
UC Irvine
ICS Technical Reports

Title
Software engineering and the WWW : the cobbler's barefoot children, revisited

Permalink
https://escholarship.org/uc/item/86n038mm

Authors
Fielding, Roy T.
Whitehead, E. James
Anderson, Kenneth M.
et al.

Publication Date
1996-11-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86n038mm
https://escholarship.org/uc/item/86n038mm#author
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Software Engineering and the WWW:
The Cobbler's Barefoot Children, Revisited

Roy T. Fielding, E. James Whitehead Jr., Kenneth M. Anderson.
Gregory A. Bolcer, Peyman Oreizy. Richard N. Taylor

Department of Information and Computer Science
University of California, Irvine, CA 92697

Technical Report 96-53

November 1,1996

Abstract

While the World-Wide-Web is demonstrably useful for a wide variety of tasks, in its cur
rent form it is not capable of supporting wide-area software dfevelopment activities. This
report describes the following areas for improvement and indicates key directions and
approaches for their achievement:
• Support for first-class links, thereby enabling end-user annotation and evolutionary

development of relationships within the environment:
• Support for a mechanism by which clients can receive asynchronous notificationsof

resource changes, which is necessary to support the complex interactions found in
software engineering;

• Support for equal access to hypermedia services for client-side viewer applications,
thereby facilitating the integration of non-HTML data formats found in software engi
neering:

• Support for distributed authoring and version control, which is necessary for develop
ers to work within a shared information space;

• Support for flexible control and coordination mechanisms, enabling cooperative soft
ware development processes and workflow over the Web.

i&AI^



lUiiG un'S'cO
pA QObXUOpi ["9M
ijjaA ps bi.0{6CiGC!

l/lopcG; ipi.2 iAiajGii;:



Software Engineering and the WWW:

The Cohhler's Barefoot Children, Revisited

Roy T. Fielding, E. James Whiiehead. Jr.. Kenneth M. Anderson.
Gregory A. Bolcer. Peyman Oreizy. Richard N. Taylor

Department of Information & Computer Science
University of Califomia. Irvine. CA 92697-3425

{fielding, ejw, kanderso, gboicer, peymano. iaylor}@ics.uci.edu

Introduction

Software engineers have been compared to the cobbler's barefoot children: they make tools and applications

that enable users in many domains to perform their work more effectively and efficiently, yet frequently they do not

use tools themselves. Apart from use of editors, compilers, and debuggers, too often the analogy is true. This state of

affairs is not due to any antipathy to technology. Rather, it simply reflects that relatively few tools genuinely useful in

supporting software engineering have been developed. We believe, however, that the Web offers the potential for

becoming one of these genuinely useful tools, and thus "providing some shoes for barefoot engineers."

The World Wide Web (WWW) has clearly been successful in helping accomplish tasks in many domains.

There are also examples of where the Web has been of help in software engineering projects, and even of enabling

some new types of software engineering to occur. The Apache web server is a case in point, and serves to motivate

our discussion below. The Apache Group (http://www.apache.org/) was fomied by a group of users to en.sure the

continued development of a freely-available server implementation of the Hypertext Transfer Protocol (HTTP) [5].

Starting with public-domain source code and a core group of nine volunteers, the Apache server was iteratively

designed and developed as a collaborative project. The Internet alone was used for project communication and coor

dination, as a shared information space, and for distribution of the final products. In less than a year. Apache held the

largest share of the WWW server market and continues to compete successfully against multi-billion dollar corpora

tions. The Apache Group was able to collaborate effectively across the Internet because it consists of webmasters:

experts in network administration, installation of new software, and communication via FTP, HTTP,and e-mail. They

were thus able to do much of the tool integration and coordination work that would be beyond the abilities of most

developers, let alone users. Our goal is to make the technology for remote cfiUahpratjion^dcogrdiiiation a partof the

WWW infrastructure,such that the WWW itself becomes an environment for global software engineering and collab-

orative prolects in general.

