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ABSTRACT OF THE THESIS

Automatic Builds of Large Software Repositories

By

Rohan Achar

Master of Science in Informatics

University of California, Irvine, 2015

Professor Cristina Videira Lopes, Chair

A large number of open source projects are hosted on the Internet by popular repository sites

like GitHub, SourceForge, BitBucket, etc. These repositories are becoming more popular and

growing in size. There are many research projects that mine these software repositories for

valuable information.

Compiling the projects found in these repositories can help filter out the good, and usable

projects. It gives us a guarantee that the source code is syntactically correct, and that

all the dependencies of the project are either self contained or accessible on the Internet.

Projects can be maintained and organized in different ways depending on the developer cul-

ture and practice. Unfortunately, very often repositories fail to capture the environmental

assumptions made by the developers such as build tools, versions, presence of external de-

pendencies, etc. This heterogeneous nature of the projects makes the successful compilation

of large numbers of projects a challenging task as one solution cannot be applied to all. It

is impractical to manually correct the compilation of every project. We designed several

heuristics to maximize the number of projects compiling successfully in a repository.

Sourcerer is an infrastructure for large-scale collection and analysis of open-source code.

It crawls open-source Java projects from various sources on the Internet and builds an

aggregated repository, and database. We used the information found in the database to

vi



automatically compile more than 55,000 Java projects in the Sourcerer repository. We

propose several general, language independent heuristics to tackle the most common errors.

Using these heuristics, we were capable of building 33.18% of the projects in the repository,

successfully building more than 18,000 Java projects.
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Chapter 1

Introduction

1.1 Motivations and Objectives

The popularity of open-source repository sites like GitHub, SourceForge and BitBucket pro-

vide access to huge amounts of source code, but the heterogeneous, unconstrained nature

of these repositories creates difficulties regarding the analysis and usage of their contents.

Often the code in these repositories is dated, the solution is only partially written, and the

quality of the code is questionable. Some repositories were abandoned in the middle of their

life-cycle, or sometimes were left unfinished. Some contain good quality code written by

long-time professionals, other times they were created by an amateur with not much expe-

rience. Both for a programmer that wants to reuse code, or for a researcher that wants to

understand code quality and evolution, taking the gigabytes of existing heterogeneous code

and obtaining information from it is a time-consuming and complex task.

There are various successful projects that focus on the analysis of huge corpus of source

code, such as [1,2,8,14]. These provide either techniques or pre-processed repositories such as

databases (or a combination of both), from where it is easier to obtain information regarding
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code quality, existing patterns in the source or complexity metrics, just to name a few. These

greatly simplify the task of analyzing and reusing source code in its heterogeneous, disperse

form as it is available (and constantly growing) online.

However, the existing projects to analyze big corpus of source code often rely on static code

analysis, and discard compilation as an important step for obtaining information. Compila-

tion, despite being a critical step in software production, also provides valuable information

about a software project. It guarantees everything in that project - not only a few classes or

modules - is syntactically correct; it gives an indication of the age of the code, by knowing

with which compiler/dependencies versions it works; it guarantees that all the dependencies

of that project are either self contained or accessible on the internet. This information is very

hard to guarantee with a static analysis, but through successful compilation these crucial

characteristics are ensured.

Another important advantage of successfully compiling projects is that we generate a new

repository of artifacts composed by the results of the compilation. Being it Java bytecode in

Java, Common Intermediate Language for .NET applications or binary executables produced

by gcc, successfully obtaining corpus of these final formats opens a new window of analysis,

explored by projects such as [4,7,9,17,24]. The analysis done in this paper can also augment

several projects like the one by Martinez et al. [16] for automating program repair, Williams

et al. [22] to improve bug detection or Thummalapenta et al. [20] for improving the quality

of source code searches.

Compiling projects found in a large repository is therefore a good start to filter good, usable

projects and further analyze them, but this task is hard because it requires extremely detailed

information about the project. This includes, for example, the exact list of dependencies

and their exact location, the precise order with which the different components should be

compiled and their interdependency, or the specific chain of processes that should be used.

Projects are usually complemented with information that drives the compilation, such as
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ant files for Java, a Makefile for C/C++, or Microsoft Build Engine to be used with .NET

applications, but due to the heterogeneous nature of online repositories, the presence of this

information is far from being guaranteed.

In this work we systematically develop a series of steps to create a methodology to compile

projects in a source code repository. We used Sourcerer, a well-known database of open

source projects, composed by more than 400 gigabytes of pre-processed information on Java

projects.

Through our methodology, we were able to increase the initial 11.66% projects compiled

to 33.18% projects compiled, and we show how through this process we obtain valuable

information regarding the repository, for example, the exact number and list of dependencies,

and the types of compile time errors encountered and their correlation with each other. We

developed and worked on Java projects, but our techniques can be generalized to other

scenarios.

1.2 Related Work

Various projects provide a combination of methodologies and repositories to analyze big

corpus of open source software. An example is Boa [8], where a DSL is introduced with the

specific purpose of providing scientists and researchers with a tool for mining information on

big repositories. Other approaches with the same objective include [1,2,14], but these never

touch the analysis from the perspective of compiling the projects in the repositories.

