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I N V I T E D R E V I E W
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Abstract
Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in
the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing ‘big data’, enabling the
identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell
types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the
implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose
a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can
be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of de-
fined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by
high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a
reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.

Introduction
Cells are probably the most important fundamental functional
units of multicellular organisms, since different cell types play
different physiological roles in the body. Although every cell of
an individual organism contains essentially the same genome
structure, different cells realize diverse functions due to differ-
ences in their expressed genome. In many cases, abnormalities
in gene expression form the physical basis of disease disposi-
tions. Thus, understanding and representing normal and abnor-
mal cellular phenotypes can lead to the development of

biomarkers for diagnosing disease and the identification of criti-
cal targets for therapeutic interventions.

Previous approaches used to characterize cell phenotypes
have several drawbacks that limited their ability to comprehen-
sively identify the cellular complexity of human tissues.
Transcriptional profiling of bulk cell sample mixtures by micro-
array or RNA sequencing can simultaneously assess gene
expression levels and proportions of abundant known cell
types, but precludes identification of novel cell types and
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obscures the contributions of rare cell subsets to the gene
expression patterns present in the bulk samples. Flow cytome-
try provides phenotype information at the single cell level, but
is limited by the number of discrete markers that can be as-
sessed, and relies on prior knowledge of marker expression pat-
terns. The recent establishment of methods for single-cell
transcriptional profiling (1,2) is revolutionizing our ability to un-
derstand complex cell mixtures, avoiding the averaging phe-
nomenon inherent in the analysis of bulk cell mixtures and
providing for an unbiased assessment of phenotypic markers
within the expressed genome.

In order to compare experimental results and other informa-
tion about cell types, a standard reference nomenclature that
includes consistent cell type names and definitions is required.
The Cell Ontology (CL) is a biomedical ontology developed to
provide this standard reference nomenclature for in vivo cell
types in humans and major model organisms (3). However, the
advent of high-content single-cell transcriptomics for cell type
characterization has resulted in a number of challenges for their
representation in the CL (discussed in 4). In this paper, we re-
view some of the recent discoveries that have resulted from the
application of single-cell transcriptomics to human samples,
and propose a strategy for defining cell types within the CL
based on the identification of necessary and sufficient marker
genes, to support interoperable and reproducible research.

Application to the human brain
Initial progress in neuronal cell type discovery by single-cell
RNA sequencing (scRNAseq) focused on mouse cerebral, visual
and somatosensory cortices (5–9). More recently, technological
advances, including RNAseq using single nuclei (snRNAseq) in-
stead of single cells (10–12), have extended these investigations
into human neuronal cell type discovery (13,14). Direct compari-
sons of matched transcriptomic profiles generated by single-cell
and single-nucleus RNAseq in mouse cortex found high concor-
dance in cell types discovered by each method individually
(15,16); however, some transcripts were found to be enriched in
either the cytoplasm or the nucleus. Depending on the identity
of the enriched transcripts, these differences may have an
impact when mapping to a reference database of cells.
Comprehensive reviews of these recent advances have been
reported recently (17–19).

Initial efforts toward human neuronal cell type discovery
focused on identifying broad lineages. Pollen et al. profiled 65 neu-
ronal cells into six categories: neural progenitor cells, radial glia,
newborn neurons, inhibitory interneurons and maturing neurons
(20), while Darmanis et al. sequenced 466 cells, also identifying six
broad, but distinct, categories: oligodendrocytes, astrocytes, micro-
glia, endothelial cells, oligodendrocyte precursor cells (OPCs) and
neurons (21). Darmanis et al. further subtyped the adult neurons
into two excitatory and five inhibitory types. More recent single nu-
clei RNAseq investigations are attempting more comprehensive
cell typing. Lake et al. sampled 3227 nuclei from six Brodmann
areas, from which the neurons were classified into eight excitatory
and eight inhibitory subtypes (13). Similarly, Boldog et al. sampled
769 nuclei from layer 1 of the middle temporal gyrus (MTG) and
identified 11 distinct inhibitory cell types (14).