Descriptions of "the World Wide Web" exhibit many definitions of that term. Some would define the WWW

as tjip- world-wide base oHinked inform^on. Others define the WWW as the inpartite.prDtQCDls thatiotniihS-basis

for ilsj^cLjJRI, HTTR and HTML. Still others equate the WWW with the stjUe-of-existing browsc.r.and server techr

nologies. The first definition focuses on thp value provitledby theji^stnicft^e: the second focuses on thecore tech

nology required to provide that linked information space: the third focuses on the tools and technologies which reside



above the primary infrastruciure. While the bulk of this paper focuses on the second and third dctiniiions. for it is with

respect to those technologies and standards that changes must be made, it is by considering the potential represented

by the first definition—the world-wide information space—that one can sec what impacts the Web could have on

software engineering and the practice of software development. For example, the potential is present for engineering

teams to be dynamically assembled from physically distant sites, for software evolution processes to be more efficient

by maintaining the connection between fielded systems and their development environment, and for a world-wide

marketplace of software component technology to emerge.

In the sections below we consider a series of technical issues involving change to the WWW infrastructure.

We also briefly consider some needs which are consequential to distributed software engineering, namely the need for

coordination ^d communication between engineers ^ross the^eb. The changes we recommend and the problems

that the changes solve or the opportunities that they enable are summarized in the table below.

Linking all SE artifacts and
processes (people and tasks)

Flexible interaction model and

hypermedia services

Distributed yinotation

Visibility of artifacts over time

Distributed authoring

Distributed coordination and

change management

Enabling technology currently missing from the WWW

Links as first-class objects and a client architecture for hypermedia
communication between viewers of a multitude of data formats.

Component-based client architecture with hypermedia workspace
manager and data-specific handlers; Notification services

Remote linking and links as first-class objects

X^rsioning of resources

Remote locking, linking, access control, and versioning of resources

All ot the above

The remaining sections of this paper discuss our recommendations for changing the Web to better support

the requirements of global software engineering. We first focus on changes tcuhe Web's undcrlving protocols and an

alternative to the traditional WWW client architecture. Next, we consider the higher-level fcaturt^reguiredjo support

distributed authoring. Finally, we examine aji^enh^ncedjnodel ofsupporting t^ollaboration-ov^r the W^ tfuoaftb the^

provision of tjjols which take advantage of the changes recotnmended in the previous sections, and conclude with a

discussion of how these changes might affect software engineering practice.

First-Class Links

The hypermedia data model of the WWW provides only a limited notion of link. Links are unidirectional

and are embedded directly within HTML documents with the use of the anchor tag. Problems associated with the

/int c jnclude difficult link maintenqpfp and limifff<j fnnrtir»n^iify An example of the

former is the ubiuuitous rJnnelinp link. Since an anchor tag directly specifies its destination, if tho target raop isformer is the ubiquitous link. Since an anchor tag directly specifies its destination, i£,ibc-l^get-pagLil

moved or deleted witlmut updating the anchor then the user is presented an error message when-traversingthe-Iink. In

response to this problem, site management tools like MOMspider [4] have been created to aid webmasters with main-



taining anchor references and caichingHTML errors. These tools are hindere_dJnjh£iii5upp.Qn forjntcr-siie manage-

mentjy the lack ofstandard mechanisms fornotifying remote sites a^ut changes toa locai site.

The embedded links model also places the burden of providing advanced hypermedia services (such as

guided lours and overviews) onthe user. Annotarionjs not directly suppprted and requires sophi.siicatcd prpgramniing

skills, out ofthe reach of^most end-users, to implement. As mentioned above, only point-td-poinr links arc sup^r^

making it difficult to group setsof related infonnatjon.

Making Imks first-class o^ects eoables splutipai-tO-tbesj;j^pblems. This approach has been used success

fully by open hypermedia systems (OHSs) [7] which separate links from hypermedia content and pnwiHc nn interface

for link manipul^jtion. The separationjrovided by fois approach allows.the-links and-anchorsof awchJo bc.aiQre

easily manipulated and analyzed. Changes to these structures can be made independently of changes to hyp>ermedia

content, since they are stored separately, and the external representation allows related structures to be updated auto

matically (avoiding the dangling link problem). This model of the hypertext, and its associated interface, makes it

easier for tools to automatically generate overviews of hyppr^pHia mpfpnt in addition, the separation enables the

free creation of anchors and links on information displayed by a data-specific viewer.These features give the end-user

the freedom to experimentjvith different link.structures over-a set of informatipo- Guided tours arc thus easier to

author and maintain. First-class links are typically modeled as seLs, enabling.liriks.with..more thanjl&jpgle-destinaiina

(w-ary links). Furthermore, typing can be applied to links allowing a variety of relationships to be defined with

distinct run-time semantics, ^notationj^easjly supported by thisapproach, since minimally all that is required is an

integrated light-weight texteditor and.a link type which defines, links to this editor's content as annotations.

