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 Community Detection is an interesting computational technique for the analysis 

of networks. This technique can yield useful insights into the structural organization of a 

network, and can serve as a basis for understanding the correspondence between structure 

and function (specific to the domain of the network). In this dissertation, I have sought to 

leverage this technique for the study of biological networks of practical relevance and 

significance.  
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 The study begins with an exploration of existing techniques for Community 

Detection, following which an optimization is proposed for one of the widely used graph-

theoretic approaches. As the next step, an investigation is performed on the suitability of 

a machine-learning based algorithm for Community Detection in the context of biological 

networks. Subsequently, the use of Community Detection for understanding pathology 

with a specific focus on Duchenne Muscular Dystrophy (DMD), is explored. This 

illustrated key distinguishing features in the structural and functional organization of the 

constituent biological pathways as it relates to DMD. Finally, a novel algorithm for 

Community Detection is proposed, which is motivated by a physical systems analogy. An 

analysis of the algorithm’s properties, together with its applications to biological 

networks, is also presented.  

 I believe that the techniques and algorithms developed as part of this dissertation 

in the context of biological networks, have the potential to open up new vistas for 

therapeutic applications such as targeted drug development.  
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Introduction 
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 Community detection is a key problem of interest in network analysis, with 

widespread applications. For instance, community structure analysis is used in the 

context of networks that arise in domains such as social networks to understand the 

fundamental social structure in a community of interacting individuals. This provides 

insights about the influential individuals and the strongly-networked individuals in a 

community. Another domain where algorithms for community detection find useful 

application is the topological understanding of large scale connection networks such as 

Internet, and how one may use the insights from community structure analysis to design 

more resilient communication networks. In the context of biological networks, such 

insights can also be used to understand the biological significance of the underlying 

community structure and organization of the network. Furthermore, rich toolsets have 

also been developed for the purpose of understanding networks from a community 

structure perspective.  

 The Newman and Girvan (NG) algorithm has shown considerable promise for 

community detection. This is a divisive approach that used edge-betweenness as a metric 

to drive the algorithm. In Chapter I, a novel termination criterion based on a target edge-

betweenness value is proposed. Protein-protein interaction networks (PPINs) are used to 

demonstrate that the proposed optimization results in communities comparable to those 

from the NG algorithm while significantly reducing runtime.  

 Chapter II presents an analysis of the applicability of the Variational Bayes  (VB) 

approach to community detection in biological networks. VB results in communities 

comparable in quantity and quality to those from the optimal set of communities from the 

NG algorithm on a known PPIN, and yields a better distribution of community 
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membership. 

 Duchenne Muscular Dystrophy (DMD) is an important pathology associated with 

the human skeletal muscle. Gene expression measurements of DMD skeletal muscles 

provide the opportunity to understand the underlying mechanisms that lead to the 

pathology. The technique of community detection in combination with gene expression 

measurements from normal and DMD patient skeletal muscle tissue is leveraged to model 

DMD. The findings presented in Chapter III have the potential to serve as fertile ground 

for therapeutic applications involving targeted drug development for DMD.  

 In Chapter IV, a novel framework for community detection, motivated by a 

physical system analogy, is proposed. A network is modeled as a system of point masses 

and the process of community detection is driven by leveraging the Newtonian 

interactions between the point masses in the model. The applicability of the proposed 

approach is illustrated by applying the algorithm on PPINs, the results of which are 

comparable to that of the NG algorithm. A detailed analysis on the biological 

interpretation of the communities produced by the approach is also presented. 
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Chapter I 

 

 

 

 

 

Modularity Detection in Protein-Protein Interaction Networks 

Narayanan T, Gersten M, Subramaniam S, Grama A: Modularity detection in 

protein-protein interaction networks. BMC Research Notes 2011: 4-569.  
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Abstract 

 Many recent studies have investigated modularity in biological networks, and its 

role in functional and structural characterization of constituent biomolecules. A technique 

that has shown considerable promise in the domain of modularity detection is the 

Newman and Girvan (NG) algorithm, which relies on the number of shortest-paths across 

pairs of vertices in the network traversing a given edge, referred to as the betweenness of 

that edge. The edge with the highest betweenness is iteratively eliminated from the 

network, with the betweenness of the remaining edges recalculated in every iteration. 

This generates a complete dendrogram, from which modules are extracted by applying a 

quality metric called modularity denoted by Q. This exhaustive computation can be 

prohibitively expensive for large networks such as Protein-Protein Interaction Networks. 

In this paper, we present a novel optimization to the modularity detection algorithm, in 

terms of an efficient termination criterion based on a target edge betweenness value, 

using which the process of iterative edge removal may be terminated. 

We validate the robustness of our approach by applying our algorithm on real-

world protein-protein interaction networks of Yeast, C.elegans and Drosophila, and 

demonstrate that our algorithm consistently has significant computational gains in terms 

of reduced runtime, when compared to the NG algorithm. Furthermore, our algorithm 

produces modules comparable to those from the NG algorithm, qualitatively and 

quantitatively. We illustrate this using comparison metrics such as module distribution, 

module membership cardinality, modularity Q, and Jaccard Similarity Coefficient. 
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We have presented an optimized approach for efficient modularity detection in 

networks. The intuition driving our approach is the extraction of holistic measures of 

centrality from graphs, which are representative of inherent modular structure of the 

underlying network, and the application of those measures to efficiently guide the 

modularity detection process. We have empirically evaluated our approach in the specific 

context of real-world large scale biological networks, and have demonstrated significant 

savings in computational time while maintaining comparable quality of detected 

modules. 

 

1.1 Background 

The problem of modularity detection in networks has received considerable 

attention in recent literature [1-5]. Specifically, in the context of biological networks, 

identification of modules enables functional annotation of constituent biomolecules, 

discovery of targets for therapeutic intervention and screening etc. More generally, 

modular decomposition provides us with a higher-level understanding of the organization 

of networks and also serves as the basis for other network analysis tasks, such as 

hierarchical alignment, modular evolution, and orthology. 

There are three primary approaches to modularity detection: (i) top down (or 

divisive) techniques, in which a series of network partitions hierarchically decompose a 

network into modules, (ii) bottom up (or agglomerative) techniques, in which modules 

are constructed by adding elements to an initial seed, and (iii) force directed methods, in 

which suitably designed parameters drive nodes belonging to the same module to 
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spatially proximate regions of space. There have also been investigations focused on 

relating various classes of methods [6]. 

 

1.1.1. Newman and Girvan algorithm 

One such divisive technique of interest is the Newman and Girvan (NG) 

algorithm [1], which uses the notion of edge-betweenness, a metric that has received 

considerable recent research interest in the domain of modularity detection. Edge-

betweenness is typically computed as the number of (pair-wise) shortest paths that 

traverse an edge in a network. This notion, which was first introduced by Anthonisse [7], 

can be used to compute modules by repeatedly identifying and eliminating the edge with 

highest betweenness. Note that since the elimination of a single edge (especially one with 

high betweenness) may cause significant perturbations to the shortest paths, the edge-

betweenness of the remaining edges must be recomputed after each edge-elimination. 

The output from the NG algorithm is a complete dendrogram, which decomposes 

a given graph down to individual nodes. Modules are extracted from this dendrogram by 

applying a quality metric called modularity (Q), which is defined as follows: 

2 2( ) ( ) || ||ii i

i

Q e a Tr e e     

where, e is a k × k symmetric matrix whose element eij is the fraction of all edges in the 

network that link vertices in module i to vertices in module j;k is the number of modules 

in the network; 

( ) iii
Tr e e , is the trace of e, which represents the fraction of edges in the 

network that connect vertices in the same module; 
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i ijj
a e , are the row (or column) sums, which represent the fraction of edges 

that connect to vertices in module i; 

E  denotes the sum of the elements of matrix E. 

We observe that, in a network in which edges fall between vertices without regard 

for the modules they belong to, eij = aiaj. 

The Q value measures the fraction of the edges that connect vertices within the 

same module minus the expected value of the same quantity in the network. If the 

number of intra-modular edges is no better than random, we get Q = 0. Values 

approaching Q = 1, which is the maximum, indicate strong modular structure [1]. In 

practice, Q values for such networks with strong modular structure typically fall in the 

range from about 0.3 to 0.7. The modular decomposition of the network (from the 

dendrogram) with maximum Q value is considered to be the best split by the NG 

algorithm. 

While the computation of modules using the NG algorithm has been shown to 

perform well in terms of quality of modules, its computational cost can be significant 

(particularly for large networks such as biological networks). This cost, in part, stems 

from repeated edge betweenness computations. Furthermore, a level of refinement in the 

output dendrogram to the individual nodes, is typically unnecessary from an application 

standpoint, often un-informative, and computationally expensive. Finally, the 

dendrogram requires additional post-processing to identify suitable modules based on 

quality measures associated with the modules. Computing the quality of each module 

corresponding to every node in the dendrogram is itself expensive. A stopping criterion 
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that identifies a near-optimal point at which the process of iterative edge-removal may be 

terminated would significantly reduce the time and space complexity of the NG 

algorithm. 

The problem of terminating divisive clustering is an important one, especially 

when the clustering method is itself expensive. A number of other approaches have been 

proposed—including use of p values of clusters as termination criteria [8]. However, each 

of these methods assumes models for underlying data, or specific properties for quality 

measures applied to modules. For example, the divisive partitioning technique of 

Koyuturk et al. [8] stops the partitioning process when the p value of a module is lower 

than a user-specified threshold. This does not guarantee that the optimal p value modules 

are found. Similarly, for data-sets for which precise models are not available, estimation 

of number of clusters is difficult. Neither class of techniques is directly applicable for 

divisive partitioning based on the NG algorithm. 

In this paper, we experimentally derive an optimized termination criterion for the 

NG algorithm (which we call the target edge-betweenness), based on initial values of 

edge-betweenness computed over the input network. In particular, we define the target 

edge-betweenness to be the geometric mean of edge-betweenness values of all edges in 

the input network (and hence refer to our algorithm as the Gmean algorithm in the 

discussion below). A detailed description of our algorithm is included in the Methods 

section. 
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1.2 Results and discussion 

 There are two computational problems with the NG algorithm: 

1. The iterative removal of edges (preceded by recalculation of edge betweenness in 

every iteration) is performed until all the edges are removed, leading to a time 

complexity of O (ne
2
) for a network of n vertices and e edges (using Brandes’ 

algorithm, assuming connected networks as inputs). This computation becomes 

prohibitively expensive in the context of large biological networks. 

2. The modularity Q is calculated for every partition of a network in the dendrogram. 

This is necessary for determining optimal splits. 

The Gmean algorithm directly addresses these overheads in two fundamental 

ways: it terminates the process before all edges are removed, thus significantly reducing 

the first overhead. Since the termination criterion is computed just once (at the start of the 

algorithm), and does not rely on repeated Q value computations, we eliminate the second 

overhead altogether. 

Furthermore, we demonstrate that our algorithm results in modules with Q values 

comparable to the maximum Q value from the NG algorithm—thus maintaining the 

quality of the identified modules, while significantly reducing runtime. We also use the 

Jaccard Similarity Coefficient (a measure of similarity between two sample sets) to show 

that the resulting modules from both the approaches are similar. 

We validate our approach on the networks summarized in Table 1.1. For each of the 

networks, we eliminate multiple edges between pairs of nodes, self-loops, and mirrored 
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edges. Thus, the final number of edges/interactions considered is shown in #Edges 

(Network considered). 

We perform our experimental evaluation using a parallelized approach [11] to 

implement the NG and Gmean algorithms. Our results (as shown in Figure 1.1) 

demonstrate excellent performance in terms of efficiency on moderate machine 

configurations (tens of processors). 

 

1.2.1 Comparison of computational efficiency 

For a specific network under consideration, let RTNG and RTGmean denote the 

execution times for the NG and Gmean algorithms respectively. We define the 

percentage gain in computational time (τ) between the NG and Gmean algorithms, as 

follows: 

NG Gmean

NG

RT RT
 = 100

RT



  

We observe significant and consistent savings in computational cost with our 

proposed optimization (for the networks in our biological test bed under consideration). 

Figure 1.1 presents a comparison of the execution times for the NG and Gmean 

algorithms. 

 

1.2.2 Comparison of module size and distribution 

In Figures 1.2 and 1.3, we present a broad quantitative comparison of the size and 

distribution of modules produced using the Gmean and NG algorithms. In particular, we 
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observe that, for all the three networks under consideration, the total number of modules 

produced by the two algorithms is comparable. 

 

1.2.3 Comparison of modularity 

In addition to quantitatively comparing and demonstrating that the modules 

resulting from our algorithm are comparable in number and distribution to the modules 

resulting from the NG algorithm, we also present a qualitative validation that the results 

are indeed statistically similar in terms of quality of the modules produced using the 

modularity value Q. Figure 1.4 shows the modularity value comparison for the set of 

modules produced by both the algorithms, for the different networks considered in this 

paper. We note that for all networks under consideration, our algorithm identifies 

modules with very similar modularity values as the NG algorithm. 

