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How to Construct Multicast Cryptosystems

Provably Secure against Adaptive Chosen

Ciphertext Attack ⋆

Yitao Duan and John Canny

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720, USA
{duan, jfc}@cs.berkeley.edu

Abstract. In this paper we present a general framework for constructing
efficient multicast cryptosystems with provable security and show that a
line of previous work on multicast encryption are all special cases of this
general approach. We provide new methods for building such cryptosys-
tems with various levels of security (e.g., IND-CPA, IND-CCA2). The
results we obtained enable the construction of a whole class of new multi-
cast schemes with guaranteed security using a broader range of common
primitives such as OAEP. Moreover, we show that multicast cryptosys-
tems with high level of security (e.g. IND-CCA2) can be based upon
public key cryptosystems with weaker (e.g. CPA) security as long as the
decryption can be securely and efficiently “shared”. Our constructions
feature truly constant-size decryption keys whereas the lengths of both
the encryption key and ciphertext are independent of group size.

1 Introduction

Multicast offers an efficient way to deliver the same message to a group of re-
ceivers and has become the basis of many applications. The Internet today sup-
ports a basic form of multicast service. On the Internet, a multicast group is
identified by a Class D IP address and any receivers can join or leave a multicast
group by sending IGMP (Internet Group Management Protocol) [1] messages
to their local router. Any sender can send message to a multicast group by
addressing the message to the group address.

The current IP Multicast service does not provide mechanisms to restrict
message delivery to a specified set of receivers therefore other means have to
be used to secure the communication. A multicast encryption system provides
confidentiality for multicast data – ensuring that any parties other than the in-
tended recipients should not be able to access the message. To this end, most
of the existing work use one of two approaches. The first is represented by the
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work in network research that is concerned with multicast security. In this ap-
proach symmetric key encryption is used and the data is encrypted with a traffic
encryption key (TEK) that is known only to the multicast group members. The
difficulty here is key management: The TEK may have to be changed when
members join or leave the group. This is known as re-keying. Early schemes
(e.g., Group Key Management Protocol (GKMP) [2]) let the group controller
or the sender share a pairwise key with each group member and distribute keys
to them on a one-to-one basis. For obvious reasons this cannot scale to large
groups.

Some work has been done to improve the scalability of such schemes. Among
the efficient solutions, the Logical Key Hierarchy (LKH) (or Key Graph) was
independently discovered in [3] and [4] and has been an inspiration for many
subsequent works [5–10]. In these schemes, individual and auxiliary keys are
organized into a hierarchy and each group member is assigned to a leaf and
holds all the keys from its leaf to the root. The root key is shared by all group
members and used as the TEK. New TEK is distributed by encrypting it with
keys that deleted members do not have. So far O(log n) seems to be the best
storage (for both center and members) and communication complexity the LKH-
based schemes achieved, where n is the size of the multicast group.

The problem with this approach is that revoking a single user involves chang-
ing the keys for all others and the receivers must be stateful and always online
in order to receive the latest TEK.

The second approach uses asymmetric key cryptosystem and allows the re-
ceivers to be stateless. This includes the work in cryptography such as traitor
tracing, a concept introduced by Chor, Fiat and Naor [11], and broadcast en-
cryption, initiated by Fiat and Naor [12]. Both are based on encryption schemes
where a ciphertext can be decrypted by multiple parties with different keys.
The scheme in [12] requires O(t log t log n) keys per user and the transmission of
O(t2 log2 t log n) messages where t is the number of revoked users. Subsequent
work proposed a number of other schemes including [13–17], and [18, 19] which
achieved O(t) message complexity and O(log1+ǫ n) keys per user. Boneh and
Franklin’s scheme proposed in [13] is based on Reed-Solomon codes and the rep-
resentation problem for discrete logs. They also presented a modification, using
techniques by Cramer and Shoup [20], that was provably secure against adaptive
chosen ciphertext attack.

Recently Boneh et al. presented a broadcast encryption scheme based on bi-
linear map with constant-size ciphertexts and private keys (and O(n)-size public
key) [21]. However, in this system, the decryption requires the public key and
the knowledge of the set of legitimate recipients. Therefore the “effective” de-
cryption key and/or ciphertext in a real application actually become linear in
the total number of receivers.

There is a line of work in the second approach that we classify as Asymmetric
Threshold Decryption-based (ATD-based) multicast encryption. This includes
[14, 17, 22–24], although none of them explicitly formalized their schemes this
way. In these schemes a private key is shared using a (t + 1, n + t)-threshold



scheme and the shares are distributed asymmetrically. Namely the center is
given t shares and each user is given 1 share. The center broadcasts a ciphertext
together with t partial decryptions. Any member with a valid share of the private
key can produce another decryption share and recover the message. With such
schemes, user only needs to store a key of constant length. And both the message
complexity and sender storage are O(t), independent of the group size.

