
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
The Advantage of Custom Microprocessors for Stochastic Gradient Descent in Graph-Based
Robot Localization and Mapping

Permalink
https://escholarship.org/uc/item/896681wg

Author
Guo, Sung-Yee

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/896681wg
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

The Advantage of Custom Microprocessors for

Stochastic Gradient Descent in Graph-Based Robot

Localization and Mapping

A Thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science

in

Computer Science

by

Sung-Yee Guo

Committee in charge:

Professor Timothy Sherwood, Chair
Professor Rich Wolski
Professor Amr El Abbadi

January 2018

The Thesis of Sung-Yee Guo is approved.

Professor Rich Wolski

Professor Amr El Abbadi

Professor Timothy Sherwood, Committee Chair

November 2017

The Advantage of Custom Microprocessors for Stochastic Gradient Descent in

Graph-Based Robot Localization and Mapping

Copyright c© 2018

by

Sung-Yee Guo

iii

Abstract

The Advantage of Custom Microprocessors for Stochastic Gradient Descent in

Graph-Based Robot Localization and Mapping

by

Sung-Yee Guo

Simultaneous Localization and Mapping (SLAM) describes a class of problems facing

a large and growing field of autonomous systems – from self-driving cars, to interplane-

tary rovers, to home automation products. Unfortunately this is a complex task where

sophisticated algorithms and data structures are required to navigate a wide range of

uncharted environments. Furthermore, most mobile robots need to run these tasks near

real-time onboard an embedded controller with limited power and compute resources. To

address this problem we explore the stochastic gradient descent (SGD) variant of graph

solvers for SLAM and observe a tradeoff between various execution architectures and over-

all execution speed. Based on these observations, we propose a custom multiprocessor

design that relaxes memory-coherency constraints between parallel cores while avoiding

divergent behavior. We introduce a specialized streaming-tree interconnect that provides

increased performance while using fewer resources compared to state-of-art GPU/CPU

implementations of SGD. Finally, we discuss applications of unconventional architectural

paradigms like over-provisioned dark processors and specialized data partitioning that

provided a unique performance advantage for our particular design.

iv

Contents

Abstract iv

1 Introduction 1
1.1 Pose Graph SLAM . 2
1.2 Stochastic Gradient Descent . 3
1.3 Offset-Tree Parameterization of Pose Nodes 5
1.4 Characteristics of Offset-Tree SGD . 6

2 Architecture 7
2.1 Gradient Descent Units . 8
2.2 Streaming Tree . 9
2.3 Specialized Partitioning . 16

3 Evaluation 22
3.1 Graph Convergence . 22
3.2 FPGA Prototype . 23
3.3 Simulator . 24

4 Related Works 29

5 Conclusion 32

Bibliography 34

v

Chapter 1

Introduction

Localization and mapping are crucial skills for any mobile robot’s ability to navigate

previously-unseen environments. Like human surveyors, a robot moves around identify-

ing and measuring landmarks to construct a map of each landmark’s location. Then the

robot uses this map to deduce its location in the environment. While this task seems

intuitive to humans, robots have a very hard time doing the same. They need large

volumes of data from a vast array of sensors to feed a computationally-expensive si-

multaneous localization and mapping (SLAM) algorithm before producing a useful map.

Furthermore, as robots evolve from application-specific problem domains like automotive

factories to unstructured free-form settings such as homes and public roads, its SLAM

algorithms become more complex to process the uncertain and noisy environments. In

this work we survey the computational complexity of a popular SLAM algorithm and

investigate issues that arise when implementing it on an embedded mobile robot. Then

we analyze a potential avenue for optimization where custom microprocessor designs may

be advantageous compared to traditional CPU/GPU processor paradigms. We conclude

our findings with a novel architectural paradigm that handles asymmetric loads across

parallel processors.

1

Introduction Chapter 1

1.1 Pose Graph SLAM

We investigate a particular family of SLAM algorithms called Pose Graph SLAM.

Pose graph SLAM models the robot’s environment as a directed graph of pose nodes

and edge constraints. Each pose node is a point in 2D space where a robot has been in

the past. Edge constraints between each node encode some measurement between two

robot pose nodes. In the context of pose graph SLAM, “edges” are synonymous with

“constraints” while “nodes” are synonymous with “poses.” As a robot moves through

uncharted territory, it drops a “breadcrumb trail” of poses at fixed distance intervals.

Between consecutive poses, the robot inserts a constraint that encodes the change in

position from one pose to the other based on odometry data. If the robot encounters

an area it has visited in the past, i.e. it encountered a previously dropped breadcrumb,

it will insert a special constraint between its current pose and the encountered pose.

This process is called a loop closure because the robot has returned to a place it has

been before and thus completed a loop (see Figure 1.1). The robot then continues on,

repeating the pattern of dropping poses and connecting them with constraints through

consecutive odometry measurements or loop closures until it has a satisfactory map of

the new environment.

In a perfect world, the resulting graph will line up perfectly with the environment.

For example, if the robot explored a home with many rooms its resulting graph map

will correspond exactly to the building’s floorplan. But noise in sensing and actuation

processes introduce error into the pose graph, resulting in maps that do not line up.

Thus the process of “fixing” the graph map is called graph optimization (Figure 1.2).

