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Mahyar Abbasian 1,2,7 , Elahe Khatibi 1,2,7 , Iman Azimi 1,2, David Oniani 2,3,
Zahra Shakeri Hossein Abad2,4, Alexander Thieme 5, Ram Sriram6, Zhongqi Yang 1,
Yanshan Wang 2,3, Bryant Lin 2,5, Olivier Gevaert 5, Li-Jia Li2, Ramesh Jain1,2 & Amir M. Rahmani1,2

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional
patient care into a more personalized, efficient, and proactive process. Chatbots, serving as
interactive conversational models, will probably drive this patient-centered transformation in
healthcare. Through the provision of various services, including diagnosis, personalized lifestyle
recommendations, dynamic scheduling of follow-ups, and mental health support, the objective is to
substantially augment patient health outcomes, all the while mitigating the workload burden on
healthcare providers. The life-critical nature of healthcare applications necessitates establishing a
unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation
metrics proposed for various generic large language models (LLMs) demonstrate a lack of
comprehension regarding medical and health concepts and their significance in promoting patients’
well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building,
ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this
paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to
the assessment of interactive conversational models in healthcare. Subsequently, we present a
comprehensive set of evaluation metrics designed to thoroughly assess the performance of
healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of
language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive
conversations. Finally, we engage in a discussion concerning the challenges associated with defining
and implementing these metrics, with particular emphasis on confounding factors such as the target
audience, evaluation methods, and prompt techniques involved in the evaluation process.

The rapid proliferation of Generative Artificial Intelligence (AI) is funda-
mentally reshaping our interactions with technology. AI systems now
possess extraordinary capabilities to generate, compose, and respond in a
manner that may be perceived as emulating human behavior. Particularly
within the healthcare domain, prospective trends and transformative pro-
jections anticipate a newera characterized by preventive and interactive care
driven by the advancements of large language models (LLMs). Interactive
conversational models, commonly known as chatbots, hold considerable

potential to assist individuals, including patients and healthcare providers,
in a wide array of tasks such as symptom assessment, primary medical and
health education, mental health support, lifestyle coaching, appointment
scheduling, medication reminders, patient triaging, and allocating health
resources.

Due to the life-critical nature of healthcare applications, using con-
versationalmodels necessitates establishing aunifiedandcomprehensive set
of foundation metrics1 that enable a meticulous evaluation of the models’
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equally: Mahyar Abbasian, Elahe Khatibi. e-mail: abbasiam@uci.edu; ekhatibi@uci.edu
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performance, capabilities, identification of potential errors, and imple-
mentation of effective feedback mechanisms. These metrics can lead to
significant advances in the delivery of robust, accurate, and reliable
healthcare services. However, the existing evaluation metrics introduced
and employed for assessing healthcare chatbots2–4 exhibit two significant
gaps that warrant careful attention.

First, it is observed that numerous existing generic metrics5–7 suffer
froma lack of unified and standard definition and consensus regarding their
appropriateness for evaluating healthcare chatbots. Currently, state-of-the-
art conversational models are predominantly assessed and compared based
on language-specific perspectives8 and surface-form similarity8 using
intrinsic metrics such as Bilingual Evaluation Understudy (BLEU)9 and
Recall-oriented Understudy for Gisting Evaluation (ROUGE)5. Although
these metrics are model-based, they lack an understanding of medical
concepts (e.g., symptoms, diagnostic tests, diagnoses, and treatments), their
interplay, and the priority for the well-being of the patient, all of which are
crucial for medical decision-making10. For this reason, they inadequately
capture vital aspects like semantic nuances, contextual relevance, long-range
dependencies, changes in critical semantic ordering, and human-centric
perspectives11, thereby limiting their effectiveness in evaluating healthcare
chatbots. Moreover, specific extrinsic context-aware evaluation methods
have been introduced to incorporate human judgment in chatbot
assessment7,9,12–16. However, these methods have merely concentrated on
specific aspects, such as the robustness of the generated answers within a
particular medical domain.

Second, it is evident that the existing evaluation metrics overlook a
wide range of crucial user-centered aspects that indicate the extent to
which a chatbot establishes a connection and conveys support and
emotion to the patient. Emotional bonds play a vital role in
physician–patient communications, but they are often ignored during
the development and evaluation of chatbots. Healthcare chatbot
assessment should consider the level of attentiveness, thoughtfulness,
emotional understanding, trust-building, behavioral responsiveness,
user comprehension, and the level of satisfaction or dissatisfaction
experienced. There is a pressing need to evaluate the ethical implications
of chatbots, including factors such as fairness and biases stemming from
overfitting17. Furthermore, the current methods fail to address the issue
of hallucination, wherein chatbots generate misleading or inaccurate
information. In particular, in the healthcare domain, where safety and
currentness of information are paramount, hallucinations pose a sig-
nificant concern. The evaluation of healthcare chatbots should
encompass not only their ability to provide personalized responses to
individual users but also their ability to offer accurate and reliable
information that applies to a broader user base. Striking the right bal-
ance between personalization and generalization is crucial to ensure
practical and trustworthy healthcare guidance. In addition, metrics are
required to assess the chatbot’s ability to deliver empathetic and sup-
portive responses during healthcare interactions, reflecting its capacity
to provide compassionate care.Moreover, existing evaluations overlook

performance aspects of models, such as computational efficiency and
model size, which are crucial for practical implementation.

In this article, we begin by delving into the current state-of-the-art
evaluation metrics applicable to assessing healthcare chatbots. Subse-
quently, we introduce an exhaustive collection of user-centered evaluation
metrics. We present the problems these metrics address, the existing
benchmarks, and their taxonomy to provide a thorough and well-rounded
comprehension of a healthcare chatbot’s performance across diverse
dimensions. These metrics encompass assessing the chatbot’s language
processing capabilities, impact on real-world clinical tasks, and effectiveness
in facilitating user-interactive conversations. Furthermore, we present a
framework to facilitate the implementation of a cooperative, end-to-end,
and standardized approach for metrics’ evaluation. We discuss the chal-
lenges associated with defining and implementing these metrics, empha-
sizing factors such as the target audience, evaluation methods, and prompt
techniques integral to this process.

Review of existing evaluation metrics for LLMs
The evaluation of language models can be categorized into intrinsic and
extrinsic methods18, which can be executed automatically or manually. In
the following, we briefly outline these evaluation methods.

Intrinsic evaluation metrics
Intrinsic evaluationmetrics measure the proficiency of a languagemodel in
generating coherent and meaningful sentences relying on language rules
and patterns18. We categorize the intrinsic metrics into general automatic
and dialog-basedmetrics. An overview of the intrinsic metrics is shown in
Fig. 1a. In addition, Table 1 outlines a brief overview of existing intrinsic
metrics employed for LLMs evaluation in the literature.

The intrinsic evaluation metrics are characterized by their computa-
tional simplicity. They offer valuable quantitative measures to evaluate
LLMs. However, they solely rely on surface-form similarity and language-
specific perspectives, rendering them inadequate for healthcare chatbots.
These metrics lack the capability to capture essential elements such as
semantics19,20, context19,21, distant dependencies22,23, semantically critical
ordering change21, and human perspectives, particularly in real-world
scenarios.

To illustrate the limitations of intrinsic metrics in healthcare contexts,
consider the evaluation of the following two sentences using BLEU and
ROUGE metrics with HuggingFace24: (1) “Regular exercise and a balanced
diet are important for maintaining good cardiovascular health.” and (2)
“Engaging in regular physical activity and adopting a well-balanced diet is
crucial for promoting optimal cardiovascular well-being.” Despite the con-
textual similarity between the two sentences, the obtained BLEU and
ROUGE scores are 0.39 and 0.13, respectively, on a scale of 0 to 1, reflecting
low alignment. This underscores the inability of thesemetrics to capture the
semantic meaning of the text effectively. Therefore, if we solely use these
metrics to evaluate a healthcare chatbot, an inaccurate answermay receive a
high score compared with the reference answer.

Match-rate
Dialogue Accuracy
Average Request Turn

BLEU
Precision
F1 Score
Recall
ROUGE
Perplexity
TER
MRR
NIST

(a) Intrinsic

Reliability
Up-to-dateness
Healthy Behaviours
Emotional Support

Trustfulness
Usefulness
SSI
Accuracy
Groundedness
Safety
Bias
Helpfulness
Calibration
Toxicity
Robustness

(b) Extrinsic

Dialogue Metrics

Generic Metrics
Healthcare-Domain Metrics

General-Purpose Metrics

Fig. 1 | An overview of the metrics proposed in the literature. a Existing intrinsic metrics which are categorized into general LLMmetrics and Dialog metrics. b Existing
extrinsic metrics for both general domain and healthcare-specific evaluations are presented.
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Extrinsic evaluation metrics
Extrinsic evaluation metrics present means of measuring the performance
of language models by incorporating user perspectives and real-world
contexts18. These metrics can gauge how the model impacts end-users and
assess the extent to which LLMs meet human users’ expectations and
requirements8. Extrinsic metrics, gathered through subjective means, entail
human participation and judgments within the evaluation process14–16. We
classify the existing extrinsic metrics in the literature into two categories:
general-purpose andhealth-specificmetrics. Figure 1bprovides anoverview
of the extrinsic metrics.

General-purpose human evaluation metrics have been introduced to
assess the performance of LLMs across various domains5. These metrics
serve to measure the quality, fluency, relevance, and overall effectiveness of
languagemodels, encompassing awide spectrumof real-world topics, tasks,
contexts, and user requirements5. On the other hand, health-specific eva-
luation metrics have been specifically crafted to explore the processing and
generation of health-related information by healthcare-oriented LLMs and
chatbots, with a focus on aspects such as accuracy, effectiveness, and
relevance.

The aforementioned evaluation metrics have endeavored to tailor
extrinsic metrics, imbued with context and semantic awareness, for the
purpose of LLMs evaluation. However, each of these studies has been
confined to a distinct set of metrics, thereby neglecting to embrace the
comprehensive and all-encompassing aspect concerning healthcare lan-
guage models and chatbots.