1.1 Our Results

We focus on the ATD-based multicast encryption cryptosystems and introduce
a general framework for constructing such systems with guaranteed security.
As we will show later, all existing ones are special cases of our constructions.
In particular, they are all based on specific ElGamal encryption that relies on
specific assumptions (e.g. DDH). The results we obtained in this paper, on the
other hand, are more general. The main contributions are: (1) We show that any
threshold encryption scheme can be used to construct a multicast cryptosystem
that retains the same level of security (e.g. IND-CPA, IND-CCA2) as the under-
lying threshold encryption. (2) We obtain new results that improve over existing
ATD-based schemes in both security and efficiency. Specifically, the resulting
scheme from our construction can be made CCA-secure even if the underlying
threshold scheme is not. (3) Furthermore, we show that an IND-CCA2 secure
multicast scheme can be constructed from a public key cryptosystem that does
not have a secure threshold implementation (such as OAEP) or has only weaker
security (e.g. only IND-CPA), provided the decryption can be securely and ef-
ficiently shared (to be elaborated in Sect. 4.4). All of our security proofs are in
the same (standard or random oracle) model as the underlying threshold scheme
or public key cryptosystem.

These general security results can be used to analyze existing systems in a
more unified framework and provide guidelines for constructing future schemes
with guaranteed security. This frees the system designer from the burden of
security consideration and allows them to focus on other aspects of their schemes.

2 Preliminaries

We consider the scenario where a single party, called the center, sends messages,
over insecure channels, to a group U of n parties who are denoted members of
the group. In such a setting, the center often has a special role. Since it is often
distributing information of its own choice, it is assumed to have control over the
group membership, i.e., the center is allowed to make decisions about who can
join the group and whose membership should be revoked. This is in line with
almost all multicast schemes such as [25, 4, 26, 27, 22–24].

We assume a computationally bounded adversary who is allowed to attack
the system from both outside and inside the group. The insider’s attack is mod-
elled by allowing the adversary to corrupt and gain total control of up to t group



members where t is a predefined threshold. We only consider non-adaptive ad-
versary who chooses what members to corrupt before the key generation.

The multicast communication we are considering in this paper is assumed to
be “closed”, i.e., we only provide the center with the ability to encrypt messages
(and of course only the intended recipients can decrypt them). This is different
from the public key systems such as [17, 22–24] where the information to encrypt
a message is public. The openness is unnecessary for some applications and
unacceptable for some others (e.g. military communication). By “closing” the
communication, we can provide more flexible constructions that can make use of
a broader range of primitives. The price for this flexibility is the loss of the public
key feature, which should not be a problem for many applications. However we
observe that in many instantiations of our constructions, it is easy to “publicize”
the encryption key, without affecting the security of the scheme, as demonstrated
by works such as [22–24]. This effectively turns the scheme into a public key
system and all the openness features are reinstalled.

3 Multicast Cryptosystem

Definition 1. An n-way multicast encryption scheme ME = (KeyGen,Reg,E,D)
consists of the following set of algorithms:

1. Key Generation KeyGen: a probabilistic polynomial-time (in k) algorithm
which takes as inputs a security parameter 1k, a threshold t, the number of
(initial) group members n, and generates global information I, the encryption
key Σ and the master secret key Γ .

2. Registration algorithm Reg: a probabilistic algorithm to compute the secret
initialization data for a new user subscribing to the system. Reg receives as
input the master key Γ and a new index i associated with the user; it returns
the user’s secret key Γi.

3. Encryption E: a probabilistic polynomial-time algorithm that, on inputs Σ,
the encryption key, and a string m ∈ {0, 1}k, and a set R of revoked users
(with |R| ≤ t) and their keys, produces as output ψ ∈ {0, 1}∗ called the
ciphertext 1.

4. Decryption D: a deterministic polynomial-time algorithm such that ∀m ∈
{0, 1}k, ∀ i ∈ U \ R, D(Γi,E(Σ, {(j, Γj)|j ∈ R},m)) = m. On all other
inputs it outputs a special symbol ⊥.

KeyGen and Reg should be run by the center and the two can also be executed
together with an initial set of n members as input. Admitting new members is
relatively trivial, at least for all the construction we will be presenting, so in the
following we simply omit Reg and use (I,Σ, Γ,Γ ) ← KeyGen(1k, t, n) to denote
this process, where Γ = (Γ1, . . . , Γn) is a vector of secret keys for the n members.

1 Note that member revocation is implicitly embedded in the encryption algorithm.



3.1 Notion of Security

The communication paradigm we are considering shares similarities with both
symmetric key and public key cryptosystems. On one hand the communication
is “closed” in that we only allow the center to send messages to the group. On
the other hand the keys are “asymmetric” since now there are multiple recipients
and our definition includes member revocation which means the encryption key
and the decryption keys must be different.