One lesson from this work is that dependencies play a big part in the success or failure

of building open source projects. It is therefore normal that various other works focus on

dependencies retrieval and have employed various techniques to mine open source repositories

and obtain project dependency information.
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Lungu et al. worked on extracting inter project dependencies with a specific focus on software

ecosystems [15]. Zhang, Hanyu details four techniques for dependency resolution in C/C++

projects [25], through a) analyzing the source code of the project; b) parsing build scripts; c)

reading binary files with the ELF file format and discovering dynamically linked libraries; and

c) using a specification based technique that looks at the source specifications of projects

recorded in Debian repositories. It is possible these techniques can be applied to Java

projects, and can further help improve our success rate.

After the step presented in Section 4.3 we started to have the problem of having multiple

sources of dependencies for the same project. Operating systems like Debian have package

repositories that are interconnected between them, and various works were developed around

these. Gonzalez-Barahona et al. studied the dependency evolution of such large software

compilations [10]. Bavota et al. studied the evolution of inter dependencies in smaller

software ecosystems like the Apache projects [6], while Seidl el al. model and analyze the

evolution of platform software ecosystems like Android and Eclipse [19]. Sajnani et al.

conducted an analysis of 2406 components in the Maven repository that were used across

55,191 open source Java projects [18].

API usage analysis, like [23], can be used to design alternative techniques for finding the

right dependencies for projects. Lãmmel et al. extracted API usage and package footprint

from large corpus of built java projects using AST based approaches. Here, missing packages

required to build the java projects were obtained by searching the web for the jars using the

unresolved package names as the search queries. They were able to improve their build

success rate by 15% by using the resolution method in [13].

Barkmann et al. [5] conducted a quantitative evaluation of software quality metrics in open-

source projects. While preparing the projects for analysis they encountered the problem

of missing packages. They resolved these dependency errors by using both manual and

automated techniques. Similar to our results, they also had problems both in syntax errors
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and in ambiguous types that they could not resolved automatically, pointing out that there

is a point from which it becomes harder to systematically tackle these problems.
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Chapter 2

Repository and Tools used

To understand the difficulties of attempting to compile a huge corpus of open source software,

we need a repository that provides us with easy and fast access to a huge set of software

projects and its characteristics, and tools to compile the projects. We used Sourcerer as a

repository and Apache Ant as a build-driving tool.

2.1 A Repository of Open Source Software - Sourcerer

Sourcerer [2] [3] is an infrastructure for large-scale collection and analysis of open source code,

and contains a collection of large amounts of source code from open source repositories.

Sourcerer contains 74, 341 Java projects captured directly from open repositories on the

internet: Google Code, Apache, SourceForge. Of these, 55, 209 Java projects were not empty

and had a code base, and thus provided us with a perfect setting to explore the compilation

of these artifacts, as well as analyze common compilation errors on these projects and hint at

their resolution. For the rest of the paper we are ignoring the 19, 132 projects on Sourcerer

that are empty.
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A parser/feature extractor was built into Sourcerer to create a MySQL database in which

the relational representation of pre-processed source code is stored in the form of an effi-

cient platform. The schema for this database contains tables for entities such as packages,

classes, methods or fields, together with their relations. Care was taken when developing this

database to ensure that data access and retrieval is optimized, so throughout our analysis

we could rapidly obtain information regarding the characteristics of the projects that are

necessary when attempting their compilation, such as interdependencies among projects and

dependencies with external libraries.

The tables in the Sourcerer database that have information required for the compilation of

the Java projects are:

• Entities - This table contains all components found within the database, decomposing

a Java project at every granularity, from local variables to methods or packages.

• Files - All files obtained by the crawler for a project are detailed in this table. Some

dependencies of a project can be obtained from this table by looking for all jar files

used by the project.

• Jars - Maintains a list of jar files, associating the repository path or the jar file with

its hash. It helps us locate the physical resource from the information in Table Files.

• Projects - Table that holds information about all projects and libraries discovered by

Sourcerer, with attributes such as the project name, the project path or description of

the project, that help us generate a build file for the project.

The relations between these tables, as presented in the Sourcerer database, are shown in

Figure 2.1. This figure shows tables with their attributes, relations, and shared identifiers.

General information required by the scripts to find the project source are contained in the ta-

ble Projects and are marked in blue. This table includes all projects discovered by Sourcerer:
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projects crawled from the Internet, Jar packages, Maven artifacts referenced by various

projects, system projects, and internal Java libraries.

We use project type to differentiate between different types of projects. The attributes

marked in green help us obtain contextual information required to reference resources on

the Maven artifact repository.

Attributes and tables marked in red identify Jar packages stored within the Sourcerer repos-

itory, and extract relevant information such as their path. The attribute hash represents

relations between Jar files and projects.

For each project, we can find its exports by looking at all the Files that belong to the project

and have the file type JAR. These files can either be local Jar file or be pointing to external

repositories. This can be differentiated by looking at project type on the Project table.

The Entity table can represent any kind of entities, such as methods, classes or interfaces,

and have associated to them a fully qualified name (FQN ).

As we will see in the next sections, all this information will be important to resolve build

failures. The information represented here, and the Sourcerer repository we used, is from

the 2011 version.

Figure 2.1: Relation between the tables Entities, Files, Jars and Projects in the Sourcerer
database.
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2.2 Using Apache Ant to Compile Software Projects

Apache Ant [11] is a compilation framework provided by the Apache Software Foundation.

It is a tool for automating the software build process of software projects. It uses a standard

XML file named build.xml to describe all the information necessary to compile a project,

from the build process to its dependencies. It is an open source software, and can be freely

used under the Apache License.