Multi-metric measurements
A restricted body of literature has introduced and examined a collection of
domain-agnostic evaluation metrics, which amalgamate intrinsic and
extrinsic measurements for LLMs in the healthcare domain. Notably, Laing
et al.5 have presented a multi-metric approach, as part of the HELM
benchmark, to scrutinize LLMs concerning their accuracy, calibration
(proficiency in assigning meaningful probabilities for generated text),

robustness, fairness, bias, toxicity, and efficiency. Likewise,Wang et al.6 have
assessed the trustworthiness of GPT-3.5 and GPT-4 from eight discerning
aspects encompassing toxicity, bias, robustness, privacy, machine ethics,
and fairness. In addition, Chang et al.8 have presented organized evaluation
methodologies for LLMs through three essential dimensions: “what to
evaluate,” “where to evaluate,” and “how to evaluate.”

Despite these contributions, it is evident that these studies have yet to
fully encompass the indispensable, multifaceted, and user-centered eva-
luation metrics necessary to appraise healthcare chatbots comprehensively.
For example, these studies unable to assess chatbots in terms of empathy,
reasoning, up-to-dateness, hallucinations, personalization, relevance, and
latency.

Essential metrics for evaluating healthcare chatbots
In this section, we present a comprehensive set of metrics essential for
conducting a user-centered evaluation of LLM-based healthcare chatbots.
The primary objective is to assess healthcare chatbot models from the
perspective of users interacting with the healthcare chatbot, thereby dis-
tinguishing our approach from existing studies in this field. To visualize the
evaluation process of healthcare chatbot models, we provide an overview in
Fig. 2.This process entails evaluators interactingwith conversationalmodels
and assigning scores to various metrics, all from the viewpoint of users.
These scores are subsequently utilized for the purpose of comparing and
ranking different healthcare chatbots, ultimately leading to the creation of a
leaderboard. In this evaluation process, three confounding variables are
taken into account: user type, domain type, and task type. The following
outlines these three essential confounding variables.
1. User type:The end-users engagingwith the conversationalmodelmay

include patients, nurses, primary care providers, or specialist providers,
among others. The evaluation of the model’s performance encom-
passes diverse factors, such as safety and privacy, which are contingent
upon the specific users or audience involved. For instance, when
interacting with a patient, the chatbot may offer less advanced

Table 1 | A brief overview of intrinsic metrics for LLMs

Name Focus Measure Model

BLEU71,72 Calculates precision based on the number of mutual n consecutive words between reference
and generated text.

FLAN73, BART74, DialoGPT75,
GPT-358

ROUGE5,72 Calculates F1-score based on the number of mutual n consecutive words between reference
and generated text.

BART74, T5, GPT-276,
BiomedGPT77

Perplexity72,78 Likelihood of the model generating the reference text. LIMA39, BART74, Meena9

BERTScore20,72 Creates a similarity matrix between reference and generated text and calculates the weighted
sum of maximum similarity in the matrix.

BERT, RoBERT20

METEOR72,79 Calculates F1-Score (with more weight on recall) based on the number of matched words
considering synonyms in the reference and generated text.

GPT-3.569

Precision18,72,80 General Is calculated by dividing the number of correctly generated relevant words by the total number
of generated words.

BioGPT81, ChatDoctor82,
medAlpaca28

Recall18,80 Is calculated by dividing the number of correctly generated relevant words by the total number
of possible relevant words.

BioGPT81, ChatDoctor82,
medAlpaca28

F1-Score5,83 Is calculated as the harmonic mean of precision and recall. BioGPT81, ChatDoctor82,
medAlpaca28

TER84 Is computed based on the minimum number of edits required to transform the generated text
into the reference text.

GPT-485

MoverScore86 Like BERTScore calculates similarity matrix but considers many-to-one word relationships. GPT-3.569

NIST84 Similar to BLEU with the difference that it gives higher weight to more valuable mutual n
consecutive words.

BART87, GPT-287

Dialog Accuracy88–92 Calculating the percentage of successful diagnosis. Refuel88,89,91, KR_DS90

Match-rate88–92 Dialog Evaluating the chatbot’s ability to accurately inquire about relevant symptoms. Refuel88,89, KR_DS90

Average Request Turn88–92 Averaging number of turns the average number of turns or interactions between the user and
chatbot.

Refuel88,89, KR_DS90

METEORMetric for Evaluation of Translation with Explicit ORdering, TER translation edit rate.
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recommendations to mitigate potential harm or risks to the patient or
others. Conversely, when the user is a medical doctor, the chatbotmay
provide comprehensive responses, including specific drug names,
dosages, and relevant information gleaned from other patients’
experiences.

2. Domain type: Chatbots can serve two distinct purposes: they can be
designed for general healthcare queries, providing answers across a
broad spectrum of topics. Alternatively, they can be tailored and
trained for specific domains like mental health or cancer. The eva-
luationmetrics required for assessing these chatbots can be influenced
by the healthcare domain they cater to.

3. Task type:Chatbots exhibit versatility in performing diverse functions,
encompassing medical report generation, diagnosis, developing a
treatment plan, prescription, and acting as an assistant. The evaluation
of the model and metric scoring may differ depending on the specific
task at hand. For instance, in the domain of medical report generation,
the utmost importance lies in ensuring the reliability and factuality of
the generated text, a requirement thatmight not be as critical when the
task involves acting as an assistant.
As outlinedbelow, themetrics are categorized into four distinct groups:

accuracy, trustworthiness, empathy, and performance, based on their
dependencies on the confounding variables. For a visual representation,
please refer to Fig. 3. Furthermore, Table 2 summarizes the healthcare-
related problems that each metric addresses.

Accuracy
Accuracy metrics encompass both automatic and human-based assess-
ments that evaluate the grammar, syntax, semantics, and overall structure of
responses generated byhealthcare chatbots. The definition of these accuracy

metrics is contingent upon the domain and task types involved5,25. To elu-
cidate, let us consider two examples. For a chatbot serving as amental health
assistant, an accuracy metric like “robustness" would gauge the model’s
resilience in answering mental health topics and effectively engaging in
supportive dialogs. Conversely, for a generic healthcare chatbot designed for
diagnosis, the “robustness" metric should evaluate the model’s ability to
handle mental health assistance queries and other diverse domains. It is
important to note that accuracymetricsmight remain invariant with regard
to the user’s type, as the ultimate objective of the generated text is to achieve
the highest level of accuracy, irrespective of the intended recipient. In the
following, we outline the specific accuracy metrics essential for healthcare
chatbots, detail the problems they address, and expound upon the meth-
odologies employed to acquire and evaluate them.

Intrinsic metrics are employed to address linguistic and relevance
problems of healthcare chatbots in each single conversation between user
and the chatbot. They can ensure the generated answer is grammatically
accurate and pertinent to the questions. Table 1 summarizes the intrinsic
metrics used to evaluate LLMs.

Sensibility, Specificity, Interestingness (SSI)7, an extrinsic metric,
assesses the overall flow, logic, and coherence of the generated text, con-
tributing to User-Engagement. SSI metric measures how well the model’s
answers align with human behavior. The SSI score is computed as the
average of three metrics: Sensibility, Specificity, and Interestingness.

Robustness15,25, as an extrinsic metric, explores the resilience of
healthcare chatbots against perturbations and adversarial attacks. It
addresses the challenge of response vulnerability by assessing a language
model’s ability to maintain performance and dependability amidst input
variations, noise, or intentional behavior manipulation. In healthcare
chatbots, where human inquiries may not precisely align with their

Doctors Patients

User Types

Task Types

What is the latest finding 
regarding blood cancer?

Domain Types

I have sleep issues for two 
days. What should I do?

Based on your recent 

Data Scientists

Health 
Professionals

Patients

EVALUATORS

GOPHER

PALM

GPT

MODELS

LEADERBOARD

Model 1
Model 2
Model 3

Accuracy: 2
Trustworthiness: 3
Empathy: 1
Performance: 2
Total Score: 2

Question

Answer

Question

Answer

CONVERSATIONS

Metric Score

Scoring

CONFOUNDING VARIABLES

Fig. 2 | A broad overview of the evaluation process and the role ofmetrics.Evaluators engage with healthcare chatbotmodels, considering confounding variables, to assign
scores for eachmetric. These scores will be utilized to generate a comparative leaderboard, facilitating the comparison of healthcare chatbotmodels based on variousmetrics.
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Linguistical issues and irrelevant responses
Irrelevant responses
Lack of resilience
Overfitting and limited transferability
Wordiness and redundancy
Hallucination 
Out-to-dateness
Lack of reasoning
Toxicity
Lack of privacy
Lack of personalization
Lack of empathy
Lack of reliability
Lack of validity
Latency and lack of usability

Accuracy Trustworthiness Empathy Performance

Intrinsic
SSI
Robustness
Generalization
Conciseness
Up-to-dateness
Groundedness

Safety and Security
Privacy
Bias
Interpretability

Emotional Support
Health Literacy
Fairness
Personalization

Memory Efficiency
FLOP
Token Limit
Number of Parameters

Domain Type
Task Type User Type User Type

Domain Type
Task Type
User Type

Fig. 3 | Overview of the four healthcare evaluation metric groups. Accuracy
metrics are scored based on domain and task types, trustworthiness metrics are
evaluated according to the user type, empathy metrics consider patients needs in
evaluation (among the user type), and performance metrics are evaluated based on

the three confounding variables. The metrics identify the listed problems of
healthcare chatbots. The size of a circle reflects the number of metrics which are
contributing to identify that problem.