Comparing results between these studies has been challeng-
ing given the different areas and layers of cortex sampled. Many
of the studies leveraged classical cell type markers derived from
the mouse scRNAseq literature. For example, SNAP25 expres-
sion was used to broadly define neuronal cells, while GAD1
expression defined inhibitory interneurons. Additional classical

markers have then been used to subdivide the excitatory and
inhibitory classes, such as CUX2 or VIP respectively; however,
these markers individually are still not specific enough to define
discrete cell type classes at the level of granularity revealed by
clustering of the sc/snRNAseq data. In fact, there has been sur-
prisingly limited overlap in gene sets specific for individual cell
type clusters between studies, as the genes found in each study
appear to be sensitive to both the context and methodology
used. For example, Lake et al. found that cluster In1 had CNR1
(Supplementary Material, Table S5 in reference 13) as the high-
est ranked marker, while Boldog et al. found seven distinct in-
hibitory types that expressed this marker (Fig. 3 in reference 14).
Without a standardized methodology for determining the nec-
essary and sufficient marker genes and a corresponding marker
gene reference database, comparison of newly identified cell
types to those reported in previous studies requires a complete
reprocessing of the data.

Application to the human immune system
Single-cell transcriptomic analysis has also been applied to
study the functional cell type diversity of the human immune
system (reviewed in 22). Bjorklund et al. used scRNAseq to
explore the subtype diversity of CD127þ innate lymphoid cells
isolated from human tonsil, providing an in-depth transcrip-
tional characterization of the three major subtypes: ILC1, ILC2
and ILC3, and three additional subtypes within the ILC3 class,
by comparing their single-cell transcriptional profiles (23).

Two recent studies explored the subtype diversity of den-
dritic cells in human blood. In addition to identifying two con-
ventional dendritic cell subtypes (cDC1 and cDC2) and one
plasmacytoid dendritic cell subtype, See et al. identified several
subtypes that appear to correspond to precursor cells, including
one early uncommitted CD123þ pre-DC subset and two
CD45RAþCD123lo lineage-committed subsets (pre-cDC1 and pre-
cDC2), using cell sorting, scRNAseq and in vitro differentiation
assays (24). Villani et al. used fluorescence-activated cell sorting
and scRNAseq to delineate six different dendritic cell subtypes
(DC1–6) and four different monocyte subtypes (Mono1–4), and
went on to show that these different subtypes, which were de-
fined based on their transcriptional profiles, exhibited different
functional capabilities for allogeneic T cell stimulation and for
cytokine production following TLR agonist stimulation (25).

Two recent studies have explored the phenotypes of
immune cells infiltrating tumor specimens using scRNAseq.
In melanoma, Tirosh et al. found that the non-malignant tumor
microenvironment was composed of T cell, B cell, NK cell,
endothelial cell, macrophage and cancer-associated fibroblast
(CAF) subsets (26). In contrast to the distinct transcriptional
phenotypes of the malignant component across individual mel-
anoma specimens, common features could be observed in the
non-malignant components, with important therapeutic impli-
cations. Expression of multiple complement factors by CAFs
correlated with the extent of T cell infiltration. T cells with
activation-independent exhaustion profiles, characterized by
expression of co-inhibitory receptors (e.g. PD1 and TIM3), could
be distinguished from cytotoxic T cell profiles. Potential bio-
markers that distinguish between exhausted and cytotoxic T
cells could aid in selecting patients for immune checkpoint
blockade. In hepatocellular carcinoma, Zheng et al. found clonal
enrichment of both regulatory T cells and exhausted CD8 T cells
using scRNAseq and T cell receptor repertoire analysis (27).
The diagnostic and prognostic significance of these findings
remain to be explored.
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While these studies illustrate the power of single cell geno-
mics to identify important functional cell subtypes, they also il-
luminate a major challenge in comparing the results from
different studies, due to the lack of a consistent, reusable
approach for naming, defining and comparing new cell types
being identified by these high content phenotyping technolo-
gies. For example, in the two studies focused on the identifica-
tion of dendritic cell subtypes, it is unclear if the cDC1 and cDC2
subtypes identified by See et al. correspond to the DC1 and DC2
subtypes identified by Villani et al. Indeed, the only way to make
this determination would be to perform a de novo comparative
analysis of the transcriptional profiles from both studies. For
these studies to truly comply with the newly emerging FAIR
principles of open data (28), a robust reproducible strategy for
defining and representing new cell types is essential to support
their broad interoperability.

Application to other tissue types
Recent advances in cell type discovery by single-cell or single-
nuclei RNAseq have not been isolated to the fields of neurology
or immunology. Preliminary investigations have also been
made to characterize the cell types in kidney (29), lung (30) and
pancreas (31–34) (Table 1), with more on the way.