The “optimization” part comes from the fact that pose graph SLAM is formulated as a

nonlinear least-squares (NLS) problem where graph error is the objective function to be

minimized.

2

Introduction Chapter 1

Figure 1.1: Consider a robot exploring a house. It starts in the living room and moves
around adding poses and constraints to its graph. It explores the hallway, bedroom,
bathroom, and eventually escapes out the front door. After step 3, the robot notices
that it has already visited the hallway and adds a loop-closing constraint between the
hallway nodes.

1.2 Stochastic Gradient Descent

There are many existing ways to solve NLS, one of which is the stochastic gradient

descent (SGD) algorithm. SGD can handle graphs with very large initial error, a property

other NLS solvers struggle with. We chose a technique proposed by Edwin Olson in his

paper “Fast Iterative Optimization of Pose Graphs with Poor Initial Estimates.”[1] Olson

describes a method of adjusting each pose individually in an iterative manner so as to

incrementally improve the graph with each pass. The constraints can be thought as

springs that push and pull nodes around until the graph is fully aligned (Figure 1.3).

3

Introduction Chapter 1

Ideal Reality

N iterations

(a)

(b)

Figure 1.2: (a) An ideal robot would produce a graph that precisely reflects its explo-
ration path. Instead, noisy odometry measurements by the robot’s wheels introduce
major errors in the graph, resulting in a map where the robot teleports through walls.
(b) The loop closure in the hallway (i.e. robot cameras identified hallway features it
has seen before) allows the robot to re-align its graph via an iterative graph optimiza-
tion process.

Since the network of poses and constraints are built sequentially as the robot moves

through the environment, each node is necessarily constrained by the pose immediately

before it. This means that any change to a given pose must imply a similar change

to all subsequent poses in the graph. The spring-network analogy illustrates this idea

intuitively since pushing a node in the network will force all connected nodes to shift

around too. Olsons SGD algorithm thus prescribes an additional distribution routine

that propagates the change from one pose to all subsequent poses in the graph. Such

distribution of changes for each adjustment of each pose node requires O(N2) complexity

(for each N nodes in the graph, optimize and update all subsequent N nodes in the graph)

for a naive implementation.

4

Introduction Chapter 1

Figure 1.3: Optimization can be visualized as a spring network trying to “relax” from
a stretched state. Nudging one of the nodes can cause connected neighboring nodes
to shift; thus every adjustment to any single node will require adjusting all other
connected node.

1.3 Offset-Tree Parameterization of Pose Nodes

Olson applies a special tree parameterization to reduce the O(N2) runtime to O(NlogN).

Instead of storing the exact coordinates of each pose as a 3D vector (x, y, heading) he

suggests encoding coordinates as sum-of-offsets of intermediate poses in a walk from

root-to-leaf of a binary tree. In other words, looking up the positional coordinates of a

pose involves applying a binary walk across the pose array and accumulating the values

of the poses in each walk step. The resultant accumulated value is the exact positional

coordinates of the searched pose. Each entry in the pose array thus does not store exact

x-y-heading coordinates but rather an offset from a parent pose node.

The method to this madness is the benefit of being able to efficiently update contigu-

ous regions of the graph. An update can be distributed throughout the rest of the graph

in O(logN) time by walking diagonally up the tree.

5

Introduction Chapter 1

1.4 Characteristics of Offset-Tree SGD

While SGD may be well-known for massively parallel machine learning applications

[2], Olson’s offset-tree imposes strong data dependencies between threads which lead to

performance-destroying memory-synchronization or thread-scheduling implementations:

Every update to a pose node requires modifying O(log N) other nodes atomically. Every

read from a pose node accesses O(log N) other nodes atomically. Our baseline multi-

thread SGD implementation synchronizes access to the tree via a mutex which, unsurpris-

ingly, bottlenecked performance as the number of parallel threads scaled. Performance

still suffered even after applying high-granularity synchronization by only locking sub-

sections of the tree. These experiments led us to believe mutual exclusion unsuitable as

a synchronization mechanism for Olson’s SGD algorithm.

Finding a lock-free solution was challenging because SGD can diverge very easily. For

instance, we implemented a multithreaded scatter-gather version on a GPU similar to

[3] but we found we needed to apply an aggressive learning rate to prevent divergence.

Learning rates are difficult to tune and can reduce performance if used improperly. Fur-

thermore, scatter-gather is still bottlenecked by a O(N) reduction operation in each

gather phase.

In the Architecture section we introduce several properties of the offset-tree we used

to design a high-performance SLAM processor.

6

Chapter 2

Architecture

We believe pose graph SGD to be a poor fit for traditional parallel programming tech-

niques. The tightly-coupled data dependencies in the offset-tree prevent shared-memory

processors from scaling their speedup with the number of threads. On the other hand,

we show custom hardware platforms like FPGAs and ASICs can handle such data de-

pendencies more gracefully with pipeline and dataflow design paradigms. All lookup

and update operations are simple summations across multiple memory elements which

is cheap to build with digital logic. Memory elements can be wired in the pattern of

the offset-tree to streamline access to data. Furthermore, we synthesize a specialized

gradient descent unit (or “GDU”) that serves as our massively parallel SGD processor.

The flexibility in designing the GDU allows us to fine-tune fixed-point and dataflow

optimizations to minimize latency in processing each constraint. Connecting many such

GDUs to our high-speed custom tree unlocks speedup rates that scale beyond CPU/GPU

implementations.

