutive constraints.
In Chapter 3 we will encounter energy harvesting communication systems, where the
transmitter is subject to a sub-convolutive power constraint called the (σ, ρ)-power
constraint.

To simplify notation, we denote the n+1 intrinsic volumes ofKn by µn(0), . . . , µn(n).
The values of µn(i) for i > n are taken to be 0. Thus, µn can be thought of as a func-
tion from Z+ → R+. We use the following properties of intrinsic volumes [20]: For all
A,B ∈ Cn,

• If A ⊆ B then Vj(A) ≤ Vj(B) for all 0 ≤ j ≤ n; i.e., intrinsic volumes are
monotonic with respect to inclusion.

• For A,B ∈ Cn, the intrinsic volumes of A × B are obtained by convolving the
intrinsic volumes of A and B; i.e., for all j ≥ 0,

Vj(A×B) =
∞∑
i=0

Vi(A)Vj−i(B). (1.8)

Here, we use the fact that Vi(A) = Vi(B) = 0 for i > n.

Using these, it is easy to see that the intrinsic volumes of sub/super-convolutive sets
must satisfy:

• Sub-convolutive sequence: If K is sub-convolutive, then for all m,n ≥ 1, the
intrinsic volume sequences satisfy

µm+n ≤ µm ? µn, (1.9)

where µm ? µn is the convolution of the sequences of intrinsic volumes of Km and
Kn respectively.

• Super-convolutive sequences: If K is super-convolutive, then for all m,n ≥ 1,
the intrinsic volume sequences satisfy

µm ? µn ≤ µm+n, (1.10)

where µm ? µn is the convolution of the sequences of intrinsic volumes of Km and
Kn respectively.

Starting from this simple observation, our research builds a framework to analyze
intrinsic volumes of sub/super convolutive sequences of sets. An outline of this thesis
is as follows:
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• In Chapter 2, we study the convergence properties of sub-convolutive and super-
convolutive sequences. The theory of large deviations plays a key role in the
analysis of such sequences.

• In Chapter 3, we consider the problem of finding the capacity of a power-
constrained additive white Gaussian noise (AWGN) channel. The power-constraints,
called (σ, ρ)-constraints, are motivated by energy harvesting communication sys-
tems. We show that the sequence of sets describing all the allowable length n
sequences forms a sub-convolutive sequence. Among other results, a notable con-
tribution of this chapter is establishing an high-dimensional version of Steiner’s
formula from convex geometry, which describes the volume of the Minkowski
sum of a convex set and a ball. The main results in this chapter have previously
appeared in the publications [17] and [16].

• In Chapter 4, we observe that typical sets of log-concave distributions form a
super-convolutive sequence. Using this, we establish the existence of a quantity
called “intrinsic entropy” which is a generalization of the notion of differential
entropy. This chapter contains results which were previously published in [18].

• We conclude with Chapter 5 where we discuss some open problems and future
directions.
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Chapter 2

Sub and super-convolutive
sequences

As described in Chapter 1, sub and super-convolutive sequences emerge naturally in
the study of intrinsic volumes of sequences of sets. We define such sequences more
precisely as follows. Consider a sequence of functions {µn(·)}n≥1, such that for every
n, µn : Z+ → R+ with µn(j) = 0 for all j ≥ n+1. We call such a sequence of functions a
sub-convolutive sequence if for all m,n ≥ 1 the convolution µm?µn pointwise dominates
µm+n; i.e.,

µm ? µn(i) ≥ µm+n(i) for all i ≥ 0, and for all m,n ≥ 1. (2.1)

Similarly, we call such a sequence of functions a super-convolutive sequence if for all
m,n ≥ 1 the convolution µm ? µn is pointwise dominated by µm+n; i.e.,

µm ? µn(i) ≤ µm+n(i) for all i ≥ 0, and for all m,n ≥ 1. (2.2)

Such sequences can be effectively studied using results from the theory of large
deviation, and in particular the Gärtner-Ellis theorem [10] stated here:

Theorem 2.0.1 (Gärtner-Ellis theorem). Consider a sequence of random vectors Zn ∈
Rd, where Zn possess the law νn and the logarithmic moment generating function

Λn(λ) := logE [exp〈λ, Zn〉] .

We assume the following:

(?): For each λ ∈ Rd, the logarithmic moment generating function, defined as the
limit

Λ(λ) := lim
n→∞

1

n
Λn(nλ)

exists as an extended a real number. Further the origin belongs to the interior
DΛ := {λ ∈ Rd | Λ(λ) <∞}.
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Let Λ∗ be the convex conjugate of λ with DΛ∗ = {x ∈ Rd | Λ∗(x) < ∞}. When
assumption (?) holds, the following are satisfied:

1. For any closed set I,

lim sup
n→∞

1

n
log νn(I) ≤ − inf

x∈I
Λ∗(x).

2. For any open set F ,

lim inf
n→∞

1

n
log νn(F ) ≥ − inf

x∈F∩F
Λ∗(x),

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs to
the interior of DΛ.

3. If Λ is an essentially smooth, lower semicontinuous function, then the large de-
viations principle holds with a good rate function Λ∗.

Remark 2.0.2. For definitions of exposed points, essentially smooth functions, good rate
function, and the large deviations principle we refer to Section 2.3 of [10]. For our
purpose, it is enough to know that if Λ is differentiable on DΛ = Rd, then it is essentially
smooth and Λ∗ satisfies the large deviation principle.

2.1 Convergence properties of sub-convolutive

sequences

For our results on sub-convolutive sequences, we make the following assumptions:

(A) : α := lim
n→∞

1

n
log µn(n) is finite.

(B) : β := lim
n→∞

1

n
log µn(0) is finite.

(C) : For all n, µn(n) > 0, µn(0) > 0.

Note that µm ? µn(m + n) = µn(n)µm(m) and µm ? µn(0) = µn(0)µm(0). Thus, the
existence of the limits in assumptions (A) and (B) is guaranteed by Fekete’s Lemma
[35], and we have

α = inf
n

1

n
log µn(n) (2.3)

β = inf
n

1

n
log µn(0). (2.4)
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For n ≥ 1, define Gn : R→ R as

Gn(t) = log
n∑
j=0

µn(j)ejt. (2.5)

Condition (2.1) implies that the functions Gn satisfy the inequality,

Gm(t) +Gn(t) ≥ Gm+n(t) for every m,n ≥ 1 and for every t. (2.6)

Thus for each t, the sequence {Gn(t)} is sub additive, and by Fekete’s lemma the limit

limn
Gn(t)
n

exists. To simply notation a bit, define gn := Gn
n

and let Λ be defined as the
pointwise limit of gn’s; i.e.,

Λ(t) = lim
n
gn(t). (2.7)

Lemma 2.1.1 (Proof in Appendix B.1.1). The function Λ satisfies the following prop-
erties:

1. For all t,
max(β, t+ α) ≤ Λ(t) ≤ g1(t) (2.8)

2. Λ is convex and monotonically increasing.

3. Let Λ∗ be the convex conjugate of Λ. The domain of Λ∗ is [0, 1].

Lemma 2.1.1 along with Theorem 2.0.1 lead to the following large deviations “upper
bound” result:

Theorem 2.1.2. Consider a sequence of functions {µn(·)}n≥1, such that for every n,
µn : Z+ → R+ with µn(j) = 0 for all j ≥ n + 1. Suppose {µn}n≥1 is a sequence of
sub-convolutive functions as defined in equation (2.1), satisfying assumptions (A), (B)
and (C). Define a sequence of measures supported on [0, 1] by

µn/n

(
j

n

)
:= µn(j) for j ≥ 0.

Let I ⊆ R be a closed set. The family of measures {µn/n} satisfies the large deviation
upper bound

lim sup
n→∞

1

n
log µn/n(I) ≤ − inf

x∈I
Λ∗(x). (2.9)

Proof. Let
∑

j µn(j) = sn. We first normalize µn/n to define the probability measure

pn :=
µn/n
sn

.
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The log moment generating function of pn, which we call Pn, is given by

Pn(t) = log
n∑
j=0

pn(j/n)ejt/n

= log
1

sn

n∑
j=0

µn(j)ejt/n

= Gn(t/n)− log sn.

Thus,

lim
n→∞

1

n
Pn(nt) = lim

n→∞

(
Gn(t)

n
− log sn

n

)
= Λ(t)− Λ(0).

Note also that by Lemma 2.1.1, the function Λ is finite on all of R, and thus 0 lies in the
interior D(Λ). Thus, the sequence of probability measures {pn} satisfies the condition
(?) required in the Gärtner-Ellis theorem. A direct application of this theorem gives
the bound

lim sup
n→∞

1

n
log pn(I) ≤ − inf

x∈I
(Λ(x)− Λ(0))∗

= − inf
x∈I

Λ∗(x)− Λ(0),

which immediately gives

lim sup
n→∞

1

n
log µn/n(I) ≤ − inf

x∈I
Λ∗(x).

Remark 2.1.3. If Λ(t) is differentiable, we can apply the Gärtner-Ellis theorem to get
a lower bound of the form

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F
Λ∗(x),

for every open set F . However, it is easy to construct sub-convolutive sequences such
that Λ(t) is not differentiable. One example is the sequence {µn} such that for each n,

µn(j) =

{
1 if j = 0 or n,

0 otherwise.

Theorem 2.1.4. The functions {g∗n} converge uniformly to Λ∗ on [0, 1].
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Proof. We’ll show that {g∗n} converge pointwise to Λ∗ on [0, 1]. Since g∗n and Λ∗ are all
continuous convex functions on a compact set, Lemma A.1.1 implies that this pointwise
convergence implies uniform convergence.

Recall that α = infn
1
n

log µn(n), β = infn
1
n

log µn(0), and infn gn(0) = Λ(0). Fix
an x ∈ (0, 1), and define

arg max
t
xt− gn(t) := tn.

Clearly, g∗n(x) = xtn − gn(tn). Note that

g∗n(x) ≥ xt− gn(t)
∣∣∣
t=0

(2.10)

= −gn(0) (2.11)

(a)

≥ −g1(0) (2.12)

where (a) follows by inequality (B.1).

If t > g1(0)−α
1−x , then we have

xt− gn(t) < xt− (t+ α)

= −(1− x)t− α
< −(g1(0)− α)− α
= −g1(0).

This gives us that tn ≤ g1(0)−α
1−x . Similarly, if t < β−g1(0)

x
, then

xt− gn(t) < xt− β (2.13)

< (β − g1(0))− β (2.14)

= −g1(0). (2.15)

This gives us that tn ≥ β−g1(0)
x

. We can thus conclude that for all n,

tn ∈
[
β − g1(0)

x
,
g1(0)− α

1− x

]
:= Ix. (2.16)

Note that all we used to prove relation (2.16) is that gn is trapped between g1 and
max(β, t+ α). Since Λ also satisfies this, we have

arg max
t
xt− Λ(t) ∈ Ix. (2.17)

We now restrict our attention to the compact interval Ix. Let ĝn be gn restricted
to Ix. The convex functions ĝn converge pointwise to a continuous limit Λ̂, where
Λ̂ is Λ restricted to Ix. This convergence must therefore be uniform, which implies
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convergence of ĝ∗n(x) to Λ̂∗(x). Furthermore, relation (2.16) implies ĝ∗n(x) equals g∗n(x),
and relation (2.17) gives Λ̂∗(x) equals Λ∗(x). Thus, g∗n(·) converges pointwise to Λ∗(·)
on (0, 1).

We’ll now consider convergence at the boundary points. Let ε > 0 be given. Choose
a subsequence {gnk} where nk = 2k. Using the condition in (2.6), it is clear that {gnk}
decrease monotonically and converge pointwise to Λ. Choose K0 large enough such
that for all k > K0,

1

nk
log µnk(0)− β < ε/2. (2.18)

Note that the left hand side is non-negative, and we need not use absolute values.
Choose a T0 such that for all t < T0,

gnK0
(t)− 1

nK0

log µnK0
(0) < ε/2. (2.19)

Now for all k > K0 and all t < T0, the following holds:

gnk(t)− β ≤ gnK0
(t)− β < 1

nK0

log µnK0
(0) + ε/2− β < ε. (2.20)

Taking the limit in k, we get that for all t < T0,

Λ(t)− β ≤ ε, (2.21)

this along with the lower bound Λ(t) ≥ β gives that for all t < T0,

0 ≤ Λ(t)− β ≤ ε.

We also have

Λ∗(0) = sup
t
−Λ(t) (2.22)

= − lim
t→−∞

Λ(t), (2.23)

which must equal −β. Since the limit of g∗n(0) is also −β, we have shown convergence
of g∗n to Λ at t = 0.

To show convergence at t = 1, we follow a similar strategy. Let {gnk} be as before,
and let ε > 0 be given. We choose a K1 such that for all k > K1,

1

nk
log µnk(nk)− α < ε/2. (2.24)
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Note that the left hand side is non-negative, and we need not use absolute values. We
now choose a T1 such that for all t > T1,

gnK1
(t)−

(
t+

1

nK1

log µnK1
(nK1)

)
< ε/2. (2.25)

Now for all k > K1 and all t > T1,

gnk(t)− (t+ α) ≤ gnK1
(t)− (t+ α) <

1

nK1

log µnK1
(nK1) + ε/2− α < ε. (2.26)

Taking the limit in k, we get that for all t > T1,

Λ(t)− (t+ α) ≤ ε,

this along with the lower bound Λ(t) ≥ t+ α gives that for all t > T1

0 ≤ Λ(t)− (t+ α) ≤ ε.

From this, we conclude that Λ∗(1) = supt t−Λ(t) = limt→+∞ t−Λ(t), must equal −α.
Since the limit of g∗n(1) is also −α, we have shown convergence of g∗n to Λ at t = 1.

This shows that {g∗n} converges pointwise to Λ∗ on the compact interval [0, 1]. As
all the functions involved are continuous and convex, by Lemma A.1.1 this convergence
must also be uniform. This concludes the proof.

2.2 Convergence properties of super-convolutive

sequences

Just as in the case of sub-convolutive sequences, we make certain assumption which
the super-convolutive sequence {µn} should satisfy:

(A) : α := lim
n→∞

1

n
log µn(n) is finite.

(B) : β := lim
n→∞

1

n
log µn(0) is finite.

(C) : For all n, µn(n) > 0, µn(0) > 0.

Note that µm ? µn(m + n) = µn(n)µm(m) and µm ? µn(0) = µn(0)µm(0). Thus the
existence of the limits in assumptions (A) and (B) is guaranteed by Fekete’s Lemma,
and we have

α = sup
n

1

n
log µn(n), (2.27)

β = sup
n

1

n
log µn(0). (2.28)
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For each n ≥ 1, define Gn : R→ R as

Gn(t) = log
n∑
j=0

µn(j)ejt. (2.29)

Condition (2.2) implies that the functions Gn satisfy the inequality,

Gm(t) +Gn(t) ≤ Gm+n(t) for every m,n ≥ 1 and for every t. (2.30)

Thus for each t, the sequence {Gn(t)} is super additive, and by Fekete’s lemma the

limit limn
Gn(t)
n

exists. Without further conditions on {µn(·)}, we cannot rule out this
limit being +∞ for some t. We therefore make an extra assumption, in addition to the
assumptions (A), (B) and (C).

(D) : γ := lim
n→∞

Gn(0)

n
is finite.

To simply notation a bit, define gn := Gn
n

and let Λ be defined as the pointwise limit
of gn’s; i.e.,

Λ(t) = lim
n
gn(t). (2.31)

Lemma 2.2.1 (Proof in Appendix B.2.1). The function Λ satisfies the following prop-
erties:

1. For all t,
g1(t) ≤ Λ(t) ≤ max(γ, t+ γ) (2.32)

2. Λ is convex and monotonically increasing.

3. Let Λ∗ be the convex conjugate of Λ. The domain of Λ∗ is [0, 1].

Theorem 2.2.2. Define a sequence of measures supported on [0, 1] by

µn/n

(
j

n

)
:= µn(j) for 0 ≤ j ≤ n.

Let I ⊆ R be a closed set. The family of measures {µn/n} satisfies the large deviation
upper bound

lim sup
n→∞

1

n
log µn/n(I) ≤ − inf

x∈I
Λ∗(x). (2.33)

Proof. The proof is exactly same as the proof of Theorem 2.1.2.

Lemma 2.2.3 (Proof in Appendix B.2.2). Define Ψ∗ : [0, 1] → R to be the pointwise
limit of g∗n:

Ψ∗(t) = lim
n→∞

g∗n(t).

Then for t ∈ (0, 1), we have Λ∗(t) = Ψ∗(t), and for t = 0 and t = 1, we have
Λ∗(t) ≤ Ψ∗(t).
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Theorem 2.2.4. Let F ⊆ R be an open set. The family of measures {µn/n} satisfies
the large deviations lower bound

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F
Λ∗(x). (2.34)

Proof. We will construct a new sequence of functions {µ̂n} such that µn ≥ µ̂n for all
n; i.e., µn pointwise dominates µ̂n for all n. The large deviations lower bound for the
sequence {µ̂n} will then serve as a large deviations lower bound for the sequence {µn}.

Fix an a ≥ 1. We express every n ≥ 1 as n = qa + r, where r < a, and define
µ̂n = µ?qa ? µr. The super convolutive condition immediately implies

µn ≥ µ̂n.

Define Ĝn(t) as follows,

Ĝn(t) = log
n∑
j=0

µ̂n(j)ejt,

and consider the limit

lim
n→∞

1

n
Ĝn(t) = lim

n→∞

1

n
(qGa(t) +Gr(t)). (2.35)

Note that the limit

lim
n→∞

1

n
|Gr(t)| ≤ lim

n→∞

1

n
max

1≤j≤a−1
|Gj(t)| = 0.

Note also that q = bn/ac. Thus the limit in equation (2.35) evaluates to

lim
n→∞

1

n
bn/acGa(t) =

Ga(t)

a
= ga(t).

Applying Gärtner-Ellis theorem for {µ̂n}, and noting that ga(t) is differentiable, we get
the lower bound

lim inf
n→∞

1

n
log µ̂n/n(F ) ≥ − inf

x∈F
g∗a(x), (2.36)

which implies

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F
g∗a(x). (2.37)

Taking the limit in a, and using Lemma A.2.1, we arrive at

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F
Ψ∗(x)

= − inf
x∈F

Λ∗(x),

which concludes the proof.
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Remark 2.2.5. The assumptions (A), (B), (C), (D) do not ensure that Λ∗ and Ψ∗ agree
at the boundary points 0 and 1. We give one example of a super-convolutive sequence
where this disagreement occurs. Let ε, α > 0 such that α ≥ 1, ε < 1

2
. Let’s define a

sequence of functions µn for n ≥ 1 as follows:

µn(i) =

{(
n−1
i

)
αi, for 0 ≤ i ≤ n− 1,

ε for i = n.
(2.38)

As shown in Appendix B.2.3, the above sequence is an example of a super-convolutive
sequence satisfying the assumptions (A), (B), (C), (D) and yet having Λ∗(1) 6= Ψ∗(1).
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Chapter 3

The (σ, ρ)-power constrained
AWGN channel

The additive white Gaussian noise (AWGN) channel is one of the most basic channel
models studied in information theory. This channel is represented by a sequence of
channel inputs denoted by Xi, and an input-independent additive noise Zi. The noise
variables Zi are assumed to be independent and identically distributed as N (0, ν). The
channel output Yi is given by

Yi = Xi + Zi for i ≥ 1. (3.1)

The Shannon capacity this channel is infinite in case there are no constraints on the
channel inputs Xi; however, practical considerations always constrain the input in some
manner. These input constraints are often defined in terms of the power of the input.
For a channel input (x1, x2, . . . , xn), the most common power constraints encountered
are:

(AP): An average power constraint of P > 0, which says that

n∑
i=1

x2
i ≤ nP.

(PP): A peak power constraint of A > 0, which says that

|xi| ≤ A for all 1 ≤ i ≤ n.

(APP): An average and peak power constraint, consisting of (AP) and (PP) simul-
taneously.
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The AWGN channel with the (AP) constraint was first analyzed by Shannon [33].
Shannon showed that the capacity C for this constraint is given by

C = sup
E[X2]≤P

I(X;Y ) =
1

2
log

(
1 +

P

ν

)
, (3.2)

and the supremum is attained when X ∼ N (0, P ). Here capacity is defined in the
usual sense, due to Shannon. See Section 3.2 for a precise definition.

Compared to the (AP) constraint, fewer results exist about the (PP) constrained
AWGN. The AWGN channel with the (PP) constraints was first analyzed by Smith
[34]. Smith showed that the channel capacity C in this case is given by

C = sup
|X|≤A

I(X;Y ). (3.3)

Unlike the (AP) case, the supremum in equation (3.3) does not have a closed form ex-
pression. Using tools from complex analysis, Smith established that the optimal input
distribution attaining the supremum in equation (3.3) is discrete, and is supported on
a finite number on points in the interval [−A,A]. He proposed an algorithm to numer-
ically evaluate this optimal distribution, and thus the capacity. Smith also analyzed
the (APP) constrained AWGN channel and derived similar results. In a related prob-
lem, Shamai & Bar-David [32] studied the quadrature Gaussian channel with (APP)
constraints, and extended Smith’s techniques to establish analogous capacity results
for the same.

Our work is primarily concerned with a power constraint, which we call a (σ, ρ)-
power constraint, defined as follows:

Definition. Let σ, ρ ≥ 0. A codeword (x1, x2, . . . , xn) is said to satisfy a (σ, ρ)-power
constraint if

l∑
j=k+1

x2
j ≤ σ + (l − k)ρ , ∀ 0 ≤ k < l ≤ n. (3.4)

These constraints are motivated by energy harvesting communication systems, a
research area which has seen a surge of interest in recent years. Energy harvesting (EH)
is a process by which energy derived from an external source is captured, stored, and
harnessed for applications. For example, harvested energy in the form of solar, thermal,
or kinetic energy is converted into electrical energy using photoelectric, thermoelectric,
or piezoelectric materials, and is used to power electronic devices. Energy which is
harvested is generally present as ambient background and is free. EH devices are
efficient, cheap, and require low maintenance, making them an attractive alternative
to battery-powered devices. The problem of communicating over a noisy channel using
harvested energy is encountered in a prominent application of EH: wireless sensor
networks. Typically, sensor nodes used in such networks are battery-powered and thus
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have finite lifetimes. Since EH sensor nodes are capable of harvesting energy for their
functioning, they have potentially infinite lifetimes and thereby have many advantages
over their battery-powered counterparts [36].

Encoder DecoderW

Ei

Ŵ
Xi Yi

Channel

Figure 3.1: Block diagram of a general energy harvesting communication system

We can model communication scenarios like the “EH sensor node” via a general
energy harvesting communication system shown in Figure 3.1. Here, the transmitter
is capable of harvesting energy, and uses it to transmit a codeword Xn, corresponding
to a message W . The transmitter has a battery to store the excess unutilized energy,
which can be used for transmission later. The amount of energy harvested in time slot
i, denoted by Ei, can be modeled as a stochastic process. The process Ei, along with
the battery capacity, determines the power constraints that the codeword Xn has to
satisfy. This codeword is transmitted over a noisy channel, and the receiver decodes
W using the channel output Y n. A natural channel to study in this setting is the
classical additive Gaussian noise (AWGN) channel. Suppose we have a channel model
as in Figure 3.2; namely, an AWGN channel with an energy harvesting transmitter
which harvests a constant ρ amount of energy per time slot, and which has a battery
of capacity σ attached to it.

+Encoder DecoderW Ŵ
Xi Yi

⇢ Zi ⇠ N (0, N)
�

Figure 3.2: (σ, ρ)-power constrained AWGN channel

To understand the power constraints imposed on a transmitted codeword (x1, x2, . . . , xn)
in this scenario, we define a state σi, for each i ≥ 0 as

σ0 = σ, and σi+1 = min(σ, σi + ρ− x2
i ) . (3.5)

From the energy harvesting viewpoint, we can think of the state σi as the charge in
the battery at time i before transmitting xi, assuming the battery started out fully
charged at time 0. Denote by Sn(σ, ρ) ⊆ Rn the set

Sn(σ, ρ) = {xn ∈ Rn : σi ≥ 0 , ∀ 0 ≤ i ≤ n}. (3.6)



CHAPTER 3. THE (σ, ρ)-POWER CONSTRAINED AWGN CHANNEL 19

In words, the set Sn(σ, ρ) consists of sequences (x1, x2, . . . , xn) such that at no
point during its transmission, is there a need to overdraw the battery. Thus, this set
is precisely the set of all possible length n sequences which the transmitter is capable
of transmitting. Telescoping the minimum in equation (3.5), we get that for all i ≥ 0,

σi+1 = min

(
σ, σ + ρ− x2

i , · · · , σ + iρ−
i∑

j=1

x2
j

)
. (3.7)

Using the condition σi ≥ 0 for all i, we obtain another characterization of Sn(σ, ρ):

Sn(σ, ρ) = {xn ∈ Rn :
l∑

j=k+1

x2
j ≤ σ + (l − k)ρ , ∀ 0 ≤ k < l ≤ n}, (3.8)

which is exactly the (σ, ρ)-power constraint defined in equation (3.4). It is interesting to
note that such (σ, ρ)-constraints were originally introduced by Cruz [8, 9] in connection
with the study of packet-switched networks. We first look at the (σ, ρ)-power constraint
for the extreme cases; namely, σ = 0 and σ =∞.

No battery:

Suppose that the battery capacity σ is 0; i.e., unused energy in a time slot cannot be
stored for future transmissions. We can easily check that for a transmitted codeword
(x1, x2, ..., xn), the power constraints

x2
i ≤ ρ, for every 1 ≤ i ≤ n (3.9)

are necessary and sufficient to satisfy the inequalities in (3.4). Thus, the case of σ = 0
is simply the (PP) constraint of

√
ρ.

Infinite battery:

Consider the case where the battery capacity is now infinite, so that any unused energy
can be saved for future transmissions. We assume that the battery is initially empty,
but we can equally well assume it to start with any finite amount of energy in this
scenario. The constraints imposed on a transmitted codeword (x1, x2, ..., xn) are

k∑
i=1

x2
i ≤ kρ, for every 1 ≤ i ≤ n. (3.10)

It was shown by Ozel & Ulukus [25] that the strategy of initially saving energy and
then using a Gaussian codebook achieves capacity, which is 1

2
log
(
1 + ρ

N

)
. In fact, [25]

considers not just constant Ei, but a more general case of i.i.d. Ei.
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Finite battery:

An examination of equations (3.4) and (3.5) reveals that the energy constraint on the
n + 1-th symbol xn+1, depends on the entire history of symbols transmitted up to
time n. This infinite memory makes the exact calculation of channel capacity under
these constraints a difficult task. For some recent work on discrete channels with finite
batteries, we refer the reader to Tutuncuoglu et. al. [38, 39] and Mao & Hassibi [22].
An alternative model of an AWGN channel with a finite battery was also considered
by Dong et. al. [12], where the authors established approximate capacity results for
the same.

In this chapter, we will primarily focus on getting bounds on the channel capacity
of an AWGN channel with (σ, ρ)-power constraints. Our work can be broadly divided
into two parts; the first part deals with getting a lower bound, and the second part
with getting an upper bound. The approach for both these parts relies on analyzing
the geometric properties of the sets Sn(σ, ρ).

3.1 Summary of results

In what follows, we briefly describe our results.