Dodis and Fazio [23] first precisely formalized the notion of adaptive security
for public key multicast encryption schemes, which allow anyone having access
to the public key to send messages to the group, at both CPA and CCA2 lev-
els. Since our setting is different from the “public key” paradigm, we adopt a
slightly modified definition. The major difference is that, we do not explicitly
allow the adversary to see the sender’s keys since ours is not a public key cryp-
tosystem. Instead the adversary can obtain encryptions of arbitrary messages
by querying an encryption oracle who also encrypts the target message later.
This is similar to the security definition based on indistinguishability for sym-
metric key cryptosystems. The ability to handle member revocation is modelled
by allowing the adversary to corrupt members and obtain their secret keys. This
formalization is general and captures the security notions of many multicast
schemes such as those LKH schemes [3, 4] which are based on symmetric key
cryptography. However we note that in all the construction we introduce later,
the secret keys of the revoked members constitute the actual encryption key.
In essence in our constructions the exposure of encryption key can be modelled
as corrupting members. This effectively turns our scheme into a “public key”
paradigm from the adversary’s point of view and the security definitions from
[23] are appropriate.

Formal Model Given a multicast encryption scheme ME = (KeyGen,E,D), a
polynomial time adversary A’s attack is modelled by the following game:

Game ME:

M1 The adversary A chooses to corrupt a fixed set R of t members.
M2 (I,Σ, Γ,Γ ) ← KeyGen(1k, t, n) is run and A is given the public information

I and the secret keys of corrupted members. User i receives Γi. The center
is given R and their keys.

M3 The adversary interacts with the center, who acts as the encryption oracle,
in an arbitrary fashion. On any query m from A, the center returns its
encryption.

M4 A chooses two plaintexts m0 and m1 of the same length and gives them to the
center who chooses b ∈ {0, 1} at random, and gives the “target” ciphertext
ψ′ = E(Σ, {(j, Γj)|j ∈ R},mb) to A.

M5 A continues to interact with the center.
M6 At the end of the game, A outputs b′ ∈ {0, 1}.

The advantage of A is defined as



AdvCPA
ME,A(k) = |Pr(b′ = b) − 1/2|

In addition, in the case of a adaptive chosen ciphertext attack (CCA2) 2, in
both stages M3 and M5, A is also allowed to interact in an arbitrary manner
with the group members who act as the decryption oracles. On a query ψ from
A, member i returns D(Γi, ψ). The only restriction on the interaction is that the
target ciphertext ψ′ cannot be one of the queries made to any of the decryption
oracles. As before, A’s advantage in the CCA2 case is defined as

AdvCCA2

ME,A(k) = |Pr(b′ = b) − 1/2|

Definition 2 (t-Resilient Multicast Encryption Scheme). Let µ ∈ {CPA,
CCA2}. A multicast encryption scheme ME is t-resilient against a µ-type attack
if the advantage, Adv

µ
ME,A(k), of any probabilistic polynomial time adversary A

is a negligible function of k.

4 ATD-Based Multicast Encryption

In this section we define two constructions and show that a line of previous work
on multicast or broadcast encryption can actually be characterized as special
cases of these constructions.

4.1 Threshold Decryption Scheme

A (t+1, n)-threshold cryptosystem T D = (KeyGenTD,DTD,VTD, η,ETD) consists
of the following algorithms:

– Key generation algorithm (PK, V K,SK) ← KeyGenT(1k, t, n): a probabilis-
tic algorithm that, given a security parameter 1k, a threshold t, and the
number of players n, generates a public key, PK, a verification key V K, and
n private keys SK = (SK1, . . . , SKn). PK and V K are made public while
SKi is known only to player i, i = 1, 2, . . . , n.

– Share computation DTD: a probabilistic algorithm that, given a private key
SKi and the ciphertext c, DTD computes ρ = DTD(SKi, c), called a decryp-
tion share.

– Share verification V: a deterministic algorithm that takes as input the public
verification key V K, the ciphertext c, and a share ρ, and outputs V(V K, c, ρ) ∈
{0, 1}.

2 We do not explicitly consider non-adaptive chosen ciphertext attack (CCA1). It
should be easy to see that all the discussions and proofs still hold in the case of
CCA1, by simply restricting the adversary from interacting with the decryption
oracles after the target ciphertext is generated in both Game ME and TD (Sect.
4.1).



– Share combination algorithm η: given the verification key V K, the ciphertext
c, and a set Λ of t + 1 shares, η either outputs the corresponding result
r = η(V K, c, Λ) or a special symbol ⊥ that is different from all possible
correct results.

– Encryption algorithm ETD: the “opposite” of DTD. This function is carried
out in the normal manner by a single party and should follow the same
definition as the encryption algorithm in a standard public key cryptosystem.

The operation of a threshold decryption scheme can be modelled as follows.
There is a trusted dealer (e.g. the center) and a set of n decryption servers
indexed 1, . . . , n. In an initialization phase, the dealer runs the key generation
algorithm and creates PK, V K and SK. SKi is given to server i. To decrypt a
ciphertext ψ, a client gives ψ to the servers, requesting a decryption share from
each of them. It can verify the validity of the shares using the given verification
key. Once the client collects valid shares from at least t+1 servers, she can apply
η to obtain the decryption.