In this section we will introduce our method for implementing Olson’s offset-tree in

digital logic. We briefly mention how our GDUs are built and how they interact with

each other and the tree. Then we will discuss limitations of our custom tree hardware

7

Architecture Chapter 2

and our innovations for overcoming them.

2.1 Gradient Descent Units

Gradient descent units are specialized processors that iterate through a list of edges

and computes SGD updates for each. Many GDUs are interconnected to form a massively

parallel multiprocessor like a GPU. Unlike a GPU however, our processors are multiple-

instruction-multiple-data (MIMD) so GDUs independently execute their own instruction

and data streams. Even though all GDUs execute the same SGD program, any two

GDUs can be executing different parts of the program without interfering with each

other. SIMD/SIMT architectures on the other hand suffer a performance penalty when

thread execution paths diverge.

We emphasize the MIMD distinction because the GDUs are synchronized by iteration,

not by edge. For example, we implemented a scatter-gather version of SGD on a GPU

where the scatter phase assigns a graph edge to a thread and schedules them on the

GPU. After the GPU finishes executing all threads the graph updates from each thread

are then gathered on the CPU and applied to the tree array. GDUs on the other hand

employ coarser-grain parallelism; each GDU is instead given a list of graph edges to

process. GDUs proactively apply updates to the graph in “real-time” without waiting

for the CPU gather phase. Once a GDU has completed a pass through its edge list, it will

wait for all other GDUs to finish processing their edge lists before continuing on to the

next iteration. Thus the GDUs are not bottlenecked by a gather phase; they immediately

continue SGD after synchronizing.

8

Architecture Chapter 2

2.2 Streaming Tree

Our tree is composed of three distinct components:

1. An update pipeline that continuously applies changes to the tree.

2. A tree-array that accumulates changes from the update pipeline and maintains the

offset values for each pose node.

3. A lookup pipeline that continuously sums the offsets from the tree-array and pro-

vides the memory interface with the absolute coordinate values of each pose node.

Figure 2.1 shows the overall design of the tree and its association to the GDUs. Data

flows cyclically starting from the GDUs, through the FIFO, through the update pipeline,

through the read pipeline, and finally distributed back via the memory interface to the

GDUs.

The key goals behind making this streaming tree are high-performance atomic reads

and writes. We want GDUs to submit an update to the tree in one clock cycle and lookup

arbitrary pose coordinates (not offsets) in one cycle too. A streaming pipeline serves

exactly this purpose because a pipeline “unrolls” a multi-step operation across several

registered stages to maximize IPC. Updates from many parallel GDUs are collected

into a FIFO that continually feeds the streaming tree (as long as the FIFO is non-

empty). Thus the GDUs do not have to spread a update operation across multiple

block memory transactions, instead writes happen in a single-cycle push to the FIFO.

Similarly, lookup operations are pipelined so GDUs can get pose coordinate data in one

memory transaction. Sections 2.2.1 and 2.2.2 details how update and lookup operations

are constructed using digital logic primitives.

9

Architecture Chapter 2

Read
Pipeline

Update
Pipeline

Offset-Tree Array

FIFO

M
em

ory Interface

Figure 2.1: GDUs continuously compute constraint edges and generate updates that
are streamed through a FIFO into the tree. The update pipeline then applies changes
to the offset-tree which propagates its new values through the read pipeline. Each
GDU has a dedicated memory interface to the output of the read pipeline so it can
access the pre-computed coordinates of any pose.

2.2.1 Update Pipeline

Building the update pipeline involves noticing the pattern in which the SGD algorithm

walks through the tree. In Figure 2.2, pose nodes are numbered at the leaves and arrows

are drawn between nodes that represent the update path. For example, applying an

update to pose node 3 also updates pose node 4 and 8 by the same amount. Repeating

this process of tracing the update path for every node reveals what we call a “path-flow”

graph, which is conceptualized as the dataflow of updates across pose nodes.

10

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0

0

8

1 2

3

5

84

6

7

9
12

10

11

13 14

“Path-Flow”

Update Paths

0

15

Figure 2.2: Plotting the update paths for a 16-node graph reveals a ”path-flow” used
to unroll and pipeline tree operations in hardware.

The path-flow graph shows how update operations can be pipelined: For each leaf

node, apply its update to the parent node and save the result in the next pipeline stage.

Remove the leaf nodes, and repeat the process for the nodes who now have no children.

Each pipeline stage is an array of registers that stores the intermediate state of the tree

so each stage has as many registers as nodes in the tree. Figure 2.3 shows the result of

this process on a 4 stage, 16-node pipeline.

For example, all leaf nodes in Figure 2.2 are 0, 1, 3, 5, 7, 9, 11, 13, and 15. In

Figure 2.3, Stage 1 sums nodes 1, 3, 5, 7, 9, 11, and 13 with their respective parent nodes

and saves the result in Stage 2. Since nodes 0 and 15 do not have a parent, they are

simply passed-through to the next stage.

Removing nodes 0, 1, 3, 5, 7, 9, 11, 13, and 15 reveals nodes 2, 6, 10, and 14 as the

11

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Figure 2.3: Applying the path-flow graph from Figure 2.2 to a pipeline with 4 stages
produces an entire copy of the offset-tree each clock cycle.

new leaf nodes. Repeating the process generates the inputs to Stage 3. Again, 14 has no

parent and is simply passed-through the pipeline. The pipeline depth is always log N

because each stage computes one step of the O(log N) update algorithm.