3.1.1 Lower bound on capacity

We obtain a lower bound on the channel capacity in terms of the volume of Sn(σ, ρ).
More precisely, we define v(σ, ρ) to be the exponential growth rate of volume of the
family {Sn(σ, ρ)}:

v(σ, ρ) := lim
n→∞

1

n
log Vol(Sn(σ, ρ)), (3.11)

where the limit can be shown to exist by subadditivity. Our first result is Theorem
3.3.2 in Section 3.3, which contains a lower bound on the channel capacity:

Theorem 3.3.2. The capacity C of an AWGN channel with a (σ, ρ)-power constraint
and noise power ν satisfies

1

2
log

(
1 +

e2v(σ,ρ)

2πeν

)
≤ C ≤ 1

2
log
(

1 +
ρ

ν

)
. (3.12)

Having obtained this lower bound on C, it is natural to study the dependence of
v(σ, ρ) on its arguments. Theorem 3.4.1 in Section 3.4 establishes the following:

Theorem 3.4.1. For a fixed ρ, v(σ, ρ) is a monotonically increasing, continuous, and
concave function of σ over [0,∞), with its range being [log 2

√
ρ, 1

2
log 2πeρ).
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In Section 3.5, we describe a numerical method to find v(σ, ρ) for any value of the
pair (σ, ρ). This calculated value can be used to compare the lower and upper bounds
in Theorem 3.3.2 for different values of σ for a fixed ρ. From the energy-harvesting
perspective, this comparison indicates the benefit that a finite battery of capacity σ
has on the channel capacity. With this we conclude the first part of the section.

3.1.2 Upper bound on capacity

The upper bound on capacity in (3.12) is not satisfactory as it does not depend on
σ. Our approach to deriving an improved upper bound on capacity also involves a
volume calculation. However, the improved upper bound is not in terms of the volume
of Sn(σ, ρ), but in terms of the volume of the Minkowski sum of Sn(σ, ρ) and a “noise
ball.” Let Bn(

√
nν) be the Euclidean ball of radius

√
nν. The Minkowski sum of

Sn(σ, ρ) and Bn(
√
nν) (also called the parallel body of Sn(σ, ρ) at a distance

√
nν), is

defined by

Sn(σ, ρ)⊕Bn(
√
nν) = {xn + zn | xn ∈ Sn(σ, ρ), zn ∈ Bn(

√
nν)} . (3.13)

In Section 3.6, we prove the following upper bound on capacity:

Theorem 3.6.1. The capacity C of an AWGN channel with a (σ, ρ)-power constraint
and noise power ν satisfies

C ≤ lim
ε→0+

lim sup
n→∞

1

n
log

Vol(Sn(σ, ρ)⊕Bn(
√
n(ν + ε) ))

Vol(Bn(
√
nν))

. (3.14)

This motivates us to define a function ` : [0,∞)→ R, giving the growth rate of the
volume of the parallel body as follows:

`(ν) := lim sup
n→∞

1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
nν )). (3.15)

The upper bound can be restated as

C ≤ lim sup
ε→0+

[
`(ν + ε)− 1

2
log 2πeν

]
. (3.16)

To study the properties of `(·), we use the following result from convex geometry called
Steiner’s formula:

Theorem 3.6.2. Let Kn ⊂ Rn be a compact convex set and let Bn ⊂ Rn be the unit
ball. Denote by µj(Kn) the j-th intrinsic volume Kn, and by εj the volume of Bj. Then
for t ≥ 0,

V ol(Kn ⊕ tBn) =
n∑
j=0

µn−j(Kn)εjt
j. (3.17)
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Intrinsic volume are a fundamental part of convex and integral geometry. They
describe the global characteristics of a set, including the volume, surface area, mean
width, and the Euler characteristic. For more details, we refer the reader to Schneider
[30] and section 14.2 of Schneider & Weil [31].

In Section 3.7, we focus on the σ = 0 case for two reasons. Firstly, intrinsic volumes
are notoriously hard to compute for arbitrary convex bodies. But when σ = 0, the set
Sn(σ, ρ) is simply the cube [−√ρ,√ρ]n. The intrinsic volumes of a cube are well known
in a closed form, which permits an explicit evaluation of `(ν). In his paper, Smith [34]
numerically evaluated and plotted the capacity of a (PP) constrained AWGN channel.
Based on the plots, Smith noted that as ν → 0, the channel capacity seemed to satisfy

C = log 2A− 1

2
log 2πeν + o(1), (3.18)

where the o(1) terms goes to 0 as ν → 0. He gave an intuitive explanation for this
phenomenon as follows: Let X be the amplitude-constrained input, let Z ∼ N (0, ν)
be the noise, and let Y be the channel output. Then for a small noise power ν,
h(Y ) ≈ h(X), and

C = sup
X
I(X;Y )

= sup
X
h(Y )− h(Y |X)

≈ sup
X
h(X)− h(Y |X)

= log 2A− 1

2
log 2πeν.

Note that the crux of this argument is that when the noise power is small, supX h(Y ) ≈
supX h(X) = log 2A. This argument can be made rigorous by establishing

lim
ν→0

[
sup
X
h(X + Z)

]
− log 2A = 0. (3.19)

Recall that our upper bound on capacity is C ≤ lim supε→0+

{
`(ν + ε)− 1

2
log 2πeν

}
.

Since `(0) = log 2A, the continuity of ` at 0 would lead to asymptotic upper bound
which agrees with Smith’s intuition. The following theorems provide our main result
for the case of σ = 0:

Theorem 3.7.1. The function `(ν) is continuous on [0,∞). For ν > 0, we can explic-
itly compute `(ν) via the expression

`(ν) = H(θ∗) + (1− θ∗) log 2A+
θ∗

2
log

2πeν

θ∗
, (3.20)

where H is the binary entropy function, and θ∗ ∈ (0, 1) satisfies

(1− θ∗)2

θ∗3
=

2A2

πν
.
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Theorem 3.7.6. The capacity C of an AWGN channel with an amplitude constraint
of A, and with noise power ν, satisfies the following:

1. When the noise power ν → 0, capacity C is given by

C = log 2A− 1

2
log 2πeν +O(ν

1
3 ).

2. When the noise power ν →∞, capacity C is given by

C =
α2

2
− α4

4
+
α6

6
− 5α8

24
+O(α10),

where α = A/
√
ν.

We also establish a general entropy upper bound, which does not require the noise
Z to be Gaussian:

Theorem 3.7.7. Let A, ν ≥ 0. Let X and Z be random variables satisfying |X| ≤ A
a.s. and Var(Z) ≤ ν. Then

h(X + Z) ≤ `(ν). (3.21)

In Section 3.8 we turn to the case of σ > 0. Unlike the σ = 0 case, the intrinsic vol-
umes of Sn(σ, ρ) are not known in a closed form. For n ≥ 1, we let {µn(0), · · · , µn(n)}
be the intrinsic volumes of Sn(σ, ρ). The sequence of intrinsic volumes {µn(·)}n≥1 forms
a sub-convolutive sequence (analyzed in Section 2.1). Convergence properties of such
sequences can be effectively studied using large deviation techniques; in particular, the
Gärtner-Ellis theorem [10]. These convergence results for intrinsic volumes can be used
in conjunction with Steiner’s formula to establish results about ` and the asymptotic
capacity of a (σ, ρ)-constrained channel in the low noise regime. Our main results here
are:

Theorem 3.8.1. Define `(ν) as

`(ν) = lim sup
n→∞

1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
nν )). (3.22)

For n ≥ 1, define Gn : R→ R and gn : R→ R as

Gn(t) = log
n∑
j=0

µn(j)ejt, and gn(t) =
Gn(t)

n
. (3.23)

Define Λ to be the pointwise limit of the sequence of functions {gn}, which we show
exists. Let Λ∗ be the convex conjugate of Λ. Then the following hold:
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1. `(ν) is continuous on [0,∞).

2. For ν > 0,

`(ν) = sup
θ∈[0,1]

[
−Λ∗(1− θ) +

θ

2
log

2πeν

θ

]
. (3.24)

Theorem 3.8.10. The capacity C of an AWGN channel with (σ, ρ)-power constraints
and noise power ν satisfies the following:

1. When the noise power ν → 0, capacity C is given by

C = v(σ, ρ)− 1

2
log 2πeν + ε(ν),

where ε(·) is a function such that limν→0 ε(ν) = 0.

2. When noise power ν →∞, capacity C is given by

C =
1

2

(ρ
ν

)
− 1

4

(ρ
ν

)2

+
1

6

(ρ
ν

)3

+O

((ρ
ν

)4
)
.

In Section 3.9, we describe a general framework which can be used to analyze power-
constrained Gaussian channels. We analyze two types of power constraints within this
framework. The first type of constraint is what we call a “block constraint”, which
is essentially a vector generalization of the amplitude constraint. The second type
of constraint is the “super-convolutive constraint”, a natural constraint to encounter
which includes the average power constraint as a special case. In both cases, we
establish capacity bounds and asymptotic capacity results just as in Sections 3.7 and
3.8.

3.2 Channel Capacity

We define channel capacity as per the usual convention [7]:

Definition 1. A (2nR, n) code for the AWGN channel with a (σ, ρ)-power constraint
consists of the following:

1. A set of messages {1, 2, . . . , 2bnRc}

2. An encoding function f : {1, 2, . . . , 2bnRc} → Sn(σ, ρ), yielding codewords f(1),. . . ,
f(2bnRc)

3. A decoding function g : Rn → {1, 2, . . . , 2bnRc}
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A rate R is said to be achievable if there exists a sequence of (2nR, n) codes such the
that probability of decoding error diminishes to 0 as n → ∞. The capacity of this
channel is the supremum of all achievable rates.

Shannon’s formula for channel capacity

C = sup
X
I(X;Y ), (3.25)

is valid if the channel is memoryless. For a channel with memory, one can often
generalize this expression to

C = lim
n→∞

[
sup
Xn

1

n
I(Xn;Y n)

]
, (3.26)

but this formula does not always hold. Dobrushin [11] showed that channel capacity
is given by formula (3.26) for a class of channels called information stable channels.
Checking information stability for specific channels can be quite challenging. For-
tunately, in the case of a (σ, ρ)-power constrained AWGN channel, we can establish
formula (3.26) without having to check for information stability. We prove the following
theorem:

Theorem 3.2.1. For n ∈ N, let Fn be the set of all probability distributions supported
on Sn(σ, ρ). The capacity C of a (σ, ρ)-power constrained scalar AWGN channel is
given by

C = lim
n→∞

1

n
sup

pXn (xn)∈Fn
I(Xn;Y n). (3.27)

Proof. Let N be a positive integer. Without loss of generality, we can assume that
coding is done for block lengths which are multiples N , say nN . For codes over such
blocks, we relax the (σ, ρ) constraints as follows. For every transmitted codeword
(x1, x2, · · · , xnN), each consecutive block of N symbols has to lie in SN(σ, ρ); i.e.,

(xkN+1, xkN+2, ..., x(k+1)N) ∈ SN(σ, ρ), for 0 ≤ k ≤ n− 1. (3.28)

Note that this is indeed a relaxation because a codeword satisfying the constraint
(3.28) is not guaranteed to satisfy the (σ, ρ)-constraints but any codeword satisfying
the (σ, ρ)-constraints necessarily satisfies the constraint (3.28). The capacity of this
channel CN can be written as

CN = sup
p
XN

(xN )∈FN
I(XN ;Y N). (3.29)

This capacity provides an upper bound to NC for any choice of N . Thus, we have the
bound

C ≤ inf
N

CN
N
. (3.30)
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To show that infN CN/N is limN CN/N , we first note that

I(XM+N
1 ;Y M+N

1 ) ≤ I(XM
1 ;Y M

1 ) + I(XM+N
M+1 ;Y M+N

M+1 ) .

Taking the supremum on both sides with pXM+N ranging over FM+N ,

CM+N ≤ sup
p
XM+N (xM+N )∈FM+N

(
I(XM

1 ;Y M
1 ) + I(XM+N

M+1 ;Y M+N
M+1 )

)
(3.31)

(a)

≤ sup
p
XM

(xM )∈FM
I(XM

1 ;Y M
1 ) + sup

p
XN

(xN )∈FN
I(XN

1 ;Y N
1 ) (3.32)

= CM + CN . (3.33)

Here (a) follows due to the containment FM+N ⊆ FM × FN . This calculation shows
that {CN} is a sub-additive sequence. Applying Fekete’s lemma [35] we conclude that
limN CN/N exists and equals infN CN/N , and thereby establish the upper bound

C ≤ lim
N→∞

CN
N
. (3.34)

We now show that C is lower bounded by limN CN/N . Given any x1,x2, · · · ,xn ∈ SN ,
the concatenated sequence x1 · · ·xn need not always satisfy the (σ, ρ) power constraints.
However, if we append k = dσ

ρ
e zeros to each xi and then concatenate them, the

n(N + k) length string so formed lies in Sn(N+k). This is because transmitting dσ
ρ
e

zeros after each xi ensures that the state, as defined in equation (3.5), returns to σ
before the transmission of xi+1 begins. Let us define a new set

ŜN = {xN+k : xN1 ∈ SN , xN+k
N+1 = 0}.

The earlier discussion implies that

ŜN × · · · ŜN︸ ︷︷ ︸
n times

⊆ Sn(N+k). (3.35)

Equation (3.35) implies that any block coding scheme which uses symbols from ŜN is
also a valid coding scheme under the (σ, ρ) power constraints. The achievable rate for
such a scheme can therefore provide a lower bound to C. This achievable rate is simply
CN , as the final k transmissions in each symbol carry no information. Thus the per
transmission achievable rate is CN

N+k
, and we get that

C ≥ CN
N + k

, (3.36)

for all N . Taking the limit as N →∞, we arrive at the bound

C ≥ lim
N→∞

CN
N
. (3.37)

The containment (3.34), together with the inequality (3.37), completes the proof.
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3.3 Lower-bounding capacity

Coding with the (σ, ρ) constraints can be thought of as trying to fit the largest number
of centers of noise balls in Sn, such that the noise balls are asymptotically approximately
disjoint. One might therefore hope to get a packing based upper bound on capacity
through the volume of Sn. We shall show that the volume of Sn surprisingly yields a
neat lower bound on capacity.

Let Vn(σ, ρ) denote the volume of Sn(σ, ρ). We look at the exponential growth rate
of this volume defined by

v(σ, ρ) := lim
n→∞

log Vn(σ, ρ)

n
. (3.38)

Our first lemma is to establish the existence of the limit in the definition of v(σ, ρ).

Lemma 3.3.1. limn→∞
log Vn(σ,ρ)

n
exists.

Proof. The containment Sm+n(σ, ρ) ⊆ Sm(σ, ρ)× Sn(σ, ρ) gives

Vm+n(σ, ρ) ≤ Vm(σ, ρ)Vn(σ, ρ),

which implies
log Vm+n(σ, ρ) ≤ log Vm(σ, ρ) + log Vn(σ, ρ).

This shows that log Vn(σ, ρ) is a sub-additive sequence, and by Fekete’s Lemma, the

limit limn→∞
log Vn(σ,ρ)

n
exists and is equal to infn

log Vn(σ,ρ)
n

(which may a priori be −∞).

Theorem 3.3.2. The capacity C of an AWGN channel with (σ, ρ)-power constraints
and noise power ν satisfies

1

2
log

(
1 +

e2v(σ,ρ)

2πeν

)
≤ C ≤ 1

2
log
(

1 +
ρ

ν

)
. (3.39)

Proof. Clearly, C is upper bounded by the capacity for the σ = ∞ case (with zero
initial battery condition), which by [25] is 1

2
log(1 + ρ

ν
).

Let the noise Z ∼ N (0, ν). To prove the lower bound, recall the capacity expression
in Theorem 3.2.1:

C = lim
n→∞

1

n
sup

pXn (xn)∈Fn
I(Xn;Y n) (3.40)

= lim
n→∞

1

n
sup

pXn (xn)∈Fn
h(Y n)− h(Zn) (3.41)

= lim
n→∞

1

n
sup

pXn (xn)∈Fn
h(Y n)− 1

2
log 2πeν (3.42)
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Thus, calculating capacity requires maximizing the output differential entropy h(Y n).
Using Shannon’s entropy power inequality, we have

e
2h(Y n)

n ≥ e
2h(Xn)

n + e
2h(Zn)

n . (3.43)

Thus,

sup
pXn (xn)∈Fn

e
2h(Y n)

n ≥ sup
pXn (xn)∈Fn

e2
h(Xn)
n + 2πeν

= e2 log Vn
n + 2πeν.

Taking logarithms on both sides and letting n tend to infinity, we have

lim
n→∞

sup
pXn (xn)∈Fn

h(Y n)

n
≥ 1

2
log
(
e2v(σ,ρ) + 2πeν

)
, (3.44)

which, combined with equation (3.42) concludes the proof.

3.4 Properties of v(σ, ρ)

We can readily see that v(σ, ρ) is monotonically increasing in both of its arguments.
With a little more effort, we can also establish the following simple bounds for v(σ, ρ):

log 2
√
ρ ≤ v(σ, ρ) ≤ log

√
2πeρ. (3.45)

To show the lower bound from inequality (3.45), observe that if xn is such that for
every 1 ≤ i ≤ n,

|xi| ≤
√
ρ,

then the (σ, ρ)-constraints are satisfied. Thus, the cube [−√ρ,√ρ]n of volume (2
√
ρ)n

lies inside the set Sn(σ, ρ), giving the lower bound

v(σ, ρ) ≥ log 2
√
ρ.

For the upper bound, we use the “total power” constraint,

x2
1 + x2

2 + . . .+ xnn ≤ σ + nρ,

which implies that Sn(σ, ρ) ⊆ Bn(
√
σ + nρ), where Bn(

√
σ + nρ) is the Euclidean ball

of radius
√
σ + nρ. The volume Vn(σ, ρ) of the set Sn(σ, ρ) is bounded above by the

volume of Bn(
√
σ + nρ), which gives

v(σ, ρ) ≤ lim
n→∞

1

n
log

(
π
n
2

Γ
(
n
2

+ 1
)(σ + nρ)

n
2

)
= lim

n→∞

1

2

(
log π + log(σ + nρ)− log

( n
2e

))
=

1

2
log 2πeρ.
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Note that when ρ = 0, then v(σ, 0) = −∞ for any value of σ. Henceforth, we assume
ρ > 0. When σ = 0, the set Sn(σ, ρ) degenerates to the cube [−√ρ,√ρ]n, which has
the volume growth rate exponent of log 2

√
ρ. It is clear that when σ > 0, the set

Sn(σ, ρ) contains the cube [−√ρ,√ρ]n, implying that

Vn(σ, ρ) > (2
√
ρ)n.

However, this does not immediately imply that v(σ, ρ) > log 2
√
ρ. The following

theorem is the main result of this section, where we show that such a strict inequality
holds, and also prove some other properties of the function v(σ, ρ):

Theorem 3.4.1. For a fixed ρ, v(σ, ρ) is a monotonically increasing, continuous, and
concave function of σ ∈ [0,∞), with its range being [log 2

√
ρ, 1

2
log 2πeρ).

Proof of Theorem 3.4.1. Theorem 3.4.1 relies on several lemmas. We state the lemmas
here and defer their proofs to Appendix C.1. We first show that it is enough to prove
the theorem for ρ = 1:

Lemma 3.4.2 (Proof in Appendix C.1.1). Let v1(σ) = v(σ, 1). Then v(σ, ρ) depends
on v1(σ/ρ) according to

v(σ, ρ) = log
√
ρ+ v1(σ/ρ). (3.46)

Thus, a different value of ρ leads to a function v(σ, ρ) which is essentially v1(σ)
shifted by a constant. Therefore, if v1(σ) is monotonically increasing, continuous, and
concave, so is v(σ, ρ) for any other value of ρ > 0. In Lemmas 3.4.3 and 3.4.4, we
establish that v1(σ) is a continuous and concave function on [0,∞):

Lemma 3.4.3 (Proof in Appendix C.1.2). The function v1(σ) is continuous on [0,∞).

Lemma 3.4.4 (Proof in Appendix C.1.3). The function v1(σ) is concave on [0,∞).

To finish the proof, we need to show that the limiting value of v1(σ) as σ → ∞ is
1
2

log 2πe. It is useful to define a quantity, which we call burstiness of a sequence, as
follows: Let An denote the the n-dimensional ball of radius

√
n; i.e.,

An :=

{
xn :

n∑
i=1

x2
i ≤ n

}
.

Fix xn ∈ An. We associate a burstiness to each such sequence, defined by

σ(xn) := max
0≤k<l≤n

(
l∑

i=k+1

x2
i − (l − k)

)
. (3.47)

Let
An(σ) = {xn ∈ An : σ(xn) ≤ σ}.

Notice that An(σ) ⊆ Sn(σ, 1). We have An(0) = [−1, 1]n and An(n − 1) = An. As σ
increases from 0 to n− 1, An(σ) increases from the cube to the entire sphere. We have
the following lemma:
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Lemma 3.4.5 (Proof in Appendix C.1.4). If there exists a sequence σ(n) such that

lim
n→∞

1

n
log Vol(An(σ(n))) =

1

2
log 2πe , and (3.48a)

lim
n→∞

σ(n)

n
= 0, (3.48b)

then limσ→∞ v1(σ) = 1
2

log 2πe.

Note that the natural choice which satisfies condition (3.48a) is σ(n) = n − 1,
but this does not satisfy condition (3.48b). To complete the proof, we show that
σ(n) = c

√
n for a suitable constant c satisfies both conditions of Lemma 3.4.5, and

establish the following result:

Lemma 3.4.6 (Proof in Appendix C.1.5). limσ→∞ v(σ, 1) = 1
2

log 2πe.

This completes the proof of Theorem 3.4.1.

3.5 Numerical method to compute v(σ, ρ)

In this section, we briefly discuss the numerical evaluation of v(σ, ρ). This discussion is
nontechnical and for all the technical details justifying the numerical method, we refer
the reader to Appendix C.2.

Numerical computation of v(σ, ρ) is enabled by exploiting the idea of state as defined
in equation (3.5). However for ease of analysis and implementation, we define the state
slightly differently. Given (x1, . . . , xn) ∈ Sn(σ, 1), define

φn =

{
σn if σn < σ,

σn−1 + 1− x2
n if σn = σ.

(3.49)

The state φn is a sum of two terms: σn, which is the amount of charge in the battery
at time n, and the amount of energy wasted at time n due to the limited battery
capacity. Note that energy is wasted only when σn = σ; i.e., when the battery becomes
full. Setting φ0 = σ, equation (3.49) can also be written as

φn =

{
φn−1 + 1− x2

n if φn−1 < σ,

σ + 1− x2
n if φn−1 ≥ σ.

(3.50)

Consider the function Φn : Sn(σ, 1) → R, defined by Φn(x1, . . . , xn) = φn. Thus,
Φn maps a point in Sn(σ, 1) to its state at time n, as defined in equations (3.49) and
(3.50). Let λn be the Lebesgue measure restricted to Sn(σ, 1). The function Φn induces
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a measure on R, which we call νn. As 0 ≤ φn ≤ σ+ 1 for all xn ∈ Sn(σ, 1), we see that
the measure νn is supported on [0, σ + 1], giving

νn([0, σ + 1]) = Vol(Sn(σ, 1)).

Suppose νn is absolutely continuous with respect to the Lebesgue measure on R; this
implies existence of a density fn corresponding to νn, which satisfies

Vol(Sn(σ, 1)) =

∫ σ+1

x=0

fn(x)dx. (3.51)

Given the state φn < σ, the symbol xn+1 is constrained to lie in [−√φn + 1,
√
φn + 1].

Furthermore, given φn, the symbol xn+1 has the Lebesgue measure restricted to this
set. Similarly, for φn ≥ σ, the conditional measure of xn+1 is the Lebesgue measure
restricted to [−

√
σ + 1,

√
σ + 1]. Using equation (3.50), we can find a relation between

the measures νn and νn+1 as follows: For φ ∈ [0, σ + 1],

Fn+1(φ) := νn+1((−∞, φ]) (3.52)

=

∫ φ−1

x=0

∫ x+1

t=0

fn(x)√
t
dtdx

+

∫ σ

x=φ−1

∫ x+1

t=x−(φ−1)

fn(x)√
t
dtdx

+

∫ σ+1

x=σ

∫ σ+1

t=σ−(φ−1)

fn(x)√
t
dtdx (3.53)

=

∫ φ−1

x=0

2fn(x)[
√
x+ 1]dx

+

∫ σ

x=φ−1

2fn(x)[
√
x+ 1−

√
x− (φ− 1)]dx

+

∫ σ+1

x=σ

2fn(x)[
√
σ + 1−

√
σ − (φ− 1)]dx. (3.54)

Differentiating Fn+1, we obtain

fn+1(φ) =

∫ σ

φ−1

fn(x)√
x− (φ− 1)

dx+

∫ σ+1

σ

fn(x)√
σ − (φ− 1)

dx. (3.55)

Define the integral operator A as follows:

A(x, t) =


1√

x+1−t if 0 ≤ x < σ and 0 ≤ t ≤ x+ 1,
1√

σ+1−t if σ ≤ x ≤ σ + 1 and 0 ≤ t ≤ σ + 1,

0 otherwise.

(3.56)
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We can express equation (3.55) in another form,

fn+1(t) =

∫
A(x, t)fn(x)dx, (3.57)

denoted by fn+1 = A(fn). Iterating this relation, we obtain

fn+1 = Anf1. (3.58)

Our interest is in v1(σ), which by equations (3.51) and (3.58) is

v1(σ) = lim
n→∞

1

n
log

∫ σ+1

0

An−1f1(x)dx. (3.59)

It seems natural to expect this limit to equal the largest eigenvalue of A. Our approach
to finding the largest eigenvalue is to discretize A; let hn = σ+1

n
, and let An be an

(n+ 1)× (n+ 1)-matrix such that

An(i, j) = hn × A
(
(i− 1)hn, (j − 1)hn

)
for 1 ≤ i, j ≤ n+ 1.

We can approximate the largest eigenvalue of the matrix An using standard methods
and expect this value to tend to the largest eigenvalue of A as n becomes large.

Figure 3.3 shows the plot of v1(σ) obtained using the numerical procedure. Note
that as σ becomes large, v1(σ) tends to the limit 1

2
log 2πe in a concave manner, as per

Theorem 3.4.1.
We are now in a position to plot the bounds on capacity derived in Theorem 3.3.2.

Figure 3.4 shows a plot of the lower and upper bounds for a fixed value of ρ (= 1) and
for different values of the noise power ν. Note that even for relatively small values of
σ, the volume based lower bound on capacity is close to the upper bound, which we
recall is the channel capacity when σ = ∞. Thus, a small battery leads to significant
gains in the capacity of a (σ, ρ)-power constrained AWGN channel.

3.6 Upper-bounding capacity

Theorem 3.3.2 states that 1
2

log
(
1 + ρ

ν

)
upper-bounds the channel capacity. This bound

is not entirely satisfactory since it is independent of the value of σ. Furthermore, Figure
3.4 indicates that the lower bound and the upper bound do not converge asymptotically:
as ν → 0, the lower bound is v(σ, ρ) − 1

2
log 2πeν + O(ν) and the upper bound is

1
2

log ρ
ν

+O(ν), which differ by O(1). This implies that either the upper bound, or the
lower bound, or both, are loose in the low-noise regime. It is natural to expect the
upper bound to be loose, since it disregards the effects of a finite σ on capacity. To
obtain some insight on the low-noise capacity, it is useful to think of coding with the
(σ, ρ)-constraints as trying to fit the largest number of centers of noise balls in Sn(σ, ρ),
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Figure 3.3: Graph of v1(σ) obtained numerically

such that the noise balls are asymptotically approximately disjoint. As the noise power
ν decreases, so does the size of the noise balls, and one can imagine a very efficient
packing of these small balls so that they occupy almost all the available space. The
total number of balls one can pack is then roughly given by

# of balls ≈ Vol(Sn(σ, ρ))

Vol(Noise ball)
, (3.60)

so the capacity is roughly

1

n
log # of balls =

1

n
log

Vol(Sn(σ, ρ)

Vol(Noise ball)
(3.61)

≈ v(σ, ρ)− 1

2
log 2πeν. (3.62)

We can make the statement in equation (3.62) rigorous, as follows:

Theorem 3.6.1. Let Bn(
√
nν) be the n-dimensional Euclidean ball of radius

√
nν.