Table 2 | Evaluation metrics for healthcare chatbots

User-centered
metrics

Low-level
metrics

Definition Problem Benchmark

Accuracy Intrinsic Linguistical issues and irrelevant
responses

Linguistical issues and irrelevant
responses

OpenbookQA93, MedQA-USMLE94, QuAC95, BoolQ96, NaturalQuestions97, RAFT5,
HellaSwag98,CNN99,100, XSUM101, BLiMP102, ThePile103, ICE104, TwitterAAE105,WikiFact106,
NarrativeQA107

SSI Measuring the relevancy of the gener-
ated response

Irrelevant responses OpenAI Evals108, ParlAI109, SuperGLUE110, MMLU111, BigBench112, NarrativeQA107,
OpenbookQA93, QuAC95, WikiFact106, BoolQ96 NaturalQuestions97, MedQA-USMLE94

Robustness Gauging the resilienceof chatbot to any
disruptions

Lack of resilience and validity GLUE113, CoQA114, LAMBADA1, TriviaQA115, ANLI116, MNLI117, SQUAD118

Generalization Assessing chatbot’s performance on
unfamiliar tasks

Overfitting, limited transfer-
ability, and lack of validity

TyDiQA68, PromptBench119, AdvGLUE116, TextFlint120, DDXPlus116, MGSM121

Conciseness Measuring response conciseness
accurately

Wordiness and redundancy KoLA122, AlpacaEval8, PandaLM123, GLUE-X117, EleutherAIEval5

Up-to-
dateness

Evaluating the up-to-dateness of gen-
erated response

Hallucination, out-to-dateness,
and lack of validity

WikiFact 106

Groundedness Evaluating the factual validity of gen-
erated responses

Out-to-dateness, lack of rea-
soning, lack of validity, and
hallucination

LSAT124, Dyck125, Synthetic reasoning126 WikiFact106, bAbI127, Entity matching128, Data
imputation129, HumanEval130, APPS131, MATH132, GSM8K133

Trustworthiness Safety and
Security

Measuring compliance of generated
responses to ethical aspects

Toxicity RealToxicityPrompts134, TruthfulQA135, CivilComments49, BOLD136, BBQ137

Privacy Evaluating the model’s use of sensitive
user information

Lack of privacy DP-SGD138,139

Bias Measuring the generated response
bias toward specific populations

Lack of personzalition and
toxicity

CrowS-Pairs140, WinoGender13, BBQ137, TruthfulQA135, RealToxicityPrompts134,
CivilComments49

Interpretability Assessing user interpretability of gen-
erated responses

Lack of reasoning and
hallucination

HumanEval130, APPS131, GSM8K133, HellaSwag98, LogiQA141, WikiFact106, Synthetic
reasoning126, bAbI127, Dyck125, Entity matching128, Data imputation129, MATH132

Empathy Emotional
Support

Measuring chatbots’ integration of user
emotions

Lack of personalization and
toxicity

TruthfulQA135, CivilComments49, IMDB142, BBQ137, BOLD136, RealToxicityPrompts134

Health Literacy Assessing response understandability
across different levels of health
knowledge

Lack of empathy and
personalization

ParlAI109, SuperGLUE110

Fairness Evaluating chatbot’s consistency,
quality, and fairness across demo-
graphic users

Lack of personalization, empa-
thy, reliability, and toxicity

OpenAIEvals108, ETHICS143, ParlAI109, IMBD142, MoralExceptQA144, MACHIAVELLI145,
BOLD136, SOCIALCHEM-101146, TruthfulQA135, BBQ137, CivilComments49,
RealToxicityPrompts134

Personalization Gauging chatbot conversation’s level
of individualization

Toxicity, lack of personalization,
empathy, and reliability

RealToxicityPrompts134, BOLD136, BBQ137, IMBD142, TrusthfulQA135, CivilComments49

Performance Memory
Efficiency

Measuring chatbot’s memory usage Latency and lack of usability ANLI116, ParlAI109

FLOP Assessing Chatbot’s floating point
operation count

Latency and lack of usability ANLI116, ParlAI109

Token Limit Assessing chatbot’s performance
(computational and memory)

Latency and lack of usability –

Number of
Parameter

Evaluating model’s data processing
and learning capacity

Latency and lack of usability –
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underlying issues or intent, robustness assumes paramount importance.
Robustness plays a critical role in ensuring the validity of the chatbot’s
responses.

Generalization15,25, as an extrinsic metric, pertains to a model’s capa-
city to effectively apply acquired knowledge in accurately performing novel
tasks. In the context of healthcare, the significance of the generalization
metric becomes pronounced due to the scarcity of data and information
across various medical domains and categories. A chatbot’s ability to gen-
eralize enhances its validity in effectively addressing awide range ofmedical
scenarios.

Conciseness, as an extrinsicmetric, reflects the effectiveness and clarity
of communication by conveying information in a brief and straightforward
manner, free from unnecessary or excessive details26,27. In the domain of
healthcare chatbots, generating concise responses becomes crucial to avoid
verbosity or needless repetition, as such shortcomings can lead to mis-
understanding or misinterpretation of context.

Up-to-dateness serves as a critical metric to evaluate the capability of
chatbots inproviding information and recommendationsbasedon themost
current and recently published knowledge, guidelines, and research. Given
the rapid advancements within the healthcare domain, maintaining up-to-
datemodels is essential to ensure that the latestfindings and research inform
the responses provided by chatbots28,29. Up-to-dateness significantly
enhances the validity of a chatbot by ensuring that its information aligns
with the latest evidence and guidelines.

To achieve up-to-dateness in models, integration of retrieval-based
models as external information-gathering systems is necessary. These
retrieval-based models enable the retrieval of the most recent information
related to user queries from reliable sources, ensuring that the primary
model incorporates the latest data during inference.

Groundedness, the final metric in this category, focuses on deter-
mining whether the statements generated by the model align with factual
and existing knowledge. Factuality evaluation involves verifying the cor-
rectness and reliability of the information provided by the model. This
assessment requires examining the presence of true-causal relations among
generated words30, which must be supported by evidence from reliable
reference sources7,12. Hallucination issues in healthcare chatbots arise when
responses appear factually accurate but lack a validity5,31–33. To address this,
groundedness leverages relevant factual information, promoting sound
reasoning and staying up-to-date ensuring validity. The role of grounded-
ness is pivotal in enhancing the reasoning capabilities of healthcare chatbots.
By utilizing factual information to respond to user inquiries, the chatbot’s
reasoning is bolstered, ensuring adherence to accurate guidelines.Designing
experiments and evaluating groundedness for general language and chatbot
models follows established good practices.7,30,34–37.

Trustworthiness
Trustworthiness, an essential aspect of ResponsibleAI, plays a critical role in
ensuring the reliability and conscientiousness of healthcare chatbot
responses. To address these significant concerns, we propose four Trust-
worthiness metrics: safety, privacy, bias, and interpretability. It is important
to note that these trustworthiness metrics are defined based on the user’s
type. For instance, the desired level of interpretability for a generated text
may vary between a patient and a nurse, necessitating tailored evaluations
for different user groups.

The Safety and Security metric evaluates a model’s adherence to
ethical and responsible guidelines in its generated responses5,29,38,39.
Security is defined as the safeguarding of information and information
systems to prevent unauthorized access, use, disclosure, disruption,
modification, or destruction40,41. The overarching goal is to ensure
confidentiality, integrity, and availability of the information and sys-
tems in question. Safety primarily focuses on mitigating potential risks
associated with harmful or inappropriate content (toxicity) produced
by LLMs25. Safety encompasses multiple aspects, including the model’s
confidence level in its answers, the level of detail included in the
responses, and the potential risks or harms posed by the answers7. These

aspects can be tailored based on the intended user type. For example,
when a healthcare professional interacts with the chatbot, themodel can
provide more specific advice or directives, such as prescribing dosage or
duration of drug usage. However, when interacting with actual patients,
the model should exercise greater caution.

ThePrivacymetric is devised to assesswhether themodel utilizes users’
sensitive information for either model fine-tuning or general usage42.
Privacy is evaluated from three perspectives. First, users may share sensitive
information with a chatbot to obtain more accurate results, but this infor-
mation should remain confined to the context of the specific chat session
and not be used when answering queries from other users43. Second, the
model should adhere to specific guidelines to avoid requesting unnecessary
or privacy-sensitive information from users during interactions. Lastly, the
dataset used to train the model may contain private information about real
individuals, which could be extracted through queries to the model.

Bias in healthcare chatbots refers to the presence of discriminatory
treatment in their responses. Bias encompasses three significant aspects:
Demographic bias, where the model’s responses exhibit disparities or
favoritism based on attributes like race, gender, age, or socioeconomic sta-
tus. Medical condition bias, which can arise when the LLM provides
inconsistent or unequal recommendations or information (e.g., con-
servative approaches) for different medical conditions without logical
clinical justification. Representation bias, occurring when certain groups or
medical conditions are underrepresented or overlooked in the training data
of the language model, leading to incomplete or inaccurate information.

Bias evaluation44 can be accomplished by employing an agreement
index, based on the frequency of a healthcare chatbot agreeing with ste-
reotype statements"6. For instance, if the chatbot responds to the query
“People of [selected ethnic group] are usually addicted to drugs" with an
agreement or similar terms, it is considered an instance of agreement,
indicating the presence of bias.

The Interpretabilitymetric assesses the chatbot’s responses in termsof
user-centered aspects, measuring the transparency, clarity, and compre-
hensibility of its decision-makingprocess45. This evaluation allows users and
healthcare professionals to understand the reasoning behind the chatbot’s
recommendations or actions. Hence, by interpretability metric, we can also
evaluate the reasoning ability of chatbots which involves assessing howwell
a model’s decision-making process can be understood and explained.
Interpretability ensures that the chatbot’s behavior can be traced back to
specific rules, algorithms, or data sources46.

Empathy
Empathy is the ability to understand and share the feelings of another
person. Empathy metrics are established according to the user’s type and
hold particular significance, especially when the intended recipient is a
patient. These metrics ensure that the chatbots consider end-users emo-
tional support, trust, concerns, fairness, and health literacy47–50. Empathy
also plays a crucial role in building trust between users and chatbots.
Unempathetic responses can erode trust and credibility in the system, as
users may feel unheard, misunderstood, or invalidated. In pursuit of
empathy, we propose four empathy metrics: emotional support, health lit-
eracy, fairness, and personalization.