2.2.2 Lookup Pipeline

Similar to the update pipeline described in Section 2.2.1, the lookup pipeline is built

according to the “path-flow” walks across the tree. However, the algorithm for mapping

the path-flow to a physical pipeline is different.

The way to conceptualize path-flow for lookups is to imagine data flowing right-to-left

starting from the root node 0. Figure 2.4 for example shows that any change made to

pose node 0 will necessarily cause a change to 1, 2, 4, and 8. Nodes 1, 2, 4, 8 then causes

changes to happen to their child nodes, and so forth. Thus the pipeline is constructed

from right-to-left with a stage for each level in the path-flow graph.

Figure 2.5 shows the path-flow from Figure 2.4 applied to a 5-stage, 16-node pipeline.

12

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0

0

8

1
2

8
4

3
5
6
9

12

10

7

11

13

14

“Path-Flow”

Lookup Paths

0

15

Figure 2.4: Path flow for lookup operations are generated from tracing the steps made
for all lookups for each leaf pose node.

The first stage corresponds to the first level in the path-flow graph, with node 0 prop-

agating its value to nodes 1, 2, 4, and 8 in the next stage. Remove node 0 from the

path-flow and repeat the process for all nodes without a parent. This means nodes 1, 2,

4, and 8 propagate their values to their children in the next stage. Note that since pose

node 1 does not have any children, its value is simply forwarded to the next stage.

The lookup pipeline has an additional register array (Stage 5 in Figure 2.5) compared

to the update pipeline. This extra stage is for summing the last two nodes at the left-most

end of the path-flow graph.

13

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stage 1:

Stage 2:

Stage 3:

Stage 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Stage 5:

Figure 2.5: The lookup pipeline requires an additional final stage to apply the last
summation.

2.2.3 Streaming-Tree Characteristics

With both the update and lookup pipelines sandwiching the tree register array (see

Figure 2.1) the total clock latency from the front of the update pipeline to the back of

the read pipeline will be 2 + 2 × log N . Two pipelines account for 2 × log N while the

offset-tree array and the extra lookup stage account for two more cycles.

The streaming tree trades memory coherency with throughput. While tree data is

never out-of-date if the GDUs use block memory, overall memory throughput is less since

each operation needs O(log N) cycles for each update or lookup. Streaming tree, on the

other hand, can process one update per clock cycle but suffers from a 2 + 2 × log N

cycle delay before changes are propagated through the pipeline. Even though this means

GDUs are nearly always reading out-of-date information, we’ve found SGD still works

well across many GDUs despite incoherent knowledge of the tree.

14

Architecture Chapter 2

Tree Size Flip Flops LUTs LUTRAMs FPGA Usage
16 nodes 24.8K 17.4K 2.88K 27%
32 nodes 50.88K 39.14K 9.02K 62%
64 nodes 102.5K 84.1K 23.2K 132%
128 nodes 204.5K 177.7K 54.5K 287%

Table 2.1: Estimated costs of implementing streaming-trees of different sizes. Artix-7
FPGA; each memory element is 32-bits wide.

The astute reader may notice such a streaming tree simply micro-optimizes a O(log N)

memory operation to O(1). This may not seem like a huge win since logarithmic-time and

constant-time algorithms are considered extremely efficient. Our results (see Section 3)

show a performance difference at-scale, when there are large numbers of parallel GDUs

competing with each other for access to the tree. Furthermore, since the streaming

tree was built using custom logic we were able to provide a dedicated read-only memory

interface for each GDU connected to the tree. Thus the constant-time, dedicated memory

channels for the GDUs

Pipelining is an architectural technique that trades resource usage with performance.

The proposed streaming tree is no exception: Handling one update operation per clock

cycle costs O(N log N) memory elements on the chip.

Table 2.1 samples several synthesis runs of the streaming-tree in verilog on an Artix-7

FPGA. Details about our hardware implementation will be listed in Section 3.2; however

these preliminary tests indicate significant constraints on the size of our tree design.

The way this streaming tree grows in size creates a cause for concern when we consider

larger-scale implementations of this design on physical hardware. To this end we propose

a hybrid design that compromises between streaming tree and block memory.

15

Architecture Chapter 2

Read PipelineUpdate Pipeline

Offset-Tree Array

O
(N

) M
em

ory E
lem

ents

O(log N) Stages O(log N) Stages

Total O(2 log N) Stages
for

O(2 log N) Clock Latency

Figure 2.6: Each pipeline is O(N) by O(log N) which makes for a 2 + 2× log N total
clock latency

2.3 Specialized Partitioning

Section 2.2.3 established the scaling issue with the streaming tree. If the entire pose

graph can not be stored in the streaming-tree, we are forced to use high-density block

memory again.

Block memory does not spell the end of the world, but there is now an additional ques-

tion of what portions of the graph data is stored in block memory versus the streaming-

tree. Fortunately, the path-flow graphs in Section 2.2 show the nodes closest to the root

16

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0

0

8

Figure 2.7: Nodes close to the root are grouped into the streaming-tree (dotted trape-
zoid) while the rest are stored in block memory (encircled blobs).

as the most “popular” with high edge connectivity. In other words, the nodes closest to

the root have high update/lookup activity since many paths flow through them. There-

fore the streaming tree will be most effective when it is used on the shallow nodes since

those nodes bottleneck lookup and update tree operations.