The Minkowski sum of Sn(σ, ρ) and Bn(
√
nν) is the set

Sn(σ, ρ)⊕Bn(
√
nν) := {xn + zn | xn ∈ Sn(σ, ρ), zn ∈ Bn(

√
nν)}. (3.63)

The capacity C of an AWGN channel with a (σ, ρ)-power constraint and noise power
ν satisfies

C ≤ lim
ε→0+

lim sup
n→∞

1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
n(ν + ε) ))− 1

2
log 2πeν. (3.64)
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Figure 3.4: Capacity lower bounds for σ = 0, 1, 5, and 10, and the upper bound, from
Theorem 3.3.2 plotted versus log(1/ν)

Proof. For n ∈ N, let Fn be the set of all probability distributions supported on
Sn(σ, ρ). From Theorem 3.2.1, we know that the capacity C is given by

C = lim
n→∞

1

n
sup

pXn (xn)∈Fn
I(Xn;Y n). (3.65)

Let pXn(xn) ∈ Fn. Denote Sn(σ, ρ) ⊕ Bn(
√
n(ν + ε) ) by Cn, where ε > 0, and

let δn := P (Y n /∈ Cn) . By the law of large numbers, we have δn → 0. Let χ be the
indicator variable for the event {Y n ∈ Cn}. Then

h(Y n) = H(δn) + δ̄nh(Y n|χ = 1) + δnh(Y n|χ = 0)

≤ H(δn) + δ̄n log Vol(Cn) + δnh(Y n|χ = 0). (3.66)

where ā = 1 − a. Since ‖Xn‖2 ≤ σ + nρ with probability 1, we have the following
bound on the power of Y n:

E[‖Y n‖2] = E[‖Xn‖2] + E[‖Zn‖2] ≤ σ + nρ+ nν.

This translates to the bound

E[‖Y n‖2 | χ = 0] ≤ n(ρ+ ν + σ/n)

δn
,

so

h(Y n | χ̄) ≤ n

2
log

2πe(ρ+ ν + σ/n)

δn
.
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Substituting into inequality (3.66) and dividing by n gives

h(Y n)

n
≤ H(δn)

n
+ δ̄n

log Vol(Cn)

n
+
δn
2

log
2πe(ρ+ ν + σ/n)

δn
.

Since this holds for any choice of pXn ∈ Fn, we obtain

sup
pXn∈Fn

1

n
h(Y n) ≤H(δn)

n
+ δ̄n

log Vol(Cn)

n
+
δn
2

log
2πe(ρ+ ν + σ/n)

δn
.

Taking the limsup in n, we arrive at

lim sup
n→∞

sup
pXn∈Fn

1

n
h(Y n) ≤ lim sup

n→∞

log Vol(Cn)

n
= lim sup

n→∞

log Vol(Sn(σ, ρ)⊕Bn(
√
n(ν + ε) ))

n
.

Taking the limit as ε→ 0+ and noting that the capacity is limn→∞ suppXn∈Fn
1
n
h(Y n)−

1
2

log 2πeν, we arrive at the bound in expression (3.64).

To simplify notation, define ` : [0,∞)→ R as

`(ν) := lim sup
n→∞

1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
nν )). (3.67)

We can restate the upper bound in Theorem 3.6.1 as

C ≤ lim
ε→0+

`(ν + ε)− 1

2
log 2πeν. (3.68)

If ` happens to be continuous at ν, we can drop the ε from inequality (3.68) to obtain
a simplified expression

C ≤ `(ν)− 1

2
log 2πeν. (3.69)

Note that `(0) = v(σ, ρ). The continuity of ` at ν = 0 can be used to rigorously establish
the asymptotic capacity expression in equation (3.62). These continuity properties will
be established later in this section.

The upper bound expression involves the volume of the Minkowski sum of Sn(σ, ρ)
with a ball. We state here a result from convex geometry called Steiner’s formula [20],
which gives an expression for the volume of such a Minkowski sum:

Theorem 3.6.2 (Steiner’s formula). Let Kn ⊂ Rn be a compact convex set and let
Bn ⊂ Rn be the unit ball. Denote by µj(Kn) the j-th intrinsic volume Kn, and by εj
the volume of Bj. Then for t ≥ 0,

V ol(Kn ⊕ tBn) =
n∑
j=0

µn−j(Kn)εjt
j. (3.70)
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Steiner’s formula states that the volume of Sn(σ, ρ)⊕Bn(
√
nν) depends not only on

the volumes of these sets, but also on the intrinsic volumes of Sn(σ, ρ). Intrinsic volumes
are notoriously hard to compute even for simple enough sets such as polytopes [20]. So
it is optimistic to expect a closed form expression for the intrinsic volumes of Sn(σ, ρ).
Furthermore, the sets {Sn(σ, ρ)} evolve with the dimension n, and to compute the
volume via Steiner’s formula it is necessary to keep track of how the intrinsic volumes
of these sets evolve with n.

As mentioned earlier, the case of σ = 0 is the amplitude-constrained Gaussian
noise channel, the capacity of which was numerically evaluated by Smith [34]. In the
following section, we concentrate on evaluating the upper bound for this special case.

3.7 The case of σ = 0

To simplify notation, we denote A :=
√
ρ in this section. We consider the scalar

Gaussian noise channel with noise power ν and an input amplitude constraint of A.
Let the capacity of this channel be C. Recall that the function `(ν) is defined as

`(ν) = lim sup
n→∞

1

n
log Vol([−A,A]n ⊕Bn(

√
nν)), (3.71)

and the upper bound on channel capacity is given by

C ≤ lim
ε→0+

`(ν + ε)− 1

2
log 2πeν.

The main result of this section is as follows:

Theorem 3.7.1. The function `(ν) is continuous on [0,∞). For ν > 0, we can explic-
itly compute `(ν) via the expression

`(ν) = H(θ∗) + (1− θ∗) log 2A+
θ∗

2
log

2πeν

θ∗
, (3.72)

where H is the binary entropy function, and θ∗ ∈ (0, 1) is the unique solution to

(1− θ∗)2

θ∗3
=

2A2

πν
.

Proof of Theorem 3.7.1. The proof of Theorem 3.7.1 relies on a number of lemmas.
Here we shall merely state the lemmas and defer their proofs to Appendix C.3.

We first prove a lemma, which makes it possible to replace lim sup by lim in the
expression of `(ν) given in equation (3.71).

Lemma 3.7.2 (Proof in Appendix C.3.1). For all ν ≥ 0, the limit

lim
n→∞

1

n
log Vol([−A,A]n ⊕Bn(

√
nν))

exists and is finite and equals `(ν), as defined in equation (3.71).
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The special case of Steiner’s formula (3.70) when Kn is the cube [−A,A]n and
t =
√
nν is given by

Vol([−A,A]n ⊕Bn(
√
nν)) =

n∑
j=0

(
n

j

)
(2A)n−jεj(

√
nν)j, (3.73)

where εj is the volume of the j-dimensional unit ball. Replacing εj in equation (3.73),

Vol([−A,A]n ⊕Bn(
√
nν)) =

n∑
j=0

(
n

j

)
(2A)n−j

πj/2

Γ(j/2 + 1)
(
√
nν)j (3.74)

=
n∑
j=0

Γ(n+ 1)

Γ(n− j + 1)Γ(j + 1)

πj/2

Γ(j/2 + 1)
(2A)n−j(

√
nν)j.

(3.75)

Letting θ = j
n
, we rewrite the term inside the summation as

Γ(n+ 1)

Γ(n(1− θ) + 1)Γ(nθ + 1)

πnθ/2

Γ(nθ/2 + 1)
(2A)n(1−θ)(

√
nν)nθ. (3.76)

For ν > 0, define f νn(θ) as follows:

f νn(θ) =
1

n
log

(
Γ(n+ 1)

Γ(n(1− θ) + 1)Γ(nθ + 1)

πnθ/2

Γ(nθ/2 + 1)
(2A)n(1−θ)(

√
nν)nθ

)
(3.77)

=
1

n
log

(
Γ(n+ 1)nnθ/2

Γ(n(1− θ) + 1)Γ(nθ + 1)Γ(nθ/2 + 1)

)
+ (1− θ) log 2A+ θ log

√
ν +

θ

2
log π. (3.78)

Note that f νn(θ) is defined for all n ∈ N, for all θ ∈ [0, 1], and for all ν > 0. Using this
notation, we can rewrite the volume as

Vol([−A,A]n ⊕Bn(
√
nν)) =

n∑
j=0

enf
ν
n(j/n). (3.79)

We argue that since the volume is a sum of n+ 1 terms, the exponential growth rate of
the volume is determined by the growth rate of the largest term amongst these n + 1
terms. To be precise, we define

θ̂n = arg max
j/n

f νn(j/n), (3.80)

and prove the following lemma:



CHAPTER 3. THE (σ, ρ)-POWER CONSTRAINED AWGN CHANNEL 38

Lemma 3.7.3 (Proof in Appendix C.3.2). The limit limn→∞ f
ν
n(θ̂n) exists and equals

`(ν).

The next few lemmas aim to identify the limit of f νn(θ̂n). We first show that the
functions f νn(·) converge uniformly to a limit function f ν(·).
Lemma 3.7.4 (Proof in Appendix C.3.3). The sequence of functions {f νn}∞n=1 converges
uniformly for all θ ∈ [0, 1] to a function f ν given by

f ν(θ) = H(θ) + (1− θ) log 2A+
θ

2
log

2πeν

θ
, (3.81)

where H(θ) = −θ log θ − (1− θ) log(1− θ) is the binary entropy function.

With this uniform convergence in hand, we show that the limit of f νn(θ̂n) can be
expressed as follows:

Lemma 3.7.5 (Proof in Appendix C.3.4). We claim that

lim
n→∞

f νn(θ̂n) = max
θ
f ν(θ), (3.82)

and therefore
`(ν) = max

θ
f ν(θ). (3.83)

We are now in a position to prove the continuity of `(ν). Fix a ν0 > 0, and let ε > 0
be given. Choose a δ > 0 such that for all ν ∈ (ν0 − δ, ν0 + δ),

||f ν − f ν0||∞ < ε.

We can verify from equation (3.81) that picking such a δ is indeed possible. This
implies

| sup
θ
f ν(θ)− sup

θ
f ν0(θ)| < ε. (3.84)

Using Lemma 3.7.5, this implies

|`(ν)− `(ν0)| < ε, (3.85)

which establishes continuity of ` at all points ν0 > 0.

To show continuity at 0, we first explicitly evaluate `(ν). Let θ∗(ν) = arg maxθ f
ν(θ).

Using Lemma 3.7.5, we have `(ν) = f ν(θ∗(ν)). Recall the expression for f ν(θ):

f ν(θ) = H(θ) + (1− θ) log 2A+
θ

2
log

2πeν

θ
. (3.86)
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Differentiating f ν(θ) with respect to θ,

d

dθ
f ν(θ) = log

1− θ
θ

+ log
√
ν − log 2A+

1

2
log 2πe− log e

2
− 1

2
log θ. (3.87)

Setting the derivative equal to 0 gives

log
1− θ
θ

+ log
√
ν − log 2A+

1

2
log 2πe− log e

2
− 1

2
log θ = 0. (3.88)

Simplifying this and removing the logarithms, we arrive at

(1− θ)2

θ3
=

2A2

πν
. (3.89)

The function (1−θ)2
θ3

tends to +∞ as θ → 0+, and equals 0 when θ = 1. Thus, equation

(3.89) has at least one solution in the interval (0, 1). We can easily check that (1−θ)2
θ3

is
strictly decreasing in (0, 1), and thus this solution must be unique. The optimal θ∗(ν)
satisfies the cubic equation (3.89), and we can see that

lim
ν→0

θ∗(ν) = 0. (3.90)

Using equations (3.89) and (3.90), we have

lim
ν→0

ν

θ∗(ν)3
=

2A2

π
. (3.91)

Thus,

lim
ν→0

`(ν) = lim
ν→0

H(θ∗(ν)) + (1− θ∗(ν)) log 2A+
θ∗(ν)

2
log

2πeν

θ∗(ν)
(3.92)

(a)
= log 2A+ lim

ν→0

θ∗(ν)

2
log

2πeν

θ∗(ν)
(3.93)

(b)
= log 2A (3.94)

= `(0), (3.95)

where in (a) we used equation (3.90), and in (b) we used equation (3.91). This shows
that ` is continuous over [0,∞), and concludes the proof of Theorem 3.7.1.

The above bound can also be used to prove an asymptotic capacity result. We
prove the following theorem:

Theorem 3.7.6. The capacity C of an AWGN channel with an amplitude constraint
of A, and with noise power ν, satisfies the following:
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1. When the noise power ν → 0, capacity C is given by

C = log 2A− 1

2
log 2πeν +O(ν

1
3 ).

2. When the noise power ν →∞, capacity C is given by

C =
α2

2
− α4

4
+
α6

6
− 5α8

24
+O(α10),

where α = A/
√
ν.

Proof of Theorem 3.7.6. Note that all the logarithms in this proof are assumed to be
to base e.

1. Using the lower bound in Theorem 3.3.2,

C ≥ 1

2
log

(
1 +

(2A)2

2πeν

)
(3.96)

= log 2A− 1

2
log 2πeν + log

(
1 +

2πeν

(2A)2

)
(3.97)

= log 2A− 1

2
log 2πeν +O(ν). (3.98)

For the upper bound, we have

lim
ν→0

`(ν) = log 2A+ lim
ν→0

[
H(θ∗)− θ∗ log 2A+

θ∗

2
log

2πeν

θ∗

]
(3.99)

= log 2A+ lim
ν→0
−(1− θ∗) log(1− θ∗) +

θ∗

2
log

ν

θ∗3
+
θ∗

2
log

πe

2A2
.

(3.100)

Let c =
(

π
2A2

)1/3
. Using equation (3.91), we can check that as ν → 0,

−(1− θ∗) log(1− θ∗) = cν1/3 + o(ν1/3),

θ∗

2
log

ν

θ∗3
=
−3c log c

2
ν1/3 + o(ν1/3),

θ∗

2
log

πe

2A2
=

(
c

2
+

3c log c

2

)
ν1/3 + o(ν1/3).

This gives the following asymptotic upper bound as ν → 0:

C ≤ log 2A− 1

2
log 2πeν +

3c

2
ν1/3 + o(ν1/3). (3.101)

From equations (3.98) and (3.101), our claim follows.
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2. As noted by Smith [34], for large ν the optimal input distribution is discrete,
and is supported equally on the two points −A and +A. The output Y is then
distributed as

Y ∼ pY (y) =
1

2
exp

(
(y − A)2

2ν

)
+

1

2
exp

(
(y + A)2

2ν

)
(3.102)

Capacity is then given by

C = h(pY )− 1

2
log 2πeν. (3.103)

The entropy term h(pY ) can be manipulated as in [24] to arrive at

h(pY ) =
1

2
log 2πeν + α2 − 2√

(2π)α
e−α

2/2

∫ ∞
0

e−y
2/2α2

cosh(y) ln cosh(y)dy,

(3.104)

where α = A/
√
ν. Let

f(α) =
2√
2π

∫ ∞
0

e
−y2

2α2 cosh(y) ln
(

cosh(y)
)
dy.

We consider the Taylor series expansion of cosh(y) ln
(

cosh(y)
)

at y = 0, and
arrive at

cosh(y) log
(

cosh(y)
)

=
y2

2
+
y4

6
+

y6

720
+

y8

630
+O

(
y9
)
. (3.105)

Using the following definite integral expression,∫ ∞
0

e
−y2

2α2 y2kdy = 2k−
1
2

(
α2
)k+ 1

2 Γ

(
k +

1

2

)
, (3.106)

and substituting, we obtain

f(α) =
α3

2
+
α5

2
+
α7

48
+
α9

6
+O(α11). (3.107)

Thus,

h(pY ) =
1

2
log 2πeν + α2

−
(
α2

2
+
α4

2
+
α6

48
+
α8

6
+O(α10)

)(
1− α2

2
+
α4

8
− α6

48
+O(α8)

)
(3.108)

=
1

2
log 2πeν +

α2

2
− α4

4
+
α6

6
− 5α8

24
+O(α10). (3.109)
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Capacity is therefore given by

C =
α2

2
− α4

4
+
α6

6
− 5α8

24
+O(α10).

This establishes the claim. Shannon [33] had proved that capacity at high noise
for the peak power constrained (by A2) AWGN channels is essentially the same
as that of an average power constrained (by A2) AWGN; i.e.,

C ≈ 1

2
log(1 + A2/ν) =

1

2
log(1 + α2)

=
α2

2
− α4

4
+
α6

6
− α8

8
+O(α10).

It is interesting to note that the first three terms of this approximation agrees
with the actual capacity.

We can use Theorem 3.7.1 to numerically evaluate θ∗(ν) and plot the corresponding
upper bound from Theorem 3.6.1. Figure 3.5 shows the resulting plot. Note that the
upper bound from Theorem 3.3.2 is not asymptotically tight in the low-noise regime,
but the new upper bound is asymptotically tight.
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Figure 3.5: For the AWGN with an amplitude constraint of 1, the new upper bound
and the lower bound converge asymptotically as ν → 0

In Theorem 3.7.1, we essentially carried out a volume computation which answered
the question: How does the volume of the Minkowski sum of a cube and a ball grow?
The upper bound on capacity is then a consequence of the following facts:
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1. The channel capacity depends on the maximum output entropy h(Y n).

2. The random variable Y n is (almost entirely) supported on the sum of a cube and
a ball.

3. The entropy of Y n is bounded from above by the logarithm of the volume of its
(almost) support.

Intuitively, points 2 and 3 should not depend on Z being Gaussian, but only on Zn

being almost entirely supported on Bn(
√
nν). We make this intuition precise in the

following theorem:

Theorem 3.7.7 (Proof in Appendix C.3.5). Let A, ν ≥ 0. Let X and Z be random
variables satisfying |X| ≤ A a.s. and Var(Z) ≤ ν. Then

h(X + Z) ≤ `(ν), (3.110)

where `(ν) is as defined in equation (3.71).

By Theorem 3.7.7, we can assert that the capacity C of any channel with input
amplitude constrained by A and with an additive noise Z with power at most ν is
bounded from above according to

C = sup
|X|≤A

I(X;X + Z) ≤ `(ν)− h(Z). (3.111)

Noting that Var(Y) ≤ A2 + ν, we also have the upper bound

C ≤ 1

2
log 2πe(ν + A2)− h(Z). (3.112)

giving

C ≤ min

(
`(ν)− h(Z),

1

2
log 2πe(ν + A2)− h(Z)

)
. (3.113)

From Figure 3.5, it is interesting to note that there for large values of ν, the bound
in inequality (3.112) is better, whereas for small values of ν, the bound in inequality
(3.111) is better. Both of these bounds are asymptotically tight as ν → ∞, but only
inequality (3.111) is tight for ν → 0.

3.8 The case of σ > 0

In this section, our aim is to parallel the upper-bounding technique used in Section 3.7
and obtain analogues of Theorem 3.7.1 and Theorem 3.7.6, when σ is strictly greater
than 0. When σ > 0, the set Sn(σ, ρ) is no longer an easily identifiable set like the
n-dimensional cube from Section 3.7. In particular, the intrinsic volumes of Sn(σ, ρ)
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do not have a closed form expression. Despite this difficulty, we shall see that it is still
possible to obtain results similar to those in Section 3.7.

Our main result in this section is the following:

Theorem 3.8.1. Define `(ν) as

`(ν) = lim sup
n→∞

1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
nν )). (3.114)

For n ≥ 1, denote the intrinsic volumes of Sn(σ, ρ) by µn(i) for 0 ≤ i ≤ n and define
Gn : R→ R and gn : R→ R as

Gn(t) = log
n∑
j=0

µn(j)ejt, gn(t) =
Gn(t)

n
. (3.115)

Define Λ to be the pointwise limit of the sequence of functions {gn}, which we will show
exists. Let Λ∗ be the convex conjugate of Λ. Then the following hold:

1. `(ν) is continuous on [0,∞).

2. For ν > 0,

`(ν) = sup
θ∈[0,1]

[
−Λ∗(1− θ) +

θ

2
log

2πeν

θ

]
. (3.116)

Proof of Theorem 3.8.1. Note that for the statement of Theorem 3.8.1 to make sense,
several results need to be established. We establish these in the Lemmas 3.8.2 and
3.8.3, where we prove the following:

Lemma 3.8.2 (Proof in Appendix C.4.1). For all n ≥ 1, the set Sn(σ, ρ) is a convex
set, and therefore it has well defined intrinsic volumes {µn(i)}ni=0.

Lemma 3.8.3 (Proof in Appendix C.4.2). The following results hold:

1. The functions {gn} converge pointwise to a function Λ(t) : R→ R given by

Λ(t) := lim
n→∞

gn(t). (3.117)

2. The convex conjugate of Λ, denoted by Λ∗, has its domain the set [0, 1].

By Lemma 3.8.2, we can use Steiner’s formula for the convex set Sn(σ, ρ) to get

Vol(Sn(σ, ρ)⊕Bn(
√
nν )) =

n∑
j=0

µn(n− j)εj
√
nν

j
. (3.118)
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Define the functions an(θ) and bνn(θ) for θ ∈ [0, 1] as follows. The function an(θ) is
obtained by linearly interpolating the values of an(j/n), where the value of an(j/n) is
given by:

an

(
j

n

)
=

1

n
log µn(n− j) for 0 ≤ j ≤ n. (3.119)

The function bνn(θ) is given by

bνn(θ) =
1

n
log

πnθ/2

Γ(nθ/2 + 1)
(nν)nθ/2 for θ ∈ [0, 1]. (3.120)

Define f νn : [0, 1]→ R as

f νn(θ) := f ν(n, θ) = an(θ) + bνn(θ). (3.121)

With this notation, we can rewrite equation (3.118) as

Vol(Sn(σ, ρ)⊕Bn(
√
nν)) =

n∑
j=0

enf
ν(n,j/n). (3.122)

Just as in the proof of Theorem 3.7.1, we want to establish the convergence of f νn(·)
to some function f ν(·). Proving the convergence of bνn(·) is not hard, but proving the
convergence of an(·) requires the application of Lemmas 3.8.4 and 3.8.5 given below.
In Lemma 3.8.4 we establish the following:

Lemma 3.8.4 (Proof in Appendix C.4.3). For each n, the following holds:

1. The function an(·) is concave.

2. The function bνn(·) is concave.

3. The function f νn(·) is concave.

In Lemma 3.8.5, we show that the intrinsic volumes of {Sn(σ, ρ)} satisfy a large
deviations-type result, detailed below.

Lemma 3.8.5 (Proof in Appendix C.4.4). Define a sequence of measures supported
on [0, 1] by

µn/n

(
j

n

)
:= µn(j) for 0 ≤ j ≤ n. (3.123)

The following bounds hold:

1. Let I ⊆ R be a closed set. The family of measures {µn/n} satisfies the large
deviation upper bound

lim sup
n→∞

1

n
log µn/n(I) ≤ − inf

x∈I
Λ∗(x). (3.124)
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2. Let F ⊆ R be an open set. The family of measures {µn/n} satisfies the large
deviations lower bound

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F
Λ∗(x). (3.125)

Using the concavity and large deviations-type convergence from the two previous
lemmas, we now prove the convergence of {f νn} in the following lemma.

Lemma 3.8.6 (Proof in Appendix C.4.5). The following convergence results hold:

1. The sequence of functions {an} converges uniformly to −Λ∗(1− θ) on [0, 1].

2. The sequence of functions {bνn} converges uniformly to the function θ
2

log 2πeν
θ

on
[0, 1].

3. The sequence of functions {f νn} converges uniformly to a function f ν on the
interval [0, 1], where f ν is given by

f ν(θ) = −Λ∗(1− θ) +
θ

2
log

2πeν

θ
.

We are now in a position to express `(ν) in terms of the limit function f ν . Let

θ̂n = arg maxj/nf
ν
n(j/n).

In Lemma 3.8.7 we prove the following:

Lemma 3.8.7 (Proof in Appendix C.4.6). The following equality holds:

lim
n→∞

f νn(θ̂n) = max
θ
f ν(θ). (3.126)

Lemma 3.8.8 (Proof in Appendix C.4.7). The following equality holds:

lim
n→∞

f νn(θ̂n) = `(ν), (3.127)

and therefore
`(ν) = sup

θ
f ν(θ). (3.128)

Part 2 of Theorem 3.8.1 follows from Lemma 3.8.8. We now concentrate on proving
the continuity of `(ν). We first show continuity at all points ν 6= 0.

Let ν0 > 0, and let ε > 0 be given. Choose a δ > 0 such that for all ν ∈ (ν0−δ, ν0+δ),

||f ν − f ν0||∞ < ε.

This implies

| sup
θ
f ν(θ)− sup

θ
f ν0(θ)| < ε =⇒ |`(ν)− `(ν0)| < ε, (3.129)
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which establishes continuity of ` at all points ν0 > 0.
Turning towards the ν = 0 case, we define

θ∗(ν) = arg max
θ
f ν(θ). (3.130)

Proving the continuity of ` at ν = 0 is slightly more challenging than the corresponding
proof in Theorem 3.7.1 from Section 3.7, since we do not know θ∗(ν) explicitly in terms
of ν. Despite this, we can still prove the following lemma:

Lemma 3.8.9 (Proof in Appendix C.4.8). The following equality holds:

lim sup
ν→0

θ∗(ν) = 0. (3.131)

Now let ν0 = 0 and let ε > 0 be given. Using continuity of Λ∗, choose an η > 0
such that

| − Λ∗(1− θ)− v(σ, ρ)| < ε/2 for all θ ∈ [0, η). (3.132)

Using Lemma 3.8.9, choose a δ1 such that

θ∗(ν) < η for all ν ∈ [0, δ1). (3.133)

For all ν ∈ [0, δ1), we have

`(ν) = sup
θ

[
−Λ∗(1− θ) +

θ

2
log

2πeν

θ

]
(3.134)

= −Λ∗(θ∗(ν)) +
θ∗(ν)

2
log

2πeν

θ∗(ν)
(3.135)

(a)
< v(σ, ρ) +

ε

2
+ sup

θ

θ

2
log

2πeν

θ
(3.136)

(b)

≤ v(σ, ρ) +
ε

2
+ πν (3.137)

where (a) follows by inequalities (3.132) and (3.133), and (b) follows from an evaluation
of the supremum in (a). Choose δ2 = ε

2π
, and choose δ = min(δ1, δ2). We now have

that for all ν ∈ [0, δ),
`(ν) < v(σ, ρ) + ε. (3.138)

This combined with `(ν) ≥ `(0) = v(σ, ρ) gives |`(ν) − `(0)| < ε, thus establishing
continuity at ν0 = 0.

Using Theorem 3.8.1, we establish the following asymptotic capacity result:

Theorem 3.8.10. The capacity C of an AWGN channel with (σ, ρ)-power constraints
and noise power ν satisfies the following:
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1. When the noise power ν → 0, capacity C is given by

C = v(σ, ρ)− 1

2
log 2πeν + ε(ν),

where ε(·) is a function such that limν→0 ε(ν) = 0.

2. When noise power ν →∞, capacity C is given by

C =
1

2

(ρ
ν

)
− 1

4

(ρ
ν

)2

+
1

6

(ρ
ν

)3

+O

((ρ
ν

)4
)
.

Proof of Theorem 3.8.10. Note that all the logarithms used in this proof are taken to
be at base e.

