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EPIGRAPH

Men are born soft and supple; dead, they are stiff and hard. Plants are born tender and

pliant; dead, they are brittle and dry. Thus whoever is stiff and inflexible is a disciple

of death. Whoever is soft and yielding is a disciple of life. The hard and stiff will be

broken. The soft and supple will prevail. —Lao-tzu
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ABSTRACT OF THE DISSERTATION

Models and Methods for Recovering Shape, Reflectance, and Illumination From

Images

by

Neil Gordon Alldrin

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2008

Professor David Kriegman, Chair

Recovery of scene shape, reflectance, and illumination are of fundamental im-

portance to computer vision. However, the image formation process involves complex

interactions between all three components, making inference difficult or impossible in

the absence of simplifying models or prior scene knowledge. Unfortunately, real-world

scenes often violate these approximations, leading to biased or incorrect reconstructions.

Thus, there is a constant struggle between model complexity and tractability. In this dis-

sertation, new models and methods are presented for recovering shape, reflectance, and

illumination which are valid for broader classes of scenes than competing techniques.

Underlying all of the research presented is the ability to handle objects with complex

reflectance.

First, a novel approach is presented for resolving the generalized bas-relief am-

biguity which arises in uncalibrated photometric stereo. Previous work showed that the

ambiguity can be resolved for textureless objects; however, as shown in this disserta-

xiv



tion, it is also possible to resolve the ambiguity for textured objects, provided there is

statistical regularity in the distribution of albedo values across the surface.

Next, a photometric stereo algorithm is presented that is capable of handling

nearly arbitrary reflectance. The main contribution is the utilization of bilateral sym-

metry in the reflectance function, a property shared by most real-world materials. By

explicitly utilizing symmetry, surface shape can be constrained without relying on para-

metric models; a significant advance over most photometric stereo algorithms which

depend on simple parametric models of surface reflectance, such as the Lambertian

model.

Another photometric stereo algorithm is also presented that is capable of fully

recovering the surface shape as well as the reflectance function across the surface. While

a few additional constraints are necessary, this is one of only a handful of photometric

stereo methods capable of simultaneously recovering shape and complex reflectance; of

these, the reflectance model is by far the least restrictive.

It is also shown that bilateral symmetry of the reflectance function can be ex-

ploited for multi-view shape reconstruction. The method presented handles both tex-

tured and textureless surfaces and is capable of recovering surface concavities. Finally,

a novel technique for measuring illumination is presented which relies on spatially vary-

ing reflectance.

xv



Chapter 1

Introduction

Computer vision can be defined as the inference of information about a scene

from images of the scene. Potentially useful scene information includes 3D geometry

(shape reconstruction), the presence and location of specific objects (object detection

and recognition), illumination incident on the scene (lighting estimation), surface re-

flectance properties (BRDF estimation), motion understanding of video, and camera

position and intrinsic parameters (camera calibration). A standard approach to solv-

ing such inference problems involves breaking the problem into three components: (1) a

model for the properties to be inferred, (2) features taken from the image data, and (3) an

algorithm that finds parameters of the model that best fit the features. Each component

is critical to the performance and usefulness of a given method.

In this dissertation, we are interested in recovering the shape, reflectance, and

illumination of a scene or objects in a scene. Recovering these properties is fundamen-

tal to computer vision and ripe with potential applications. For example, in computer

graphics physically accurate models of shape, material, and lighting can significantly in-

fluence the photo-realism of rendered images. Computer vision algorithms are increas-

ingly being used to acquire these models, such as in Matusik et al. (2003) and Debevec

(1998) where measurements of real-world material reflectance and real-world illumina-

tion environments were respectively utilized; two benefits of such techniques are im-
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proved realism of rendered images and reduction of tedious hand-modeling by artists.

Another important application is to “capture” culturally significant artifacts and loca-

tions around the world, both for historical posterity and for remote interaction. Recent

projects involving 3D digitization of historical artifacts include the Digital Michelan-

gelo Project (Levoy et al., 2000), reconstruction of the Parthenon (Debevec, 2004a,b;

Stumpfel et al., 2003), and the the Great Buddha Project (Ikeuchi et al., 2007).

One of the primary contributions of our work is that we utilize features that are as

general as possible. To illustrate what we mean by “general”, consider collecting a set of

images of an object, in which the scene varies only in the position of a point light source

illuminating the object. Photometric stereo is a class of algorithms that seeks to recover

the shape of an object given such images as input. If we assume that the object’s surface

reflects light equally in all directions (known as Lambertian reflectance), then there is a

very simple algorithm capable of recovering the object’s shape. However, if the object

is, say, a glazed ceramic teapot which does not satisfy the Lambertian assumption, then

the shape estimated by this method will be biased. Ideally, we would like to use an

algorithm that is unbiased for a wide variety of objects, from highly specular glazed

ceramic teapots to diffuse clay bunny statues (see Figure 1.1). In Chapters 5 and 6 we

present photometric stereo algorithms that are unbiased for any object with isotropic

reflectance – a property that holds for the majority of objects encountered in everyday

life.

The example just presented highlights a conundrum in computer vision: utiliz-

ing prior knowledge can greatly simplify inference problems, but also can decrease the

applicability of a given method since only scenes satisfying the assumptions lead to

correct results. For this reason, it is important to exploit domain knowledge whenever

possible, since domain knowledge captures properties that are generally applicable. At

a physical level, the laws of physics dictate the transport, emission, and absorption of

photons which are then measured as images in a camera. Moreover, most scenes en-

countered in everyday life are similar in many respects : they usually consist of a set

of objects separated by a transparent and minimally interactive medium; the objects are
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Figure 1.1: (Left) The original Utah teapot, made of glazed ceramic. (Right) The orig-

inal Stanford bunny, made of terra cota clay. Images from (Astor, 2008) and (Levoy,

2008) respectively.

usually opaque (i.e., they absorb and reflect, but do not transmit light); and illumination

often results from a small set of emitting light sources.

In this dissertation, we are concerned with three complimentary goals: (a) recon-

struction of the shape of an object or scene, (b) estimation of the reflectance properties

across a surface, and (c) estimation of the light sources and illumination in a scene.

These three components, briefly described in the following sections, provide a nearly

complete description of any scene. The overarching contribution of this work is to pro-

vide new models and methods for handling and utilizing complex reflectance.

1.1 Shape Reconstruction

Shape reconstruction, as the name implies, involves recovering the shape of an

object or scene from images. Three common computer vision approaches to recover-

ing shape are stereo, structure from motion (SFM) and photometric stereo. Stereo, or

more generally, multi-view reconstruction algorithms utilize images taken from multi-

ple viewpoints. If a point on the surface of the object is visible in two or more images

and the location of the point is known in each of those images, then 3D position can be
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recovered by triangulation. Thus, recovering the shape of an object reduces to finding

corresponding points in each of the images. Structure from motion is closely related

to multi-view reconstruction, except that motion of the scene or camera over time is

utilized instead of multiple viewpoints. Moreover, SFM is typically applied to video se-

quences where motion between frames is usually small. Photometric stereo algorithms

utilize images taken from the same viewpoint, but with varying illumination. For each

point on the surface of an object, the amount of light reflected toward the camera is a

function of the light hitting the object at that point, as well as the surface normal at

the point. Thus, with sufficient knowledge of the illumination and surface reflectance,

the surface normal at each point on the object can be recovered. Chapters 4 to 6 present

novel photometric stereo algorithms that recover the shape of objects. Chapter 7 presents

a multi-view shape reconstruction algorithm that utilizes photometric constraints.

1.2 Reflectance Estimation

Reflectance estimation involves measuring or recovering a model for how an

object’s surface reflects light. Typically, the reflectance at a point on the surface of an

object is modeled with a bi-direction reflectance distribution function (BRDF), which

specifies how light incident on the surface is reflected or scattered in each exitant direc-

tion (Nicodemus et al., 1922). Traditionally, BRDFs were measured with gonioreflec-

tometers – special devices that measure the response of incoming and outgoing light ap-

plied to a planar patch of material. These devices, such as the Cornell gonioreflectometer

(Foo, 1996), are highly accurate, but require significant time to sample the BRDF of a

material since only a single point in the BRDF domain is captured at each measurement.

For this reason, image-based measurement techniques such as Matusik et al. (2003) have

become much more common in recent years. The methods presented in Chapters 4 and

6 recover shape and reflectance simultaneously.
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1.3 Illumination Estimation

Illumination or lighting estimation involves recovering or measuring the lighting

environment in a scene. For example, in an outdoor setting the primary illumination

source is the sun, but the sky and reflections of light off of other surfaces in the scene

also contribute to the lighting environment. The plenoptic function, which specifies the

intensity of light in every direction at each point in a scene, is perhaps the most general

illumination model used in computer vision (Levoy and Hanrahan, 1996; Gortler et al.,

1996). However, it is often reasonable to assume that the illumination does not vary

spatially; for example, this is approximately true when all light sources are far away

from objects in the scene. In this case, illumination can be modeled by an environment

map that records the intensity of light in each direction (Blinn and Newell, 1976). The

simplest way to measure an environment map is to capture an image of a mirrored sphere

placed in the scene. However, this method is not always possible or practical. In Chapter

4 we present a photometric stereo algorithm that recovers both shape and illumination

simultaneously and in Chapter 8 we present a novel type of light probe that overcomes

a shortcoming of the standard mirrored sphere approach.



Chapter 2

Background

Much of the theory presented in this dissertation requires basic knowledge of the

physical processes underlying image formation, as well as an understanding of standard

assumptions and mathematical models widely used within the computer vision research

community. Specifically, the reader should have a basic understanding of radiometry, the

interaction of light and matter, methods for measuring light, and models for representing

surfaces. In the following sections we provide this necessary background, as well as

introduce notation used throughout the dissertation.

2.1 Radiometry

The field of radiometry studies the transport and measurement of electromag-

netic radiation, including visible light. The quantities used in radiometry are heavily

employed in computer vision and graphics as they provide the foundation for how im-

ages are formed. The field of photometry – which actually predates radiometry – is

closely related, but studies how humans respond to light. This section borrows heavily

from Glassner (1994), which the reader may wish to reference for a more comprehensive

review of radiometry.

Electromagnetic radiation can be thought of as the passage of energy through a

6
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Table 2.1: Radiometric quantities.

Symbol Name Units

Q Radiant energy J (Joule)

u Radiant flux density J/m3

Φ Radiant power (flux) W = J/s (Watt)

W Radiant power density W/m2

E Irradiance W/m2

M Radiant exitance W/m2

I Radiant intensity W/sr

L Radiance W/(sr · m2)

medium. Because of the discrete nature of energy, we define a photon to be a particle

carrying a single quanta of energy. Due to the wave / particle duality of matter and

energy, photons exhibit both wave and particle-like properties. Thus, associated with

each photon is a wavelength λ. Photons always travel at the speed of light, c, and can

only interact with matter by transferring an amount of energy hc
λ

, where h is Planck’s

constant. Additionally, photons carry momentum and polarization states.

The most fundamental unit of radiometry is radiant energy Q, measured in

Joules (J). Each photon carries some amount of radiant energy. The radiant energy

density w is defined as the amount of radiant energy per unit volume,

w = Q/V. (2.1)

Since we are concerned with the movement of energy, we define radiant power

or radiant flux Φ as the amount of energy flowing through a surface per unit time,

Φ = dQ/dt. (2.2)

The incident or departing flux per unit of surface area is called radiant flux area density

u,

u = dΦ/dA. (2.3)
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p
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Figure 2.1: The solid angle Ap and projected solid angle An

p of a surface patch A.

We further distinguish two types of radiant flux density. If energy is arriving at a surface

we call it irradiance E; if energy is departing a surface we call it radiant exitance M .

Before proceeding in the discussion, we need to make a brief detour to define

the concepts of solid angle and projected solid angle, as well as discuss finite and dif-

ferential solid angles and area patches. A solid angle is the 3-dimensional equivalent

of a standard angle. Consider a point p surrounded by a unit sphere (see Figure 2.1).

Further, consider a surface patch A and it’s projection onto the sphere through point p.

Then the solid angle subtended by the surface patch with respect to p is simply the area

Ap occupied on the sphere by the projection of A onto p. We can augment our figure

so that p is oriented in direction n. A projected solid angle is the area An

p occupied by

a solid angle when projected onto a plane with normal n (typically, one envisions the

plane passing through point p, but any parallel plane will yield identical projected solid

angle). Projected solid angles will prove useful, for example, when considering light

incident and exitant on points on a surface with surface normal n.

Because we are often concerned with integrating quantities incident and exitant

from a point, it is useful to consider differential patches of solid angle. It is convenient
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to utilize spherical coordinates to represent points on the unit sphere: we denote the

polar angle with θ and the azimuthal angle with φ. If we consider an infinitely small

rectangular patch of the sphere in direction (θ, φ) with size (dθ, dφ), it can be shown that

the area of this patch is equal to sin θdθdφ. These patches are referred to as differential

solid angles, which we denote dω, so that,

dω = sin θdθdφ. (2.4)

Analogous to finite projected solid angle, we define projected differential solid angle

dωn as the area occupied by the projection of a differential solid angle onto a plane with

normal n. If n is coincident with the pole of our spherical coordinate system, then it

is straightforward to show that the projected differential solid angle of a patch on the

sphere in direction (θ, φ) with size (dθ, dφ) is,

dωn = sin θ cos θdθdφ. (2.5)

Returning to our discussion of energy, we define intensity I as the radiant energy

leaving a point in the direction Φ, per unit solid angle,

I = dΦ/dω. (2.6)

Finally, we define perhaps the most important radiometric quantity for computer vision,

radiance. Radiance, L, is defined as the power arriving or leaving from a surface per

unit solid angle per unit projected area. Equivalently, one can also define radiance as the

power arriving or leaving from a surface per unit projected solid angle per unit area,

L =
d2Φ

dAΦdω
=

d2Φ

dAdωΦ
. (2.7)

Radiance is important because its value does not change as a function of distance. For

example, consider a point light source illuminating a surface patch. If the patch is moved

away from the light, the power received by the patch will decrease proportional to the

distance squared, but the radiance incident on the patch remains the same because the

definition of radiance exactly compensates for this falloff. This invariance to distance

makes radiance the preferred quantity when describing the transport of light and signifi-

cantly simplifies analysis since one can model light as directed rays of constant radiance.



10

2.2 Interaction of Light and Matter

In the previous section, we defined various radiometric quantities to describe

the transport of light through a transparent medium. However, what happens when

light interacts with matter, or moves between different transparent mediums (e.g., air

to water)? To answer this question, it is useful to view the world as a partitioned set

of mediums, where light travels in a uniform manner in each given medium. Viewing

the world in this way, we only need to define the behavior of light at the boundary of

two different mediums. Examples of different mediums include empty space, air, water,

rocks, tree bark, milk, etc.; basically, any material (or lack of material) that one can

think of.

At an atomic or microscopic scale, photons can interact in very complicated

ways at the boundary of two mediums. Photons can exhibit direct reflection, transmis-

sion, absorption and possible re-emission, scattering, or a combination of any of these

effects (Glassner, 1994). Moreover, if the new medium is not transparent, some light

may transmit to the interior of the medium, get reflected and exit the second medium at

a different location – this is known as subsurface scattering. The direction that photons

travel after interacting with a boundary are also highly dependent on the geometry of the

boundary. Light entering a boundary at an angle interacts differently than light entering

in a frontal direction.

It is standard practice to differentiate between reflectance, where light arrives

and exits on the same side of a boundary, and transmission, where light arrives and exits

on different sides of a boundary. As we are primarily concerned with reflectance, we

limit our subsequent discussion to that case. However, transmission can be described in

an analogous way to reflectance.

To quantify reflectance, consider two points xi and xo on a surface. Now suppose

light with radiance L(xi, ωi) arrives at point xi from differential solid angle dωi and we

would like to know the radiance of light exiting point xo in direction ωo. Assuming

reflectance is a linear process, we expect the exitant radiance to be proportional to the
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incident flux dΦ = L(xi, ωi)dωn

i dA, where dωn

i is the projected differential solid angle

of the incident light and dA is the differential surface area of a patch at point xi. Thus,

L(xo, ωo) = dΦρ(xi, ωi,xo, ωo)

= L(xi, ωi)ρ(xi, ωi,xo, ωo)dωn

i dA. (2.8)

The proportionality constant ρ(xi, ωi,xo, ωo) is called the bi-directional scattering sur-

face reflectance distribution function (BSSRDF) and specifies the fraction of incident to

exitant energy and generally depends on both the position and direction of incident and

exitant light. To account for light arriving at different positions and directions, one can

simply integrate over all incident rays,

L(xo, ωo) =

∫

xi∈A

∫

ωi∈Ω

L(xi, ωi)ρ(xi, ωi,xo, ωo)dωn

i dA. (2.9)

Because of it’s high dimensionality, BSSRDFs are difficult to work with directly.

It is therefore common to assume that all light enters and leaves from the same surface

point, which eliminates dependence on xo. This function, denoted ρ(x, ωi, ωo) is called

the bi-directional reflectance distribution function (BRDF). If the surface does not vary

spatially, then x can also be dropped and the BRDF reduces to a function of incident

and exitant directions, ρ(ωi, ωo). Applying these simplifications to Equation 2.9 yields

the commonly utilized expression,

L(ωo) =

∫

ωi∈Ω

L(ωi)ρ(ωi, ωo)dωn

i (2.10)

which specifies exitant radiance at a surface point in terms of the BRDF and the incident

radiance over the upper hemisphere of directions.

BRDFs are typically defined relative to the local coordinate system of a given

point on a surface. Consider Figure 2.2a. Using spherical coordinates (relative to the

coordinate system attached to a differential patch on a surface), we see that any direction

can be defined by two variables. Thus, we can specify incident and exitant directions as

ωi = (θi, φi) and ωo = (θo, φo). Thus, ignoring spatial (and spectral) variation, a BRDF
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Figure 2.2: Common parametrizations of the BRDF domain. (a) The local coordinate

system attached to a surface point. (b) Isotropic BRDF parameterization. (c) Half-angle

parameterization.
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is a function of four scalar variables: ρ(θi, φi, θo, φo). Re-expressing Equation 2.10 in

spherical coordinates results in the following expression,

L(θo, φo) =

∫ 2π

φi∈0

∫ π
2

θi∈0

L(θi, φi)ρ(θi, φi, θo, φo) cos θi sin θidθidφi. (2.11)

The cos θi term accounts for foreshortening and sin θidθidφi is the solid angle formed

by the differential portion of the sphere in direction (θi, φi).

An alternative parameterization of the BRDF domain is the half-angle param-

eterization (see Figure 2.2). Empirically, it has been shown that the BRDFs of many

real-world materials vary more smoothly in the half-angle domain than in the spherical

coordinate parameterization (Rusinkiewicz, 1998; Stark et al., 2005). This property is

useful, for example, in data-fitting and compression.

Fully general 4D BRDFs, while simpler than BSSRDFs, can still be difficult to

analyze, particularly in computer vision applications attempting to infer scene properties

from images. A common simplification is to assume the BRDF is invariant to rotations

and reflections about the surface tangent plane. Such BRDFs are called isotropic, while

general 4D BRDFs are referred to as anisotropic. Isotropic BRDFs are functions of

three variables (see Figure 2.2b): ρ(θi, θo, ‖φi − φo‖). To make the notion of isotropy

more concrete, imagine looking at a planar surface, say a piece of paper on a table. If

the material is isotropic then as the sheet is rotated on the table the intensity reaching

one’s eye will remain constant. If the material is anisotropic (say, if the sheet is made

of velvet or brushed steel), then the intensity reaching one’s eye will vary as the sheet is

rotated. Figure 2.3 illustrates the difference between isotropic and anisotropic materials.