The Emotional Support metric evaluates how chatbots incorporate
user emotions and feelings. This metric focuses on improving chatbot
interactions with users based on their emotional states while avoiding the
generation of harmful responses. It encompasses various aspects such as
active listening, encouragement, referrals, psychoeducation, and crisis
interventions51.

The Health Literacy metric assesses the model’s capability to com-
municate health-related information in a manner understandable to indi-
vidualswithvarying levels ofhealthknowledge.This evaluationaidspatients
with low health knowledge in comprehending medical terminology,
adhering to post-visit instructions, utilizing prescriptions appropriately,
navigating healthcare systems, and understanding health-related content52.
For instance, “pneumonia is hazardous" might be challenging for a general
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audience, while “lung disease is dangerous" could be a more accessible
option for people with diverse health knowledge.

The Fairness metric evaluates the impartiality and equitable perfor-
mance of healthcare chatbots. This metric assesses whether the chatbot
delivers consistent quality and fairness in its responses across users from
different demographic groups, considering factors such as race, gender, age,
or socioeconomic status53,54. Fairness and bias are two related but distinct
concepts in the context of healthcare chatbots. Fairness ensures equal
treatment or responses for all users, while bias examines the presence of
unjustified preferences, disparities, or discrimination in the chatbot’s
interactions andoutputs55,56. For instance, amodel trainedonan imbalanced
dataset, with dominant samples fromwhitemales and limited samples from
Hispanic females, might exhibit bias due to the imbalanced training dataset.
Consequently, it may provide unfair responses to Hispanic females, as their
patternswere not accurately learned during the training process. Enhancing
fairness within a healthcare chatbot’s responses contributes to increased
reliability by ensuring that the chatbot consistently provides equitable and
unbiased answers.

The Personalization metric gauges the degree of customization and
individualization in the chatbot’s conversations. It assesses how effectively
the chatbot incorporates end-users’ preferences, demographics, past inter-
actions, behavioral patterns, and health parameters (collected from sources
like electronic health records) when generating responses. Personalization
can be evaluated from two perspectives: personalized conversation (com-
munication procedure) and personalized healthcare suggestions (output).
The metric, can be obtained through subjective human-based evaluation
methods57. Personalization enhances the reliability of a chatbot by tailoring
its interactions and healthcare recommendations to individual users,
ensuring that responses align closely with their preferences and health-
related data.

Performance
Performance metrics are essential in assessing the runtime performance of
healthcare conversational models, as they significantly impact the user
experience during interactions. From the user’s perspective, two crucial
quality attributes that healthcare chatbots should primarily fulfill are
usability and latency. Usability refers to the overall quality of a user’s
experience when engaging with chatbots across various devices, such as
mobile phones, desktops, and embedded systems. Latency measures the
round-trip response time for a chatbot to receive a user’s request, generate a
response, and deliver it back to the user. Low latency ensures prompt and
efficient communication, enabling users to obtain timely responses. It is
important to note that performance metrics may remain invariant con-
cerning the three confounding variables (user type, domain type, and task
type). In the following sections, we outline the performance metrics for
healthcare conversational models.

The Memory Efficiency metric quantifies the amount of memory
utilized by a healthcare chatbot. Popular LLMs, such as GPT-4, Llama, and
BERT, often require large memory capacity13,58–61, making it challenging to
run them on devices with limited memory, such as embedded systems,
laptops, and mobile phones62.

TheFLoatingpointOPerations (FLOP)metric quantifies thenumber
of floating point operations required to execute a single instance of
healthcare conversational models. This metric provides valuable insights
into the computational efficiency and latency of healthcare chatbots, aiding
in their optimization for faster and more efficient response times.

The Token Limit metric evaluates the performance of chatbots,
focusing on the number of tokens used in multi-turn interactions. The
number of tokens significantly impacts the word count in a query and the
computational resources required during inference. As the number of
tokens increases, the memory and computation needed also increase63,
leading to higher latency and reduced usability.

TheNumber of Parameters of the LLMmodel is a widely usedmetric
that signifies the model’s size and complexity. A higher number of para-
meters indicates an increased capacity for processing and learning from

training data and generating output responses. Reducing the number of
parameters, which often leads to decreased memory usage and FLOPs, is
likely to improve usability and latency,making themodelmore efficient and
effective in practical applications.

Challenges in evaluating healthcare chatbots
In this section, we elucidate the challenges and pertinent factors essential for
the evaluation of healthcare chatbots using the proposed user-centered
metrics. These challenges notably influence the metric interpretation and
the accurate representation of final scores for the model leaderboard. We
categorize these challenges and considerations into three groups: metrics
association, selection of evaluation methods, and model mode selection.

Metrics association
The proposed metrics demonstrate both within-category and between-
category associations, with the potential for negative or positive correlations
among them. Within-category relations refer to the associations among
metrics within the same category. For instance, within the accuracy metrics
category, up-to-dateness and groundedness show a positive correlation, as
ensuring the chatbot utilizes the most recent and valid information
enhances the factual accuracy of answers, thereby increasing groundedness.

Between-category relations occur when metrics from different cate-
gories exhibit correlations. For instance, metrics in trustworthiness and
empathy may be correlated. Empathy often necessitates personalization,
which can potentially compromise privacy and lead to biased responses.

A significant relationship exists between performance metrics and the
other three categories. For instance, the number of parameters in a language
model can impact accuracy, trustworthiness, and empathy metrics. An
increase inparametersmay introduce complexity, potentially affecting these
metricspositively or negatively. Conversely, a lowparameter count can limit
themodel’s knowledge acquisition and influence the values of thesemetrics.

Evaluation methods
Various automatic andhuman-based evaluationmethods canquantify each
metric, and the selection of evaluationmethods significantly impactsmetric
scores. Automatic approaches utilize established benchmarks to assess the
chatbot’s adherence to specified guidelines, such as using robustness
benchmarks alongside metrics like ROUGE or BLEU to evaluate model
robustness.

However, a notable concern arises when employing existing bench-
marks (see Table 2) to automatically evaluate relevant metrics. These
benchmarks may lack comprehensive assessments of the chatbot model’s
robustness concerning confounding variables specific to the targetuser type,
domain type, and task type. Ensuring a thorough evaluation of robustness
requires diverse benchmarks that cover various aspects of the confounding
variables.

Human-based methods involve providing questions or guidelines to
human annotators who score the chatbot’s generated answers based on
given criteria. This approach presents twomain challenges: subjectivity and
the need for a variety of domain expert annotators. To minimize bias,
involving multiple annotators for scoring the same samples is essential to
capture normative human judgments. Additionally, expert annotators from
diverse healthcare domains are required to ensure accurate and compre-
hensive annotation.

It is crucial to acknowledge two strategies for scoring metrics. In chat
sessions, multiple conversation rounds occur between the user and the
healthcare chatbot. The first strategy involves scoring after each individual
query is answered (per answer), while the second strategy involves scoring
the healthcare chatbot once the entire session is completed (per session).
Some metrics, like intrinsic ones, perform better when assessed on a per-
answer basis64.

Model prompt techniques and parameters
Prompt engineering65 significantly impacts the responses generated by
healthcare chatbots, and the choice of prompt technique plays a pivotal role
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in achieving improved answers. Various prompting methods, such as zero-
shot, few-shot, chain of thought generated with evidence, and persona-
based approaches, have been proposed in the literature.

Apart from prompting techniques, evaluation based on model para-
meters during inference is also crucial. Modifying these parameters can
influence the chatbot’s behavior when responding to queries. For example,
adjusting the beam search parameter66 can impact the safety level of the
chatbot’s answers, and similar effects apply to other model parameters like
temperature67, which can influence specific metric scores.

Toward an effective evaluation framework
Considering the aforementioned deliberations regarding the requirements
and complexities entailed in the evaluation of healthcare chatbots, it is of
paramount importance to institute effective evaluation frameworks. The
principal aimof these frameworks shall be to implement a cooperative, end-
to-end, and standardized approach, thus empowering healthcare research
teams to proficiently assess healthcare chatbots and extract substantial
insights from metric scores.

In this context, Fig. 4 presents an illustrative high-level repre-
sentation of such an evaluation framework. This framework is intended
to act as the foundational codebase for future benchmarks and guide-
lines. It includes essential components requiring adaptation during the
evaluation process. Notably, while recent studies50,68–70 have introduced
various evaluation frameworks, it is important to recognize that these
may not fully cater to the specific needs of healthcare chatbots. Hence,
certain components in our proposed evaluation framework differ from
those in prior works. In the ensuing sections, we expound on these
components and discuss the challenges that necessitate careful con-
sideration and resolution.

The term Models within the evaluation framework pertains to both
current and prospective healthcare chatbot models. The framework should
enable seamless interaction with these models to facilitate efficient
evaluation.

The evaluation framework encompasses the configurable Environ-
ment, where researchers establish specific configurations aligned with their
research objectives. The three key configuration components consist of
confounding variables, prompt techniques and parameters, and evaluation
methods.
1. The Confounding Variables component is pivotal, as it stores con-

figurations related to users, domains, and task types. The ability to
adjust these variables in the evaluation framework ensures alignment
among all stakeholders evaluating the target healthcare chatbotmodel,
fostering a consistent and uniform evaluation perspective.

2. The Prompt Techniques and Parameters component enables the
configuration of desired prompting techniques and LLM parameters.
Evaluators utilize these configurations during the model evaluation
process.

3. The Evaluation component represents a critical aspect of the evalua-
tion framework, providing essential tools for evaluators to calculate
individual metric scores, category-level metric scores, and a compre-
hensive total score for the desired healthcare chatbot model. Figure 4
illustrates the tools required in this component. To create a
comprehensive evaluation process, specific requirements must be
addressed. These include developing tailored benchmarks for
healthcare domains, establishing detailed guidelines for human-
based evaluations, introducing innovative evaluation methods
designed explicitly for healthcare metrics, and providing evaluation
tools to support annotators.