Ant is mainly used to build Java artifacts, and has built-in tasks to help in compiling,

assembling, testing and running Java applications. This tool helped us resolve problems

in sub-tasks when building our projects, where otherwise we would have to write custom

scrips or perform actions manually (see Section 2.3). However, this tool can be used to build

projects in other programming languages such as C/C++, and its mechanics can be used

to drive any process that can be described based on a series of tasks and targets, which

effectively describes any compilation process. This helps generalizing our approach to other

programming languages.

Even though Ant has the potential to provide instructions for building software artifacts

without restrictions on the programming language used, any other strategy that helps build

software projects, and helps in organizing, compiling and linking source files with prioritiza-

tion of these sub-tasks can be used on our approach. An example includes the famous Make

Utility and its Makefile files. This is important because other repositories of software might

exist where a big set of projects have incorporated their own build system, and with the

generic approach we describe these build systems can be directly used, without the need to

mine all the repository and create build instructions for all the projects from scratch.

In this project we used Apache Ant version 1.8.2, compiled on December 3 2011.
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2.3 Other Tools and Repositories

Dependencies on external libraries play a big part when building most medium to large size

software projects. We expected this to be a problem, and expected to solve it by querying

Sourcerer for information that was present both as local Jar files or on external repositories

of libraries.

In our context, we used the dependency management Maven [21], as an external reposi-

tory that holds individual artifacts such as software libraries and modules for various Java

projects. With Maven, a project that needs the (fictional) Mondego library only has to

declare this library’s coordinates, and both Mondego and its transitive dependencies will

be automatically downloaded and stored in local repositories to be used when building a

project.

Maven has a central repository1, which of July 27 2011 had 286 gigabytes2 of artifacts. By

default this central repository is used, but Maven can be configured for use with private

repositories (although this is not important in our scenario). Additionally, a search engine

exists for Maven3 that helps retrieve dependencies. All these features make Maven a good

candidate for the use in our attempt to build Java projects.

As similar to Ant, the usage of Maven as an external repository to search for missing depen-

dencies can be generalized to other scenarios, which typically contain repositories of existing

libraries. If attempting to replicate our experience with other programming languages other

online repositories can usually be found, such as CPAN 4 for Perl, Hackage5 for Haskell,

PyPI 6 for Python or the Debian package repositories7 for ( C/C++). These repositories are

1http://central.sonatype.org
2http://blog.sonatype.com/2011/07/central-grows-up-see-the-history
3https://search.maven.org
4http://www.cpan.org
5https://hackage.haskell.org
6https://pypi.python.org
7https://www.debian.org/distrib/packages
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usually integrated with search engines.

Dependencies from Maven were referenced using Apache Ivy8, a dependency manager specif-

ically designed for Ant. In Ivy an external XML file, named ivy.xml, references projects both

in privately and publicly available repositories (in our case, in Maven). Ivy resolves the

dependencies, downloads the required resources and makes them available for use by Ant.

This tool simplified our approach and aids in building Java projects. Similar tools exist for

other languages (all the repositories previously mentioned have specific tools for automati-

cally searching and downloading dependencies and transitive dependencies), but there might

be scenarios were we need to write tools that perform the same actions. This should not,

however, limit the replication of our experience for other programming languages/reposito-

ries

Additionally, we used Python scripts to automate processes when necessary, such as running

all the build instructions for all the projects, and the standard Java compiler javac to build

the projects. The versions of the software we used are as follows: Apache Ivy version 2.4.0,

Python version 2.7.3 and javac version 1.8.0 05. As a Java run environment, we used the

Java SE Runtime Environment, build 1.8.0 05− b13.)

8http://ant.apache.org/ivy
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Chapter 3

Building the Projects

Figure 3.1: The steps taken to get maximum number of successfully compiling projects

In order to successfully compile as many projects as possible, we followed a series of steps.

Each step was guided by the analysis of the results received in the previous step. Figure

3.1 shows the road map of these steps taken to improve the build percentages. The projects

that failed to compile at each successive step were used for the subsequent step.

Our first attempt was to build the projects in Sourcerer by creating an Ant build file for

each one. We expected a low success rate, but as we will see, the analysis of the main

causes of failure provided by this first step were important in driving our experience and

understanding which problems should be tackled first.
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In each individual Ant file we inserted the description and the name of the project, which

are optional fields but are potentially important for future analysis (and represent good

programming practices). We also had the location of the project as a path in the Sourcerer

repository and, since we are working with Java projects, we instructed Ant to use the

traditional Java compiler javac.

With the help of Python scripts, we proceeded to try building all the projects, and captured

the successful builds and the list of errors as provided by the output of javac.

We successfully built 11.66% of our total 55, 209 projects, which totals to 6, 439 projects

built. This result shows a good number of projects had no external dependencies and have

enough structural integrity to build.

The top 10 most common errors responsible for unsuccessful builds are presented in Table

3.1. These errors represent the following problems in the source code:

• Cannot find symbol - These errors arise when a symbol is used but is neither declared

locally nor imported from external packages.

• Package not found - When the compiler is not able to find packages imported by the

program, the build fails with this error type.

• Unmappable character - Text in programs can be written in any language using different

encoding formats. The Javac compiler does not attempt to detect the encodings of files

and defaults to UTF-8. The compilation fails with this error when it finds a character

it cannot decode1.

• Duplicate class - When more than one class with the same fully qualified name exists

in the project, compilation fails with this error.