Threshold cryptosystems are part of a general approach known as thresh-
old cryptography, introduced by Boyd [28], Desmedt [29], and Desmedt and
Frankel [30]. There are schemes based on both Diffie-Hellman problem [30] and
RSA [31]. All these schemes can be shown to be secure against chosen plain-
text attack, but they are not known to withstand chosen ciphertext attack.
After Cramer and Shoup discovered the first truly practical public key cryp-
tosystem that is provably secure against chosen ciphertext attack without using
random oracles [20], several of its threshold implementations have been proposed
and proved CCA2 secure (also without using the random oracle model) [32–34].
Shoup and Gennaro presented a more efficient threshold scheme in [35] that is
proven CCA2 secure in the random oracle model.

We adopt Shoup and Gennaro’s definition of security for threshold decryption
schemes from [35], which is a natural extension of security for a public key
cryptosystem, and define the security of a (t+1, n)-threshold decryption scheme
T D = (KeyGenTD,DTD,VTD, η,ETD) with respect to the following game:

Game TD:

TD1 The adversary A chooses to corrupt a fixed set of t servers.
TD2 The key generation algorithm is run. The public key, verification key and

the private keys of the corrupted servers are given to A. Other private keys
are given to the uncorrupted servers.

TD3 A chooses two plaintexts m0 and m1 of the same length and gives them
to an “encryption oracle” that chooses b ∈ {0, 1} at random, and gives the
“target” ciphertext ψ′ = ETD(PK,mb) to A.

TD4 At the end of the game, the adversary outputs b′ ∈ {0, 1}.

This game defines the attack scenario for CPA security. The adversary’s
advantage is defined to be the absolute difference between 1/2 and the probability
that b′ = b:

AdvCPA
T D,A(k) = |Pr(b′ = b) − 1/2|



For CCA2 attacks, A is allowed to interact with uncorrupted decryption
servers, who act as the decryption oracles, in an arbitrary fashion, feeding them
ciphertexts ψ 6= ψ′, and obtaining decryption shares. The calls to the decryption
oracles can happen at any point during the execution of the game, both before
and after stage TD3, and be arbitrarily interleaved with other oracle calls. A’s
advantage is defined as

AdvCCA2

T D,A (k) = |Pr(b′ = b) − 1/2|

Definition 3 (t-Resilient Threshold Decryption Scheme). Let µ ∈ {CPA,
CCA2}. A threshold decryption scheme T D is t-resilient against µ-type attacks
if the advantage, Adv

µ
T D,A(k), of any probabilistic polynomial time adversary A

is a negligible function of k.

4.2 Basic Construction

Construction 1 (ME1) Given a threshold decryption T D = (KeyGenTD,DTD,
VTD, η,ETD), a security parameter 1k, a threshold t and the number of (initial)
members n, a multicast encryption scheme MET D

C1 = (KeyGen,E,D) can be con-
structed as follows:

1. Key Generation KeyGen: Run (PK, V K,SK) ← KeyGenTD(1k, t, n + t). Set
I = (PK, V K) and the encryption key Σ = {(j, SKj) : j = n+1, . . . , n+ t}.
Σ is given to the center. Member i receives secret key Γi = (i, SKi). The
master secret key is Γ = (Γ1, . . . , Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys,
with |R| ≤ t, a message m, the encryption proceeds as follows. Let T =
{n+1, . . . , n+ t}. The encryptor randomly selects a subset of T with t− |R|
elements, denoted T ′, and computes the ciphertext ψ = (c, {(j, cj) : j ∈
T ′ ∪ R}) where c = ETD(PK,m) and cj = DTD(SKj , c).

3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is
first parsed into ψ = (c, Λ′) where Λ′ = {(j, cj) : j ∈ T ′ ∪ R} with cj =
DTD(SKj , c). For all j ∈ T ′∪R, the decryption first test vj = VTD(V K, c, cj).
If any vj = 0, D returns ⊥. Otherwise it returns

m = η(V K, c, Λ′ ∪ {(i,DTD(SKi, c))}) (1)

With this construction, the multicast ciphertext essentially consists of the ci-
phertext of the underlying threshold scheme, together with t partial decryptions
produced using the keys of revoked members. To decrypt, a legitimate mem-
ber combines the partial decryptions embedded in the ciphertext with another
one computed using her own share of the private key. As we will show, this
construction preserves the security of the underlying threshold scheme.

Theorem 1 (Security Inheritance). Let µ ∈ {CPA,CCA2}. Given a thresh-
old decryption scheme T D = (KeyGenTD,DTD,VTD, η,ETD) that is t-resilient
against µ-type attacks, the multicast encryption scheme MET D

C1 constructed us-
ing Construction 1 with threshold t and (initial) group size n is t-resilient against
µ-type attacks.



The proof of this theorem is similar to that of Theorem 2, which is more
interesting and is presented later, and is omitted from this paper.

