Lawrence Berkeley National Laboratory
Recent Work

Title
TOWARDS PORTABILITY IN MODEL-BASED CONTROL SOFTWARE

Permalink
https://escholarship.org/uc/item/8b86g8k2|

Authors

Paxson, V.
Theil, E..

Publication Date
1987-11-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8b86q8k2
https://escholarship.org
http://www.cdlib.org/

LBL-24723

“3

UNIVERSITY OF CALIFORNIA

E Lawrence Berkeley Laboratory

r . . "
i Engineering Division

) L_\i_,\ Y b

LAWRENCE
2ERYELEY LABORATORY
Presented at the Workshop on Model-Based s
Control Software, BNL, Upton, NY, APRT 91988
August 17-18, 1987, and to be published LIBRARY AND
in the Proceedings ROCUMENTS SECTION

Towards Portability in Model-Based _
Control Software f . L

N
V. Paxson and E. Theil
November 1987 | TWO'WEEK LOAN COPY
This is a Library Circulating Copy
\ ~ which may be borrowed for two weeks.

< ¥/ he 14T

\e-:

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Towards Portability in Model-Based Control Software

V. Paxson and E. Theil

Real Time Systems Section
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

November 1987

This work was supported by the U.S. Department of Energy under
Contract Number DE-AC03-76SF00098.

Towards Portability in Model-Based Control Software

V. Paxson
E. Theil

Real Time Systems Section
Lawrence Berkeley Laboratory
University of California
Berkeley, Califomia 94720

November 2, 1987

Introduction

One of the cardinal rules in developing any
software system is ‘‘Don’t reinvent the wheel.”” Sim-
ply put, this means that whenever possible reuse exist-
ing codes rather than writing new ones. The reasoning
behind this rule is straight-forward: abiding by it can
save an enormous amount of labor which can be better
spent concentrating on those aspects of the system
- which are truly new.

In general, the degree of ease in reusing existing
software is greatly influenced by the design of the
software — what assumptions it makes about the data
it operates on and the types of output it should gen-
erate. Modeling programs (e.g., MAD, COMFORT,
TRANSPORT, TEAPOT, ...) are usually easy to reuse
because they make few assumptions about their input
data other than that it will be read from a file in a
prescribed format. They generate simple forms of out-
put such as ASCII files, and they are written in
languages such as FORTRAN-77 which are transport-
able across a wide spectrum of computers.

What has proven much less easy to reuse are the
large bodies of software which constitute the high-
level control system of an accelerator. The barriers to
reuse have been that the software often has an intimate
knowledge of the accelerator it controls (assumptions
about the input data) and the display hardware such as
graphics devices to be used for output (assumptions
about the type of output). Because of these problems,
little control software gets reused, and much labor is
spent reimplementing similar software packages for
different control systems.

" A couple of recent developments [1] offer the pos-
sibility of change for the better:

e Model-based control software, i.e., software
designed around one or more models of the con-
trol process, does not have the problem of
assumptions about the input data. As long as the
input data can be plugged into the model, the
software can operate on it, because it does not
have the particulars of a control system wired
into it.

e Emerging graphics standards offer a way to
design software such that the assumptions made
about the output to generate will remain valid
when the software is moved from one type of
computer to another. We take ‘‘graphics’’ to
mean not only the now-familiar pictorial
displays like data plots but window systems,
such as those available on scientific worksta-
tions, as well.

In light of these developments, the crucial part of
making accelerator control software portable, i.e., re-
usable on different accelerator control systems and on
different computers, remains the software’s design —
the basic structure of the program. In particular, given
a sound design, it is possible to change how the
software acquires the data for its model, and how it
does its graphical output, with no change necessary to
the main body of the code. On the output side of
things, this extends to being able to adapt the software
to a different, non-standard graphics environment with
minimal effort.

What is Model-Based Control Software?

When used today the term ‘‘model-based control
software’’ generally refers to control software built on
top of one of the modeling programs mentioned above.