1As of May 13 2015, a bug exists on javac (http://bugs.java.com/view_bug.do?bug_id=4508058)
where the Byte Order Mark (BOM) at the start of a text stream is not recognized in files, and the default
UTF-8 is always used unless specified otherwise. This bug, with the code JDK-4508058, was detected on
versions 1.4.0 and 1.4.2 05 but was never solved. It is possible that this bug contributed for these type errors.
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• Override error - These errors appear when the decorator @Override is used on a

method, but the method does have a matching method in the super class.

• Expected symbol not found - Compilation fails with this error when a class, interface,

or enum was expected and not found.

• Static import only from classes and interfaces - Static imports are those that import

only static members from the specified class. If the specific symbol is not a compatible

type, compilation fails and reports this error.

• Incompatible Java version - As newer versions of Java are released, some features are

deprecated. Projects using such constructs can only be built with deprecated flags.

Compiling without these flags fails with this error.

• Illegal use - This error is reported for some syntax errors when the offending code

constructs are either at the wrong place or incorrectly written.

• Incompatible types - Compilation fails with this error when the type of the symbol used

(in a method, or expression) does not match the expected type declared.

The main causes of build failure for the projects in Sourcerer were related to missing infor-

mation, either from missing symbol declarations (cannot find symbol) or missing packages

(package not found). This showed Java projects have a great dependency in external infor-

mation, and our first approach should head towards solving this.

The third most common problem, that affected ≈ 25% of the projects was unmappable

character. This represents problems related to file encoding, and its position in the table can

hint at problems in the online repositories where the projects are stored, users that upload

projects where different files have different encodings or problems in Sourcerer itself.

The percentage of these problems do not sum up to 100% because frequently javac returned

14



Table 3.1: Build Errors - First Try

Error Type # projects % projects

Cannot find symbol 31018 56.184

Package not found 30871 55.918

Unmappable character 13866 25.116

Duplicate class 4211 7.628

Override error 3227 5.845

Expected symbol not found 2395 4.338

Static import only from
classes and interfaces

2172 3.934

Incompatible Java code 1397 2.530

Illegal use 1203 2.179

Incompatible types 1125 2.038

more than one error type for a project. The two more common errors, both affecting ≈56%

projects was found to have an almost complete overlap.

It is interesting to see that other types of errors such as problems related to class hierar-

chies (Override error and Duplicated classes) caused problems when building projects, and

problems related to the encoding of source files (Unmappable character) also influence the

compilation errors.

This step help us identify the main problems of building the Java projects: missing depen-

dencies, and encoding errors. We expected the presence of the missing dependency problem,

and this was validated in the two more common types of errors: Package not found, and

Cannot find symbol. It is important to see these concerns confirmed, and these are the main

problems we tackled in the next steps.
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Chapter 4

Improving Build Success

A large cause of build failures in the previous step was explained by missing dependencies in

projects, so we prioritize this problem in the next steps. With each step we took, we focused

on only the projects that did not compile, ignoring the projects that were successfully built

during the previous steps.

4.1 Resolving Dependencies using Sourcerer and Maven

We first approached this problem by querying the Sourcerer database for each individual

project that failed to build in the previous step and collected the respective dependency

information. For each of these package dependencies we tried to locate local Jar files and

local Maven information.

Finding Jar files was a question of querying the Sourcerer database, and the organized nature

of this repository greatly facilitated this task. We found all the entities in the database related

to each individual project (in Sourcerer an entity can represent a myriad variety of artifacts,

such as methods, classes or interfaces) and from the artifacts that were associated with each

16



specific project we extracted the ones that were registered as Jar files. We then obtained

their local paths and added them to the project’s local Ant file by updating the build.xml

file with compile rules that reference them.

We followed a similar approach for the dependencies presented in Maven. For each individ-

ual project we search for entities that are Maven files and added this information to each

individual project in the form of an Ivy file. Using this, Ivy would attempt to download the

dependencies before Ant tried to build the projects.

This process is resumed as follows:

1. Project GoodCode build failed:

(a) Search Sourcerer for Jar files that are associated with GoodCode, and add them

to build.xml ;

(b) Search Sourcerer for Maven files that are associated with GoodCode, and add

them to ivy.xml ;

2. Try to build GoodCode, capture success or errors on failure.

This was automated with the help of scripting. It was executed for all the projects that

failed to build, independent of the causes, but with the information from Table 3.1 we knew

dependencies were a huge cause of failure.

With this step we build 687 new projects, to a total of 7, 126 Sourcerer projects successfully

built. This represents 12.91% cumulative with the previous step, an increase of 1.25% from

our previous step. From the new projects we were capable of building, there were a total of

248, 366 dependencies, with 195, 885 being dependencies from local Jar files, 14, 105 unique

dependencies. 52, 481 dependencies were solved with Maven, with 3, 104 unique Maven

dependencies being downloaded. On an average, the projects had 4.50 external dependencies
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(an average of 3.55 local Jar files and 0.95 Maven dependencies). The project with the most

number of dependencies was Apache Geronimo with 210 dependencies (80 local Jar files and

130 Maven dependencies downloaded).

These results by themselves provide interesting information about the Java projects in

Sourcerer. We have the guarantee that the 7, 126 projects that compile are syntactically

correct, have structural and hierarchical integrity, they are written in a version of Java that

works with modern compiler versions, and their dependencies are readily available. We also

obtain values regarding, for example, the average number of dependencies per project and

we can obtain statistics correlating them to the size of the projects (number of lines of code,

methods or classes for example).