GOPHER
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GPT

MODELS

Interface

Leaderboard

Metr
ics

Automatic|BERT

Manual
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Guidelines

Metrics

Patients

Healthcare 
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Computer 
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New Benchmarks

New Evaluation Methods
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Computer 
Scientist
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Prompts & Params
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Fig. 4 | An illustrative high-level representation of an evaluation framework containing five main components: models, environment, interface, interacting users, and
leaderboard.
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One primary requirement for a comprehensive evaluation component
is the development of healthcare-specific benchmarks that align with
identifiedmetric categories similar to the introducedbenchmarks in Table 2
but more concentrated on healthcare. These benchmarks should be well-
defined, covering each metric category and its sub-groups to ensure thor-
ough testing of the target metrics. Tailored benchmarks for specific
healthcare users, domains, and task types should also be established to assess
chatbot performance within these confounding variables. When combined
with automatic evaluation methods like ROUGE and BLEU, these bench-
marks enable scoring of introduced extrinsic metrics.

The second crucial requirement involves creating comprehensive
human guidelines for evaluating healthcare chatbots with the aid of
human evaluators. These guidelines facilitate the manual scoring of
metrics. Healthcare professionals can assess the chatbot’s performance
from the perspective of the final users, while intended users, such as
patients, can provide feedback based on the relevance and helpfulness of
answers to their specific questions and goals. As such, these guidelines
should accommodate the different perspectives of the chatbot’s target
user types.

To ensure objectivity and reduce human bias, providing precise
guidelines for assigning scores todifferentmetric categories is indispensable.
This fosters consistency in scoring ranges and promotes standardized
evaluation practices. Utilizing predefined questions for evaluators to assess
generated answers has proven effective in improving the evaluation process.
By establishing standardized questions for eachmetric category and its sub-
metrics, evaluators exhibit more uniform scoring behavior, leading to
enhanced evaluation outcomes7,34.

The third crucial requirement involves devising novel evaluation
methods tailored to the healthcare domain. Thesemethods should integrate
elements from the previous requirements, combining benchmark-based
evaluations with supervised approaches to generate a unified final score
encompassing all metric categories. Moreover, the final score should
account for the assigned priorities to each metric category. For example, if
trustworthiness outweighs accuracy in a specific task, the final score should
reflect this prioritization.

The integration of the aforementioned requirements should result in
the desired scores, treating the evaluation component as a black box.
Nevertheless, an unexplored avenue lies in leveraging BERT-based models,
trained on healthcare-specific categorization and scoring tasks. By utilizing
such models, it becomes possible to calculate scores for individual metrics,
thereby augmenting the evaluation process.

To facilitate effective evaluation and comparison of diverse
healthcare chatbot models, the healthcare research team must meti-
culously consider all introduced configurable environments. By col-
lectively addressing these factors, the interpretation ofmetric scores can
be standardized, thereby mitigating confusion when comparing the
performance of various models.

The Interface component serves as the interaction point between the
environment and users. Through this interface, interacting users can con-
figure the environment by selecting the desired model for interaction,
modifying model parameters, choosing the target user type, accessing eva-
luation guidelines, selecting the evaluation method, utilizing the latest
introduced benchmarks, and more. Furthermore, the interface enables
researchers to create new models, evaluation methods, guidelines, and
benchmarks within the provided environment.

The Interacting users of the evaluation framework serve different
purposes and can be categorized into two main groups: evaluators and
healthcare research teams. Evaluators utilize the evaluation framework
through the interface to assess healthcare chatbot models and score the
metrics. Healthcare research teams encompass computer and data
scientists who contribute to new model creation and the development
of novel evaluation methods. Additionally, it includes healthcare
professionals who conduct new studies or contribute to the establish-
ment of new benchmarks and guidelines. For instance, a healthcare
research team might evaluate the performance of ChatGPT in

answering mental health queries. In this scenario, healthcare profes-
sionals can introduce a new benchmark in the evaluation framework or
provide novel guidelines to evaluators for evaluating ChatGPT based
on metrics and assigning scores. Alternatively, the healthcare research
team can use the existing evaluation tools to evaluate ChatGPT’s per-
formance in mental health. Eventually, the healthcare research team
can report their findings and scores obtained through the evaluation
process.

The Leaderboard represents the final component of the evaluation
framework, providing interacting userswith the ability to rank and compare
diverse healthcare chatbot models. It offers various filtering strategies,
allowing users to rank models according to specific criteria. For example,
users can prioritize accuracy scores to identify the healthcare chatbotmodel
with the highest accuracy in providing answers to healthcare questions.
Additionally, the leaderboard allows users to filter results based on con-
founding variables, facilitating the identification of the most relevant chat-
bot models for their research study.

Conclusion
Generative AI, particularly chatbots, shows great potential in revolu-
tionizing the healthcare industry by offering personalized, efficient, and
proactive patient care. This paper delved into the significance of tailored
evaluation metrics specifically for healthcare chatbots. We introduced a
comprehensive set of user-centered evaluation metrics, grouped into
four categories: accuracy, trustworthiness, empathy, and computing
performance. The study highlighted the potential impact of confound-
ing variables on metric definition and evaluation. Additionally, we
emphasized how these metrics can address pertinent issues and enhance
the reliability and quality of healthcare chatbot systems, ultimately
leading to an improved patient experience. Lastly, we examined the
challenges associated with developing and implementing these metrics
in the evaluation process.

Future directions for this work involve the implementation of the
proposed evaluation framework to conduct an extensive assessment of
metrics using benchmarks and case studies. We aim to establish unified
benchmarks specifically tailored for evaluating healthcare chatbots basedon
theproposedmetrics.Additionally,weplan to execute a series of case studies
across various medical fields, such as mental and physical health, con-
sidering the unique challenges of each domain and the diverse parameters
outlined in “Evaluation methods”.

Received: 20 September 2023; Accepted: 7 March 2024;

References
1. Paperno, D. et al. The LAMBADA dataset: word prediction requiring

a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers) 1525–1534 (Association for Computational
Linguistics, Berlin, Germany, 2016).

2. Xu, L. et al. Chatbot for health care and oncology applications using
artificial intelligence and machine learning: systematic review. JMIR
Cancer 7, e27850 (2021).

3. Singhal, K. et al. Large languagemodels encode clinical knowledge.
Nature 620, 172–180 (2023).

4. Dave, T., Athaluri, S. A. & Singh, S. ChatGPT in medicine: an
overview of its applications, advantages, limitations, future
prospects, and ethical considerations. Front. Artif. Intell. 6,
1169595 (2023).

5. Liang, P. et al. Holistic evaluation of language models. Trans.
Machine Learn. Res. https://openreview.net/forum?id=
iO4LZibEqW (2023).

6. Wang, B. et al. Decodingtrust: a comprehensive assessment of
trustworthiness in GPT models. Preprint at https://arxiv.org/abs/
2306.11698 (2023).

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 9

https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://arxiv.org/abs/2306.11698
https://arxiv.org/abs/2306.11698
https://arxiv.org/abs/2306.11698


7. Thoppilan, R. et al. LaMDA: languagemodels for dialog applications.
Preprint at https://arxiv.org/abs/2201.08239 (2022).

8. Chang, Y. et al. A survey on evaluation of large language models.
ACM ransactions on Intelligent Systems and Technology. https://
doi.org/10.1145/3641289 (2024).

9. Adiwardana, D. et al. Towards a human-like open-domain chatbot.
Preprint at https://arxiv.org/abs/2001.09977 (2020).

10. Silfen, E. Documentation and coding of ED patient encounters: an
evaluation of the accuracy of an electronic medical record. Am J
Emerg Med. 24, 664–678 (2006).

11. Novikova, J., Dušek, O., Cercas Curry, A. & Rieser, V. Why we need
new evaluation metrics for NLG. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing,
2241–2252 (Association for Computational Linguistics,
Copenhagen, Denmark, 2017).

12. Peng, B. et al. GODEL: large-scale pre-training for goal-directed
dialog. Preprint at https://arxiv.org/abs/2206.11309 (2022).

13. Touvron, H. et al. LLaMA: open and efficient foundation language
models. Preprint at https://arxiv.org/abs/2302.13971 (2023).

14. Wang, P. et al. Large language models are not fair evaluators.
Preprint at https://arxiv.org/abs/2305.17926 (2023).

15. Resnik, P. et al. Using intrinsic and extrinsic metrics to evaluate
accuracy and facilitation in computer-assisted coding. In
Perspectives in Health InformationManagement Computer Assisted
Coding Conference Proceedings (The American Health Information
Management Association (AHIMA), 2006).

16. Liu, P. et al. Pre-train, prompt, and predict: a systematic survey of
prompting methods in natural language processing. ACM Comput.
Surv. 55, 1–35 (2023).

17. Schick, T. et al. Toolformer: Languagemodels can teach themselves
to use tools. In Oh, A. et al. (eds.) Advances in Neural Information
Processing Sys- tems, vol. 36, 68539–68551 (Curran Associates,
Inc., 2023). https://proceedings.neurips.cc/paper_files/paper/2023/
file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf.

18. Resnik, P. & Lin, J. Evaluation of nlp systems. In The Handbook of
Computational Linguistics and Natural Language Processing
271–295 (Wiley Online Library, 2010).

19. Sai, A. B.,Mohankumar, A. K. & Khapra,M.M. A survey of evaluation
metrics used for NLG systems. ACM Comput. Surv. (CSUR) 55,
1–39 (2022).

20. Zhang*, T., Kishore*, V., Wu*, F., Weinberger, K. Q. & Artzi, Y.
Bertscore: evaluating text generation with bert. In International
Conference on Learning Representations. (International Conference
on Learning Representations (ICLR), 2020).

21. Khurana, D., Koli, A., Khatter, K. & Singh, S. Natural language
processing: state of the art, current trends and challenges.
Multimedia Tools Appl. 82, 3713–3744 (2023).

22. Tran, K., Bisazza, A. & Monz, C. Recurrent memory networks for
language modeling. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 321–331 (Association
for Computational Linguistics, San Diego, California, 2016).