Many existing multicast schemes can be shown to be special cases of our
Construction 1 and their security can be readily predicted by Theorem 1. The
Revocation method 1 in [17] and the group key distribution scheme in [14] are
just Construction 1 instantiated with a special use of threshold ElGamal 3.
The basic scheme in [22], the “public key (multicast) encryption” from [17] and
the CPA secure scheme from [23] can all be shown to be Construction 1 with
a standard threshold ElGamal cryptosystem. These schemes are shown to be
secure against chosen plaintext attacks in their individual papers. The same
conclusion can be reached immediately through Theorem 1.

Theorem 1 also provides guidelines for constructing new multicast encryp-
tion schemes with guaranteed security. For example, some threshold schemes are
known to be CCA2 secure (e.g. [35, 32–34] and the IND-CCA2 threshold ElGa-
mal in [36]) and a multicast encryption constructed via Construction 1 using
one of these schemes is therefore guaranteed to be CCA2 secure too. In ad-
dition, all existing ATD-based multicast encryption schemes [17, 14, 22–24] are
based on discrete logarithm. Theorem 1 provides security guarantee for con-
structing multicast encryption using any other assumptions. For example, [31]
provides a threshold RSA scheme with CPA security. Such scheme can be used
to construct a RSA-based CPA secure multicast cryptosystem. Another example
of factorization-based scheme is the threshold version of Paillier cryptosystem
[37] presented in [36]. [36] provides techniques to make this scheme IND-CCA2.
A multicast cryptosystem with the same level of security based on Paillier cryp-
tosystem can thus be constructed using Construction 1. All the above examples
have never been proposed before. They are the natural products of Construction
1 and their security is guaranteed by Theorem 1.

4.3 Extension to Construction 1

Construction 1 provides a simple way to utilize a threshold scheme to construct
multicast encryption and we have shown that the resulting scheme is as secure
as the underlying threshold scheme. It is basically an “encrypt-then-decrypt-t-
times” scheme. It can be improved both in efficiency and security with simple
extension.

In Construction 1, the encryptor has access to what are equivalent to t de-
cryption shares in T D which are not available to an encryptor in the underlying
threshold scheme. This gives her a chance to “protect” these shares and, as a
result, the resulting multicast encryption can be made more secure than T D.
This can be seen as an extension of Construction 1:

3 Their scheme uses this construction not to encrypt any useful messages. Instead, it is
basically a distributed Diffie-Hellman key exchange which is equivalent to producing
an ElGamal encryption of an arbitrary message (which is ignored) and allowing any
member with proper keys to derive from the ciphertext, and partial decryptions, a
secret key that can be used to encrypt actual data.



Construction 1e (ME1e) Same as Construction 1 except for the following:

– The encryption E produces ciphertext as ψ = (c, {(j,DTD(SKj , c)) : j ∈
T ′ ∪ R}, υ) where c = ETD(PK,m) and υ = Tag(c,Σ, I) is a “tag” for the
ciphertext.

– The decryption D first computes Valid(Γi, ψ, I) where Valid is a checking
function outputting 0, or 1. If Valid outputs 0, D returns ⊥. Otherwise it
proceeds the same as Construction 1.

This construction can be used to build a multicast scheme with higher se-
curity than the underlying threshold scheme. This is essentially what was done
in [23] and [24]. The protection mechanism (i.e. Tag and Valid) depends on the
threshold scheme and the security goal. In [23], the standard techniques of [20]
(which attaches tags to the ciphertext so that the recipients with proper keys
can verify its validity) was applied to protect the decryption shares and the se-
curity achieved is what [23] called gCCA2 (Generalized CCA) which is a variant,
and weaker version, of CCA2. To achieve real CCA2 security, [23] used secure
message authentication code (MAC) to make the verification tags non-malleable.
And [24] essentially used a threshold version of M-CS [32].

4.4 Sharable Trapdoor Permutation-Based Construction

A whole class of public key cryptosystems are based on trapdoor permutations.
Let fPK : {0, 1}k → {0, 1}k be a k-bit to k-bit trapdoor (one-way) permu-
tation with inverse f−1

SK , defined by the public-private key pair (PK,SK). A
public key cryptosystem Ef,g,h encrypts a message m as E(m) = h(fPK(g(m)))
where g and h are probabilistic, invertible functions that specify pre- and post-
encoding operations, respectively. Given a ciphertext c, the decryption algorithm
D computes u = h−1(c), v = f−1

SK(u) and m = g−1(c, u, v) 4. Depending on the
security, the decryption may involve computing Valid(c, u, v) ∈ {0, 1} which is
the verification of the encoding. The decryption returns ⊥ if Valid(c, u, v) = 0.
We denote such cryptosystem as Ef,g,h = (KeyGen,E,D,Valid) where KeyGen

generates (PK,SK) on given security parameter 1k. In the following, the keys
will be dropped from the notations when there is no need to make them explicit.