We propose a “skew-tree” partitioning setup to organize the pose graph data between

block memory and the streaming tree. Nodes deeper within the tree are stored in block

memory while the remaining nodes will be stored in the streaming tree. Figure 2.7

diagrams a setup where nodes 0, 4, 8, and 12 are stored in the streaming-tree accelerator

while the rest are grouped into clusters of 3 adjacent nodes in block memory.

Figure 2.8 illustrates a method to this madness by conceptualizing a hybrid block-

memory/streaming-tree processor. Each GDU is now paired with some block memory

to augment the capacity of the streaming tree. The four slanted blobs in Figure 2.7

correspond to the four GDUs’ local block memory; i.e. nodes 1, 2, 3 are placed in GDU

1’s block memory, 5, 6, 7 are in GDU 2, etc... Nodes 0, 4, 8, and 12 are left in the

streaming-tree.

17

Architecture Chapter 2

Streaming Interface

Figure 2.8: Imagine a typical multiprocessor where each core has some local cache
memory and a high-performance connection to global RAM. Our proposed design is
similar, where each GDU has local block memory while also connected to the global
streaming-tree accelerator.

Our skewed partitioning idea is designed to leverage performance characteristics of

the local-memory GDU architecture by minimizing the need for GDUs to communicate

with other GDUs’ local memory. We postulate several properties (“rules”) about this

architecture:

1. GDUs access to local memory is fast; similar to low-level caches in multicore pro-

cessors.

2. GDUs access to the streaming tree is fast since each GDU has a dedicated memory

bus to it.

3. GDUs have access to each other’s local memory, but doing so is a slow operation.

“Snooping” each other’s local memory requires slow synchronization mechanisms

to avoid race conditions.

18

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0

0

8

Figure 2.9: Skewed partitioning prevents update paths from crossing between parti-
tions (grey blobs).

Figure 2.9 superimposes the update path-flow on top of the partitioning diagram to

show how paths are bounded within the blobs and the streaming-tree. If the paths cross

from one blob to another, that means the source GDU must access the destination GDU’s

local memory. If the paths stay within the local-memory partitions and only leave to

read a streaming-tree node, then the operation is assumed to be fast. This policy obeys

rules 1 and 2 from the above list and avoid the problem with rule 3.

Consider a naive partitioning scheme (without the streaming tree) where each GDU is

simply assigned sequential, equally-sized contiguous portions of the tree (i.e. GDU 1 gets

nodes 0 through 3, GDU 2 gets 4 through 7, etc...). The update paths will necessarily

cross between partitions and require more synchronization between GDUs i.e. any update

GDU 1 does must propagate through to GDU 2’s node 4 data.

The rules also apply to the lookup paths in Figure 2.10. None of the paths cross

between partitions; paths only leave the partition to access the streaming-tree. Further-

more, if we compare the naive partitioning scheme mentioned earlier we realize nearly all

lookup paths would have crossed into some other partition to the left. For example, if

19

Architecture Chapter 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

0 4 8 12

0

0

8

Figure 2.10: Lookup paths also avoid crossing between partitions.

GDU 3 looks up node 11, it will need to cross into GDU 1’s local memory to read pose

node 0 data. That means more synchronization between GDUs and necessarily lower

performance.

Unfortunately, the skewed partitioning scheme does not protect against large loop

closures. For example, if there is an edge that connects two nodes far apart from each

other (say node 1 and 13 in Figure 2.10) then the GDUs must crosstalk with each other.

This unavoidably violates rule 3 and thus serves as the bottleneck of this architectural

design. However, if there are relatively few such large loop-closing edges compared to

shorter edges then it should not be a big problem. Our experiments have not indicated

major performance issues due to these large loop closures.

While this skewed partitioning scheme leverages the best of both streaming-tree and

block memory worlds, it opens up the possibility of inconsistency between a GDU’s local

memory and the streaming-tree. The streaming-tree requires 2 + 2 × log N clock cycles

before a change is reflected on a subsequent lookup operation. Therefore reads from

GDU’s local memory will always be up-to-date with the last write while the streaming-

tree may return outdated information w.r.t. local memory.

20

Architecture Chapter 2

We are hoping this inconsistency delay will not force SGD to diverge since the delay

is very short i.e. on the order of tens of clock cycles. So as part of our evaluation of the

design we built a simulator to determine if this will cause SGD to diverge. In short, we

were able to avoid divergence by adjusting the learning rate. We detail our findings in

Section 3.

21

Chapter 3

Evaluation

To evaluate the effectiveness of our design, we implemented a detailed cycle-simulator to

model the behavior of our processor. We also implemented a small-scale FPGA prototype

of the GDUs and streaming-tree to prove the feasibility of our system. Performance

characteristics of the prototype were then fed into the cycle-simulator to predict the

performance of a large-scale ASIC-sized version of our processor. We observe several

characteristics of the skew partitioning and introduce a over-provisioning design to handle

asymmetric loads.