After this attempt we had 48, 083 projects failing to build, whose top 10 errors can be seen

in Table 4.1, where we also present the differentials on the number of projects affected by a

particular error, by comparing them to Table 3.1.

This step also introduced 1 new error type to our top 10:

• Unresolved dependencies - Apache Ivy tries to resolve all Maven dependencies before

the compilation starts. If a declared dependency fails to download then compilation is

stopped and this error is reported.

Possible causes for this error includes incorrectly linked dependency due to incorrect data in

the Sourcerer database, or the dependency was hosted in private repository to which we do

not have access to. This error replaced the error type illegal use, which was no longer one

of the top 10 reasons why projects fail to build.

We can also see that despite the top 2 error types having switched place, with package not

found being now the main reason why builds fail, the percentage of projects affected by the

top 2 error type is not only very high (around half the projects are affected by at least one
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Table 4.1: Build Errors - Second Try

Error Type # projects % projects

Package not found 27244 (↓3627) 49.348

Cannot find symbol 27231 (↓3787) 49.324

Unmappable character 12578 (↓1288) 22.783

Unresolved dependencies 4207 (↑4207) 7.620

Duplicate class 3696 (↓515) 6.695

Override error 2524 (↓703) 4.572

Expected symbol not found 2119 (↓276) 3.838

Static import only from
classes and interfaces

1842 (↓330) 3.336

Incompatible Java code 1284 (↓113) 2.326

Incompatible types 1109 (↓16) 2.009

of these two) but also very similar. This hints, like in our previous attempt, that the two

errors types are overlapping for a large number of projects.

We found that there was an almost perfect overlap, with almost all the projects affected by

package not found also being affected by cannot find symbol, and the cause of both is the

same: incomplete dependencies. These two error types have a huge correlation.

Between the projects whose build failed, there are also a large number, around 6.7%, being

affected by duplicate class, showing another smaller correlation. Duplicate class can arise

when the source contains backup copies of source files which are expected to be excluded

during compilation.

Projects whose errors were generated by unmappable character or unresolved dependencies

are isolated and have practically no overlapping with projects whose problems have their

cause in the other three previous errors (in the case of unresolved dependencies, no correlation

at all). The dependencies unresolved against Maven create an immediate compilation error,

and Ant refuses to continue building if the Ivy resolution fails. This explains the absence of
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overlapping between Unresolved dependencies and the rest of the errors. Nevertheless, this

still affects ≈22% and ≈8% projects, respectively. Interestingly, the top 6 error types, which

are presented in this figure, account for around 90% of all projects, cumulatively.

We can see an evolution from the previous step, where we were able to build 687 more

projects. Our approach to find local Jar files and Maven dependencies increases our success

rate by 687. However, dependency problems still amount to 27,244 projects failing to build,

so we continue to tackle this problem as our main focus.

4.2 Resolving Encoding Errors

After our second attempt, problems causing building errors branch into two main causes:

encoding errors and problems caused by packages not found, with the encoding errors stand-

ing for the third largest cause of projects failure. There were a total of 12,578 projects with

encoding mismatches. The javac compiler defaults to UTF-8 as the encoding, and if the

encoding is different it fails and throws an unmappable character error. We tried to fix this

problem by auto detecting the encoding of the offending file(s) using the Chardet1 package

in Python; and configuring javac to expect this new encoding. The version of Chardet used

was 2.3.0.

Chardet analyzes the file to give the best possible match of encoding format, and can detect

more than 30 encoding formats. By changing the default encoding in javac and recompiling,

we were able to successfully compile 1, 614 of the 48, 083 projects that failed at the previous

step, bringing the total to 8, 740 or 15.83% of the projects in Sourcerer. This fix specifically

targets the 12,578 projects that were failing due to character encoding issues.

1https://pypi.python.org/pypi/chardet
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4.3 Searching for Missing Dependencies

The next approach used followed on our second attempt (Section 4.1) and our resolution of

the encoding errors in the previous step (Section 4.2). In our second attempt we had tried to

resolve missing dependencies by searching for Jar and Maven files with a relation to projects

and increased the total percentage of projects successfully built to 12.91%, but there were

still 27,244 projects where missing dependencies was the main cause of build failures. This

might be caused by incomplete information in the projects as they are stored in the online

repositories or errors in Sourcerer itself. We, however, did not rebuild the successful projects

obtained by resolving encoding errors (Section 4.2).

Our next strategy was to find dependencies in Sourcerer, or try downloading them on Maven,

that did not have a direct relation on the Sourcerer’s database with the project we are trying

to build. We instead try to take advantage of the size of the information in Sourcerer to

match dependencies. To achieve this, we processed the building results of the projects that

were failing for additional information.

We started by extracting the fully qualified name of packages that are dependencies of

a project that we cannot build. This was done by processing the output resulting from

javac in the cases where the compilation failed. An example of a fully qualified name is

”com.google.gwt.accounts.client”. We then proceeded to search Sourcerer for Jar files and

Maven information that relates to the qualified name of this package.

For Jar files, we search all the entities in Sourcerer that have the qualified name of the

dependency, and from these we filtered the entities that were packages (remember, entities

in Sourcerer can be methods, classes, Jar files, etc). The entities which are identified in

Sourcerer as packages contain various items, and among them we find Jar files. We proceeded

to add the paths of these Jars to the build instructions of the project that had the qualified

package name as a dependency.
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The intuition behind searching for packages in Sourcerer is that among these Jar files that are

contained in the package we would encounter the information (namely, the implementation

of the classes) needed to successfully resolve the missing dependency. This differs from

our previous attempt, where we merely searched for entities which first: are Jar files; and

second: have, in the Sourcerer database, a direct relation with the project we are searching

dependencies for.