Ontological representation
Biomedical ontologies, as promoted by the Open Biomedical
Ontology (OBO) Foundry (35), provide for a framework to name
and define the types, properties and relationships of entities in
the biomedical domain. The CL was established in 2005 to pro-
vide a standard reference nomenclature for in vivo cell types,
including those observed in specific developmental stages in
humans and different model organisms (3). The semantic hier-
archy of CL is mainly constructed using two core relations: is_a
and develops_from. Masci et al. proposed a major revision to the
CL using dendritic cells as the driving biological use case in
which the expression of specific marker proteins on the cell sur-
face (e.g. receptor proteins) or internally (e.g. transcription fac-
tors) would be used as the main differentia for the asserted
hierarchy (36). Diehl et al. applied this approach first to cell
types of the hematopoietic system and then later to the full CL
(37–39). As of December 2017, the CL contained 2199 cell type

classes, with 583 classes within the hematopoietic cell branch
alone.

We recently discussed some of the challenges faced by the
CL in the era of high-throughput, high-content single-cell
phenotyping technologies, including sc/snRNAseq (4). One of
the key recommendations was to establish a standard strategy
for defining cell type classes that combine three essential
components:

• The minimum set of necessary and sufficient marker genes
selectively expressed by the cell type

• A parent cell class in the CL
• A specimen source description (anatomic structure þ species).

In order to identify the set of necessary and sufficient
marker genes from an sc/snRNAseq experiment, we have devel-
oped a method—NSforest—that utilizes a random forest of deci-
sion trees machine learning approach. The methodology
described here is unique in that it determines the minimum num-
ber of differentially expressed genes, working in concert, that are
sufficient to define a cell type from a given dataset. These
marker genes can then be used for a variety of purposes, includ-
ing the construction of semantic definitions in an ontological
context. Table 2 lists other methods that can be used for the
identification of all cell cluster-specific differentially expressed
genes (6,40,41).

To illustrate how this approach can produce standard cell
type definitions, we have applied the method to a transcrip-
tomic dataset derived from single nuclei isolated from the MTG,
cortical layer 1 of a post-mortem human brain specimen
(Fig. 1A in reference 14). Transcriptional profiles obtained from
RNA sequencing of a collection of single sorted nuclei was used
to identify 16 discrete cell types using an iterative data cluster-
ing approach. Based on the expression of the previously charac-
terized marker genes SNAP25 and GAD1 for broad classes, 11
inhibitory interneurons, 1 excitatory neuron and 4 glial cell type
clusters were identified.

In the first step (Fig. 1B), NSforest takes the gene expression
data matrix of genes versus single nuclei with their cell type clus-
ter membership as input. The gene expression data matrix and
cluster memberships are supplied by the user. Consequently,
issues related to requirements for data normalization to control
for batch effects, data filtering to remove poor quality samples,
controlling for cell cycle effects and the effects of the clustering
methodology selected need to be carefully considered to ensure

Table 1. Model tissues investigated by single-cell/single-nuclei RNA sequencing

Tissue Number of cell types Method Reference

Brain 6 cell categories Single-cell RNAseq (20)
Brain 7 neuron subtypes Single-cell RNAseq (20)
Brain 16 neuron subtypes Single-nuclei RNAseq (13)
Brain 11 inhibitory neuron subtypes Single-nuclei RNAseq (20)
Immune system 5 CD127þ subtypes Single-cell RNAseq (23)
Immune system 6 dendritic cell subtypes Single-cell RNAseq (24)
Immune system 6 dendritic cell and 4 monocyte subtypes Single-cell RNAseq (25)
Tumor microenvironment 6 infiltrating immune subsets Single-cell RNAseq (26)
Tumor microenvironment Regulartory T cells and exhausted CD8 T cells Single-cell RNAseq (27)
Kidney 6 distinct epithelial subtypes Single-nuclei RNAseq (29)
Lung 4 cell types (C1–C4): AT2, indeterminate, basal and club/goblet cells Single-cell RNAseq (30)
Pancreas 6 cell types (alpha, beta, delta, PP, acinar or ductal) Single-cell RNAseq (31)
Pancreas 6 cell types (alpha, beta, delta, PP, acinar or ductal) Single-cell RNAseq (32)
Pancreas 14 cell types including known exocrine and endocrine types Single-cell RNAseq (33)
Pancreas 9 cell types including known exocrine and endocrine types Single-cell RNAseq (34)
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robust cluster membership and thereby informative marker
genes. With these inputs, a classification model is developed
for each cell type cluster by comparing each Cluster X versus all
non-Cluster X profiles using the Random Forest algorithm (42).
In addition to the classification model itself, NSforest produces
a ranked list of features (genes) that are most informative for
distinguishing between Cluster X and all of the other clusters.

In the second step, NSforest constructs single decision trees
using first the top gene, then the top two genes, top three genes,
etc., until a stable tree topology and optimal classification
accuracy is achieved. The minimum number of genes necessary

to obtain this stable classification result corresponds to the nec-
essary and sufficient set of marker genes defining each cell type
cluster within this experimental context.

