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Abstract 

Distributed models of lexical semantics increasingly 
incorporate information about word order. One influential 
method for encoding this information into high-dimensional 
spaces uses convolution to bind together vectors to form 
representations of numerous n-grams that a target word is a 
part of. The computational complexity of this method has led 
to the development of an alternative that uses random 
permutation to perform order-sensitive vector combinations. 
We describe a simplified form of order encoding with 
convolution that yields comparable performance to earlier 
models, and we discuss considerations of neural 
implementation that favor the use of the proposed encoding. 
We conclude that this new encoding method is a more 
neurally plausible alternative than its predecessors. 

Keywords: semantic memory; convolution; random 
permutation; vector space models; distributional semantics 

Introduction 
The well-known ‘semantic space’ approach to modeling 

word meanings is frequently employed by researchers 
interested in understanding how the brain represents lexical 
information. At its most simple, the approach involves 
encoding word co-occurrence statistics from natural 
language corpora into a set of high dimensional vectors (e.g. 
Landauer & Dumais, 1997; Lund & Burgess, 1996; Jones & 
Mewhort, 2007). The spatial relationships between such 
vectors are then taken to reflect semantic relationships 
amongst corresponding words. Experiments involving 
semantic space models have produced impressive results 
matching human data from studies of category typicality 
(e.g., Jones & Mewhort, 2007) and synonym identification 
(e.g., Landauer & Dumais, 1997), amongst other things.  

However, one concern with the traditional semantic space 
approach is that it fails to take into account information 
about how words are sequentially related to one another 
(Jones & Mewhort, 2007). For example, the latent semantic 
analysis (LSA) model developed by Landauer and Dumais 
(1997) functions by building a word-document frequency 
matrix that treats all words occurring in a single document 
equivalently. Similarly, Lund and Burgess’ (1996) 
hyperspace analog to language (HAL) model simply counts 
the frequency of words occurring within a multi-word 
window around a target term. This indifference to sentence 
structure has led to HAL and LSA being referred to as ‘bag 
of words’ models of lexical semantics (Jones & Mewhort, 
2007; Recchia et al., 2010). 

More recently, two techniques have been developed to 
incorporate word order information into semantic vectors. 
The first, developed by Jones and Mewhort (2007), uses 
circular convolution (proposed by Plate (2003) as a vector 
binding operation) to create vector representations of the 
numerous n-grams a target word is a part of. The second, 
developed by Sahlgren, Holst, and Kanerva (2008), uses 
random vector permutation to index the positions of 
neighboring words in relation to a target word. Functionally, 
the two approaches are quite similar, but random 
permutation is much more computationally efficient than 
convolution (Sahlgren, Holst, & Kanerva, 2008). Moreover, 
a recent analysis indicates that convolution and random 
permutation offer similar degrees of accuracy during 
information retrieval, and that they perform comparably on 
a set of basic semantic tasks involving synonym 
identification (Recchia et al., 2010). 

Given that computational efficiency favors the use of 
random permutation, the aim of this paper is to develop a 
simplified version of convolution encoding that can 
replicate many of the important functional properties of 
Jones and Mewhort’s (2007) method. More specifically, we 
use convolution with position-indexing vectors to produce a 
single n-gram for each occurrence of a target word in a 
corpus (cf. Sahlgren, Holst, & Kanerva, 2008). Encoding a 
single n-gram per word occurrence is much simpler than 
Jones and Mewhort’s technique of encoding multiple n-
grams per word occurrence, and we demonstrate that this 
simplification provides good model performance on a range 
of order-specific tasks involving phrase-completion.  

In addition, we argue that our encoding is more 
biologically plausible for two reasons:  

 
1) All of the required vector representations can be 

instantiated using simulated spiking neurons. 
 

2) All of the required computations on these 
representations can also be instantiated using 
simulated spiking neurons. 

 
To substantiate these claims, we rely on prior work. 
Eliasmith and Anderson (2003) describe a method for   
representing and transforming high dimensional real-valued 
vectors in neural systems through a combination of the non-
linear encoding of a signal into a pattern of neural spikes, 
and the weighted linear decoding of these spikes. Simple 
operations such as vector addition are easily implemented 
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using these methods, and Eliasmith (2005) extends such 
work to describe a neural implementation of the circular 
convolution operation. Since our encoding method utilizes 
only circular convolution and vector addition, these remarks 
indicate that it is therefore a neurally plausible method.  