Orbit Correction

SSC_30 DEGREE CELL LATTICE. AUG 6, 1987, INJECTION OPTICS

ML [Left | [_Right | [Full Scale] [Save [

Horizontal trajectory RMS = 6,01
Zoom horizontal trajectory S =
Horizontal corrector strength RM!
Zoom horizontal corrector RMS =

0

1 mm
S 0.00716, average = -9,3e-05, maximum = 0,0183 mrad
0,00716 mrad

Vertical trajectory RMS = 3, mm
Zoom vertical trajectory RMS 3.48 mm
= 0,0077, average = ~0,000893., maximum = 0,0206 mrad
007

Vertical corrector strength S
0 mrad

Zoom vertical corrector RMS = O,

Fig. 1: Orbit Correction, a fairly typical model-based control program with
a graphical interface. The user designates regions of the accelerator to
correct and monitors the orbit correction algorithm's progress as it
attempts to improve the trajectory.

Human Interface @

Model Manipulation Fig. 2: Conceptual structure of programs like Orbit

Correction which are based on a model of the

underlying accelerator physics. The main part of

Physics Model Lhe program occupies the Model Manipulation
OX.

Towards Portability in Model-Based Control Software

A typical example is shown in Fig. 1. Orbit Correc-
tion has two displays: a top view of the entire machine
and a ‘‘zoomed-in’’ current region of interest, in
which the X and Y beam readings are plotted. The
user moves and expands the region of interest until it
matches the part of the machine that needs correction,
and then invokes an orbit-correction algorithm to
flatten the beam in the region. Orbit Correction is
built on top of TEAPOT [2], though it is not tightly
coupled with TEAPOT (it runs as a separate process),
a point we shall return to later.

In general, these kinds of model-based control pro-
grams have a structure like that shown in Fig. 2. The
core of these programs, that is, the part within them
which knows the physics necessary to affect the
accelerator in a particular way, is the box labeled
‘‘Model Manipulation’’. This core is built on top of
the model of the machine’s underlying physics.

One important point is that the programs do not
need the complete physics model; they operate on a
partial view of the model. Orbit Correction needs a
list of the machine’s monitors and correctors and their
position around the ring, and the machine functions. It
does not need any knowledge about the underlying
physics of why the given lattice has its particular set of
machine functions, it only needs to have some way of
finding out the results of a set of changes to the correc-
tor strengths. As shall be discussed later, that these
types of programs have partial and not total views of
the model makes them much easier to port.

The control programs get their input from and
write their output to what are often quite complicated
human interfaces, which can involve presenting infor-
mation to the user in a highly graphical form, and in
such a way that the user can manipulate these pictures
directly. For example, to designate an area of interest
when using Orbit Correction, rather than typing in the
names of the first and last elements, the user points to
them on either the top-view or the current region of
interest, zooming in or out as needed. In the figure,
this portion of the control program is labeled ‘‘Human
Interface’’. :

The presence of a rich interface is a two-edged
sword: while it makes the use of the control program
much more natural and efficient, it has also been one
of the major stumbling blocks in attempting to reuse
codes on different computers, since graphics and par-
ticularly window systems have until recently been
unique t0 each computer manufacturer. We shall

November 2, 1987

address this point later, too.

Other Models

While the term ‘‘model-based control software’’
usually refers to programs like those just described, in
which the underlying model is the physics of the
accelerator, there are other equally important, non-
physics models used in accelerator control systems,
and programs built on top of these also fit well into the
concept of ‘‘model-based’’.

Fig. 3 shows ‘‘On/Off Control’’, a program used at
the Bevatron to turn beamlines on or off. The display
shows a picture of the beamline switchyard. The user
can select an individual magnet, compose a group of
magnets, or select an entire beamline, and then control
it from the menu. The elements of On/Off’s model are
simple: it knows about magnets, beamlines, and how
to tumn objects on and off, and that’s about it — there
is no physics in the model. But the relationships
within the model are more complicated than those usu-
ally found in a physics-based model: On/Off knows a
lot about the spatial location of the objects in its model
and a lot about the geometry relating one object’s
position to another’s.