Our recommendation for the Web is to augment the existing link model with first-class links. One approach

to this goal is to incorporate link server capabilities into WWW servers and protocols.' While this approach may

require a significant amount of effort, an interim approach to easethe transition is available, namely, the integration of

OHSs with the WWW [3.6]. WWW servers can be modified to filter documents through an OHS before serving (hem

to WWW clients. This allows the OHS to render first-class links into the document as embedded links without having

to alter the source HTML document. In addition. WWW clients can be modified t-O,communicate directly witLlhg

integrated OHS allowing direct access to first^cjass links. These integrated clients can provide the interface to support

remote linking, i.e., creating anchors and links on content stored at remote sites.

Notification

The WWW'Sprimary information transfer protocol, HTTP, is based on a strict client-server model. A typical

HTTP server waits for client requests, resolves and locates the requested resource, applies the requested method to

that resource, and sends the response back to the client. Although this model of communication scales well for simple

retrieval tasks. in^jioL&iifficient to suppfirUhS-CDmplex interactions foundjn software engineering(pn_any cpl|abQra;

^iye wprk process). It is often the case that a change inone resggrge, will necessitate other changes in order to main-

- ' 1. HTTPproposalsfor the ability to transmit non-embedded links via the Linkheader field have existed for many years, but

they have not been widely implemented or standardizeddue to incomplete specification.



taiiub& dependendes_bel\v:c&ajfl.'vniiri'ps. In a strict client-server model, the client is forced to poll the server for

chgnges tc) a resource, which is extremely inefficient when the resource-space is large or when changes are infre

quent. What is needed isa means for clients to register interest in a resource and for servers to supply a notificatjoiL

changes.

Notification is not an entirely new concept for the Web; third-party services exist which monitor a given

resource (usually by periodic polling) and send an e-mail message as notification when the resource changes.

However, registering for such services is a manual process, as is receipt and processing of the e-mail response, and

they only improve efficiency in terms of the number of clients performing the polling. Furthermore, we would like

greater flexibility in terms of the client specifying the protocol and message format of the notification, since llie

message granularity and delivery requirements vary by the type of application and the frequency of change.

Support for notifications could be added within the HTTP protocol as a form of first-class link. A server that

supports notificationcould observe a change to the resource, check the resource for links of type "notify." and post a

notification message to the link's destination (a URL) in a format indicated by the link attributes. Notification would

thus be possible if support for remote link authoring services was added to the WWW.

Client Architecture

Software engineering involves a multitude of specialized data formats: source code, specifications, test

results, project plans, design diagrams, etc. Each of these products introduce important relationships and dependen

cies within the overall project. Thus, one of mirjoals is to be abJfc.10 manipulate all of thi.s data a.s hypermedia,

including theability to_add anchQr§-9,nd link relationshipsjo.the objects represented within eachdata typerather than

to just an^pverlay of one particular rendition of that data. What we need are data-specific handlers (viewers, editors,

and other tools) with equal access to hypermedia functionality, allowing for modes of interaction which take advan

tage of the properties of each particular data typ)e.

The WWW client architecture has traditionally been dominated by the monolithic browser, a huge applica

tion that acts as window manager, hypermedia viewer, network request controller, and manager of user preferences,

bookmarks, and history. It is difficult and inefficient to introduce new functionality to such an architecture, particu

larly for the multitude of data-specific handlers that are desired for software engineering. The client arcf|ifect;ijrg„

jieedsjafie replaced by..QnexonsistiQgi)f a dynamic collection of small communicating applications, similar to how