 

1.2.4 Comparison of Jaccard similarity coefficient 

Jaccard Similarity Coefficient or the Jaccard Index is a statistic used for 

comparing the similarity and diversity of sample sets. The Jaccard Index measures 

similarity between two sample sets (say A and B), and is defined as the size of the 

intersection divided by the size of the union of the sample sets: 

| |
( , )

| |

A B
J A B

A B
  

The Jaccard Index is 1 if the two sample sets are exactly identical, and is equal to 

0, if they have no overlap at all. 
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We use this metric to show the similarity of the modules produced as the output 

by the NG and the Gmean algorithms. Specifically, we consider the modules produced by 

the algorithms as sample sets constituted by vertices and calculate the Jaccard Indices J 

(A,B) for all pairs of modules A and B (one from the output of each algorithm). 

We define the percentage similarity score (λ) as the following: 

( , )
100

( , )*

J A B

J A B
  




 

where J (A,B) is the Jaccard Index for the modules A and B, one from the output 

of each algorithm; 

J (A,B)* is the ideal Jaccard Index for the modules A and B, one from the output 

of each algorithm (note that J (A,B)* = 1, corresponding to perfect match, when the two 

modules A and B are exactly identical); 

Σ is the summation over all pairs of modules, one from the output of each algorithm. 

Table 1.2 shows the percentage similarity values for the modules produced by the 

two algorithms for all the networks considered. We observe that the modules produced by 

the two algorithms demonstrate a high degree of similarity. 

 

1.3 Conclusions 

In this paper, we have proposed a novel termination criterion for efficient 

modularity detection in networks. The intuition driving our approach is the extraction of 

holistic measures of centrality from graphs, which are representative of inherent modular 

structure, and the application of those measures to efficiently guide the modularity 
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detection process. We have empirically evaluated our approach against existing 

techniques for modularity detection in the context of biological networks, and have 

demonstrated significant savings in computational time while maintaining comparable 

quality of detected modules. 

 

1.4 Methods 

1.4.1 Existing NG method 

In the NG algorithm, the edge-betweenness is computed for each edge in the 

network under consideration. The edge with the maximum edge-betweenness is identified 

and eliminated, followed by a recalculation of the edge-betweenness values of all the 

remaining edges in the resultant network. This process is iteratively repeated till no edges 

are remaining, thus generating a complete dendrogram which is then traversed to identify 

the partition with best modularity value Q. 

 

1.4.2 Proposed Gmean method 

Figure 1.5 presents a flow diagram that illustrates the general framework of the 

proposed Gmean algorithm. Our motivation is to compute a target edge betweenness T 

that is used to determine termination of the algorithm. In particular, we propose that the 

recalculation of edge-betweenness and removal of the edges be stopped when the edge to 

be removed has a betweenness value less than T. More intuitively, we propose that for an 

edge to be considered to be an inter-modular edge, it must have betweenness value of at 

least T. 
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Based on extensive experimentation, we propose the following definition of T: 

( )T G e  

where G (e) is the geometric mean (gmean) of edge-betweenness values of all edges in 

the input network. Validation on real networks shows that this choice serves as a robust 

and high-quality termination criterion. Specifically, as stated in the results section, this 

choice produces a set of modules comparable in quality and quantity to those produced 

by the NG algorithm. We show this for a number of biological networks of interest. All 

biological network data used for the experimental study are from publicly available data 

sources [9,10]. 
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Table 1.1: Summary of Networks that were used to validate our approach 

 

Network 

 

Source 

 

#Vertices 

[Original 

Network] 

#Edges 

Original 

Network 

Network 

Considered 

C.elegans [9] 453 4596 2025 

Yeast* [10] 3654 15316 9946 

Drosophila [10] 7666 25649 25433 

* The entire Yeast network contains 160,566 interactions. We restrict the dataset to interactions 

determined by Co-purification or Yeast Two-hybrid experiments. This yields a network of 15,316 

interactions 

 

Table 1.2: Summary of % similarity for biological networks considered 

 C.elegans Yeast Drosophila 

Σ J(A,B) 4.5472 47.973 40.5089 

Σ J(A,B) 5 48 46 

λ 90.94% 99.94% 88.06% 
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Figure 1.1: Comparison of Runtimes for NG and Gmean algorithms for C.elegans, Yeast 

and Drosophila networks 

 

 

 

 

Figure 1.2: Log scale comparison of total number of modules identified by NG and 

Gmean algorithms for C.elegans, Yeast and Drosophila networks 

http://www.biomedcentral.com/1756-0500/4/569/figure/F1
http://www.biomedcentral.com/1756-0500/4/569/figure/F2
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Figure 1.3: Log scale comparison of number of modules with at least 15 vertices 

identified by NG and Gmean algorithms for C.elegans, Yeast and Drosophila networks 

 

 

 

 

 

 

 

Figure 1.4: Comparison of Modularity (Q) values from NG and Gmean algorithms for 

C.elegans, Yeast and Drosophila networks 

 

http://www.biomedcentral.com/1756-0500/4/569/figure/F3
http://www.biomedcentral.com/1756-0500/4/569/figure/F4
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Figure 1.5: Flow diagram illustrating the general framework of the proposed Gmean 

algorithm 

http://www.biomedcentral.com/1756-0500/4/569/figure/F5
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Abstract 

A number of recent studies have investigated the problem of Community 

Detection in networks. In this paper, we consider one such approach called Variational 

Bayes, that utilizes a Bayesian formulation of the community detection problem, and 

evaluate its applicability in the context of biological networks. We perform a quantitative 

comparison of our results using a widely employed divisive algorithm for community 

detection (viz. the Newman and Girvan (NG) edge-betweenness algorithm). This 

algorithm generates as its output, a complete dendrogram from which suitable modules 

are extracted by applying a quality test, called the Q-value. We demonstrate that the 

Bayesian approach results in modules comparable in quality to those from the optimal-

split of the dendrogram as determined by the NG algorithm (based on Q-value 

comparison) and yields a better distribution of module membership. 

 

2.1 Introduction 

The problem of computing modularity in networks has received considerable 

attention in recent literature [1, 2, 8, 9]. In the specific context of biological networks, the 

identification of modules enables functional annotation of constituent biomolecules 

(nodes in the same module are likely to be associated with identical function). 

Most biological networks of interest tend to be large and complex, both in terms 

of the number of nodes and the interactions between them. For example, the complete 

Protein- Protein Interaction (PPI) network of H.Sapiens consists of over 10000 proteins 

and 81000 interactions [3]. Secondly, biological networks also tend to be sparse from a 
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connectivity perspective. These characteristics of biological networks pose interesting 

challenges from a community detection standpoint. 

Some of the desirable features of a community detection algorithm (especially in 

the context of biological networks) are: 

 The algorithm should be able to produce modules or some form of a representation of 

modules, as its output. 

 It should be broadly applicable or easily extensible to different types of networks. For 

example, weighted and un-weighted networks, directed and un-directed graphs, static 

and time-varying networks, etc. 

 It should be efficient and converge to a reasonable number of modules (with 

acceptable vertex memberships) within finite amount of computation time. 

 The resulting modules should be uniformly distributed (i.e. reasonable vertex 

cardinality) since singletons (that are ‘modules’ with just one vertex) and modules 

with just 2-3 vertices are not expected to yield much biological insight. 

 The modules produced represent functional elements of pathways, giving rise to 

phenotype prediction. 

The aforementioned characteristics of an algorithm often are considered good 

metrics for evaluating a community detection algorithm. In this paper, we explore the 

applicability of the Variational Bayes approach to community detection in biological 

networks. 
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2.2 Variational Bayes Algorithm 

The Variational Bayes (VB) model [1] is a computationally efficient framework 

for inferring the number of modules, model parameters, and module assignments for such 

a model. It attempts to pose module detection as inference of a latent variable within a 

probabilistic model.  

In this framework the problem of module detection can be stated as follows: given 

an adjacency matrix A, determine the most probable number of modules K* = argmaxK 

p(K|A) and infer posterior distributions over the model parameters and the latent module 

assignments. Here, p(K|A) is referred to as the evidence.  

In this section, we summarize the Variational Bayes algorithm for modularity 

detection. Using the notation in [1], if F{q; A} denotes the variational free energy, the 

algorithm provably converges to a local minimum of F{q; A} and provides controlled 

approximations to the evidence p(A|K) as well as the posteriors )|,( A


p and )|( A


p : 

 

Initialization- Initialize the N-by-K matrix Q =Q0 and set pseudocounts. 

Main Loop: Until convergence in F{q; A}: 

(i) Update the expected value of the coupling constants and chemical potentials. 

(ii) Update the variational distribution over each spin σi. 

(iii) Update the variational distribution over parameters from the expected counts and 

pseudocounts. 

(iv) Calculate the updated optimized free energy.  
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As this provably converges to a local optimum, VB is best implemented with 

multiple randomly-chosen initializations of Q0 to find the global minimum of F{q; A}: 

Convergence of the above algorithm provides the approximate posterior 

distributions and simultaneously returns K*, the number of non-empty modules that 

maximizes the evidence. As such, one needs only to specify a maximum number of 

allowed modules and run VB; the probability of occupation for extraneous modules 

converges to zero as the algorithm runs and the most probable number of occupied 

modules remains. 

 

2.3 Alternate Approaches to Community Detection 

 Modularity computations have focused on modeling (modularity computation as 

an optimization problem), method development (suitable algorithms and data structures), 

and validation (characterizing the purity of modules). Modularity computations have also 

been posed as Graph Clustering problems, which explicitly compute dense sub-

components in graphs. 

There are three primary approaches to modularity computations – (i) top down (or 

divisive) techniques, in which a series of network partitions hierarchically decompose a 

network into modules, (ii) bottom up (or agglomerative) technique, in which modules are 

constructed by adding elements to an initial seed, and (iii) force directed methods, in 

which suitably designed parameters drive nodes belonging to the same module to 

spatially proximate regions of space. There have also been investigations focused on 

relating various classes of methods [7].  
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One of the promising state-of-art divisive algorithms is the edge-betweenness 

algorithm proposed by Newman and Girvan (NG). The betweenness of an edge is 

computed as follows: the shortest paths between all pairs of vertices are computed. Each 

edge in the network is tagged with the number of shortest paths passing through the edge. 

In the classical version of the Newman-Girvan method, the edge-betweenness of each 

edge is computed. The edge with the maximum edge-betweenness is eliminated. The 

algorithm is executed to completion and the resulting dendrogram is then traversed to 

identify the partition with best (highest) Q-value. 

The Q-value or the modularity measures the fraction of the edges that connect 

vertices within the same cluster (module) minus the expected value of the same quantity 

in the network. Theoretically, Q varies from Q=0 (when the number of within-community 

edges is no better than random) and Q = 1 (indicating strong community structure [50]). 

In practice, Q-values for such networks with strong community structure typically fall in 

the range from about 0.3 to 0.7. The modular decomposition of the network with 

maximum Q-value is considered to be the best split.  

 

2.4 Results 

In an effort to leverage the VB approach to community detection in biological 

networks, we consider the Yeast PPI network as a case study. The yeast network data was 

collected from Biogrid. The full network contained 160566 interactions, but we restricted 

the dataset to interactions determined by co-purification or yeast two-hybrid experiments, 
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thus giving only 15316 interactions. Moreover, the edge betweenness algorithm that we 

work with neglects the following:  

a. Multiple edges between a pair of nodes  

b. Self-loops and  

c. Mirrored edge representations in the network- i.e. an A-B interaction is considered 

the same as a B-A interaction. Thus, the final yeast network that we worked with, 

contained 9946 edges or interactions and 3654 vertices. 

In this section, we present the results of our evaluation of the VB technique for 

community detection using the biological datasets described above. Specifically, we use 

the metric of modularity introduced by [2] to quantify the quality of communities 

produced by the algorithm to compare the communities produced by both approaches. 

We have used it as a metric of comparison of quantitative equivalence of the modules 

produced by the NG and the VB approaches because of the following reasons:  

1. The Q-value is considered to be a good metric of modularity as it measures the 

difference between the fraction of the intra-community / intra-modular edges and the 

expected value of the same quantity in the network. 

2. It is used as a measure to define the best / ideal partition of the dendrogram produced 

as output by the NG algorithm. Hence by using the same metric to quantify the 

quality of modules produced by the VB approach, we seek to perform a comparison 

of the VB approach against the NG approach, using a performance baseline defined 

by the latter. 

The simulations were performed in Matlab on a 64-bit Intel dual-core 2.13GHz 

workstation, with 2 GB RAM.  
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The Q value corresponding to the set of modules produced by the VB algorithm 

was 0.5431 which we observed was very close to the Qmax or the Q value that 

corresponded to the best partition of the NG algorithm’s output dendrogram (0.6254). 