Other particular examples are the vacuum sub-
system and the safety interlocks, as well as a host of
possible CAD-derived applications. These sorts of
control programs can be added to our previous concep-
tual structure as shown in Fig. 4. Like the physics-
based modeling programs, these too will have rich
human interfaces. The two types of modeling pro-
grams can also be connected at their common root, the
box labeled ‘‘Machine Interface’’. This typically
would be a database which stores within it the
accelerator’s static and dynamic state. Since the con-
trol programs are model-based, the bottom-end can be
detached and the upper part of the system used for
simulation purposes as well.

Achieving Portability

Given now the nature of the software which we are
interested in moving from one environment to another,
what are the barriers to being able to load the program
into a new computer, compiling it, and having it work?
Taking a look at Fig. 4, the problems are encapsulated
by the boxes on either side of the ‘“‘Model Manipula-
tors’’. When reusing model-based software the
modeling program on which it is based may be dif-
ferent from the one used in the new environment,

Nome
832

Ragion: BEV

Type Status Commnd Group Last Actton Other
miine ofe ore EP8 + 18 In Group, 15 Cepable, 8 On, 15 Off
Data OX

(Accel)

m— — —
(EnTerge (Tpstream)} (Enable Onol?)

Extenil Saiscfion

%ot In Use

ot 1n Use

Enlsrge Msgton

Retiuce Reyion

Add_Upstresm

Enable Onoff

Bot Row Ramss
fo 1o flegio StV
Select Besmi SYNCHRO

[Quit

£PB

Fig.

3: On/Off Control, an example of a model-based control program for
which the underlying model is something other than the accelerator
physics. On/Off knows about the spatial layout of the accelerator and
the groupings of magnets and their power supplies.

Human Interface

Model Manipulation

Physics Model

Model Manipulation

Non-Physics Model

Fig. 4: General conceptual structure of model-based
control programs, including both those
based on models of the machine physics and
those based on other models. Again, the
main part of the programs occupy the Model
Manipulation boxes. -

U

Orbit
Correction TEAPOT
Common Blocks,
. Subroutine Calls
Graphics

Fig. 5: One obvious way to design the Orbit Correction program - make it
part of the modeling program, TEAPOT. Due to the tight coupling
between the two programs, this design makes portability difficult.

Graphics
Computer-System ' - :
Independence Graphics Layer
Orbit Correction
Modeling Program
Independence * | Model Layer |
§ Model i

Fig. 6: Alternative design for Orbit Correction which stresses limiting the
program's coupling to external data and routines as much as possible.
This design proves much more conducive to portability.

Towards Portability in Model-Based Control Software

and/or the graphics and window system comprising
the human interface may be different. Both of these
barriers usually require a great amount of effort to
remove — often more effort than being able to reuse
the software is worth.

As stated earlier, the key to making model-based
programs easy to transport lies in the basic design of
the software. To illustrate, consider the Orbit Correc-
tion tool mentioned above and shown in Fig. 1. If we
were writing such a program from scratch, an obvious
way to design it would be to make it part of our
modeling program, a feature which would be invoked
given a certain argument in the input deck. Such a
design is illustrated in Fig. 5. With this design, Orbit
Correction is thoroughly integrated into the modeling
program. It shares global data with the remainder of
the program via common blocks, and it is called by the
modeling program when time for it to do its task and it
in turn calls routines in the modeling program to do
various tasks. The human interface is built on top of a
graphics system, which might be a standard one such
as GKS or, likely as not, a home-grown one.

From a portability viewpoint the problem with this
design is that the task ‘‘Orbit Correction’’ has too
much knowledge about the environment around it. It
has a strong idea of both the modeling program’s data
structures and routine calling sequences, and of the
particulars of the graphics system, such as how to ini-
tialize it, make drawings, and gather input from the
graphics devices. To detach it from either the model-
ing program or the graphics system will be a very
difficult, tedious chore, because to do so one needs to
understand what the various routine calls do and what
the data structures mean in order to replace them; i.e.,
one must have a working knowledge of the very
software system which one has no intention of using!