To simplify BRDFs even further, it is very common to use parametrized mod-

els. Many parametrized models have been proposed which try to capture the appearance

of materials commonly encountered in the real world. These models can be broadly

grouped into empirical models and physically based models. Physically based models

are derived from properties that result from physics (or approximations thereof), typi-

cally for specific classes of real-world materials. For example, the Cook-Torrance re-

flectance model is based on the idea of micro-facets, or small scale geometric variations
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(a) (b)

(c)

Figure 2.3: Comparison of (a) isotropic and (b) anisotropic materials. Note the non-

circular specular lobe of the anisotropic sphere. (c) A real image of anisotropic cloth

(Hertzmann and Seitz, 2005).
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on an object’s surface. The parameters of the model dictate statistical properties of the

underlying micro-facet distribution, from which a Cook-Torrance BRDF is derived1,

ρ = d
1

π
+ s

1

π

FDG

cos θi cos θo

F =
1

2

(g − c)2

(g + c)2

(
1 +

[c(g + c) − 1]2

[c(g + c) + 1]2

)
, c = cos θd, g

2 = η2 + c2 − 1

D = ke−(α/m)2

G = min

{
1,

2 cos θh cos θi

cos θd

,
2 cos θh cos θo

cos θd

}
. (2.12)

Empirical models, on the other hand, were developed in an ad-hoc manner and

thus can yield materials that are improbable or even physically impossible (for example,

some models violate energy conservation and/or Helmholtz reciprocity which are held

by almost all real-world materials). However, empirical models have an advantage in

that they are often designed to be simple and easy to analyze, in addition to being vi-

sually plausible to human observers. An example of an empirical model is the Phong

BRDF,

ρ(θi, φi, θo, φo; ρd, k, α) = ρd + k cosα θi. (2.13)

In computer vision, the Lambertian reflectance model is by far the most utilized.

The Lambertian model consists of a single parameter, the albedo α,

ρ(θi, φi, θo, φo; α) = α. (2.14)

In essence, an ideal Lambertian material scatters incoming light equally in all directions,

so that a viewer in any direction will observe the same exitant radiance. The reason the

Lambertian model is so commonly used is that it leads to a simple linear model of

image formation and is also a reasonable approximation for many materials, such as

chalk, unglazed ceramics, and matte paper (see Figure 2.4).

1Equation adapted from (Glassner, 1994, chap. 15).
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Figure 2.4: Examples of materials closely approximated by the Lambertian reflectance

model.
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Figure 2.5: A typical CCD sensor.

2.3 Measuring Light

At this point, we have discussed models for how light travels and interacts with

matter. Equally important, however, is an understanding of how light is measured. At

the core, we want to know the radiance of light at specific locations and directions.

While there are many potential measurement devices, depending on which rays one

wants to measure, we are primarily concerned with camera systems, which measure the

projection of light rays on a 2D imaging surface. In the following subsections, we cover

various camera models, concluding with a discussion on practical issues that arise in

real-world camera systems. A more in-depth treatment of these topics can be found in

standard computer vision textbooks such as Forsyth and Ponce (2003), Trucco and Verri

(1998), or Ma et al. (2005).

2.3.1 Imaging Sensors

At the heart of any camera is a sensor that records the flux / irradiance of incident

light. In digital cameras, charge coupled devices (CCDs) or CMOS based sensors are

typically used (see Figure 2.5), while film cameras rely on chemical reactions. CCD

sensors are based on the photovoltaic effect, whereby photons striking the sensor are

converted into electrical charges that can then be measured as voltages. The irradiance
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of light arriving at a sensor can be derived from the voltage accumulated by the CCD

over a fixed period of time (the exposure time of the camera). Usually, a large set of

CCD (or CMOS) sensors is arranged in a regular grid pattern across the image plane of

the camera, providing a spatially varying measurement of incident irradiance. The set

of values thus obtained is commonly referred to as an image.

2.3.2 The Ideal Pinhole Camera Model

An ideal pinhole camera measures the set (or a subset) of light rays projected

onto the image plane through a single focal point (see Figure 2.6). If we consider a

canonical coordinate system centered at the focal point with x and y spanning the im-

age plane and z orthogonal to the image plane, we arrive at the following projection

equation,

x = −fX/Z

y = −fY/Z (2.15)

where X = (X,Y, Z)⊤ is a 3D point, x = (x, y)⊤ is its projection onto the image plane,

and f is the focal length of the camera.

Such projection models are studied in the branch of mathematics known as pro-

jective geometry, where it is often convenient to utilize homogeneous coordinates. Ho-

mogeneous coordinates are related to standard Cartesian coordinates in the following

way. Consider an n + 1 dimensional vector vhomogeneous = (v1, v2, ..., vn, w)⊤. One can

map vhomogeneous to an n dimensional vector as v = (v1/w, v2/w, ..., vn/w)⊤. Thus, any

n dimensional vector can be represented in homogeneous coordinates as an n + 1 di-

mensional vector. A property of homogeneous coordinates is that they are only defined

up to scale; hence, λv ≡ v ∀λ 6= 0. Moreover, there are special points, called points

at infinity, that occur when w = 0. In homogeneous coordinates, the pinhole projection
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Figure 2.6: The pinhole camera projection model. Rays passing through the focal point

are projected onto the image plane. The focal distance f is the distance from the focal

point to the image plane.

model can be expressed as,

λx = λ




−fX

−fY

Z


 = KX =




−f 0 0

0 −f 0

0 0 1







X

Y

Z


 . (2.16)

Equation 2.16 requires 3D points to be expressed in the canonical camera cen-

tered coordinate frame. However, in practice it is often convenient to express these

points relative to a different world coordinate frame. The camera and world coordinate

frames are related to each other by a rigid transformation consisting of a 3 × 3 rotation

matrix R and a 3× 1 translation vector t, which can be incorporated into Equation 2.16

as,

λx = KPX =




−f 0 0

0 −f 0

0 0 1



(
R t

)




X

Y

Z

1




. (2.17)

The rigid transformation mapping world to camera coordinates is referred to as the ex-

trinsic camera parameters.
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Figure 2.7: The orthographic camera projection model. Rays are projected in parallel

onto the image plane in the direction orthogonal to the image plane.

2.3.3 Alternative Projection Models

The affine camera model results when rays are projected in parallel onto the

image plane. Pinhole (and real) cameras are well approximated by affine cameras when

the object being imaged is distant from the camera relative to the object’s diameter.

Affine projection maps points onto the image plane as,

x = PX =


A b

0⊤ 1







X

Y

Z

1




(2.18)

where A is a 2 × 3 rank 2 matrix and b is a 2 × 1 vector.

The orthographic camera model is a special case of affine projection resulting

when rays are projected in the direction orthogonal to the image plane (see Figure 2.7).

Orthographic projection maps points onto the image plane as,

x =




X

Y

1


 = PX =




1 0 0 0

0 1 0 0

0 0 0 1







X

Y

Z

1




. (2.19)
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Figure 2.8: (Left) A set of imaged checkerboard patterns. (Right) Recovered extrinsic

camera parameters. Image from (Bouguet, 2008).

Orthographic projection is commonly assumed in computer vision applications such as

photometric stereo and structure from motion.

2.3.4 Real Camera Systems

Real cameras deviate from ideal camera models in a number of respects, mostly

due to the use of lenses and non-ideal image sensors. Fortunately, most of these effects

can be mitigated by appropriate calibration processes. Broadly speaking, there are two

types of camera calibration: geometric calibration and radiometric calibration.

Geometric calibration involves finding a mapping between the rays of light mea-

sured by the camera and the rays that would have been recorded by an ideal pinhole

camera. Geometric calibration is often subdivided into two parts: estimation of ex-

trinsic camera parameters (i.e., the location and orientation of the camera relative to

the scene) and estimation of the intrinsic camera parameters that model effects such as

lens distortion, focal length, translation of the optical center, skew, and aspect ratio. A

thorough treatment of geometric calibration techniques is beyond the scope of this doc-

ument, but a popular approach is to image a checkerboard pattern (or other pattern with

known geometry) in multiple poses. This allows one to fit parameters of a camera model

by comparing the measured locations of the checkerboard pattern with those predicted

by the model (see Figure 2.8).
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Radiometric calibration involves finding a mapping between measured pixel val-

ues and the irradiance (ideally) arriving at the image sensor. Ideally, the measured pixel

intensities I(x, y) should be proportional to the irradiance arriving at the sensor E(x, y),

I(x, y) ∝ E(x, y). (2.20)

However, some sensors have a non-linear response curve f , so that

I(x, y) ∝ f [E(x, y)]. (2.21)

One method for recovering the response curve is to image a scene multiple times with

varying shutter speed. Another problem arising in real camera systems is vignetting,

which results in spatially varying falloff of pixel intensity across the image plane. Vi-

gnetting is primarily caused by the aperture and lens of the camera, which cause more

light to enter at the center of the image than at the edges. Vignetting is typically mod-

elled as a multiplicative falloff V (x, y) across the image plane,

I(x, y) ∝ V (x, y)E(x, y). (2.22)

A simple technique to recover V is to image a scene with uniformly emitted radiance.

Because vignetting falloff is often close to radially symmetric, it is also common to fit a

function of the form V (r =
√

x2 + y2), which can be further simplified to a low-order

polynomial V (r) = a + br2 + cr4 + dr6.

2.4 Surface Models

An issue of critical importance to any shape reconstruction algorithm is how to

mathematically represent shape. There are many possible representations, but here we

present three of the most commonly utilized representations – height maps, meshes, and

voxel grids.
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Figure 2.9: (Left) Image of a scene. (Right) Associated height map, intensity propor-

tional to distance from camera. Images from (Scharstein and Pal, 2007; Hirschmüller

and Scharstein, 2007).

2.4.1 Height Maps

The shape representation used most frequently throughout this dissertation are

height maps. A height map stores 3D shape as a set of height or depth values defined

over a plane (See Figure 2.9). Mathematically, a height map can be specified as the set

of points (x, y, z = f(x, y)) for some function f . Because only one depth value can be

specified per (x, y) coordinate, height maps are inherently limited in their representa-

tional power, leading some to refer to them as “2.5D” shapes. However, height maps are

very natural for computer vision applications, since all points in the world are projected

on the the image plane – meaning there is at most a single visible surface point per pixel

in an image.

If the height map is continuous and differentiable – that is, if zx = ∂z
∂x

and

zy = ∂z
∂x

exist for all (x, y) – then we define the gradient as (p, q), where p = zx and

q = zy. Moreover, the surface normal map can be defined in terms of the gradient,

n =
(−p,−q, 1)⊤√

1 + p2 + q2
. (2.23)

In some computer vision algorithms such as photometric stereo, the output is a nor-

mal or gradient map. If the surface is differentiable (or integrable), one can convert a
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normal/gradient map into a height map by “integrating” the normal field. A standard

approach is to minimize the following objective function over surface height z,

F (z) =

∫ ∫ [
(zx − p)2 + (zy − q)2

]
dxdy (2.24)

where p and q are known and z, zx, and zy are unknown. This partial differentiable equa-

tion can be solved by applying the Euler-Lagrange equation from variational calculus.

The resulting Poisson equation yields constraints of the form,

z2
xx + z2

yy = px + qy. (2.25)

For an overview of this approach, see (Horn, 1986, chap. 11). In the presence of noise,

outliers, or non-integrable surfaces, other solution techniques may give better results

than the Poisson solver (e.g., Agrawal et al. (2006, 2005)).

2.4.2 Meshes

Another popular model for representing shape is a surface mesh. A mesh con-

sists of a set of 2D polygons embedded in 3d space. The faces of these polygons define

the surface of the object. Typically, triangles are preferred over polygons of higher de-

gree, for the following reasons: (1) they are the simplest possible polygon; (2) arbitrary

polygons can be formed from adjacent triangles; and (3) they are always convex, which

simplifies analysis of certain computations such as testing whether a ray intersects a

given triangle. Because surfaces are typically composed of large sets of adjacent tri-

angles, vertexes are usually shared by multiple triangles. In this scenario, it is most

efficient to store vertex positions in a list and specify triangle faces as triplets of indices

into the vertex list.

Meshes are often augmented in order to specify additional information about a

surface. Examples include face orientations to disambiguate the interior and exterior of

a surface; “photometric” normal maps to specify more accurate surface normals than

the implicit normals defined by each triangle face; spatially varying texture and / or
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Figure 2.10: Example of a triangle mesh.

reflectance; etc. Naturally, these additional properties can be stored either per-vertex or

per triangle face, depending on the needs of a given application.

When working with triangles, it is often useful to utilize barycentric coordinates.

In barycentric coordinates, points are defined as linear combinations of the triangle ver-

tex positions. For example, a point with barycentric coordinates (α, β, γ) has Cartesian

coordinates αv1 + βv2 + γv3, where v{1,2,3} are the Cartesian coordinates of the three

vertexes of some triangle. Barycentric coordinates are restricted so that the coordinate

variables sum to unity, (i.e., α+β+γ = 1). Thus, γ = 1−α−β. Moreover, barycentric

coordinates have an interesting geometric interpretation: if we label the triangle vertexes

A, B, and C and a point lying on the plane of the triangle as P , then the barycentric

coordinates of P are proportional to the areas defined by triangles BCP , ACP , and

ABP (see Figure 2.11).

The most common use of barycentric coordinates is to interpolate data along the

face of a triangle. In fact, the coordinate variables exactly correspond to weights that

linearly interpolate between the vertexes of a triangle. To illustrate, suppose we have

texture values t1, t2, and t3 stored at vertexes v1, v2, and v3 and we want to linearly

interpolate to find the texture value at some point p along the plane of the triangle. To do

this, we first compute the barycentric coordinates of p: (α, β, γ). Then the interpolated
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P

A

B

C

α

β

γ

Figure 2.11: A geometric interpretation of barycentric coordinates. Point P has Carte-

sian coordinates P = αA + βB + γC, where α, β, and γ are proportional to the areas

of triangles BCP , ACP , and ABP respectively.

texture value is easily computed as αt1 + βt2 + γt3.

2.4.3 Voxel Grids

Voxel grids are perhaps the simplest representation of shape one could imagine.

The basic idea is to discretize 3D space into a set of cells, or voxels, with each voxel

labeled to indicate whether it is in the interior or exterior of a given shape. Voxel grids

are fundamentally different from both height maps and meshes in that they model 3D

volumes rather than 2D surfaces. For this reason, voxel-grids are particularly well-suited

for algorithms that operate on volume data. Examples include shape-from-silhouette

algorithms such as Laurentini (1994) and space carving (Kutulakos and Seitz, 2000). A

simple way to utilize silhouette or boundary information is to first distinguish between

foreground and background pixels in each image (i.e., pixels that project onto an object

or not). Any voxel which projects to a background region in any image must lie outside

the object. By combining information from multiple viewpoints, one can construct the

visual hull of the object (Laurentini, 1994), as seen in Figure 2.12.

Voxel grids, like meshes, can be augmented with auxiliary data depending on

the application. For example, for fluid simulations in computer graphics one can assign
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(a) (b) (c)

Figure 2.12: A voxelgrid obtained by shape-from-silhouettes. (a) 1 of 64 input images.

(b) Resulting voxel grid. (c) Detail of voxel grid.

a time-varying fluid velocity at each voxel position; in medical imaging, one can assign

values specifying tissue density; etc.

The primary downside to using voxel-grids (or any volumetric representation)

is that they are relatively inefficient when compared to surface representations such as

meshes. This is because surface representations grow quadratically in size while volume

representations grow at a cubic rate. Thus, to achieve equivalent levels of detail in a

voxel-grid as in a mesh requires significantly more storage and processing time.



Chapter 3

Photometric Stereo

Photometric stereo refers to a class of algorithms based on observing the ap-

pearance of an object under varying illumination. Shape reconstruction is the primary

goal, but it is also common to recover surface reflectance and/or illumination as well.

Typically, images are acquired from a fixed viewpoint relative to the object and the goal

is to recover a surface normal map, which can then be converted into a height map as

described in Chapter 2. Closely related to photometric stereo is shape from shading

(SFS). The primary difference between SFS and photometric stereo is that in SFS only

a single input image is given. Thus, SFS is inherently more difficult than photometric

stereo because SFS operates on a subset of the images available to photometric stereo

algorithms. Given their similarity, ideas from SFS are immediately applicable to pho-

tometric stereo (but not necessarily the other way around). In the following sections,

we provide an overview and literature review of shape from shading and photometric

stereo algorithms. The intent is to provide a backdrop on which to evaluate the research

contributions of the subsequent chapters in this dissertation.

28
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(a) (b) (c)

Figure 3.1: Overview of SFS. From an input image, the goal is to obtain the surface

orientation at each pixel which can then be “integrated” to form a height map. (a)

Input image of a vase with Lambertian reflectance and illumination in direction s ∝

(−0.3,−0.2, 1)⊤. (b) Normal map of vase, color encoded as r = (nx + 1)/2, g =

(ny + 1)/2, b = nz. (c) Height map of the surface.

3.1 Shape From Shading

The idea behind shape from shading is to utilize shading cues to reconstruct the

shape of an object from a single image. In this context, shading refers to changes in

intensity caused by varying surface orientation across an object. Shape from shading

was first introduced by Horn in the early 1970s (Horn, 1970). Since then, SFS has

received significant research attention, which is briefly summarized in this section. For

a more thorough overview of SFS, see (Zhang et al., 1999) or (Horn, 1986).

Because shading is dependent on surface orientation and not on surface height,

it is common for SFS algorithms to output a representation of surface orientations, such

as a normal map or gradient map. Just to review, height maps, gradients, and surface
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normals are related to each other by,

Height map : z = f(x, y)

Surface gradient : (p, q) = (zx, zy) = (
∂z

∂x
,
∂z

∂y
)

Surface normal : n =
(−p,−q, 1)⊤√

p2 + q2 + 1
. (3.1)

Assuming the surface is integrable, a normal map or gradient map can be transformed

into a height map, up to a global additive height ambiguity (see Figure 3.1).

For arbitrary surfaces and / or camera and illumination configurations SFS is an

under-constrained problem. It is therefore common to make the following simplifying

assumptions:

• Uniform, known surface reflectance

• Illumination from a single directional light source

• Orthographic camera projection

• Negligible global illumination effects (e.g., interreflections, cast shadows, sub-

surface scattering).

Under these assumptions, the image formation model is quite simple:

e = ρ(n, s)n⊤s, (3.2)

where e is the image intensity of a single surface point, n is the surface normal, s is the

light source direction, and ρ is the BRDF parametrized in terms of n and s with implicit

viewing direction v = (0, 0, 1)⊤. If s and ρ are known, then e reduces to a function

of the surface orientation; the set of possible image intensities as a function of surface

orientation is called a reflectance map (see Figure 3.2a). Minimizing the difference

between measured surface brightness and the brightness predicted by a reflectance map

is the most fundamental goal of SFS algorithms. Usually this is expressed by minimizing
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(a) (b)

n

s

(c)

Figure 3.2: (a) A reflectance map parametrized in terms of the surface gradient (p, q).

Each isocontour curve corresponds to a single image intensity value. (b) An image

of a sphere is a practical way to measure the reflectance map of otherwise unknown

materials. (c) Under Lambertian reflectance, each cone of surface normals centered

about the light source direction s yields identical image intensity.

the following objective,

∫ ∫
(E − R)2 dxdy (3.3)

where E is the measured brightness value and R represents the value of the reflectance

map at each point. Another alternative is to minimize deviations in the gradient of the

image intensity,

∫ ∫ [
(Ex − Rx)

2 + (Ex − Rx)
2
]
dxdy. (3.4)

An obvious concern in practice is that the reflectance map of a given surface

is rarely known a-priori. One way to address this problem is to assume Lambertian

reflectance. Under Lambertian reflectance, Equation 3.2 simplifies to,

e = αn⊤s. (3.5)

The surface albedo α can be easily obtained in a number of ways (for example, knowing

the orientation of a single point on the surface reveals the albedo). Another approach
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is to directly measure the reflectance map using a calibration object. For example, one

can image a sphere composed of the same material as the test object under identical

illumination (Woodham, 1980; Hertzmann and Seitz, 2005, 2003). Because a sphere

contains surface points at every possible orientation, such an image provides a direct

measurement of the reflectance map for that material / illumination (see Figure 3.2b).

A serious problem with minimizing the objective in Equation 3.3 is that the so-

lution is not unique. In fact, given a single image, the surface orientation at each point

is only constrained to lie on an isocontour curve of the reflectance map, a 1D family

of solutions in general (see Figure 3.2a). That said, there are a few special conditions

where it is possible to uniquely recover the surface: (a) At singular points in the re-

flectance map, and (b) along the occluding contour of a curved surface. For the special

case of Lambertian reflectance, it follows from Equation 3.5 that a single measurement

constrains the surface normal to lie in a cone centered about the light source direction

(see Figure 3.2c).