1. Using the lower bound in Theorem 3.3.2,

C ≥ 1

2
log

(
1 +

e2v(σ,ρ)

2πeν

)
(3.139)

= v(σ, ρ)− 1

2
log 2πeν + log

(
1 +

2πeν

e2v(σ,ρ)

)
(3.140)

= v(σ, ρ)− 1

2
log 2πeν +O(ν). (3.141)

By continuity of ` at 0, we have that as ν → 0

`(ν) = v(σ, ρ) + ε(ν) (3.142)

for some ε(·) satisfying limν→0 ε(ν) = 0. This gives the upper bound

C ≤ v(σ, ρ)− 1

2
log 2πeν + ε(ν). (3.143)

Our claim follows from the inequalities (3.141) and (3.143). Unlike the case of
σ = 0, we are unable to give any precise rate at which ε(ν) goes to 0. Since
we don’t know what the intrinsic volumes of Sn(σ, ρ) are, we can only say that
−Λ∗(1 − θ) is continuous at θ = 0, while not knowing how fast it approaches
v(σ, ρ) as θ → 0.

2. Note that C is bounded from below by the capacity of an AWGN channel with
an amplitude constraint of

√
ρ. Using Theorem 3.7.6 we obtain for ν →∞,

C ≥ 1

2

(ρ
ν

)
− 1

4

(ρ
ν

)2

+
1

6

(ρ
ν

)3

+O

((ρ
ν

)4
)
. (3.144)

In addition, the upper bound from Theorem 3.3.2 states that

C ≤ 1

2
log
(

1 +
ρ

ν

)
=

1

2

(ρ
ν

)
− 1

4

(ρ
ν

)2

+
1

6

(ρ
ν

)3

+O

((ρ
ν

)4
)
. (3.145)

The claim now follows from equations (3.144) and (3.145).
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3.9 Capacity results for general power constraints

In Sections 3.7 and 3.8 we studied the amplitude and (σ, ρ)-constraints respectively.
In this section, we describe a general framework which can be used to analyze power-
constrained Gaussian channels. We analyze two types of power constraints within this
framework. The first type of constraint is what we call a “block constraint”, which
is essentially a vector generalization of the amplitude constraint. The second type
of constraint is the “super-convolutive constraint”, a natural constraint to encounter
which includes the average power constraint as a special case.

3.9.1 Block constraints

Consider a channel with additive white Gaussian noise Z ∼ N (0, νId), where Id is the
d × d identity matrix. Let Kd ⊆ Rd be a compact convex set. The channel input
denoted by X = (X1, X2, · · · , Xd) is subject to the constraint

X ∈ Kd almost surely. (3.146)

Let the capacity of this channel be C. For the amplitude A constraint, d = 1 and
K1 = [−A,A]. The quadrature Gaussian channel studied by Shamai & Bar-David [32]
can also be studied in this setup. The power constraint therein can be described by
choosing d = 2, and K2 as the circle of radius A > 0. The main results of this section
are Theorems 3.9.1, 3.9.2, and 3.9.3.

Theorem 3.9.1. The capacity C satisfies the lower bound

C ≥ d

2
log

(
1 +

e
2
d

logVol(Kd)

2πeν

)
. (3.147)

Theorem 3.9.2. Denote the intrinsic volumes of Kd by {α0, · · · , αd}. Define Λ(t) as

Λ(t) = log

(
d∑
j=0

αje
jt

)
. (3.148)

Let Λ∗ be the convex conjugate of Λ. Then C satisfies the upper bound

C ≤ sup
θ

[
−Λ∗(dθ) +

d(1− θ)
2

log
2πeν

1− θ

]
− d

2
log 2πeν. (3.149)

Theorem 3.9.3. The asymptotic capacity as ν → 0 is given by

C = log Vol(Kd)−
d

2
log 2πeν +O(ν1/3). (3.150)
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Proof of Theorem 3.9.1. Let Fd be the set of all distributions supported a.s. on Kd.
Let Y = X + Z denote the channel output. We have

C = sup
pX(X)∈Fd

I(X; Y) (3.151)

= sup
pX(X)∈Fd

h(Y)− h(Z) (3.152)

= sup
pX(X)∈Fd

h(Y)− d

2
log 2πeν (3.153)

Using Shannon’s entropy power inequality, we have

e
2h(Y)
d ≥ e

2h(X)
d + e

2h(Z)
d . (3.154)

Thus,

sup
pX(X)∈Fd

e
2h(Y)
d ≥ sup

pX(X)∈Fd
e

2h(X)
d + 2πeν

= e
2 log Vol(Kd)

d + 2πeν.

Taking logarithms on both sides, we have

sup
pX(X)∈Fd

h(Y) ≥ d

2
log
(
e

2 log Vol(Kd)

d + 2πeν
)
, (3.155)

which combined with inequality (3.153) concludes the proof.

Proof of Theorem 3.9.2. Define `(ν) as

`(ν) = lim sup
n→∞

1

n
log Vol(Kn

d ⊕Bnd(
√
ndν )), (3.156)

where Kn
d is the n-product Kd × Kd × · · · × Kd. We can easily get the analogue of

Theorem 3.6.1 and conclude that

C ≤ lim
ε→0

`(ν + ε)− d

2
log 2πeν. (3.157)

Denote the intrinsic volumes of Kn
d by µnd(·). Note that

µnd = µd ? · · · ? µd︸ ︷︷ ︸
n times

. (3.158)

We can use Steiner’s formula to get

Vol(Kn
d ⊕Bnd(

√
ndν )) =

nd∑
j=0

µnd(nd− j)εj
√
ndν

j
. (3.159)
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Define the functions an(θ) and bνn(θ) for θ ∈ [0, d] as follows. The function an(θ) is
obtained by linearly interpolating the values of an(j/n), where the value of an(j/n) is
given by

an

(
j

n

)
=

1

n
log µnd(nd− j) for 0 ≤ j ≤ nd. (3.160)

The function bνn(θ) is given by

bνn(θ) =
1

n
log

πnθ/2

Γ(nθ/2 + 1)
(ndν)nθ/2 for θ ∈ [0, d]. (3.161)

Define f νnd : [0, 1]→ R as

f νn(θ) := f ν(n, θ) = an(θ) + bνn(θ). (3.162)

With this notation, we can rewrite equation (3.159) as

Vol(Kn
d ⊕Bnd(

√
ndν )) =

nd∑
j=0

enf
ν(nd,j/nd). (3.163)

Using the same technique as in Lemma 3.8.4, we conclude that the functions an, bνn,
and f νn are all concave. Define a sequence of measures supported on [0, d] by

µnd/n

(
j

n

)
:= µnd(j) for 0 ≤ j ≤ nd. (3.164)

Using equation (3.158), we can directly apply Gärtner-Ellis theorem to conclude that
the measures {µnd/n} converge in the large deviation-sense to −Λ∗. This is analogous
to Lemma 3.8.5. The concavity of an along with the convergence of µnd/n in the
large deviation sense to −Λ∗ can be used to show that an(θ) converges uniformly to
−Λ∗(d− θ) exactly as in part 2 of Lemma 3.8.6. Using the same method as in part 1
of Lemma 3.8.6, we can also conclude that bνn converges uniformly to θ

2
log 2πedν

θ
. Thus,

we have

f νn converges uniformly to − Λ∗(d− θ) +
θ

2
log

2πedν

θ
. (3.165)

With this uniform convergence in hand, the analogues of Lemmas 3.8.7 and 3.8.8 readily
follow and we conclude that

`(ν) = sup
θ∈[0,d]

−Λ∗(d− θ) +
θ

2
log

2πedν

θ
(3.166)

= sup
θ∈[0,1]

−Λ∗(dθ) +
d(1− θ)

2
log

2πeν

1− θ . (3.167)



CHAPTER 3. THE (σ, ρ)-POWER CONSTRAINED AWGN CHANNEL 52

The continuity of ` can be established via the methods used in Theorem 3.8.1 and
Lemma 3.8.9, to arrive at the upper bound

C ≤ sup
θ∈[0,1]

[
−Λ∗(dθ) +

d(1− θ)
2

log
2πeν

1− θ

]
− d

2
log 2πeν. (3.168)

This concludes the proof of Theorem 3.9.2.

Proof of Theorem 3.9.3. Define

θ∗(ν) := arg sup
θ

[
−Λ∗(dθ) +

d(1− θ)
2

log
2πeν

1− θ

]
. (3.169)

We shall sometimes refer to θ∗(ν) simply as θ∗ when the argument is understood. Note
that −Λ∗(d) = log Vol(Kd) and to show Theorem 3.9.3 it is enough to show that as
ν → 0,

lim sup
ν→0

∣∣∣∣Λ∗(d) +

[
−Λ∗(dθ∗) +

d(1− θ∗)
2

log
2πeν

1− θ∗
]∣∣∣∣ = O(ν1/3). (3.170)

We rewrite this slightly as∣∣∣∣[Λ∗(d)− Λ∗(dθ∗) + d(1− θ∗) log(1− θ∗)
]

+
d(1− θ∗)

2
log

2πeν

(1− θ∗)3

∣∣∣∣ . (3.171)

We break up the proof on Theorem 3.9.3 into two parts. The first part is contained in
Lemma 3.9.4 below.

Lemma 3.9.4 (Proof in Appendix C.5.1). As ν → 0, the following equality holds:

|Λ∗(d)− Λ∗(dθ∗) + d(1− θ∗) log(1− θ∗)| = O(ν1/3). (3.172)

The second part claims the following:

Lemma 3.9.5 (Proof in Appendix C.5.2). As ν → 0, the following equality holds:∣∣∣∣d(1− θ∗)
2

log
2πeν

(1− θ∗)3

∣∣∣∣ = O(ν1/3). (3.173)

Theorem 3.9.3 now follows from these two lemmas.

3.9.2 Super-convolutive constraints

Power constraints imposed on channel inputs can be described in a very general manner
by considering a sequence of convex sets K = {Kn}n≥1 such that Kn ⊆ Rn for all n.
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For all n, a sequence (x1, x2, · · · , xn) is said to satisfy the power constraints imposed
by {Kn} if

(x1, x2, · · · , xn) ∈ Kn. (3.174)

We shall refer to this as power constrained by {Kn}. We can describe the familiar
constraints of average power and peak-power constraints with a suitable choice of
{Kn}. For a peak power constraint of A, we choose Kn to be the n-dimensional cube
[−A,A]n and for an average power constraint of P , we choose Kn = Bn(

√
nP ) where

Bn(
√
nP ) is the Euclidean ball of radius

√
nP . In this section, we focus on families

{Kn} which are super-convolutive, defined as:

Definition. A sequence of sets {Kn} is said to be super-convolutive if for all m,n ≥ 1,

Km ×Kn ⊆ Km+n. (3.175)

The power constraints imposed by such a sequence is called a super-convolutive con-
straint. A super-convolutive constraint is a natural kind of constraint to consider since
it essentially states that if (x1, x2, · · · , xn) and (y1, y2, · · · , ym) are permissible code-
words, then so is the concatenation (x1, · · · , xn, y1, · · · , ym). The aforementioned ex-
amples of peak power and average power constraints are examples of super-convolutive
constraints. Let the intrinsic volumes of Kn be denoted by µn(·). The containment
Km ×Kn ⊆ Km+n implies

(µm ? µn)(j) ≤ µm+n(j) for all 0 ≤ j ≤ m+ n. (3.176)

Thus, the sequence of intrinsic volumes {µn} is a super-convolutive sequence. Such
sequences have been studied in detail in Section 2.2.

We now make some assumptions on the family {Kn}, to ensure that the power
constraints imposed by {Kn} are reasonable. The assumptions are as follows:

(P) : K1 6= φ (3.177)

(Q) : lim
n

1

n
log Vol(Kn) = α <∞ (3.178)

(R) : lim
n

∑
j

µn(j) = γ <∞ (3.179)

Assumption (P) ensures that Kn is an n-dimensional set, since Kn
1 ⊆ Kn. Thus,

for all n, the intrinsic volumes µn(0) and µn(n) satisfy

µn(0) = 1, and µn(n) > 0. (3.180)

From inequality (3.176) we have

µn(n)µm(m) ≥ µm+n(m+ n), (3.181)
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which implies
Vol(Kn)Vol(Km) ≤ Vol(Km+n). (3.182)

Using Fekete’s lemma, we obtain that the limit

lim
n→∞

1

n
log Vol(Kn) exists, and is possibly +∞. (3.183)

Assumption (Q) states that this limit must be finite. Assumption (R) appears techni-
cal, however it can be easily seen to be satisfied in most cases of interest, as follows.

Define γn as

γn = log
∑
j

µn(j). (3.184)

Upon summing both sides of inequality (3.176) over all j, we get

γm+n ≥ γn + γm. (3.185)

Thus, the limit

lim
n→∞

γn
n

(3.186)

exists, and is possibly +∞. To rule out this limit being +∞, it is enough to show
a finite upper bound on this limit. One way to establish such an upper bound is to
search for a large enough R > 0 such that for all n,

Kn ⊆ Bn(
√
nR). (3.187)

This simply means that for some finite R, there is an average power constraint of R
on the transmitted codewords. Let us denote the intrinsic volumes of Bn(

√
nR) by

{µ̂n(·)}. The containment (3.187) implies µn ≤ µ̂n. Thus,

log
∑
j

µn(j) ≤ log
∑
j

µ̂n(j). (3.188)

We divide both sides by n and take the limit as n → ∞. Note that the limit of the
right hand side can by explicitly evaluated to equal a finite γ̂, and we can conclude

γ ≤ γ̂ <∞. (3.189)

We can easily check that if the assumptions (P), (Q), and (R) are satisfied, the se-
quence of intrinsic volumes {µn(·)} satisfies the assumptions (A), (B), (C), and (D)
from Section 2.2. Thus, all the convergence results proved for super-convolutive se-
quences in Section 2.2 apply directly for the sequence of intrinsic volumes.

Henceforth, {Kn} is understood to be a super-convolutive sequence satisfying the
assumptions (P), (Q) and (R). Consider a scalar additive Gaussian channel with noise
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power ν, and input power constrained by {Kn}. Let the capacity of this channel be C.
As in Section 2.2, define

Gn(t) = log
∑
j

µn(j)ejt, gn(t) =
Gn(t)

n
, and Λ(t) = lim

n
gn(t). (3.190)

Let Λ∗ be the convex conjugate of Λ. The main results of this section are as follows:

Theorem 3.9.6. The capacity C is bounded from above as

C ≤ sup
θ

[
−Λ∗(1− θ) +

θ

2
log

2πeν

θ

]
− 1

2
log 2πeν. (3.191)

Theorem 3.9.7. The capacity C is bounded from below as

C ≥ 1

2
log

(
1 +

e−2Λ∗(1)

2πeν

)
. (3.192)

Theorem 3.9.8. The asymptotic capacity C as ν → 0 is given by

C = −Λ∗(1)− 1

2
log 2πeν + ε(ν), (3.193)

where the error term ε(ν)→ 0 as ν → 0.

At first glance, these results seem similar to those obtained in Section 3.8 and
sub-section 3.9.1. However, there is an important difference. In the results for our
previous examples, in place of the −Λ∗(1) term we had the exponential growth-rate
of the volume of {Kn}; log 2A for the peak power constraint, v(σ, ρ) for the (σ, ρ)-
constraint, log Vol(Kd) for the block constraint, and 1

2
log 2πeP for the average power

constraint. One reason for this is that in all the cases previously encountered, −Λ∗(1)
equalled the exponential growth rate of volume. It is natural to wonder if the equality

− Λ∗(1) = lim
n

1

n
log Vol(Kn) (3.194)

holds for the case of super-convolutive constraints. In case it holds, the results of
this section do indeed exactly parallel those of Sections 3.8 and 3.9.1. We as yet do
not have a example of a super-convolutive family {Kn} in which the equality (3.194)
doesn’t hold. However, we believe that it is likely that such an example exists. This
is supported by the example in Section 2.2 where we construct a super-convolutive
sequence {µn} for which

− Λ∗(1) 6= lim
n→∞

1

n
log µn(n). (3.195)

Note that the constructed sequence does not correspond to the intrinsic volumes of any
convex sets {Kn}, and therefore does not provide a counterexample to the equality in
(3.194).
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Our results imply that in case equality doesn’t hold, capacity depends not on the
exponential growth rate of volume as intuition might suggest, but on the value of
−Λ∗(1).

Proof of Theorem 3.9.6. Define `(ν) as

`(ν) = lim sup
n→∞

1

n
log Vol(Kn ⊕Bn(

√
nν )), (3.196)

We can easily get the analogue of Theorem 3.6.1 and conclude that

C ≤ lim
ε→0

`(ν + ε)− 1

2
log 2πeν. (3.197)

By Steiner’s formula, we have

Vol(Kn ⊕Bn(
√
nν )) =

n∑
j=0

µn(n− j)εj
√
nν

j
. (3.198)

Define the functions an(θ) and bνn(θ) for θ ∈ [0, 1] as follows. The function an(θ) is
obtained by linearly interpolating the values of an(j/n), where the value of an(j/n) is
given by:

an

(
j

n

)
=

1

n
log µn(n− j) for 0 ≤ j ≤ n. (3.199)

The function bνn(θ) is given by

bνn(θ) =
1

n
log

πnθ/2

Γ(nθ/2 + 1)
(nν)nθ/2 for θ ∈ [0, 1]. (3.200)

Define f νn : [0, 1]→ R as

f νn(θ) := f ν(n, θ) = an(θ) + bνn(θ). (3.201)

With this notation, we can rewrite equation (3.198) as

Vol(Kn ⊕Bn(
√
nν)) =

n∑
j=0

enf
ν(n,j/n). (3.202)

Using the same technique as in Lemma 3.8.4, we conclude that the functions an, bνn,
and f νn are all concave. Define a sequence of measures supported on [0, 1] by

µn/n

(
j

n

)
:= µn(j) for 0 ≤ j ≤ n. (3.203)

Theorems 2.2.2 and 2.2.4 imply that the measures {µn/n} converge in the large deviation-
sense to −Λ∗. This is analogous to Lemma 3.8.5. The concavity of an along with the
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convergence of µn/n in the large deviation sense to −Λ∗ can be used to show that
an(θ) converges pointwise to −Λ∗(1− θ) on the open interval (0, 1) exactly as in part
2 of Lemma 3.8.6. However, since convergence at the endpoints is not known, we
can no longer obtain any results about uniform convergence of an as in Lemma 3.8.6.
Therefore, our proof deviates slightly from that of Theorems 3.8.1 and 3.9.2.

Denote

Aν(θ) := −Λ∗(1− θ) +
θ

2
log

2πeν

θ
, (3.204)

and
A(ν) := sup

θ∈[0,1]

Aν(θ). (3.205)

The continuity of A can be readily established via the methods used in Theorem 3.8.1
and Lemma 3.8.9. We prove the following lemma:

Lemma 3.9.9 (Proof in Appendix C.5.3). For any η > 0, there exists an N such that
for all n > N ,

f νn(θ) < Aν(θ) + η, (3.206)

for all θ ∈ [0, 1].

Let θ̂n = arg maxj/nf
ν
n(j/n). Using the same analysis as in Lemma 3.8.8, we obtain

`(ν) = lim sup
n

f ν(n, θ̂n). (3.207)

Let η > 0 be given. Choose N according to Lemma 3.9.9 such that

f νn < Aν + η/2 for n > N. (3.208)

Using the continuity of A, choose ε > 0 small enough such that A(ν+ ε) < A(ν) + η/2.
We have the sequence of inequalities

`(ν + ε) = lim sup
n

f ν+ε
n (θ̂n) (3.209)

< lim sup
n
Aν+ε(θ̂n) + η/2 (3.210)

≤ lim sup
n

[
sup
θ
Aν+ε(θ)

]
+ η/2 (3.211)

= A(ν + ε) + η/2 (3.212)

< A(ν) + η. (3.213)

Thus,

lim
ε→0

`(ν + ε) < A(ν) + η. (3.214)
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This gives us that for any η > 0, the capacity C is bounded from above by

C ≤ A(ν) + η − 1

2
log 2πeν. (3.215)

Letting η → 0, we conclude the proof.

Proof of Theorem 3.9.7. Establishing a lower bound on capacity requires an achievable
scheme. If we use the same scheme as in Theorem 3.3.2, we get the lower bound

C ≥ 1

2
log

(
1 +

e2α

2πeν

)
, (3.216)

where α = limn
1
n

log Vol(Kn). However, by Lemma 2.2.3, we have the inequality
−Λ∗(1) ≥ α. Thus, this bound is weaker than the bound in Theorem 3.9.7, and we
need to devise a slightly different achievable scheme.

Fix a 1 > θ0 > 0. Suppose we pick a bnθ0c dimensional subspace of Rn uniformly
at random, and take the projection of Kn on this subspace. The results from Klain
& Rota [20] imply that the mean volume of the projection is related to the intrinsic
volumes of Kn as follows:

Mean volume of projection = µbnθc(Kn)
εbnθcεn−bnθc

εn

1(
n
bnθc

) (3.217)

where εj is the volume of the j-dimensional unit ball. This means that for every Kn,
there exists an bnθc dimensional subspace V such that

Volbnθc(Kn ⊥ V ) ≥ µbnθ0c(Kn)
εbnθ0cεn−bnθ0c

εn

1(
n
bnθ0c

) . (3.218)

Let W be V ⊥. Every point xn ∈ Kn can be expressed in terms of its orthogonal
projections on V and W as, say xnV + xnW . Choose a distribution of Xn supported on
Kn such that Xn

V is uniformly distributed on Kn ⊥ Vn. We have the lower bound on
capacity,

nC ≥ I(Xn;Y n) (3.219)

≥ I(Xn
V ;Y n

V ) (3.220)

= h(Y n
V )− bnθ0c

2
log 2πeν. (3.221)

This gives

C ≥ h(Y n
V )

n
− bnθ0c

2n
log 2πeν, (3.222)
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which upon taking a lim sup implies

C ≥ lim sup
n

h(Y n
V )

n
− bnθ0c

2n
log 2πeν (3.223)

= lim sup
n

h(Y n
V )

n
− θ0

2
log 2πeν. (3.224)

An application of the entropy power inequality gives

e
2h(Y nV )

bnθ0c ≥ e
2h(XnV )

bnθ0c + e
2h(ZnV )

bnθ0c , (3.225)

which implies

h(Y n
V )

n
≥ bnθ0c

2n
log
(
e

2 log Vol(Kn⊥Vn)
bnθ0c + 2πeν

)
(3.226)

We now take the limit as n → ∞ and evaluate the right hand side. This essentially
boils down to computing the limit

lim
n

2 log Vol(Kn ⊥ V )

bnθ0c
.

By the choice of V , we have from inequality (3.218)

1

n
log Vol(Kn ⊥ V ) ≥ 1

n
log

(
µbnθ0c(Kn)

εbnθ0cεn−bnθ0c
εn

1(
n
bnθ0c

)) (3.227)

=
1

n
log µbnθ0c(Kn) +

1

n
log

Γ(n
2

+ 1)

Γ( bnθ0c
2

+ 1)Γ(n−bnθ0c
2

+ 1)
− 1

n
log

(
n

bnθ0c

)
(3.228)

Taking the limit as n → ∞ and using the pointwise convergence of an(θ) defined in
equation (3.199), we arrive at

lim
n

1

n
log Vol(Kn ⊥ V ) ≥ −Λ∗(θ0) +

H(θ0)

2
−H(θ0) (3.229)

= −Λ∗(θ0)− H(θ0)

2
. (3.230)

Substituting in inequality (3.226),

lim sup
n

h(Y n
V )

n
≥ θ0

2
log

(
e
− 2
θ0

Λ∗(θ0)−H(θ0)
θ0 + 2πeν

)
. (3.231)

This gives the lower bound on capacity,

C ≥ θ0

2
log

1 +
e
− 2
θ0

Λ∗(θ0)−H(θ0)
θ0

2πeν

 . (3.232)
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Since this lower bound holds for any choice of θ0 < 1, we can take the limit as θ0 → 1
and conclude

C ≥ 1

2
log

(
1 +

e−2Λ∗(1)

2πeν

)
. (3.233)

Proof of Theorem 3.9.8. Theorem 3.9.6 establishes the upper bound

C ≤ A(ν)− 1

2
log 2πeν. (3.234)

Note that A(0) = −Λ∗(1) and A is continuous at ν = 0. Thus, as ν → 0 we can write
the upper bound as

C ≤ −Λ∗(1)− 1

2
log 2πeν + ε1(ν), (3.235)

where ε1(ν)→ 0 as ν → 0.
Theorem 3.9.7 establishes the lower bound

C ≥ 1

2
log

(
1 +

e−2Λ∗(1)

2πeν

)
(3.236)

= −Λ∗(1)− 1

2
log 2πeν +

1

2
log

(
1 +

2πeν

e−2Λ∗(1)

)
(3.237)

= −Λ∗(1)− 1

2
log 2πeν + ε2(ν) (3.238)

where ε2(ν)→ 0 as ν → 0.
Equations (3.235) and (3.238) lead to the conclusion that as ν → 0, the capacity

C is given by

C = −Λ∗(1)− 1

2
log 2πeν + ε(ν), (3.239)

for an error term ε(ν) which tends to 0 as ν tends to 0.

3.10 Conclusion

In this chapter, we studied in detail an AWGN channel with a power constraint moti-
vated by energy harvesting communication systems, called the (σ, ρ)-power constraint.
Such a power constraint induces an infinite memory in the channel. In general, finding
capacity expressions for channels with memory is hard, even if we allow for n-letter ca-
pacity expressions. However, in this particular case, we are able to exploit the following
geometric properties of {Sn(σ, ρ)}:

A : Sm+n(σ, ρ) ⊆ Sn(σ, ρ)× Sm(σ, ρ),

B : [Sm(σ, ρ)× 0k]× [Sn(σ, ρ)× 0k] ⊆ Sm+n+2k(σ, ρ), when k = dσ
ρ
e.
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Property (A) allowed us to upper-bound channel capacity, and property (B) allowed
us to lower-bound the same. In Section 3.2, we used these two properties to establish
an n-letter capacity expression.

The main contribution of Section 3.3 was the EPI based lower bound. To arrive at
this lower bound, we used the n-letter capacity expression from Section 3.2, and the
following property:

C : The limit limn
1
n

log Vol(Sn(σ, ρ)) exists, and is finite.

For most reasonable power constraints, an exponential volume growth rate as defined
in property C can be shown to exist. The case of (σ, ρ)-constraints was especially
interesting, because it was fairly easy to evaluate v(σ, ρ) using the numerical method
in Section 3.5. We attribute this ease to the existence of a state σn, which is a sin-
gle parameter that encapsulates all the relevant information about the history of the
sequence. We used the computed value of v(σ, ρ) to plot the EPI based lower bound.
Our results show that energy harvesting communication systems have significant ca-
pacity gains even for a small battery. We then established an upper bound on capacity
using the exponential growth rate of volume of the Minkowski sum of Sn(σ, ρ) and
a ball of radius

√
nν. For the special case of σ = 0, which is the peak power con-

strained AWGN channel, we explicitly evaluated this upper bound. This enabled us
to derive new asymptotic capacity results for such a channel. We also established a
new upper bound on the entropy h(X + Z), when X is amplitude-constrained, and Z
is variance-constrained. The analysis for the case of σ > 0 was more involved because
the intrinsic volumes of Sn(σ, ρ) are not known in a closed form. Using a new notion
of sub-convolutive sequences, we showed that the logarithms of the intrinsic volumes
of {Sn(σ, ρ)} when appropriately normalized, converge to a limit function. We then
established an asymptotic capacity result in terms of this limit function. Our analysis
crucially depended on both, property (A) and property (B).

In Section 3.9 we described a general framework to analyze power constrained
AWGN channels, and analyzed the two special cases of block power constraints and
super-convolutive power constraints. The block power constraint is essentially a vector
version of the peak power constraint. We extended the techniques from Section 3.7
and established a capacity upper bound, and asymptotic capacity results for an AWGN
channel with such constraints.