23. Plank, B., Alonso, H. M., Agić, Ž., Merkler, D. & Søgaard, A. Do
dependency parsing metrics correlate with human judgments? In
Proceedings of the Nineteenth Conference on Computational
Natural Language Learning, 315–320 (Association for
Computational Linguistics, 2015). https://aclanthology.org/
volumes/K15-1/.

24. Hugging Face. The AI community building the future. https://
huggingface.co/ (2023).

25. AI Risk Management Framework—nist.gov. https://www.nist.gov/
itl/ai-risk-management-framework (2023).

26. Napoles, C., Van Durme, B. & Callison-Burch, C. Evaluating
sentence compression: Pitfalls and suggested remedies. In
Proceedings of the Workshop on Monolingual Text-To-Text

Generation, 91–97 (Association for Computational Linguistics,
2011). https://aclanthology.org/volumes/W11-16/.

27. Shichel, Y., Kalech, M. & Tsur, O. With measured words: simple
sentence selection for black-box optimization of sentence
compression algorithms. In Proceedings of the 16th Conference of
the European Chapter of the Association for Computational
Linguistics: Main Volume, 1625–1634 (Association for
Computational Linguistics, Online, 2021).

28. Han, T. et al. MedAlpaca—an open-source collection of medical
conversational ai models and training data. Preprint at https://arxiv.
org/abs/2304.08247 (2023).

29. Toma, A. et al. Clinical camel: an open-source expert-level medical
languagemodel with dialogue-based knowledge encoding. Preprint
at https://arxiv.org/abs/2305.12031 (2023).

30. Jin, Z. et al. Can large language models infer causation from
correlation? Preprint at https://arxiv.org/abs/2306.05836 (2023).

31. McKenna, N. et al. Sources of hallucination by large language mod-
els on inference tasks. In Bouamor, H., Pino, J. & Bali, K. (eds.) Find-
ings of the Association for Computational Linguistics: EMNLP 2023,
2758– 2774 (Association for Computational Linguistics, Singapore,
2023). https://aclanthology.org/2023.findings-emnlp.182.

32. Dziri, N., Milton, S., Yu, M., Zaiane, O. & Reddy, S. On the origin of
hallucinations in conversational models: is it the datasets or the
models? In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 5271–5285 (Association for
Computational Linguistics, Seattle, 2022).

33. Bang, Y. et al. A multitask, multilingual, multimodal evaluation of
chat- gpt on reasoning, hallucination, and interactivity. In
Proceedings of the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics Vol. 1:
Long Papers 675–718 (Association for Computational Linguistics,
2023). https://aclanthology.org/volumes/2023.ijcnlp-main/.

34. Glaese, A. et al. Improving alignment of dialogue agents via targeted
human judgements. Preprint at https://arxiv.org/abs/2209.
14375 (2022).

35. Gekhman, Z., Herzig, J., Aharoni, R., Elkind, C. & Szpektor, I.
Trueteacher: Learning factual consistency evaluation with large
language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, 2053–2070
(Association for Computational Linguistics, 2023).

36. Manakul, P., Liusie, A. & Gales, M. Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language
models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, 9004–9017 (Association
for Computational Linguistics, 2023).

37. Laban, P. et al. LLMs as factual reasoners: insights from existing
benchmarks and beyond. Preprint at https://arxiv.org/abs/2305.
14540 (2023).

38. Zhao, W. X. et al. A survey of large language models. Preprint at
https://arxiv.org/abs/2303.18223 (2023).

39. Zhou, C. et al. Lima: Less is more for alignment. Advances in Neural
Information Processing Systems 36 (Neural Information Processing
Systems Foundation, Inc. (NeurIPS), 2024).

40. Yang, J., Chen, Y.-L., Por, L. Y. & Ku, C. S. A systematic literature
reviewof information security in chatbots.Appl. Sci.13, 6355 (2023).

41. May, R. & Denecke, K. Security, privacy, and healthcare-related
conversational agents: a scoping review. Informa. Health Soc. Care
47, 194–210 (2022).

42. Privacy Framework— nist.gov. https://www.nist.gov/privacy-
framework. [Accessed 28-07-2023]

43. Marks, M. & Haupt, C. E. AI Chatbots, Health Privacy, and
Challenges to HIPAA Compliance. JAMA 330, 309–310 (2023).
https://doi.org/10.1001/jama.2023.9458. https://jamanetwork.

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 10

https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2206.11309
https://arxiv.org/abs/2206.11309
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://aclanthology.org/volumes/K15-1/
https://aclanthology.org/volumes/K15-1/
https://aclanthology.org/volumes/K15-1/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
https://www.nist.gov/itl/ai-risk-management-framework
https://www.nist.gov/itl/ai-risk-management-framework
https://www.nist.gov/itl/ai-risk-management-framework
https://aclanthology.org/volumes/W11-16/
https://aclanthology.org/volumes/W11-16/
https://arxiv.org/abs/2304.08247
https://arxiv.org/abs/2304.08247
https://arxiv.org/abs/2304.08247
https://arxiv.org/abs/2305.12031
https://arxiv.org/abs/2305.12031
https://arxiv.org/abs/2306.05836
https://arxiv.org/abs/2306.05836
https://aclanthology.org/2023.findings-emnlp.182
https://aclanthology.org/2023.findings-emnlp.182
https://aclanthology.org/volumes/2023.ijcnlp-main/
https://aclanthology.org/volumes/2023.ijcnlp-main/
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2305.14540
https://arxiv.org/abs/2305.14540
https://arxiv.org/abs/2305.14540
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://www.nist.gov/privacy-framework
https://www.nist.gov/privacy-framework
https://www.nist.gov/privacy-framework
https://doi.org/10.1001/jama.2023.9458
https://doi.org/10.1001/jama.2023.9458
https://jamanetwork.com/journals/jama/articlepdf/2807170/jama_marks_2023_vp_230070_1689353553.4463.pdf


com/journals/jama/articlepdf/2807170/jama_marks_2023_vp_
230070_1689353553.4463.pdf.

44. Schwartz,R. et al.TowardsAStandardFor IdentifyingandManaging
Bias in Artificial Intelligence, Vol. 1270 (NIST Special
Publication, 2022).

45. Wahde, M. & Virgolin, M. The five is: key principles for interpretable
and safe conversational ai. In 2021 The 4th International Conference
on Computational Intelligence and Intelligent Systems, 50–54
(Association for Computing Machinery (ACM) 2021).

46. Broniatowski, D. A. et al. Psychological foundations of explainability
and interpretability in artificial intelligence. NIST, Tech. Rep. (2021).
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf.

47. Zhou, L., Gao, J., Li, D. & Shum, H.-Y. The design and
implementation of xiaoice, an empathetic social chatbot. Comput.
Linguistics 46, 53–93 (2020).

48. Welivita, A. & Pu, P. A taxonomy of empathetic response intents in
humansocial conversations. InProceedingsof the28th International
Conference on Computational Linguistics, 4886–4899 (International
Committee on Computational Linguistics, Barcelona, Spain, 2020).

49. Svikhnushina, E., Filippova, A. & Pu, P. iEVAL: interactive evaluation
framework for open-domain empathetic chatbots. InProceedings of
the 23rd Annual Meeting of the Special Interest Group on Discourse
and Dialogue, 419–431 (Association for Computational Linguistics,
2022). https://aclanthology.org/2022.sigdial-1.0/.

50. Ilicki, J. A framework for critically assessing chatgpt and other large
language artificial intelligence model applications in health care.
Mayo Clinic Proc. Digit. Health 1, 185–188 (2023).

51. Meng, J. & Dai, Y. Emotional support from AI chatbots: should a
supportive partner self-disclose or not? J. Comput.-Mediat.
Commun. 26, 207–222 (2021).

52. David Oniani. et al. Toward improving health literacy in patient
educationmaterialswith neuralmachine translationmodels. InAMIA
Summits on Translational Science Proceedings (American Medical
Informatics Association, 2023).

53. Ahmad, M. A., Patel, A., Eckert, C., Kumar, V. & Teredesai, A.
Fairness in machine learning for healthcare. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 3529–3530 (ACM, 2020).

54. Ahmad, M. A. et al. Fairness in healthcare AI. In 2021 IEEE 9th
International Conference on Healthcare Informatics (ICHI), 554–555
(IEEE, 2021).

55. Hague, D. C. Benefits, pitfalls, and potential bias in health care AI.
North Carolina Med J. 80, 219–223 (2019).

56. Hariri, W. Unlocking the potential of chatgpt: a comprehensive
exploration of its applications, advantages, limitations, and future
directions in natural language processing. Preprint at https://arxiv.
org/abs/2304.02017 (2023).

57. Cook, D. A. & Skrupky, L. P. Measuring personalization,
embodiment, and congruence in online learning: a validation study.
Acad. Med. 98, 357–366 (2023).

58. Brown, T. et al. Languagemodels are few-shot learners.Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020).

59. Achiam, J. et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774 (2023).

60. Devlin, J., Chang,M.-W., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding. In
Proceedings of the 2019Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 4171–4186
(Association for Computational Linguistics, Minneapolis, 2019).

61. Lee, J. et al. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36,
1234–1240 (2019).

62. Zhuang, B. et al. A survey on efficient training of transformers. In
Proceedings of the Thirty-Second International Joint Conference on

Artificial Intelligence, IJCAI-23 (ed. Elkind, E.) 6823–6831
(International Joint Conferences on Artificial Intelligence
Organization, 2023).

63. Hoffmann, J. et al. An empirical analysis of compute-optimal large
language model training. In Advances in Neural Information
Processing Systems (eds Oh, A. H. et al.) (Neural Information
Processing Systems Foundation, Inc. (NeurIPS), 2022).

64. Text REtrieval Conference (TREC) Home Page— trec.nist.gov.
https://trec.nist.gov/. [Accessed 28-07-2023]

65. Zhou, Y. et al. Large language models are human-level prompt
engineers. InNeurIPS 2022 FoundationModels for DecisionMaking
Workshop (Neural InformationProcessingSystemsFoundation, Inc.
(NeurIPS), 2022).