Clearly, knowledge of the reflectance map on its own is insufficient to reconstruct

the full surface shape, so it is natural to consider what additional constraints can be

utilized to reduce or remove ambiguities. One of the most common approaches is to

impose either surface smoothness or surface integrability. Surface smoothness is an

assumption or heuristic that is often mathematically measured in terms of the second

order derivatives of the surface height,

∫ ∫ (
p2

x + p2
y + q2

x + q2
y

)
dxdy. (3.6)

Intuitively, this says that smooth surfaces are flat. Surface integrability is a constraint

(which holds for smooth surfaces) based on the fact that following the surface gradient

along any closed loop of a differentiable surface should not result in a change of depth.

Surface integrability is often expressed as,

∫ ∫
(zxy − zyx)

2 dxdy (3.7)

where zxy and zyx are the mixed second order partial derivatives of the surface height.
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(a) (b)

Figure 3.3: Illustration of the convex / concave ambiguity. The images are identical

except for a reflection about the x-axis. Human observers interpret (a) to be a crater

and (b) to be a cone due to an implicit assumption in the human visual system that

illumination comes from above. Images from (Pentland, 1984).

Even after imposing surface smoothness or integrability, there are still ambigui-

ties that can arise. For example, if the surface is allowed to have arbitrary spatially vary-

ing albedo, it becomes impossible to distinguish shading patterns from texture without

resorting to ad-hoc techniques. The most impactful ambiguity to classical SFS (where

known light source direction and uniform reflectance are assumed) is the convex / con-

cave ambiguity under which a pair of surfaces, one convex and one concave, give rise

to the same image (see Figure 3.3). In practice, the convex / concave ambiguity can be

resolved by prior knowledge (i.e., an operator specifies convexity or concavity to the

algorithm). Another ambiguity, which can arise if the light source direction is unknown,

is the generalized bas-relief (GBR) ambiguity (see Figure 3.4). The GBR ambiguity is

most commonly encountered in uncalibrated photometric stereo and will be covered in

more detail in subsequent sections.

Given a brightness constraint (Equations 3.4 or 3.3) and a surface constraint

such as smoothness or integrability (Equations 3.6 or 3.7), the next step is to find a

shape that satisfies the constraints. The most common approach is to apply minimization
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Figure 3.4: Bas-relief sculptures illustrate a special case of the generalized bas-relief

ambiguity. When viewed from a frontal direction, such statues look normal. Viewed

from the side, their flattened shape becomes apparent. Images from (Belhumeur et al.,

1999).

techniques to solve the problem. For example, combining the brightness constraint with

the integrability constraint yields the following cost function,

F =

[∫ ∫
(E − R)2 dxdy

]
+ λ

[∫ ∫
(zxy − zyx)

2 dxdy

]
, (3.8)

which we want to minimize with respect to the surface gradient p and q. This sys-

tem can be solved using variational calculus, provided appropriate boundary conditions.

Propagation techniques are also commonly used to find SFS solutions. The basic idea

is to propagate surface shape starting at points with known geometry. Figure 3.5 shows

results from a few two SFS algorithms, one a minimization method and another a prop-

agation method.

While shape from shading is a noble goal, it is beset by problems in practice.

First, the requirements imposed by even state-of-the-art methods are quite restrictive.

For example, many real-world objects are textured and violate the requirement of uni-

form surface reflectance. It is also unreasonable to assume known reflectance or access

to a calibration object in many circumstances. Unfortunately, it is difficult to relax these

requirements for technical reasons. A second problem with SFS is that it is highly sen-

sitive to noise and outliers. This is because only a single measurement is acquired per
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5: (a-d) Synthetic input images. (e-h) Results from (Lee and Kuo, 1993). (i-l)

Results from (Bichsel and Pentland, 1992). Images from (Zhang et al., 1999).
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(a) (b)

Figure 3.6: (a) Reflectance maps and isocontour curves corresponding to a single sur-

face point under three different illumination conditions. (b) Intersection of all three

isocontour curves. Generally, three or more measurements provides a unique solution.

surface point – thus, it is difficult to distinguish noise from the underlying signal.

3.2 Classical Photometric Stereo

Photometric stereo, first introduced by Woodham (1980), is in many ways simply

an extension of shape from shading in which multiple images acquired under different

illumination conditions are utilized. Early work, such as Woodham (1980) and Silver

(1980) directly employ the idea of reflectance maps. It was noted that different illumi-

nation conditions resulted in reflectance maps with different sets of isocontours; thus,

the surface orientation at a point can be obtained by simply intersecting the isocontour

curves obtained from each reflectance map (see Figure 3.6). In general, two measure-

ments constrain the surface orientation of a point to one of two possibilities. Three

measurements fully constrains the surface orientation.

It was also observed that under Lambertian reflectance, surface orientations and

spatially varying albedo could be simultaneously obtained from three or more images.

The classical Lambertian photometric stereo algorithm assumes a Lambertian surface

illuminated by distant point light sources and viewed by an orthographic camera. Con-

sider acquiring M images, each taken with a different lighting configuration, with N
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pixels in each image. Ignoring shadows and interreflections, the image intensity at the

ith pixel in the jth image is given by,

eij = αin
⊤
i sj (3.9)

where αi and ni are the albedo and surface normal at the ith pixel position and sj en-

codes the magnitude and direction of the jth directional light source. To simplify anal-

ysis, it is convenient to express Equation 3.9 in matrix form. By vectorizing the pixels

in each image (in, say, column-major ordering), we can compactly express Equation 3.9

as,

E = BS (3.10)

where,

• E ∈ R
N×M stores the pixels from all input images. Each column contains the set

of pixels from a single image, and each row corresponds to a different lighting

condition for a single pixel.

• B ∈ R
N×3 encodes the surface normal and albedo at each pixel. The ith row

corresponds to the product of the albedo with the surface normal vector at the

ith pixel; i.e., Bi,: = αin
⊤
i .

• S ∈ R
3×M encodes the light source direction and intensity for each image. The

jth column contains the jth light source vector sj .

If S is known, B can be obtained by solving the over-constrained linear system

in Equation 3.10; e.g.,

B = ES† (3.11)

where S† is the pseudo-inverse of matrix S. Once B is obtained, the albedo and surface

normal at each pixel are given respectively by the magnitude and direction of each row

of B. Figure 3.7 shows typical inputs and outputs of the Lambertian photometric stereo

algorithm.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.7: Demonstration of the Lambertian photometric stereo algorithm. (a-e) Input

images, each obtained with a different light source direction. (f-h) x, y, and z compo-

nents of the recovered normal map. (i) Recovered albedo map. (j) Height map obtained

by integrating the recovered normal map.
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There are a few complications that arise in practice when using the simple linear

model of Equation 3.10. First, the model does not faithfully represent attached shad-

ows1; this can be easily fixed by incorporating a max function, but this introduces non-

linearity making the least-squares solution harder to obtain. A more difficult problem to

overcome are global illumination effects, which include cast shadows, interreflections,

and subsurface scattering. These effects are challenging because any surface point can

potentially influence the brightness of any other surface point. Thus, it no longer suf-

fices to treat each surface point independently, they have to all be considered simulta-

neously. While there has been some effort to incorporate cues from cast shadows and

interreflections, e.g. Chandraker et al. (2007), the typical approach is to either ignore

global illumination effects or to treat them as outliers.

3.2.1 Uncalibrated Photometric Stereo

When the light source direction and strengths, S, are unknown, a case known

as uncalibrated photometric stereo, the solution is not so simple. Without additional

constraints, the best one can do is recover B and S up to an unknown general linear

transformation. From the form of Equation 3.10 it is clear that the matrix E is con-

strained to be at most rank 3, since it is the product of an N ×3 and a 3×M matrix; this

enables E to be factorized. Because of measurement noise, E may not be exactly rank

3, but the closest rank 3 approximation can be obtained using singular value decompo-

sition (SVD) or similar algorithms. For example, the rank 3 SVD decomposition of E

yields,

E = UDV⊤ (3.12)

E ≃ U3D3V
⊤
3 (3.13)

E ≃ B̂Ŝ (3.14)

1Attached shadows occur when the surface normal points away from the light source, i.e., n⊤
s < 0.
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Figure 3.8: Illustration of the generalized bas-relief ambiguity. There is a family of

integrable, Lambertian surfaces (right column) that result in identical images (right col-

umn). A GBR transforms the shape, albedo, and illumination of a surface. Image from

(Belhumeur et al., 1999).

where B̂ ∈ R
N×3 and Ŝ ∈ R

3×M . B̂ and Ŝ are not uniquely defined, however, since

B̂A and A−1Ŝ is an equally valid solution for any invertible 3 × 3 matrix A ∈ GL(3).

It has further been shown that only a 3-parameter subset of these transforma-

tions, known as the Generalized Bas-Relief (GBR) ambiguity, preserve surface integra-

bility (Belhumeur et al., 1999; Kriegman and Belhumeur, 1998, 2001). Thus, given

three or more images of a Lambertian scene acquired under light sources of unknown

direction and strength, the surface can be reconstructed up to a GBR transformation by

enforcing surface integrability. An analytic method for doing this was introduced by

Yuille and Snow (1997).

To understand the GBR ambiguity, consider a Lambertian surface defined by a

height map z = f(x, y) and albedo map ρ(x, y) with surface normal n. Then a GBR

transformation has the following effect on the albedo and surface normal,

ρ̂ = ρ‖n⊤G−1‖ n̂⊤ =
n⊤G−1

‖n⊤G−1‖
(3.15)

where ρ̂, n̂, and G are the transformed albedo, transformed surface normal, and GBR
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transformation matrix respectively. Qualitatively, a GBR transforms the depth of each

surface point by multiplicatively scaling the depth combined with an additive plane.

The albedo and light source vector are simultaneously transformed in such a way that

the resulting image from a given viewpoint remains the same (see Figure 3.8). A GBR

transformation depends on three parameters µ, ν, and λ and has the following form (Bel-

humeur et al., 1999),

G =




1 0 0

0 1 0

µ ν λ


 G−1 =

1

λ




λ 0 0

0 λ 0

−µ −ν 1


 . (3.16)

In terms of Equation 3.10, a GBR yields transformed B and S matrices,

E = BG−1GS = B̂Ŝ. (3.17)

To resolve the GBR ambiguity, additional constraints must be imposed. Prior

works on resolving the GBR ambiguity involve assumptions about (a) the light sources

(Yuille and Snow, 1997), (b) the distribution of albedos on the surface (Belhumeur et al.,

1999; Hayakawa, 1994), (c) the surface reflectance (Belhumeur et al., 1999; Hayakawa,

1994; Drbohlav and Sara, 2002), and (d) the geometry of the surface (Chandraker et al.,

2005; Georghiades et al., 2001). Yuille and Snow (1997) assume knowledge of light

source intensities, while several algorithms (Belhumeur et al., 1999; Hayakawa, 1994)

assume constant albedo over the entire surface to resolve the parameters of the GBR. Dr-

bohlav and Sara (2002) assume non-Lambertian reflectance, and recover the parameters

of the GBR by assuming that the surface normal corresponding to a specular highlight

bisects the viewing direction and the light source direction. Georghiades (2003) shows

that the GBR can be resolved by assuming that the reflectance of the surface is well de-

scribed by the Torrance-Sparrow reflectance model. Georghiades et al. (2001) use priors

on surface geometry, while Chandraker et al. (Chandraker et al., 2005) assume that the

surface geometry leads to interreflections which can then be utilized to resolve the GBR.

In Chapter 4 a new method for resolving the GBR ambiguity is presented, based on the
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fact that most surfaces contain a small number of distinct albedo values, a property not

preserved under a GBR transformation.

3.3 Non-Lambertian Photometric Stereo

Much of the emphasis in photometric stereo research has been to relax the

assumption of Lambertian reflectance, thus enabling photometric stereo to work on

broader classes of objects. For example, it has been observed that the reflectance of

many materials is well approximated by the sum of a specular and a diffuse lobe, which

has motivated an entire line of research (Coleman and Jain, 1982; Barsky and Petrou,

2003; Ikeuchi, 1981; Nayar et al., 1990). Many of these approaches assume a Lamber-

tian diffuse lobe, while not imposing a parametric form on the specular lobe. Exam-

ples include Coleman and Jain (1982) and Barsky and Petrou (2003) who treat specular

pixels as outliers as well as Schlüns and Wittig (1993), Sato and Ikeuchi (1994), and

Mallick et al. (2005) who assume the color of the specular lobe differs from the color of

the diffuse lobe, allowing separation of the specular and diffuse components.

A different approach is to place reference objects in the scene that have similar

reflectance to the test object. This method was used in early photometric stereo research

(Silver, 1980) and was later reexamined by Hertzmann and Seitz (2003, 2005). The

basic idea is that the reference objects provide a direct measurement of the BRDFs in

the scene, which is then matched to points on the test object. This works for arbitrary

BRDFs, but requires reference objects of the same material as the test object. Spatially

varying BRDFs can also be handled by assuming that the BRDF at each point on the

test object is a linear combination of the “basis” BRDFs defined by the set of reference

objects. This approach to spatially varying BRDFs is similar in spirit to work by Lensch

et al. (2001), although their method uses parametric (Lafortune) BRDFs and assumes

known surface shape.

Building upon the idea of considering the reflectance at each surface point to be a

linear combination of a small set of BRDFs, Goldman et al. (2005) removed the need for
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reference objects by iteratively estimating the basis BRDFs and surface normals. Their

method assumes an isotropic Ward model for each basis material, whose parameters

are estimated at each iteration. While it requires the solution of a difficult optimization

problem, their approach is still one of a very few capable of recovering surface normals

and relatively flexible parametric BRDFs in tandem.

While parametric models are very good at reducing the complexity of BRDFs,

they are usually only valid for a limited class of materials (Ngan et al., 2005; Stark

et al., 2005). An alternative is to exploit physical properties common to large classes of

BRDFs. For example, it is well known that all real-world BRDFs satisfy energy conser-

vation, non-negativity, and Helmholtz reciprocity. Utilizing these properties, while not

as simple as utilizing parametric models, is nonetheless possible. Helmholtz stereopsis,

introduced by Zickler et al. (2002a,b), is one such technique, exploiting reciprocity to

obtain (multi-view) surface reconstruction with no dependence the BRDF. Isotropy is

another physical property which holds for materials without “grain”. While isotropy is

implicitly assumed in almost all parametric models used in computer vision, only re-

cently has it been explicitly utilized for photometric stereo. Tan et al. (2007) use both

symmetry and reciprocity present in isotropic BRDFs to resolve the generalized bas-

relief ambiguity. In Chapter 5, it is shown that isotropy, with no further assumptions

on surface shape or BRDF, can be utilized to recover the surface normal at each surface

point up to a plane. In particular, no parametric model is used, and the BRDF is allowed

to vary arbitrarily across the surface.

Another recent development in non-parametric BRDF acquisition is the concept

of factorizing sampled BRDF values into the product of a material weight matrix and

a BRDF matrix. The most prominent of these approaches is work by Lawrence et al.

(2006) who solve the factorization problem using alternating constrained least squares.

Their algorithm is again based on the assumption that spatially varying reflectance can

be represented as a weighted sum of a small set of materials. Although their technique is

primarily focused on BRDF acquisition, they also show limited examples of surface nor-

mal estimation. In Chapter 6 a method for simultaneously estimating material weights,
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non-parametric basis BRDFs, and surface normals is presented.



Chapter 4

Resolving the Generalized Bas-Relief

Ambiguity by Entropy Minimization

In uncalibrated photometric stereo, one is given a set of images taken from the

same viewpoint under varying, unknown illumination with the goal of recovering the

surface shape and albedo, as well as the light source directions and intensities. In this

scenario, it has been shown that a family of surfaces give rise to the same image, even

if surface integrability is enforced. This ambiguity is called the generalized bas-relief

(GBR) ambiguity (see Chapter 3 for more details).

In this chapter, we propose a novel technique for resolving the GBR ambiguity

based on minimization of the entropy of the recovered albedos. The hypothesis is based

on the observation that in general a GBR transformation smears the distribution of albe-

dos. For example, if the albedo is constant over the entire surface, the distribution of

albedo values is a delta function with zero entropy. After a GBR transformation, the

observed albedo distribution is a function of the surface geometry and the GBR parame-

ters, and is therefore no longer constant across the surface. This smearing of the albedo

values in turn increases the entropy of the albedo distribution (see Figure 4.1).

This chapter makes the following contributions,

• Presents an intuitive conjecture that the GBR can be resolved by minimizing the

45
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(a) Albedo distribution (b) Albedo distribution (GBR)

Figure 4.1: Illustration of the effect of a GBR transformation on the distribution of

surface albedos. The true albedo distribution is very peaked while the GBR transformed

(µ = 3, ν = 1.5, λ = 0.5) albedo distribution is significantly spread out.
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entropy of the GBR transformed albedos.

• Proves the above conjecture under certain assumptions about the distribution of

normals and albedos.

• Empirically shows that the above conjecture has excellent performance on syn-

thetic as well as real images.

• Identifies degenerate configurations of the surface normals and the albedos for

which the conjecture fails to resolve the GBR.

4.1 Image Formation Model and the GBR Ambiguity

Consider a Lambertian surface defined by a height map z = f(x, y) and albedo

map ρ(x, y) with surface normal n =
(− ∂z

∂x
,− ∂z

∂y
,1)

q

( ∂z
∂x

)2+( ∂z
∂y

)2+1
. The intensity of the ith pixel

under the jth light source sj is given by,

eij = ρin
⊤
i sj (4.1)

and the set of images formed can be compactly expressed as,

E = BS (4.2)

where E encodes pixel intensities, B encodes surface normals and albedo values, and S

encodes light source vectors as described in Chapter 3.

A GBR transformation has the following effect on the albedo and surface normal,

ρ̂ = ρ‖n⊤G−1‖ n̂⊤ =
n⊤G−1

‖n⊤G−1‖
(4.3)

where ρ̂, n̂, and G are the transformed albedo, transformed surface normal, and GBR

transformation matrix respectively. A GBR transformation depends on three parameters

µ, ν, and λ and has the following form (Belhumeur et al., 1999),

G =




1 0 0

0 1 0

µ ν λ


 G−1 =

1

λ




λ 0 0

0 λ 0

−µ −ν 1


 . (4.4)
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In terms of Equation 4.2, a GBR yields transformed B and S matrices,

E = BG−1GS = B̂Ŝ. (4.5)

The important thing to note is that under a GBR transformation, the transformed albedo

ρ̂ is the product of the true albedo and and the norm of vector n⊤G−1 which varies

spatially according to the surface normal at each point unless G is the identity matrix

(i.e., when no GBR is present).

4.2 Entropy Minimization

Differential entropy is a natural measure of the ”peakiness” of a probability den-

sity function f and is defined as

H(f) = −

∫

S

f(x) log (f(x))dx (4.6)

where S is the support of f (i.e., f(x /∈ S) = 0,∀x). Entropy minimization has been

previously used in vision algorithms to estimate parameters that result in a peaky dis-

tribution of some observed quantity. Finlayson et al. (2004) use an intuitive argument

to justify the use of entropy minimization to estimate the direction of projection in log-

chromaticity space for obtaining an intrinsic image. Similarly, entropy has been used

to define a prior in unsupervised clustering when the number of clusters are not known

(Palubinskas et al., 1998).

In the following subsection, in addition to providing intuitive arguments in sup-

port of minimizing the entropy for resolution of the GBR parameters, we prove that

under certain assumptions about the distribution of the albedos and the surface normals,

the minimum entropy solution is locally optimal.