We provide in Figure 2.1, the distribution of Yeast modules obtained using the 

Variational Bayes approach and the Newman and Girvan’s edge-betweenness algorithm. 

In particular, the figure shows a distribution of the total number of 150 modules that we 

obtained from the NG algorithm (as against 11 from the Variational Bayes algorithm) 

across bins defined by vertex cardinality range. This distribution of modules across the 

bins is represented in terms of the percentage of total number of modules produced by the 

respective algorithms. 

It can be noted that the VB algorithm results in what we believe to be a more 

robust partitioning of the Yeast PPI network into modules. Specifically, there is a denser 

distribution of vertices into a smaller number of structural modules, which suggests better 

functional cohesion between vertices within a module (as discussed in Section 6). In 

contrast, while the NG algorithm does result in some partitions with denser memberships, 

there are also a significant number of modules that are sparsely populated. 

In particular, we see that there are only 8 modules (constituting 5.33% of the total 

number of 150 modules produced by the NG algorithm) with greater than 100 vertices, as 

against the VB approach in which more than 50% of the modules produced have 

memberships resulting in more than 100 vertices per module. Similarly, it can be 

observed that, while the VB approach produces only 2 modules that have a vertex 

cardinality of less than 20 vertices, there are 114 modules which constitute 76% of the 

total number of modules produced by the NG algorithm that exhibit much smaller vertex 
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membership (including a significant number with only a pair of vertices constituting a 

module). From a functional standpoint, most of these modules may be viewed as noise 

with little information content from a biological perspective, in the broader context of the 

large number of vertices present in the original network distributed across different 

functional categories. This is discussed in greater detail in the next section. 

  

2.5 Biological Interpretation 

In this section, we evaluate the correspondence between the topological modules 

we identified using the Variational Bayes approach, with functional units in the yeast 

network. In particular, we leverage the GO Slim [6] functional annotations for the 

proteins constituting the network, and examine the distribution of the proteins in each 

structural module relative to their GO Slim annotations. The approach we employ in 

evaluating the correspondence is motivated by the analysis outlined in [5].  

As noted in [5], we expect a nonrandom distribution of proteins of a given 

functional category across modules (if the structural modules correspond to functional 

units). Furthermore, the primary composition of genes in a given module is expected to 

correspond to a single or a few functional mappings. Stated differently, the expectation is 

that a single or a few functional categories are highly expressed in each module.  

We validated our results against the expected outcome by simulating the 

probability of expression of a given functional category in a module of a given size. For 

example, the total vertex cardinality of the first module from the yeast network is 109, of 

which 32 belong to the GO slim functional category transcription regulator activity 
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(Figure 2.3). In order to estimate the expected value of this membership distribution, we 

selected 109 genes from the original yeast network uniformly at random, and identified 

the ones with the functional annotation transcription regulator activity (repeating the 

process a large number of times, using a different random seed each time, for statistical 

convergence of expectation). In particular, we are interested in the probability that the 

transcription regulator activity occurrences in the random selection of 109 proteins is 

greater than or equal to 32. Figure 2.2 illustrates these color-coded probabilities.  

We observe that at least one functional category is enriched in 10 out of 11 

modules (90.91%). In other words, we have only one module that has no distinct 

functional category uniquely expressed. Furthermore, 9 functional categories are each 

uniquely or highly expressed in exactly one module. It can also be noted that 5 out of 11 

clusters each have one functional category, uniquely expressed. These observations are 

supportive of nonrandom distributions of protein functions across structural modules. 

For each of the 17 occurrences of very high confidence measures of enhanced GO 

slim functional category representation, (the green cells representing probability p lesser 

than 10
-5

) we analyzed the percentage of vertices that constituted the specific GO slim 

functional activity in each module. This was calculated for every module M using the 

ratio of number of vertices in M that corresponded to a functional activity A, to the total 

number of vertices in that module M. Figure 2.3 gives a color coded representation of 

such percentages and we observe that all enhanced representations (except for one) have 

at least 10 % of the total module size constituted by vertices corresponding to the 

enhanced functional category.  
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In Figure 2.4, we perform a similar analysis for studying the relative distribution 

of vertices in a given GO Slim functional category across modules. In particular, for each 

of the 10 highly expressed functional categories, we calculate a measure representing the 

fraction of vertices that constitute the functional category, across different modules. This 

is performed for each functional category F, by computing the ratio of the number of 

vertices from each module M (in which F is highly expressed), to the total number of 

vertices that correspond to F, across all modules. We observe that, for all enhanced 

functional representations (except for one) there exists at least one module which 

contains at least 10 % of vertices corresponding to that functional category across all 

modules.  

 

2.6 Conclusions and Future Work  

In this paper, we have studied the applicability of a Bayesian inference approach 

to the problem of community detection in the context of biological data sets. Our initial 

results demonstrate that, for the datasets under consideration, a VB approach produces 

results that are comparable to the NG algorithm. Furthermore, in the case study of the 

Yeast network considered, we have established that the VB approach results in modules 

that correspond to functional units based on the GO Slim mapping of constituent proteins 

in the yeast network. Not only is the distribution of function non-random across structure, 

but also supports specificity in functional enrichment across modules. 

Some of the areas that we plan to deal with in our future work, which can be 

considered as an extension to the current subject of interest are: comparison of the VB 
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and the NG approaches based on time complexities and run times, analysis of modules 

produced by the VB approach for other PPI networks (such as the H. Sapiens network) 

and a comprehensive study of performance characteristics across other existing 

modularity detection algorithms. 
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Figure 2.1: Distribution of Yeast modules using the VB and the NG approaches 



33 

 
 

 
 

 

Figure 2.2: Biological Interpretation for Yeast modules using GO slim functional 

annotation 
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Figure 2.3: Percentage of module  size constituting the enhanced GO slim functional 

annotation 

 

 

Figure 2.4: Percentage of module  size constituting the enhanced GO slim functional 

annotation 
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Abstract 

Duchenne Muscular Dystrophy (DMD) is an important pathology associated with 

the human skeletal muscle and has been studied extensively. Gene expression 

measurements on skeletal muscle of patients afflicted with DMD provides the 

opportunity to understand the underlying mechanisms that lead to the pathology. 

Community structure analysis is a useful computational technique for understanding and 

modeling genetic interaction networks. In this paper, we leverage this technique in 

combination with gene expression measurements from normal and DMD patient skeletal 

muscle tissue to study the structure of genetic interactions in the context of DMD.  

We define a novel framework for transforming a raw dataset of gene expression 

measurements into an interaction network, and subsequently apply algorithms for 

community structure analysis for the extraction of topological communities. The 

emergent communities are analyzed from a biological standpoint in terms of their 

constituent biological pathways, and an interpretation that draws correlations between 

functional and structural organization of the genetic interactions is presented. We also 

compare these communities and associated functions in pathology against those in 

normal human skeletal muscle. In particular, differential enhancements are observed in 

the following pathways between pathological and normal cases: Metabolic, Focal 

adhesion, Regulation of actin cytoskeleton and Cell adhesion, and implication of these 

mechanisms are supported by prior work. Furthermore, our study also includes a gene-

level analysis to identify genes that are involved in the coupling between the pathways of 

interest.  
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We believe that our results serve to highlight important distinguishing features in 

the structural / functional organization of constituent biological pathways, as it relates to 

normal and DMD cases, and provide the mechanistic basis for further biological 

investigations into specific pathways differently regulated between normal and DMD 

patients. These findings have the potential to serve as fertile ground for therapeutic 

applications involving targeted drug development for DMD.  

 

3.1 Keywords 

Duchenne Muscular Dystrophy, Human skeletal muscle, Community structure 

analysis, Biological pathways, Gene expression 

 

3.2 Background 

Community structure analysis is an interesting computational technique for 

studying interaction networks. Analysis of community structure in networks can yield 

useful insights into the structural organization of the network. For instance, community 

structure analysis is used in the context of networks that arise in domains such as social 

networks to understand the fundamental social structure in a community of interacting 

individuals [1-7]. This provides insights about the influential individuals and the 

strongly-networked individuals in a community. Another domain where algorithms for 

community structure analysis find useful application is the topological understanding of 

large scale connection networks such as Internet, and how one may use the insights from 

community structure analysis to design more resilient communication networks [6, 8-10].  
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In the context of biological networks, such insights can also be used to understand 

the biological significance of the underlying community structure and organization of the 

network. There is existing work that discusses the use of community structure analysis in 

networks that are observed in biological contexts [4-5, 11-13]. For example, [4] presents 

the application of an algorithm for community structure analysis to a food web of marine 

organisms living in the Chesapeake Bay, a large estuary on the east coast of the United 

States. Furthermore, rich toolsets have also been developed for the purpose of 

understanding biological networks from a community structure perspective [13-17].  

In this paper, we explore the application of community structure analysis as an 

effective technique to understand the topological structure and biological behavior of 

human skeletal muscle. Skeletal muscles are a form of striated muscle tissue existing 

under the control of the somatic nervous system, which are attached to bones by tendons. 

This muscle category has been clinically associated with diseases such as Myopathy, 

Muscular Dystrophy, Paralysis, and a host of other diseases. DMD is a group of inherited 

disorders that involve muscle weakness and loss of muscle tissue, which get worse over 

time [18] and results in death before the individual reaches adulthood. Given the genetic 

nature of this disorder, techniques that leverage the underlying genetic interactions are 

expected to yield useful insights, and this is the primary focus of our study. 
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3.2.1 Community structure analysis: Newman and Girvan 

Algorithm 

The Newman and Girvan (NG) algorithm is a popular algorithm for community 

structure analysis in networks [7]. It is a divisive approach that selects and removes edges 

based on its betweenness value. The betweenness of an edge is defined as the number of 

shortest paths between all vertex pairs in the network, which run along that edge. The 

steps involved in the NG algorithm are as follows: The betweenness values of all edges 

are computed. The edge with the largest betweenness is removed (in case of ties with 

other edges, one of them is picked at random). This is followed by the recalculation of 

betweenness values of the remaining edges in the network. The entire process is repeated 

iteratively till all edges are removed. 

The output from this algorithm is a dendrogram capturing the possible division of 

the network into communities. In order to select the optimal split from these possible 

candidates, Newman and Girvan introduce the concept of modularity, which is a measure 

of the quality of a particular division of a network into communities [7]. Given a specific 

division of a network into k  communities, let us define a kk symmetric matrix e  whose 

element ije  is the fraction of all edges in the original network that link vertices in 

community i  to vertices in community j . The row (or column) sums  j iji ea

represent the fraction of edges that connect to vertices in community i . Modularity is 

then defined as follows: 

  22 eeTraeQ
i

iii   
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where  i iieeTr , denotes the trace of the matrix e  and e  denotes the sum of the 

elements of the matrix e . Typically, Q  is calculated for each split of a network into 

communities as the algorithm moves down the dendrogram, with the optimal split 

corresponding to the peak value of Q . For a network with n  vertices and m  edges, the 

worst-case time complexity for this algorithm is  nmO 2
 (or  3nO  for a sparse network). 

 

3.3 Results and Discussion 

Consequence of DMD pathology manifests in the state of muscle cells. The 

physiological state and cellular state of muscles are altered, involving concomitant 

changes in the expression of genes associated with the physiological function. In 

particular, gene expressions in DMD patients have the potential to provide information 

on distinguishing characteristics of pathology, relative to normal muscle (since altered 

gene expressions could aid in identification of functional communities). In this work, we 

have devised a novel approach to analyze human DMD patient gene expression data 

using a combination of techniques from linear algebra and network theory. Specifically, 

we posit that the correlation of gene expression data from DMD patients captures salient 

characteristics of pathology. Accordingly, we build the correlation network from the gene 

expression data for the normal and DMD muscles. Under the assumption that correlation 

implies mechanistic causality, we take the approach of community structure analysis, to 

identify functional communities from the correlation network, to display known 

functional and pathway mechanisms.  
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3.3.1 Derived Interaction Networks 

In this section, we present an analysis of the global properties of the derived 

interaction networks (defined in the Methods section) for the normal and DMD muscle 

data from a descriptive statistics standpoint. We use well known global network 

properties such as density, average degree etc. to inform our analysis. This analysis aims 

to highlight the key similarities and differences between the derived interaction networks 

for normal and DMD muscle data, in order to enable a structural understanding of the 

underlying genetic interactions at a macro level.  

 Figure 3.1 illustrates the key structural differences in the normal and the DMD 

interaction networks. As can be noted from Table 3.1, the number of vertices and edges 

in the DMD interaction network is much smaller than those of the normal interaction 

network. Thus, as one would expect, the density and the average degree of the DMD 

interaction network are also lesser than the normal network (as shown in Figure 3.1). 