Note that for the (σ, ρ)-constraints, we had to rely on both properties (A) and
(B) to prove the capacity upper bound. Many constraints, such as the average power
constraint, do not satisfy property (A). We considered an AWGN channel with a super-
convolutive constraint to study precisely such a scenario; when (B) alone is satisfied.
We showed that not having property (A) is not a big handicap. We proved upper and
lower bounds on capacity, as well as asymptotic capacity results for such a constraint.
However, these bounds are not in terms of the exponential growth of volume, but in
terms of −Λ∗(1). For all the examples we considered, the term −Λ∗(1) equalled the



CHAPTER 3. THE (σ, ρ)-POWER CONSTRAINED AWGN CHANNEL 62

exponential growth rate of volume. As yet, we do not have an example of a super-
convolutive power constraint where this equality doesn’t hold, but we conjecture that
it is possible to find such an example.
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Chapter 4

Geometry of typical sets

Among the relations between information theory and geometry, the relation between
differential entropy and volume is the most popular. Given a real-valued random
variable X with density pX and differential entropy h(X), one way to define its ε-
typical set, T̂ εn in dimension n, is

{xn ∈ Rn |e−n(h(X)+ε) ≤ pXn(xn) ≤ e−n(h(X)−ε)}, (4.1)

where pXn(xn) =
∏
pX(xi). A well-known fact [7] is that for all large enough n, the

volume, |T̂ εn |, satisfies

(1− ε)en(h(X)−ε) ≤ |T̂ εn | ≤ en(h(X)+ε). (4.2)

Thus, the exponential growth rate of the volume |T̂ εn | is determined by the differential
entropy h(X). This connection between differential entropy and volume extends to
inequalities. For instance, the Brunn-Minkowski inequality [14] states that any two
compact convex sets A,B ⊆ Rn satisfy

|A|1/n + |B|1/n ≤ |A⊕B|1/n,

where A ⊕ B is the Minkowski sum [30] of A and B. This is strikingly similar to the
entropy power inequality (EPI) [33], which states that any two independent Rn-valued
random variables X and Y satisfy

e2h(X)/n + e2h(Y)/n ≤ e2h(X+Y)/n.

This connection has been explored in detail in [14] and [5].
Consider the sequence of typical sets {T̂ εn }n≥1 defined by the inequalities in (4.1).

The bounds in (4.2) describe differential entropy in terms of a specific geometric func-
tion (the volume) of {T̂ εn }n≥1. It is also possible to consider other functions, apart
from volume, for instance intrinsic volumes. It is natural to ask what the G-function of
typical sets is; i.e. how the intrinsic volumes of a sequence of typical sets such as {T̂ εn }
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scales with n. This question does not always make sense, since intrinsic volumes are
not defined for arbitrary sets. We therefore consider the following setting: Let X be a
real-valued random variable with a log-concave density pX(X) := e−Φ(x), for a convex
function Φ : R → R ∪ +∞. For each n ≥ 1 and ε > 0, define the one-sided ε-typical
set as follows:

T εn = cl
(
{xn ∈ Rn | pXn(xn) ≥ e−n(h(X)+ε)}

)
(4.3)

= cl

(
{xn ∈ Rn |

n∑
i=1

Φ(xi) ≤ n(h(X) + ε)}
)
, (4.4)

where cl stands for closure of a set. The definition of T εn and the convexity of
∑n

i=1 Φ(xi)
immediately imply that T εn is a compact convex set, hence belongs in Kn. Let us denote
the intrinsic volumes of T εn by {µεn(0), . . . , µεn(n)}. As noted earlier, the nth intrinsic
volume is simply the volume, and its exponential growth rate is determined by the
differential entropy since (4.2) continues to hold for T εn . This is stated as

h(X) = lim
ε→0+

lim
n→∞

1

n
log µεn(n). (4.5)

We look at the limit

hθ(X) := lim
ε→0+

lim
n→∞

1

n
log µεn(bnθc), (4.6)

for θ ∈ [0, 1]. Note that for θ = 1, we have h1(X) = h(X) from equations (4.5)
and (4.6). The value of h0(X) can be seen to equal 0, since the 0th intrinsic volume
(i.e. the Euler characteristic) is always 1 for non-empty compact convex sets [20]. For
θ ∈ (0, 1), the existence of the limit in equation (4.6) is not a priori obvious. For
each value of θ ∈ [0, 1], the quantity hθ(X) provides the exponential growth rate of
the bnθcth intrinsic volume of typical sets, and may be viewed as a generalization of
differential entropy for log-concave distributions. We look at two examples where the
limit hθ(X) can be evaluated in a closed form:

Example 3. Let X ∼ N (0, ν). The one-sided ε-typical set in this case is simply the
n-dimensional ball of radius nν(1 + 2ε), denoted by Bn(

√
nν(1 + 2ε)). The intrinsic

volumes such a ball admit a closed form expression [20], and the jth intrinsic volume
is given by

Vj

(
Bn(

√
nν(1 + 2ε))

)
=

(
n

j

)
ωj
ωn−j

(nν(1 + 2ε))j/2 (4.7)

where ωi is the volume of the i-dimensional unit ball. Substituting j = bnθc, and
taking the desired limits yields

hθ(X) = H(θ) +
θ

2
log 2πeν +

1− θ
2

log(1− θ), (4.8)

where H(θ) = −θ log θ − (1− θ) log(1− θ) is the binary entropy function.
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Example 4. Let X be a random variable distributed uniformly in the interval [0, A].
For all ε > 0, the one-sided ε-typical set for X is the n-dimensional cube [0, A]n. The
jth intrinsic volume of this cube [20] is given by

Vj ([0, A]n) =

(
n

j

)
Aj. (4.9)

Substituting j = bnθc and taking the desired limits gives

hθ(X) = H(θ) + θ logA. (4.10)

For an arbitrary log-concave distribution, such an explicit calculation is not possible
as the intrinsic volumes of its typical sets are not available in closed form. We will show
that for all log-concave distributions, the limit hθ(X) exists for each value of θ ∈ [0, 1]
and hθ(X) viewed as a function of θ is continuous on [0, 1].

In Section 4.1, we show that the sequence of intrinsic volumes of {T εn } is super-
convolutive and apply results from Section 2.2 to these sequences. In Section 4.2, we
take the limit of (Λε)∗ as ε→ 0+ and show that the limit function Λ∗ is a continuous,
concave function, which equals hθ.

4.1 Large deviations type convergence of intrinsic

volumes

Let X be a real-valued random variable with density pX(X). We assume pX(X) is
log-concave, hence is given by pX(x) = e−Φ(x) for a convex function Φ : R→ R ∪+∞.
Note that

∫
R e
−Φ(x)dx = 1, so Φ(x)→ +∞ as x→ ±∞.

Lemma 4.1.1. The sequence of sets {T εn }n≥1 satisfies

T εm × T εn ⊆ T εm+n, for all m,n ≥ 1. (4.11)

Proof. Let xm ∈ int(T εm) and yn ∈ int(T εn ), where int stands for interior of a set. We
have

m∑
i=1

Φ(xi) ≤ m(h(X) + ε) and
n∑
i=1

Φ(yi) ≤ n(h(X) + ε).

Adding the above inequalities, zm+n = (xm, yn) satisfies

m+n∑
i=1

Φ(zi) ≤ (m+ n)(h(X) + ε),

which implies that zm+n ∈ int(T εm+n). The result for boundary points follows by
considering appropriate limiting sequences.
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As described in Chapter 1, the sequence of intrinsic volumes {µεn}n≥1 forms a super-
convolutive sequence. The convergence properties of these sequences have been studied
in detail in Section 2.2. Before we state our main theorem for this section, we introduce
some notation. Define

Gε
n(t) = log

n∑
j=0

µεn(j)ejt, and gεn(t) =
Gε
n(t)

n
. (4.12)

The super-convolutivity of {µεn} implies that

Gε
m(t) +Gε

n(t) ≤ Gε
m+n(t), ∀m,n ≥ 1 and ∀t. (4.13)

Thus, for each t the sequence {Gε
n(t)} is super-additive, and by Fekete’s lemma [35],

the limit limn g
ε
n(t) exists, though it is possibly +∞. Define

Λε(t) := lim
n→∞

gεn(t), (4.14)

and let (Λε)∗ be the convex conjugate [3] of Λε.
We first check that the super-convolutive sequence of intrinsic volumes {µεn(·)}n≥1

satisfies properties (A), (B), (C) and (D) described in Section 2.2, so that we can use
the convergence results contained therein.

Lemma 4.1.2 (Proof in Appendix D.1.1). For all n ≥ 1, we have µεn(0) > 0 and

µεn(n) > 0. Let α := limn
log µεn(n)

n
, β := limn

logµεn(0)
n

, and γ := limn g
ε
n(0). Then

α, β, γ <∞.

Applying Theorem 2.2.2 and Theorem 2.2.4 directly, we arrive at

Theorem 4.1.3. Define a sequence of measures {µεn/n}n≥1 supported on [0, 1] by

µεn/n

(
j

n

)
:= µεn(j), for 0 ≤ j ≤ n.

Let I ⊆ R be a closed set and F ⊆ R be an open set. Then

lim sup
n→∞

1

n
log µεn/n(I) ≤ − inf

x∈I
(Λε)∗ (x), and (4.15)

lim inf
n→∞

1

n
log µεn/n(F ) ≥ − inf

x∈F
(Λε)∗ (x). (4.16)

4.2 The limit function −Λ∗

In Section 4.1, we showed that the function (Λε)∗ plays the role of a large deviations
rate function for the sequence of intrinsic volumes of {T εn }. We now take the limit of
(Λε)∗ as ε→ 0+, to obtain a limit function which is independent of ε and depends only
on the starting density pX . We show the following theorem:
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Theorem 4.2.1. Define the function −Λ∗ : [0, 1]→ R as the pointwise limit of − (Λε)∗

as ε→ 0+:
− Λ∗(θ) := lim

ε→0+
− (Λε)∗ (θ), for θ ∈ [0, 1]. (4.17)

Then −Λ∗ is a continuous, concave function on [0, 1].

Proof. From the definition of a typical set (4.3), it is easy to see that for ε1 < ε2, the
corresponding typical sets satisfy T ε1n ⊆ T ε2n , for all n ≥ 1. Using the monotonicity
of intrinsic volumes with respect to inclusion and Theorem 4.1.3, we have − (Λε1)∗ ≤
− (Λε2)∗. Thus, for each θ ∈ [0, 1], the value of − (Λε)∗ (θ) monotonically decreases as
ε → 0+. To ensure that the quantity does not tend to −∞ and establish a pointwise
convergence result, we first provide a lower bound. From Lemma 2.2.3, we have

− (Λε)∗ (0) ≥ − (Ψε)∗ = 0, and (4.18)

− (Λε)∗ (1) ≥ − (Ψε)∗ (1) ≥ h(X)− ε (4.19)

By the concavity of − (Λε)∗, we obtain the linear lower bound − (Λε)∗ (θ) ≥ θ(h(X)−ε),
for all θ ∈ [0, 1]. Thus, as ε→ 0+, the value of− (Λε)∗ may be uniformly lower-bounded.
We then use the following lemma:

Lemma 4.2.2 (Proof in Appendix D.2.1). Let {fn} be a sequence of continuous, con-
cave functions on [a, b], converging pointwise and in a monotonically decreasing manner
to a function f . Then f is a continuous, concave function on [a, b].

A simple application of Lemma 4.2.2 concludes the proof.

Theorem 4.1.3 provides convergence in the large deviations sense. However, such
convergence does not necessarily imply pointwise convergence, as desired in equation
(4.6). Furthermore, as evidenced by Remark 2.2.5, the value of −Λ∗ at 0 and 1 is
unknown; we only know that −Λ∗ is lower-bounded by 0 and h(X) at these points.
Since we want a smooth extension of the differential entropy function over [0, 1], we
would like to show −Λ∗(1) = h(X) and −Λ∗(0) = 0, and that the function hθ from
equation (4.6) is simply −Λ∗. We address these points in the following theorem:

Theorem 4.2.3. The function −Λ∗ satisfies

lim
ε→0+

lim
n→∞

1

n
log µεn(bnθc) = −Λ∗(θ), ∀θ ∈ [0, 1], (4.20)

where µεn(bnθc) is the bnθcth intrinsic volume of T εn . In particular, −Λ∗(0) = 0 and
−Λ∗(1) = h(X).

Proof. The proof consists of three separate parts based on the value of θ: (a) θ = 0,
(b) θ ∈ (0, 1), and (c) θ = 1.

Proof of (a): Let ε > 0 be fixed. We will show that − (Λε)∗ (0) = 0. This implies
that −Λ∗(0), which is the pointwise limit of − (Λε)∗ as ε→ 0+, also equals 0.
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Since Φ(x)→ ±∞ as |x| → ±∞, we may find constants c1 > 0 and c2 such that

Φ(x) ≥ c1|x|+ c2, for all x ∈ R. (4.21)

It is easy to check that for A = h(X)+ε−c2
c1

, the sequence of regular crosspolytopes
{Cn}∞n=1 defined by

Cn := {xn ∈ Rn |
n∑
i=1

|xi| ≤ An},

satisfies the containment T εn ⊆ Cn, for n ≥ 1.
Furthermore, the sequence {Cn}n≥1 satisfies the same inclusion relation given in

Lemma 4.1.1 for {T εn }:
Cm × Cn ⊆ Cm+n, ∀m,n ≥ 1.

Following a similar sequence of steps as for {T εn }, one may check that the sequence
of intrinsic volumes of {Cn} converges in the large deviation sense to a function
−χ∗ : [0, 1]→ R. It is possible to use the closed-form expression for intrinsic volumes
of Cn [2] to show that −χ∗(0) = 0, which we show in the following lemma:

Lemma 4.2.4 (Proof in Appendix D.2.2). The function −χ∗, which is the G-function
of {Cn} is continuous at 0; i.e. −χ∗(0) = 0.

The inclusion T εn ⊆ Cn leads to the inequality − (Λε)∗ ≤ −χ∗. At θ = 0, this yields
− (Λε)∗ (0) ≤ −χ∗(0) = 0. Combined with the lower bound − (Λε)∗ ≥ 0 from Lemma
2.2.3, we have − (Λε)∗ (0) = 0.

Proof of (b): Let ε > 0 be fixed. Let the intrinsic volumes of T εn be given by
{µεn(0), . . . , µεn(n)}. We define a function an : [0, 1] → R by linearly interpolating the
values at an(j/n) for 0 ≤ j ≤ n, where an(j/n) is given by

an

(
j

n

)
=

1

n
log µεn (j) , for 0 ≤ j ≤ n. (4.22)

By exactly the same techniques as in Lemma 3.8.6, we may show that for θ ∈ (0, 1)
the functions {an} converge pointwise to − (Λε)∗ (θ). This is shown by using the fact
that intrinsic volumes form a log-concave sequence [23], in conjunction with the large
deviations convergence from Theorem 4.1.3. Thus, for θ ∈ (0, 1), equation (4.22)
implies

lim
n→∞

1

n
log µεn(bnθc) = lim

n→∞
an(θ) = − (Λε)∗ (θ). (4.23)

Taking the limit as ε→ 0+, we obtain

lim
ε→0+

lim
n→∞

1

n
log µεn(bnθc) = −Λ∗(θ). (4.24)



CHAPTER 4. GEOMETRY OF TYPICAL SETS 69

Proof of (c): Proving −Λ∗(1) = h(X) is more challenging than the previous cases.
Log-concavity and large deviations type convergence alone are insufficient to pin down
the value of −Λ∗(1), as illustrated by remark 2.2.5. We use the following inequality for
intrinsic volumes, proved in [4]:

Theorem 4.2.5. Let K ∈ Cn and let the intrinsic volumes of K be denoted by
{V0(K), . . . , Vn(K)}. Let {e1, . . . , en} be the standard basis for Rn. Let K|e⊥i be the set
obtained by orthogonally projecting K on the (n− 1)-dimensional subspace spanned by
{e1, . . . , ei−1, ei+1, en}. The following inequality holds:

Vm(K) ≤ 1

n−m
n∑
i=1

Vm(K | e⊥i ), (4.25)

provided the intrinsic volumes of K|e⊥j satisfy the condition

(∗) : Vm(K | e⊥j ) ≤ 1

n−m
n∑
i=1

Vm(K | e⊥i ), ∀j ≤ n. (4.26)

Ignoring (∗) for the moment, we iterate inequality (4.25) by applying it to each of
the sets K | e⊥i , and then applying it again to the sets K | {ei, ej}⊥ and continuing in
a similar way, to arrive at the inequality

Vm(K) ≤
∑

1≤i1<···<in−m≤n

Vm(K | {ei1 , . . . , ein−m}⊥). (4.27)

We claim that condition (∗) is satisfied by all sets of the form T εn | {ei1 , . . . , eir}⊥.
Without loss of generality, consider A := T εn | {e1, . . . , er}⊥. If M = maxx pX(x), the
set A | e⊥r+1 consists of (xr+2, . . . , xn) ∈ Rn−r−1 such that

n∏
j=r+2

pX(xj) ≥
e−n(h(X)+ε)

M r+1
. (4.28)

From this expression, we observe that for any j > 1, the set A | e⊥r+j has a similar
description and is simply a rotation of the set A | e⊥r+1. Since intrinsic volumes are
invariant under rotations, we conclude that the sets {A | e⊥r+j} possess the same mth

intrinsic volume for all 1 ≤ j ≤ n− r. If the value of the mth intrinsic volumes equals
a > 0, condition (∗) for set A is a ≤ a(n−r)

n−r−m , which holds trivially. Note also that when

r = n−m− 1, the sets A | e⊥r+j are m-dimensional, so using inequality (4.28), we may
conclude that

Vm(A | e⊥r+j) = Vol(A | e⊥r+j) ≤ en(h(X)+ε)Mn−m. (4.29)

For θ ∈ (0, 1), choose m = bnθc and K = T εn . Substituting in inequality (4.27) and
using inequality (4.29), we obtain

µεn(bnθc) ≤
(

n

bnθc

)
en(h(X)+ε)Mn−bnθc.
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Taking logarithms of both sides and dividing by n, we obtain

1

n
log µεn(bnθc) ≤ 1

n
log

((
n

bnθc

)
en(h(X)+ε)Mn−bnθc

)
.

Taking the limit as n→∞, and using part (b), we obtain

− (Λε)∗ (θ) ≤ H(θ) + h(X) + ε+ (1− θ) logM, (4.30)

where H(θ) = −θ log θ− (1− θ) log(1− θ) is the binary entropy function. We now take
the limit as ε→ 0+, and use Theorem 4.2.1 to obtain

− Λ∗(θ) ≤ H(θ) + h(X) + (1− θ) logM. (4.31)

Taking the limit θ → 1 and using continuity of −Λ∗ from Theorem 4.2.1, we have
−Λ∗(1) ≤ h(X). Combined with the lower bound from Lemma 2.2.3, which asserts
that −Λ∗(1) ≥ h(X), we may conclude −Λ∗(1) = h(X). This completes the proof.

4.3 Alternate definitions of typical sets

For a log-concave random variable X, we defined its one-sided ε-typical set as

T εn = {xn ∈ Rn | pXn(xn) ≥ exp (−n(h(X) + ε))} .

We did this because of two reasons. Firstly, a one-sided typical set is larger that
the traditional two-sided set, but this difference is negligibly small. Thus a one-sided
typical set still satisfies the property that its growth rate is approximately the entropy
of X, which was what we desired. Secondly, a one-sided typical set is convex . This
enabled us to use convex geometric concepts such as intrinsic volumes in relation to
these sets. However, there are alternative definitions of typical sets which achieve both
these purposes, but are not amenable to the theory we have developed because they
are not super-convolutive. A simple example of such an alternate definition may be

Tn = arg min
A∈Cn,P (A)≥0.99

|A| (4.32)

One may check for log-concave random variables, the above definition does indeed yield
convex sets whose volume growth rate is the entropy of X. The constant 0.99 may
be replaced by any other constant between 0 and 1 to achieve the same result. It is
natural to examine if the G-function of this alternate definition exists, and whether it
equals −Λ∗. In this section, we consider a more general class of sequences of convex
typical sets and show that the G-function of all the sequences is −Λ∗.
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Theorem 4.3.1. Let X be a non-uniform log-concave random variable. For ε > 0,
define the following sequences of sets

T εn = {xn | pXn(xn) ≥ exp(−n(h(X) + ε))} (4.33)

T εn = {xn | pXn(xn) ≥ exp(−n(h(X)− ε))}. (4.34)

Let {Tn} be any sequence of compact convex sets. Suppose that for any ε > 0 there
exists an N(ε) such that for all n > N(ε) the following inclusion holds:

T εn ⊆ Tn ⊆ T
ε

n. (4.35)

Then the G-function of {Tn} equals −Λ∗.

Remark 4.3.2. We exclude uniform random variables because T εn = φ for all n and all
ε > 0.

Proof. Note that it is enough to show that the G-function of {T εn} exists for all small
enough ε, and tends to −Λ∗ as ε → 0. Using the same proof idea as in Lemma 4.1.1,
we see that{T εn} is a super-convolutive sequence. Using the non-uniformity of X, we
observe that for all small enough ε the set T εn 6= φ for all n. Furthermore, noting that
T εn ⊆ T

ε

n we see that the intrinsic volumes of {T εn} satisfy all the required convergence
properties as in Lemma 4.1.2. Thus, the G-function of {T εn} exists, although it may
not be continuous at 1 (continuity at 0 follows since it is bounded above by −Λ∗.)

We will now show that G-functions of {T εn} and {T εn}, denoted by Gε and Gε, cannot
differ by too much. Our strategy is to show that it is possible to “bloat” {T εn} by a
small fraction, so that the bloated set will contain {T εn}.

Let pX(x) = exp(−U(x)), and assume without loss of generality that U achieves its
minimum at 0. Note that h(X) =

∫
U(x) exp(U(x))dx, and thus h(X) ≥ U(0). This

inequality is strict when X is not uniform. Assume ε < h(X)−U(0). In this proof we
assume that U is differentiable and is supported on R, although the proof can be easily
adapted to the case when it is not. The two sequences of sets may be equivalently
described as

T εn = {xn |
∑

U(xi) ≤ n(h(X) + ε)} (4.36)

T εn = {xn |
∑

U(xi) ≤ n(h(X)− ε)}. (4.37)

For α > 0, consider the map that takes xn → (1 + α)xn. Let xn be a point on the
boundary of T εn satisfying

∑
U(xi) = n(h(X)− ε). We have the inequalities∑

U(xi(1 + α)) ≥
∑

U(xi) +
∑

αxiU
′(xi)

≥ n(h(X)− ε) + α
∑(

U(xi)− U(0)
)

≥ n(h(X)− ε) + nα(h(X)− ε− U(0))
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Now for a choice of α = 2ε
h(X)−ε−U(0)

, we will have∑
U(xi(1 + α)) ≥ n(h(X) + ε),

that is, xn(1 +α) /∈ T εn. Note that α→ 0 as ε→ 0. Thus, for this choice of α we must
have

T εn ⊆ (1 + α)T εn.
This implies

Gε ≤ log(1 + α) + Gε.
We also have Gε ≤ Gε, giving

Gε ≤ log(1 + α) + Gε ≤ log(1 + α) + Gε.

Since and limε→0 Gε = −Λ∗, we can take the limit as ε→ 0 to conclude that

lim
ε→0
Gε = −Λ∗.

This concludes the proof.

4.4 Conclusion

The starting point of our work in this chapter was the relation between the volume of
a typical set and the differential entropy of the associated distribution: Entropy is the
exponential growth rate of the volume of typical sets. We subsequently generalized this
relation beyond volumes to intrinsic volumes. Since intrinsic volumes are not defined
for arbitrary sets, we considered log-concave distributions and defined their one-sided
typical sets {T εn }, which satisfy a crucial inclusion property:

(P) : T εm × T εn ⊆ T εm+n,

hence implying that the intrinsic volumes of such sets are super-convolutive:

(Pµ) : µεm ? µ
ε
n ≤ µεm+n.

We analyzed the convergence properties of such super-convolutive sequences. These
convergence results in combination with certain geometric inequalities lead to our main
result: There exists a continuous function hθ : [0, 1]→ R, such that for all log-concave
random variables X, we have h0(X) = 0, h1(X) = h(X), and hθ(X) is the growth
rate of the nθth intrinsic volume of the typical sets of X. Having shown the existence
of hθ(X), it remains to be seen what properties hθ satisfies. We outline some future
directions worth pursuing in Chapter 5.
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Chapter 5

Discussion

Information theory and geometry closely parallel each other, and there is a huge po-
tential for exchange of ideas amongst these fields. In this dissertation, we have shown
how to reshape existing results in convex geometry so that they can be applied in an
information-theoretic setting. In geometry, we often deal with sets in a fixed dimen-
sion whereas in information theory the dimension is not fixed and tends to infinity.
We therefore studied certain geometric properties of sequences of sets instead of just
one fixed set. The properties we chose to study, namely intrinsic volumes, are a funda-
mental component of convex geometry and emerge as natural candidates to analyze.
Given a sequence of sets {Kn}, we described a recipe to find its G-function; i.e. the
growth rate of its intrinsic volumes:

1. Determine whether {Kn} is sub or super-convolutive. As shown in Chapter 3,
there is some freedom in this step as the sequence can also be “approximately”
sub/super-convolutive.

2. Use convergence results for sub/sup-convolutive sequences to establish that for
θ ∈ (0, 1), the normalized logarithm of the nθth intrinsic volume converges to a
certain concave function −Λ∗(θ).

3. Show that −Λ∗ evaluated at 0 equals 0, and at 1 equals the growth rate of volume
of {Kn}. There is as yet no standard procedure to achieve this step. In both
the problems we considered, we had to use different techniques which relied on
identifying key structural properties of the sequence being considered.

Once the existence of such a continuous G-function is shown, then one may use a
high dimensional version of Steiner’s formula from convex geometry to find volumes
of parallel bodies of {Kn} in terms of its G-function. This high dimensional Steiner’s
formula appears to be very useful in information theoretic applications, in particular
to establish upper bounds on channel capacities. There are a number of open problems
and future directions which are worth pursuing. We briefly describe some of them here.
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5.1 Jump problem

This problem relates to step 3 in the recipe described above. In Chapter 3, to show that
−Λ∗ evaluated at the endpoints 0 and 1 equalled the desired values 0 and v(σ, ρ) our
strategy involved showing that the sequence Sn(σ, ρ) is both sub and (approximately)
super convolutive. For the typical sets considered in Chapter 4, such a strategy did
not work. In order to resolve the value of −Λ∗ at the endpoints, we relied on two
results. First, we showed that every typical set lies inside a regular crosspolytope
and established that −Λ∗(0) = 0. Then we used a Loomis-Whitney type projection
inequality for intrinsic volumes to show that −Λ∗(1) = h(X). In both these problems,
the methods used to rule out discontinuities, or jumps, in the G-function required using
highly problem-specific tools. We believe that there would be a considerable benefit in
developing a procedure to get rid of these discontinuities which is general enough so
as to be applicable to a large class of problems. In particular, the following conjecture
regarding the G-function of super-covolutive sets is still open:

Conjecture 1. Let {Kn} be a super-convolutive sequence such that the corresponding
sequence of intrinsic volumes satisfies properties (A), (B), (C), (D) from Section 2.2.
Then the G-function of {Kn} is continuous.

So far in all the examples of super-convolutive sequences of sets that we have en-
countered, the G-function has been continuous.