4.2.1 An Entropy Based Cost Function

A large percentage of man-made (for example, toys) and natural objects (for ex-

ample, fruits and vegetables) are composed primarily of a small set of dominant albedo
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Figure 4.2: The effect of GBR transformations on a surface f(x, y) with two albe-

dos. (Top) A GBR transformed surface, f̃(x, y) = (x, y, f(x, y))G⊤ with albedo

ρ̃ = ‖ñ⊤G−1‖. (Bottom) The histogram of GBR transformed albedo values.

values1. The probability density function (pdf) of the albedos of such objects will be

very close to the sum of a set of delta functions. Even the objects that don’t consist of a

small set of dominant albedos (for example, human skin) will typically have pdf’s that

are peaked (i.e., it is very uncommon for an object to have a truly uniform distribution

of albedos).

Equation 4.3 suggests that the distribution of GBR transformed albedos depends

on the the distribution of the true albedos as well as the distribution of γ = ‖n⊤G−1‖.

In the absence of a GBR transformation (i.e. G = I3×3), the pdf of γ is a delta function

centered at one (i.e. δ(γ − 1)). The GBR has the effect of smearing this delta function,

and thereby increasing the entropy of the distribution of the GBR transformed albedos.

To motivate this, Figure 4.2 shows the effects of a few GBR transformations on both

the surface geometry and the albedo distribution of a synthetic surface. For this surface,

GBR transformations clearly smooth out the distribution of albedos.

1In fact, in a recent work Ke et al. (2006), a lower hue count in images was used as a measure of good

quality.
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4.2.2 The k-Albedo Configuration

We now consider a special case when the minimum entropy solution is a local

optimum. Consider an object consisting of k different albedo values ρi where i = 1...k,

and ρi+1 > ρi ∀i. Let αi denote the fraction of all pixels that have albedo ρi, and ni

denote the set of normals at these pixels. Note that
∑k

i=1 αi = 1. We assume that the

corresponding sets of surface normals ni are identically distributed on a Gauss sphere

for all i = 1...k. This implies that after GBR transformation, the density of the term

γi = ‖n⊤
i G−1‖ will be identical to the density of γj = ‖n⊤

j G−1‖ for all i, j = 1...k.

The density of the true albedos can be written as

fρ(x) =
k∑

i=1

αiδ(x − ρi) (4.7)

and the entropy can be written as

H(fρ) = −

k∑

i=1

αi log αi (4.8)

In the presence of a GBR transformation, the density of γi = ‖n⊤
i G−1‖ is no longer a

delta function. For simplicity of derivation, we assume that fγ represents the distribu-

tion of any γi i = 1...k after the GBR transformation (recall that each γi is identically

distributed). We also assume that fγ is a small perturbation of the delta function, and

has finite support. In other words,

fγ(x) = 0, x /∈ [1 − ∆, 1 + ∆] (4.9)

and,

∫ 1+∆

1−∆

fγ(x) dx = 1. (4.10)

The GBR transformed albedo ρ̂ can be treated as a product of two independent random

variables ρ and γ. Therefore the probability distribution of ρ̂ can be written as (Rohatgi,
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1976),

fρ̂(y) =

∫ ∞

0

fρ(x)fγ

(y

x

) 1

x
dx

=

∫ ∞

0

k∑

i=1

αiδ(x − ρi)fγ

(y

x

) 1

x
dx

=
k∑

i=1

αi

ρi

fγ

(
y

ρi

)
(4.11)

where, fγ is the same for all values of i owing to identical distribution of ni and nj for

all i, j = 1...k over the Gauss sphere.

The entropy of the distribution of the GBR transformed albedos can be written

as

H(fρ̂) = −

∫ ∞

0

k∑

i=1

αi

ρi

fγ

(
y

ρi

)
log

(
k∑

j=1

αj

ρj

fγ

(
y

ρj

))
dy. (4.12)

If ∆ < ρi+1−ρi

2(ρi+1+ρi)
holds for i = 1...k − 1, then the distributions of transformed albedos

corresponding to two different albedos will not overlap2. Under this condition, Equa-

tion 4.12 can be re-written as,

H(fρ̂) = −
k∑

i=1

αi

ρi

∫ (1+∆)ρi

(1−∆)ρi

fγ

(
y

ρi

)
log

αi

ρi

fγ

(
y

ρi

)
dy

= −
k∑

i=1

αi

∫ (1+∆)ρi

(1−∆)ρi

fγ

(
y

ρi

)
log fγ

(
y

ρi

)
d

y

ρi

−

k∑

i=1

αi log αi +
k∑

i=1

αi log ρi

= H(fρ) + H(fγ) +
k∑

i=1

αi log ρi.

(4.13)

Therefore the entropy of the distribution of the transformed albedos is greater than the

entropy of the distribution of the correct albedos when H(fγ) +
∑k

i=1 αi log ρi > 0.

2This follows since (1 − ∆)ρi+1 > (1 + ∆)ρi.
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4.2.3 Degenerate Configurations

In the previous section we showed that minimum entropy solution corresponds

to the correct solution under certain assumptions. Empirical evidence suggests that the

minimum entropy hypothesis works for a wide variety of configurations. However, we

have theoretically identified degenerate cases in which the distribution of surface nor-

mals and the surface albedo conspire such that the entropy of the distribution of the GBR

transformed albedos is lower than or equal to the entropy of true albedo distribution.

Consider the image of a polyhedron with k visible faces, and let ni be the normal

associated with the ith face. The transformed albedo of the ith face is

ρ̂i = ρi‖n
⊤
i G−1‖ (4.14)

where, ρi is the albedo associated with the ith face, and G is the GBR transform. Given

a GBR G and a collection of normals ni i = 1...k, the ith face of the polyhedron can be

painted with albedo ρi = 1/‖n⊤
i G−1‖ so that all GBR transformed albedos have value

equal to unity, and their distribution is a delta function and the entropy is minimum.

This is clearly a degenerate configuration.

Consider a second case in which the surface is a plane, and it contains k distinct

albedos. It is easy to see that under this condition, the distribution of ρ̂ is a sum of k delta

functions, regardless of what GBR transform is chosen. Therefore, this configuration is

also degenerate, and entropy does not provide information about the GBR.

4.3 Experimental Validation

To empirically validate that the minimum entropy solution indeed resolves the

GBR, we formulate an optimization algorithm that solves for the parameters of the GBR

(µ, ν, and λ) given an uncalibrated set of surface normals and albedos. Our experiments

consist of the following high-level steps,

• Photograph or render multiple images of a Lambertian object under different

lighting conditions.
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• Recover the surface and light sources I = B̂Ŝ up to a GBR transformation using

the algorithm of Yuille and Snow Yuille and Snow (1997).

• Find the GBR parameters that minimize the entropy of the albedo distribution

and apply the GBR to recover the true surface ρin
⊤
i = Bi = B̂iG.

• Validate the solution by comparing to calibrated photometric stereo results.

The following subsections describe our methodology in more detail.

4.3.1 Approximating the Differential Entropy

In Section 4.2 we assumed knowledge of the underlying probability density

function of ρ̂. In practice, we have measurements of this quantity at each pixel loca-

tion and seek to approximate the underlying distribution using these samples. While

there are many powerful methods for approximating continuous distributions from sam-

ples (e.g., Parzen windows, the mean-shift algorithm, kernel based estimators, etc.), for

the purpose of computing entropy we find it sufficient to use a histogram approximation.

Histograms are beneficial because (1) they are simple to generate from sampled

data and (2) the entropy of a histogram can be computed as a discrete summation instead

of an integral. These properties are particularly important in our case since we need to

evaluate the entropy of the albedo distribution under many different GBR transforma-

tions. Consider an m-bin histogram {ai}, i = 1...m generated from n i.i.d. samples

with underlying distribution f . Then the simplest estimator of the entropy H(f) is,

ĤMLE(f) = −

m∑

i=1

ai

n
log

ai

n
(4.15)

which is the maximum likelihood estimator of H(f) given its histogram. While ĤMLE

can exhibit significant bias3, its variance is typically low and thus should be well suited

in a minimization framework.

3See Paninski (2003) for a bias corrected estimator.
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A downside to using histograms is that the number of bins and the support re-

gion must be chosen appropriately. For the purpose of comparing albedo distributions

we fix the number of bins to some constant (256 bins were used for most of the exper-

imental results shown in Section 4.3.4). Moreover, since we don’t want to overly favor

distributions with narrow support, we set the support to the range of the albedo samples.

4.3.2 Optimization

We now turn to the problem of finding the GBR parameters µ, ν, and λ that

minimize the entropy of the albedo distribution. Let {b̂i = ρ̂in̂i}, i = 1...N be a set of

GBR transformed surface normals scaled by the GBR transformed albedo. Then, under

a proposed set of GBR parameters encoded in matrix G̃, the obtained set of albedos is

{ρ̃i = ‖b̂iG̃‖} from which the entropy H(fρ̃) ≃ ĤMLE(hist(ρ̃)) can be estimated as

described in Section 4.3.1. The first thing to note is that the entropy estimate is neither

convex, nor differentiable with respect to the GBR parameters. Given these facts, it

seems finding the minima will be very difficult. Luckily, the number of parameters is

low and the error surface is empirically smooth. Moreover, by making weak assump-

tions on the surface geometry or lighting configuration we can bound the parameters.

Empirically, we find that the GBR parameters induced by the uncalibrated photomet-

ric stereo algorithm very rarely exceed an absolute value of 5 – even with varied light

source intensity. Also, because of the concave/convex ambiguity, we can restrict λ to

be positive. Based on these observations, we restrict our search space throughout our

experiments to,

−5 ≤ µ ≤ 5

−5 ≤ ν ≤ 5

0 ≤ λ ≤ 5.

(4.16)

Given these bounds on the parameters, along with our observation of smooth-

ness in the error surface, we solve for the GBR parameters using discrete search with
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coarse-to-fine refinement. The algorithm works by iteratively sampling the error func-

tion at uniform positions within the parameter space. At each iteration, the bounds are

tightened and centered around the best solution found in the previous iteration. This

process continues until the sampling interval falls below some threshold. While other

strategies such as simulated annealing could also have been used, we found that our

method worked well enough to find an optimum in most cases4.

4.3.3 Image Acquisition and Pre-Processing

Prior to using any input images, we perform a number of pre-processing steps.

First of all, whenever possible we remove ambient lighting by subtracting each image

from an ambient image. Next, we generate a mask image to isolate the object from the

background. This is either done manually or automatically using thresholding. Once

this is done, we randomly scale each image by a scalar between 0.5 and 1.5. This

has the effect of randomizing the light source magnitude, which is important because

many datasets are collected using uniform magnitude which can resolve the GBR. By

randomizing the intensities we can be certain that our algorithm is not taking advantage

of uniform light source magnitude.

After this step, we compute a visibility matrix, V, which is used to reduce the

effect of outlier pixels in the input images. V is the same size as the image matrix I and

takes value 1 if the corresponding pixel in I is an inlier or value 0 if the corresponding

pixel is an outlier. We compute the visibility matrix by excluding pixels that don’t lie

close to the linear subspace predicted by the Lambertian model (this can be done using

SVD).

Next we perform uncalibrated photometric stereo on the set of input images, dis-

counting pixels masked by V 5, which yields a set of GBR transformed surface normals

and albedos. Prior to searching for the GBR parameters as described in Section 4.3.2,

4Depending on the “coarseness” of the search grid, as well as the number of samples, the optimization

takes anywhere from a few minutes to a few hours.
5To handle missing values, we utilize the SVD algorithm derived by Brand (2002).
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we aggressively filter any surface points that could be outliers. This includes edge points

(in any image) as well as points that do not lie close to the predicted Lambertian sub-

space. Finally, we search over the GBR parameter space to find GBR that minimizes the

entropy of the albedo distribution.

4.3.4 Results

We show results on three datasets. Figure 4.4 shows the reconstruction of a syn-

thetically generated Stanford bunny. There are a total of 6 input images in this dataset,

each rendered in POV-Ray (2008) with a different light source position. As is clearly

seen in the figure, the output of the uncalibrated photometric stereo algorithm results

in an extremely flat distribution of albedos. More importantly, our optimization routine

clearly finds the correct GBR parameters.

Our second dataset consists of 15 images from the YaleB face database (Georghi-

ades et al., 2001). Looking at figure 4.5, two things are noteworthy : first, our mini-

mum entropy solution appears qualitatively better than the reconstruction obtained from

calibrated photometric stereo. For example, the calibrated photometric stereo result is

clearly skewed in the x direction, while the minimum entropy solution is not. We con-

jecture that slight errors in the the light source vectors are biasing the reconstructed

surface in this case. There are also many shadow and non-Lambertian effects in these

images that may be affecting the calibrated case. These results empirically show that

the albedo entropy can resolve the GBR for images consisting of k albedos as well as

more general albedo distributions such as human faces.

Finally, Figure 4.6 shows the output of our algorithm on a real surface with two

albedos. Our solution is very close to that obtained by calibrated photometric stereo

where the light source matrix has been provided.
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Figure 4.3: Input images. (Top row) Three of the 6 synthetic input images used to

generate the results in Figure 4.4. (Middle row) Three of the 15 images (obtained from

the Yale face database) used to generate the results in Figure 4.5. (Bottom row) Three

of the 5 input images used to generate the results in Figure 4.6.
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Figure 4.4: Results on synthetic images. (Column 1) Calibrated photometric stereo.

(Column 2) Uncalibrated photometric stereo. (Column 3) Minimum entropy solution.

(Row 1) Distribution of albedos. (Row 2) Color encoded surfaces normals. (Row 3)

Color encoded depth map. (Row 4) Reconstructed surfaces from the same viewpoint.
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Figure 4.5: Results on a human face (from the Yale face database).



60

A
lb

ed
o

D
is

tr
ib

u
ti

o
n

N
o
rm

al
s

D
ep

th
M

ap
S

u
rf

ac
e

Calibrated Uncalibrated Minimum Entropy

Figure 4.6: Results on (non-synthetic) images of a fish.
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4.4 Summary

This chapter presents an algorithm to resolve the Generalized Bas-Relief am-

biguity based on a novel prior on the observed albedos. In addition to providing an

intuitive reasoning in favor of entropy minimization for estimation of GBR parameters,

we show that entropy minimization provides provably correct results under certain as-

sumptions about the surface normal and albedo distribution. Finally, we validate our

results on real and synthetic data.



Chapter 5

Reconstructing Surfaces With

Arbitrary Isotropic Reflectance

Assuming multiple images with known directional illumination and fixed view-

point, one might wonder “What is the minimal set of constraints required to recover

the shape of a surface?” To answer this question requires systematically defining the

set of potential constraints and determining how each one restricts the surface shape.

Figure 5.1 shows a hierarchy of possible constraints that could be employed in a photo-

metric stereo setup to reconstruct a surface. In this chapter we examine the constraints

of isotropic BRDF and surface smoothness / differentiability and show that just using

isotropy, for every image point the surface normal can be constrained to a plane. By also

imposing surface smoothness, the isocontour structure (e.g., curves of constant surface

height) can be determined. While not a full Euclidean representation, the isocontour

structure provides topological information about the surface (such as critical points and

the Reeb graph) and could be sufficient for many applications including object recog-

nition and parts inspection (for example, Samir et al. (2006) uses iso-depth contours of

human faces for face recognition). Moreover, by imposing any of the additional con-

straints listed in Figure 5.1 it is possible to recover the true surface barring degenerate

cases. For example, at attached shadow boundaries the surface normal is constrained

62
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Figure 5.1: A hierarchy of assumptions whose corresponding constraints can be used to

recover the surface of an object in a photometric stereo setup.

to lie in the plane orthogonal to the light source direction. Combined with isotropy this

constrains the surface normal to lie in the intersection of two planes – a unique solution

in general.

One of the main contributions of this chapter is the use of a relatively unex-

plored physical property that holds for any isotropic BRDF – that isotropic BRDFs are

symmetric about the plane spanned by the viewing direction and surface normal. From

image data we show how to estimate this plane at each point and thus restrict the set of

surface normals to lie in a plane. While we apply this constraint to photometric stereo,

it could potentially be useful in other computer vision contexts as well.

5.1 The Bilateral Symmetry Constraint

The crux of our algorithm is based on a known, but relatively unexplored prop-

erty of isotropic BRDFs that has been previously referred to as bilateral symmetry1

(Marschner, 1998; Drbohlav, 2003). Consider a surface patch with normal n viewed

1Some authors consider isotropy and bilateral symmetry to be distinct phenomenon (i.e., isotropy ;

bilateral symmetry); we do not make such a distinction since all or nearly all physically valid isotropic

BRDFs have this property.
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from direction v. Bilateral symmetry simply means that the BRDF is symmetric about

the plane spanned by n and v with respect to the incident lighting direction s (see Figure

5.2). Isotropic BRDFs are often described by the fact that the exitant radiance emitted

from an isotropic surface patch is constant when the surface is rotated about its normal.

Bilaterally symmetric BRDFs can similarly be described by the fact that the exitant ra-

diance emitted from a bilaterally symmetric surface patch is constant when the surface

is reflected about any plane containing its normal.

Looking again at Figure 5.2, consider some incident light source direction s.

Then there exists another direction s′ – obtained by reflecting s about the plane spanned

by n and v – that gives rise to the same reflectance. Following the notation of Tan et al.

(2007), we call such a pair of points an isotropic pair, which we define as,

Definition 1. Two light source directions s and s′ form an isotropic pair if they satisfy

n⊤s = n⊤s′ and v⊤s = v⊤s′ where n is the normal of a surface patch and v is the

viewing direction.

We summarize the main consequence of isotropic pairs in the following fact,

Fact 1. For any isotropic pair of light sources defined relative to the surface normal and

viewing direction, the value of an isotropic BRDF is identical.

Fact 1 follows directly from the bilateral symmetry present in isotropic BRDFs.

5.1.1 Image Formation Model

As is typically done in photometric stereo, we assume distant point light sources

and an orthographic camera. Since the BRDF ρ is isotropic, it can be parametrized as a

function of α = n⊤s, β = n⊤v, and γ = v⊤s. Ignoring cast shadows and interreflec-

tions we arrive at the following image formation model,

E = Lρ(n⊤s,n⊤v,v⊤s) max{0,n⊤s} (5.1)
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Figure 5.2: Illustration of the bilateral symmetry constraint. Symmetric light source

vectors are obtained by reflecting s about the plane spanned by the surface normal n

and viewing direction v.

where E is the radiance arriving at the camera from a given scene point, L is the ra-

diant intensity of the light source, and n, v, and s refer to the surface normal, viewing

direction and light source direction respectively.

Note that this parameterization makes Fact 1 very explicit : For fixed n and

v an isotropic pair of light source vectors map to the same BRDF parameters since

α = n⊤s = n⊤s′, β = n⊤v, and γ = v⊤s = v⊤s′. Moreover, Equation 5.1 also makes

apparent the following fact,

Fact 2. For a given surface normal n and viewing direction v, the emitted radiance E(s)

from an isotropic material is symmetric about the span of n and v (barring non-local

illumination effects).

Consider an isotropic pair of light sources s and s′. From Equation 5.1 it is clear

that E(s) = E(s′) since n⊤s = n⊤s′ and v⊤s = v⊤s′. Since an isotropic pair can

be formed from any light source by reflecting it about the plane spanned by n and v it

follows that the emitted radiance E(s) is symmetric about the plane spanned by n and

v.

Finally, we note that for all but a few degenerate BRDFs the span of n and v is

the only plane about which E(s) is symmetric,



66

Fact 3. For a given surface normal n and viewing direction v, consider the emitted

radiance function E(s) resulting from isotropic BRDF ρ. If we consider the set of planes

passing through v, then E(s) is only symmetric about the plane containing n, unless the

BRDF is of the form ρ = f(v⊤
s)

n⊤s
for n⊤s > 0.

Proof.

1. Suppose E(s) is symmetric about some plane defined by unit normal π and that

this plane passes through the viewing direction v, but not through the surface

normal n so that v⊤π = 0 and n⊤π 6= 0.

2. For E(s) to be symmetric about this plane, E(s) = E(s′) must hold for all s,

where s′ = s − 2(s⊤π)π is the reflection of s about plane π.