However, it is interesting to note that both interaction networks have turned out to be 

sparse from a network-theoretic standpoint.  

From the planar-layout visualization of the normal and the DMD interaction 

networks generated using Cytoscape [19], we observe that the pre-processed networks 

containing 7685 vertices are by themselves disconnected into many independently 

connected components. Table 3.2 summarizes the key network parameters for the normal 

and DMD cases for the whole interaction map.  

Since we are interested in finding communities from the networks, we consider 

the largest connected component in both networks. Table 3.3 shows the number of 
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vertices and edges considered for community structure analysis in both the networks (i.e. 

the parameters defining the largest components in the respective interaction networks). 

 

3.3.2 Community structure analysis 

In this section, we present our results from running the NG algorithm on the 

largest components of the derived interaction networks for the normal and DMD muscle 

datasets. Table 3.4 presents the number of communities identified in the dataset, along 

with the corresponding modularity values (Qmax). We provide in Figure 3.2, a comparison 

of the distribution of communities in both networks (obtained using the NG algorithm), 

across bins defined by vertex cardinality range.  

 

3.3.3 Pathway Analysis 

We perform an analysis of the communities obtained from the NG algorithm from 

the perspective of its constituent pathways, by generating pathway projection networks 

(PPNs). The motivation, technique and color-coding convention of PPNs are detailed in 

the Methods section. Figure 3.3 illustrates the PPNs that are considered for analysis.  

  

3.3.4 Biological Interpretation and Discussion 

While we have included a representative set of PPNs in the Supporting 

Information (Figure S1- Figure S11), we consider the 4 PPNs shown in Figure 3.3 to 

elucidate the significance of the pathways of interest (shown in Table 3.5) in each 

community and the correlation to their presence in the PPNs. Specifically, the pathways 
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we consider are Metabolic, Focal adhesion, Regulation of actin cytoskeleton and Cell 

adhesion. We are interested in finding evidence from past work that can potentially help 

with triangulating our algorithmic findings about the specific pathway enhancements that 

we have identified. For example, if a specific pathway is determined to be enhanced by 

our algorithmic technique, we would expect the evidence corresponding to that pathway 

to correlate well with such an enhancement (for the network under consideration).   

Conversely, for a pathway that is determined to not have a pronounced 

enhancement using our algorithmic approach, we are interested in finding whether the 

experimental evidence surrounding that pathway is aligned with our finding.  We believe 

that this analysis will help us validate our algorithmic findings with evidence from 

existing research. We also perform a gene-level analysis on the PPNs to identify genes 

that are involved in the coupling between the corresponding pathways of interest, and 

summarize sample gene pairs with their corresponding correlation scores. We leverage 

UniProtKB [20] for identifying the functional information associated with the sample 

genes we consider in the discussion below. 

As background for rest of the discussion, we note that dystrophin is a key protein 

of interest in the study of dystrophy. Specifically, the absence of dystrophin is associated 

with DMD and was identified as the source of pathology in humans using positional 

cloning [21].  Mice lacking dystrophin have high serum levels of muscle enzymes and 

possess histological lesions similar to human muscular dystrophy [22-24].   
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3.3.4.1 Metabolic pathways and DMD 

Our results emphasize an interesting connection between metabolic pathways and 

DMD, and we leverage Figures 3.3A-3.3C (PPN 1-PPN 3) to explore these connections 

in greater detail. We summarize the key observations from our analysis here. The first 

observation from Figures 3.3A-3.3C is that, PPN 1 – PPN 3 exhibit enhanced 

representation of metabolic pathways. Furthermore, Figure 3.3A (PPN 1) illustrates a 

strong coupling between metabolic pathways and regulation of actin cytoskeleton. 

Similarly, we observe a direct coupling of metabolic pathways to calcium signaling from 

Figure 3.3C. Finally, we reiterate the importance of metabolism as a key differentiator in 

pathology, in terms of glycolytic and oxidative variations of metabolic pathways. The rest 

of this section provides evidence from prior work in this domain to support our 

observations.  

Our first observation around metabolic pathways and their connection to DMD, is 

in alignment with prior work. In particular, [22] identifies that a dystrophin-dependent 

cytoskeletal organization in skeletal muscles is directly related to the efficiency of 

cytoplasmic and mitochondrial metabolic pathways in situ. More generally, the lack of 

dystrophin or a functionally mildly defective dystrophin is connected with subnormal 

rates of muscle energy conversion and the subnormal energy status of sarcoplasm. In 

other words, enhancement of metabolic pathways is a canonical characteristic in normal 

muscle, and our findings (Figure 3.3A- 3.3C) are consistent with this result. Also, from a 

computational standpoint, the observed specificity in enhancement validates the 

algorithm for community structure analysis used in our approach, since the algorithm 

grouped the genes corresponding to metabolic pathways in cohesive communities. 
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Furthermore, a similar exercise of pathway projection performed on the DMD network 

had no significant representation of the metabolic pathways. 

Secondly, the observation of strong coupling between metabolic pathways and 

regulation of actin cytoskeleton is corroborated by prior experimental work, which has 

identified that, muscles from the dystrophic mdx mouse show reduced maintenance 

metabolic rates [22]. The authors of [22] also propose that the in vivo efficiency of 

metabolic pathways may depend on stabilization of enzyme complexes by dystrophin-

associated elements of the cytoskeleton. By performing a gene-level analysis on PPN 1 

(Figure 3.3A), we found that many genes were involved in the coupling between the two 

pathways of interest. Table 3.6 presents five sample gene pairs and the corresponding 

correlation scores between them. 

Specifically, Leukotriene A4 hydrolase is an epoxide hydrolase that catalyzes the 

final step in the biosynthesis of the proinflammatory mediator leukotriene B4 [20]. This 

gene is highly correlated with cell division cycle 42 which is involved in epithelial cell 

polarization processes. It also plays a role in the extension and maintenance of the 

formation of thin, actin-rich surface projections called filopodia. Phosphoglycerate 

mutase 1 is highly correlated with Cofilin 1 which regulates actin cytoskeleton dynamics 

and plays a role in the regulation of cell morphology [20]. It is interesting to note that a 

similar correlation was observed between these genes in astrocytomas involved in 

pathogenesis of radioresistance [25]. There is existing evidence of association between 

Iduronate 2-sulfatase and integrin, alpha V from a Gene Set Enrichment Analysis point of 

view (which is in accordance with the results shown in Table 3.6, in terms of their 

correlation) [26]. Iduronate 2-sulfatase plays a role in the lysosomal degradation of 
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heparan sulfate and dermatan sulfate. integrin, alpha V is a receptor for fibronectin and 

fibrinogen [20]. Finally, referring to the high correlation between PIK3CA and PDGFRB, 

there is existing evidence that reports an interaction between these genes [27]. 

Similarly, we note that there is evidence from past research that aligns with our 

observation around the coupling of metabolic pathways to calcium signaling. In 

particular, [28] suggests that high intracellular Ca 2+ (linked to calcium signaling) in 

dystrophic fibers, may be the cause of the inefficiency of mitochondrial metabolic 

pathways. Table 3.7 provides five sample gene pairs with their corresponding correlation 

scores, from among the many genes that we found to be highly correlated in function 

between the metabolic and calcium signaling pathways.  

While CYP2C6 plays a role in drug metabolism [29], CYP2C9 localizes to the 

endoplasmic reticulum and its expression is induced by rifampin. From Table 3.7, we 

observe that both CYP2C6 and CYP2C9 are highly correlated to Phosphodiesterase 1C, 

calmodulin-dependent 70kDa. Members of the Cyclic nucleotide phosphodiesterases 

(PDE1) family, are calmodulin-dependent PDEs [CaM-PDEs] that are stimulated by a 

calcium-calmodulin complex [30]. This gene is also highly correlated to Cysteine 

conjugate-beta lyase, cytoplasmic (from Table 3.7). ErbB-4 protein binds to and is 

activated by neuregulins and induces a variety of cellular responses including 

mitogenesis and differentiation [20]. It is interesting to note that this gene is highly 

correlated to Fructose-1,6-bisphosphatase 1, deficiency of which is associated with 

hypoglycemia and metabolic acidosis [31]. 
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Analysis of functional communities that are differentially regulated, demonstrates 

metabolism as the most important mechanistic change in DMD muscle. In particular, 

glycolysis and oxidative metabolism play significant roles in muscle energetics including 

remodeling of the muscle into fast and slow fiber forms responding to the nature of the 

energy demands. Experiments that have been performed on normal muscle showed 

accumulation of glycolytic and oxidative metabolism capacity with increased age, but 

this accumulation failed in DMD [32]. The data used in [32] shows stage-specific 

remodeling of human dystrophin-deficient muscle, with inflammatory pathways 

predominating in the presymptomatic stages and failure of metabolic pathways later in 

the disease [32-33].   

In the slow twitch (type I) fibers, the slow muscles are more efficient at using 

oxygen to generate more fuel (known as ATP) for continuous, extended muscle 

contractions over a long time. In other words, these are the fibers that correspond to 

oxidative phosphorylation. Whereas, because fast twitch (Type II) fibers use anaerobic 

metabolism to create fuel, they are much better at generating short bursts of strength or 

speed than slow muscles. These typically correspond to glycolysis / gluconeogenesis, 

which is involved in converting glucose into pyruvate. We performed an analysis on the 

number of genes that contributed to the fast and slow twitch fibers, in the three 

communities in which metabolic pathways were enhanced (PPN 1-PPN 3). The results 

are summarized in Table 3.8.  
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3.3.4.2 Regulation of actin cytoskeleton and DMD 

The discussion on Regulation of actin cytoskeleton and its relationship to DMD is 

centered around Figure 3.3D (PPN 4). Specifically, PPN 4 illustrates that in normal 

skeletal muscle, the actin cytoskeleton pathways are enhanced, whereas they are less 

utilized in DMD muscle. This is consistent with prior work as follows. Dystrophin links 

the actin cytoskeleton to the dystroglycan complex (which is a part of an adhesion 

receptor complex [34]) in the plasma membrane as part of the linkage between the 

cytoskeleton and the extracellular matrix [36-37]. This link helps maintain sarcolemmal 

integrity in a muscle [38]. Damage to or absence of or mutations in dystrophin causes 

DMD [21, 37-38].  

The skeletal muscle L-type Ca2+ channel (CaV1.1), which is responsible for 

initiating muscle contraction, is regulated by phosphorylation by cAMP-dependent 

protein kinase (PKA) in a voltage-dependent manner [39]. Furthermore, the role of the 

actin cytoskeleton in channel regulation was investigated in skeletal myocytes cultured 

from mdx mice that lack the cytoskeletal linkage protein dystrophin, and a skeletal 

muscle cell line, 129 CB3. Results of the experiments detailed in [39] show that 

regulation of Ca2+ channel activity by hormones and neurotransmitters that use the PKA 

signal transduction pathway may interact in a critical way with the cytoskeleton and may 

be impaired by deletion of dystrophin, contributing to abnormal regulation of intracellular 

calcium concentrations in dystrophic muscle.  

We see that most pathways in PPN4 are well-coupled to each other. From the 

sample correlation scores provided in Table 3.9, we infer that there is strong correlation 
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[40] that exists between the genes, which signifies the coupling between the regulation of 

actin cytoskeleton and focal adhesion pathways. 

 

3.3.4.3 Focal adhesion and DMD 

We use Figure 3.3D (PPN 4) to motivate the discussion around the focal adhesion 

pathway, and its relationship to pathology. In particular, PPN 4 shows the expected level 

of association of focal adhesion pathways in normal muscle and this is consistent with the 

evidence presented below. The representation of focal adhesion kinase (FAK) in 

dystrophy networks has been studied previously [23, 41]. For example, the authors of 

[41] find that at 12 weeks of age, both hind limb muscles of dystrophic mice possessed a 

lower FAK protein than normal mice.  It is proposed that FAK is a part of the pathway 

that would be of potential importance in transducing mechanical signals from cell 

membranes to skeletal muscle fiber nuclei [42-43]. Focal adhesion pathway is coupled 

tightly not only to regulation of actin cytoskeleton (as shown in the Table 3.9), but also to 

cell adhesion molecules, with high correlation scores, some of which are shown in Table 

3.10.  

Referring to genes in Table 3.9, Laminin alpha-4 is a protein thought to mediate 

the attachment, migration and organization of cells into tissues by interacting with other 

extracellular matrix components, by binding to cells via a high affinity receptor [20]. 

Integrin alpha-6 is a receptor for laminin in epithelial cells and it plays a critical structural 

role in the hemidesmosome. Laminin alpha4 and integrin alpha6 are upregulated in 

regenerating dy/dy skeletal muscle [20]. Furthermore, laminin alpha4 and integrin alpha6 

expression patterns are notably different in dy/dy when compared to normal muscle. This 
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is especially pronounced in the interstitium of regenerating areas and on newly formed 

myotubes [44]. Our observation about the high correlation between Laminin alpha4 and 

integrin alpha6 (Table 3.9) is in alignment with these findings.  