To make Orbit Correction easily portable, it needs
a different design. Fig. 6 shows a different way of
structuring the program such that it becomes much
more self-contained. Conceptually, the ‘‘guts’’ of the
program — that part which embodies the algorithms
for doing the task ‘‘correct the orbit’’ — occupy the
center box. This part of the program is isolated from
the rest of the world by two layers.

The bottom layer, called the ‘‘Model Layer’’, is:
(1) a set of routines which the program uses to get the
data it needs in order to do its task (for Orbit
Correction’s algorithm, this is the number of monitors
and correctors in the lattice, their positions, phase, and

November 2, 1987

beta functions; for Orbit Correction’s interface, a title
associated with the lattice, the beampipe size, the
beginning and end points of the various sections of the
machine, and the position and bend angle of the
dipoles, in order to construct the top-view); (2) a set of
routines which it uses to make changes in the model
(in this case, a way to set corrector strengths); (3) a set
of routines which implement ‘‘black box’’ functional-
ity needed by the program but which is not directly
related to its own function (generate a new trajectory,
save the new machine state). These routines comprise
Orbit Correction’s partial view into the complete phy-
sics model of the accelerator; they define precisely
what the program needs in order to do its task, so to
transport the program to a system using any modeling
program, all that must be done is that these routines be
written. Writing them tends to be a very straight-
forward task, mostly consisting of moving data into or
out of common blocks.

Thus, the bottom layer gives the program indepen-
dence from any particular modeling program.

The top layer, called the *‘Graphics Layer’’, is: (1)
a set of routines which a graphics interface can call to
get information it needs for its display (for Orbit
Correction, this is the information mentioned in (1)
above, plus a way to get the current corrector strengths
and monitor readings); (2) a set of routines the graph-
ics interface can call in order to convey changes the
user wishes to make (e.g., set the current region of
interest, manually adjust a corrector or monitor); (3) a
set of routines which implement, for the graphics-
interface, ‘‘black box’’ functionality (correct the orbit,
generate a trajectory, save the machine state). These
routines define the partial view which the graphics-
interface has into Orbit Correction. Note that what is
provided are routines within Orbit Correction which
can be called extemnally, not routines which Orbit
Correction needs to have available in order to do its
task. This structure provides tremendous flexibility in
terms of human interfaces — for example, it is very
easy to write a simple keyboard-oriented, ASCII inter-
face in fully portable FORTRAN which will work on
any machine Orbit Correction is moved to, yet does
not preclude a much richer graphical interface as well.

In summary, the top layer gives the program
independence from any particular graphics system. If
the program is written according to the FORTRAN
standard, it then becomes fully independent of the
computer system it is running on.

PLUS - Beamline Simulator
Problem Options Orbit Measurement

SLAC
@xick Error Auto-compute: Coss Noise Std. Dev. = 8.499 mm
[] Q

@ Focus Error sLe Plat Styla:ﬁc Connect Readings Information on Display
@entry Error Show beam: & At every element Knob Error Value | About Knobbing
Display Components: & Variables Unda Chiange About Zooming

Get Scale

~

Plane: & X Select Yartabl -
~ elect Vartable

Show Deltas: & No Adjust Elements =

SLC - Final Focus, South Branch Delete Readings
’ Reset Elements

Search For Solution
RHS = 0.806 mn Zoom

Save

Laad

Redraw

Beam Steering

-1 LIE e rer@mrer i

KQF12
~10.00 nn (0,0388)

Lower bounds set to -1.5?13, upper bounds to =1.273
Searching for solution ...

KQF14 knobbed to -8.877.

KQD13 knobbed to -8.804.

KQF12 knobbed to 8.838.

RMS from ideal solution = ©.808

Fig. 7. PLUS, a beamline simulator and error-finder which was designed
using the structure shown in Fig. 6, and since successfully transported
to several different environments.

Towards Portability in Model-Based Control Software

Experiences

PLUS [3], shown in Fig. 7, is a beamline simulator
and error-finder which, in conjunction with colleagues,
we designed in accordance with the method outlined
above. The first graphical interface was done on a Sun
workstation using the SunCore and SunView graphics
systems. The latter (SunView) is highly Sun-specific.
The complete interface comprised about S000 lines of
C and took two months to develop.