Such cryptosystems are prevalent in practice. One example is the RSA Public
Key Cryptography Standard # 1 [38], where g(m) is essentially m padded with
a string of random non-zero bytes in the high-order bit positions and post-
encoding is simply omitted. Other schemes make use of hash functions. Let
G : {0, 1}∗ → {0, 1}∞ be a random number generator and H : {0, 1}∗ → {0, 1}k0

be a hash function where l = k − k0 is the length of the message. In [39] Bellare
and Rogaway proposed the scheme EG

BR where E(m) = f(r) ‖ G(r) ⊕ m with

4 Note that g and h are easily invertible and do not require trapdoors. Also note
that both g and h are probabilistic and g(m) maybe independent of m. In this
case simply inverting v does not reveal m. However, these decryptions all have the
following property: once the pre-image of the trapdoor permutation is recovered, it
is easy to compute m. We simply use g−1(·) to denote this process.



r ←R {0, 1}k. [39] showed that it is semantically secure in the random oracle

model. [39] also presented another scheme, denoted EG,H
BR , that is shown to be

CCA2 secure, also in the random oracle model. In EG,H
BR , message m is encrypted

as E(m) = (f(r),m ⊕ G(r),H(r,m)) where r ←R {0, 1}k. Given a ciphertext
(s, c, v), the decryption algorithm computes r = f−1(s),m = G(r) ⊕ c, and
v′ = H(r,m). If v′ = v, it outputs m, and ⊥ otherwise.

Another popular scheme is the OAEP scheme introduced in [40]. In this
scheme, to encrypt a message m of length l bits, one selects a random value
r ←R {0, 1}k0 and computes s = (m ‖ 0k1) ⊕ G(r) and t = r ⊕ H(s) where
k1 = k − l − k0. The ciphertext is c = f(s, t). To decrypt a ciphertext c, the
decryptor extracts (s, t) using the private key (s, t) = f−1(c) and computes
r = t ⊕ H(s) and M = s ⊕ G(r). If [M ]k1

= 0k1 , it returns [M ]l. Otherwise
it returns ⊥. In the above, [M ]l (resp. [M ]l) denotes the l least (resp. most)
significant bits of M .

In [40], Bellare and Rogaway proved that OAEP construction together with
any trapdoor one-way permutation is IND-CCA1. OAEP was widely believed to
achieve stronger security (i.e. IND-CCA2). But Shoup showed in [41] that it is
unlikely such security proof exists, for any trapdoor permutation. However, he
proved that, when instantiated with low-exponent RSA, OAEP was IND-CCA2.
This result was extended to arbitrary exponent RSA in [42].

All these schemes provide practical public key cryptosystems with various
security and efficiency. (The OAEP scheme provides optimal bit complexity in
that the ciphertext size is only slightly greater than that of plaintext.) However,
they do not have threshold implementations that retain the same security, es-
pecially at CCA2 level. As Shoup and Gennaro noted in [35], the difficulty in
transforming a non-threshold CCA secure public key encryption scheme, E , into
a CCA secure threshold scheme is that E ’s security proof can rely in a critical
way on the fact that the decryption algorithm makes the “validity test” before
generating an output. In a distributed setting, this means the test can only be
performed after the individual decryption shares are combined. A single decryp-
tion server is unable to carry out such test. Both EG,H

BR [39] and OAEP can be
easily shown to have this difficulty.

One way to address this difficulty is to introduce a validity test that is publicly
checkable so that a decryptor can perform the check before carrying out the
decryption. This was suggested in [43] and followed by systems such as [35]
which used non-interactive zero-knowledge proofs of membership to construct
such check which is costly.

An ATD-based multicast encryption scheme, on the other hand, does not
suffer from this difficulty at all. This is because in such a scheme, the decryptor
is presented with what are equivalent to t decryption shares in the underlying
sharing scheme. She can proceed to combine these shares with the one produced
using her private key and perform the simple validity test as in the original public
key cryptosystem (not the expensive publicly checkable threshold version) before
emitting any output. As we show in Theorem 2, this construction preserves



the CCA security of the public key cryptosystem even though its threshold
implementation does not.

Our new construction is based on sharable trapdoor functions.

Definition 4 ((t + 1, n)-Secure Sharing Scheme). Let f be a trapdoor func-
tion with inverse f−1 defined by the public-private key pair (PK,SK). A sharing
scheme SSf = (S, η) for f consists of two polynomial time algorithms:

– S: Given (PK,SK), a threshold t and an integer n > t, S generates SK1, . . . ,
SKn (in the same space as SK), called shares of SK.

– η: Given the public key PK, a set Λ of t + 1 evaluations f−1

SKi
(u), for any u

in the domain of fPK , η computes f−1

SK(u).

And SSf is (t + 1, n)-secure if for all {i1, . . . , ij} ⊂ U where 0 ≤ j ≤ t < n,
for all probabilistic polynomial time algorithm A, for all polynomial poly(·), for
all k large enough

Pr[fPK(u) = w : (SK1, . . . , SKn) ← S(PK,SK, t, n);

w ∈R {0, 1}k;u ← A(1k, w,H, SKi1 , . . . SKij
)] < 1/poly(k)

where H is the history tape of length polynomial in k containing all the partial
evaluations the players generated so far.