We also present a brief description (collated from [20]) of other genes in Table 

3.9 amongst which we observe a high correlation. Moesin is conjectured to be involved in 

connections of major cytoskeletal structures to the plasma membrane. Kinase insert 

domain receptor (a type III receptor tyrosine kinase) is a vascular endothelial growth 

factor (VEGF) receptor. Beta-actin is one of six different actin isoforms which have been 

identified in humans. This is one of the two nonmuscle cytoskeletal actins. Actins are 

highly conserved proteins that are involved in cell motility, structure and integrity. Type 

IV collagen is the major structural component of glomerular basement membranes, 

forming a 'chicken-wire' meshwork together with laminins, proteoglycans and 

entactin/nidogen. 

From Table 3.10, we observe that Platelet/endothelial cell adhesion molecule 1 

(PECAM-1) and Cadherin 5, type 2 (vascular endothelium) genes from cell adhesion 

molecules pathway are highly correlated to the genes from the focal adhesion pathway. 

PECAM-1 is a transmembrane protein in the inter-endothelial cell contacts [20]. 

PECAM-1 is a homophilic adhesive molecule that is diffusely distributed on 

subconfluently growing endothelial cells, but concentrates at cell-cell borders upon cell-

cell contact [45]. Our observation of high correlation between PECAM-1 and genes in the 

focal adhesion pathway (shown in Table 3.10) is corroborated by [46] which illustrates 

the co-localisation of some of the ECM components viz. laminin α1, collagen type IV 

with the endothelial cell marker PECAM-1. Cadherin 5, type 2 (vascular endothelium) 
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are calcium-dependent cell adhesion proteins. They play an important role in endothelial 

cell biology through control of the cohesion and organization of the intercellular 

junctions [20]. From Table 3.10, we see that it is highly correlated with Integrin, alpha 6 

and Laminin, alpha 4. 

 

3.3.4.4 Cell adhesion and DMD 

Figure 3.3D (PPN 4) illustrates that the cell adhesion pathway is not enhanced 

significantly in the normal network (given that it is a relatively small sized node, 

representing smaller pathway cardinality). When we performed a detailed analysis of the 

genes that constitute this pathway in the network, we find that most genes are a form of 

the Class I and Class II type major histocompatibility complex (MHC). There exists 

enough evidence that MHC proteins in normal skeletal muscle fibers show lower 

expression levels, when compared to DMD [47]. Prior work also shows that for every 

MHC protein, the fold change for DMD muscle is greater than one [48], which represents 

a higher expression in DMD than in normal. Thus, we see that the algorithm, not only 

highlights the more enhanced pathways in the communities, but also identifies the lowly 

expressed pathways in the normal muscle. This evidence provides more confidence to the 

robustness of the communities detected. Table 3.10 shows a few genes from cell adhesion 

that are correlated to focal adhesion pathway. 
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3.4 Methods 

3.4.1 Muscular Dystrophy: Dataset Description 

We used the skeletal muscle gene expression data, Series GSE6011 from the Gene 

Expression Omnibus [35]. The gene expression dataset consisted of measurements on 

probes for genes with a many-to-many mapping between probes and genes. In order to 

obtain one-to-one equivalence between the probes and genes, we perform a series of pre-

processing steps, which are included in the Supporting Information (see Appendix S1). 

Table 3.11 summarizes the parameters of the pre-processed dataset.  

 

3.4.2 Derived interaction networks  

We introduce the notion of an interaction network that is derived from an 

underlying gene expression dataset. This is one of the novel contributions in our paper. 

We consider a gene expression dataset nmA   (consisting of measurements on m probes 

for genes across n  experiments) that has been pre-processed to represent one-on-one 

mappings between probes and genes. Let  denote the correlation matrix for the dataset, 

containing the pairwise linear correlation coefficient between each pair of columns in the 

matrix
T

mnA  , where TA  denotes the transpose of the matrix A   

 

 

We define the interaction network for the dataset as an undirected network

 EV , , such that the set of vertices V corresponds to the set of genes in the 

mmij  ][
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underlying dataset (i.e. mV  ) and the interactions between them are captured by the set 

of edges E  via an adjacency matrix as follows: 

  mmijadjMat  ][  




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
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where 10   is a pre-defined threshold  

 Our intuition behind the definition of the interaction network was to capture the 

inherent associations between genes in a dataset, by using the correlation of expression 

measurements as a representative surrogate for the interactions between the underlying 

genes. In other words, the hypothesis is that a stronger correlation is likely to signify a 

stronger interaction between the genes exhibiting the correlation (modeled by the 

presence of an edge between the genes in the interaction network), while a weaker 

correlation is likely to correspond to a weaker interaction between the genes (modeled by 

the absence of an edge). 

 

3.4.3 Derived interaction networks for the GSE6011 Dataset 

We generated the derived interaction networks for the pre-processed GSE6011 

dataset for both the normal and DMD data. We used a threshold of 8.0  as the 

correlation cut-off, applying the guidelines from [40]. Hence, an edge was present 

between two genes in the generated interaction network if and only if the absolute value 

of correlation between those genes was greater than 0.8. We note that due to the post-
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processing steps described in the Supporting Information (see Appendix S1), the actual 

number of vertices considered for subsequent analysis in this paper is less than the initial 

number of vertices in the raw interaction networks generated for both normal and DMD 

data (summarized in Table 3.1).  

 

3.4.4 Pathway Analysis 

Consequence of DMD pathology manifests in the state of muscle cells. The 

physiological state and cellular state of muscles are altered, involving concomitant 

changes in the expression of genes associated with the physiological function. In 

particular, gene expressions in DMD patients have the potential to provide information 

on distinguishing characteristics of pathology, relative to normal muscle (since altered 

gene expressions could aid in identification of functional communities). In this work, we 

have devised a novel approach to analyze human DMD patient gene expression data 

using a combination of techniques from linear algebra and network theory. Specifically, 

we posit that the correlation of gene expression data from DMD patients captures salient 

characteristics of pathology. Accordingly, we build the correlation network from the gene 

expression data for the normal and DMD muscles. Under the assumption that correlation 

implies mechanistic causality, we take the approach of community structure analysis, to 

identify functional communities from the correlation network, to display known 

functional and pathway mechanisms.  

In this section, we present an analysis of the communities from the perspective of 

the pathways that the constituent genes represent. The goal is to understand the 

communities from derived interaction networks through functional analysis, since 
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functions help elucidate alterations in pathological conditions [49-50]. Furthermore, we 

expect that the analysis of normal and DMD interaction networks from a pathway 

perspective is likely to yield more holistic insights into the correlation between functional 

and structural organization of the underlying genetic interactions.  

We describe below, the transformation technique we employed to generate an 

equivalent network in terms of the constituent pathways for each community [also 

schematically presented in the flowchart in Figure 3.4]. We call this a Pathway 

Projection Network (PPN). For each community from the normal muscle interaction 

network, we extract a sub-network consisting of only those genes present in the normal 

muscle network and not in the DMD muscle network. From these sub-networks, we 

identify those that have a minimum vertex cardinality of 100 (we found four such 

candidates), and performed pathway analysis for these candidates using the KEGG 

mapper [51-52].  

It is important to note that there is a one-to-many mapping between genes and 

pathways. Hence there are multiple pathway assignments that are possible for a given 

gene and this would lead to a combinatorial explosion in the number of pathway 

projection networks. To avoid this, we prune the space of gene-pathway mappings by 

employing a heuristic that we call the maximum spanning pathway reduction heuristic. 

This heuristic works as follows: From all candidate pathways that a gene from a sub-

network belongs to, we choose that pathway p which maximizes the number of other 

genes spanning the sub-network which can also be assigned the pathway p.  

We use Cytoscape to visualize the PPNs and these are shown in Figures 3.3A-

3.3D (denoted as PPN1 – PPN4). The PPNs 1-4 use the following convention. The 
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pathway-nodes are color coded from Green to Red, with increasing degree of the node. 

This is a measure of connectivity between the pathways.  A second attribute (pathway 

cardinality) defines the size of the node- a larger node signifying a larger pathway 

cardinality, which is the number of genes from the community that correspond to that 

pathway). Thus, strong connections between two large, red nodes imply a strong coupling 

between the set of genes in one pathway to the set that correspond to another.  

From among the pathways represented in the PPNs, we are specifically interested 

in further analyzing pathways that are enhanced in each community and / or are known to 

be relevant to DMD from prior work [21-24, 32-39, 41-43]. These are summarized in 

Table 3.5. The pathway interactions analysis for the resultant PPNs is presented in the 

Results and Discussion section. 

 

3.5 Conclusion 

In this paper, we have proposed a principled approach for transforming gene 

expression datasets into interaction networks, which serve as a useful representation for 

downstream analysis of pathology. Furthermore, we have illustrated the utility of 

community structure analysis applied to the interaction networks, as a sound 

computational technique for gaining insights about the underlying topology and function. 

We have leveraged this approach to study the characteristics of normal and DMD human 

skeletal muscle tissues, in terms of functional communities. In addition to providing a 

topological perspective on the differential regulation of transcripts between normal and 

DMD skeletal muscle, the derived communities provide extensive information on 
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functional pathways and their association with pathology. Not only does our analysis 

provide clear evidence of the role of altered metabolic, calcium signaling and cytoskeletal 

remodeling pathways in DMD, but also identifies novel cross-talk between them. We 

believe that our work provides the steps for biomarker identification, as well as systems 

level information for therapy of the DMD skeletal muscle.  

 

3.6 List of abbreviations 

DMD: Duchenne Muscular Dystrophy  

PPN: Pathway Projection Network  

ATP: Adenosine Triphosphate 

NADH: Reduced Nicotinamide Adenine dinucleotide). 

FADH2: Flavin Adenine Dinucleotide (hydroquinone form) 

FAK: Focal Adhesion Kinase 

PKA: Protein Kinase 
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Table 3.1: Summary of interaction networks for normal and DMD muscle 

Dataset Number of vertices considered
*
 Number of edges 

Normal muscle 7453 130225 

DMD muscle 3332 16445 
*
The original number of vertices after pre-processing the GSE6011 dataset was 7685 
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Table 3.2: Summary of network parameters 

Full Network Normal DMD 

Vertices 7453 3332 

Edges 130225 16445 

Clusters 670 283 

Clustering coefficient 0.278 0.216 

Connected components 27 219 

Network diameter 16 24 

Network radius 1 1 

Network centralization 0.056 0.052 

Shortest paths 98% 71% 

Characteristic path length 5.302 7.852 

Avg. number of neighbors 34.946 9.871 

Network density 0.005 0.003 

Network heterogeneity 1.819 2.042 

 

Table 3.3: Parameters of networks’ largest component used for community structure 

analysis 

Dataset Number of vertices Number of edges 

Normal muscle 7389 130185 

DMD muscle 2823 16142 

 

 

Table 3.4: Communities from the GSE6011 dataset 

Dataset Number of communities Qmax 

Normal muscle 670 0.498339 

DMD muscle 283 0.535499 

 

 

 

 

Table 3.5: Pathways of interest in each community 

Pathway projection 

network 

Pathway of interest 

PPN1 – PPN3 Metabolic pathways 

PPN4 Focal adhesion, Regulation of actin cytoskeleton 

and Cell adhesion molecules 
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Table 3.6: Sample correlation scores of highly correlated genes (Metabolic and 

Regulation of actin cytoskeleton pathways) 

Highly correlated genes Correlation 

Score Metabolic pathway Regulation of actin 

cytoskeleton 

Leukotriene A4 hydrolase Cell division cycle 42 0.876235649 

Phosphoinositide-3-kinase, class 

2, alpha polypeptide 

Platelet-derived growth factor 

receptor, alpha polypeptide 

0.870928383 

Phosphoglycerate mutase 1 Cofilin 1 0.860115666 

Iduronate 2-sulfatase integrin, alpha V 0.849397619 

dCMP deaminase Actinin, alpha 4 0.82944117 

 

 

Table 3.7: Sample correlation scores of highly correlated genes (Metabolic and Calcium 

signaling pathways) 

Highly correlated genes Correlation 

Score Metabolic pathway Calcium signaling pathway 

Cytochrome P450, family 2, 

subfamily B, polypeptide 6 

Phosphodiesterase 1C, calmodulin-

dependent 70kDa 

0.970659478 

Cytochrome P450, family 2, 

subfamily C, polypeptide 9 

Phosphodiesterase 1C, calmodulin-

dependent 70kDa 

0.945775382 

Gamma-glutamyltransferase 1 Calcium/calmodulin-dependent 

protein kinase IV 

0.912367742 

Cysteine conjugate-beta lyase, 

cytoplasmic 

Phosphodiesterase 1C, calmodulin-

dependent 70kDa 

0.906362395 

Fructose-1,6-bisphosphatase 1 v-erb-a erythroblastic leukemia viral 

oncogene homolog 4 

0.900885014 

 