3. For fixed n and v any isotropic BRDF can be written in the form,

ρ(n⊤s,v⊤s) =





f(n⊤
s,v⊤

s)
n⊤s

if n⊤s > 0

0 if n⊤s ≤ 0

(5.2)

4. Re-expressing Equation 5.1 we get,

E(s) = Lρ(n⊤s,v⊤s) max{0,n⊤s} (5.3)

= Lf(n⊤s,v⊤s). (5.4)

5. From Step 2, E(s) = E(s − 2(s⊤π)π) ∀s. This implies that for all s,

f(n⊤s,v⊤s) = f(n⊤(s − 2(s⊤π)π),v⊤(s − 2(s⊤π)π)) (5.5)

= f((n − 2(n⊤π)π)⊤s,v⊤s). [Using fact that v⊤π = 0] (5.6)

6. Since n⊤π 6= 0, this holds only if f does not depend on n⊤s, i.e., f(n⊤s,v⊤s) =

f(v⊤s). Plugging into Equation 5.2 we see that the BRDF must have the form

ρ = f(v⊤
s)

n⊤s
.
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(a) (b) (c)

Figure 5.3: Surface gradient directions recovered from 36 images of a synthetic sphere.

(a) Input images. (b) Quiver plot of gradient directions. (c) Zoom-in of quiver plot at

center of sphere.

As an aside, it is worth discussing the special case when n and v are coinci-

dent. When this occurs, the span of n and v is degenerate; however, our theory still

holds if symmetry is defined appropriately. Specifically, we say two points s and s′ are

symmetric about the span of n and v if n⊤s = n⊤s′ and v⊤s = v⊤s′.

5.1.2 A Minimal Lighting Configuration for Detecting Symmetry

Based on the theory in Section 5.1.1 we could recover the symmetry plane

spanned by n and v at each point on the surface by detecting symmetry in the emit-

ted radiance function E(s) as measured over the entire sphere of lighting directions.

However, this is quite redundant considering we already know the viewing direction

(e.g., v = (0, 0, 1)⊤ in a camera centered coordinate system). In fact, since symmetry

planes are coincident with v, it suffices to use a 1D slice of the reflectance field with

constant v⊤s.

In terms of acquisition setup, this implies a circle of light source positions paral-

lel to the image plane and centered about the optical axis. Parametrizing s in spherical

coordinates (θ, φ) with pole v, such a circle is obtained by fixing the elevation angle θ
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(a) (b) (c)

Figure 5.4: Surface gradient directions recovered from 32 images of a helmet. Note

that the gradients have been flipped (if necessary) to point in the direction of maximum

image intensity. (a) Input images. (b) Quiver plot of gradient directions. (c) Zoom-in of

quiver plot near right eye.

so that,

sθ(φ) = (sin θ cos φ, sin θ sin φ, cos θ)⊤ (5.7)

which induces a 1D emitted radiance function,

E(φ) = E(sθ(φ)). (5.8)

This 1D radiance function is guaranteed to be symmetric2 about angle φg, the azimuthal

angle of the surface normal with respect to pole v (or equivalently, the azimuthal angle

of the surface gradient).

5.1.3 Symmetry Detection

In practice, we sample E(φ) at N uniformly spaced intervals and minimize the

following objective to recover the symmetry angle φg at each pixel,

F (φg) =
N∑

i=0

min

{
η;

E(φi)

E(r(φi, φg))
+

E(r(φi, φg))

E(φi)

}
, (5.9)

2Ignoring non-local illumination effects; such effects are handled in practice by treating them as

outliers.
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where η is a threshold to account for outliers and r(φi, φg) is a function mapping angle

φi to its reflected position about angle φg. In our experiments, we use a threshold of

either η = 2.1 or η = 2.2. As for the number of samples N , this is clearly related to

the angular frequency of E(φ); for the materials in our experiments we found that 20

to 30 samples are sufficient for accurate reconstruction. It should also be noted that this

objective is robust to outliers, caused for example by cast shadows and interreflections.

Moreover, attached shadows actually preserve symmetry and thus do not violate our

assumptions in Section 5.1.1.

Figures 5.3 and 5.4 demonstrate our ability to recover the gradient direction us-

ing this approach. The sphere dataset consists of 36 images rendered in POV-Ray with

source directions separated by 10◦. The helmet dataset consists of 32 images interpo-

lated from a total set of 252 images taken about the sphere of lighting directions3; this

corresponds to about 11◦ between light sources. In Figure 5.3, we see that the recovered

gradient directions correctly point either toward or away from the center of the sphere.

Figure 5.4 shows the recovered surface gradient directions for a helmet. While we do

not have ground truth for this dataset, the gradients certainly seem plausible. It should

be noted that symmetry is computed per-pixel, and thus our results are completely lo-

cal. Finally, a number of additional results were generated on datasets with illumination

spanning the entire sphere and/or upper hemisphere of incident directions. As seen

in Figures 5.7-5.10, our technique operates robustly on a wide variety of surfaces, in-

cluding ones with complex reflectance, fine-scale geometry, depth discontinuities, and

interreflections.

5.2 Can Surface Constraints Resolve the Surface?

Based on the image acquisition setup described in Section 5.1.3, image measure-

ments do not uniquely determine the surface normal, but constrain the surface normal to

3Data obtained from the Light Stage Data Gallery, ICT Graphics Lab, USC (Debevec et al., 2000;

Chabert et al., 2006).
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a plane. This is similar to shape from shading (Horn, 1970) where an image measure-

ment constrains the normal to a cone, but does not fully determine the normal. In terms

of the gradient of the height function, measurements provide the direction of the gradi-

ent, but not its magnitude. Here, we show that there is a family of surfaces that give rise

to the same gradient direction at each surface point; thus surface constraints alone are

insufficient to recover the full surface normal map. Yet, we show that for differentiable

surfaces the isocontour structure can be recovered using only knowledge of the gradient

direction.

5.2.1 A Class of Ambiguous Surfaces

Fact 4. Consider two surfaces given by height functions z = f(x, y) and z′ = g(x, y)

with gradient fields ∇f and ∇g respectively. Then the two surfaces have the same

gradient direction if

∇g = k(x, y)∇f, (5.10)

where k(x, y) is some function of x and y that satisfies

∂k

∂x

∂f

∂x
=

∂k

∂y

∂f

∂y
(5.11)

for integrability to hold.

While we have not directly solved this system of partial differentiable equations,

we do show the existence of a family of ambiguous surfaces,

Fact 5. Two surfaces defined by z = f(x, y) and z′ = h(z) will have the same gradient

direction at each point if h is a differentiable function of z.

Proof. This follows directly from Fact 4 and the chain rule,

∇h =
∂h

∂f
∇f (5.12)

with k(x, y) = ∂h
∂f

.
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Figure 5.5: Three surfaces with the same gradient direction at each point.

This implies that without additional information or constraints, we can at best

recover a surface up to an arbitrary function of the true height. Figure 5.5 shows a set of

surfaces with the same gradient direction at each point to illustrate this ambiguity.

5.2.2 Gradient Direction Resolves Isocontour Structure

We now show that two surfaces with the same gradient direction at each point

must have height functions that result in the same set of iso-depth contour curves,

Theorem 1. Two surfaces defined by height functions z = f(x, y) and z′ = g(x, y)

that have the same gradient direction at each point must have the same set of iso-depth

contour curves (i.e., curves of constant height).

Proof. Suppose (x(t), y(t)) corresponds to an iso-depth contour curve of z. Then z(t) =

f(x(t), y(t)) and the derivative of z with respect to t is,

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
. (5.13)

Likewise, the derivative of z′ with respect to t is,

∂z′

∂t
=

∂g

∂x

∂x

∂t
+

∂g

∂y

∂y

∂t
(5.14)

∂z′

∂t
= k(t)

(
∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

)
(5.15)

∂z′

∂t
= k(t)

∂z

∂t
, (5.16)

where Equation 5.15 holds from Fact 4 since z and z′ have the same gradient direction at

each point. Now note that ∂z
∂t

= 0 since (x(t), y(t)) is an iso-depth curve of z; combined



72

with Equation 5.16 it is clear that ∂z′

∂t
= 0 meaning (x(t), y(t)) is an isocontour curve of

z′ as well.

Theorem 1 tells us that an isocontour of the true surface height must be an iso-

contour of any surface height function that has the same set of gradient directions. This

is quite significant because it reduces the problem of finding the true height at every

surface point to the problem of finding the true surface height of a single point on each

isocontour curve. Another consequence of Theorem 1 is that it is possible to recover

iso-depth contours of a surface given only the direction of the gradient at each point –

the tangent of the iso-depth contour at a given point is orthogonal to the direction of

the gradient. Thus, it is possible to obtain iso-depth contour curves by tracing in the

direction orthogonal to the gradient.

It is also important to note that Theorem 1 does not imply that the only class

of ambiguous surfaces are functions of the true height (e.g., Fact 5). For example,

consider two surfaces : one composed of two non-intersecting hemispheres and another

composed of the same hemispheres with one of the hemispheres raised higher than the

other. The two surfaces have the same gradient direction at each point and share the same

iso-depth contours; however, the second surface is not a function of the first surface’s

height.

5.2.3 Experimental Validation

To validate Theorem 1, we ran experiments on four datasets. For each surface

shown in Figure 5.6 we first computed the gradient direction at each pixel as explained

in Section 5.1.3. We then hand-selected a set of points on each surface and traced the

iso-contour curves for some distance (∼ 500 pixels) starting at those points. Clearly the

isocontour structure for the synthetic data closely matches the ground-truth. Also, while

the true surface for the helmet is unknown, the iso-contour curves look highly plausible,

with the exception of regions with depth discontinuities (such as the ridge on the helmet)

which violate our assumption of surface differentiability. Figure 5.11 shows results on
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Recovered isocontour structure for three different data sets. (a) Synthetic

sphere. (b) Synthetic bunny. (c) Helmet. (d) Zoom-in of inner-most isocontour. No-

tice the accumulated error after one loop is around 1/10th of a pixel. (e) Ground-truth

isocontour map for the Stanford bunny. (f) Zoom-in of recovered isocontours on helmet.

a knight. This is a much more challenging dataset, yet we still obtain reasonable results

for most of the surface.

5.3 Recovering the Full Euclidean Structure

Suppose we have recovered the direction of the gradient at each point as well

as the iso-depth contours of a surface, but do not know the true height of the surface

nor the remaining component of the surface normals. As suggested in the chapter open-
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ing, to recover Euclidean structure we need to impose additional constraints (see Figure

5.1). Our options include (1) cast and attached shadows, (2) spatially uniform BRDF,

(3) specularities, (4) multiple viewpoints, (5) parametric BRDF, (6) additional surface

constraints, (7) structured lighting, and (8) heuristics such as in Ecker et al. (2007).

Each of these constraints have previously been used in some form or another for surface

reconstruction, but we have a distinct advantage since our surface is already highly con-

strained. In theory we only need to estimate a single value per iso-depth contour. In the

following subsections we outline how one might fully constrain the surface by utilizing

some of these constraints.

5.3.1 Shadow Constraints

Resolving structure from cast and attached shadows has been studied in some de-

tail in the computer vision literature. Representative works include Shafer and Kanade

(1983) who first describe the constraints that shadow boundaries impose on a surface;

Kriegman and Belhumeur (2001) who show that the set of shadows produced by distant

illumination can resolve the shape of a surface up to a generalized bas-relief transforma-

tion when the lighting is unknown, and Savarese et al. (2007) who implement a “shadow

carving” algorithm.

The following facts capture the fundamental constraints that shadows provide,

Fact 6. Consider a surface point that lies on an attached shadow boundary. Then the

surface normal at that point must be orthogonal to the light source direction.

Fact 7. Consider a surface point p1 that lies on a shadow boundary cast by point p2.

Then the difference in height between the two points can be determined from the light

source direction.

Fact 6 suggests that the surface normal can be fully determined at the intersec-

tion of attached shadow boundaries and Fact 7 implies that surface height can be de-

termined between cast shadow boundaries and corresponding occluding points (which
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are themselves attached shadow boundaries). A major hurdle to utilizing these facts is

that detecting attached shadows is difficult to do reliably. However, if the iso-depth con-

tours of the surface are known then constraints from noisy estimates of attached shadow

boundaries can be distributed across entire isocontours, making the final surface esti-

mate much more reliable than using shadows alone.

5.3.2 Uniform BRDF

If every surface point has the same BRDF then we can impose at least two ad-

ditional constraints : constant brightness and reciprocity. The constant brightness con-

straint simply reflects the fact that points illuminated from the same light source direc-

tion will have the same intensity. Since we know the orientation of the surface normals

and have measurements over a set of light source positions, we can effectively cluster the

surface points according to the angle between the surface normal and viewing direction,

n⊤v.

Helmholtz reciprocity imposes another set of constraints on the surface. Specif-

ically, consider two surface points with surface normals n and m respectively. n and m

are said to be reciprocal pairs under light source positions sn and sm if n⊤v = m⊤sm

and m⊤v = n⊤sn. It is well known that BRDFs which satisfy Helmholtz reciprocity

are constant with respect to a reciprocal pair which means the image intensities corre-

sponding to a reciprocal pair must satisfy,

Enn
⊤v = Emm⊤v. (5.17)

The problem then becomes one of isolating reciprocal pairs.

5.3.3 Specular Highlights

If we assume that the BRDF has a relatively tight specular lobe and that the

specular lobe points in the idealized reflection direction, then we can directly recover

the surface normal at positions corresponding to specular peaks. Consider a surface
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point that coincides with a specular peak from light source direction s. Then the surface

normal at that point is given by the half angle between the viewing and source directions,

n = (s + v) /‖s + v‖. (5.18)

5.4 Summary

Reconstructing shape from images is of fundamental importance to computer

vision, yet is a very challenging problem that requires many constraints to effectively

solve in practice. An unfortunate consequence is that many of the constraints used for

shape reconstruction are only physically valid for very limited types of objects, or are

not physically valid at all (e.g., brightness constancy in structure from motion). In this

chapter, we have shown how to utilize a relatively unexplored constraint for photomet-

ric stereo that is valid for arbitrary, unknown, and spatially varying isotropic materials.

Much like Helmholtz reciprocity, bilateral symmetry is an important physical property

of isotropic BRDFs that can and should be utilized when possible. Unlike most compet-

ing methods, we do not assume any parametric form for the BRDF and allow arbitrary

spatial variation, making our technique the least restrictive to date with respect to as-

sumptions on object reflectance.

While bilateral symmetry is only strong enough to constrain the surface normal

at each point to a plane, we show how additional assumptions can be used to recover

further structure. A particularly interesting case is surface differentiability which, when

combined with bilateral symmetry, constrains the surface up to a set of iso-depth contour

curves. This representation, which has been shown to be useful in its own right (Samir

et al., 2006), reveals object topology (singular points and saddle points stand out for

example) and reduces the surface ambiguity to a single value per iso-depth contour. In

the following chapter, a method is presented for recovering both full Euclidean shape as

well as the reflectance function at each surface point.
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Figure 5.7: Recovered azimuth angles for various objects. (Left) A representative input

image. (Center) Phase map of recovered azimuth angle, displayed as φn/π. (Right)

Phase map shifted by an angle of π/2. Note: incident illumination distributed about the

upper hemisphere of possible directions.
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Figure 5.8: Recovered azimuth angles for various objects. (Left) A representative input

image. (Center) Phase map of recovered azimuth angle, displayed as φn/π. (Right)

Phase map shifted by an angle of π/2. Note: incident illumination distributed about the

upper hemisphere of possible directions.
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Figure 5.9: Recovered azimuth angles for various objects. (Left) A representative input

image. (Center) Phase map of recovered azimuth angle, displayed as φn/π. (Right)

Phase map shifted by an angle of π/2. Note: incident illumination distributed about the

upper hemisphere of possible directions.
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Figure 5.10: Recovered azimuth angles for various objects. (Left) A representative input

image. (Center) Phase map of recovered azimuth angle, displayed as φn/π. (Right)

Phase map shifted by an angle of π/2. Note: incident illumination distributed about the

upper hemisphere of possible directions.
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Figure 5.11: Recovered isocontour structure of a knight (Debevec et al., 2000; Chabert

et al., 2006). Note that some regions (e.g., chain-mail) violate our assumptions of

isotropy and/or surface differentiability.



Chapter 6

Photometric Stereo With

Non-Parametric and Spatially-Varying

Reflectance

Capturing the “appearance” of objects from images has become increasingly im-

portant in recent years, especially as computer graphics applications demand a level of

photo-realism unattainable by hand modeling. By “appearance”, we mean a model that

is able to predict images of the object under all possible view and illumination condi-

tions. To adequately sample the appearance of an object which truly varies arbitrarily

in both shape and reflectance would require images from every combination of view

and illuminant, which is impractical in most situations. Fortunately, objects in the real

world typically exhibit regularity that can be exploited to drastically reduce the number

of images required. Choosing constraints that are valid (or close to valid), yet powerful

enough to be useful in practical systems is thus essential to appearance capture.

In this chapter, we consider the special case of photometric stereo – recovering

an explicit appearance model (i.e., separate shape and reflectance models) from images

taken at a single viewpoint under varying, known illumination. This is an important

special case of appearance capture, since it relies solely on photometric cues, avoids

82
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Figure 6.1: (Left) One of 102 single-viewpoint input images. (Right) Rendering from a

novel viewpoint, using shape and reflectance acquired by our algorithm.

solving the correspondence problem, and is relatively simple to extend to multiple views

if necessary. It is also important because explicit appearance models of this kind have

been shown to be useful for visual tasks such as face recognition (Blanz and Vetter,

2003). Simultaneously recovering surface normals and reflectance from such input data

remains a challenging problem, however. Typically, the form of the reflectance func-

tion is restricted by either assuming a parametric model or by the existence of a set of

homogeneous reference objects in the scene. The obvious downside to these methods

is reduced generality – if the materials in the object being measured differ from the

assumed reflectance models, the accuracy of the recovered appearance model will be

poor.

Our technique differs from most previous approaches in that we do not impose

a parametric model on the reflectance function. Rather, we restrict the form of the re-

flectance function to satisfy empirically observed physical properties shared by many

materials. These physical properties allow us to reduce the domain of the bi-directional

reflectance distribution function (BRDF) from a function of four variables to a func-
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tion of two variables without a significant loss in accuracy. This approximation has

both theoretical and empirical motivation. Theoretically, Stark et al. (2005) have shown

that many of the parametric BRDF models commonly used in computer graphics are

in fact bi-variate functions, which suggests that bi-variate approximations can have at

least some level of accuracy. They also show impressive empirical results for (an albeit

small) set of measured isotropic BRDFs. We provide additional analysis in this chap-

ter, both theoretical and empirical, to further support the validity of bi-variate BRDF

approximations.

The method described in this chapter builds upon and improves three recent ad-

vances. First, we exploit isotropy to constrain surface normals to a single degree of free-

dom, as described in Chapter 5. Second, we utilize a non-parametric bi-variate approx-

imation of the BRDF. Finally, we assume that surfaces are composed of a small number

of “basis” materials and solve a factorization problem similar to that of Lawrence et al.

(2006), but tailored to our differing setup (single viewpoint, recovery of surface geome-

try, fewer image measurements).

The main contributions of this chapter are (1) to present a technique capable

of simultaneously recovering shape and non-parametric reflectance from photometric

stereo, and (2) to introduce bi-variate representations of reflectance as a useful tool for

vision applications.

6.1 Imaging Setup and Assumptions

Consider a photometric stereo setup with fixed object, fixed orthographic cam-

era, and m images taken under distant point source illumination, with known source

positions scattered about the sphere of incident directions. From this set of images, we

wish to recover the surface normal and BRDF at each point on the object’s surface. In

Chapter 5 it was shown how to reliably recover the azimuthal component of each surface

normal (relative to the camera coordinate frame), by assuming that the BRDF at each

point is isotropic. The primary advantage of this approach is that the BRDF can vary
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arbitrarily in both the spatial and angular domain1, so long as the BRDF is isotropic.

In this chapter, we seek to recover the elevation angle of the normal by imposing two

additional constraints : (1) that the surface be composed of a small set of fundamen-

tal materials, and (2) that the BRDF at each point is well approximated by a bi-variate

function.