In contrast, the approach of Sahlgren, Holst and Kanerva 
employs binary vectors, which are not naturally 
implemented in neural models (Stewart & Eliasmith, 2012). 
Moreover, the approach of Jones and Mewhort employs a 
series of computations that are arguably too complex to 
scale appropriately if implemented in neurons. Our position 
encoding approach, on the other hand, has been utilized in a 
portion of what is currently the world’s largest functional 
brain model (Eliasmith, et al., 2012), capable of a range 
diverse tasks involving perception, cognition, and action. 

In what follows, we first review the convolution-based 
encoding algorithm presented by Jones and Mewhort 
(2007), along with the random permutation algorithm 
presented by Salhgren, Holst, and Kanerva (2008). We then 
introduce our own encoding algorithm. Next, we report 
results from a series of simulations conducted to assess 
model performance. We conclude that convolution with 
position indices offers an equally useful but more 
biologically plausible strategy for incorporating order 
information into semantic space models.  

 Two Approaches to Encoding Word Order 
The main challenge facing efforts to encode syntactic 

information into high-dimensional spaces is to find an 
appropriate, order-preserving mathematical operation for 
recursively combining vectors. Given that standard vector 
operations, such as superposition, are inadequate for this 
purpose, researchers have proposed a number of 
multiplicative binding methods instead. Examples include 
Smolensky’s (1990) tensor products, Kanerva’s (1994) 
binary spatter codes, and Plate’s (2003) holographic reduced 
representations. Plate’s approach has been particularly 
attractive to researchers interested in language because of its 
use of circular convolution, which ensures that all 
recursively bound vectors are of the same dimensionality. In 
absence of preserved dimensionality, it becomes difficult to 
compare vectors representing differently structured 
linguistic objects (e.g. phrases of different lengths; Jones & 
Mewhort, 2007).  

Before getting into the details of encoding with 
convolution and random permutation, it is worth noting that 
the point of departure for comparing the two methods is 
Jones and Mewhort’s (2007) BEAGLE1 model, which 
assigns each word in a modeled corpus a unique 
environmental vector (e), along with a zero-valued memory 
vector (m). Each time a word is encountered in the corpus, 
its memory vector is updated with context information 
provided through the superposition of the environmental 
vectors for every other word in the surrounding sentence. 

                                                             
1 The acronym stands for ‘bound encoding of the aggregate 

language environment’. 

Simultaneously, the memory vector is also updated with a 
vector describing the ordering of the target word in relation 
to a limited range neighbors. As whole, the process 
conforms to the following expression: 
 

mi = mi + ci + oi    (1) 
 

where i indexes the word being represented, while ci and oi 
refer to vectors describing context and order information  
for a given word occurrence.2 The primary difference, then, 
between the approaches of Jones & Mewhort (2007) and 
Sahlgren, Holst, and Kanerva (2008), is in the calculation of 
oi. In BEAGLE, oi incorporates a range of n-grams that a 
target word is a part of. To give an example of how this 
works, consider the sentence ‘make hay while the sun 
shines’ and the target word ‘hay’. The order vector, ohay, is 
then calculated as the sum of various n-grams that ‘hay’ is a 
part of: 

 
bigram1 = emake ∗Φ
bigram2 = Φ∗ewhile
trigram1 = emake ∗Φ∗ewhile
trigram2 = Φ∗ewhile *ethe
ngrami = ...

 

  
where, * denotes the circular convolution operation, Φ 
denotes a placeholder vector for the target word, and n sets 
size of the window around the target word from which order 
information is drawn. The value of n is typically set to 7.  

Overall, this method is quite computationally expensive 
given that each word occurrence prompts the generation of 
numerous sequences of convolutions, each of which must be 
computed in O(n log n) time (Jones & Mewhort, 2007). 
Moreover, because convolution is a commutative operation, 
permutations are applied to distinguish vectors of the form 
A * B and B * A. This adds an additionally layer of 
complexity when encoding large sequences of ordered 
vectors. 