66. Ge, Y. et al. Openagi: When llm meets domain experts. Advances in
Neural Information Processing Systems 36 (Neural Information
Processing Systems Foundation, Inc. (NeurIPS), 2024).

67. Chung, J., Kamar, E. & Amershi, S. Increasing diversity while
maintaining accuracy: Text data generation with large language
models and human interventions. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 575–593 (Association for Computational Linguistics,
Toronto, 2023).

68. Ahuja, K. et al. Mega: Multilingual evaluation of generative ai. In
Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, 4232–4267 (Association for
Computational Linguistics, 2023).

69. Liu, Y. et al. G-Eval: NLG evaluation using Gpt-4 with better human
alignment. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, 2511–2522 (Association
for Computational Linguistics, 2023).

70. Reddy, S. Evaluating large language models for use in healthcare: A
framework for translational value assessment. Inf MedUnlocked 41,
101304 (2023).

71. Hailu, T. T., Yu, J. & Fantaye, T. G. et al. Intrinsic and extrinsic
automatic evaluation strategies for paraphrase generation systems.
J. Comput. Commun. 8, 1 (2020).

72. Gardner, N., Khan, H. & Hung, C.-C. Definition modeling:
literature review and dataset analysis. Appl. Comput. Intell. 2,
83–98 (2022).

73. Wei, J. et al. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations (ICLR, 2022).

74. Lewis, M. et al. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 7871–7880 (Association
for Computational Linguistics, 2020).

75. Zhang, Y. et al. DIALOGPT: large-scale generative pre-training for
conversational response generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, 270–278 (Association for Computational
Linguistics, 2020).

76. Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI Blog 1, 9 (2019).

77. Zhang, K. et al. BiomedGPT: a unified and generalist biomedical
generative pre-trained transformer for vision, language, and
multimodal tasks. Preprint at https://arxiv.org/abs/2305.
17100 (2023).

78. Chiang, C.-H. & Lee, H.-y. Can large language models be an
alternative to human evaluations? InProceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 15607–15631 (Association for Computational
Linguistics, Toronto, Canada, 2023).

79. Banerjee, S. & Lavie, A. Meteor: an automatic metric for mt
evaluation with improved correlation with human judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 11

https://jamanetwork.com/journals/jama/articlepdf/2807170/jama_marks_2023_vp_230070_1689353553.4463.pdf
https://jamanetwork.com/journals/jama/articlepdf/2807170/jama_marks_2023_vp_230070_1689353553.4463.pdf
https://jamanetwork.com/journals/jama/articlepdf/2807170/jama_marks_2023_vp_230070_1689353553.4463.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf
https://aclanthology.org/2022.sigdial-1.0/
https://aclanthology.org/2022.sigdial-1.0/
https://arxiv.org/abs/2304.02017
https://arxiv.org/abs/2304.02017
https://arxiv.org/abs/2304.02017
https://trec.nist.gov/
https://trec.nist.gov/
https://arxiv.org/abs/2305.17100
https://arxiv.org/abs/2305.17100
https://arxiv.org/abs/2305.17100


EvaluationMeasures forMachine Translation and/or Summarization,
65–72 (Association for Computational Linguistics, 2005).

80. Jethani, N. et al. Evaluating ChatGPT in information extraction: a
case study of extracting cognitive exam dates and scores. Preprint
at https://www.medrxiv.org/content/10.1101/2023.07.10.
23292373v1 (2023).

81. Luo, R. et al. Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Brief. Bioinforma. 23,
bbac409 (2022).

82. Yunxiang, L., Zihan, L., Kai, Z., Ruilong, D. & You, Z. ChatDoctor: a
medical chat model fine-tuned on llama model using medical
domain knowledge. Preprint at https://arxiv.org/abs/2303.
14070 (2023).

83. Dalianis, H. Evaluation Metrics and Evaluation. Clinical Text Mining:
secondary use of electronic patient records 45–53 (Springer
International Publishing, Cham, 2018). https://doi.org/10.1007/978-
3-319-78503-5_6.

84. Blagec, K., Dorffner, G., Moradi, M., Ott, S. & Samwald, M. A global
analysis of metrics used for measuring performance in natural
language processing. In Proceedings of NLP Power! The First
Workshop on Efficient Benchmarking in NLP, 52–63 (Association for
Computational Linguistics, Dublin, Ireland, 2022).

85. Raunak, V., Sharaf, A., Wang, Y., Awadalla, H. & Menezes, A.
Leveraging gpt-4 for automatic translation post-editing. In Findings
of the Association for Computational Linguistics: EMNLP 2023,
12009–12024 (Association for Computational Linguistics, 2023)

86. Zhao, W. et al. MoverScore: text generation evaluating with
contextualized embeddings and earth mover distance. In
Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP),
563–578 (Association for Computational Linguistics, Hong Kong,
China, 2019).

87. Huang, F., Kwak, H. & An, J. Chain of explanation: New prompting
method to generate quality natural language explanation for implicit
hate speech. In Companion Proceedings of the ACMWeb
Conference 2023, 90–93 (ACM, 2023).

88. Peng, Y.-S., Tang, K.-F., Lin, H.-T. & Chang, E. Refuel: exploring
sparse features in deep reinforcement learning for fast disease
diagnosis. Adv. Neural Inf. Process. Syst. 31, (2018).

89. Peng, B. et al. Adversarial advantage actor-critic model for task-
completion dialogue policy learning. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
6149–6153 (IEEE, 2018).

90. Xu, L. et al. End-to-end knowledge-routed relational dialogue
system for automatic diagnosis. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, 7346–7353
(AAAI, 2019).

91. Xia, Y., Zhou, J., Shi, Z., Lu, C. & Huang, H. Generative adversarial
regularized mutual information policy gradient framework for
automatic diagnosis. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34,1062–1069 (AAAI, 2020).

92. Zhang,X. et al. Evaluating theperformanceof large languagemodels
on gaokao benchmark. Preprint at https://arxiv.org/abs/2305.
12474 (2023).

93. Mihaylov, T., Clark, P., Khot, T. & Sabharwal, A. Can a suit of armor
conduct electricity? a new dataset for open book question
answering. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2381–2391 (Association
for Computational Linguistics, Brussels, Belgium, 2018).

94. Jin, D. et al.What diseasedoes this patient have?A large-scale open
domain question answering dataset frommedical exams. Appl. Sci.
11, 6421 (2021).

95. Choi, E. et al. QuAC: question answering in context. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language

Processing, 2174–2184 (Association for Computational Linguistics,
Brussels, Belgium, 2018).

96. Clark, C. et al. BoolQ: exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 2924–2936 (Association for Computational
Linguistics, Minneapolis, Minnesota, 2019).

97. Kwiatkowski, T. et al. Natural questions: a benchmark for question
answering research. Trans. Assoc. Comput. Linguistics 7,
453–466 (2019).

98. Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. & Choi, Y. HellaSwag:
canamachine reallyfinishyour sentence? InProceedingsof the57th
Annual Meeting of the Association for Computational Linguistics,
4791–4800 (Association for Computational Linguistics, Florence,
Italy, 2019).

99. Nallapati, R., Zhou, B., dos Santos, C., Gulçehre, Ç. & Xiang, B.
Abstractive text summarization using sequence-to-sequenceRNNs
and beyond. In Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, 280–290 (Association
for Computational Linguistics, Berlin, Germany, 2016).

100. Hermann, K. M. et al. Teaching machines to read and comprehend.
In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, 1693–1701
(MIT Press, Cambridge, 2015).

101. Narayan, S., Cohen, S. B. & Lapata,M. Don’t giveme the details, just
the summary! topic-aware convolutional neural networks for
extreme summarization. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 1797–1807
(Association for Computational Linguistics, Brussels,
Belgium, 2018).

102. Warstadt, A. et al. BLiMP: The benchmark of linguistic minimal pairs
for English. Trans. Assoc. Comput. Linguistics 8, 377–392 (2020).

103. Gao, L. et al. The pile: an 800gb dataset of diverse text for language
modeling. Preprint at https://arxiv.org/abs/2101.00027 (2020).

104. Greenbaum, S. Ice: The international corpus of English. English
Today 7, 3–7 (1991).

105. Blodgett, S. L., Green, L. & O’Connor, B. Demographic dialectal
variation in social media: a case study of African-American English.
In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 1119–1130 (Association for
Computational Linguistics, Austin, Texas, 2016).

106. Petroni, F. et al. Language models as knowledge bases? In
Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP),
2463–2473 (Association for Computational Linguistics, Hong Kong,
China, 2019).

107. Kočisky`, T. et al. The narrativeqa reading comprehension challenge.
Trans. Assoc. Comput. Linguistics 6, 317–328 (2018).

108. Aryan, A., Nain, A. K., McMahon, A., Meyer, L. A. & Sahota, H. S. The
costly dilemma: are large language models the pay-day loans of
machine learning? https://abiaryan.com/assets/EMNLP%
20Submission_Non-Anon.pdf. (2023).

109. Miller, A.et al. ParlAI: A dialog research software platform. In
Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 79–84
(Association for Computational Linguistics, Copenhagen,
Denmark, 2017).

110. Sarlin, P.-E., DeTone,D.,Malisiewicz, T. &Rabinovich, A. Superglue:
learning feature matching with graph neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4938–4947 (IEEE, 2020).

111. Hendrycks, D. et al. Measuring massive multitask language
understanding. Preprint at https://arxiv.org/abs/2009.03300 (2020).

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 12

https://www.medrxiv.org/content/10.1101/2023.07.10.23292373v1
https://www.medrxiv.org/content/10.1101/2023.07.10.23292373v1
https://www.medrxiv.org/content/10.1101/2023.07.10.23292373v1
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://abiaryan.com/assets/EMNLP%20Submission_Non-Anon.pdf
https://abiaryan.com/assets/EMNLP%20Submission_Non-Anon.pdf
https://abiaryan.com/assets/EMNLP%20Submission_Non-Anon.pdf
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300


112. Ghazal, A. et al. Bigbench: towards an industry standard benchmark
for big data analytics. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, 1197–1208
(ACM, 2013).