And f is (t + 1, n)-sharable if it has one (t + 1, n)-secure sharing scheme.

This is essentially the same definition as (t + 1, n)-secure function sharing
primitive in [31]. [31] also showed how to implement such sharing with trapdoor
permutations such as RSA. We show that using this primitive we can construct
efficient multicast encryption schemes with high security.

Construction 2 (ME2) Let Ef,g,h = (KeyGenE,EE,DE,Valid) be a public key
cryptosystem based on (t + 1, n)-sharable trapdoor permutation f with shar-
ing scheme SSf = (S, η). Given a security parameter 1k, a threshold t and

the number of (initial) members n, a multicast encryption scheme MEE
f

C2 =
(KeyGen,E,D) can be constructed as follows:

1. Key Generation KeyGen: The center runs KeyGenE with parameter 1k, and
obtains (PK,SK) ← KeyGenE(1k). It sets I = PK and shares SK us-
ing the sharing algorithm S with parameter (t + 1, n + t) to obtain SK =
S(PK,SK, t, n + t). The encryption key is Σ = {(j, SKj) : j ∈ T} where
T = {n + 1, . . . , n + t}. Σ is given to the center. Member i receives secret
key Γi = (i, SKi). The master secret key is Γ = (Γ1, . . . , Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys, with
|R| ≤ t, a message m, the encryptor randomly selects a subset of T with
t − |R| elements, denoted T ′, and computes the ciphertext

ψ = (c, {(j, f−1

SKj
(u)) : j ∈ T ′ ∪ R}) (2)

where c = EE(PK,m) and u = h−1(c).



3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is
first parsed into ψ = (c, Λ′) where Λ′ = {(j, f−1

SKj
(u)) : j ∈ T ′ ∪ R}. The

decryptor computes u = h−1(c) and v = η(u,Λ′ ∪{(i, f−1

SKi
(u))}). If all these

steps are successful, it computes w = Valid(c, u, v). If w = 0, it returns ⊥.
Otherwise it returns m = g−1(c, u, v).

Theorem 2. Let µ ∈ {CPA,CCA2}. If a public key cryptosystem Ef,g,h =
(KeyGenE,EE,DE,Valid) based on (t+1, n)-sharable trapdoor permutation f with
sharing scheme SSf = (S, η) is secure against µ type attacks, then a multicast
encryption scheme MEE

C2 = (KeyGen,E,D) constructed using Construction 2
with threshold t and (initial) group size n is t-resilient against µ-type attacks.

Proof. First note that it is trivial to verify that the scheme is correct – i.e.,
the decryption produces the correct plaintext given a valid ciphertext. We prove
its security by showing that if MEE

C2 is not t-resilient against µ-type attacks,
neither is Ef,g,h. Let AME be a polynomial time adversary that wins the game
ME with non-negligible advantage. We can construct another polynomial time
adversary AE that breaks Ef,g,h with at least the same advantage. AE achieves
this by simulating a game ME and running AME to win.

(PK,SK) ← KeyGenE(1k) is run and PK is given to AE while SK is kept
secret from it. AE selects randomly t numbers SK1, . . . , SKt from the space of
SK. AE starts Game ME and lets AME select t members to corrupt. Without
loss of generality, let T = {1, 2, . . . , t} be the indexes of the members AME

chooses to corrupt. AE simulates the key generation process in game ME and
gives Σ = ((1, SK1), . . . , (t, SKt)) as the corrupted keys and I = PK as the
public information to AME .

AE lets AME run and simulates the rest of game ME as follows:

– Whenever AME queries the encryption oracle with message m, AE returns
ψ computed using Equation 2 with T ′ ∪ R replaced by T .

– AE chooses whatever AME choose as the two test plaintexts m0 and m1.
Whenever AME makes a query to the encryption oracle with m0 and m1,
AT D passes them to its own encryption oracle in its game attacking Ef,g,h

(denoted game E). Let c′ be the result returned by the encryption oracle in
game E. AE computes and returns the following to AME :

ψ′ = (c′, {(j, f−1

SKj
(u)) : j ∈ T}) (3)

where c = EE(PK,m) and u = h−1(c′). This corresponds to the target
ciphertext in game ME.

– In the case of µ = CCA2, whenever AME makes a query to one of the de-
cryption oracles with ciphertext ψ, AE first parses ψ into a form as specified
by Equation 2. Let {(j, uj) : j ∈ T} be the shares embedded in ψ. AE then
verifies these shares by checking whether uj = f−1

SKj
(u), where u = h−1(c),

holds. If any of the tests fails it returns ⊥ to AME . Otherwise it forwards
c to its own decryption oracle and passes whatever the decryption oracle
returns to AME .



AE stops when AME stops and outputs whatever the latter does.

We need to show that AME simulated by AE has all the information it would
have in a real game ME and that its interaction with the simulated oracles is
indistinguishable from that in a real game. First note that here, although the
encryption key for AME , SK1, . . . , SKt, are not actually generated by running
S (AE does not have access to SK), they are just as good: the encryption key
given to AME is not distinguishable from that in a real game ME and does not
affect its ability to win the game. This follows Lemma 1 from [31].