More specifically, suppose the BRDF at each surface point is a linear combina-

tion of a small set of basis BRDFs. Then the BRDF at each point can be compactly

represented as the product of two rank-constrained matrices,

H = WB⊤ (6.1)

where H ∈ R
n×d is a discretization of the BRDF at each of n surface points, B ∈ R

d×k

contains a discretization of k basis BRDFs, and W ∈ R
n×k weights the contribution of

each basis BRDF at each surface point. For this decomposition to be physically valid,

W and B should be non-negative and B should satisfy BRDF constraints such as energy

conservation and reciprocity.

6.1.1 Bivariate BRDF Assumption

A general isotropic BRDF is a function of three dimensions, and is typically

written ρ(θi, θo, |φi − φo|), where (θi, φi) and (θo, φo) are the spherical coordinates of

the directions of incident and reflected flux relative to a local coordinate system. (The

absolute value, |φi − φo|, is sometimes discussed as a separate property called bilateral

symmetry as in Chapter 5, but we do not do so here.) In what follows, it will also be

convenient to represent the incident and exitant directions using unit vectors s and v in

the same coordinate system.

An alternative parameterization is the halfway/difference parameterization of

Rusinkiewicz (1998). Here, an isotropic BRDF is expressed as ρ(θh, θd, φd), where

θh (the half-angle) is the angle between the surface normal and the bisector vector s+v,

1Spatial variation refers to changes in the BRDF across surface points; angular variation refers to

changes in the BRDF across incident and exitant angles of illumination.
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Figure 6.2: (a) The standard BRDF parameterization. (b) Half-angle parameterization.

and (θd, φd) are the spherical coordinates of the source vector computed relative to the

bisector vector (see Figure 6.2). In particular, θd (the difference angle) is the angle

between the source vector and the bisector vector.

Both of these parameterizations represent all three dimensions of the isotropic

BRDF domain. The possibility that general isotropic BRDFs might be well-represented

by simpler bi-variate functions was first formally studied by Stark et al. (2005). Their

work is motivated by the observation that a number of parametric BRDF models (Lafor-

tune, Phong, Blinn, and Ward) are inherently bivariate functions. Drawing from a

combination of empirical observations and theoretical insights, they propose the ‘ασ-

parameterization’ for bivariate BRDFs and show this to represent a small number of

measured BRDFs (Westin, 2003) with high fidelity. In this paper, we use an alternative

bivariate parameterization based on the half-way and difference angles, ρ(θh, θd). One

can show that there is a bijective mapping between (θh, θd) and (α, σ).

6.1.2 Image Formation Model

Suppose we know the true surface normal at each surface point. Then this im-

putes a half-angle for each surface point and light source direction from which we form
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a data matrix, E ∈ R
n×m. The i, jth entry is simply the image intensity at the ith sur-

face point illuminated by the jth light source. If we assume the BRDF at each point is

a linear combination of a set of basis BRDFs, then the BRDF of the ith point can be

expressed as H⊤
i = w⊤

i B⊤ ∈ R
1×d, where wi ∈ R

k×1 is a set of material weights and

B ∈ R
d×k contains a discretization of the basis BRDFs. The image intensity at the ith

point under the jth illuminant is then modeled as,

eij = H⊤
i Φij max{0,n⊤

i sj}

= H⊤
i Φ̃ij

= w⊤
i B⊤Φ̃ij

(6.2)

where max{0,n⊤
i sj} accounts for shading and Φij ∈ R

d×1 is an interpolation vector

mapping the domain of BRDF Hi to the half-angle / difference angle of the ijth mea-

surement.

Equation 6.2 is easily extended to multiple color channels by slightly altering

the BRDF matrix B and interpolation matrices, Φ̃ij . Suppose we wish to handle c color

channels; then we simply fold each color channel into the BRDF discretization (e.g.,

B ∈ R
dc×k) and modify the interpolation matrices appropriately. Alternatively, color

can be encoded in the weight matrix W, which allows arbitrary color scaling per point.

This may be useful for surfaces that vary in color, but not in monochromatic reflectance.

6.2 Alternating Constrained Least Squares

If W = (w1, ...,wn)⊤ and B are unknown, then we can estimate them using the

method of alternating constrained least squares (ACLS), as described by Lawrence et al.

(2006). ACLS works by alternately updating W and B to minimize the residual between

measured intensities and predicted intensities. In each iteration, the material weights

W are updated by fixing B and solving the resulting constrained convex optimization

problem after which B is updated by fixing W and solving another constrained convex

optimization problem. ACLS is guaranteed to find a local minimum since each update
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Figure 6.3: Surface plot showing discretization of one color channel of a basis BRDF

(red channel of the 2nd basis BRDF recovered from the APPLE dataset).

step is guaranteed to not increase the residual. While this means the algorithm may not

converge to a global minimum, in practice one can perform multiple trials with random

initialization or use domain knowledge to initialize W and B near the optimal solution.

Since the elevation angles of the surface normals are also unknown, we also

need to incorporate this into our optimization procedure. The simplest thing to do is to

simply alternate between all three sets of parameters. However, since the normals are

constrained to a single degree of freedom, it’s possible to find a global minimum over

material weights and surface normals simultaneously. This vastly improves convergence

over three-way alternating optimization. We cover each step of our optimization proce-

dure in the following subsections.

6.2.1 Initialization and Pre-Processing

The first step of our algorithm is to recover the azimuth angle of the surface

normals using the technique described in Chapter 5. This step is based on the fact that

the 2D reflectance field (image intensity as a function of source direction) is symmetric

about the plane spanned by the normal and viewing direction. This plane, which corre-
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sponds to the azimuth angle of the surface normal, can be estimated from a cone of light

source directions parallel to and centered about the image plane. Thus, our algorithm

also requires at least a cone of light source directions centered about the optical axis.

Before starting the optimization process we also randomly initialize W, B, and θn (the

elevation component of the surface normals).

6.2.2 Update B with Fixed n and W

In this step, we solve for the BRDF matrix B that minimizes the L2 error between

image measurements eij and our image formation model w⊤
i B⊤Φ̃ij . From equation 6.2,

we set up the following constrained least squares problem,

arg min
x

‖Ax − b‖2

Subject to,

x ≥ 0 (6.3)

where x ∈ R
dk×1 is a vector encoding the entries of B in column-major order. A and b

can be constructed as,

A =




A1

...

An


 b =




b1

...

bn


 (6.4)

Ai = w⊤
i ⊗ Φ̃⊤

i bi = E⊤
i (6.5)

where ⊗ denotes the Kronecker product.
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6.2.3 Update W and n with Fixed B

For the moment, suppose both n and B are fixed. From equation 6.2, we set up

the following constrained least squares problem for each surface point,

arg min
wi

‖Aiwi − bi‖
2

Subject to,

wi ≥ 0

(6.6)

where,

Ai = Φ̃⊤
i B bi = E⊤

i (6.7)

with Ei = (e1, ..., em) the set of measurements at the ith surface point and Φ̃i ∈ R
d×m

the corresponding interpolation matrix. The solution to this optimization problem is

the set of weights that minimizes the L2 error of image measurements to intensities

predicted by the image formation model, subject to non-negativity.

Since the weights for each point are estimated independently, the size of each

constrained least squares problem is quite small (k variables). The global minimum

with respect to both the weights and surface normal can be obtained by exhaustively

searching over all possible n (tractable since there is only one degree of freedom).

6.3 Additional Constraints

In practice, we found it necessary to impose additional regularization constraints

based on domain knowledge of our problem. Specifically, we impose smoothness and

monotonicity over the BRDF domain, and we re-weight the constraints in Equations 6.3

and 6.6 to prevent specular highlights from dominating the solution. Empirically, these

constraints improved convergence as well as the visual quality of the recovered basis

BRDFs.

The need for regularization is caused by a number of factors. First, specularities

usually occur in a very compact region of the BRDF domain, and within this region the
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BRDF value can vary by orders of magnitude. As a result, these regions of the BRDF

domain are very sensitive to misalignment of light sources; a very small misregistra-

tion can lead to large changes in predicted intensity. This is exacerbated by the fact

that memory constraints prevent us from using all available pixel measurements when

updating the BRDF matrix B.

To introduce a bias toward smooth BRDFs, let D1 ∈ R
d×d be a discrete operator

approximating the gradient over the BRDF domain. We add the following quadratic

penalty term to our objective function:

λD1(D1Bl)
⊤(D1Bl), for l = 1...k. (6.8)

This can be incorporated into Equation 6.3 by augmenting A and b with rows,

AD1 =
√

λD1

(
Ik ⊗ D⊤

1

)
bD1 = 0 (6.9)

where Ik is a k × k identity matrix and ⊗ denotes the Kronecker product. In our ex-

periments, we non-linearly weight the smoothness penalty so that specular regions (i.e.,

near θh = 0) are penalized less strongly than non-specular regions.

Monotonicity can be enforced by adding the following inequality constraints:

Bh,l ≥ Bh+1,l, for l = 1...k. (6.10)

It is also quite simple to enforce monotonicity over a portion of the domain (e.g.,

θh ∈ [0, π/4]) by only including inequalities from the desired subset of the domain.

Monotonicity is particularly important in specular portions of the BRDF domain, where

undersampling and registration errors could otherwise cause unnatural visual artifacts in

recovered BRDFs.

6.3.1 Confidence Weights

While there are relatively few measurements of specularities, such measure-

ments carry a lot of weight since specular pixels typically have intensities more than
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an order of magnitude stronger than other pixels. To prevent such measurements from

overly biasing the final solution, we weight each constraint in Equations 6.3 and 6.6

according to the intensity of the corresponding measurement. In our experiments, we

found the following ad-hoc weights to work well,

cij = (log(1 + eij)/eij)
3. (6.11)

6.4 Discussion on ACLS Procedure

While our optimization procedure is computationally similar to that of Lawrence

et al. (2006), our methods differ in important ways. At a high level, our primary goal is

to recover shape and reflectance in order to extrapolate appearance to novel viewpoints.

Lawrence et al., on the other hand, assume they have data from multiple viewpoints

as input and seek to obtain compact and separable representations of spatially varying

BRDFs for editing purposes. Our data is also very different from Lawrence et al. (2006)

in that we consider rather arbitrary geometry instead of focusing on near-planar surfaces.

The two approaches also differ at a more technical level. In their optimization,

Lawrence et al. alternate between three sets of variables : BRDF basis, material weights,

and surface normals. In this paper, we alternate over only two sets of variables because

we find globally optimal material weights and surface normals in each iteration of our

optimization algorithm. As a result, our method should be less prone to local minima.

In addition, in order to bootstrap their reconstruction, Lawrence et al. use a parametric

BRDF model (the Ward model), while in our work we have purposefully avoided the

use of parametric BRDF models at any stage of the process. This yields an acquisi-

tion system for isotropic surfaces that is as general as possible. Another difference is

how scattered data is handled. In Lawrence et al. (2006), measurements are interpolated

in the BRDF domain, while in our method, the BRDF domain is interpolated onto the

measurements. The effects of this change are twofold : (1) each measurement counts

equally in our method, and (2) interpolation of the basis BRDFs is more numerically sta-
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ble than interpolation of the measured data. A similar interpolation strategy is described

in Weistroffer et al. (2007), although our method was derived independently.

6.5 Experimental Validation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: GOURD (Top) / APPLE (Bottom) shape reconstruction results. (a,e) Phase

map showing the azimuthal components of the surface normal field, recovered as in

Chapter 5. (b,f) Recovered normal map, encoded to RGB as r = (nx + 1)/2, g =

(ny + 1)/2, b = nz. (c,g) Surface obtained by integrating the recovered normal field.

(d,h) Detail of the surface; note the recovered mesostructure.

To validate our approach, we ran experiments on two datasets consisting of im-

ages of a gourd and an apple, respectively. For each dataset, we acquired high-dynamic

range images in a dark room (see Figure 6.6) with the camera and light sources placed

between 1.5 and 2 meters from the test object (both test objects have diameter between

5 and 10 centimeters). Light source directions and intensities were measured from spec-
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(a) (b)

(c) (d)

Figure 6.5: (Top) Material weight maps recovered from the GOURD and APPLE

datasets. Red, green, and blue channels correspond to (normalized) weights of the first,

second, and third basis BRDFs, respectively. (Bottom) Spheres rendered with the first,

second, and third basis BRDFs recovered from the GOURD and APPLE datasets.

ular and diffuse spheres placed in the scene with sources spanning much of the upper

hemisphere of lighting directions. 102 images were acquired for the GOURD dataset

and 112 for the APPLE dataset. For both datasets, we assumed three basis BRDFs

during reconstruction.

Figure 6.4 shows the shapes recovered by our algorithm on the GOURD and AP-

PLE datasets. While the overall shape of each surface is simple (we sought to avoid cast

shadows and interreflections which are not modeled by our algorithm), note that we ac-

curately recover both the coarse and fine-scale geometric structure (i.e., macrostructure

and mesostructure) of the object. In terms of appearance capture, recovery of surface

mesostructure plays an important role (observe specular highlights in Figures 6.6 and

6.7).



95

Figure 6.5 shows the recovered basis BRDFs and material weight maps for the

GOURD and APPLE datasets. Note the clear separation of materials visible in the

material weight maps as well as the varying shape of specular lobes and body color in

the recovered BRDFs.

The most important test of our algorithm is the ability to accurately generate

novel views of the test objects. As seen in Figure 6.6, we are capable of rendering novel

views that closely match real photographs. In particular, note the accurate reproduction

of specular highlights which depend strongly on both the BRDF at each surface point as

well as the surface mesostructure. As a final test, we rendered each object from a variety

of viewpoints under complex illumination conditions (see Figures 6.1 and 6.7). Most

of the illumination conditions in these results were measured from real-world scenes

Debevec and Malik (1997) and the viewpoint was varied up to around 80 degrees from

the original viewpoint of the training data. Even with extreme changes in viewing an-

gle, the rendered images look natural and visually plausible. Additional results on two

additional datasets can also be seen in Figure 6.8. While these are qualitative tests, the

resulting images are highly realistic lending credence to the correctness of the recon-

structions.

Finally, in Figure 6.9, we compare the output of our algorithm with that of Lam-

bertian photometric stereo. Deviations from the true shape are clearly visible using

both standard Lambertian photometric stereo and robust Lambertian photometric stereo.

Most obvious is a bias toward non-frontal surface normals which are caused by specular

highlights. Our method, on the other hand, faithfully captures the shape of each object.
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Figure 6.6: (Top) Real images of the GOURD and APPLE test objects. (Bottom) Images

rendered using recovered shapes and BRDFs. Images in columns 1 and 3 are taken from

the training data. Images in columns 2 and 4 are from novel viewpoints.
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Figure 6.7: Images rendered in novel view and illumination conditions using shape and

reflectance acquired by our algorithm.
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(a) Real images from the HELMET and GOURD2 datasets

(b) Synthetic images, HELMET

(c) Synthetic images, GOURD2

Figure 6.8: Results on two additional datasets. Images rendered in novel view and

illumination conditions using shape and reflectance acquired by our algorithm.
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ACLS Lambertian Robust Lambertian

(a) APPLE dataset

ACLS Lambertian Robust Lambertian

(b) GOURD1 dataset

ACLS Lambertian Robust Lambertian

(c) GOURD2 dataset

Figure 6.9: Comparison of shape recovered by our method to that of Lambertian photo-

metric stereo. Significant distortions are noticeable in the shape recovered by standard

Lambertian P.S., whereas our method faithfully recovers the shape. Even robust Lam-

bertian P.S., which discounts specular pixels, leads to biased results.



Chapter 7

Multi-View Reconstruction With

Non-Parametric and Spatially-Varying

Reflectance

In this chapter, we consider multi-view reconstruction of objects with arbitrary

isotropic reflectance. In particular, we consider the set of images of an object as it is

rotated about a particular axis of rotation (on a turn-table, for example), with fixed cam-

era and illumination. When the lighting is symmetrically distributed about the plane

spanned by the viewing direction and the axis of object rotation, we show that it is pos-

sible to recover both the depth and one degree of freedom of the surface normal at each

scene point, by utilizing photometric information (i.e., pixel intensities). Our underly-

ing matching constraint is based on bilateral symmetry of the bi-directional reflectance

function (BRDF), a property present in any physically valid isotropic material. More-

over, we do not impose any parametric form on the BRDF, and our method works for

both uniform and spatially varying reflectance.

While shape-from-silhouette algorithms are also invariant to the bi-directional

reflectance function (BRDF) of a surface, these methods are only capable of recovering

the visual hull of an object. This means that any point on the surface that does not lie

100
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on a silhouette boundary in some image will not be faithfully recovered. Another issue

with shape-from-silhouette methods is that they yield volumetric reconstructions which

typically do not accurately capture surface orientations across the surface. This can be

problematic for when rendering shapes acquired using these methods. Our approach is

similar to that of Hernandez et al. (2008) in that we initialize the surface shape using

shape-from-silhouettes and then refine the surface using a photometric consistency mea-

sure. The primary difference is that Hernandez et al. assume Lambertian reflectance,

whereas our photo-consistency measure is much more general.

7.0.1 Related Work

Because 3D reconstruction is such a long standing problem, many solutions have

been proposed. These methods can be grouped according to the image features utilized

and the camera and lighting configurations. Most similar to this chapter are multi-view

reconstruction algorithms that incorporate photometric constraints.

In Lu and Little (1999), it is assumed that the object has a smooth surface with

uniform and monotonic reflectance. They show that when the illumination is collinear

with the viewing direction (for example, a point light source collocated with the cam-

era), correspondence can be obtained for certain points on the surface lying on a sil-

houette boundary in some image. Because surface normals are known for points on a

silhouette boundary, they search points with normals that, when rotated 90 degrees, are

coincident with the viewing direction. Correspondence is made by noting that normals

coincident with the viewing direction correspond to pixels of maximal brightness. Once

correspondence is established for a few points, the BRDF (a uni-variate function of the

incident/exitant angle) can be recovered, which is then used to recover surface normals

across the entire surface. Our method differs in that we handle spatially varying BRDF

and we we do not require collinear illumination (although that is a valid illumination for

our method).

Related are so-called multi-view photometric stereo algorithms. Hernandez et al.
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(2008) obtain images from multiple viewpoints under varying lighting conditions. From

silhouette boundaries, they construct the visual hull of the object as well as calibrate the

camera and lighting. They then refine the surface shape using Lambertian photometric

stereo constraints. Zhang et al. (2003) and Lim et al. (2005) initialize a depth map using

tracked feature points, which is then refined according to the Lambertian reflectance

model. Joshi and Kriegman (2007) also utilize Lambertian reflectance, but in a novel

way, by noting that a matrix of corresponding points with Lambertian reflectance has

rank 3.

There has also been some work analyzing the particular constraints arising from

circular motion. For example, Fitzgibbon et al. (1998) present a method for simultane-

ously recovering 3D structure, motion, and camera calibration parameters for images of

an object rotated on a turn-table. Their method assumes feature points can be tracked

across the object. Hernandez et al. (2007) show how to recover camera motion param-

eters from images of a circularly rotating object using silhouette information. This can

be useful if camera calibration is unknown.

7.1 Image Formation Model

Consider a point on a surface at position X with surface normal n defined relative

to some canonical coordinate system. Further suppose that the surface is illuminated by

a set of distant light sources {sj}, j = 1 . . . M , and viewed by an orthographic camera in

direction v. Ignoring global illumination effects (such as cast shadows, interreflections,

subsurface scattering, etc.), the exitant radiance at this point in direction v is given by,

e =
M∑

j=1

ρ(n, sj) max{0,n⊤sj}, (7.1)

where ρ is the BRDF at point X (dependence on viewing direction has been notationally

excluded as it is constant in our setup).

Now suppose the object is rotated about the origin along the y-axis (without loss
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of generality). Then the point X and normal n are transformed as,

Xφ = RφX (7.2)

nφ = Rφn (7.3)

with

Rφ =




cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ


 (7.4)

where Rφ is a rotation matrix encoding a rotation of angle φ about the y-axis. The actual

image coordinates are given by the first two components of vector,

xφ = RcXφ + tc (7.5)

= RcRφX + tc (7.6)

where Rc and tc map the object coordinate system to the camera coordinate system.

As φ varies from 0 to 2π, the surface normal sweeps a circle on the Gauss sphere

(see Figure 7.1a). Notationally, we refer to the set of resulting pixel intensities as a

function e(φ). In practice, we sample e(φ) (modelled by Equation 7.1) by capturing

N images of the object as it is rotated. We also assume known rotations and camera

extrinsic parameters (i.e., Rφ ∀φ, Rc, and tc). These can be obtained through various

calibration processes.