In light of this computational complexity, Sahlgren, Holst, 
and Kanerva’s (2008) proposal is to recursively apply a 
random permutation to the environmental vectors to indicate 
their position relative to the target word. The random 
permutation, ∏, scrambles the order of the elements in a 
vector, and its recursive application indexes positions at 
varying distances from the target word: 

 
ohay =∏−1 emake + 0 +∏

1 ewhile...+∏
4 eshines  

 
Here, the positive superscripts indicate the number times the 
permutation is applied to an environmental vector, and the 
negative superscripts indicate the number of times the 
inverse of the permutation is applied. One important feature 
of this method is that each occurrence of a target word in the 

                                                             
2 The context and order vectors are normalized prior to being 

combined and incorporated into the memory vector.  
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corpus results in the memory vector being updated with 
only a single n-gram containing every word in the order 
window. The resulting order vector, o, is thus structurally 
quite different from vectors produced through the summing 
of multiple n-grams (Sahlgren, Holst, & Kanerva, 2008). 

For information retrieval in this framework, the inverse of 
a particular position permutation is applied to a memory 
vector. This process yields a vector that is most similar to 
environmental vectors that have been frequently bound into 
the memory vector in this position. Thus, one can extract 
information about which words are likely to occur in various 
positions around a target word. For example, ∏-1mhay would 
yield a vector most similar to words that have frequently 
been bound into the first position succeeding ‘hay’ in 
various order vectors generated over the course of scanning 
the corpus. Depending on the statistical properties of this 
corpus, a comparison (i.e. cosine measure) between ∏-1mhay 

and the environmental vectors will likely yield an 
environmental vector such as ebale as most similar.  

Overall, when comparing these methods for generating 
memory vectors, three things are important to keep in mind. 
First, there are a number of further differences between 
BEAGLE and Sahlgren, Holst, and Kanerva’s model 
beyond the use of random permutation for order encoding. 
For example, the latter model uses binary environmental 
vectors, while Jones and Mewhort’s model uses 
environmental vectors whose elements are picked from a 
Gaussian distribution of a mean of zero and variance equal 
to 1/D.3 Moreover, Sahlgren, Holst, and Kanerva apply a 
smaller window for calculating context information that 
ignores sentence boundaries. These differences limit the 
ability to conduct performance comparisons based on the 
use of random permutation alone.  

Second, to the extent that such comparisons have been 
made, they focus almost exclusively on storage capacity 
measures and performance on simple synonym 
identification tasks.  However, one of the more compelling 
attributes of the BEAGLE model is its ability to reflect 
experimental effects involving things like category 
typicality, priming, and semantic constraints on stem 
completion. It has not been demonstrated that models built 
using random permutation have comparable capabilities.  

Third, the BEAGLE model is computationally expensive, 
but uses real-valued vectors (which are efficiently 
implementable in a biologically plausible network; 
Eliasmith & Anderson, 2003), whereas the permutation 
model is computationally efficient, but uses binary vectors 
(which have not been demonstrated to be efficient to 
implement biologically).  Past work has not proposed a 
representation that is both computationally and biologically 
efficient. 

Here, we describe a new representation that is comparable 
to the BEAGLE model in that it preserves the functional 

                                                             
3 These properties are needed to ensure that convolution can be 

used effectively as an operation for binding and unbinding vectors 
(Plate, 2003). 

properties of its memory vectors, but it uses a single n-gram 
order encoding method that is structurally similar to 
Sahlgren, Holst, and Kanerva’s technique while employing 
real-valued vectors. 

Convolution with Position Vectors 
Our proposal is to encode order information with a set of 

reusable, real-valued, unitary, randomly generated ‘position 
vectors’.4 These vectors are convolved with environmental 
vectors and summed to give an order vector of the following 
form: 

 
oi = ...p−1 *e−1 + 0 + p1 *e1 + p2 *e2 ...   (2) 

 
where p1 is the vector that indexes the first position 
succeeding the target word, p-1 is the vector that indexes the 
first position preceding the target word, and so forth. e1, e2, 
etc. are the environmental vectors of the words in each 
position around the target word. Structurally, this approach 
shares the property of position indexing with the model of 
Sahlgren, Holst and Kanerva (2008), but computationally, it 
shares the use of convolution of real-valued vectors with the 
model of Jones and Mewhort (2007). 