5.2 Intrinsic EPI problem

In Chapter 4, we showed the existence of hθ(X) for a log-concave random variable X,
which describes the geometry of the typical sets of X and leads to a generalization of its
differential entropy. Having shown the existence, we would now like to discover what
properties hθ satisfies. As an example, we conjecture a version of the EPI inspired by
the complete Brunn-Minkowski inequality for intrinsic volumes [30] which states that
for A,B ∈ Cn and m ≥ 1,

Vm(A)1/m + Vm(B)1/m ≤ Vm(A⊕B)1/m. (5.1)

A “complete” EPI could then be conjectured as:

Conjecture 2. For real valued log-concave random variables X and Y , the following
inequality holds:

e
2hθ(X)

θ + e
2hθ(Y )

θ ≤ e
2hθ(X+Y )

θ , (5.2)

where we recover the usual EPI for θ = 1.

We believe a promising approach towards resolving this conjecture is that pursued
in Szarek & Voiculescu [37]. In this paper, the authors provide an alternate proof of
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the EPI by proving a “restricted” version of Brunn-Minkowski inequality, stated as
follows:

Theorem 5.2.1 (Restricted Brunn-Minkowski inequality). Let A,B ⊂ Rn. For a set
Θ ⊆ A×B, the restricted Minkowski sum (with respect to Θ) of A and B is the set

A+Θ B = {x+ y | (x, y) ∈ Θ}.

For any ε > 0, there exists a δ > 0 such that the approximate Brunn-Minkowski
inequality

|A+Θ B|2/n ≥ (1− ε)
(
|A|2/n + |B|2/n

)
(5.3)

holds whenever the set Θ is large enough to satisfy

|Θ| ≥ (1− δ)n|A×B|. (5.4)

We conjecture a version of restricted complete Brunn-Minkowski inequality, which
implies Conjecture 2:

Conjecture 3. Let A,B ∈ Cn, and let Θ ⊆ A × B be a convex set. The restricted
Minkowski sum (with respect to Θ) of A and B is the convex set

A+Θ B = {x+ y | (x, y) ∈ Θ}.

For any ε > 0, there exists a δ > 0 such that the approximate complete Brunn-
Minkowski inequality

Vi(A+Θ B)2/i ≥ (1− ε)
(
Vi(A)2/i + Vi(B)2/i

)
(5.5)

holds holds for all i ≥ 1, whenever the set Θ is large enough to satisfy

|Θ| ≥ (1− δ)n|A×B|. (5.6)

5.3 Subset problem

The subset problem is motivated by the typical set problem from Chapter 4. A very
general definition of a convex typical sets can be as follows:

Definition 2. For a log-concave random variable X, a sequence of convex sets {Tn} is
called typical if for all ε > 0, there exists an N(ε) such that for all n > N(ε) we have

Tn ⊆ T εn ,

where T εn is the usual one-sided typical set defined in equation (4.3). Furthermore,
{Tn} should satisfy

liminfn→∞P(Tn) > 0.
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It seems very likely that the G-functions of such alternative definitions of typical
sets also equals hθ(X). Theorem 4.3.1 supports this belief. This would also provide
additional evidence to the claim that hθ is an intrinsic property of the distribution,
and not something that depends on the way we define a typical set. It is as yet unclear
how to best approach this problem.

5.4 Other future directions

Our generalization of entropy in Chapter 4 only works for log-concave distributions.
Extending this definition for all distributions is an interesting direction. The main
roadblock towards this is the lack of suitable intrinsic volume functionals for arbitrary
sets. Although intrinsic volumes have been extended to some classes of nonconvex
sets, such as star shaped bodies [19], a general extension for arbitrary bodies does not
appear to exist.

Another possible direction is to redefine intrinsic entropy in a different way, which
does not rely on typical sets at all. As mentioned earlier, Crofton’s formula or Kubota’s
theorem related intrinsic volumes to the average size of lower dimensional projections
or slices of convex bodies. In a similar vein, perhaps the ith intrinsic entropy of a
distribution on Rn could be defined using the average “size” of a random projection of
a distribution. Here, a suitable substitute for size could be the entropy, or the entropy
power. So the ith intrinsic entropy of an Rn valued random variable X, not necessarily
log-concave could be

Vi(X) ∝
∫
G(n,i)

h(pX | V)dV , (5.7)

or

Vi(X) ∝
∫
G(n,i)

exp

{
2

i
h(pX | V)

}
dV , (5.8)

where G(n, i) is the collection of all i-dimensional subspaces of Rn, and h(pX | V ) is
the entropy of the projection (marginal) of pX on a subspace V .

Random constant-dimensional marginals of log-concave distributions have been
studied in the literature, for example in [21], where it is shown that most marginals are
approximately Gaussian. However not much is known about random nθ-dimensional
marginals of log-concave distribution. While interesting in itself, a concentration re-
sult for such distributions can also assist in simplifying the alternative approaches to
defining intrinsic entropy. Related to this, one may also study the volumes of random
nθ-dimensional projections of high-dimensional convex bodies. Some prior related work
for constant dimensional projections of the n-dimensional cube can be found in [26].
The expected volume of a random nθ-dimensional projection is known to be the nθ-th
intrinsic volume of the convex body, but not much is known about the distribution of
this volume. It would be interesting to see if the distribution concentrates around the
mean, and what rate it concentrates at as n becomes large.
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Appendix A

Convergence results for convex
functions

A.1 Pointwise and uniform convergence

Lemma A.1.1. Let {fn} be a sequence of continuous convex functions which converge
pointwise to a continuous function f on an interval [a, b]. Then fn converge to f
uniformly.

Proof. Let ε > 0. We’ll show that there exists a large enough N such that for all
n > N , ||fn − f ||∞ < ε.

The function f is continuous on a compact set, and therefore is uniformly con-
tinuous. Choose a δ > 0 such that |f(x) − f(y)| < ε/10 for |x − y| < δ. Let M
be such that (b − a)/M < δ. We divide the interval [a, b] into M intervals, whose
endpoints are equidistant. We denote them by a = α0 < α1 < · · · < αM = b. Since
fn(αi) → f(αi), there exists a Ni such that for all n > Ni, |fn(αi) − f(αi)| < ε/10.
Choose N = max(M,N0, · · · , NM).

Consider an x ∈ (αi, αi+1) for some 0 ≤ i < M , and let n > N . Using uniform
continuity of f , we have

f(αi)− ε/10 < f(x) < f(αi) + ε/10. (A.1)

Further, we also have

fn(αi) ≤ f(αi) + ε/10 , (by pointwise convergence at αi)

fn(αi+1) ≤ f(αi+1) + ε/10 , (by pointwise convergence at αi+1)

≤ f(αi) + 2ε/10 .(by uniform continuity of f)

Convexity of fn implies

fn(x) < max(fn(αi), fn(αi+1)) < f(αi) + 2ε/10. (A.2)
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Combining part of equation (A.1) and equation (A.2), we obtain

fn(x)− f(x) < 3ε/10. (A.3)

We’ll now try to upper bound fn(x). First consider the case when i ≥ 1. In this case
we have

αi−1 < αi < x < αi+1.

We write αi as a linear combination of x and αi−1, and use the convexity of fn to arrive
at

fn(αi) ≤
αi − αi−1

x− αi−1

fn(x) +
x− αi
x− αi−1

fn(αi−1).

This implies

x− αi−1

αi − αi−1

fn(αi)−
x− αi
αi − αi−1

fn(αi−1) ≤ fn(x).

Taking the infimum of the left side, we get

inf
x∈(αi,αi+1)

x− αi−1

αi − αi−1

fn(αi)−
x− αi
αi − αi−1

fn(αi−1) ≤ fn(x).

Note that since the LHS is linear in x, the infimum occurs at one of the endpoints of
the interval, αi or αi+1. Substituting, we get

fn(x) ≥ min (fn(αi), 2fn(αi)− fn(αi−1))

≥ min(f(αi)− ε/10, 2(f(αi)− ε/10)− f(αi−1)− ε/10)

≥ min(f(αi)− ε/10, 2f(αi)− f(αi−1)− 3ε/10)

≥ min(f(αi)− ε/10, 2f(αi)− f(αi)− ε/10− 3ε/10)

= f(αi)− 4ε/10. (A.4)

Combining inequality (A.4) with a part of inequality (A.1), we have

fn(x)− f(x) > −5ε/10. (A.5)

Combining (A.3) and (A.5) we conclude that for all x ∈ (α1, αM), and for all n > N ,

|fn(x)− f(x)| < ε/2. (A.6)

Now let x ∈ (α0, α1). We can establish inequality (A.3) for x ∈ (α0, α1) using the same
steps as above. We express α1 as a linear combination of x and α2 and follows the
steps as above to establish (A.5) for x ∈ (α0, α1). This shows that for all x ∈ [a, b],
||fn(x)− f(x)|| < ε/2 for all n > N , and concludes the proof.
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A.2 Infimum over open sets

Lemma A.2.1. Let {fn} be a sequence of continuous, convex functions on [a, b], con-
verging pointwise to f . Let F ⊆ [a, b] be any relatively open set. Then

lim
n

{
inf
x∈F

fn(x)
}

= inf
x∈F

f(x).

Proof. The function f , being a pointwise limit of convex functions, is also convex on
[a, b]. Since f(0) and f(1) are finite, it is possible to define a continuous convex function
f̃ such that

f̃(x) =


f(x) for a < x < b,

limx→a f(x) for x = a,

limx→b f(x) for x = b.

(A.7)

The function f̃ is continuous on a compact set, and therefore is uniformly continuous.
Let ε > 0 be given, and choose a δ > 0 such that |f̃(x)− f̃(y)| < ε/10 for |x− y| < δ.
We distinguish between two cases: (a) {a, b} ∩ F = φ, and (b) {a, b} ∩ F 6= φ. In case
(a), we choose a δ′ < δ such that F ∩ [a, a + δ′] = φ and F ∩ [b − δ′, b] = φ. This
means that F lies entirely in the set [a + δ′, b − δ′]. In case (b), we choose δ′ < δ
small enough such that either [a, a + δ′] and [b − δ′, b] lie wholly in F , depending on
whether a ∈ F and b ∈ F respectively. Let M be such that (b − a)/M < δ′. We
divide the interval [a, b] into M intervals, whose endpoints are equidistant. We denote
them by a = α0 < α1 < · · · < αM = b. For 1 ≤ i ≤ M − 1, limn fn(αi) → f̃(αi),
so there exists an Ni such that for all n > Ni, |fn(αi) − f̃(αi)| < ε/10. Choose
N = max(N1, · · · , NM−1).

We express the interval [0, 1] = A ∪B ∪ C where

A = [0, α1]

B = [α1, αM−1]

C = [αM−1, αM ].

Note that

inf
x∈F

fn(x) = inf

[
inf

x∈F∩A
fn(x), inf

x∈F∩B
fn(x), inf

x∈F∩C
fn(x)

]
:= inf[an, bn, cn].

If the intersection of F with either A,B or C is empty, we take the infimum to be +∞.

Since f is upper semi-continuous, we have f(0) ≥ f̃(0) and f(1) ≥ f̃(1). Thus,

inf
x∈F

f(x) = inf

[
inf

x∈F∩A
f̃(x), inf

x∈F∩B
f̃(x), inf

x∈F∩C
f̃(x)

]
:= inf[a, b, c].
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We will now show that for all x ∈ B,

|fn(x)− f̃(x)| < ε/2. (A.8)

Consider an x ∈ (αi, αi+1) for some 1 ≤ i ≤ M − 2, and let n > N . Using uniform
continuity of f̃ , we have

f̃(αi)− ε/10 < f̃(x) < f̃(αi) + ε/10. (A.9)

For 1 ≤ i ≤M − 2, we also have

fn(αi) ≤ f̃(αi) + ε/10 , (by pointwise convergence)

fn(αi+1) ≤ f̃(αi+1) + ε/10 , (by pointwise convergence)

≤ f̃(αi) + 2ε/10 (by uniform continuity.)

Convexity of fn implies

fn(x) < max(fn(αi), fn(αi+1)) < f̃(αi) + 2ε/10. (A.10)

Combining part of equation (A.9) and equation (A.10), we obtain

fn(x)− f̃(x) ≤ 3ε/10. (A.11)

We’ll now bound fn(x) from below. First consider the case when i ≥ 2. In this case
we have

αi−1 < αi < x < αi+1.

We write αi as a linear combination of x and αi−1, and use the convexity of fn to arrive
at

fn(αi) ≤
αi − αi−1

x− αi−1

fn(x) +
x− αi
x− αi−1

fn(αi−1)

which implies

x− αi−1

αi − αi−1

fn(αi)−
x− αi
αi − αi−1

fn(αi−1) ≤ fn(x),

leading to

inf
x∈(αi,αi+1)

x− αi−1

αi − αi−1

fn(αi)−
x− αi
αi − αi−1

fn(αi−1) ≤ fn(x).

Note that since the LHS is linear in x, the infimum occurs at one of the endpoints of
the interval.

fn(x) ≥ min (fn(αi), 2fn(αi)− fn(αi−1))

≥ min(f̃(αi)− ε/10, 2(f̃(αi)− ε/10)− f̃(αi−1)− ε/10)

≥ min(f̃(αi)− ε/10, 2f̃(αi)− f̃(αi−1)− 3ε/10)

≥ min(f̃(αi)− ε/10, 2f̃(αi)− f̃(αi)− ε/10− 3ε/10)

= f̃(αi)− 4ε/10. (A.12)
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Combining inequality (A.12) with a part of inequality (A.9), we have

fn(x)− f(x) > −5ε/10. (A.13)

Combining (A.11) and (A.13) we conclude that for all x ∈ (α2, αM−1), and for all
n > N ,

|fn(x)− f(x)| < ε/2.

For x ∈ (α1, α2), we can use a similar strategy as above. We bound fn(x) from above
by expressing x as a convex combination of α1 and α2 and using the convexity of fn.
We then bound it from below by expressing α2 as a linear combination of x and α3 and
using the convexity of fn. This shows that for all x ∈ [α1, αM−1], |fn(x)− f(x)| < ε/2
for all n > N , thus establishing equation (A.8). This implies that if F ∩ B 6= φ, then
for all n > N

|bn − b| ≤ ε/2. (A.14)

Now suppose it were the case that F ∩A 6= φ. This means that [α0, α1] ⊆ F , since we
chose δ′ to ensure this. We can lower bound fn in the interval A using the convexity
of fn as follows. For an x ∈ A, we express α1 as a linear combination of x and α2 and
obtain

fn(α1) ≤ fn(x)
α2 − α1

α2 − x
+ fn(α2)

α1 − x
α2 − x

which implies

fn(x) ≥ fn(α1)
α2 − x
α2 − α1

− fn(α2)
α1 − x
α2 − α1

≥ inf
x∈A

fn(α1)
α2 − x
α2 − α1

− fn(α2)
α1 − x
α2 − α1

≥ min(fn(α1), 2fn(α1)− fn(α2))

≥ min
(
f̃(α1)− ε/10,

2(f̃(α1)− ε/10)− (f̃(α2) + ε/10)
)

≥ min(f̃(α1)− ε/10, 2f̃(α1)− f̃(α2)− 3ε/10)

≥ min(f̃(α1)− ε/10,

2f̃(α1)− f̃(α1)− ε/10− 3ε/10)

= f̃(α1)− 4ε/10.

Note that |a− f̃(α1)| = | infx∈F∩A f̃(x)− f(α1)| < ε/10, thus giving us

fn(x) ≥ a− 5ε/10 = a− ε/2,
which implies

inf
x∈F∩A

fn(x) ≥ a− ε/2,
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which leads to

an ≥ a− ε/2. (A.15)

Furthermore, since [α0, α1] ∈ F , we have

inf
x∈F∩A

fn(x) = inf
x∈A

fn(x) = an ≤ fn(α1)

≤ f̃(α1) + ε/10

≤ a+ 2ε/10. (A.16)

Combining inequalities (A.15) and (A.16), we conclude that for all n > N ,

|an − a| ≤ ε/2. (A.17)

Using a similar strategy as above, we can conclude that if F ∩ B 6= φ, then for all
n > N ,

|cn − c| < ε/2. (A.18)

The inequalities (A.14), (A.17), and (A.18) imply that for all n > N ,∣∣∣∣ inf
x∈F

fn(x)− inf
x∈F

f(x)

∣∣∣∣ < ε,

which completes the proof.
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Appendix B

Proofs for Chapter 2

B.1 Proofs for Section 2.1

B.1.1 Proof of Lemma 2.1.1

1. The inequality (2.6) immediately gives that for all t, and all n ≥ 1,

nG1(t) ≥ Gn(t), which implies g1(t) ≥ gn(t). (B.1)

Taking the limit in n, it follows that Λ(t) ≤ g1(t) for all t.
For all n, the functions gn are monotonically increasing, and for all t they satisfy

gn(t) ≥ lim
t→−∞

gn(t) =
1

n
log µn(0). (B.2)

In addition, we also know that

inf
n

1

n
log µn(0) = β.

This gives us that
gn(t) ≥ β. (B.3)

Taking the limit in n, we conclude that for all t,

Λ(t) ≥ β. (B.4)

For all n, we have the lower bound on gn given by

gn(t) =
1

n
log

n∑
j=0

µn(j)ejt (B.5)

≥ 1

n
log µn(n)ent (B.6)

= t+
1

n
log µn(n) (B.7)

(a)

≥ t+ α (B.8)
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where (a) follows as

inf
n

1

n
log µn(n) = α.

Taking the limit in n, we conclude that

Λ(t) ≥ t+ α. (B.9)

Equations (B.4) and (B.9) establish

Λ(t) ≥ max(β, t+ α).

2. The functions {gn} are convex and monotonically increasing. Since Λ is the
pointwise limit of these functions, Λ is also convex and monotonically increasing.

3. Note that the convex conjugates of the functions g1(t) and max(β, t+α) are both
supported on [0, 1]. Since Λ is trapped between these two functions, it is clear
that Λ∗ is also supported on [0, 1].

B.2 Proof for Section 2.2

B.2.1 Proof of Lemma 2.2.1

1. Condition (2.30) implies that

nG1(t) ≤ Gn(t) =⇒ g1(t) ≤ gn(t). (B.10)

Taking the limit in n, we see that g1(t) ≤ Λ(t).

For every n and every t ≥ 0,

Gn(t)

n
=

1

n
log

n∑
j=0

µn(j)ejt (B.11)

≤ 1

n
log

((
n∑
j=0

µn(j)

)
ent

)
(B.12)

=
Gn(0)

n
+ t. (B.13)
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Taking the limit in n and using assumption (D), we see that for Λ(t) ≤ t+ γ for
t ≥ 0. Similarly, for t ≤ 0

Gn(t)

n
=

1

n
log

n∑
j=0

µn(j)ejt (B.14)

≤ 1

n
log

(
n∑
j=0

µn(j)

)
(B.15)

=
Gn(0)

n
(B.16)

Taking the limit in n and using assumption (D), we see that Λ(t) ≤ γ for t ≤ 0.
This concludes the proof of part 1.

2. The functions {gn} are convex and monotonically increasing. Since Λ is the
pointwise limit of these functions, Λ is also convex and monotonically increasing.

3. Note that the convex conjugates of the functions g1(t) and max(γ, t+γ) are both
supported on [0, 1]. Since Λ is trapped between these two functions, it is clear
that Λ∗ is also supported on [0, 1].

B.2.2 Proof of Lemma 2.2.3

We’ll show that g∗n converges pointwise to Λ∗ on (0, 1).
Fix an x ∈ (0, 1), and define

arg max
t
xt− gn(t) := tn.

Clearly, g∗n(x) = xtn − gn(tn). Note that

g∗n(x) ≥ xt− gn(t)
∣∣∣
t=0

(B.17)

= −gn(0) (B.18)

(a)

≥ −γ (B.19)

where (a) is because γ = supn gn(0). If t > γ−log µ1(1)
1−x , then we have

xt− gn(t) < xt− g1(t)

≤ xt− (t+ log µ1(1))

= −(1− x)t− log µ1(1)

< −(γ − log µ1(1))− log µ1(1)

= −γ.



APPENDIX B. PROOFS FOR CHAPTER 2 86

This gives us that tn ≤ γ−log µ1(1)
1−x . Similarly, if t < log µ1(0)−γ

x
, then

xt− gn(t) < xt− g1(t) (B.20)

≤ xt− log µ1(0) (B.21)

< (log µ1(0)− γ)− log µ1(0) (B.22)

= −γ. (B.23)

This gives us that tn ≥ logµ1(0)−γ
x

. We can thus conclude that for all n,

tn ∈
[

log µ1(0)− γ
x

,
γ − log µ1(1)

1− x

]
:= Ix. (B.24)

Note that all we used to prove relation (B.24) is that gn is trapped between g1 and
max(γ, t+ γ). Since Λ also satisfies this, we have

arg max
t
xt− Λ(t) ∈ Ix. (B.25)

We now restrict our attention to the compact interval Ix. Let ĝn be gn restricted to Ix.
The convex functions ĝn converge pointwise to a continuous limit Λ̂, where Λ̂ is Λ re-
stricted to Ix. This convergence must therefore be uniform, which implies convergence
of ĝ∗n(x) to Λ̂∗(x). Furthermore, relation (B.24) implies ĝ∗n(x) equals g∗n(x), and rela-
tion (B.25) gives Λ̂∗(x) equals Λ∗(x). Thus, g∗n(·) converges pointwise to Λ∗(·) on (0, 1).

To get the inequality for t = 0 and t = 1, we note that both Ψ∗ and Λ∗ are convex
on [0, 1] with Λ∗ also being continuous on [0, 1]. As both these function agree on (0, 1),
it is immediate that Λ∗(0) ≤ Ψ∗(0) = −β and Λ∗(1) ≤ Ψ∗(1) = −α.

B.2.3 Super-convolutive sequence example

Define the generating function An(x) of µn by

An(x) =
n∑
i=0

µn(i)xi

= (1 + αx)n−1 + εxn. (B.26)

For m,n ≥ 1, the generating function of µm ? µn, is given by the product of their
respective generating functions, Am(x)×An(x). Without loss of generality, we assume
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m ≤ n. We’ll write down this product explicitly as follows:

Am(x)An(x) =
m∑
j=0

µm(j)xj
n∑
i=0

µn(i)xi

=
(
(1 + αx)m−1 + εxm

)(
(1 + αx)n−1 + εxn

)
= (1 + αx)m+n−2 + εxm(1 + αx)n−1 + εxn(1 + αx)m−1 + ε2xm+n

=:
m+n∑
r=0

crx
r.

The coefficients cr are given by

cr =



(
m+n−2

r

)
αr for 0 ≤ r ≤ m− 1(

m+n−2
r

)
αr + ε

(
n−1
r−m

)
αr−m for m ≤ r ≤ n− 1(

m+n−2
r

)
αr + ε

(
n−1
r−m

)
αr−m + ε

(
m−1
r−n

)
αr−n for n ≤ r ≤ m+ n− 2

εαn−1 + εαm−1 for r = m+ n− 1

ε2 for r = m+ n.

(B.27)

We shall now prove that the sequence µn is super convolutive, by showing that µm+n(r) ≥
cr for 0 ≤ r ≤ m+ n.

Case 1: 0 ≤ r ≤ m− 1
The following inequality trivially holds:(

m+ n− 1

r

)
αr ≥

(
m+ n− 2

r

)
αr. (B.28)

Case 2: m ≤ r ≤ n− 1
We need to show(

m+ n− 1

r

)
αr ≥

(
m+ n− 2

r

)
αr + ε

(
n− 1

r −m

)
αr−m (B.29)

holds, which holds iff (
m+ n− 2

r − 1

)
αr ≥ ε

(
n− 1

r −m

)
αr−m (B.30)

holds, which in turn holds iff(
m+ n− 2

r − 1

)
≥ ε

(
n− 1

r −m

)
α−m (B.31)

holds. Note that(
m+ n− 2

r − 1

)
=

(
(n− 1) + (m− 1)

(r −m) + (m− 1)

)
>

(
n− 1

r −m

)
> ε

(
n− 1

r −m

)
α−m
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by our assumptions on α and ε.

Case 3: n ≤ r ≤ m+ n− 2
We need to show that(
m+ n− 1

r

)
αr ≥

(
m+ n− 2

r

)
αr + ε

(
n− 1

r −m

)
αr−m + ε

(
m− 1

r − n

)
αr−n (B.32)

holds, which holds iff(
m+ n− 2

r − 1

)
αr

?

≥ ε

(
n− 1

r −m

)
αr−m + ε

(
m− 1

r − n

)
αr−n (B.33)

holds, which in turn holds iff(
m+ n− 2

r − 1

)
?

≥ ε

(
n− 1

r −m

)
α−m + ε

(
m− 1

r − n

)
α−n (B.34)

holds. Note that

1

2

(
m+ n− 2

r − 1

)
=

1

2

(
(n− 1) + (m− 1)

(r −m) + (m− 1)

)
>

1

2

(
n− 1

r −m

)
> ε

(
n− 1

r −m

)
α−m

and

1

2

(
m+ n− 2

r − 1

)
=

1

2

(
(m− 1) + (n− 1)

(r − n) + (n− 1)

)
>

1

2

(
m− 1

r − n

)
> ε

(
m− 1

r − n

)
α−n.

Adding these two gives us the required inequality.

Case 4: r = m+ n− 1
The following inequality is readily seen to hold, based on the choice α ≥ 1 and

ε < 1
2
:

αm+n−1 ≥ εαn−1 + εαm−1, (B.35)

Case 5: r = m + n − 1 The following inequality hold trivially by the choice of
ε < 1

2
:

ε ≥ ε2, (B.36)

As before, let Gn(t) = log
∑n

j=0 µn(j)ejt. In our case, it equals

Gn(t) = log
(
(1 + αet)n−1 + εent

)
, (B.37)

and

gn(t) =
1

n
log
(
(1 + αet)n−1 + εent

)
. (B.38)
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Let Λ(t) = limn→∞ gn(t).

Λ(t) = lim
n→∞

1

n
log log

(
(1 + αet)n−1 + εent

)
= lim

n→∞

1

n
log(1 + αet)n−1 +

1

n
log

(
1 +

εent

(1 + αet)n−1

)
= log(1 + αet) + lim

n→∞

1

n
log

(
1 +

εent

(1 + αet)n−1

)
.

We can use the bounds

εent

nαn−1e(n−1)t
≤ εent

(1 + αet)n−1
≤ εent

αn−1e(n−1)t
, (B.39)

which implies

εet

nαn−1
≤ εent

(1 + αet)n−1
≤ εet

αn−1
. (B.40)

Since α ≥ 1, the limit limn→∞
1
n

log
(

1 + εent

(1+αet)n−1

)
must equal 0.

Thus {gn} converge pointwise to Λ(t) = log(1 + αet). Let g∗n be the Legendre-
Fenchel transform of gn, for n ≥ 1. Note that gn is a monotonically increasing convex
function, with an asymptotic slope of 1 as t→∞. Thus, for all n ≥ 1, we can compute
g∗n(1) as follows:

g∗n(1) = sup
t
t− gn(t)

= sup
t
t− 1

n
log
(
(1 + αet)n−1 + εent

)
= lim

t→∞
t− 1

n
log
(
(1 + αet)n−1 + εent

)
=
− log ε

n

Thus,
Ψ∗(1) = lim

n→∞
g∗n(1) = 0. (B.41)

We can check that Λ∗(1) = − logα ≤ Ψ∗(1), with strict inequality if α > 1.
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Appendix C

Proofs for Chapter 3

C.1 Proofs for Section 3.4

C.1.1 Proof of Lemma 3.4.2

If we scale both σ and ρ by some α > 0, by equation (3.4), Sn(ασ, αρ) is a
√
α-

scaled version of Sn(σ, ρ). This means that Vn(ασ, αρ) = α
n
2 Vn(σ, ρ); i.e., v(ασ, αρ) =

log
√
α + v(σ, ρ), which proves the lemma.