^ple^^Cy/^gr^ggxlient-coosistS'Qf a coUcctjotT^of Opi'/i£>oc components I2J. However, we currently lacktheglue—

the interface specifications—which can hold these components together to form a consistent software engineering

environmeni.-

Implicit links. Implicit links are links that are derived from the natureof an artifact rather than beingexplic

itly defined by an anchor or external link specification. For example, if a program is written in the C programming

language and we have an indexed, hypertext language reference manual for C. then there exists an implicit relation

ship between every C keyword and operator in the program and its corresponding definition in the language reference

manual. While it is possible to explicitly instantiate every one of those relationships as an independent link, it is more



efficient to define the abstract relationship

{ keyword >--> http://site/LRM?keyword

and allow the actual link to be calculated only when invoked by the user. Other implicit links commonly found in

source code include def-use relationships, begin-end bracketing, and next-statement jumps, each of which can be

calculated by a viewer with a knowledge of the source code language comparable to that of a compiler.

Data-specific Handlers. Current Web clients use a number of mechanisms to allow for hypermedia interac

tion with data formats other than HTML. The most basic is the media-type handler (sometimes referred to as the

mimecap interface), which consists of a program to execute when a particular data type is retrieved. Although this is

the basis for most solutions, it does not by itself include any hypermedia-aware interface, and thus the handler must

invoke an additional interface if it is to do anything more than act as a read-only window. Current forms of this addi

tional hypermedia interface include the inter-client communication protocol (ICCP) and the Netscape plug-in mecha

nism. Although useful, these interfaces do not support the full range of hypermedia functionality and require the

constant presence of the primary browser application.

Another mechanism for data-specific handlers is the use of applets — mini-applications which supply the

rendering and manipulation code for a specific datajypc. Although applets usually provide a hypermedia interface,

that interface is secluded from the overall hypermedia workspace, and thus two or more applets are generally

prevented from cooperating on a single task.

Coordinated Tool Interaction. Software engineers use a diverse collection of tools to support their activi

ties, including editors, debuggers, version control systems, static and dynamic analyzers, etc. These tools are not

always operated in isolation; rather, multiple tools are used in tandem to solve a particular task. What is frequently

lacking in tool coordination is the interface mechanism. Current monolithic brow.sers serve that function internally,

but only within the limited scope of their original design. The essential problem is that, in order to provide for more

flexible and extensible clients, the components of the client need to be independent, yet the components cannot work

effectively as a hypermedia workspace unless there is .something to unify their behavior in response to hypermedia

events and user actions, in other words, we need some form of hypermedia workspace manager to provide a set of

services that components can access, register handlers, and initiate external hypermedia events.

For example, consider the communication patterns of cooperating code editor, design viewer, and run-time

debugger tools. When executing, the run-time debugger acts as a traversal engine, where the link being traversed is

the implicit one between a completed code statement and the next statement as determined by the program control

flow. Each of these iravensalscan be considered a hypermedia event, and both the code editor and design viewer can

register interest in tho.se events, perhaps with differing granularity, in much the same way that a hypertext mapping

tool would register interest in the traversals of a normal browser. Likewise, the user may wish to set a breakpoint by

selecting a module in the design viewer or a statement in the code viewer. This type of complex interaction is only

possible in a hypermedia-basedsoftware environment if the component architecture does not artificially constrain the

hypermedia interface to those actions which are common to traditional browser applications.



HTTP was not designed to provide fine-grain interaction between arbitrary tools. However. HTTP iscapable

of enabling tools to locate each other via URLs and to assist the tools in determining a suitable prottKol for further

interaction. For example, the Chimera OHS [1] employs this strategy to enable clients and servers to locate and

connect to each other: an HTTP request is used to obtain connection information and then the connecting tool uses

that information to contact the desired component using a native Chimera protocol.

Distributed Authoring and Versioning
Supporting software engineering over the Web requires support for remote editing of project source code

and documents. The HTTP/1.1 protocolprovidesthe bare essentials for distributed authoring of webcontent,with its

PUT method and entity tags. Unfortunately, these capabilities are inadequate to satisfy the complete set of features

required by users when performing distributed authoring. Existing HTML authoring tools which support a remote

"publish" capability routinely define custom extensions to HTTP to meet these needs. To date, the vast majority of

authoring practice assumes direct access to the underlying storage medium for web content, typically a filesystem.