3.1 Graph Convergence

The iterative nature of SGD means there is no “stopping point” for the algorithm. In

practice the algorithm is run until the graph’s quality is “good enough”; exact stopping

conditions for SGD are tuned for specific applications. In our case, we’ve found 100

iterations to sufficiently optimize our pose graphs such that resulting graphs from multiple

runs are visually similar. Characterizing the exact “goodness” of a pose graph is difficult

to rigorously define and compare so we leave that analysis outside the scope of this

22

Evaluation Chapter 3

project.

3.2 FPGA Prototype

We built a proof-of-concept design of the streaming-tree and GDU on an Artix7 FPGA

platform. The GDU was written using Vivado High-Level Synthesis (HLS) tools while

the streaming-tree was written in Verilog. A MicroBlaze soft-processor acts as the central

controller to coordinate the GDUs across an AXI-4 bus. A small design has the advantage

of rapid turnaround times after making changes to the hardware description. Thus the

prototype only concerns one GDU and one streaming-tree. However we standardized

the interfaces to our streaming-tree and GDUs to use AXI-4 bus protocols so the block

design has the capacity to include arbitrary parallel GDUs.

The prototype consists of one GDU connected to one streaming-tree containing a

small graph (10 nodes). We ran simple tests to confirm that the GDUs and tree were

functionally complete and capable of optimizing an example pose graph.

Addition operations between each pipeline stage must happen within a clock cycle;

thus we opted for fixed-point approximations of the pose node data since fixed-point

arithmetic complete in one cycle. In our prototype we used signed 32-bit words with 11

fractional bits but the design can arbitrarily scale to whatever bitwidth is appropriate for

the application. Consequently the GDUs apply appropriate conversion routines whenever

it interacts with the streaming tree.

In terms of timing, we were most concerned with each GDU’s cycle delay when it

processes one graph edge. According to the HLS synthesis reports we estimated SGD

itself–without walking the tree data structure–requires around 744 clock cycles. The

simulator thusly delays the GDUs’ state machines for 744 cycles every time the GDUs

enter a computing state.

23

Evaluation Chapter 3

LUTs LUTRAMs Flip-Flops BRAMs DSPs
34.11K 1.6K 41.4K 75.5 76

Table 3.1: Post-implementation logic resource usage for the FPGA prototype of a
GDU and streaming-tree on an Artix-7. Note that these values include the usage of
the MicroBlaze controller. The streaming-tree stores 16 poses.

3.2.1 Utilization

As a sanity-check, we reported resource utilization estimates to ensure our design

can be reasonably implemented on a physical chip. Table 3.1 shows how many FPGA

logic elements are used to build our prototype design. Since we already knew that the

streaming-tree would be expensive in Section 2.2.3 the focus of this analysis is on the

cost of the GDUs.

According to HLS results, a single GDU takes up about 24K flip-flops and around

36K lookup tables (combinational logic elements). While that GDUs footprint is not

trivial for a small FPGA like the Artix-7, we believe its small enough to scale to ASIC-

sized chips. In other words, for a GDU that takes less than 100K logic elements we could

theoretically build a SLAM processor with hundreds of GDUs that will fit on a typical

integrated circuit.

3.3 Simulator

The simulator is based off the synthesis and timing data as described in Section 3.2.

We scale the number of GDUs in the simulator to extrapolate an estimation of the design

performance.

Figure 3.1 provides a top-level overview of the simulation results. We ultimately

experimented with three separate designs: One where all GDUs synchronize access to

a shared block memory resource. One where the block memory is augmented with the

24

Evaluation Chapter 3

Figure 3.1: Speedup curves for a range of parallel GDUs. The “Dark GDU” de-
sign provides much better performance scaling thanks to specialized streaming-tree
accelerators and load balancing.

streaming tree accelerator (as illustrated in Figure 2.8). And one where GDUs are selec-

tively turned on or off similar to the “dark silicon” paradigm. So-called “dark GDUs”

were a direct result of our simulation data and are detailed in Section 3.3.2.

3.3.1 Skewed Partitioning

The results of the skewed partitioning is shown on Figure 3.1, where “Tree Network”

curve shows slightly better speedup on larger numbers of parallel GDUs since there is less

memory contention between GDUs. However, there are still issues with the performance

bottlenecking because the way GDUs are allocated edges to process.

25

Evaluation Chapter 3

Figure 3.2: Very large pose graphs (in this case 10K nodes) do not have uniform
distribution of edges across all nodes. This histogram shows how some nodes have
vastly more edges connected than others, which means the GDU working on nodes
between 0 and 2000 will spend more time optimizing its edges than all other GDUs.

3.3.2 Dark GDUs

One of the downsides of using the skewed partitioning technique described in Sec-

tion 2.3 are asymmetric amounts of work delegated to the GDUs. One of our datasets

had a very large graph with many edges connecting between nodes. Some pose nodes

have more edges connecting them than other nodes. Thus, if GDUs can only optimize

edges that connects nodes in their partition, then for large graphs some GDUs will have

more edges to process than others. If one processor is given disproportionately more work

all other processors will be blocking and waiting for the slowest processor to complete.

Therefore the parallel performance of the overall processor is damped due to a single

GDU working on many edges while the others wait for it to complete. That was our

suspicion for the downward slant in the speedup curve for Figure 3.1.