 

 

Table 3.8: Summary of muscle fibers’ cardinality 

ID Pathway PPN1 

(Fig 

3.3A) 

PPN2 

(Fig 

3.3B) 

PPN3 

(Fig 

3.3C) 

hsa00010 Glycolysis / Gluconeogenesis (fast 

twitch) 

4 1 5 

hsa00190 Oxidative phosphorylation (slow 

twitch) 

18 13 6 
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Table 3.9: Sample correlation scores of highly correlated genes (Focal adhesion and 

Regulation of actin cytoskeleton pathways) 

Highly correlated genes Correlation 

Score Focal adhesion pathway Regulation of actin 

cytoskeleton 

Kinase insert domain receptor (a type III 

receptor tyrosine kinase) 

Moesin 0.930732193 

Laminin, alpha 4 Integrin, alpha 6 0.916349568 

Collagen, type IV, alpha 2 Actin, beta 0.914346045 

Collagen, type IV, alpha 1 Actin, beta 0.910817128 

Laminin, alpha 4 Actin, beta 0.9039736 

 

 

Table 3.10: Sample correlation scores of highly correlated genes (Focal adhesion and 

Cell adhesion molecules pathways) 

Highly correlated Genes Correlation 

Score Focal adhesion 

pathway 

Cell adhesion molecules (CAMs) 

Laminin, alpha 4 Platelet/endothelial cell adhesion molecule 1 0.964950625 

Laminin, alpha 4 Cadherin 5, type 2 (vascular endothelium) 0.939171386 

Collagen, type 

IV, alpha 1 

Platelet/endothelial cell adhesion molecule 1 0.937020588 

Integrin, alpha 6 Cadherin 5, type 2 (vascular endothelium) 0.929446836 

Actin, beta Platelet/endothelial cell adhesion molecule 1 0.929072591 

 

 

 

Table 3.11:Summary of pre-processed GSE6011 dataset parameters 

Dataset Number of Probes / Genes Number of Experiments 

Normal muscle 7685 13 

DMD muscle 7685 23 
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Figure 3.1: Structural Properties- Normal vs. Dystrophy Interaction Networks. Plots of 

the number of Vertices, number of Edges, Density and Average Degree of the Normal 

and DMD interaction networks that were constructed from the GSE6011 dataset 

[discussed in Methods Section
 
]. The scales (y-axis) for these structural properties are 

different and the data for the networks are color coded as green and red for the Normal 

and DMD muscles respectively. 

 

 

Figure 3.2: Distribution of Communities. A comparison of the distribution of 

communities in both the Normal and DMD networks, obtained using the Newman and 

Girvan’s edge-betweenness algorithm. The green bars show the distribution of the total 

number of 644 communities obtained from the Normal network, across the four bins of 

community size, and the red bars represent the distribution of the 283 communities from 

the DMD network. 
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Figures 3.3: Pathway Projection Networks. Representation of communities (of interest) 

from the perspective of the pathways. Nodes in the PPNs are derived from (and are 

representative of) the pathway(s) that the constituent genes correspond to. The edges 

between the pathway-nodes represent the connections between the underlying genes in 

the original network. The nodes are color-coded according to the degree (measure of 

connectivity between the pathways) and size-coded according to the pathway cardinality 

of the node (number of genes from the community that correspond to that pathway). The 

transformation technique that was employed to generate an equivalent network in terms 

of the constituent pathways for each community is described in the Methods section [also 

schematically presented in the flowchart in Figure 3.4]. 
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Figure 3.4: Schematic representation of transformation technique employed to generate 

PPNs. A schematic representation of the transformation technique that was employed to 

represent the communities from the perspective of the pathways that the constituent genes 

correspond to. This technique is described in detail in the Methods section. 
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A Newtonian Framework for Community Detection 

in Biological Networks 

Chapter IV, in full, has been submitted for publication of the material as it may 

appear in Narayanan T; Subramaniam S. A Newtonian Framework for Community 

Detection in Biological Networks. IEEE Transactions on Biomedical Circuits and 

Systems (TBioCaS) 2013. The dissertation author was the primary investigator and 

author of this paper. 
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Abstract 

 Community detection is a key problem of interest in network analysis, with 

applications in a variety of domains such as biological networks, social network 

modeling, and communication pattern analysis. In this paper, we present a novel 

framework for community detection that is motivated by a physical system analogy. We 

model a network as a system of point masses, and drive the process of community 

detection, by leveraging the Newtonian interactions between the point masses. Our 

framework is designed to be generic and extensible relative to the model parameters that 

are most suited for the problem domain. We illustrate the applicability of our approach by 

applying the Newtonian Community Detection algorithm on protein-protein interaction 

networks of E. coli, C. elegans, and S. cerevisiae. We obtain results that are comparable 

in quality to those obtained from the Newman and Girvan algorithm, a widely employed 

divisive algorithm for community detection. We also present a detailed analysis of the 

structural properties of the communities produced by our proposed algorithm, together 

with a biological interpretation using E. coli protein network as a case study. A functional 

enrichment heat map is constructed with the GO functional mapping, in addition to a 

pathway analysis for each community. The analysis illustrates that the proposed 

algorithm elicits communities that are not only meaningful from a topological standpoint, 

but also possess biological relevance. We believe that our algorithm has the potential to 

serve as a key computational tool for driving therapeutic applications involving targeted 

drug development for personalized care delivery. 
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Index Terms— Biological pathways, Biological systems modeling, Community 

detection, Protein networks, Proteomics 

 

4.1 Introduction 

 Community detection is a key problem of interest in network analysis [1] [2] [3] 

[4] [5]. The techniques for identifying communities in networks have widespread 

applications in the analysis of biological networks [6] [7] [8] [9] [10], social networks [6] 

[11] [12] [13] [14] [15] [16], and internet traffic patterns [17] [18] [19]. The problem of 

community detection is especially challenging when dealing with large-scale networks 

with thousands or tens of thousands of nodes and edges.  

 Algorithms used for community detection have the following characteristics as 

their desiderata. The fundamental expectation is that the algorithm should be able to 

produce communities (or a representation thereof), which are contextually meaningful, as 

its output. Additionally, the algorithm would have wider applicability if it is schema-

agnostic i.e. it lends itself to being adapted / extended to different types of networks (for 

example, weighted and unweighted networks, directed and undirected networks, static 

and time-varying networks etc.). Furthermore, not only must the computation time of the 

algorithm be bounded, but the algorithm must also be efficient with convergence 

guarantees on the number of communities (with acceptable node memberships).  

 Typically, we also expect that the communities produced by a community 

detection algorithm reflect underlying semantic structures in the original network. For 

example, in the context of biological networks, we expect that the communities produced 
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by a community detection algorithm represent some functionally related elements of the 

underlying biological pathways in the original network (which could potentially be used 

for applications such as phenotype prediction). Moreover, singleton-communities (with 

just one node) or communities with just 2-3 nodes are not expected to yield much 

biological insight. Thus, an effective community detection algorithm should yield 

communities with reasonable vertex cardinality. 

Applications of community detection in biological networks include functional 

annotation of constituent biomolecules, since nodes in the same community are likely to 

be associated with similar functions. This can serve as a key tool in the analysis of 

pathology [20] and enable therapeutic applications, with potential for personalized care 

delivery. Most biological networks of interest tend to be large and complex, both in terms 

of the number of nodes and the edges between them. For instance, the complete Protein- 

Protein Interaction Network (PPIN) of H.Sapiens consists of over 10000 proteins and 

81000 interactions [21]. Another characteristic of biological networks that augments the 

complexity of community detection is that, such networks also tend to be sparse from a 

connectivity perspective [22].  

 

4.2 Community Detection: A Newtonian Framework  

 In this paper, we present a general framework for com-munity detection that is 

motivated by a physical system analogy. The intuition driving our approach is to model a 

network with nodes and edges as a physical system of point-masses and consider the 

interactions between them from a Newtonian standpoint. This is illustrated in Fig. 1. 
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 Conceptually, we consider these interactions to be acting “along” the edges 

connecting nodes (for example nodes vi and vj shown in Fig. 1). We quantify the 

“strength” of these interactions using structural properties of the underlying network, 

together with a set of configurable model parameters and the Newtonian laws applicable 

to interaction between point-masses in the model. Finally, we leverage the quantified 

interactions to guide the community detection process on the underlying network. The 

design of our framework is also informed by the observation of a key characteristic of 

communities in real world networks (such as biological networks) viz. the intra-

community edges are typically denser than the (sparse) inter-community edges. We 

formalize our approach in subsequent sections.  

 

4.3 Definitions 

 In this section, we present the definitions of terminology that we use in the 

remainder of the paper.  

4.3.1 Community [K] 

 Given a graph G = (V, E), we define a Community K as a sub-graph of G such 

that K = (v, e) where |v| ≤ |V| and |e| ≤ |E|. 

4.3.2 Distance Matrix [D] 

 Given a graph G = (V, E), we define the Distance Matrix D as a |V|×|V| matrix 

where every element dij is the length of the shortest path between nodes vi and vj. 
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4.3.3 Mass Mapping [µ] 

 Given a graph G = (V, E), we define a Mass Mapping µ as a function that maps 

every node vi of G to a real number mi 

         

                                

mi is said to be the mass-point of node vi. We note that the Mass Mapping    is a 

configurable model parameter of our algorithmic framework. 

 We further define the Unit Mass Mapping    as follows: 

          

                                    

4.3.4 Newtonian Field [Ƒ] 

 Given a graph G = (V, E) and a Mass Mapping µ, we define the Newtonian Field 

of G under µ as a |V|×|V| matrix: 

                       

      

           

   
           

 
                       

                 

 Here, Ġ is a constant configurable model parameter of our algorithmic 

framework, and dij denotes the corresponding element from the Distance Matrix D of G. 

Since the length of the shortest path between a node and itself (dii) is zero, the 

corresponding element in the Newtonian Field is taken to be zero. 
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4.3.5 Vertex Field Projection [Φ] 

 Given a graph G = (V, E) and a Mass Mapping µ, we define the Vertex Field 

Projection of G under µ as a |V|-dimensional vector: 

              

        
 

 

4.3.6 Edge Field Projection [Ω] 

 Given a graph G = (V, E) with an adjacency matrix A, a Mass Mapping µ, and a 

real valued function λ(x, y), we define the Edge Field Projection of G under the 

parameters µ and λ as a |V|×|V| matrix: 

                  

      
                      

 
                             

  

 We call λ(x, y) a projection transformation function since it serves the purpose of 

transforming projections defined over nodes (φi) to projections defined over the edges 

(ωij). We note that the projection transformation function λ(x, y) is a configurable model 

parameter of our algorithmic framework. 

4.3.7 Modularity [Q] 

 Modularity is a measure of the quality of a particular division of a network into 

communities. We use the definition of this term from [1]. In particular, given a specific 

division of a network into k communities, we define a     symmetric matrix e whose 
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element     is the fraction of all edges in the original network that link nodes in 

community i to nodes in community j. We further define the row (or column) sums 

        , which represent the fraction of edges that connect to nodes in community i. 

Finally, we define modularity as follows: 

            
            

 

 

 where           ,  denotes the trace of the matrix e and ‖e‖ denotes the sum of 

the elements of the matrix  .  

 

4.4 Algorithm: Newtonian Community Detection (NCD) 

 In this section, we present our algorithm for community detection. 

INPUT 

Graph G = (V, E), Mass Mapping µ, Ġ, Projection Transformation Function λ(x, y) 

OUTPUT 

     Set of communities { K1, K2, …, Kn } 

STEPS 

     1. Create an empty ordered list L ← ∅ 

     2. Repeat while the edge set E of G ≠ ∅ 

     { 

2.1 Compute the distance matrix D of G 

2.2 Compute the Newtonian Field Ƒ of G under µ 

2.3 Compute the Vertex Field Projection Φ of G under µ 
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2.4 Compute the Edge Field Projection Ω of G under parameters µ and λ 

2.5 Let eij denote the edge corresponding to the maximum ωij from Ω 

2.6 Append eij to L 

2.7 E ← E – { eij }  

     } 

     3. L defines a dendrogram on G. Compute the modularity Q for every split of G 

  4. Output communities { K1, K2, …, Kn } ← the set of communities when Q is 

maximum. 

 

4.5 Algorithm Analysis 

 We describe the semantic connection between the algorithm (as outlined above) 

and how it strives to address the problem of community detection (by adopting a physical 

systems analogy). As noted in section II, we view the input graph (G) as a connected 

physical system of point-masses interacting under Newtonian influences. Specifically, we 

model these interactions to be acting along the edges of the input graph, and determine 

how the nodes in the graph would congregate into communities (under the influence of 

these interactions). 