However, when this access is not available, as in the remote authoring case, many weaknesses of the Web become

evident. For example, the Web lacks strong support for preventing the "lost update problem." when iwo people

c^atoratmg on the same documen^overwrite each other's work. Working ina file system, this problem isalleviated

by using a ^mple locked versioning system like RCS. Other deficiencies include the inability to version a resource,

gela directory listing, make a new directory, perform a simple copy or rename, setattributes, or create relationships

between resources.

No-Modify Lock: User 1, User2 N.

Read and Write Lock:
User 1

Write Lock:

User 2

Figure 1: Two users are performing remote edits within a five document web. User 1 has taken out read and
write locks on the document he is editing, which ensures that only he can read and write that document. User
2 has taken out a write lock on herdocument: only shecan write to thatdocument, and anyone can read her
intermediate drafts. Since the documents being edited have links to the remaining three documents, both
users share no-modify locks to ensure the link endpoints arc not modified while they edit.



Locking. One solution for the lost update problem is to provide a wriic /w/: cap^ility.

being edited, theauthortakes outa write lock, thus preventing othersfrom writing to thesame document. Other UkRs

are also necessary. Since many webdocuments contain links, to ensure these links remain consistent once editing is

complete, it isnecessary to have a guarantee that the linked-to documents have notchanged during editing. This guar

antee isprovided by a no-modify lock, which ensures the locked document will not bemodified for the duration of the

lock, and which is easier to share between authors than a write lock (.sec Figure 1). Furthermore, to ensure that inter

mediate document stages are kept private, a third type of lock, a read lock, is necessary. A read lock prevents anyone

other than the lock holder from reading the document. Each of these locks must be capable of being held by multiple

people simultaneously, to provide support for workgroups. It is often necessary to guarantee that a hnrk or unlock

operation occurs simultaneously across multiple documents, and hence it mustbe possible to lake out multiple locks

atomically across multiple documents, requiring lightweight locking transaction support. It is necessary to query a

document for its current locks, so authors may discover who is working on which documents. Furthermore, in many

situations it is desirable for multiple locks to be taken out on a single document, so long as the combination doesn't

containcontradictory accesscontrol conditions. One example is an author who wishesto simultaneously have a write

lock and a read ItKk on the same document, so their editing is safe from overwriting and cannot be viewed until

complete. Thecombination of the three lock types, read, write, and no-modify, togethe^orm a simple access control

schemewhich prevent the lost update problem, and allow maintenance of link consistency whileauthoring.

Versioning. At present, the Web only supports one version of a document, the current version. However, the

ability to save and retrieve past versions of a document is critical for supporting software development. We recom

mend that full-featured versioningcapability be added to the Web.The ability to store and access previous document

versions, retrieve the history of the document, annotate document revisions with comments about the changes, and

retrieve information about the differences between two document versions are all useful functionality, whether they

are supporting software development or HTML document editing. Furthermore, the ability to acce.ss previous

versions of both a single document and collections of documents will help alleviate the current slate of "web amne

sia," in which old document versions are recklessly discarded in an effort to remain fresh.

Containers. The Web currently provides poor support for container objects, which may be used to group

related resources. However, there is a distinct need for the ability to create, modify, and list the contents of container

objects. A container can easily satisfy the existing need for access to the contents of a filesystem directory on those

web servers which use a filesystem as their underlying storage medium. An immediate need for directory container

capability is in remote authoring applications, which require support for "Save As..." dialog boxes which provide a

listing of the current contents of a directory, and the ability to go up or down to another directory in the hierarchy.

Somewhat exciting for software development is the notion that container objects on the Web need not directly map to

operating system directories, and can represent many relationship structures, such as "uses," or other dependencies.

Multiple simultaneous structurings are also possible, for example simultaneous maintenance of a directory and

compilation dependency structure. Since it is often desirable to prevent others from knowing even the existence of a



document, and to prevent unauthorized moditication of a container, container services must be pan of a webserver's

access control scheme.

Copy and Rename. File systems, configuration management systems, and document management systems

all provide capabilities for copying documents and changing their names without affecting their contents. There arc

compelling reasons for the inclusion of this functionality into the Web as well. Copy capability can be used todupli

cate a document before starting a modification sequence which results in a separate document. A copy can also be

used to move a document to take advantage of the characteristics of the storage medium underlying part of the

namespace, such as copying to a separate disk or database. Rename capability allows for the expansion of naming

conventions as a project grows. Names which are acceptable for a small set of documents are often too informal for a

larger set: a rename capability provides the bridge between the old and new naming schemes. While these operations

could be supported by the Web as it now exists by loading and re-saving the contents ofa document, this isextremely

inefficient, especially for large documents. Furthermore, the load/save approach cannot provide support for recursive

copies, a common file system feature.