At CERN, we built a second interface which imple-
mented a subset of the first’s functionality, on top of
Apollo’s proprietary Dialog and GPR graphics sys-
tems. By using a display library already available, the
effort was accomplished in one week, with less than
500 lines of new code being written. No code within
PLUS or its *‘Graphics Layer’’ had to be modified.

Recently, our colleagues have transported PLUS to
the MicroVax environment, again without great effort.

These experiences show that the design structure
outlined above does indeed promote portability.

Standard Graphics Systems

The numbers mentioned above — two months and
5000 lines of code for the first interface, one week and
500 for the second — need to be discussed further lest

-they give inaccurate impressions. The point was not
that once the first interface was done it was easy to
replicate it; this, in fact, is not the case. While the
Apollo interface provides most of the functionality of
the Sun interface, the latter is far easier and more
intuitive to use, and a much more effective interface.
The point was that the program could be detached
from S000 lines of machine-dependent code with
extremely little effort.

Truly effective user interfaces can require a great
amount of work to design and implement. Because of
this, it would be a boon if the graphics interfaces of
control software could be transported as easily as the
basic functionality of the program.

We are now at a point in the evolution of graphics
systems where this ready transportability can be had:
enough computer vendors have banded together to
produce a standard graphics system, called X-
Windows [4], which runs on a wide variety of
hardware, including Sun, Apollo, DEC, HP, IBM, and
Macintosh computers. X-Windows itself is quite
low-level, but designed to support layers built on top

November 3, 1987

of it to provide higher-level graphical operations. Our
work at LBL is now being shifted towards using X-
Windows (while keeping with the above design, so
that the interfaces are separate from the control appli-
cations), and we are building packages on top of it to
provide easy access to functionality common to
accelerator control interfaces (the interface for Orbit
Correction is an example).

Summary

Two developments — that of model-based control
systems in the accelerator community, and that of the
X-Windows standard in the computer graphics com-
munity — have made it a realistic possibility that large
bodies of high-level accelerator control software can
be shared and reused throughout the accelerator com-
munity. To take advantage of these possibilities
requires the discipline of truly modular software
design, in which programs have very well-defined
views of the data on which they operate and which
they make available to the human interface software.
If these programs are written with their knowledge of
the rest of the control system restricted to simply
exactly those things required for the task at hand, they
can be easily detached and moved to other environ-
ments.

We have presented a general design for producing
portable control software, one which has been shown
by experience to be effective. We are now using X-
Windows so that our labor-intensive user-interface
development efforts might prove as readily portable.
If enough other members of the high energy physics
community join in using the standard, we can over-
come the final hurdle to large scale code-sharing.

Acknowledgments

We would like to thank Van Jacobson for many
ideas on the design of portable programs, Martin Lee
for supplying us with modeling programs and many
ideas on the possibilities of model-based control, and
Eva Bozoki for similar help in beginning our work.

We would like to thank Martin Lee and Scott
Clearwater for our collaborative effort on the develop-
ment of PLUS.

This work was supported in part by the United
States Department of Energy under Contract Numbers
DE-AC03-76SF00098.

Towards Portability in Model-Based Control Software November 3, 1987

References

[1]1E. Theil, V. Jacobson, V. Paxson, ‘‘The Impact
of New Computer Technology on Accelerator
Control’’, 1987 IEEE PAC, Washington, D.C.

[2]L. Schachinger, R. Talman, “‘TEAPOT: A
Thin-Element Accelerator Program for Optics
and Tracking’’, Particle Accelerators, Vol. 22,
pp. 35-56, 1987.

[3]M. Lee, et. al, ‘‘Modem Approaches to
Accelerator Simulation and On-line Control’’,
1987 IEEE PAC, Washington, D.C.

[4] R. Scheifler, J. Gettys, ‘““The X Window Sys-
tem’’, ACM Transactions on Graphics, #63,
1986.

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
‘BERKELEY, CALIFORNIA 94720