The expression of the complete set of marker genes obtained
from applying NSforest to the single nuclei dataset is illustrated
in Figure 2. In most cases, the expression of three marker genes
is sufficient to define a cell type cluster, with a range of one to
five necessary and sufficient marker genes per cluster. Glial cell
subtypes appear to be more distinct from each other, requiring
relatively few genes to sufficiently define the cell type. In con-
trast, neuronal subtypes appear to be more similar, requiring

Table 2. Additional tools for deterimination of cell type-specific differentially expressed genes

Software Methodology Reference

Seurat Seurat implements numerous methodolgies for clustering, visualization and marker
determination using differential expression analysis between cluster pairs

(6)

SC3 SC3 provides an integrated suite that performs an ensemble clustering followed by marker
determination using a Wilcoxon signed ranked test combined with an AUROC analysis

(40)

SAKE SAKE performs a negative matrix factorization (NMF) where the importance of a given cell and
gene are estimated during the clustering procedure, these important genes are then
considered markers

(41)

Cluster membership &

lists of differential genes

Ranked list of 

useful genes

Necessary and sufficient genes = 

Cluster-specific marker genes

A

B

Tissue specimen

Single nuclei

sorting RNA sequencing

Cell type

clustering

Expression matrix Random forest Decision trees 1, 2, 3….

Figure 1. Identification of necessary and sufficient marker genes using NSforest. (A) A typical single-cell/single-nuclei RNA sequencing workflow in which a tissue

specimen is obtained, single cells/nuclei isolated by fluorescence-activated cell sorting, amplified cDNA processed by sequencing and cell types identified by clustering

the resultant transcriptional profiles. (B) The NSforest approach takes a data matrix of expression values (e.g. transcripts per million reads) of genes (rows) in single

cell/nuclei samples (columns) grouped by cell type cluster membership. In the first step, the expression levels of genes are used as features in the random forest ma-

chine learning procedure to train classification models comparing single cell/nuclei expression data in one cell type cluster against single cell/nuclei expression data in

all other clusters, for every cell type cluster separately, using a Random Forest Learner like KNIME v3.1.2. Each cell type cluster classification model is constructed from

a collection of trees (e.g. 1000 trees) using information gain ratio as the splitting criteria, where each decision tree is generated using the specific bagging parameters

(e.g. the square root of the number of features and a bootstrap of samples equal to the training set size). For each cell type cluster classification model, the method out-

puts usage statistics, including how often each gene is used as a branching criterion and the number of times it was a candidate across all random decision trees.

By summing the frequency of use when available as a candidate feature along the first three branching levels, the list of genes can be ranked by their usefulness in

distinguishing one cell type cluster from the other clusters. In the second step, single decision trees are constructed using the first gene from the ranked list, the first

two genes, the first three genes, etc. Each individual tree is then assessed for classification accuracy and tree topology using the training data. Given the objective of

determining the necessary and sufficient marker genes, we apply additional criteria in scoring the trees—we restrict each gene to being used in only one branch per

tree, and find the optimal classification for the target cluster only, rather than the overall classification score. The addition of genes from the ranked list is stopped

when an optimal classification or stable tree topology is achieved. The minimum number of genes used to produce this optimal result corresponds to the set of

necessary and sufficient marker genes required to define the cell type cluster.
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Figure 2. Marker gene expression patterns in single nuclei grouped by cluster. A heatmap of expression levels for the necessary and sufficient marker genes identified for

all 16 clusters across all single nuclei grouped by cell type cluster is shown, including 1 excitatory (e1), 11 inhibitory (i1–i11) and 4 glial (g1–g4) cell type clusters. In total, 49

markers genes were selected as being necessary and sufficient to distinguish these 16 different cell type clusters from cortical layer 1/2 of the human brain MTG region.

Table 3. Cell types identified in cortical layer 1/2 of the human MTG

Cluster ID Cell type name Cell type definition

e1 TESPA1-expressing MTG cortical layer 2
excitatory neuron, human

A human MTG cortical layer 2 excitatory neuron that selectively expresses TESPA1,
LINC00507 and SLC17A7 mRNAs, and lacks expression of KCNIP1 mRNA

i1 COL5A2-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
COL5A2 and NDNF and FAT1 mRNAs

i2 LHX6-expressing MTG cortical layer 2
interneuron, human

A human MTG cortical layer 2 GABAergic interneuron that selectively expresses
LHX6, GRIK3 and FLT3, while of lacking expression of COBL and CALB2 mRNAs

i3 BAGE2 expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
BAGE2 and SEMA3C and SYT10 and CALB2 and COL21A1 mRNAs