With the qualified names we applied another strategy to try to solve missing packages in

project build failures. Returning to our example, we knew a project has a missing dependency

with the fully qualified name ”com.google.gwt.accounts.client”. We searched all the projects

within Sourcerer that had this qualified name. Sometimes we found some, sometimes we did

not, but for the latter cases we incrementally reduced the qualified name (for example, from

”com.google.gwt.accounts.client” to ”com.google.gwt.accounts” and continued searching for

projects.

When we found in the Sourcerer universe a list of projects that contain the qualified name,

we selected the one with the latest version and added them to the Ivy file of the original

project, with the hope this project existed in Maven and the download of the project and

its transitive dependencies would solve our problem.

This process is detailed as follows:

1. Project GoodCode build failed, and javac says one missing dependency is

”com.google.gwt.accounts.client”;

2. Search Sourcerer for projects that have in their attributes information about the qual-

ified name:

(a) If one or more projects were found, jump to step 3);
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(b) If no projects were found, reduce the qualified name to ”com.google.gwt.accounts”

and return to step 2);

3. From all the projects found, filter the unique ones with the latest version. For example,

if the search returned:

• project: gwt-dev

version: 2.2.0

qualified name:”com.google.gwt”

• project: gwt-user

version: 1.0.3

qualified name:”com.google.gwt”

• project: gwt-user

version: 1.0.4

qualified name:”com.google.gwt”

use project gwt-dev v2.2.0 and gwt-user v1.0.4;

4. Add the projects gwt-dev v2.2.0 and gwt-user v1.0.4 to the Ivy file in the building

instructions of GoodCode.

Hopefully, Ivy would locate and download gwt-dev, gwt-user, and their transitive dependen-

cies and, in the process, the missing dependencies of GoodCode would be solved. Some times

even after greatly reducing the qualified name we did not obtained any result. In this cases

there was nothing we could do.

We used the project with the latest version so that we can get the most actual source code.

This can be misleading (a project in version 1.0.0 can be more recent and a greater source

of missing dependencies that a project on version 3.0, which can be very old), but we took

this step because trying all the projects returned in step 2) would make our solution grow to
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Table 4.2: Build Errors - Third Try

Error Type # projects % projects

Cannot find symbol 15262 (↓11969) 27.645

Package not found 9087 (↓18157) 16.460

Unresolved dependencies 8955 (↑4748) 16.220

Unmappable character 7921 (↓4657) 14.348

Duplicate class 3826 (↑130) 6.930

Incompatible types 2855 (↑1746) 5.171

Expected symbol not found 2238 (↑119) 4.054

Cannot be applied 2145 (↑1719) 3.885

Illegal access 1795 (↑1762) 3.251

Override error 1682 (↓842) 3.047

unmanageable complexity, and choosing the one with the largest version is generally better

than picking one random, as in most cases it means there is a greatest effort in maintaining

the project. Furthermore, as we will see, this strategy greatly improved our results.

We tried to apply the solution using Maven first and on the missing cases the solution using

the ( Jar) files, with which we were able to build 2, 028 more projects. Afterwards we tried

applying the the solution using the Jar files first and then the Maven projects to fill missing

dependencies, and with this strategy we were able to build 6, 128 new projects. This is a

large improvement, making it by far the most successful among all our strategies. The results

presented next were obtained by combining the successes of both strategies.

In total, after this step were were capable of building a total of 16, 896 projects. This

represents 30.60% of the Sourcerer repository. This was an increase of 14.77%, and we

successfully built 8, 156 more projects by mining the projects and programmatically searching

for dependencies.

As similar to the previous sections we show the top 10 most common reasons for the failure

of building projects, presented in Table 4.2. As is clear in this table, all the errors show a
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significant decrease, with Cannot find symbol and Package not found being now present in

the build failures of ≈28% and ≈16% projects, respectively. This was a huge decrease as

these two errors appeared in ≈50% of the builds that failed.

This step also introduced two new error types to our top 10:

• Cannot be applied - This error is thrown when the type of the symbol used (in a method

or expression) can not be inferred with the given type even though the fully qualified

names are the same. Can also arise if the imported package is not the right version or

type as the package expected.

• Illegal access - When the symbol accessed is either not present or not accessible due

to the rules governing access modifiers like private and protected.

None the two error types that are new in our table are related to missing dependencies,

but rather to problems in the source code of the projects. This confirms the trend that

dependencies are starting to play a smaller impact in build failures.

Even with smaller percentages in Table 4.2 we saw overlaps in the errors. As we improved

the problems related to dependencies, we start to see a shift away from dependencies and

into other errors, namely Incompatible types and Duplicate class.

Two conclusions can be taken from Table 4.2: our strategies into solving dependencies are

working, and resolving the 38, 313 projects that are still to be successfully built is becoming

a harder task, as a larger percentage of projects are affected by a larger group of different

problems. The projects that did not compile are getting distributed across new sets of errors.
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4.4 A new strategy for Solving Dependencies

Even though the previous sections solved roughly a third of the original compilation prob-

lems, we still have 9,087 projects exclusively with dependency problems. We decided to try

an alternative strategy for dependency matching to try and resolve these issues.