To make the proposal clearer, consider again the word 
‘hay’ in the sentence ‘make hay while the sun shines’. The 
order vector produced with our method would be  

 
ohay = p−1 *emake + 0 + p1 *ewhile ...+ p2 *eshines  
 

Once this order vector is incorporated into the memory 
vector for ‘hay’, this memory vector will become slightly 
more similar to other vectors with have had ‘hay’ bound 
into the first position to the right too.  

To retrieve order information from a memory vector, we 
can use one of two methods, both adapted from Jones & 
Mewhort (2007). The first is to convolve the inverse of a 
position vector with a memory vector to extract a 
representation that is most similar to the environmental 
vectors that have been frequently bound into the memory 
vector in this position. For example: 

 
mhay * p1

−1 ≈ ewhile  
 

Note that this method can be used to extract words 
commonly found in any of the twelve positions for which 
order information is encoded.  

The second form of information retrieval involves 
constructing a probe corresponding to particular ordering 
around a target word, and then identifying which memory 
vectors have most frequently encoded the ordering of 

                                                             
4 To index position, a single unitary vector could also be self-

convolved multiple times. This would avoid the use of random 
vectors for each position, but it is functionally equivalent to the 
present formulation. 

1907



interest. To give an example, one could construct the 
following probe vector: 

 
probe = p−1 *emake + 0 + p1 *ewhile + ...+ p3 *eshines  

 
If this vector is compared to all memory vectors generated 
from the corpus, it will match most closely with words that 
have frequently encoded the order sequence ‘make ___ 
while the sun shines’. Provided that the corpus does not 
contain a multitude of words that repeatedly occupy the 
blank position in relation to the same the surrounding 
words, the comparison will return the memory vector mhay 
as the closest match. 

Overall, information retrieval is made quite simple when 
position encoding is conducted via convolution with 
position vectors. As important, however, is whether or not 
the encoding enables good model performance.  

Simulations 
We test the effects of the position encoding method for 

performance on a range of tasks involving semantic 
similarity and phrase completion. As per Jones and 
Mewhort (2007), context vectors are calculated as the 
superposition of environmental vectors in the sentence 
surrounding a target word, and environmental vectors are 
randomly generated with elements drawn from a Gaussian 
distribution. A list of stop words is used to prevent 
frequently occurring function words from being 
overrepresented in the context vectors, and order 
information is calculated using position indices ranging 
from -6 to +6. This range is chosen because it captures the 
same set of words that would be included in order vectors 
calculated using Jones and Mewhort’s original method. 
Finally, context vectors and order vectors are normalized 
prior to inclusion in the overall memory vector for a given 
word. 

All simulations are run, for efficiency, on a subset of the 
same TASA corpus used in tests of both BEAGLE and 
Sahlgren, Holst, and Kanerva’s (2008) random permutation 
model. Approximately 27,000 unique words are modeled 
using roughly 110,000 sentences, and words occurring less 
than twice in the corpus are ignored to exclude misspellings 
and typographical errors.  

A Nearest Neighbors Task 
As an initial qualitative assessment of model performance, 
we calculated the nearest neighbors to the memory vectors 
for four common words found in the TASA corpus. We 
chose the same four words used in Table 3 of Jones and 
Mewhort (2007). The results, shown in Table 1 below, 
indicate that encoding order information with position 
vectors instead of an array of n-grams results in plausible 
model performance for each of the four words. All reported 
activation values are cosines of the angle between two 
vectors in the semantic space. The context space is 
comprised of memory vectors only updated with context 
information, while the order space is comprised of memory 

vectors only updated with order information. The combined 
space includes memory vectors calculated in accordance 
with Equation 1.  

As with the comparison between BEAGLE and the model 
of Sahlgren, Holst, and Kanerva (2008), subtle differences 
in things like the selection of stopwords and the formation 
of the environmental vectors make quantitative comparisons 
impractical, so we present these results as an independent 
demonstration of model performance. 