i4 ARHGAP36 expressing MTG cortical layer
1 interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
ARHGAP36 and ADAM33 and LINC01435 and MC4R mRNAs

i5 KIT-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
KIT and NTNG1 and POU6F2 mRNAs

i6 GPR149-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
GPR149 and VIP and PLCE1 mRNAs

i7 TGFBR2-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
TGFBR2 and HCRTR2 and PAX6 mRNAs

i8 SNCG-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
SNCG and EDNRA and KCNK2 and ARHGAP18 mRNAs

i9 VIP-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
VIP and IQGAP2 and TAC3 mRNAs

i10 TSPAN12-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
TSPAN12 and CHRNB3 and FAM46A and DCN mRNAs

i11 EGF-expressing MTG cortical layer 1
interneuron, human

A human MTG cortical layer 1 GABAergic interneuron that selectively expresses
EGF and NRG1-IT1 mRNAs

g1 Linc00499-expressing MTG cortical layer 1
glial cell, human

A human MTG cortical layer 1 glial cell that selectively expresses Linc00499 and
ATP1A2 mRNAs

g2 APBB1IP-expressing MTG cortical layer 1
glial cell, human

A human MTG cortical layer 1 glial cell that selectively expresses APBB1IP
mRNAs

g3 PTPRZ1-expressing MTG cortical layer 1
glial cell, human

A human MTG cortical layer 1 glial cell that selectively expresses PTPRZ1 and
XYLT1 mRNAs

g4 ST18-expressing MTG cortical layer 1 glial
cell, human

A human MTG cortical layer 1 glial cell that selectively expresses ST18 mRNAs
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more genes to achieve specificity. In some cases, a combination
of both positive and negative expression optimally defines a cell
type cluster.

For one of the inhibitory interneuron cell types defined in
this study (i5), we were able to connect the distinct transcrip-
tional profile with a previous cell type defined based on its
unique cellular morphology—the Rosehip cell (14). This then al-
lows us to construct an ontological representation that includes
both a colloquial name, an alternative name and a definition
combining the necessary and sufficient marker genes, a CL par-
ent cell class and specimen source information, as follows:

• Colloquial name—rosehip neuron
• Alternative name—KIT-expressing MTG cortical layer 1

GABAergic interneuron, human
• Definition—A human MTG cortical layer 1 GABAergic interneu-

ron that selectively expresses KIT, NTNG1 and POU6F2 mRNAs

A complete set of cell type names and definitions for all cell
type clusters identified in this experiment is provided in
Table 3.

These informal textual definitions can then be converted
into formal ontological definitions, represented in OWL as
equivalent classes, using a set of logical axioms that combine
assertions about the parent cell class (interneuron), anatomic
locations of the neuron cell body (soma), functional capacity of
the cell type (gamma-aminobutyric acid secretion) and marker
gene expression (expresses some KIT) requirements (Fig. 3).
Using semantic reasoners, these logical axioms can then be
used to infer novel characteristics, e.g. SubClass Of ‘cerebral
cortex GABAergic interneuron’.

The challenge remains of ensuring that these cell type defi-
nitions, whose necessary and sufficient conditions are derived
from analysis of data from one particular methodology
(scRNAseq), are compatible with both existing cell type classes
in the CL and cell types defined using alternative experimental
methods and data analysis approaches. Working with CL devel-
opers, we are now establishing an extension ontology module
containing provisional definitions for novel cell types that we
and other research groups will contribute. Ontological reasoners
will be used to link these cell types to more general classes in

the CL proper, structure them into an extended hierarchy, and
determine when separate research groups have defined similar
or identical cell types. CL developers will review these provi-
sional cell types periodically to determine when multiple lines
of evidence provide sufficient support to promote particular cell
type classes to the CL itself. In this way we will ensure the integ-
rity of the CL reference, while still allowing for the rapid expan-
sion of its content to accommodate cell types defined via these
new technologies. However, it should be noted that defining cell
types will likely be an iterative process where in situ validation
and multi-modal data acquisition will guide refinement of cell
type definitions. This review shows a path for defining cell type
markers that can be used for these validations and will help
guide these refinements.

Conclusions
The application of high-throughput/high-content cytometry
and single-cell genomic techniques is producing an explosion
in the number of distinct cellular phenotypes being identified in
human specimens. For biomedical ontologies to stay relevant, it
will be critical for ontology developers to establish procedures
for the processing and incorporation of representations derived
from these data-intensive technologies into reference ontolo-
gies in a timely fashion. The representation of defined cell types
and their relationships in the CL will serve as a reference knowl-
edgebase to support interoperability of information about the
role of cellular phenotypes in human health and disease.
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