Attributes. Greater support for document metadata is a common request made of the Web. However, unlike

most approaches to date that focus on providing metadata within HTML, such as the meta element or the proposed

resource tag, we recommend providing a facility for creating attributeson all media types. This provides the best

support for software development, where embedding HTML markup into source code is typically not feasible.

Providing simple attribute-value pairs composed of opaque strings would allow many valuable aspects of a document

to be recorded, such as author, title, subject, organization, keywords, etc. These attributes have many uses, such as

supporting searches on attribute contents, and the creation of catalog entries as a placeholder for a document which is

not available in electronic form, or which may be available later.

Authentication and Access Control. Since many distributed authoring capabilities could be misused, it is

imponant tomake sure that a person (orgroup of people) is indeed who they claim to be, and ensure that each person

has permission to perform each operation they request. Key infrastructure required to perform anyof the distributed

authoring and vcrsioning capabilities outlined in this paper are authentication and access control. There have been

many proposals to date for performing authentication; several others are under consideration. We claim no special

insight into the problem ofauthentication, andsimply recommend the development and adoption of a standard, robust

authentication scheme by the Web community.

Control and Coordination

While the number of WWW users has increased significantly, collaboration between distributed users is

limited because the complex workflow processes, i.e.. the control and coordination policies, remain difficult to spec

ify orestablish. In order to participate in these processes, stakeholders not only need to exchange data, they need to

negotiate the policies governing their collaboration. This requires a task-oriented view rather than a data-oriented

view. The series of steps for two or more people, workgroups, or companies to collaborate on a project using the

WWW are 1) matching of resources and people at the appropriate level and negotiating their roles, 2) formation of



constraints, responsibilities, deliverables, and plans. 3) execution of the prwess including scheduling, handoff. and

sharing of data, and 4) establishing completion criteria. Augmenting the data-oriented view of the WWW with this

task-oriented view can be accomplished by building atop the WWW infrastructure and tools, but only if they arc

changed andenhanced inaccordance with theenabling recommendations made in the preceding sections.

In the paragraphs below we describe the steps involved in collaboration on a project,and showthe role that a

task-oriented perspective brings.Contrastsbetweenthe two perspectives are summarized in the table below.

Collaboration Steps

Matching

Formation

Execution

Completion

Data Oriented Task Oriented

Content based search tools:

Evaluate usability and closeness of data
and formats:

Implicit access control, readability.

Behavior based search tools:

Evaluate usefulness based on tools that can pro
duce. consume, manipulate, or translate format:
Explicit access control, changeability, permissions.

Agree on data formats:
Rely on standard content handlers:
Data owned by residing server.

Agree on use of compatible tools:
Responsibilities and actions are defined: ownership
of data is defined independent of location.

Updates or completion by polling:
Email i.s used for announcements and

notification.

Broadcast, synchronization and CSCW:
Scheduling, controlled info sharing.

Each HTTP request is independent. Each HTTP request is part of an overall task,
where the task can be applied or revoked as a trans
action. i

Matching. "Who do I need to talk to in order to get this changed?" or "Am I talking to the right person?" are

the first steps in matching the participants in a collaboration process. In most cases, the correct matching of collabora

tors does not occur with the first contact. Simply identifying the data to be changed isn't sufficient, even if the data is

in an agreed-upon format. In a task-oriented view of the WWW, matching is augmented by examination of partici

pant-specific tool capabilities, permissions, roles; and behaviors. Tools and individuals can be matched by their func

tionality. not just the data-formats they recognize.

Formation. Once the participants have been identified, agreements must be made on interchange formats

and interaction protocols. As the-W-W-W currently exists, participants depend npnn .standard content handlers at the

distributed sites, and coorditiaiipn is determined simply by ownership of the latest version, as determined by the

server on whjch it resides. With a taskrorientcd view, the ownership of data can be defined independently of its loca-

^on.-Participants may define the expected responsibilities, which actions should be allowed or restricted, and which

tools should be employed.