 
Table 1: Nearest Neighbors in Three Spaces 

       
  Context   Order   Combined   
EAT      
 food 0.69 get 0.89 get 0.78 
 get 0.65 buy 0.87 make 0.75 
 animals 0.63 make 0.86 take 0.70 
 need 0.62 keep  0.86 keep 0.69 
  make 0.61 meet 0.85 find 0.69 
CAR      
 came 0.65 nation 0.89 house 0.75 
 back 0.64     village  0.88 road 0.73 
 road 0.64 fire 0.88 big 0.73 
 one 0.63 family 0.88 little 0.71 
  way 0.63 story 0.88 dog 0.70 
READING      
 read 0.66 writing 0.72 writing 0.68 
 book 0.61 making 0.67 that 0.61 
 writing 0.61 business 0.64 your 0.61 

skimming 0.59 power 0.62 or 0.61 
 may 0.56 food 0.62 this 0.59 
SLOWLY      
 little 0.63 quickly 0.75 quickly 0.62 
 around 0.63 again 0.67 and 0.60 
 back 0.62 ran 0.65 down 0.60 
 across 0.60 to 0.65 then 0.59 
  move 0.59 brought 0.65 to 0.59 

Retrieval with Decoding  
Retrieval through decoding, again, involves convolving a 

memory vector with the inverse of a position vector, and 
then comparing the output of this process to a library of 
environmental vectors to find closest matches. In this 
simulation, we use the decoding retrieval method to find the 
most likely word to occur both before and after a particular 
target word. Results are reported in Table 2.  

One point to note about these decoding results is that the 
activation values for the words in each column indicate non-
random correspondence with the target word if the 
similarity value is greater than ~0.1 (see Jones and 
Mewhort, 2007, p. 13). Accordingly, the decoding does a 
good job of picking out words that are likely to follow 
before or after a given word.  
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Table 2:  Decoding Around a Target Word 
     
  Word Before   Word After   
LUTHER    
 martin 0.29 king 0.21 
 straightening 0.17 gravity 0.17 
 latest 0.17 1733 0.16 
 coinage 0.16 puff 0.16 
  so-called 0.16 conscience 0.16 
KING    
 the 0.54 was 0.19 
 experienced 0.17 tens 0.17 
 boundaries 0.17 bowing 0.17 
 kites 0.17 lawfully 0.17 
  donor 0.16 pasture 0.16 

Retrieval with Resonance 
Resonance retrieval, again, involves constructing a probe by 
superposing a number of bound environmental and position 
vectors. This probe vector is then compared to all of the 
memory vectors to find items that have frequently occurred 
within the sequence of words described by the probe.  
 

Table 3:  Resonance Around a Target Word 
     
  Word Before   Word After   
KING    
 rex 0.38 midas 0.42 
 luther 0.22 tut 0.42 
 rumbles 0.17 aietes 0.39 
 hamlet 0.17 farouk 0.36 
  oyster 0.16 richards 0.31 
PRESIDENT    
 vice 0.32 eisenhower  0.45 
 activist  0.20 lincoln  0.31 
 egypts  0.19 coolidge  0.27 
 middle-of-the-road  0.19 johnson  0.25 
  dove  0.18 nixon  0.23 
WAR    
 spanish-american  0.31 II 0.49 
 civil  0.29 bonnet 0.21 
 post-world 0.27 hysteria 0.19 
 pre-civil 0.26 whoops 0.19 
  post-civil 0.23 1898 0.18 
SEA    
 caspian 0.22 anemone 0.38 
 Aegean 0.22 level 0.27 
 mediterranean 0.19 gull 0.26 
 foaming 0.17 anenomes 0.24 
  sensitivity 0.16 captains 0.24 

To assess model performance with resonance, we simulate a 
task involving retrieval around a set of four target words 
drawn from Table 4 of Jones and Mewhort (2007). The 
results from this simulation are presented in Table 3. 
Despite the intrusion of a few unexpected items into these 
lists of nearest matches (e.g. ‘sensitivity’), the overall trend 
here provides further evidence that order encoding with 
position vectors can produce a functioning semantic space 
model. 