7.1.1 Isotropy / Bilateral Symmetry

The underlying constraint exploited by our algorithm is a property of isotropic

BRDFs known as bilateral symmetry, which was also utilized in Chapter 5. Consider

a particular point light source s and viewing direction v as unit vectors on the Gauss

sphere (see Figure 7.1b). We partition the Gauss sphere into two halves, according to the

plane spanned by s and v. Further, consider each point on the Gauss sphere as a mapping

of all possible (unit) surface normal vectors n, and a BRDF as a function of n. If the
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Figure 7.1: (a) The path swept by the surface normal of a point after rotation about

the y-axis. (b) Illustration of surface normals with identical intensity, due to isotropic

reflectance. The image intensity resulting from surface normal n is identical to the in-

tensity resulting from rotated normal n′, where n′ is obtained by rotating n to a position

of equal angle from the plane spanned by s and the rotation axis. Omitted from the fig-

ure for clarity is the viewing direction v which is coplanar with s and the rotation axis

y.
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Figure 7.2: Example showing effect of bilateral symmetry on image intensity. (a) 1 of

64 input images rotated on a turntable. (b) Plot of image intensity at a single “frontal”

surface point after rotations of φn radians. Notice that the image intensity is symmetric

between angles of −π/2 and π/2.

BRDF is symmetric about the plane spanned by s and v, then it is bilaterally symmetric.

In other words, the BRDF has identical value for normals mirrored about the dividing

plane. Moreover, because the shading term max{0,n⊤s} is also symmetric about this

plane, the exitant radiance (proportional to image intensity) is also symmetric about this

plane. This is analogous to the argument presented in Chapter 5, except in this case the

light source(s) are fixed and the surface normal changes. The symmetry argument can

be further extended by noting that any lighting configuration symmetrically distributed

about the dividing plane will result in the exitant radiance function being symmetric

about the dividing plane. Thus, the exitant radiance from a scene point will contain a

symmetry for any distribution of lighting that is symmetric about the plane defined by

viewing direction v and the axis of rotation.

A consequence of bilateral symmetry is that the image intensity of a surface

point will have identical intensity after rotations that map the surface normal to opposite

sides of the Gauss sphere. In terms of our imaging setup, consider a surface point with a

normal lying in the plane spanned by the rotation axis and the viewing direction. Then
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the pixel intensities for this point after rotations of angles φ and −φ will be identical

(see Figure 7.2). This is the underlying photometric property we utilize in this work.

7.2 Matching Constraint

The argument presented in the previous section implicitly assumes known point

correspondence. That is, it is necessary to know which pixel a given surface point maps

to for each rotation, or equivalently it is necessary to know the 3D location of each

surface point. Knowing only the rotation and camera parameters, however, constrains

correspondence (or 3D position) only up to a one parameter family of solutions, ac-

cording to the epipolar geometry. If we consider the canonical coordinate frame (i.e.,

R0 = I), then we can re-express Equation 7.6 as,

X = R⊤
c (x − tc). (7.7)

The x and y components of x are known (they are simply the pixel coordinates of the

point in the canonical reference frame) and the z component defines the family of po-

tential 3D positions for that point. Given z, the 3D position X can be computed and

then reprojected onto each image.

Previously, we defined e(φ) to be the set of pixel intensities arising from each

possible rotation. We can augment this function to also incorporate the unknown depth

z; that is, e(z, φ). For correct values of z, e(z, φ) will result in pixel intensities drawn

from a single point on the object surface. In this case, we expect the function to be

symmetric as described in Section 7.1.1. When z does not correspond to a surface point,

intensities will be drawn from multiple surface points as the object is rotated and, in

general, we expect the resulting intensities will not be symmetric. Figure 7.3 shows an

example of the intensity function e(z, φ) resulting from real images.

To quantify symmetry, we use the following robust cost function, defined for
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each pixel in the canonical reference frame,

c(z, φn) =

∫ π/2

α=0

min

{
η,

e(z, φn − α)

e(z, φn + α)
+

e(z, φn + α)

e(z, φn − α)

}
dα. (7.8)

Here, φn is the angle about which e(z, φ) is symmetric, or equivalently the azimuthal

component of the surface normal n when encoded in spherical coordinates relative to

the canonical coordinate system (with pole y). η is a threshold intended to minimize

the effects of outliers. To facilitate evaluation of the integral, we discretize e(z, φ) and

approximate the integral with a summation. In the absence of outliers, our cost function

has global minima at true surface points / symmetry angles. These minima will also be

unique in the absence of noise and if sufficient geometric and/or texture variation exists

across the surface.

7.2.1 Uniqueness Conditions

It is useful to characterize the uniqueness of minimizing Equation 7.8. First,

there are generally at least two depth values that correspond to real surface points (i.e.,

the front and back surface of the object relative to the canonical frame). In the absence

of noise and outliers, c(z, φn) will have a global minima at each depth corresponding to

a true surface boundary.

We now consider the cost at depths not lying on a surface boundary. Consider

the surface shown in Figure 7.4. We see that when depth is correct, the set of pixel inten-

sities will all come from a single point on the surface; however, if the depth is incorrect

the set of pixel intensities will be drawn from a set of points lying on a curve along the

surface boundary. If this set of intensities is symmetric, then the cost will be minimized.

Generally this will occur quite rarely, but there is a special case that can happen more

frequently. Consider a surface point X whose local neighborhood is both textureless

and geometrically symmetric. As seen in Figure 7.4b, a non-surface point will yield

symmetric intensity values in this case. In fact, there is a family of such points lying on

the line passing through X in the direction defined by the intersection of the surface nor-

mal with the rotation plane. Since most surfaces are both textureless and geometrically
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Figure 7.3: Example showing pixel intensity as a function of surface orientation and

depth. (a) One of 64 input images. The blue box surrounds a candidate surface point.

(b) The set of intensities e(z, φ) corresponding to the candidate point. Note: φn varies

from 0 to 4π instead of 0 to 2π for visual clarity at the boundary. (c) Plot of intensity

values at the true depth value (blue line). Note there is a clear symmetry present near

φn = 7; symmetry is only present about a range of ±π/2 which corresponds to frontal

poses of the surface point. (d) Plot of intensity values at an incorrect depth value (green

line). There is no obvious symmetry in this case.



109

(a) (b)

Figure 7.4: Illustration of pixel intensities resulting from incorrect correspondence. (a)

When correspondence is correct, all pixel intensities are drawn from a single surface

point. (b) When correspondence is incorrect, pixel intensities are drawn from a 1D slice

of neighboring surface points. If the shape and reflectance of the local neighborhood is

symmetric, then so will the profile of pixel intensities.

symmetric1 at small scales, this suggests that c(z, φ) will not be very discriminative with

respect to z. Indeed, this has been empirically observed in experimental data.

While this is clearly non-ideal, not all is lost. While the cost function may not

be highly discriminative with respect to depth, it is discriminative with respect to sur-

face orientation φn. Even at incorrect depths, only the true surface orientation yields

a minimum. This suggests a scheme whereby surface depth is regularized by surface

orientation values.

7.3 Experimental Validation

7.3.1 Imaging Setup

We acquired images in a dark room with a Canon EOS-1Ds camera. Prior to

image capture, the camera was calibrated to account for both radiometric and geometric

distortions. Since the camera has a linear response curve, radiometric calibration only

involved estimating the vignetting falloff. We performed this step by imaging a diffuse,

1Relative to a frontal viewing angle.
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(a) (b) (c)

Figure 7.5: Results with and without surface smoothness. (a) Input image from the

reference viewpoint. (b) Heightmap obtained by minimizing c(z, φ) independently at

each point. (c) Heightmap obtained by enforcing smoothness using graph-cuts.

planar surface, which should result in uniform image intensity if no vignetting is present;

thus, the image provides a direct, per-pixel estimate of the vignetting falloff. We reduce

the effects of noise by imaging the plane multiple times under various distant lighting

configurations. For geometric calibration, we imaged a planar checkerboard pattern

(4-6x) and used (Bouguet, 2008) to compute the intrinsic camera parameters. Object

rotation was achieved using a turntable; the image of the axis of rotation was estimated

by imaging a calibration object under a set of rotations.

7.3.2 Results

Ideally, we would be able to obtain a good surface by minimizing Equation 7.8

independently for each pixel in the reference view. However, because of noise, outliers,

and the possibility of multiple minima (as described in Section 7.2.1) this does not yield

a consistent result. As seen in Figure 7.5b, the surface obtained is extremely noisy,

although the overall shape (including concavities) can still be discerned.

One way to overcome the weak discriminativeness of Equation 7.8 is to impose

surface smoothness. A popular method for combining per-node data costs with a local
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smoothness penalty is to use graph-cuts (Boykov et al., 2001; Kolmogorov and Zabin,

2004; Boykov and Kolmogorov, 2004). In figure 7.5c, we see that the surface smooth-

ness constraint regularizes the solution and the resulting surface is much more clearly

defined. It should be mentioned that the surface orientation φn was not incorporated into

this solution. The data cost term used in our graph-cuts algorithm is,

d(z) = c(z, φ′), (7.9)

where

φ′ = arg min
φ

c(z, φ).

That is, for each depth value, the data cost is the minimum cost over all orientation

values.

For technical reasons it is not possible to incorporate an orientation consistency

constraint directly into the graph-cuts minimization. However, once a surface is obtained

from graph-cuts, it can be refined by adjusting the heightmap to be consistent with the

orientation φn at each point. At each point, φn specifies the component of the tangent

plane orthogonal to the rotation axis. In the special case where the rotation axis is the

y-axis, this is equivalent to knowing the x component of the surface gradient (p) at each

point. A refined surface can thus be obtained by minimizing the following expression,

z′ = arg min
z′

∫ ∫ [
λ(z − z′)2 + (p − z′x)

2
]
dxdy. (7.10)

Here, λ controls how far the final solution should deviate from the original surface.

Figure 7.6 shows the surface after refinement. Note there are still a few “streaks” in the

reconstruction, which correspond to outliers in the detected surface orientation. Overall,

the result is quite reasonable.

Another way to recover the surface shape is to utilize silhouette information. By

intersecting the volumes obtained by back-projecting the silhouette of each image into

the scene it is possible to recover the visual hull of a surface. Any surface point lying

on a silhouette boundary in some image (such points are called contour generators) also
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Figure 7.6: Refined surface obtained by enforcing orientation consistency.

lie on the boundary of the visual hull. However, points which are not contour generators

lie strictly in the interior of the visual hull. Such points correspond to concavities on the

true surface.

While the visual hull does not provide the true surface, it does provide a good

approximation which can be refined using our photometric constraint. In particular, our

photometric constraint provides information about both depth and surface orientation

at each point. With the visual hull initialization it is possible to iteratively refine the

surface to find a locally optimal surface. We operate over a mesh initialized to the visual

hull and optimize over both the photometric cost c(z, φ), as well as surface smoothness

and surface orientation constraints. The surface orientation constraint minimizes the

difference between photometric orientation φn and the surface normal defined by the

mesh at each vertex.

In Figure 7.7, we see the input images, visual hull initializations, and refined

surface for the PEPPER dataset. Note that concave regions of the surface are not recov-

ered by the visual hull. However, by utilizing our photometric constraint we are able to

recover the concavities.
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(a) (b) (c)

Figure 7.7: Results using visual hull inititialization. (a) An input image. (b) Visual

hull obtained by back-projecting silhouette boundaries. (b) Refined surface obtained by

enforcing photometric constraint.

7.4 Summary

In this chapter, we have presented a novel constraint for multi-view reconstruc-

tion that is applicable to objects composed of arbitrary isotropic materials. In contrast

to previous work, our method is applicable to both textured and textureless surfaces and

can handle complex, non-Lambertian reflectance.



Chapter 8

A Planar Light Probe

Images of a scene are formed by the interaction of the camera viewpoint, the

scene geometry and reflectance, and also upon the way the scene is illuminated. Each

component can have a large impact on the final image that is formed. In this chapter,

we focus on the illumination or lighting component of the image formation process.

Specifically, we consider the problem of measuring or estimating the lighting present

in a scene. The output of our method is a frequency space approximation of the 2D

environment map for a given scene.

The ability to measure or estimate the illumination in a scene has a wide range

of applications. Knowledge of the lighting in a scene is explicitly required in many

computer vision techniques such as shape from shading, photometric stereo, shadow

carving, and shape from specularities. It can also be utilized in tasks such as face recog-

nition or object detection. In computer graphics, measured illumination environments

are commonly utilized to render photo-realistic scenes, and in augmented or mixed re-

ality applications knowledge of the illumination environment is usually necessary to

convincingly insert virtual objects into a scene.

A common approach to measuring the illumination in a scene is to acquire im-

ages of a reference object, or light probe, placed into the scene. We follow this paradigm,

but with a significant twist: rather than exploit varying geometry across the reference

114
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object, we instead utilize spatially varying reflectance. While both geometry and re-

flectance could be varied, we restrict our attention to the case of a planar light probe in

order to study what is possible when the geometry does not vary.

Our approach is highly novel and will hopefully inspire further research in re-

lated areas of computer vision. Additionally, the design of our light probe confers an

advantage over competing methods: namely, the illumination can be estimated from a

single low-dynamic range image. This is significant because typical scenes are illumi-

nated by a combination of extremely bright, compact light sources as well as darker, but

much larger area sources. To faithfully capture the illumination, both types of illumina-

tion need to be measured.

8.1 Background and Motivation

The output of an illumination estimation process is some representation of the

lighting. In general, lighting is a 5-D function specifying the intensity of light traveling

in each direction at every position in the scene. However, it is common and often effec-

tive to treat light sources as being infinitely distant from the objects in a scene in which

case the illumination can be fully specified as a 2D function defined over a sphere of

directions; this function is referred to as an environment map.

A popular approach to lighting estimation is to directly sample the 5-D or 2-D

illumination function, as in Debevec and Malik (1997). Other work assumes that the

lighting is composed of a small number of point light sources located nearby or at a

distance (Pentland, 1982; Zheng and Chellappa, 1991; Kim et al., 1998; Miyazaki et al.,

2003; Zhang and Yang, 2001; Wang and Samaras, 2002). These approaches return the

coordinates and strengths of the sources. In general, these methods can be viewed as

assuming a parametrized generative model of lighting and attempt to estimate the pa-

rameters. Others take a non-parametric approach by representing lighting as a linear

superposition of some set of basis functions, and lighting estimation amounts to esti-

mating the coefficients for each basis function as in Marschner and Greenberg (1997).
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Lighting and reflectance have also been shown to be well characterized by spherical har-

monic basis functions, and theoretical (Basri and Jacobs, 2003; Ramamoorthi, 2002) as

well as empirical evidence (Epstein et al., 1995; Lee et al., 2005) support the idea that a

low order expansion of lighting is sufficient for rendering Lambertian scenes. More re-

cently, Haar wavelets have also been used to estimate lighting from cast shadows (Okabe

et al., 2004).

A wide variety of techniques have emerged for measuring lighting, and to un-

derstand their relative advantages, it is helpful to first consider the different attributes

of illumination capture. (1) Does the technique require inserting a physical probe in

the scene, require knowledge of the scene geometry, or can it passively infer lighting

directly from images of an unknown scene? (2) Does it provide lighting as a 2-D or 5-D

function? (3) Does it produce a low or high dynamic range (LDR or HDR) illumination

map? (4) Does it require a single image (implying applicability to video with dynamic

lighting) or does it use multiple images, perhaps to construct an HDR image? (5) What

is the size, bulk, and cost of the probe? (6) What is the resolution (spatial frequency

response) of the output? An ideal technique would passively infer lighting from a sin-

gle image, would provide a high resolution 5-D light field, would produce HDR output,

would be applicable to video, and would be low cost.

No technique meets this ideal. Without a probe, the problem is ill-posed and

requires some sort of prior to arrive at a solution such as in Pentland (1982). Therefore,

we will consider techniques that require insertion of a probe into the scene and that treat

lighting as infinitely distant (i.e., a function on a sphere). The most straight forward

technique for distant lighting is simply to use a camera to directly measure the light,

for example by using a fish eye lens (Greene, 1986; Haeberli and Segal, 1993) or a

catadioptric omni-directional camera (Nayar, 1997). Alternatively, a standard camera

can observe a mirrored sphere placed in the scene, which reflects light from all directions

(though at a lower resolution toward the occluding contour). While these techniques

provide high spatial resolution, they require high-dynamic range (HDR) imaging to fully

characterize dynamic range of most lighting environments (Debevec and Malik, 1997;
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Nayar and Mitsunaga, 2000); this is accomplished by capturing multiple LDR images,

and is therefore unsuitable for video. In addition, cameras or spherical probes in the

scene can be relatively expensive and/or bulky.

A second approach is to introduce a matte light probe into the scene which can

be a sphere as in Zheng and Chellappa (1991), Zhang and Yang (2001), and Wang and

Samaras (2002), or an object with known shape as in Weber and Cipolla (2001). When

considered in terms of the spherical harmonic expansion of the BRDF, mirrored and

Lambertian spheres couldn’t be more different. A mirrored sphere, whose impulse re-

sponse is akin to a delta function, passes all spatial frequencies whereas the Lambertian

sphere acts as a low pass filter and severely attenuates high frequencies. It is argued that

only an expansion to 3rd order can be recovered from a Lambertian sphere. However,

the advantage of a Lambertian probe is that the dynamic range of the images of a sphere

under any lighting condition is low, and so lighting can be estimated from a single im-

age, making the technique suitable for video. A slightly more sophisticated approach

is to image a set of spheres with varying reflectance (matte, glossy, and specular) to

recover lighting (Debevec et al., 2004). This approach can still encounter problems with

limited frequency response and / or dynamic range.

A third way of constructing a probe is to take advantage of non-convex geometry

and the resulting shadows (Sato et al., 1999, 2001, 2003; Okabe et al., 2004). Consider

a sundial. The irradiance arriving at a particular point on the underlying surface is the

product of the incident lighting with the visibility function induced by the geometry of

the sundial. In Okabe et al. (2004), the relation between lighting and cast shadows are

analyzed in the frequency domain in terms of spherical harmonics and Haar wavelet

bases. In Ramamoorthi et al. (2005) an analysis of cast shadows is provided using the

Fourier domain.

In the following sections, we introduce a fourth mechanism for measuring light-

ing which utilizes a light probe consisting of a planar surface with spatially varying

reflectance. The light probe is constructed using a multi-layered, transparent medium

which differentially absorbs and reflects light. In particular, the homogeneous middle
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layer of the planar probe is a transparent medium (e.g., air or glass), the top layer is

patterned to partially absorb and transmit light differently at different locations (e.g.,

a transparency sheet). The bottom layer is also patterned to reflect light differently at

different locations (e.g., a piece of printed paper). The key idea is that the design of

the two patterns leads to a spatially varying effective BRDF. That is, when image plane

irradiance is averaged over an area (within a single pixel or over multiple pixels), the

manufactured probe can be treated as a meso-scopic geometric structure akin to the

micro-facet or pit models used in constructing models of BRDFs (Torrance and Spar-

row, 1967; Oren and Nayar, 1994; Koenderink et al., 1999). Given a set of these BRDFs

distributed over the plane, we can recover lighting over the upper hemisphere by treating

each BRDF as a basis function. A special case of the analysis is when the upper and

lower patterns are binary (completely opaque or transparent) in which case the effective

BRDF is solely the result of shadowing and masking (Oren and Nayar, 1994).

The advantage of such a light probe is that its capabilities lie between a mirrored

and Lambertian probe in that it can measure higher order frequencies than a Lambertian

sphere, yet high dynamic range imaging is not needed. As a consequence, it is suitable

for capturing lighting in video. Furthermore, a particular application of this probe is

augmented reality where it is common to include a planar geometric probe with fiducial

markers (see for example ARToolkit) for determining relative orientation, and our illu-

mination probe could be readily integrated for lighting estimation and photo-consistent

rendering.