The compilation results from our first attempt (Section 3), gave us one really useful infor-

mation. Since we did not include any external dependencies in the build process and just

compiled the program as is, the error reports complaining about missing dependencies can

have one of two sources. They can mean the project is incomplete and missing information,

which can have various sources, such as problems when building Sourcerer or incomplete

projects in the repositories themselves. In these cases there is nothing we can do. The other

reason is related to missing external dependencies, and in these cases there is something we

can do differently than our previous approaches.

Jars are simply compressed files containing a specific representation of a project packaged,

organized in a structured format: in a Jar, a class defined by the fully qualified name

”foo.bar.baz” has a package name ”foo.bar” and, when digging inside a Jar file structure, is

be stored at the location ”foo/bar/baz.class”.

Sourcerer has in its repositories 147,243 Jar files, each one containing a series of classes.

Using a Jar exploration tool provided by Oracle2, we can list all the class files inside a Jar

and extract the full qualified name for each one of them.

The next step would be to match each project to Jar files in Sourcerer, but doing so by

comparing the fully qualified names of their dependencies with the fully qualified names

obtained from build error logs. However, this would include a large number of unnecessary

packages, since developers typically bundle more than one project into a single Jar package.

2http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jar.html, as of May 15, 2015.
This tool comes bundled with Java SE 8.
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To avoid this problem, we split the Jar files into smaller Jars. We did this by recursively

searching all the folders in side a Jar, and for each class file we found we create a new Jar.

For example, if a specific Jar file contained the following classes:

1. foo/bar/baz/Foo.class

2. foo/bar/baz/Foo$1.class

3. foo/bar/baz/Foo$inf.class

4. foo/norf/Bar.class

5. foo/norf/quz/Bar$5.class

6. foo/norf/quz/Bar.class

we would obtain two packages. One jar would contain classes 1, 2 and 3 and would be

associated with the fully qualified name ”foo.bar.baz”. The other would contain classes 4, 5

and 6 and would be associated with the fully qualified names ”foo.norf” and ”foo.norf.quz”.

We expected, with this step, to obtain dependencies that we could not find in the previous

steps.

Using this method we split the original 147,243 Jar files in Sourcerer into 491,023 new smaller

Jars. Afterwards, we associated these to the 9,087 projects that still had dependencies

missing. That required a total 91,904 packages (12,343 unique packages). For the projects

that, even after this step, had missing dependencies, Maven dependencies were looked up in

Sourcerer using the method detailed in Section 4.3.

We were not capable of locating all the packages for 5,467 projects. In cases where there

were two Jar files with a fully qualified name as dependency of a project, we tried to choose

the Jar whose set of fully qualified names covered better all the dependencies of the project.
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Table 4.3: Build Errors - Fourth Try

Error Type # projects % projects

Cannot find symbol 17284 (↑2022) 68.042

Package not found 8113 (↓974) 31.938

Illegal access 6819 (↑5024) 26.844

Duplicate class 2575 (↓1251) 10.137

Incompatible types 2350 (↓505) 9.251

Override error 1889 (↑207) 7.436

Cannot be applied 1219 (↓926) 4.799

No suitable definition found 1183 (↓417) 4.657

Abstraction error 1012 (↓112) 3.984

Static import only from
classes and interfaces

952 (↑385) 3.748

With this new step we were capable of building 1, 425 new projects, which accounts for

33.18% of the total projects with which we started. We are at a total of 18, 321 projects

successfully built.

The top 10 errors encountered are shown in Table 4.3. The error type Cannot find symbol is

now the top reason why projects build, and actually saw a increment (together with Illegal

access). Most error types however decreased. This is good and proves the success of this

approach.

With 68% errors in builds being now related to one error type, is it expected this starts

playing a most significant role in failures, but doing in scenarios where it exists with a

combination of other error types. We also see that Unresolved dependencies has reduced

considerably. Incompatible types is not longer in the top few errors and has been replaced

by Illegal access.

We also found a that the projects we have not built suffer from more varied sets of errors,

making them harder to resolve with broad heuristics.
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Chapter 5

Discussion and Conclusion

5.1 Final Analysis of Results

Figure 5.1: The success and failure of each step that we took.

As we transition from the first to the second compilation, and compare the results described

in Table 3.1 to the results described in Table 4.1, we start seeing several trends. Resolving

dependencies plays a significant role in successfully building the repositories and these prob-

lems became proportionally smaller and smaller and other error types become more present.

More interestingly, we start seeing a large number of projects being individually affected by

a greater number of problems.
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The overlap of errors helps us understand the correlation between the different errors. For

example, we see that Package not found and Cannot find symbol go hand in hand, and that

there are few projects with just one of the error.

There are 844 projects that have Package not found and not Cannot find symbol and 831

projects that have Cannot find symbol and not Package not found, in comparison to 26,400

projects having both. Override error and Duplicate class also have high overlap with Package

not found and are highly correlated.

After the third attempt we see a different picture. The overlap between Package not found

and Cannot find symbol decreased considerably. The number of projects that have Package

not found and not Cannot find symbol (430) is much less than the number of projects that

have Cannot find symbol and not Package not found (6605).

It is interesting that there are projects that have Package not found errors but no Cannot

find symbol errors. This would likely mean that these packages are imported needlessly into

the projects and removing such imports could be a strategy for improving the success count.

From the data in Table 4.2 we see that the number of projects throwing build errors due

to missing dependency has substantially dropped. Which means our approach was able to

resolve dependencies successfully.