Our solution to this problem was to draw from the “dark silicon” paradigm and

insert extra GDUs into the processor even though not all of them may be turned on in

26

Evaluation Chapter 3

Figure 3.3: Clustering many extra GDUs together can result in a more uniform dis-
tribution of edges at the cost of more hardware used. Both top and bottom configu-
rations have 8 GDUs actively participating in SGD. However, the bottom setup has
better parallel performance because the maximum number of edges any GDU has is
10 (instead of 20).

practice. These so-called “dark GDUs” are grouped into clusters that share the same

skew partition and local block memory but are selectively enabled during runtime to help

load-balance overworked GDUs.

Figure 3.3 illustrates an example where some GDUs are given more edges to process

than others. If all GDUs are required to be turned on and in use, then the cluster

of GDUs given the most edges (in this case the second from left with 40 edges per

processor) will significantly slow down overall performance. However, if there are twice

27

Evaluation Chapter 3

as many processors in each cluster but most of them are not turned on, then the maximum

number of edges processed by any given GDU is reduced (10 edges per processor in the

example) thereby improving performance.

Adding the extra unused GDUs can be rationalized by the low resource cost of each

GDU. A GDU only costs tens of thousands of logic elements to implement which is very

cheap on a modern ASIC. Furthermore since most of the GDUs are not turned on, there

is no concern for exorbitant power usage from hundreds of processors simultaneously

running on a single processor.

With dark GDUs enabled on the simulator, we observe much better speedups in

Figure 3.1. The GDUs are no longer spending time waiting for one over-worked GDU to

complete which translates to better parallel performance as the design scales.

28

Chapter 4

Related Works

Hardware-acceleration of robot algorithms were explored quite extensively in the past:

Path planning saw FPGA and GPU applications in [4] and [5] respectively. Vision

and reconstruction algorithms are quintessential users of FPGAs and GPUs on mobile

robots [6]. Mobile robots are common targets for these works because of their embedded

characteristics.

SLAM however, eludes mainstream micro-architecture efforts due to its sophisticated

problem definition and implementation. The ”chicken-egg” interdependency of mapping

while localizing motivate engineers to focus on optimizing single-thread performance on

classic processors instead of using highly parallel architectures [7, 8, 9].

4.0.1 Multithreading and GPU

The intuitively parallel appearance of Olson’s SGD algorithm belies the subtleties

of distributing data throughout the map in parallel. Our attempts at a multithreaded

implementation of SGD yielded unpromising performance results, in addition to several

background works that have encountered similar roadblocks.

First we established that Olson’s SGD does not fall into the domain of lock free

29

Related Works Chapter 4

approaches as described by “Hogwild” [2]. While the pose graph’s adjacency matrix is

sparse, each edge update requires data to be propagated through the rest of the graph.

We tried implementing a lock-free Hogwild-like version but it simply diverges. The only

way we got it to not diverge was with extremely aggressive scaling factors that negated

any parallel performance gains.

Non-SGD methods include [10] where they used a more traditional solver called CNC

to optimize pose graphs with less-impressive results than [3]. The authors considered

the iterative nature of solvers like CNC to be the main performance bottleneck for their

implementation. Thus they concluded that traditional GPU sparse solvers provide small

incentive compared to highly-optimized CPU solvers.

However, the primary issue with current state-of-the-art GPUs is power consumption:

The NVIDIA 570 GTX used in [3] for example can draw up to 200 watts of power which

excludes its use on low-power embedded robots.

SGD is very popular in machine learning fields, and their sparse nature paved the

way to large scale parallel implementation on GPUs. However, our findings have failed

to provide substantial evidence that pure multithread-GPU approaches to pose graph

optimization are viable in the long term. We think the cost of using traditional multi-

threading for performance enhancement do not outweigh the performance-power benefits

of multicore and GPU systems. Thus, we conclude that SLAM on mobile robots imply

first-class micro-architectural support.

4.0.2 FPGA

FPGAs have been a somewhat elusive target for SLAM because there are not many

subroutines within SLAM implementations that intuitively fit FPGA paradigms.

[11, 12] for example built matrix multiplication co-processors to accelerate EKF and

30

Related Works Chapter 4

VO-SLAM subroutines, but O(n2) scaling of matrix multiplication impose limitations on

map size and capacity.

[13] on the other hand, exported CORDIC and random-number-generation operations

to the FPGA while the rest of the particle filter SLAM is done on a MicroBlaze. Particle

filters are a popular choice for SLAM applications, however modern robots require robust

graph-based systems to handle complex environments.

4.0.3 GDU

Our approach synthesizes the SGD algorithm into a physical architecture on a chip.

In other words, instead of co-processing subcomponents of a larger SLAM algorithm we

rebuilt the entire SLAM backend itself as a fully independent processor. This allowed us

to rethink SGD as a totally parallel process that maps and localizes at the same time

as opposed to iteratively alternating between the two. In our system, the streaming tree

is constantly incorporating map updates while the GDUs are computing pose locations.

Both the streaming tree and the GDUs are constantly streaming data between each other

in a highly efficient and parallel manner. This is where our convergence performance beats

GPU and CPU methods.

A fully custom processor also gave us superior flexibility in power-performance-cost

tradeoffs compared to previous attempts to accelerate SLAM on hardware. Everything

from fixed-point to GDUs utilization can be fine-tuned for each particular platform from

high-performance PCIe-FPGA computing platforms to small embedded FPGA-SoCs.