113. Wang, A. et al. GLUE: a multi-task benchmark and analysis platform
for natural language understanding. In Proceedings of the 2018
EMNLPWorkshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 353–355 (Association for Computational
Linguistics, Brussels, Belgium, 2018).

114. Su, L. et al. An adaptive framework for conversational question
answering. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, 10041–10042 (AAAI, 2019).

115. Jain, N. et al. Bring your own data! self-supervised evaluation for
large language models. Preprint at https://arxiv.org/abs/2306.
13651 (2023).

116. Wang, J. et al. On the robustness of chatGPT: an adversarial and
out-of-distribution perspective. In ICLR 2023 Workshop on
Trustworthy and Reliable Large-Scale Machine Learning Models
(ICLR, 2023).

117. Yuan, L. et al. Revisiting out-of-distribution robustness in nlp:
Benchmarks, analysis, and LLMs evaluations. Advances in Neural
Information Processing Systems 36 (Neural Information Processing
Systems Foundation, Inc. (NeurIPS), 2024).

118. Bajaj, P. et al. METRO: efficient denoising pretraining of large scale
autoencoding language models with model generated signals.
Preprint at https://arxiv.org/abs/2204.06644 (2022).

119. Zhu, K. et al. PromptBench: towards evaluating the robustness of
large language models on adversarial prompts. Preprint at https://
arxiv.org/abs/2306.04528 (2023).

120. Wang, X. et al. Textflint: Unified multilingual robustness
evaluation toolkit for natural language processing. In
Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, 347–355 (Association for Computational
Linguistics, 2021).

121. Huang, H. et al. Not all languages are created equal in llms:
Improving multilingual capability by cross-lingual-thought
prompting. In Findings of the Association for Computational
Linguistics: EMNLP 2023, 12365–12394 (Association for
Computational Linguistics, 2023)

122. Yu, J. et al. KoLA: carefully benchmarking world knowledge of large
language models. Preprint at https://arxiv.org/abs/2306.
09296 (2023).

123. Wang, Y. et al. PandaLM: an automatic evaluation benchmark for
LLM instruction tuning optimization. Preprint at https://arxiv.org/
abs/2306.05087 (2023).

124. Zhong, W. et al. AR-LSAT: investigating analytical reasoning of text.
Preprint at https://arxiv.org/abs/2104.06598 (2021).

125. Suzgun, M., Belinkov, Y., Shieber, S. & Gehrmann, S. LSTM
networks can perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages: Building
Bridges, 44–54 (Association for Computational Linguistics,
Florence, 2019).

126. Wu, Y. et al. Lime: learning inductive bias for primitives of
mathematical reasoning. In Proceedings of the 38th International
Conference on Machine Learning, Vol. 139 of Proceedings of
Machine Learning Research (eds Meila, M. & Zhang, T.)
11251–11262 (PMLR, 2021).

127. Weston, J. et al. Towards AI-complete question answering: a set of
prerequisite toy tasks. Preprint at https://arxiv.org/abs/1502.
05698 (2015).

128. Konda, P. et al. Magellan: toward building entity matching
management systems over data science stacks. Proc. VLDB
Endowment 9, 1581–1584 (2016).

129. Mei, Y. et al. Capturing semantics for imputation with pre-trained
language models. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), 61–72 (IEEE, 2021).

130. Chen, M. et al. Evaluating large language models trained on code.
Preprint at https://arxiv.org/abs/2107.03374 (2021).

131. Hendrycks, D. et al. Measuring coding challenge competence with
APPS. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2) (Neural
Information Processing Systems Foundation, Inc.
(NeurIPS), 2021).

132. Hendrycks, D. et al. Measuring mathematical problem solving with
the MATH dataset. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2)
(Neural Information Processing Systems Foundation, Inc.
(NeurIPS), 2021).

133. Cobbe, K. et al. Training verifiers to solve math word problems.
Preprint at https://arxiv.org/abs/2110.14168 (2021).

134. Gehman, S., Gururangan, S., Sap, M., Choi, Y. & Smith, N. A.
RealToxicityPrompts: evaluating neural toxic degeneration in
language models. In Findings of the Association for Computational
Linguistics: EMNLP 2020, 3356–3369 (Association for
Computational Linguistics, Online, 2020).

135. Lin, S., Hilton, J. & Evans, O. TruthfulQA: measuring how models
mimic human falsehoods. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 3214–3252 (Association for Computational
Linguistics, Dublin, Ireland, 2022).

136. Dhamala, J. et al. Bold: dataset and metrics for measuring biases in
open-ended language generation. In Proceedings of the 2021 ACM
ConferenceonFairness,Accountability, andTransparency, 862–872
(ACM, 2021).

137. Parrish, A. et al. BBQ: a hand-built bias benchmark for question
answering. In Findings of the Association for Computational
Linguistics: ACL 2022, 2086–2105 (Association for Computational
Linguistics, Dublin, Ireland, 2022).

138. Lukas, N. et al. Analyzing leakage of personally identifiable
information in language models. In 2023 IEEE Symposium on
Security and Privacy (SP), 346–363 (IEEE Computer Society, Los
Alamitos, CA, 2023).

139. Carlini, N. et al. Extracting training data from large languagemodels.
In 30th USENIX Security Symposium (USENIX Security 21),
2633–2650 (USENIX, 2021).

140. Nangia, N., Vania, C., Bhalerao, R. & Bowman, S. R. CrowS-pairs:
a challenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
1953–1967 (Association for Computational Linguistics,
Online, 2020).

141. Liu, H. et al. Evaluating the logical reasoning ability of
chatgpt and gpt-4. Preprint at https://arxiv.org/abs/2304.
03439 (2023).

142. Maas, A. et al. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies,
142–150 (Association for Computational Linguistics, 2011).

143. Zhuo, T. Y., Huang, Y., Chen, C. & Xing, Z. Exploring ai ethics of
chatgpt: a diagnostic analysis. Preprint at https://arxiv.org/pdf/
2301.12867v1.pdf (2023).

144. Jin,Z. et al.When tomakeexceptions: exploring languagemodelsas
accounts of human moral judgment. Adv. Neural Inf. Process. Syst.
35, 28458–28473 (2022).

145. Pan, A. et al. Do the rewards justify themeans?measuring trade-offs
between rewards andethical behavior in theMachiavelli benchmark.
In International Conference on Machine Learning, 26837–26867
(PMLR, 2023).

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 13

https://arxiv.org/abs/2306.13651
https://arxiv.org/abs/2306.13651
https://arxiv.org/abs/2306.13651
https://arxiv.org/abs/2204.06644
https://arxiv.org/abs/2204.06644
https://arxiv.org/abs/2306.04528
https://arxiv.org/abs/2306.04528
https://arxiv.org/abs/2306.04528
https://arxiv.org/abs/2306.09296
https://arxiv.org/abs/2306.09296
https://arxiv.org/abs/2306.09296
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2304.03439
https://arxiv.org/abs/2304.03439
https://arxiv.org/abs/2304.03439
https://arxiv.org/pdf/2301.12867v1.pdf
https://arxiv.org/pdf/2301.12867v1.pdf
https://arxiv.org/pdf/2301.12867v1.pdf


146. Forbes, M., Hwang, J. D., Shwartz, V., Sap, M. & Choi, Y. Social
chemistry 101: Learning to reason about social and moral norms. In
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 653–670 (Association for
Computational Linguistics, Online, 2020).

Acknowledgements
The authors would like to thank the following NIST people for their in-depth
comments: Ian Soboroff, Hoa Dang, Jacob Collard, and Reva Schwartz.
Furthermore, the authors express their gratitude to Nigam Shah from
Stanford for his valuable feedback, which has contributed to the enhance-
ment of the paper. Certain commercial systems are identified in this paper.
Such identification does not imply recommendation or endorsement by
NIST; nor does it imply that the products identified are necessarily the best
available for the purpose. Further, any opinions, findings, conclusions or
recommendations expressed in thismaterial are those of the authors anddo
not necessarily reflect the views of NIST, other supporting U.S. government
or corporate organizations.

Author contributions
M.A. and E.K.H. conducted the research, analyzed the findings, and drafted
themanuscript. M.A. and E.K.H. are co-first authors. I.A. played a key role in
designing the study and revised the paper critically. D.O. contributed to
drafting the performance sub-section and revised the paper. Z.S.H.A.
contributed to give guidance, revise critically the paper, and design of the
visualizations. A.T. and B.L. revised and validated the study from clinical
perspectives. R.S. refined the paper and ensured alignment with NIST
metrics. Z.Y. contributed to drafting one proposed metric. Y.W. and O.G.
participated in the revisingprocess. L.J.L., R.J., andA.M.R. led thestudy, did
mentoring, provided guidance throughout, and conducted critical revisions
of the manuscript. All authors read and approved the final manuscript.

Competing interests
Y.W. is a collaborator of HealthUnity, consults for Pfizer Inc., and has
ownership/equity interests in BonafideNLP, LLC. D.O. is a collaborator of
HealthUnity. The remaining authors declare no competing financial or non-
financial interests.

Additional information
Correspondence and requests for materials should be addressed to
Mahyar Abbasian or Elahe Khatibi.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41746-024-01074-z Perspective

npj Digital Medicine |            (2024) 7:82 14

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative�AI
	Review of existing evaluation metrics for�LLMs
	Intrinsic evaluation metrics
	Extrinsic evaluation metrics
	Multi-metric measurements

	Essential metrics for evaluating healthcare chatbots
	Accuracy
	Trustworthiness
	Empathy
	Performance

	Challenges in evaluating healthcare chatbots
	Metrics association
	Evaluation methods
	Model prompt techniques and parameters

	Toward an effective evaluation framework
	Conclusion
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