In the rest of this chapter, we first introduce a design for the proposed light

probe, and theoretically characterize the effective BRDF of the probe as a function of

the patterned upper and lower layers. We then discuss probe construction, and explain

how lighting can be estimated from the probe. Finally, we report experimental results

that validate the potential of the planar light probe.
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Transparent Medium

Top Pattern

Bottom Pattern

Figure 8.1: Imaging setup for the planar light probe.

8.2 Designing a BRDF for Lighting Recovery

Suppose we have a material consisting of two parallel layers, referred to as the

top and bottom layers, separated by a transparent medium (see Figure 8.1). Further

suppose both layers are spatially varying so that the top layer reflects and transmits light

as a function of position and the bottom layer reflects light as a function of position.

We assume that the wavelength of light is much smaller than both the thickness of the

transparent layer and the spatially varying patterns so that no diffraction effects occur.

When light hits the top layer, some is directly reflected and some is transmitted through

the transparent medium where it is reflected by the bottom layer, travels back through

the transparent medium, and finally passes out through the top layer. We seek to analyze

the reflectance properties of such a material with the ultimate goal of recovering the

lighting from a set of distinct BRDFs constructed in this way.

We denote the position on the plane by ~x, the incident radiance from direction

~ωi arriving at position ~x as li(~x, ~ωi), and the reflected radiance in direction ~ωr exiting at



120

li(~∆i)

~∆|~∆|max

Figure 8.2: Mapping of the incident lighting onto the plane via refraction.

position ~x as lr(~x, ~ωr). We relate the incident radiance from differential solid angle d~ωi

at position ~x to the reflected radiance at position ~x′ in direction ~ωr through the BSSRDF

S(~x, d~ωi → ~x′, ~ωr) so that the reflected radiance at position ~x in direction ~ωr is

lr(~x, ~ωr) =

∫

~x′∈A

∫

d~ωi∈Ω

li(~x
′, d~ωi)S(~x′, d~ωi; ~x, ~ωr)d~ωN

i dA (8.1)

where ~ωN

i is the projected solid angle onto the plane with surface normal N. This

expression is stating that all light arriving in some area A contributes to the reflected

radiance at position ~x according to BSSRDF S.

We now begin to specify S. First, we split it into a reflective term and a scattering

term,

S(~x, d~ωi → ~x′, ~ωr) = fr(~x, d~ωi → ~ωr) + fs(~x, d~ωi → ~x′, ~ωr). (8.2)

The reflective term, fr(~x, d~ωi → ~ωr), is just a standard spatially varying BRDF and rep-

resents the light directly reflected off the top surface. The scattering term, fs(~x, d~ωi →

~x′, ~ωr) represents light passing through the top layer at position ~x′ with solid angle d~ωi

and re-emerging at position ~x in direction ~ωr.

Assuming no absorption as light travels through the transparent medium, spec-

ular transmission through the top layer, and that scattering beyond the initial reflection

at the bottom layer is negligible, we can split the scattering term fs into the product of
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ωi

ωi′ωr′

ωr

∆i

∆r

h

Figure 8.3: Relationships between various angles and distances.

three parts,

fs(~x, d~ωi → ~x′, ~ωr) = ft(~x, d~ωi)Fi(~ωi) . . .

· gr(~x + ~∆i, d~ωi′ , ~ωr′)d~ωN

i′ . . .

· Fr(~ωr)ft(~x
′, d~ωr)d~ωN

r′

(8.3)

where ft(~x, d~ωi) represents the initial transmission through the top layer, gr is the re-

flection from the bottom layer, ft(~x
′, d~ωr) is the transmission out through the top layer,

and Fi(~ωi) and Fr(~ωr) are Fresnel transmission terms for entering and leaving the trans-

parent medium. ~x + ~∆(~ωi) is the position where a given ray of light hits the bottom

layer.

Now observe that if we fix the exitant angle, then only a single incident angle

contributes to the scattering term. To understand this, note that only a single position ~x′

contributes to the exitant radiance, which is completely specified by ~ωi, ~ωr, the thickness

of the transparent medium h, and Snell’s law (specified with the indices of refraction η1

and η2 for the outside medium and transparent medium respectively). We can take this

idea one step further by parametrizing the incident and exitant hemisphere in terms of

~∆i and ~∆r respectively, which denote the distance along the plane between where a ray

intersects the top layer and bottom layer. We can now specify the scattering term as a
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function of ~x, ~∆i, and ~∆r,

fs(~x, ~∆i, ~∆r) = ft(~x, ~∆i)Fi(~∆i) . . .

· gr(~x + ~∆i, ~∆i, ~∆r)d~ωN

i′ . . .

· Fr(~∆r)ft(~x + ~∆r + ~∆i, ~∆r)d~ω′N
r .

(8.4)

If the incident lighting is distant, then it remains constant across the plane and we can

parametrize it entirely in terms of ~∆i. Furthermore, if the refractive index of the trans-

parent layer is higher than that of the outside environment, then because of Snell’s law,

|~∆i| will be bounded by some finite value dictated by the critical angle and the thick-

ness of the medium. Without loss of generality, we scale the coordinate system along

the plane so that |~∆i|max = 1
2
. To simplify subsequent integrals, we define the incident

lighting so that l(~∆) = 0 for all |~∆| > 1
2

(where it was previously undefined).

Putting everything together, we can rewrite equation 8.1 as,

lr(~x, ~∆r) =

∫

~∆i∈A

li(~∆i)S(~x, ~∆i, ~∆r)
d~ωN

i

dA
dA (8.5)

where A = [−1
2
, 1

2
] × [−1

2
, 1

2
].

8.2.1 Fourier Analysis

In the previous section we formulated the exitant radiance as the integral of the

incident lighting li(~∆i) and simplified BSSRDF S(~x, ~∆i, ~∆r). We now turn our atten-

tion to the average behavior of the system. To simplify the math, we fold the projected

solid angle terms and the Fresnel transmission terms into modified versions of fr, ft,

and gr so that,

f̃r(~x, ~∆i, ~∆r) = fr(~x, ~∆, ~ωr)
d~ωN

i

dA
(8.6)

f̃t(~x, ~∆) = ft(~x, ~∆) (8.7)

g̃r(~x, ~∆i, ~∆r) = gr(· · · )Fi(~∆i)Fr(~∆r)
d~ωN

i

dA
. (8.8)
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We can then write equation 8.5 as

lr(~x, ~∆r) =

∫

~∆i∈A

li(~∆i)S̃(~x, ~∆i, ~∆r)dA (8.9)

where

S̃(~x, ~∆i, ~∆r) = f̃r(~x, ~∆i, ~∆r) + . . .

f̃t(~x, ~∆i) · g̃r(~x + ~∆i, ~∆i, ~∆r) . . .

· f̃t(~x + ~∆i + ~∆r, ~∆r).

(8.10)

If S̃ varies spatially with period 1 in the x and y directions, then the average

exitant radiance is

l̄r(~∆r) =

∫

~x∈A

∫

~∆i∈A

li(~∆i)S̃(~x, ~∆i, ~∆r)d~∆i d~x (8.11)

where A = [−1
2
, 1

2
] × [−1

2
, 1

2
].

An Ideal Case

Suppose we are free to choose any form for f̃r, f̃t, and g̃r so long as it varies in x

and y with period 1. To simplify things, let f̃r = 0, ~∆r = ~0 and suppose g̃r(~x, ~∆i, ~∆r) =

g̃r(~x, ~∆r) and f̃t(~x, ~∆i) = f̃t(~x) do not depend on ~∆i. Then the average exitant radiance

is

lr(~0) =

∫

~x∈A

f̃t(~x)g̃r(~x,~0) . . .

·

∫

~∆i∈A

li(~∆i)f̃t(~x − ~∆i)d~∆i d~x
(8.12)

Recalling our goal of recovering lr, if we choose f̃t(~x) = δ(~x) + δ(~x − ~x′) and

g̃r(~x) = δ(~x − ~x′), where δ is the Kronecker delta function, then we get

lr(~0) = li(~x
′) + li(~0). (8.13)

Thus, setting f̃t and g̃r to delta functions enables point sampling of the incident radi-

ance. Assuming we could measure the effects of a delta function, this would allow full
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recovery of the lighting (or a sampled version if ~x′ is restricted to a finite set of values).

However, this is an unrealistic solution in practice because delta-like functions would

result in very subtle changes in image intensity which would be hard to recover with an

image sensor.

Another possible choice for f̃t is

f̃t(~x, ~∆i) = e−i2π~n·~x

= e−i2πux−i2πvy
(8.14)

where ~n = {u, v} and u,v are integers. In this case the average exitant radiance is

lr(~0) =

∫

~x∈A

e−i2π~n·~xg̃r(~x,~0) . . .

·

∫

~∆i∈A

li(~∆i)e
−i2π~n·(~x−~∆i)d~∆i d~x

lr(~0) =

∫

~x∈A

e−i2π2~n·~xg̃r(~x,~0) . . .

·

∫

~∆i∈A

li(~∆i)e
i2π~n·~∆id~∆i d~x

lr(~0) = G̃2~nL
∗
~n

(8.15)

where L~n = L(u, v) is the u,vth 2D Fourier series coefficient of the lighting, G̃2~n =

G̃(2u, 2v) is the (2u, 2v)th Fourier series coefficient of g̃r, and ∗ denotes the conjugate

operator. To recover L~n we simply need to choose g̃r so that it contains frequencies of

2~n: The most logical choice is to set g̃r(~x,~0) = ei4π~n·~x, yielding G2n = 1 and

lr(~0) = L∗
~n. (8.16)

From this equation we directly obtain L~n. While the assumptions used to reach this

result are unrealistic1, it does provide hope that one can construct a BRDF that directly

outputs frequency components of the lighting. Since low frequency lighting is often

sufficient for rendering purposes, we should be able to obtain a useful lighting represen-

tation using only a small set of such BRDFs.

1Not only is positivity violated, but imaginary numbers are used!
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A More Realistic Case

To satisfy the laws of physics, we must modify the above formulation in a num-

ber of ways:

1. Positivity and conservation of energy must be enforced. A valid BRDF or BTDF

is greater than or equal to zero for all inputs and the integral of a BRDF or BTDF

over all incident directions must sum to 1 or less.

2. Fresnel reflectance varies with incident angle, so our assumption that the top and

bottom layers are constant across incident angles is violated.

3. We must depend exclusively on non-imaginary numbers.

Assumption 1 can be met simply by adding a constant term to f̃t or g̃r and then scaling

the signal with a multiplicative factor. Thus, we will get a new signal km(ka + f(~x))

that satisfies positivity and conservation of energy. Assumption 2 implies that we can no

longer factor f̃t and g̃r out of the inner integral. However, in many cases we can factor

these terms into a spatially varying component that doesn’t vary with incident angle

and a non-spatially varying component that remains inside the integral. If the spatially

varying components have appropriate signals we can recover the product of the lighting

with the non-spatially varying components of f̃t and g̃r. Once this is recovered we can

divide out the undesired terms and recover the original lighting. Assumption 3 is easily

overcome by using sinusoids instead of complex exponentials (i.e., the real-valued form

of the Fourier series).

8.3 Experimental Validation

8.3.1 Setup

To validate our theory, we printed a set of sinusoidal patterns on a transparency

sheet and on a sheet of matte paper and separated the two patterns with a sheet of glass
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Figure 8.4: Experimental setup. We have our planar light probe next to a mirrored ball,

which is used to capture the baseline lighting.

(see figure 8.4). The thickness of the glass was measured to be 0.096 inches and the

refractive index assumed to be 1.52. To flatten the transparency sheet we also placed a

sheet of glass above the transparency. Thus, our light probe consists of two sheets of

glass, a transparency sheet and a piece of matte paper. For each frequency2 (u, v) we de-

vote two regions where the top layer is a sinusoid of the form 1
2
(1+sin(−2π(ux+vy)))

and the bottom is a sinusoid of the form 1
2
(1 + sin(4π(ux + vy) + τ)). If we assume

the bottom layer is Lambertian then it can be shown that the reflected radiance is of the

form aL0 + bLa~n + cLb~n + s(x), where L0 is the average incident radiance, La~n and

Lb~n are the the even and odd portions of the Fourier coefficients, and s(x) represents

the specularities that occur at the surface of the glass. We add a spatial dependence

on the surface reflection because while we assume the light and camera are distant, in

practice this assumption is violated and surface reflections vary spatially across the sur-

face (albeit slowly). To counteract the effect of the spatially varying specularity term,

we sample the specular reflection by placing unpatterned regions at uniform intervals

across the light probe. There are four types of unpatterned region: (top clear, bottom

2Minus redundant frequencies caused by conjugate symmetry.
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Figure 8.5: Closeup of the patterns on our planar light probe.

white), (top clear, bottom dark), (top dark, bottom white), (top dark, bottom dark). Be-

cause Fresnel reflection occurs at the top surface of the glass, by subtracting the average

intensity in a constant region from some other type of region, we effectively cancel the

specular reflection term.

We layout the planar light probe in terms of blocks, where each block consists of

a pattern designed to extract a single frequency component of the incident lighting. To

calibrate the light probe, suppose we have K blocks and N images of the probe under

different known lighting conditions. Then we can form a feature vector V ∈ [KxN ]

of our observations and a corresponding linear system L = MV where L contains the

known lighting coefficients. After solving for the matrix M we can then obtain unknown

lighting coefficients from images of our light probe using MV .
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8.3.2 Results

Figures 8.6,8.7, and 8.8 show some results from our light probe. For very low

frequencies the results seem relatively stable; however, the stability quickly declines for

higher frequencies3. There are many potential causes for this. One likely possibility is

that high frequency terms are present in many of the regions we observe as a result of

discretization in the printing process. Since we are trying to fit only low order terms,

if higher frequencies are present it will interfere with the fitting process. A potential

solution would be to use a better printing process such as dye-sublimination4 to get

more continuous half-tones. Another possible workaround would be to directly measure

the BRDFs present on the light probe and use these directly as basis functions for the

lighting. This is the direction we are currently working towards as it should yield the

best results; however it requires tedious and error prone BRDF measurements that can

be difficult to get right.

8.4 Summary

We have shown theory that suggests BRDFs can be manufactured that are sen-

sitive to specific frequencies of the lighting. Based on this theory, we have constructed

a planar light probe capable of estimating low frequencies of the lighting. Such a probe

would be useful for many applications, particularly applications requiring lighting es-

timation from low-dynamic range images. For most materials, a fifth order frequency

approximation of the lighting is enough to photo-realistically render it, so if we can push

our probe a little further it will be a truly useful device.

3Note: In these figures, redundant conjugate symmetric coefficients have been omitted.
4A 1200dpi laser printer was used in our experiments.
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Figure 8.6: Low order frequencies recovered from our light probe vs. the baseline

provided by a mirrored ball. (Top) Real and imaginary estimated frequency components

compared to the baseline frequencies. (Bottom,Right) Actual lighting, (Bottom,Middle)

Actual lighting resulting from an order 1 Fourier series approximation, (Bottom,Left)

Estimated lighting.
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Figure 8.7: Low order frequencies for a different environment recovered from our light

probe vs. the baseline provided by a mirrored ball. (Top) Real and imaginary estimated

frequency components compared to the baseline frequencies. (Bottom,Right) Actual

lighting, (Bottom,Middle) Actual lighting resulting from an order 1 Fourier series ap-

proximation, (Bottom,Left) Estimated lighting.
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Figure 8.8: Higher frequency approximations. Current estimation techniques are only

working well for very low frequencies. Notice all the noise in the estimation; we hope

to fix this in future work.



Chapter 9

Conclusion

In this dissertation, we have examined three important aspects of scene recon-

struction: recovery of shape, reflectance, and illumination. Each component plays an

essential role in the formation of images. In each chapter a different element of the

reconstruction problem is addressed.

In Chapter 4 we presented a method for resolving the GBR ambiguity in uncal-

ibrated photometric stereo by utilizing the spatial distribution of surface reflectance. In

Chapters 5 and 6 we presented photometric stereo methods which are valid for nearly ar-

bitrary surface reflectance; specifically, we correctly handle spatially varying reflectance

and do not impose parametric forms on the BRDF. In Chapter 7 we showed how to uti-

lize similar constraints for use in multi-view reconstruction. Finally, in Chapter 8 we

introduced a novel method for measuring the illumination in a scene using a light probe

with spatially varying reflectance.

The underlying theme of this research has been to extend existing methods to

handle and utilize complex reflectance. This is an important issue because most of the

models used in computer vision are incapable of handling the diversity of materials

found in the real world. When the underlying models are insufficient, this leads to in-

correct and biased inference of scene properties. On the other hand, flexible models

can be problematic from a data fitting perspective. For this reason, we have striven to
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utilize properties of reflectance which are both physically valid for a wide range of ma-

terials and constraining enough for inference. Identifying such properties and determin-

ing appropriate methods for utilizing them is non-trivial and there are often trade-offs

involved. For example, the method presented in Chapter 5 is valid for objects with arbi-

trary isotropic reflectance, but requires a specific set of input images to work correctly.

In shape from shading, where only a single input image is provided, reconstruction is

extremely difficult even with very restrictive models.

It is our hope that the research presented in this dissertation will inspire future

methods that correctly operate on more general scenes and / or utilize less restrictive

imaging setups. In this respect, there remain a number of open problems. For example,

a valid criticism of the techniques in Chapters 5 and 6 is that a large number of images

are required. This is mostly due to the flexibility of the underlying reflectance mod-

els; however, it is not clear how much flexibility is required in practice. A promising

approach may be to learn reflectance models from material databases such as that of

Matusik et al. (2003). Using a suitable database it should be theoretically possible to

construct reflectance models that are optimally flexible for a given application.

Another challenge is how to properly handle global illumination effects, which

include phenomenon such as cast shadows, interreflections, and subsurface scattering.

These effects are particularly difficult because the shape and reflectance at each point

in the scene is potentially affected by every other point in the scene. Apart from a

few notable exceptions (Kender and Smith, 1987; Nayar et al., 1991; Chandraker et al.,

2005, 2007), most state of the art methods including those presented in this dissertation,

either treat global illumination effects as outliers or simply ignore them as negligible.

These are dangerous assumptions to make, however, as global illumination often has a

significant influence on the appearance of objects. To properly solve this problem will

require new analysis techniques capable of handling the complex interdependencies of

each point in the scene.

Reconstruction of scenes viewed under complex illumination conditions is an-

other difficult problem. In most of this dissertation, with the exception of Chapter 8,
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illumination was assumed to arise from a single directional light source. However, it is

very uncommon to encounter this type of illumination in the real-world, where objects

typically receive light from all directions. A promising way to handle such illumina-

tion is to use frequency domain representations of the illumination and reflectance as in

Ramamoorthi (2002) and Basri and Jacobs (2003); however, these approaches have dif-

ficulty handling high-frequencies in either the reflectance or the illumination. Another

issue is spatially varying illumination, which means the light arriving at one point may

be different from the light arriving at another point. If the spatial variation is known, it

can be utilized to constrain the shape of the scene; this is the basis for techniques such as

shape from structured illumination. How to properly handle unknown spatial variation

is an open problem.

A more specific direction for future work is to further analyze the shape ambi-

guity that arises in Chapter 5. As shown in that chapter, the surface can be recovered

by photometric stereo up to a set of iso-depth contours by imposing bilateral symmetry

and surface integrability. At least two questions immediately arise: (a) What additional

constraints can be used to recover the full surface structure? and (b) In what applications

can the isocontour structure be directly utilized? The technique in Chapter 6 presents

one possible way to address the former question, but there are numerous other ways to

fully constrain the surface shape that remain to be explored. Potential applications, in-

cluding recognition, industrial parts inspection, topological analysis, etc. are completely

unexplored.

Another area of future work is to apply bilateral symmetry, isotropy, and the

bi-variate BRDF approximation of Chapter 6 to other problems in computer vision.

These properties are valid for a wide range of real-world materials making them ideal

constraints for scenes with complex reflectance. The main problem in utilizing these

properties is that they require samples from specific regions of the BRDF domain to be

useful. This means that incorporating such constraints in existing algorithms will often

be non-trivial. To overcome these difficulties, it may be necessary to acquire images

from multiple lighting conditions and / or viewpoints, or to formulate constraints that
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link multiple surface points together.
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