 Step 2 constitutes the main loop of the algorithm where the iterative process of 

edge-removal is performed until no further edges remain. In each iteration of the 

algorithm, the edge which is subjected to the maximum magnitude of Newtonian 

interaction, defined by the Edge Field Projection, is removed (Step 2.5). The magnitude 

of interaction along an edge is modeled as the projection of the aggregated interactions on 
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the nodes connected by the edge, denoted by Vertex Field Projection (Step 2.4). The 

aggregated interaction on a given node is obtained by considering every other node in the 

graph and computing the Newtonian interaction between the two nodes (Steps 2.3 and 

2.2). To aid in the computation of the interactions between any two nodes, the distance 

matrix for the whole graph is calculated (Step 2.1). 

 Our algorithm for community detection is divisive in nature and works by 

iteratively removing edges that satisfy a certain criterion within the Newtonian 

framework defined in section III. The order of removal of edges defines a dendrogram on 

G. At every possible candidate split of the network into communities (as defined by the 

dendrogram), we calculate the modularity Q. Finally, we select that candidate split which 

corresponds to the maximum value of Q as the one that produces the output set of 

communities. The NCD algorithm will terminate deterministically. The proof follows 

from the fact that in every iteration of the main loop of the algorithm, we consider 

successively smaller sub-graphs of G to search for communities that meet a certain 

criterion within the Newtonian framework defined in this paper.  

 If m and n denote the number of edges and nodes in the input graph G and we 

assume that there is a constant computational cost in evaluating the functions µ and λ in 

every iteration of the algorithm, we can bound the worst-case time complexity of the 

NCD algorithm by             or       for sparse graphs. We observe that the 

bound matches the worst-case complexity for the Newman and Girvan (NG) algorithm 

[1] and is generally accepted to be computationally tractable for most real world 

networks. Note that we assume that the distance matrix computation is performed using 

the Johnson's algorithm [23] which has a time complexity of               . 
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4.6 Algorithm Evaluation 

 In this section, we evaluate our proposed algorithm using biological PPIN of 

common interest. In particular, we compare the results from our algorithm to those 

obtained from running the NG algorithm, on the same networks. The networks we 

considered are summarized in Table I.  

4.6.1 Dataset Description 

 The full network of S. cerevisiae (yeast), obtained from Biogrid [24], contained 

160566 interactions, but we restricted the dataset to interactions determined by co-

purification or yeast two-hybrid experiments, thus giving only 15316 interactions. We 

also pre-processed the networks in Table I to collapse multiple edges between a given 

pair of nodes into a single edge, eliminated self-loops on nodes, and also ignored 

mirrored-edge representations in the network (i.e. an interaction between nodes A and B 

is considered the same as an interaction between nodes B and A). The resulting S. 

cerevisiae network had 9946 interactions (edges) between 3654 proteins (nodes) with 

multiple components, of which we consider the largest component (with 9890 edges and 

3551 nodes as shown in Table I). Similarly, the complete E. coli network (obtained from 

[25]) had 3989 edges between 1941 nodes, but only the largest component (with 1274 

nodes and 3124 edges) was considered for our analysis. The C. elegans network with 199 

nodes and 251 edges was obtained from [26]. 

 The parameters we used when applying the NCD algorithm on the PPINs are 

summarized below: 

 Ġ ≡ 1 
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 Mass Mapping (µ) ≡ Unit Mass Mapping (  ) 

 Projection Transformation Function λ(x, y) ≡ x + y 

 

4.6.2 Modularity (Q) comparison 

 Fig. 2 presents the results of the execution of our algorithm in terms of the 

modularity (Q) corresponding to the resultant division of the network into communities. 

We also present the corresponding results from the NG algorithm. As noted in [1], the 

modularity of networks with a strong community structure typically fall in the range from 

about 0.3 to 0.7 in practice. Accordingly, we conclude that the networks under 

consideration exhibit modular structures. Furthermore, we observe that our approach to 

community detection yields communities which are comparable in quality (as defined by 

the modularity measure) to the NG algorithm. 

 

4.7 Biological Interpretation 

 In this section, we present a detailed analysis of the topological properties and 

biological interpretation of the communities produced by the NCD algorithm using the 

PPIN of E. coli* as a case study. E. coli is an extensively used model organism in 

biological analysis. The discussion in this section is intended to illustrate the applicability 

of our approach to detecting communities in large scale biological networks of practical 

relevance and significance. We believe that this can serve as a foundation for 

understanding the correspondence between structure and function of biological networks, 
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which could serve as a key step in the process of “-omics” based diagnostics and disease 

modeling. 

 * While the biological interpretation of the communities produced by the NCD 

algorithm from the PPIN of S. cerevisiae was also performed, we present only the results 

from the E. coli PPIN in this Chapter. The E. coli network is not only a widely used 

model organism, but is also more annotated than the S. cerevisiae network, both in terms 

of the functional and pathway annotations of the constituent genes. Hence, it serves as a 

more illustrative example for the purposes of the discussion in this section. 

 

4.7.1 Analysis of network properties 

 When evaluating a community detection algorithm, it is important to analyze the 

communities produced by the algorithm from a topological standpoint, to ascertain that 

they reflect the underlying structural organization of the network. In the following 

sections, some common structural properties of interest that can be used to characterize 

real-world community structures are defined and discussed in the context of the 

communities produced by the NCD algorithm from the E. coli network. We restrict our 

analysis to communities with a minimum vertex cardinality of 30 (as shown in Table II). 

 

4.7.1.1 Network Density 

 The density ρ of a community is defined as the ratio of edges it actually contains 

(mc), to the number of edges it could contain if all its nodes were connected. In the case 

of an undirected network, the latter is           , where nc is the number of nodes in 
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the community. Thus,  

   
    

          
  . 

 When compared to the overall network density, the density allows assessing the 

cohesion of the community: by definition, a community is supposed to be denser than the 

network it belongs to [27]. In other words, an effective community detection algorithm 

must produce as output, communities that are more cohesive relative to the input 

network. 

 Fig. 3 presents the log of network density of the com-munities produced by the 

NCD algorithm from the E. coli network (represented by the circles). The figure also 

includes the corresponding data point for the input E. coli network (solid square). It is 

evident that the network densities of the communities produced are significantly higher 

(representing cohesion) than the network density of the entire E. coli network, which 

serves to reinforce the effectiveness of our algorithm. 

 

4.7.1.2 Node Degree Distribution 

 Prior work has shown that, while in a random network most nodes have 

comparable degrees, real networks tend to have a significant number of highly connected 

nodes and large differences in node degrees [28], typically attributed to the network’s 

scale-free property. In other words, the degree distribution DD of many real-world 

networks (such as biological networks) approximates a power law:           [29]. 

 Fig. 4 shows the node degree distribution for the E. coli network and three other 

sample communities from the ones shown in Table II. We observe that these follow a 
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power law distribution (it should be noted that the plots in Fig. 4 have a logarithmic axis 

and a straight line on such log–log plots indicates a power-law scaling). This observation 

illustrates that the NCD algorithm conserves the underling topological semantics of the 

input network (such as the scale-free property), when generating output communities. 

4.7.1.3 Clustering Coefficient Distribution 

 The clustering coefficient Ci captures the density of edges in node i’s immediate 

neighborhood: C = 0 means that there are no edges between i’s neighbors; C = 1 implies 

that each of the  i’s neighbors are connected to each other . For a random network of size 

N, the average clustering coefficient depends on the network size as    , whereas, it is 

largely independent of the network size in real networks [28].   

 Fig. 5(a) shows the distribution of the average clustering coefficient of the 

communities from the E. coli network (black dots) shown in Table II. The solid line 

corresponds to the predicted trend for random networks, with the average clustering 

coefficient decreasing as     . It is interesting to note that the average clustering 

coefficients of the communities produced by the NCD algorithm is independent of N, 

illustrating that the communities identified by our algorithm exhibit characteristics of real 

networks. 

 Furthermore, authors of [28] note that, unlike random networks, the clustering 

coefficient distribution C(k) for real networks decreases with the node degree k. C(k) is 

measured by averaging the clustering coefficient of all nodes with the same degree k. Fig. 

5(b)-(d) plots the C(k) function for the E. coli network and two other sample 

communities from the ones shown in Table II. We observe a decreasing trend of C(k) 

with the node degree k, across all communities. 
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 These observations reinforce our belief in the effectiveness of the NCD algorithm. 

Specifically, these results illustrate that the communities produced by the proposed 

algorithm are not just random, but that the underlying real-world network topological 

properties are captured and preserved such as the scale-free property), when generating 

output communities. 

 

4.7.1.4 Average distance 

 The distance between two nodes in a network is defined as the length of the 

shortest path connecting them. When averaged over all pairs of nodes in a community, it 

allows assessing the cohesion of the community. In real-world networks, the average 

distance of small communities (nc≤10) increases logarithmically with the community size 

nc. For larger communities, the increase in average distance is even less pronounced [27]. 

Fig. 6 shows the distribution of the average distance of the communities listed in Table II. 

We observe that the trend line in this figure is consistent with the aforementioned 

behavior. This serves as testimony to the ability of the NCD algorithm to elicit 

communities that possess properties which are aligned with real world networks.  

 

4.7.2 Functional Enrichment Analysis 

 In this section, we evaluate the correspondence between the topological 

communities we identified using the NCD algorithm, with functional units in the E. coli 

network. In particular, we leverage the functional annotations from Gene Ontology (GO) 

[30] for the genes constituting the network, and examine the distribution of the genes in 
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each structural community relative to their functional annotations. We use DAVID [31] 

[32] for performing this analysis.  

 DAVID uses a modified Fisher Exact p-value, for gene-enrichment analysis, 

which ranges from 0 to 1; a lower p-value is considered to be indicative of stronger 

enrichment in the annotation categories [33]. Fig. 7 presents a color-coded “heat-map” 

representation of the relative enrichment of each functional annotation in the 

communities from the E. coli PPIN. As noted in [9], we expect a nonrandom distribution 

of proteins of a given functional category across communities (as reflected by a lower p-

value), if the structural communities correspond to functional units. Furthermore, the 

primary composition of genes in a given community is expected to correspond to a small 

set of functional annotations. 

 

4.7.3 Heat-map: Observations / Results 

 For the functional enrichment analysis, we consider only those communities from 

the E. coli network, that have a vertex cardinality (Vc) of at least 20 genes. The NCD 

algorithm yielded 14 such communities (C1-C14). These are represented in the columns of 

Fig. 7. The rows of the heat-map represent the union of the highest and second highest 

enrichments (in terms of the functional annotations) across C1-C14. The highest and the 

second highest enrichments are color-coded black and gray respectively.  

 It is worthwhile noting that the median p-value of the highly enriched functional 

annotations represented in the heat-map is ~ 10
-8

. This is strongly indicative of statistical 

significance of functional enrichment in the communities identified by the NCD 
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algorithm (typical p-values used for determining statistical significance of functional 

categories is ~ 10
-2

) [31] [32]. 

 The first observation we make from the heat-map is that, within a given 

community, the highest (black) and second highest (gray) functional enrichments tend to 

be related from a biological standpoint (for most communities). For example, in C2, 

structural constituent of ribosome and structural molecule activity are color-coded black 

and gray respectively and from [34] we know that they are functionally related (is-a 

relationship). Similarly, it is known from [34] that symporter activity and cation: sugar 

symporter activity are functionally related and in Fig. 7, we observe that they are the 

highest and second highest enrichments respectively in C10. These observations are in 

alignment with our expectation that similar functional annotations are likely to cluster in 

a community, thus enhancing the specificity of functional enrichment.  

 Secondly, we observe that across communities, the set of highly expressed 

functional annotations are predominantly disjoint. In other words, for a given row 

(functional annotation) in the heat-map, there is utmost one cell that is color-coded with 

black or gray, across all columns (communities), with the only exception of structural 

molecule activity, which occurs in C2 and C5, as the second highest enrichment. For 

example, protein-N(PI)-phosphohistidine-sugar phosphotransferase activity is 

exclusively enriched in community C9 only. Similarly, community C14 exhibits high 

enrichment in Cell surface antigen activity, host-interacting and this annotation is not 

highly expressed in any other community. 

 Furthermore, not only are the enriched functional annotations across communities 

syntactically disjoint, but also correspond to semantically different functions from a 
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biological standpoint (in most cases). For example, motor activity and symporter activity 

(that are highly enriched in C5 and C10 respectively) correspond to catalytic activity and 

transporter activity respectively which are disjoint paths in the GO functional hierarchy 

[34]. This serves to reinforce our belief that, not only do communities exhibit specificity 

of functional enrichment within themselves, but also that such enrichment occurs with 

inherent diversity across communities. 