C.1.2 Proof of Lemma 3.4.3

Let σ ∈ (0,∞). Let ε > 0 be given. We will show that there exists a δ∗ > 0 such that
for all σ′ ∈ (σ − δ∗, σ + δ∗),

|v1(σ′)− v1(σ)| < ε.

Since v1 is a non-decreasing function, it will be enough to show that

v1(σ + δ∗)− v1(σ − δ∗) < ε.

Pick any 0 < δ < max(σ, 1
2
). For z ∈ (0, 1), let Sn(σ + δ, 1) ×

√
1− z denote the set

Sn(σ+δ, 1) scaled by
√

1− z. Fix z = 2δ. We will now show that Sn(σ+δ, 1)×
√

1− z ⊆
Sn(σ − δ, 1).

Any (x1, x2, . . . , xn) ∈ Sn(σ + δ, 1) satisfies

l∑
i=k+1

x2
i ≤ (l − k) + σ + δ for all 0 ≤ k < l ≤ n. (C.1)

Let the (x̂1, . . . , x̂n) be (x1, . . . , xn) scaled by
√

1− z. If (x1, . . . , xn) happens to lie in
Sn(σ−δ, 1), then so does the scaled version (x̂1, . . . , x̂n). If (x1, . . . , xn) ∈ Sn(σ+δ, 1)\
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Sn(σ − δ, 1), then for each choice of 0 ≤ k < l ≤ n such that

(l − k) + σ + δ ≥
l∑

i=k+1

x2
i > (l − k) + σ − δ, (C.2)

the point (x̂1, · · · , x̂n) satisfies

l∑
i=k+1

x̂2
i =

l∑
i=k+1

x2
i − z

l∑
i=k+1

x2
i (C.3)

≤ [(l − k) + σ + δ]− z[(l − k) + σ − δ] (C.4)

(a)

≤ [(l − k) + σ + δ]− z (C.5)

(b)
= (l − k) + σ − δ, (C.6)

where (a) follows since l− k ≥ 1 and σ− δ > 0, implying that (l− k) + σ− δ ≥ 1, and
(b) follows by the choice z = 2δ. Thus, the point (x̂1, . . . , x̂n) lies in the set Sn(σ−δ, 1).
The containment

√
1− 2δ × Sn(σ + δ, 1) ⊆ Sn(σ − δ, 1) ⊆ Sn(σ + δ, 1) (C.7)

gives
1

2
log(1− 2δ) + v1(σ + δ) ≤ v1(σ − δ) ≤ v1(σ + δ). (C.8)

Hence, we have

v1(σ + δ)− v1(σ − δ) ≤ −1

2
log(1− 2δ). (C.9)

Picking δ∗ small enough to satisfy

−1

2
log(1− 2δ∗) < ε,

we establish continuity of v1(σ) in the open set (0,∞).

Now consider the case when σ = 0. We will show that there exists a δ∗ > 0 such
that for all σ′ ∈ [0, δ∗),

|v1(σ′)− v1(0)| < ε.

Since v1 is a non-decreasing function, it will be enough to show that

v1(δ∗)− v1(0) < ε.

Pick any δ < 1. Using the same strategy as before, we can show that Sn(δ, 1)×
√

1− δ ⊆
Sn(0, 1). This gives

v1(δ) +
1

2
log(1− δ) ≤ v1(0), (C.10)
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and thus

0 ≤ v1(δ)− v1(0) ≤ −1

2
log(1− δ). (C.11)

Choosing δ∗ small enough such that −1
2

log(1−δ) < ε, we establish continuity at σ = 0.

C.1.3 Proof of Lemma 3.4.4

For every n, define the function Vn(σ) = log Vol(Sn(σ,1)
n

. We’ll first show that Vn(σ) is
concave. Define the set Sn+1 ⊆ Rn+1 as follows:

Sn+1 = {(x1, . . . , xn, σx)|(x1, . . . , xn) ∈ Sn(σx, 1)}. (C.12)

We claim that Sn+1 is convex. Let x = (x1, . . . , xn, σx) and y = (y1, . . . , yn, σy) be in
Sn+1. For λ ∈ [0, 1], consider the point λx + (1−λ)y. For any 0 ≤ k < l ≤ n, we have

l∑
i=k+1

(λxi + (1− λ)yi)
2 = λ2

l∑
i=k+1

x2
i + (1− λ)2

l∑
i=k+1

y2
i + 2λ(1− λ)

l∑
i=k+1

xiyi (C.13)

≤ λ2

l∑
i=k+1

x2
i + (1− λ)2

l∑
i=k+1

y2
i + λ(1− λ)

l∑
i=k+1

(x2
i + y2

i )

(C.14)

= λ
l∑

i=k+1

x2
i + (1− λ)

l∑
i=k+1

y2
i (C.15)

≤ (λσx + (1− λ)σy) + (l − k). (C.16)

Thus, λx + (1− λ)y ∈ Sn+1, which proves that Sn+1 is a convex set.
Now the n-dimensional volume of the intersection of Sn+1 with the hyperplane

σx = σ is simply the volume of Sn(σ, 1). Using the Brunn-Minkowski inequality [30],

we see that Vol(Sn(σ, 1))
1
n is concave in σ, so the logarithm is also concave. This

establishes the concavity of Vn(σ).
To show that v1(σ) is concave, we simply note that it is the pointwise limit of the

sequence of concave functions {Vn}.

C.1.4 Proof of Lemma 3.4.5

For xn ∈ An(σ(n)), the state at time n is nonnegative. Suppose that after time
n, we impose a restriction that the power used per symbol cannot be more than 1

2
.

This means that the battery will charge by at least 1
2

at each timestep, and after
2σ(n) steps, the battery will be fully charged to σ(n). Denote the set of all such
(n+2σ(n))-length sequences obtained by this process as Ân(σ(n)). This set is contained
in Sn+2σ(n)(σ(n), 1), and its volume is

Vol(An(σ(n)))× (
√

2)2σ(n).
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The key point is to note the containment

Ân(σ(n))× · · · × Ân(σ(n)) ⊂ Sm(n+2σ(n))(σ(n), 1) ,

for all m ≥ 1, where there are m copies in the product on the left hand side. This holds
because we ensure that the battery is fully charged to σ(n) after each (n+2σ(n))-length
block. Taking the limit in m and using Lemma 3.3.1, we see that

v1(σ(n)) ≥ 1

n+ 2σ(n)
log
(

Vol(An(σ(n)))×
√

2
2σ(n)

)
.

Letting n tend to infinity and using conditions (3.48a) and (3.48b), we arrive at

lim inf
n→∞

v1(σ(n)) ≥ 1

2
log 2πe,

which proves the claim.

C.1.5 Proof of Lemma 3.4.6

The key to proving Lemma 3.4.6 is to examine the distribution of the burstiness σ(Xn),
when Xn is drawn from a uniform distribution on An. Since a high-dimensional Gaus-
sian closely approximates the uniform distribution on An, it makes sense to look at
the burstiness of Xn when each Xi is drawn independently from a standard normal
distribution.

Let X1, X2, . . . , Xn be i.i.d. standard normal random variables. Let Yi = X2
i − 1,

for 1 ≤ i ≤ n. These Yi are i.i.d. with zero mean and variance 2. Define S0 = 0 and

Sm =
m∑
i=1

Yi, for 1 ≤ m ≤ n.

Define Σn, the burstiness of the sequence of Xi, by

Σn = max
0≤k<l≤n

Yk+1 + Yk+2 + ...+ Yl = max
0≤k<l≤n

(Sl − Sk).

The following inequality holds:

Σn ≤ max
0≤l≤n

Sl − min
0≤k≤n

Sk := Σ̃n. (C.17)

Fix some α > 0. Then

lim inf
n

P (Σn ≤α
√
n) ≥ lim inf

n
P (Σ̃n ≤ α

√
n)

= lim inf
n

P (max
Sl√
2n
−min

Sk√
2n
≤ α√

2
)

(a)
= P (max

0≤t≤1
Bt − min

0≤t≤1
Bt ≤

α√
2

) (C.18)

≥ P ( sup
0≤t≤1

|Bt| ≤
α

2
√

2
),
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where in equation (C.18), Bt is the standard Brownian motion and the equality in step
(a) follows from Donsker’s theorem [13]. We now choose α large enough so that

P ( sup
0≤t≤1

|Bt| ≤
α

2
√

2
) ≥ 3

4
. (C.19)

Since limn P (Xn ∈ An) = 1/2 by the central limit theorem for Y1, Y2, . . . , we have

lim inf
n

P (An(α
√
n)) = lim inf

n
P (Σn ≤ α

√
n,Xn ∈ An) ≥ 1

4
,

where P (An(α
√
n)) := P (Xn ∈ An(α

√
n)). The volume of An(α

√
n)) is upper-

bounded by the volume of An. Furthermore, it is lower-bounded by the volume of a
ball Bn centered at the origin, such that P (Xn ∈ Bn) =: P (Bn) = P (An(α

√
n)), since

a Gaussian distribution decays radially. Using standard concentration bounds on the
normal distribution [15], to satisfy P (Bn) ≥ 1/4, the radius of Bn must be

√
n+o(

√
n).

Thus, limn
Vol(Bn)
n

= 1
2

log 2πe. Using Vol(Bn) ≤ Vol(An(α
√
n)) ≤ Vol(An), we obtain

limn
Vol(An(α

√
n))

n
= 1

2
log 2πe. Thus, with σ(n) = α

√
n, the pair An(σ(n)) and σ(n)

satisfy both the conditions in Lemma 3.4.5, thereby proving Lemma 3.4.6.

C.2 Proofs for Section 3.5

Let 0 < γ < 1. We define a new set Sn,γ(σ, 1) to be

Sn,γ(σ, 1) = {xn ∈ Sn(σ, ρ) | x2
i ≥ γ for every 1 ≤ i ≤ n}. (C.20)

Using Fekete’s Lemma, it is easy to establish that following limit exists:

lim
n→∞

Vol(Sn,γ(σ, 1))

n
:= v1,γ(σ). (C.21)

Clearly, v1,γ(σ) ≤ v1(σ) as Sn,γ(σ, 1) ⊆ Sn(σ, 1). In Lemma C.2.1, we show that it is
possible to choose a small enough value of γ such that v1,γ(σ) approximates v1(σ) as
closely as desired.

Lemma C.2.1. We have

v1

(
σ

1− η

)
+

1

2
log(1− η) ≤ v1,γ(σ) ≤ v1(σ),

where η = γ + 2(
√
σ + 1

√
γ).

Proof. Clearly, v1,γ(σ) ≤ v1(σ), since Sn,γ(σ, 1) ⊆ Sn(σ, 1).

Now let xn ∈ Sn(σ, 1− η) ∩ Rn
+. We claim that

(x1 +
√
γ, . . . , xn +

√
γ) ∈ Sn,γ(σ, 1).
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This would imply that a translated version of Sn(σ, 1− η) ∩Rn
+ lies inside Sn,γ(σ, 1) ∩

Rn
+, which will give us a lower bound on the volume of the latter in terms of the

former. Since each (xi +
√
γ)2 ≥ γ, the only condition we need to check is whether

(x1 +
√
γ, . . . , xn +

√
γ) ∈ Sn(σ, 1). For any 0 ≤ k < l ≤ n, we have

l∑
i=k+1

(xi +
√
γ)2 =

l∑
i=k+1

x2
i + 2

√
γ

l∑
i=k+1

xi + (l − k)γ (C.22)

≤ (l − k)(1− η) + σ + 2
√
γ

l∑
i=k+1

xi + (l − k)γ (C.23)

≤ (l − k)(1− η + γ) + σ + 2
√
γ

l∑
i=k+1

√
σ + 1 (C.24)

≤ (l − k)(1− η + γ + 2
√
γ
√
σ + 1) + σ. (C.25)

= (l − k) + σ (C.26)

This gives us

Vol(Sn(σ, 1− η) ≤ Vol(Sn,γ(σ, 1)) ≤ Vol(Sn(σ, 1)), (C.27)

(C.28)

implying that

v1

(
σ

1− η

)
+

1

2
log(1− η) ≤ v1,γ(σ) ≤ v1(σ). (C.29)

By the continuity of v1(σ), we see that choosing a γ (and consequently an η) small
enough will give a value of v1,γ(σ) that is as close as desired to v1(σ).

Lemma C.2.1 ensures that a numerical method which can closely approximate
v1,γ(σ) can also be used to closely approximate v1(σ) for small values of γ. Hence-
forth, we focus our attention on calculating v1,γ(σ). As noted in Section 3.5, we exploit
the idea of battery state. Given (x1, . . . , xn) ∈ Sn,γ(σ, 1), define

φn =

{
σn if σn < σ,

σn−1 + 1− x2
n if σn = σ.

(C.30)

Setting φ0 = σ, equation (C.30) can also be written as

φn =

{
φn−1 + 1− x2

n if φn−1 < σ,

σ + 1− x2
n if φn−1 ≥ σ.

(C.31)

Define the function Φn : Sn,γ(σ, 1) → R such that Φn(x1, . . . , xn) = φn. Let λn be
the Lebesgue measure restricted to Sn,γ(σ, 1). Let νn be the measure induced by Φn

on R. In Lemma C.2.2 below, we show the following:
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Lemma C.2.2. The measure νn is absolutely continuous with respect to the Lebesgue
measure on R.

Proof. We first calculate ν1. Define

F1(φ1) = ν1((−∞, φ1]).

We have the relation φ1 = σ+1−x2
1, where x1 has the Lebesgue measure on S1,γ(σ, 1):

[−
√
σ + 1,−√γ] ∪ [

√
σ + 1,

√
γ]. It is easy to see that

F1(φ) =


0 for φ < 0

2(
√
σ + 1−√σ + 1− φ) for 0 ≤ φ ≤ σ + 1− γ

2(
√
σ + 1−√γ) for σ + 1− γ < φ.

(C.32)

Observe that F1, being Lipshitz, is an absolutely continuous function. This implies
that the measure ν1 is absolutely continuous with respect to the Lebesgue measure
on R and possesses a Radon-Nikodym derivative f1, which equals the derivative of F1

almost everywhere. We set f1 as follows:

f1(φ) =


0 for φ < 0

1√
σ+1−φ for 0 ≤ φ ≤ σ + 1− γ

0 for σ + 1− γ < φ.

(C.33)

We note that f1 is continuous and bounded on the closed interval [0, σ + 1 − γ]. Our
proof now proceeds by induction. We assume that the measure νn admits a density fn,
which is continuous and bounded on the closed interval [0, σ + 1− γ], and prove that
νn+1 has a density fn+1 which is continuous and bounded on [0, σ + 1− γ].

Define
Fn+1(φ) = νn+1((−∞, φ]).

Since νn is supported on [0, σ+ 1− γ], we can use the expression in (C.31) to conclude
the same about νn+1 and restrict our attention to 0 ≤ φ ≤ σ + 1 − γ. For φ in this
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range, we use relation (C.31) and express Fn+1 in terms of fn as follows:

Fn+1(φ) =

∫ φ−1+γ

x=0

∫ x+1

t=γ

fn(x)√
t
dtdx

+

∫ σ

x=φ+1−γ

∫ x+1

t=x−(φ−1)

fn(x)√
t
dtdx

+

∫ σ+1−γ

x=σ

∫ σ+1

t=σ−(φ−1)

fn(x)√
t
dtdx (C.34)

=

∫ φ−1+γ

x=0

2fn(x)[
√
x+ 1−√γ]dx

+

∫ σ

x=φ−1+γ

2fn(x)[
√
x+ 1−

√
x− (φ− 1)]dx

+

∫ σ+1−γ

x=σ

2fn(x)[
√
σ + 1−

√
σ − (φ− 1)]dx. (C.35)

From the induction assumption of continuity and boundedness of fn, it is easy to
check that Fn+1 is Lipshitz and therefore absolutely continuous. This implies that
νn+1 permits a density, which is equal to the derivative of Fn almost everywhere. We
can evaluate this density by differentiating Fn+1 with respect to φ. This involves
differentiating under the integral sign, and the conditions for doing so are seen to be
satisfied because of the continuity and boundedness of fn and the square root function.
We then get

fn+1(φ) =

∫ σ

φ−1+γ

fn(x)√
x− (φ− 1)

dx+

∫ σ+1−γ

σ

fn(x)√
σ − (φ− 1)

dx, (C.36)

which is supported on, and is bounded and continuous on, the interval [0, σ+1−γ].

Equation (C.36) in the proof of Lemma C.2.2 describes the evolution of fn as the
dimension n increases. Let C([0, σ + 1− γ] be the set of continuous functions defined
on the interval [0, σ + 1 − γ]. Define the integral operator A : C([0, σ + 1 − γ] →
C([0, σ + 1− γ] as follows:

A(x, t) =


1√

x+1−t if 0 ≤ x < σ, 0 ≤ t ≤ x+ 1− γ ,
1√

σ+1−t if σ ≤ x ≤ σ + 1− γ, 0 ≤ t ≤ σ + 1− γ ,
0 otherwise.

(C.37)

We can express equation (C.36) in another form,

fn+1(t) =

∫
A(x, t)fn(x)dx. (C.38)
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We denote this fn+1 = A(fn). Iterating this relation, we obtain

fn+1 = Anf1. (C.39)

We make three crucial observations. Firstly, the kernel A is bounded and piecewise
continuous with the discontinuities confined to a single curve t = x + 1− γ. It is also
immediate that the spectral radius of A, defined by

r(A) = sup
||f ||=1

||Af ||

is such that r(A) > 0. We use Theorem 2.13 from Anselone [1] to obtain that such
an operator A is compact. In addition, we can apply the Krein Rutman theorem
from Schaefer [29] to establish that r(A) is an eigenvalue with a positive eigenvector
u ∈ C([0, σ + 1− γ] \ 0.

Secondly, we have

νn([0, σ + 1− γ]) =

∫ σ+1−γ

x=0

fn(x)dx = Vol(Sn,γ(σ, 1).

Thus we have

v1,γ(σ) = lim
n→∞

1

n
log Vol(Sn,γ(σ, 1)) (C.40)

= lim
n→∞

1

n
log

∫ σ+1−γ

x=0

fn(x)dx (C.41)

= lim
n→∞

1

n
log

∫ σ+1−γ

x=0

An−1f1(x)dx (C.42)

(a)
= r(A) (C.43)

where (a) follows because the projection of f1 in the direction of u is nonzero owing to
the positivity of both these functions.

Thirdly, define a sequence of operators {An} as discrete approximations of A as
follows. Let hn = σ+1−γ

n
,

Anf(t) =
n∑
j=0

A(jhn, t)f(jhn)hn.

Using Theorem 2.13 from Anselone [1] once more, we conclude that the sequence of
operators {An} is collectively compact and that ||An|| → ||A||. We can now use existing
numerical techniques to find r(An), which will provide an approximation to r(A). The
spectral radius r(A) equals v1,γ(σ), which closely approximates v1(σ), and validates
the numerical procedure as described in Section 3.5.
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C.3 Proofs for Section 3.7

C.3.1 Proof of Lemma 3.7.2

Denote An = [−A,A]n, and Bn = Bn(
√
nν). Let Cn = An ⊕ Bn. Note that for any

m,n ≥ 1

Bn(
√
nν)×Bm(

√
mν) ⊆ Bm+n(

√
(m+ n)ν) (C.44)

[−A,A]n × [−A,A]m = [−A,A]m+n. (C.45)

It follows that

Cm × Cn = (Am ⊕Bm)× (An ⊕Bn) (C.46)

= (Am × An)⊕ (Bm ×Bn) (C.47)

⊆ Am+n ⊕Bm+n (C.48)

= Cm+n. (C.49)

This implies
Vol(Cm+n) ≥ Vol(Cm)Vol(Cm), (C.50)

which immediately implies existence of the limit limn→∞
1
n

log Vol(Cn), which equals
`(ν) as defined in equation (3.71). To show this limit is finite, we note that An ⊆
Bn(
√
nA2). Thus Cn ⊆ Bn(

√
n(
√
ν + A)), which gives

`(ν) ≤ 1

2
log 2πe(

√
ν + A)2 <∞.

C.3.2 Proof of Lemma 3.7.3

We have the trivial bounds

Vol([−A,A]n ⊕Bn(
√
nν))

n+ 1
≤ enf

ν
n(θ̂n) ≤ Vol([−A,A]n ⊕Bn(

√
nν)), (C.51)

which implies

1

n
log Vol([−A,A]n ⊕Bn(

√
nν))− log(n+ 1)

n
≤ f νn(θ̂n) ≤ 1

n
log Vol([−A,A]n ⊕Bn(

√
nν)).

(C.52)

Taking the limit in n and using Lemma 3.7.2 we see that

lim
n→∞

f νn(θ̂n) = `(ν). (C.53)
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C.3.3 Proof of Lemma 3.7.4

We first prove pointwise convergence. Looking at equation (3.78), we see that all we
need to prove is that for all θ ∈ [0, 1],

lim
n→∞

1

n
log

(
Γ(n+ 1)nnθ/2

Γ(n(1− θ) + 1)Γ(nθ + 1)Γ(nθ/2 + 1)

)
= H(θ) +

θ

2
log 2e− θ

2
log θ.

(C.54)
For θ = 0, we can easily check the validity of this statement. Let θ > 0. We use

the approximation

log Γ(z) = z log z − z + log
z

2π
+ o(z).

1

n
log

(
Γ(n+ 1)nnθ/2

Γ(n(1− θ) + 1)Γ(nθ + 1)Γ(nθ/2 + 1)

)
=

1

n

(
(n+ 1) log

n+ 1

e
+
nθ

2
log n− (n(1− θ) + 1) log

n(1− θ) + 1

e
− (nθ + 1) log

nθ + 1

e

− (nθ/2 + 1) log
nθ/2 + 1

e
+ o(n)

)
. (C.55)

Using (x+ 1) log(x+ 1) = x log x+ o(x), we can simplify the above to get

1

n

(
n log n+

nθ

2
log n− nθ̄ log nθ̄ − nθ log nθ − (nθ/2) log nθ/2e+ o(n)

)
, (C.56)

=
1

n
(nH(θ)− (nθ/2) log(θ/2e) + o(n)) . (C.57)

Taking the limit as n→∞, we establish equality (C.54).
To show uniform convergence, we first observe that the functions f νn(·) are concave.

This concavity is immediately evident from the log-convexity of the Γ function and
from equation (3.78). Therefore, {f νn} are concave functions converging pointwise to a
continuous functions f ν on [0, 1]. Uniform convergence now follows from Lemma A.1.1.

C.3.4 Proof of Lemma 3.7.5

By Lemma 3.7.4, the sequence of functions {f νn} converges to f ν uniformly. This
uniform convergence implies that the family of functions {f νn} is equicontinuous [28]
(Section 10.1, Theorem 3, pg. 209). Let ε > 0. Choose N large such that |f νn(x) −
f νn(y)| < ε/2 if |x− y| < 1/N . This implies that for all n > N ,

max
θ
f νn(θ) ≥ f νn(θ̂n) > max

θ
f νn(θ)− ε/2. (C.58)

Using the uniform convergence of {f νn}, we choose M large enough such that ||f ν−
f νn ||∞ < ε/2 for all n > M . Let L = max(M,N). For all n > L, we have

max
θ
f ν(θ) + ε/2 > max

θ
f νn(θ) ≥ f νn(θ̂n) ≥ max

θ
f νn(θ)− ε/2 ≥ max

θ
f ν(θ)− ε,
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and thus
|f νn(θ̂n)−max

θ
f ν(θ)| < ε.

This concludes the proof of equation (3.82). By Lemma 3.7.3, we immediately have
the equality (3.83).

C.3.5 Proof of Theorem 3.7.7

Let ε > 0. Let {Xi}ni=1 and {Zi}ni=1 be n i.i.d copies of X and Z respectively. Let δn
be given by

δn := P
(
Xn + Zn /∈ [−A,A]n ⊕Bn(

√
n(ν + ε) )

)
(C.59)

Denote
Cn := [−A,A]n ⊕Bn(

√
n(ν + ε) ).

By the law of large numbers, the probability δn → 0.

Let Y := X + Z. We have

nh(Y ) = h(Y n) = H(δn) + (1− δn)h(Y n|Y n ∈ Cn) + δnh(Y n|Y n /∈ Cn) (C.60)

≤ H(δn) + (1− δn) log Vol(Cn) + δnh(Y n|Y n /∈ Cn). (C.61)

Let Ŷ n ∼ p(Y n|Y n /∈ Cn). We have following bound on Y n

E[||Y n||2] ≤ n(ν + A2). (C.62)

This translates to a bound on Ŷ n

E[||Ŷ n||2] ≤ n(ν + A2)

δn
, (C.63)

which implies

h(Ŷ n) ≤ n

2
log

2πe(ν + A2)

δn
. (C.64)

Substituting in inequality (C.61),

h(Y n) ≤ H(δn) + (1− δn) log Vol(Cn) + δn
n

2
log

2πe(ν + A2)

δn
(C.65)

which implies

h(Y ) ≤ H(δn)

n
+ (1− δn)

log Vol(Cn)

n
+
δn
2

log
2πe(ν + A2)

δn
. (C.66)

Taking the limit in n, we get

h(Y ) ≤ `(ν + ε). (C.67)

As this holds for any choice of ε, we let ε tend to 0 and use the continuity from Theorem
3.7.1 to arrive at

h(Y ) ≤ `(ν). (C.68)
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C.4 Proofs for Section 3.8

C.4.1 Proof of Lemma 3.8.2

Let xn, yn ∈ Sn(σ, ρ) and let zn = λxn + (1− λ)yn. By Jensen’s inequality we have for
every 1 ≤ i ≤ n,

z2
i ≤ λx2

i + (1− λ)y2
i .

Since both xn and yn both satisfy (3.4), the above inequality gives us that zn does so
too; i.e., zn ∈ Sn(σ, ρ).

C.4.2 Proof of Lemma 3.8.3

The sets {Sn(σ, ρ)} satisfy the containment

Sm+n ⊆ Sm × Sn for every m,n ≥ 1. (C.69)

This implies that the family of intrinsic volumes {µn(·)}n≥1, is sub-convolutive; i.e., it
satisfies the following condition:

µm ? µn ≥ µm+n for every m,n ≥ 1. (C.70)

Noting that µn(n) is the volume of Sn(σ, ρ), and µn(0) = 1 for all Sn, we can check that
the sequence {µn(·)} satisfies the assumptions (A), (B) and (C) detailed in Section 2.1;
namely,

(A) : α := lim
n→∞

1

n
log µn(n) is finite.

(B) : β := lim
n→∞

1

n
log µn(0) is finite.

(C) : For all n, µn(n) > 0, µn(0) > 0.

Lemma 3.8.3 then follows from the results in Section 2.1, in particular Lemma 2.1.1.

C.4.3 Proof of Lemma 3.8.4

Note that the claims in points 1 and 2 immediately imply 3, since f νn = an + bνn.
We shall prove 2 first. The expression for bνn(θ) is given by

bνn(θ) =
1

n
log

πnθ/2

Γ(nθ/2 + 1)
(nν)nθ/2 for θ ∈ [0, 1]. (C.71)

Since the Gamma function is log-convex [3] (Exercise 3.52), we see that bνn(·) is a
concave function.
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To show 1, note that all we need to prove is that

an

(
j

n

)
≥ an

(
j−1
n

)
+ an

(
j+1
n

)
2

for all 1 ≤ j ≤ n− 1, (C.72)

as an is a linear interpolation of the values at j
n
. This is equivalent to proving

µn(j)2 ≥ µn(j − 1)µn(j + 1) for all 1 ≤ j ≤ n− 1. (C.73)

This is an easy application of the Alexandrov-Fenchel inequalities for mixed volumes.
For a proof we refer to McMullen [23], where in fact the author obtains

µn(j)2 ≥ j + 1

j
µn(j − 1)µn(j + 1).