31

Chapter 5

Conclusion

While embedded systems are traditionally thought of as being dominated by tiny micro-

controllers, large scale autonomous systems present a new set of real-time computational

challenges of significant scale for embedded systems architecture. Dealing with noisy

data, integrating information from multiple sensors, managing continuous operation with

limited interruption, balancing load across multiple resources, reducing communication,

and minimizing error are often times goals in direct conflict with one another. The work

we present attempts to strike this balance through the use of our skewed tree data struc-

ture, our computational GDU specialized to the applications, our new application-specific

streaming-tree, and finally through new techniques on load balancing. More concretely,

however, we do show that a) there does exist a tradeoff between synchronization accu-

racy and algorithm convergence where eager computation can introduce error through

asynchronous operation and that this is an important limiter to scaling in a traditional

design, b) that pipelined computations performed in the streaming-tree can reduce error

introduced by this eager parallelism in particular through the elimination of the most

contended-for resources at the top of the tree data structure, and c) that it is possible

manage variable loads but that doing so requires the addition of extra resources which

32

are only turned on when needed and helps avoid the significant amount of network over-

head that would required to manage the load otherwise. In the end we find that the

resulting system exhibits superior parallel performance scaling compared to traditional

state-of-art processor designs.

5.0.1 Future Work

We believe there is much promise in the areas of robotics and computer architecture

due to the embedded and realtime constraints required for robot control. We investigated

pose graph SLAM as an example of an application where custom chip designs are a viable

alternative to traditional computing infrastructures.

With regards to this particular work, the next step would be towards realizing a

full-scale prototype on a large FPGA. Integrating the full-scale design with an existing

SLAM framework like RTAB-Map would reveal the true performance of our processor.

The profiler within RTAB-Map will provide details on the speedup our design provides

over a typical CPU. Furthermore, a next-generation simulator can provide more accurate

cycle timing and perform detailed design space exploration to look for pareto-optimal

processor configurations.

33

Bibliography

[1] E. Olson, J. Leonard, and S. Teller, Fast iterative alignment of pose graphs with
poor initial estimates, in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pp. 2262–2269, May, 2006.

[2] B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A lock-free approach to
parallelizing stochastic gradient descent, in Advances in Neural Information
Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, eds.), pp. 693–701. Curran Associates, Inc., 2011.

[3] A. Ratter, C. Sammut, and M. McGill, Gpu accelerated graph slam and occupancy
voxel based icp for encoder-free mobile robots, in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 540–547, Nov, 2013.

[4] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris, Robot motion
planning on a chip, in Proceedings of Robotics: Science and Systems, (AnnArbor,
Michigan), June, 2016.

[5] J. Pan, C. Lauterbach, and D. Manocha, g-planner: Real-time motion planning
and global navigation using gpus, in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI’10, pp. 1245–1251, AAAI Press, 2010.

[6] Q. Gautier, A. Shearer, J. Matai, D. Richmond, P. Meng, and R. Kastner,
Real-time 3d reconstruction for fpgas: A case study for evaluating the performance,
area, and programmability trade-offs of the altera opencl sdk, in 2014 International
Conference on Field-Programmable Technology (FPT), pp. 326–329, Dec, 2014.

[7] S. Lee and S. Lee, Embedded visual slam: Applications for low-cost consumer
robots, IEEE Robotics Automation Magazine 20 (Dec, 2013) 83–95.

[8] A. Dine, A. Elouardi, B. Vincke, and S. Bouaziz, Enhancing processing time for
graph-based slam applications, in 2014 International Conference on Multimedia
Computing and Systems (ICMCS), pp. 706–711, April, 2014.

[9] M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif, and T. Abdelouahed, An
improved rao-blackwellized particle filter based-slam running on an omap embedded

34

architecture, in 2014 Second World Conference on Complex Systems (WCCS),
pp. 716–721, Nov, 2014.

[10] D. Rodriguez-Losada, P. S. Segundo, M. Hernando, P. de la Puente, and
A. Valero-Gomez, Gpu-mapping: Robotic map building with graphical
multiprocessors, IEEE Robotics Automation Magazine 20 (June, 2013) 40–51.

[11] D. T. Tertei, J. Piat, and M. Devy, Fpga design and implementation of a matrix
multiplier based accelerator for 3d ekf slam, in 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), pp. 1–6, Dec, 2014.

[12] M. Gu, K. Guo, W. Wang, Y. Wang, and H. Yang, An fpga-based real-time
simultaneous localization and mapping system, in Field Programmable Technology
(FPT), 2015 International Conference on, pp. 200–203, Dec, 2015.

[13] B. G. Sileshi, J. Oliver, R. Toledo, J. Gonçalves, and P. Costa, Particle Filter
SLAM on FPGA: A Case Study on Robot@Factory Competition, pp. 411–423.
Springer International Publishing, Cham, 2016.

35

	Abstract
	Introduction
	Pose Graph SLAM
	Stochastic Gradient Descent
	Offset-Tree Parameterization of Pose Nodes
	Characteristics of Offset-Tree SGD

	Architecture
	Gradient Descent Units
	Streaming Tree
	Specialized Partitioning

	Evaluation
	Graph Convergence
	FPGA Prototype
	Simulator

	Related Works
	Conclusion
	Bibliography