4.7.4 Pathway Analysis 

 In this section, we present an analysis of the communities from the E. coli 

network from the perspective of the pathways that the constituent genes represent. We 

expect that, this analysis is likely to yield more holistic insights into the correlation 

between functional and structural organization of the underlying genetic interactions.  

 We restrict our analysis to those communities from the E. coli protein interaction 

network, that have a vertex cardinality of at least 20. The pathway analysis was 

performed for these candidate communities (C1-C14) using DAVID Pathway Viewer, a 

feature in the DAVID Functional Annotation Tool that provides KEGG pathway 

enrichments [35] [36] for each community. Not only does the DAVID pathway viewer 

provide the list of pathways that the constituent genes in each community corresponds to, 

but also provides the associated p-values for every pathway. The technique for p-value 

computation is based on the hypergeometric distribution and is detailed in [31] [32]. 

 Table III summarizes the highly expressed pathways (by gene cardinality) for 

communities C1-C14 and also presents their corresponding p-values. For each community, 

the percentage of vertex cardinality is a measure of the percentage of genes from that 
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community which corresponded to the associated pathway. Furthermore, the highly 

expressed pathways summarized in Table III (except one) also turned out to be the ones 

that corresponded to the least p-value, indicating statistically significant enrichment.   

 A desirable property of a community detection algorithm is to detect communities 

that correspond to some underlying semantic organization of the network [9].  The results 

from the pathway analysis illustrate that the NCD algorithm exhibits this property. In 

particular, Table III illustrates specificity of unique pathway enrichment across 

communities, which showcases the underlying biological / functional organization of the 

network.   

 We also note from Table III that many of the enriched pathways are functionally 

related to the enriched GO term for that corresponding community represented in the heat 

map (as shown in Fig. 7). For example, the Ribosome pathway is the most expressed in 

C2 (as shown in Table III). We can also see from the heat map that C2 is enriched (color 

coded by a black cell) in a related biological function, namely, Structural constituent of 

ribosome. Similarly, the Two-component response regulator activity is enriched in C6 

(from the heat map) and we can observe that the pathway that the community C6 is 

enriched in, is the Two-component system. This consistency in related biological 

functions and pathway enrichments from the corresponding communities reinforces our 

confidence in the results produced by the NCD algorithm. 

 

4.8 Conclusions and Future Work 

 In this paper, we have presented a novel approach to community detection which 
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is motivated by a physical system-modeling of a network. We believe that our approach 

has the following merits. Firstly, our algorithmic framework is designed to be non-

prescriptive relative to model parameters, and thus allows for a flexible and extensible 

approach to community detection. Secondly, the construct of a Mass Mapping (µ) 

enables us to reason about both weighted and unweighted graphs using the same model 

for the purposes of community detection.  

 Our results from the E. coli network case study illustrate that the NCD algorithm 

yields communities that possess structural properties that align with real world scale-free 

networks. Furthermore, we find that the resultant communities possess biological 

significance in terms of functional enrichments and pathway specificity. These results 

reinforce our belief in the applicability of the NCD algorithm for effective use in 

analyzing biological networks. We expect that this can have a significant impact on the 

creation of tools and techniques for therapeutic intervention and drug targeting. 
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Table 4.1: Summary of Networks. Summary of the Protein-Protein Interaction Networks 

(PPIN) used in our study to evaluate the NCD algorithm. 

Network Number  

of Nodes 

Number  

of Edges 

Source 

of 

Data 

E. coli 1274 3124 [25] 

C. elegans 199 251 [26] 

S. cerevisiae 3551 9890 [24] 

 

 

 

 

 

 

Table 4.2: E. coli Network Communities. Summary of communities (with a minimum 

vertex cardinality of 30) produced by the NCD algorithm from the E. coli network. 

Community Number of 

Nodes 

Number of 

Edges 

C1 77 391 

C2 97 160 

C3 115 299 

C4 77 180 

C5 308 594 

C6 115 160 

C7 36 54 

C8 33 46 

C9 46 57 
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Table 4.3: Pathway Enrichments of E. coli Network Communities. Summary of the 

highly expressed pathways (by gene cardinality) for communities C1-C14 with their 

corresponding p-values. Percentage of vertex cardinality is a measure of the percentage 

of genes from that community which corresponded to the associated pathway. 

 

Community Pathway % Vertex 

Cardinality 

P-Value 

C1 Purine metabolism 5.24 2.34E-08 

C2 Ribosome 29.41 3.77E-47 

C3 Sulfur metabolism 5.75 6.69E-07 

C4 Pyrimidine metabolism 20.25 2.37E-20 

C5 Flagellar assembly 41.56 2.59E-62 

C6 Two-component system 52.00 1.07E-57 

C7 Lysine biosynthesis 15.79 1.85E-09 

C8 Valine, leucine, isoleucine biosynthesis 11.11 7.41E-04 

C9 Phosphotransferase system  25.81 2.31E-12 

C10 Starch and sucrose metabolism 25.93 4.78E-11 

C11 Nitrogen metabolism 33.33 4.88E-14 

C12 Citrate cycle (TCA cycle) 54.17 1.62E-26 

C13 ABC transporters 78.95 1.79E-23 

C14 Lipopolysaccharide biosynthesis 82.35 1.50E-32 

 

 

Figure 4.1: Newtonian Framework for Community Detection. This figure illustrates the 

intuition driving our approach, which is to model a graph with nodes and edges as a 
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physical system of point-masses and consider the interactions between them from a 

Newtonian standpoint. 

 

 

Figure 4.2: Comparison of Q-value. The figure presents the modularity (Q) of the 

resultant divisions from our proposed algorithm and of the NG algorithm. We observe 

that our approach to community detection yields communities which are comparable in 

quality (as defined by the modularity measure) to the NG algorithm. 

 

 

 

 

 

Figure 4.3: Log network density of E. coli network communities. Black circles represent 

the significantly higher network density (log) of communities produced by the NCD 

algorithm from the E. coli network. The network density (log) of the input E. coli 

network is represented as the solid square. 
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Figure 4.4:  Node degree distribution. Log-log plots of node degree distribution of (a) the 

E. coli network and (b)-(d) three other sample communities from the E. coli network, 

follow a power law distribution. It should be noted that the plots have a logarithmic axis 

and a straight line thus indicates a power-law scaling. 
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Figure 4.5: Average clustering coefficient distribution. (a) shows the distribution of the 

average clustering coefficient of the communities from the E. coli network (black dots). 

The solid line corresponds to the predicted trend for random networks, with the average 

clustering coefficient decreasing as N-1. The average clustering coefficients shown are 

independent of N. (b)-(d) plots the clustering coefficient distribution for the E. coli 

network and two other sample communities. We observe a decreasing trend of clustering 

coefficient distribution with the node degree k, across communities. 

 

 

Figure 4.6: Distribution of average distances. The slow logarithmic increase of average 

distance of communities with the size of the community, is even less pronounced for 

larger communities (nc>10). The black circles represent the average distances of E. coli 

network communities of interest, and the trend line is consistent with the aforementioned 

behavior. 
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Figure 4.7: “Heat-map” representation of functional enrichment. The “heat-map” is a 

representation of the relative enrichment of each functional annotation in the 

communities from the E. coli  PPIN. The columns of the heat-map represent the 14 

communities (C1-C14) that have a vertex cardinality (Vc) of at least 20 genes. The rows 

represent the union of the highest and second highest enrichments (in terms of the 

functional annotations) across C1-C14. The highest and the second highest enrichments 

are color-coded black and gray respectively. 
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In this dissertation, community detection has been explored as an effective 

computational tool to analyze and understand biological networks, and gain valuable 

insights about the networks from a structural and functional standpoint. A variety of 

biological datasets have been used as case studies to illustrate the applicability of 

community detection in the domain of biological network analysis. 

In Chapter I, a novel optimization for a widely used community detection 

algorithm is proposed. This is empirically evaluated in the context of biological networks, 

illustrating significant savings in computational time, while maintaining comparable 

quality of detected communities. The applicability of a Bayesian inference approach to 

the problem of community detection in the context of biological datasets has been studied 

in Chapter II. The results from this study demonstrate that a machine-learning based 

approach lends itself well for analyzing biological networks and produces communities 

that correlate strongly with the underlying structure and function of such networks.  

Chapter III focuses on leveraging community detection for the study of pathology, 

with a specific emphasis on DMD.  A novel approach of transforming gene expression 

datasets into interaction networks is proposed. A detailed pathway analysis of 

communities from these networks illustrates the underlying differences between 

structural organization of the networks from normal muscle and pathology. An innovative 

algorithm for community detection is presented in Chapter IV, which is motivated by a 

physical system-modeling of a network. PPINs of model organisms such as E. coli are 

used as a case study to illustrate that the proposed algorithm is an effective tool for 

studying biological networks.  Not only do the communities produced by the algorithm 
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have scale-free properties, but also exhibit biological relevance in terms of pathway 

specificity and functional enrichments.  

 The algorithms considered in this dissertation take different approaches to the 

problem of community detection. The NG algorithm is a widely used graph theoretic 

(divisive) approach to community detection, and is directly applicable only to undirected, 

unweighted and static networks. It is also a computationally intensive algorithm and so 

may not be easily applicable to very large datasets. However, the distribution of the 

vertex cardinality of communities that the algorithm yields is varied and so, the NG 

algorithm can be used as a tool in applications where a more granular functional 

representation of constituent genes of communities is desired (i.e. in the context of 

biological networks). The Variational Bayes approach to community detection is a 

statistical approach which is more efficient while dealing with large datasets. However, 

the communities that it yields (for the Yeast dataset considered in this dissertation) are 

more cohesive – and so, VB can be used as a technique for detecting communities where 

a more coarse grained division of network community functions are desired. The 

Newtonian approach proposed in the dissertation is also a divisive approach to 

community detection with the advantage of not only being directly extensible to weighted 

networks, but also providing a variety of model parameters which can be tuned by the 

user, depending on the domain of application / dataset under consideration. Thus, the 

NCD algorithm has the potential to be leveraged as an effective technique for community 

detection in a variety of domains of application.  

 The techniques and algorithms developed as part of this dissertation in the context 

of biological networks, serve as a solid foundation for future exploration in the following 
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areas. Specifically, the results from the study of DMD from a community detection 

standpoint provide the mechanistic basis for further biological investigations into specific 

pathways differently regulated between normal and DMD patients. Furthermore, this 

study reinforces the suitability of community detection as an effective tool for disease 

modeling with potential diversification to analyze different forms of pathology. The NCD 

algorithm proposed in this dissertation provides a framework for effective analysis of 

networks from a community structure perspective and generalizes to encompass weighted 

networks. Additionally, in the context of biological networks, the algorithm could serve 

as a key computational tool for driving therapeutic applications involving targeted drug 

development for personalized care delivery.  

 In addition, the methodologies and associated design principles presented in this 

dissertation have the potential to be extended for handling time-varying networks, which 

often arise in biological contexts and are the subject of active research (such as cancer 

pathology studies). Specifically, community detection could provide key insights into the 

temporal evolution of the underlying structure of such biological networks. Another 

prospective domain of application of these computational techniques is the study of 

neuronal networks. Connections between cortical areas of the primate brain have 

demonstrated small-world network properties, suggesting that community detection could 

aid in the identification of cortical hubs that correspond to key neural functions. 

 The applications of community detection are not limited to the biological domain. 

Some non-biological applications of community detection include social network 

modeling, search engine recommendations, and electrical / electronic circuit design and 

management. The applications of community detection in social network modeling are 
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multifold. Community detection can be used as a technique for not only defining ‘friend 

circles’, but also as a tool for making friend recommendations, based on the number of 

messages exchanged among a group of friends (which can be modeled as edges) and a 

new friend (node). Secondly, in the domain of search engine recommendations, 

personalized search results are desired (results based on past searches, pages visited and 

inferred interests and geographic location of the user). Weighted networks based on these 

parameters can be constructed. Communities detected from such networks can be studied 

and used as inputs to rank the pages that the search engine extracts from the key words in 

the search. In the domain of electrical / electronic circuit design and management, 

community detection offers a variety of crucial applications. With the exponential growth 

of technology and industries, the proportional increase in demand for power resources is 

inevitable. On the other hand, with the development of optical communication systems 

and nano-chip technology, the need for optimal small scale circuit design with minimum 

power loss is also sought after. These systems can be modeled as networks, with the 

electrical / electronic components as nodes and connection between them as edges. 

Specifically in the electrical systems, the arterial connections of the networks can be 

determined using network analysis techniques. In the event of power surges from 

production plants, these important connections could be severed first to protect hubs of 

homes and industries that are connected to the plant. Similarly, in electronic circuits 

where power losses have to be minimum, the analysis of electronic circuits modeled as 

networks could provide insights into the holistic functionality of different groups of 

electronic components. Network and shortest path analyses could provide insights into 

optimal placement of circuit components, resulting in minimum power loss. 