C.4.4 Proof of Lemma 3.8.5

As noted in Appendix C.4.2, the family of intrinsic volumes {µn(·)}n≥1, is sub-convolutive
and it satisfies the assumptions (A), (B), and (C) detailed in Section 2.1. Part 1 of
Lemma 3.8.5 is now an immediate consequence of Theorem 2.1.2.

To prove part 2, let F ⊆ R be an open set. We assume that F ∩ [0, 1] is nonempty,
since the otherwise the result is trivial. We will construct a new sequence of functions
{µ̂n} such that µn ≥ µ̂n for all n; i.e., µn pointwise dominates µ̂n for all n. The large
deviations lower bound for the sequence {µ̂n} will then serve as a large deviations lower
bound for the sequence {µn}.

For notational convenience, we write Sn for Sn(σ, ρ) in this proof. Fix an a ≥ 1.
Let γ = dσ

ρ
e. Let

Ŝa+γ = {xa+γ ∈ Ra+γ|xa ∈ Sa, xa+γ
a+1 = 0}.

For all k ≥ 0, the kth intrinsic volume of a convex body is independent of the ambient
dimension [20]. Thus, for 0 ≤ k ≤ a, the kth intrinsic volume of Ŝa+γ is exactly the

same as that of Sa. For a + 1 ≤ k ≤ a + γ, the kth intrinsic volume of Ŝa+γ equals

0. The sequence of intrinsic volumes of Ŝa+γ may therefore be considered to be simply
µa. In addition, note that for all m ≥ 1,

Ŝa+γ × · · · × Ŝa+γ︸ ︷︷ ︸
m

⊆ Sm(a+γ),

which implies
µa ? · · · ? µa︸ ︷︷ ︸

m

≤ µm(a+γ).

This leads us to define the new sequence µ̂n as

µ̂n = µa ? · · · ? µa︸ ︷︷ ︸
b n
a+γ
c

:= µ
?b n
a+γ
c

a .
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Clearly µ̂n ≤ µn. Define Ĝn(t) as follows,

Ĝn(t) = log
n∑
j=0

µ̂n(j)ejt,

and consider the limit

lim
n→∞

1

n
Ĝn(t) = lim

n→∞

1

n
b n

a+ γ
cGa(t) (C.74)

=
Ga(t)

a+ γ
. (C.75)

Applying the Gärtner-Ellis theorem, stated in Theorem 2.0.1, for {µ̂n} and noting that
Ga(t)
a+γ

is differentiable, we get the lower bound

lim inf
n→∞

1

n
log µ̂n/n(F ) ≥ − inf

x∈F

(
Ga(t)

a+ γ

)∗
(x),

which implies

lim inf
n→∞

1

n
log µn/n(F ) ≥ − inf

x∈F

a

a+ γ
g∗a

(
a+ γ

a
x

)
.

We claim that infx∈F
a

a+γ
g∗a
(
a+γ
a
x
)

converges to infx∈F Λ∗(x). Let ε > 0. We can
rewrite the infimum as

inf
x∈F

a

a+ γ
g∗a

(
a+ γ

a
x

)
= inf

y∈a+γ
a
F

a

a+ γ
g∗a(y).

Using Theorem 2.1.4, we know that {g∗n} converges uniformly Λ∗ over [0, 1]. By the
converse of the Arzela-Ascoli theorem, we have that g∗n are uniformly bounded and
equicontinuous. Let δ > 0 be such that

|Λ∗(x)− Λ∗(y)| < ε/3 whenever |x− y| < δ. (C.76)

Let M be a uniform bound on |g∗n(·)|. Choose A0 such that for all a > A0,

γ

a+ γ
M < ε/3. (C.77)

Choose A1 such that for all a > A1,

||g∗a − Λ∗||∞ < ε/3. (C.78)
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Choose A2 such that for all a > A2,

γ

a+ γ
< δ. (C.79)

Choose A3 such that for all a > A3,

a+ γ

a
F ∩ [0, 1] 6= φ. (C.80)

Now for all a > max(A0, A1, A2, A3),∣∣∣∣∣ inf
y∈a+γ

a
F

a

a+ γ
g∗a(y)− inf

y∈F
Λ∗(y)

∣∣∣∣∣ ≤
∣∣∣∣∣ inf
y∈a+γ

a
F

a

a+ γ
g∗a(y)− inf

y∈a+γ
a
F
g∗a(y)

∣∣∣∣∣
+

∣∣∣∣∣ inf
y∈a+γ

a
F
g∗a(y)− inf

y∈a+γ
a
F

Λ∗(y)

∣∣∣∣∣
+

∣∣∣∣∣ inf
y∈a+γ

a
F

Λ∗(y)− inf
y∈F

Λ∗(y)

∣∣∣∣∣
(a)
< ε/3 + ε/3 + ε/3

= ε.

By the relation (C.80), all the infimums involved in the above sequence of inequalities
are finite. In step (a), the first term is less that ε/3 by inequality (C.77), the second
term is less that ε/3 by inequality (C.78), and the last term is less that ε/3 by inequality
(C.79). This completes the proof of part 2 of Lemma 3.8.5, and thus completes the
proof of Lemma 3.8.5.

C.4.5 Proof of Lemma 3.8.6

Note that the claims in points 1 and 2 immediately imply 3, since f νn = an + bνn.
We’ll first prove the claim in point 2. We start by proving pointwise convergence

of {bνn(·)}. Recall the expression for bνn(θ),

bνn(θ) =
1

n
log

πnθ/2

Γ(nθ/2 + 1)
(nν)nθ/2.

For θ = 0, this convergence is obvious. Let θ > 0. We use the approximation

log Γ(z) = z log z − z +O(log z),
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and get that

bνn(nθ) =
1

n

[
nθ

2
log πnν − nθ

2
log

nθ

2e
+O(log nθ)

]
(C.81)

=
1

n

[
nθ

2
log

2πeν

θ
+O(log nθ)

]
(C.82)

=
θ

2
log

2πeν

θ
+
O(log nθ)

n
. (C.83)

Taking the limit as n → ∞, the pointwise convergence of bνn follows. Concavity of
bνn from point 2 of Lemma 3.8.4, combined with Lemma A.1.1 then implies uniform
convergence.

We shall now prove point 1. We start by showing the pointwise convergence of
an(θ) to −Λ∗(1 − θ), or equivalently the convergence of an(1 − θ) to −Λ∗(θ). Note
that convergence at the boundary points is already known. Let θ0 ∈ (0, 1). For ease of
notation, we denote

χ(θ) := −Λ∗(θ)

ān(θ) := an(1− θ).

Note that ān is linearly interpolated from its values at j/n, where ān(j/n) = 1
n

log µn(j).
Let ε > 0 be given. The function χ, being continuous on the bounded interval [0, 1], is
uniformly continuous. Choose δ > 0 such that

|χ(x)− χ(y)| < ε, whenever |x− y| < δ.

Choose N0 > 1/(δ/3), and divide the interval [0, 1] into the the N0 intervals Ij :=[
j
N0
, j+1
N0

]
for 0 ≤ j ≤ N0 − 1. Note that each interval has length less than δ/3.

Without loss of generality, let θ0 lie in the interior of the k-th interval (we can always
choose a different value of N0 to make sure θ0 does not lie on the boundary of any
interval). Thus,

k − 1

N0

< θ0 <
k

N0

.

Lemma 3.8.5 along with the continuity of χ imply that

lim
n→∞

1

n
log µn(Ij) = sup

θ∈Ij
χ(θ). (C.84)

For n > 2/min
(
θ0 − k−1

N0
, k
N0
− θ0

)
, there exists an i such that

k − 1

N0

<
i

n
< θ0 <

i+ 1

n
<

k

N0

. (C.85)
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Thus for some λ > 0, we can write

ān(θ0) = λ
1

n
log µn/n(i/n) + (1− λ)

1

n
log µn/n((i+ 1)/n), (C.86)

and obtain the inequality

ān(θ0) = λ
1

n
log µn/n(i/n) + (1− λ)

1

n
log µn/n((i+ 1)/n) (C.87)

≤ max

(
1

n
log µn/n(i/n),

1

n
log µn/n((i+ 1)/n)

)
(C.88)

≤ 1

n
log µn/n(Ik). (C.89)

Thus we have the upper bound

lim sup
n

ān(θ0) ≤ lim
n→∞

1

n
log µn/n(Ik) (C.90)

= sup
θ∈Ik

χ(θ) (C.91)

(a)

≤ χ(θ0) + ε (C.92)

where (a) follows from the choice of N0 and uniform continuity of χ.

Define

θ̂n(j) = arg sup
i
n

s.t. i
n
∈Ij
µn/n

(
i

n

)
.

As

µn/n(θ̂n(j)) ≤ µn/n(Ij) ≤
(
n

N0

+ 2

)
µn/n(θ̂n(j)) ≤ nµn/n(θ̂n(j)),

it is easy to see that

lim
n→∞

1

n
log µn/n(θ̂n(j)) = lim

n→∞

1

n
log µn/n(Ij) (C.93)

= sup
θ∈Ij

χ(θ). (C.94)

Note that

sup
θ∈Ij

ān(θ) ≥ 1

n
log µn/n(θ̂n(j)).

This implies that for the intervals Ik−1 and Ik+1,

lim inf
n→∞

[
sup
θ∈Ik−1

ān(θ)

]
≥ sup

θ∈Ik−1

χ(θ) ≥ χ(θ0)− ε (C.95)

lim inf
n→∞

[
sup
θ∈Ik+1

ān(θ)

]
≥ sup

θ∈Ik+1

χ(θ) ≥ χ(θ0)− ε. (C.96)
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Since ān(θ) is concave, this implies

ān(θ0) ≥ min( sup
θ∈Ik−1

ān(θ), sup
θ∈Ik+1

ān(θ)). (C.97)

Taking the lim inf on both sides,

lim inf
n→∞

ān(θ0) ≥ χ(θ0)− ε. (C.98)

Inequalities (C.90) and (C.98) prove the pointwise convergence of ān(θ0) to χ(θ0).
Concavity of an from point 2 of Lemma 3.8.4, combined with Lemma A.1.1 then implies
uniform convergence.

C.4.6 Proof of Lemma 3.8.7

By Lemma 3.8.6, the sequence of functions {f νn} converges to f ν uniformly. Using the
converse of the Arzela-Ascoli theorem, this implies that the family of functions {f νn} is
equicontinuous. Let ε > 0 be given. Choose N large such that |f νn(x)− f νn(y)| < ε/2 if
|x− y| < 1/N . This implies that for all n > N ,

max
θ
f νn(θ) ≥ f νn(θ̂n) > max

θ
f νn(θ)− ε/2. (C.99)

Using the uniform convergence of {f νn}, we choose M large enough such that ||f ν−
f νn ||∞ < ε/2 for all n > M . Let L = max(M,N). For all n > L, we have

max
θ
f ν(θ) + ε/2 > max

θ
f νn(θ) ≥ f νn(θ̂n) ≥ max

θ
f νn(θ)− ε/2 ≥ max

θ
f ν(θ)− ε,

and thus
|f νn(θ̂n)−max

θ
f ν(θ)| < ε.

This concludes the proof.

C.4.7 Proof of Lemma 3.8.8

Recall that

Vol(Sn(σ, ρ)n ⊕Bn(
√
nν)) =

n∑
j=0

enf
ν
n(j/n).

We have the trivial bounds

enf
ν
n(θ̂n) ≤ Vol(Sn(σ, ρ)⊕Bn(

√
nν)) ≤ (n+ 1)enf

ν
n(θ̂n) (C.100)

implying

f νn(θ̂n) ≤ 1

n
log Vol(Sn(σ, ρ)⊕Bn(

√
nν)) ≤ log(n+ 1)

n
+ f νn(θ̂n). (C.101)
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Taking the limit in n, we obtain

lim
n→∞

f νn(θ̂n) = `(ν). (C.102)

An application of Lemma 3.8.7 gives

`(ν) = sup
θ
f ν(θ). (C.103)

C.4.8 Proof of Lemma 3.8.9

Recall the expression of f ν(θ):

f ν(θ) = −Λ∗(1− θ) +
θ

2
log

2πeν

θ
. (C.104)

Suppose lim supν→0 θ
∗(ν) = η > 0. Choose a sequence {νn} such that

lim
n→∞

νn = 0 (C.105)

θ∗(νn) >
η

2
for all n ≥ 1. (C.106)

We have that for all ν > 0,

`(ν) = sup
θ
f ν(θ) ≥ f ν(0) = −Λ∗(1) = v(σ, ρ).

Thus,

v(σ, ρ) ≤ `(νn) (C.107)

= f νn(θ∗(νn)) (C.108)

= −Λ∗(θ∗(νn)) +
θ∗(νn)

2
log

2πeνn
θ∗(νn)

(C.109)

≤ sup
θ

[
−Λ∗(1− θ) +

θ

2
log

2πe

θ

]
+
θ∗(νn)

2
log νn (C.110)

(a)

≤ C +
θ∗(νn)

2
log νn (C.111)

(b)

≤ C +
η

4
log νn (C.112)

where in (a), C is a constant and in (b) we assume log νn < 0. Taking the limit as
n→∞, we get that

v(σ, ρ) ≤ lim
n→∞

C +
η

4
log νn = −∞, (C.113)

which is a contradiction. Thus, it must be that lim supν→0 θ
∗(ν) = 0.



APPENDIX C. PROOFS FOR CHAPTER 3 110

C.5 Proof for Section 3.9

C.5.1 Proof of Lemma 3.9.4

We shall first show that as θ → 1,

Λ∗(d)− Λ∗(dθ) + d(1− θ) log(1− θ) = O(1− θ). (C.114)

Recall that

Λ(t) = log

(
d∑
j=0

αje
jt

)
,

and Λ∗(dθ) is given by

Λ∗(dθ) = sup
t
dθt− log

(
d∑
j=0

αje
jt

)
. (C.115)

Let t∗(θ) be

t∗(θ) = arg sup
t
dθt− log

(
d∑
j=0

αje
jt

)
. (C.116)

We shall sometimes refer to t∗(θ) simply by t∗ when the argument is understood. We
have that t∗ satisfies

dθ =

∑d
j=0 jαje

jt∗∑d
j=0 αje

jt∗
, (C.117)

which implies

d(1− θ) =

∑d
j=0(d− j)αjejt∗∑d

j=0 αje
jt∗

. (C.118)

Choose a θ such that dθ > d
dt

Λ(t)
∣∣∣
t=0

to ensure that t∗(θ) > 0. We have the inequality,

αd−1e
(d−1)t∗

M1edt
∗ ≤

∑d
j=0(d− j)αjejt∗∑d

j=0 αje
jt∗

≤ M2e
(d−1)t∗

αdent
∗ , (C.119)

which implies

αd−1

dM1

e−t
∗ ≤ (1− θ) ≤ M2

dαd
e−t

∗
. (C.120)
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where M1 = (d + 1) maxj αj and M2 = (d + 1) maxj(d − j)αj. Taking logarithms, we
get

c1 − t∗ ≤ log(1− θ) ≤ c2 − t∗, (C.121)

for constants c1 and c2. Now let us consider the difference Λ∗(d) − Λ∗(dθ). Since
Λ∗(d) = − logαd, we can write Λ∗(d)− Λ∗(dθ) as

Λ∗(d)− Λ∗(dθ) = − logαd − sup
t
dθt− Λ(t) (C.122)

= − logαd − dθt∗ + Λ(t∗) (C.123)

= dt∗(1− θ)− logαde
dt∗ + log

∑
j

αje
jt∗ (C.124)

= dt∗(1− θ) + log

(
1 +

∑d−1
j=0 αje

jt∗

αdedt
∗

)
. (C.125)

Adding d(1− θ) log(1− θ) to both sides, we get

Λ∗(d)− Λ∗(dθ) + d(1− θ) log(1− θ) = d(1− θ)[t∗ + log(1− θ)]︸ ︷︷ ︸
O(1−θ) by (C.121)

+ log

(
1 +

∑d−1
j=0 αje

jt∗

αdedt
∗

)
︸ ︷︷ ︸

O(e−t∗ ), which equals O(1−θ) by (C.120)

= O(1− θ) (C.126)

We shall now study the asymptotics of 1−θ∗(ν) as ν → 0. We have that θ∗(ν) satisfies

d

dθ

[
−Λ∗(dθ) +

d(1− θ)
2

log
2πeν

1− θ

] ∣∣∣∣∣
θ=θ∗

= 0. (C.127)

This gives

−Λ∗
′
(dθ∗)− 1

2
log 2πeν +

1

2
+

1

2
log(1− θ∗) = 0, (C.128)

which implies

−Λ∗
′
(dθ∗) +

1

2
log(1− θ∗) =

1

2
log 2πν. (C.129)

Now Λ∗
′
(dθ∗) is simply t∗(θ∗) as defined in equation (C.116). By inequality (C.120),

there exist some constants c1 and c2 such that

− log(1− θ∗) + c1 ≤ t∗(θ∗) ≤ − log(1− θ∗) + c2. (C.130)
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Substituting in equation (C.129), there exist some constants c1 and c2 such that

3 log(1− θ∗) + c1 ≤ log ν ≤ 3 log(1− θ∗) + c2, (C.131)

which implies there exist some constants c1 and c2 such that

c1 ≤
1− θ∗
ν1/3

≤ c2. (C.132)

Thus, 1− θ∗ is O(ν1/3). This combined with equation (C.126) completes the proof of
Lemma 3.9.4.

C.5.2 Proof of Lemma 3.9.5

From the inequality (C.132), we have that there exist some constants c1 and c2

c1 ≤ log
2πeν

(1− θ∗)3
≤ c2. (C.133)

We also have 1− θ∗ is O(ν1/3). Thus, it follows that d(1−θ∗)
2

log 2πeν
(1−θ∗)3 = O(ν1/3).

C.5.3 Proof of Lemma 3.9.9

Since Aν(θ) is a continuous function of θ on the compact set [0, 1], it is uniformly
continuous. Choose δ > 0 such that

|Aν(x)−Aν(y)| < η

10
, if |x− y| < δ.

Divide the interval [0, 1] into M equals parts [αi, αi+1] for 0 ≤ i ≤M − 1, with α0 = 0
and αM = 1. We choose M such that each interval has length less than δ. Since {f νn}
converge pointwise on [α1, αM−1] to A(ν, θ), we can use Lemma A.1.1 to conclude that
this convergence is uniform on [α1, αM−1]. Choose N such that for all θ ∈ [α1, αM−1]
and for all n > N , we have

|Aν(θ)− f νn(θ)| < η

10
. (C.134)

For θ ∈ [0, α1], by uniform continuity of Aν(θ) we have

Aν(α1)− n

10
≤ Aν(θ) < Aν(α1) +

n

10
(C.135)

For θ ∈ [0, α1], we can use the concavity of f νn to upper bound the value of f νn(θ) as
follows. We write α1 as a linear combination of θ and α2, and use the concavity of f νn
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to get

f νn(α1) ≥ α2 − α1

α2 − θ
f νn(θ) +

α1 − θ
α2 − θ

f νn(α2) ,

=⇒ α2 − θ
α2 − α1

f νn(α1)− α1 − θ
α2 − α1

f νn(α2) ≥ f νn(θ) ,

=⇒ sup
θ∈(α0,α1)

α2 − θ
α2 − α1

f νn(α1)− α1 − θ
α2 − α1

f νn(α2) ≥ f νn(θ) .

Note that since the LHS is linear in x, the supremum occurs at one of the endpoints
of the interval.

f νn(θ) ≤ max (f νn(α1), 2f νn(α1)− f νn(α2)) ,

≤ max(Aν(α1) + η/10, 2(Aν(α1) + η/10)− (Aν(α2)− η/10) )

≤ max(Aν(α1) + η/10, 2Aν(α1)−Aν(α2) + 3η/10)

≤ max(Aν(α1) + η/10, 2Aν(α1)−Aν(α1) + η/10 + 3η/10) ,

= Aν(α1) + 4η/10 ,

≤ Aν(θ) + 5η/10 ,

< Aν(θ) + η. (C.136)

We can use a similar strategy for θ ∈ [αM−1, αM ] to bound f ν(θ) from above by
Aν(θ) + η. Thus we conclude that for all θ ∈ [0, 1],

f νn(θ) < Aν(θ) + η. (C.137)
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Appendix D

Proofs for Chapter 4

D.1 Proofs for Section 4.1

D.1.1 Proof of Lemma 4.1.2

Note that µεm ? µεn(m + n) = µεn(n)µεm(m) and µεm ? µεn(0) = µεn(0)µεm(0). Thus the
existence of the limits defining α and β is given by sub-additivity. Existence of limit
defining γ follows from the equality γ = Λε(0).

Proof of α <∞ : Note that µn(n) is simply the volume of the typical set T εn . Since
P (T εn ) ≤ 1, we have

|T εn | ≤ en(h(X)+ε), (D.1)

so α ≤ h(X) + ε, and is therefore finite.
Proof of β <∞ and µεn(0), µεn(n) > 0: The value of µn(0) is the Euler characteristic,

which equals 1 when T εn is non-empty. We show that for every n ≥ 1, the set T εn has
a nonempty interior; i.e., Vol(T εn ) = µn(n) > 0. Let M = maxx pX(x) = e−minx Φ(x).
Note that the set of minimizers of Φ is a nonempty set, since Φ→ +∞ as |x| → +∞.
Let x∗ be any such minimizer of Ψ. For the point (x∗, . . . , x∗) ∈ Rn, we have

n∑
i=1

Φ(xi) = −n logM.

We also have the inequality

−h(X) =

∫
R
pX(x) log pX(x)dx ≤

∫
R
pX(x) logMdx = logM.

Thus, for the point (x∗, . . . , x∗), we have

n∑
i=1

Φ(xi) = −n logM < n(h(X) + ε),
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so (x∗, . . . , x∗) ∈ T εn . By the continuity of Φ at x∗, we conclude that T εn has a nonempty
interior.

Proof of γ <∞: Since Φ→ ±∞ as |x| → ±∞, we may find constants c1 > 0 and
c2 such that

Φ(x) ≥ c1|x|+ c2, for all x ∈ R. (D.2)

We start by showing that for A = h(X)+ε−c2
c1

, the sequence of regular crosspolytopes
{Cn}∞n=1 defined by

Cn := {xn ∈ Rn |
n∑
i=1

|xi| ≤ An}

satisfies the containment
T εn ⊆ Cn, for n ≥ 1. (D.3)

For xn ∈ T εn , using definition (4.4) and inequality (D.2), we have

n∑
i=1

(c1|xi|+ c2) ≤
n∑
i=1

Φ(xi) ≤ n(h(X) + ε),

implying that

n∑
i=1

|xi| ≤ n

(
h(X) + ε− c2

c1

)
,

so xn ∈ Cn. Hence, T εn ⊆ Cn, as claimed. Let the intrinsic volumes of Cn be µ̂n(·).
Note that µn(i) ≤ µ̂n(i) for all 0 ≤ i ≤ n, by the containment (D.3). Thus, γ ≤ γ̂,
where

γ̂ := lim
n→∞

1

n
log

(
n∑
i=0

µ̂n(i)

)
. (D.4)

We claim that γ̂ <∞. Define

Ĝn(t) = log
n∑
i=0

µ̂n(i)eit, and ĝn(t) =
Ĝn(t)

n
.

Note that the sequence {Cn} is super-convolutive, so ĝn(t) converges pointwise. In
particular, for t = 0, we have

γ̂ = lim
n→∞

1

n
log

(
n∑
i=0

µi(Cn)

)
exists, and is possibly +∞.
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The i-th intrinsic volume of Cn is given by [2]

µ̂n(i) =


2i+1

(
n
i+1

)√
i+1
i!

(nA)i√
π
×∫∞

0
e−x

2
(

2√
π

∫ x/√i+1

0
e−y

2
dy
)n−i−1

dx

if i ≤ n− 1
2n

n!
(nA)n if i = n.

Note that ∫ ∞
0

e−x
2

(
2√
π

∫ x/
√
i+1

0

e−y
2

dy

)n−i−1

dx

≤
∫ ∞

0

e−x
2

(
2√
π

∫ ∞
0

e−y
2

dy

)n−i−1

dx

≤
∫ ∞

0

e−x
2

dx

=

√
π

2
.

Thus, for 0 ≤ i ≤ n− 1,

µ̂n(i) ≤ 2i+1

(
n

i+ 1

)√
i+ 1

i!

(nA)i√
π
×
√
π

2
(D.5)

= 2i
(

n

i+ 1

)√
i+ 1

i!
(nA)i (D.6)

≤ 2n × 2n ×
√
n+ 1× Ai × ni

i!
(D.7)

≤ 22n
√
n+ 1×max(1, An)× nn

n!
. (D.8)

We may check that the inequality also holds for i = n. Hence,

1

n
log

(
n∑
i=0

µi(Cn)

)

≤ 1

n
log

(
(n+ 1)× 22n

√
n+ 1×max(1, An)× nn

n!

)
.

Taking the limit as n→∞, we obtain

lim
n→∞

1

n
log

(
n∑
i=0

µi(Cn)

)
≤ 2 log 2 + max(0, logA) + 1

<∞.
This shows that γ̂ is finite, and therefore γ is finite.
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D.2 Proofs for Section 4.2

D.2.1 Proof of Lemma 4.2.2

Without loss of generality, take a = 0 and b = 1. Since f is the pointwise limit of
concave functions, it is also concave. The continuity of f is not obvious a priori: it
could be discontinuous at the endpoints 0 and 1. Let f(0) = `0 and f(1) = `1. For any
n ≥ 1, the function fn is lower-bounded by the line joining (0, `0) and (1, `1). Call this
lower bound L(θ), for θ ∈ [0, 1]. We prove continuity at 0, by showing that for η > 0,
there exists a δ > 0 such that for θ ∈ [0, δ), we have |f(θ) − `0| < η. Pick N large
enough such that

fN(0)− `0 < η/2.

The function fN is continuous on [0, 1], so there exists δ1 > 0 such that for θ ∈ [0, δ1),
we have |fn(θ)−fn(0)| < η/2. Now pick a δ2 such that |L(θ)−`0| < η/2, for θ ∈ [0, δ2).
Let δ = min(δ1, δ2). For n > N , we have

L(θ) ≤ fn(θ) ≤ fN(θ).

Thus, for θ ∈ [0, δ), we obtain

fn(θ) ≤ fN(θ) ≤ fN(0) + η/2 ≤ `0 + η,

and

fn(θ) ≥ L(θ) ≥ `0 − η/2.

Thus, for all n > N and θ ∈ [0, δ), we have

`0 − η/2 ≤ fn(θ) ≤ `0 + η.

Taking the limit as n→∞, we conclude that for θ ∈ [0, δ),

`0 − η/2 ≤ f(θ) ≤ `0 + η,

implying continuity at 0. Continuity at 1 follows similarly.

D.2.2 Proof of Lemma 4.2.4

From inequality (D.7), for all i we have

µ̂n(i) ≤ 2i
(

n

i+ 1

)√
i+ 1

i!
(nA)i (D.9)
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Substituting i = bnθc, taking 1/n times the logarithms on both sides and taking
the limit as n→∞, we obtain

−χ∗(θ) ≤ θ log 2A+H(θ)− θ log
θ

e
. (D.10)

By concavity of −χ∗, and since −χ∗(0) = 0, we know that

lim
θ→0
−χ∗(θ) ≥ 0. (D.11)

Taking the limit as θ → 0 in equation (D.10), we obtain the lower bound

lim
θ→0
−χ∗(θ) ≤ 0. (D.12)

Thus, we must have
lim
θ→0
−χ∗(θ) = 0, (D.13)

and this shows that −χ∗ is continuous at 0.
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