Second, AME will receive ⊥ on ciphertext ψ in the simulated game ME in one
of the following two cases: (1) AE ’s decryption oracle returns ⊥ on c; and (2) one
of the tests on uj = f−1

SKj
(u) fails. In the first case, AME will receive ⊥ in a real

game ME, as specified by the decryption in Construction 2. In the second case
f−1

SKj
(u), together with any partial evaluation of one of the decryption oracles in

a real game ME, will combine to a u′ that is not consistent with c and will fail
Valid (otherwise it can be shown that either f is not (t + 1, n)-sharable or Ef,g,h

is not IND-CCA2). Again AME will receive ⊥ in a real game ME.

And in all other cases AME will receive the correct decryption in both real
and the simulated game ME. So if AME can win a real game, it can win the
simulated one.

It is easy to verify that if AME wins the simulated game ME, AE distinguishes
the two target ciphertexts with at least the same advantage. This is because, by
definition of Construction 2, if ψ′ in Equation 3 is the encryption of mb′ in ME ,
c′ must be the encryption of mb′ in E .

Finally AE ’s running time is polynomial in that of AME which itself is a
polynomial in k. So AE ’s running time is also polynomial in k.

This is very powerful result because securing threshold scheme is hard so it is
not always possible to use Construction 1 to construct multicast cryptosystems
with high security. Construction 2 and Theorem 2 offer a simple method to
construct multicast schemes with guaranteed security using a whole class of
existing primitives. For instance, both RSA-OAEP [42] and EG,H

BR [39], which
have been shown to be difficult to obtain threshold implementations with the
same level of security, can be used to build multicast scheme with CCA2 security.
This has never been achieved before.

Besides security, Construction 2 also enjoys higher efficiency than Construc-
tion 1, which directly uses a threshold scheme. Note that in a sharing scheme
used by Construction 2, there is neither decryption share verification nor publicly
checkable validity test on ciphertext, both of which are essential for a threshold
scheme or a real function sharing application to achieve robustness (as in e.g.
[44]) and CCA security. With Construction 2, both can be omitted and the en-
coding verification that is part of the public key cryptosystem used can achieve
both goals.



4.5 From IND-CPA to IND-CCA: Generic Conversion

In Construction 2, the security of MEE

C2 relies on that of Ef,g,h. Combined with
results from previous work, we show that MEE

C2 can be IND-CCA even if Ef,g,h

is only IND-CPA.
In [45] Naor and Yung presented a generic conversion from an IND-CPA

public key cryptosystem to one secure against “lunch-time” attack (a.k.a. non-
adaptive chosen ciphertext attack, CCA1). The conversion used a twin-encryption
paradigm and non-interactive zero-knowledge proof (NIZKP) of language mem-
bership in the common random string setting to show the consistency of the
ciphertext. Rackoff and Simon later [46] improved this construction to be se-
cure against adaptive chosen ciphertext attack (CCA2). Their solution involves
replacing one of the twin encryption keys with the sender ’s public key and
providing a NIZKP of knowledge of the plaintext. [36] also provided similar con-
version, in the random oracle model, that also works directly with threshold
cryptosystems. The NIZKPs used in [45, 46, 36] are all publicly verifiable thus
can be readily used in a threshold setting.

Putting all these together, we have the following whose proof immediately
follows the results of [36, 46, 45] and ours.

Corollary 1. If a public key cryptosystem Ef,g,h based on (t + 1, n)-sharable
trapdoor permutation f with sharing scheme SSf is secure against chosen plain-
text attacks, then there exists a multicast encryption scheme ME by Construc-
tion 2 with threshold t and (initial) group size n that is t-resilient against chosen
ciphertext attacks.

SUMMARY. Figure 1 summarizes the possible conversions covered in this paper
between various primitives, including public key cryptosystem (PKC), threshold
decryption scheme (TD) and multicast encryption (ME), at different security
levels such as IND-CPA, IND-CCA (1 and 2). A solid arrow from A to B indi-
cates “generic conversion”, meaning that, under some reasonable assumptions,
any A can be transformed into B. A dashed arrow, on the other hand, denotes
“existential conversion”, meaning that some A can be transformed into B. The
conditions under which such conversions can succeed were stated in the litera-
ture. Some of the relevant ones covered in this paper are labelled on the arrows.

5 Conclusion

In this paper we have presented a general framework for constructing efficient
multicast cryptosystems with provable security. Our constructions are based on
asymmetric use of threshold schemes and we showed that a line of previous
work on multicast encryption are all special cases of this general approach. We
provided new methods for constructing multicast cryptosystems that achieve
various levels of security (e.g., IND-CPA, IND-CCA2) from primitives with even
weaker security. Using our scheme, each member only needs to store a key of
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constant length while both the encryption key size and the ciphertext length are
O(t) which is independent of the group size.
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