Another lesson is that strategies can be successfully applied to build projects in Sourcerer

only until a certain point, after which building projects becomes increasingly harder. As

we resolve our larger problems, two trends start to appear. First, projects with incorrect

dependencies start to have a series of problems with varied causes, and successfully building

them implies tackle all the problems. Second, we start to see error types that are related to

the actual source code, which can be missing information or code written with errors. It is

hard to make a project compile if there are a few classes missing which are not generic, but

are specific for that project. Similar results were obtained by [5] (see Section 1.2).
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5.2 Generality of the Process

In this paper we describe the methods used and the results obtained when compiling the

Java projects found in Sourcerer. These methods and results can be generalized to other

programming languages if they meet the following criteria:

1. The language should have a compiler and the compiler should expose errors with

enough detail to categorize and extract needed information from them. Most language

compilers have sufficiently detailed information as they cater to the needs of the pro-

grammer. For example, in C/C++ if a header file foo.h is missing, the GCC compiler

gives the error: fatal error: foo.h: No such file or directory. This can be parsed with

regular expressions to determine that the C/C++ project does not have access to foo.h

2. The external packages used by the programming language should be in a format that

allows for extracting information that can be used to identify them. In Java, Jar files

could be explored using tools, the packages that they allow could be inferred from the

folder structure. Similar techniques can be used for other languages: Header files found

in the developer packages in software repositories, like the Debian package repository,

can be used to determine the right packages to obtain for a C/C++ project. DLL

exploration tools1 can be used to extract relevant information from .NET DLLs.

3. The language should have a build system that can automatically compile all the code,

reference external dependencies, and provide us with the error logs. The Ant build

system is a cross platform, language independent tool that can be used for this pur-

pose. The process described however is not restricted to only Ant. Any build system

that meets the mentioned criteria can be used. Examples of build systems for other

languages include: Make, a classic Unix build tool usable for any language; Cabal, a

1https://technet.microsoft.com/en-us/library/cc738370.aspx is a Microsoft provided tool to ex-
plore a DLL

31

https://technet.microsoft.com/en-us/library/cc738370.aspx


tool for building applications and libraries in Haskell ; MSBuild for automating the

build for .NET projects.

4. It should be viable to parse the language source code and build a code database like

Sourcerer. The information obtained for the build process that was preprocessed and

maintained by Sourcerer include: details about the project such as the name, descrip-

tion, location in the repository; the files used by the project as seen when crawled from

the online code repository; and a database of every entity discovered by Sourcerer. All

the three sets of information can be generated for other languages using crawlers and

the right language parsers.

Programming languages like C/C++, C#, Scala, etc. that fit the requirements mentioned

are easy candidates for the direct application of the methods described in this work. It

would be harder to do the same for languages like Python, Ruby, Bash, etc. that do not

conform to these requirements. Interpreted languages have at least two main problems that

prevent us from using methods and analysis described in this work directly. First, all errors

are only caught during executing. In order to detect and categorize errors, we would need

to execute the code. This can lead to unintended side effects which in some cases could

be dangerous as we could be inadvertently executing malicious or unsafe code. Second, for

interpreted languages to execute, the environment has to be set up in the manner intended

by the programmer. The absence of external artifacts like files, databases, system services,

etc. are not a concern for languages that are compiled. In some cases there could be

workarounds designed. For example, the tool py2exe 2 can be used to convert Python code

into an Windows executable (EXE file) that can execute without the need of the Python

interpreter.

2http://www.py2exe.org/
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5.3 Conclusion

Open source software has moved from being pet projects for a minority to being the software

used daily by the majority. For example, all the tools used in this work are open source

software with their source code readily available. Open source code lends itself very well to

software reuse. The meteoric growth of repository sites like GitHub creates problems that

didn’t exist before: while many projects are of excellent quality, a large number of open

source projects are of poor quality in terms of purpose, completeness, maintenance, etc. The

popularity of a project is not always a measure of its quality [18] and we can look to reuse

even the smaller projects. As such, we need a way to filter out the good projects from the

bad. We need to identify the source code that is complete and thus can be reused. A reliable

attribute of a project to solve this problem is whether it can be compiled successfully.

Several conditions have to be met in order to compile one project successfully. Its external

dependencies have to be identified and be made available during compilation. The project

might also require special compiler flags. Some projects are written for compilation only in a

specific environment. These are a few problems when compiling one project. It is impractical

to manually repeat the process for all the projects in a repository. Even software companies,

that rigorously maintain their internal repositories of code, occasionally see components

failing to build successfully [12]. Thus, automatically compiling a large repository of open

source code is challenging; we tackled it by designing a series of heuristics.

We used the projects indexed by Sourcerer as the target repository for designing and exe-

cuting our heuristics. We tried to successfully compile as many projects in the repository as

we could. We approached it by, first, finding and analyzing the errors when compiling, and

then designing heuristics to tackle the most significant errors. This process was iterated five

times and targeted the two most common types of error found viz. package not found, and

unmappable character. Dependency errors (package not found) was by far the most common
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error encountered. However, fixing external dependencies is not an easy task. Through our

analysis of the build errors, we saw that matching packages to missing imports can lead to

an increase in other types of errors. It is harder to know if these new errors are caused by a

mismatch in the package (for example: wrong version of the package used) or are errors in

the code that have now been exposed after successfully resolving all dependencies.

By executing every heuristic we designed on a repository of 55, 209 Java projects, we were

able to successfully build 18, 321 or 33.18% of the projects. This gave us a new repository

of compiled artifacts, and compilable projects that can be used in the studies to come.
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