Phrase Completion with Resonance 
To go beyond the retrieval of words either immediately to 
the left or to the right of a target word, we next simulate a 
set of tasks in which probe vectors corresponding to short 
phrases are compared to the memory vectors. Initially, only 
a limited amount of information is included in the probe 
vector, but subsequently, the probe is enriched to represent a 
more and more specific order sequence (see Jones & 
Mewhort, 2007). As more information is incorporated into 
the probe in this way, the model increasingly converges on a 
single word that best fits the blank region in the probe 
phrase. We use phrase materials drawn from Jones and 
Mewhort (2007). Results are reported in Table 4 below. 

Once again, the model generally meets performance 
expectations. Preliminary results also indicate that the 
model generally performs well with other phrases similar to 
the ones shown. Further work is ongoing in this area. 

Discussion 
At this point, it seems clear that the method of encoding 

with position vectors performs well enough to be considered 
a plausible alternative to earlier methods. However, it is 
worth considering the criteria by which one might select 
amongst the three forms of encoding discussed in this paper. 
Computational efficiency, again, favors the use of a single 
n-gram encoding method like random permutation or 
encoding with position vectors.  

Then, to decide between convolution and random 
permutation, one could look to performance measures of the 
sort just examined. Here, position vector encoding has the 
advantage of a demonstrated ability to perform a variety of 
phrase completion tasks; the performance credentials of 
random permutation have yet to be comparably established. 
It is possible that random permutation supports the same 
degree of functionality as demonstrated here, and future 
work might bear out such a prediction.  

However, even if this is the case, we think that 
independent considerations of neural implementation favor 
the use of the position vector encoding method. First, note 
that vector space models of language have appealed to 
cognitive researchers in part because they possess certain 
properties suggestive of neural plausibility (Jones & 
Mewhort, 2007; Recchia et al., 2010). Connectionist 
models, for example, have long been used to implement 
computations defined over vectors, and one of the main 
attractions of these models is their use of neurally inspired 
processing mechanisms. So, because semantic space models  
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are constructed through computations defined over vectors, 
and connectionist models can implement such 
computations, it follows that semantic space models can 
share to some extent in the claim of being consistent with 
how the brain processes information. 

Second, models with a high degree of neural plausibility 
have been built using vector symbolic architectures that 
employ real-valued vectors and convolution as a binding 
operator. The same cannot be said for binary vectors. For 
instance, neurally implemented convolution operations play 
a key role in a recent model of working memory (Choo & 
Eliasmith, 2010), and more significantly, what is currently 
the world's largest functional brain model (Eliasmith et al., 
2012). So, the argument in favor of using convolution with 
position vectors to encode word order into semantic space 
models is straightforward: doing so is consistent with the 
architectural principles that guide state-of-the-art models of 
complex cognition. Put simply, there is a good deal 
evidence from these models that the convolution operation 
accommodates the computational constraints of neural 
systems.  

Together with the demonstrated functionality of semantic 
space models built using convolution encoding, we think 
that these considerations of neural implementation provide a 
compelling case in favor of the method we demonstrate 
here. Convolution with position vectors provides an 
approach to building an order-sensitive semantic vector 
space that is functional, neurally plausible, and relatively 
computationally efficient. We leave it to future work to 
determine whether methods utilizing random permutation 
can display a similar range of strengths. 
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Table 4: Highest Word Activations as an Order Sequence is Filled in Around a Target Position 

         
Phrase   Activations   

emperor [penguins] yuan 0.26 penguins 0.26 caligula 0.20 
 [penguins] have planaria 0.34 threepio 0.27 astronomers 0.26 

the emperor [penguins] have come 
to their breeding grounds penguins 0.34 yaun 0.31 annelida 0.27 

         
although [ostriches] gauges 0.21 democratically 0.20 tsumanis 0.18 

although [ostriches] cannot pretends 0.16 raindrops 0.16 democratically 0.16 
although [ostriches] cannot fly they 

have other skills ostriches 0.18 assent 0.18 caved 0.16 
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