Execution. Once the responsibilities have been divided up, the creation and handoff of artifacts such as

documents or source code can commence. In the data-oriented view completion of an activity is usually indicated by

the existence of a new link or creation of a new artifact. Other sites obtain status information by polling for the exist

ence or checking the date of the link: they become entangled in a "keep checking back" syndrome. Notification



usually occurs outside of the WWW through announcements to specific panicipants using c-ntail. With notification

support built into the web, asdiscussed above, an event-driven, task-oriented model ispossible, in which participants

can be notified directly of key project events, as needed and when appropriate. Similar to how some Computer

Supported Cooperative Work systems allow controlled exchanges by"granting the floor" to the cun-cnt speaker, such

events could be broadcast, synchronized, and scheduled inorder to create policies for controlled information sharing

between distributed sites.

Completion. HTTP requests are normally performed as individual actions. Since HTTP is a stateless proto

col, there is no current support for considering a group of related actions as a single task. However, many software

engineering activities require changes to multiple resources to occuratomically (i.e. as transactions), at least from the

point of view of users of those resources. None of the changes should be applied if any fail. In order to provide

support for transactions, it may be necessary to establish a completion criterion or agreement between client and

server such thata group of HTTP requests canbe applied in isolation andonly committed when both sides agree.

Conclusion

Software engineering is fundamentally about the principles, methods, and processes of the production of

complex information products. The Web could enable those complex information products and their associated

processes to be globally dispersed, highly interconnected, and dynamic.

Software products may be better designed and constructed, for globally-dispersed teams of specialist designers,

analysts, programmers, and testers could be assembled in cyberspace, chosen to fit the particular needs of a

development task. Such teams could be assembled even for short-term collaborations.

• Software products could become of much higher quality, and support for software products could similarly be

more responsive and effective. Why? Because software productscould in manycases remain linked to their

development environment. Such linkages could support optimizations based onobserved usage patterns, in-field

updates and product support, and on-going quality assessment. Even training inproduct usage or in system main

tenance andevolution could be facilitated with linkages to process support in thedevelopment environment.

• Software reuse may be greatly increased, as a convenient, world-wide marketplace of software components

becomes available.

Naturally none of these potential benefits will be realized easily, for there are both technical and social barri

ers. Nonetheless, these potentials have already been partially realized in projects likeApache. While the WWW has

already proven to be of enormous use in many application domains and situations, we believe that making the

changes recommended above will yield an infrastructure rich enough tosupport complex software engineering envi

ronments and tasks. Software engineers do not need to be the barefoot children of the computing world any longer. It

should also be apparent that the recommended changes will be of value to more than justsoftware engineering, since

there are many activities which would benefit from support for collaborative authoring and project coordination,

particularly when they can be applied on a global scale.



References

1. Anderson. K. M.. Taylor. R. N.. and Whitehead. Jr., E. J. (1994). Chimera: Hypertext for heterogeneous
software environments. In Proceedings ofthe ACM Conference on Hypertext, pages 94-107. Edinburgh.
Scotland. See al.SO <http://www.ics.uci.edu/pub/chinwra/papers/ECHT/>.

2. Bortman. H. Walking the Cyberdog. MacUser 12.7 (July 1996), 69—74.

3. Carr. L.. Hill. G.. De Roure. D.. Hall. W.. and Davis. H. (1996). Open information services. Computer Networks
and ISDN Systems, 28, pages 1027-1036.

4. Fielding, R.T.. Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider's Web. Computer
Networks and ISDN Systems 27,2 (Nov. 1994), 193 —204.

5. Fielding, R.T., Geltys, J., Mogul, J.C.. Nielsen. H.F.. and Bemers-Lee, T. Hypertext Transfer ProttKol - HTTP/
1.1. Internet RFC. UC Irvine, DEC. MIT/LCS, Oct. 1996.

6. Maurer, H. (1996). Hyper-G now.HyperWave: TheNextGeneration Web Solution. Addison-Wesley. Harlow,
England.

7. Wiil, U. K. and Demeyer, S. (1996). Proceedings of the 2nd workshop on open hypermedia systems. UCl-ICS
Technical Report UCI-96-10, University of California.




