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Abstract

Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. 

Perturb a population and it evolves toward a fitness peak. We review quantitative models of the 

forces of adaptation and their visualizations on landscapes. While some adaptations result from 

single mutations or few-gene effects, others are more cooperative, more delocalized in the 

genome, and more universal and physical. For example, homeostasis and evolution depend on 

protein folding and aggregation, energy and protein production, protein diffusion, molecular motor 

speeds and efficiencies, and protein expression levels. Models provide a way to learn about the 

fitness of cells and cell populations by making and testing hypotheses.
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1. INTRODUCTION: CELLULAR DRIVING FORCES

Biological cells are adaptive. Change their environment and they respond. In homeostasis, a 

cell returns to a stable state after it has been perturbed. In evolution, a population of cells 

becomes better suited to new circumstances. Cell adaptations are reflections of biological 

driving forces, often expressible as potential functions and visualizable on mathematical 

landscapes.

Here, we review recent modeling aimed at learning the adaptation code—that is, how 

adaptive behaviors are encoded within the cell’s biomolecules and networks. This research 

objective is sometimes called genotype to phenotype (G2P) or genotype to fitness (G2F). But 
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here, we prefer the term adaptation code, for it more broadly encompasses other important 

factors as wellsprings of adaptive behaviors, beyond just genes and mutations alone (Figure 

1):

• It incorporates a cell’s environment, not just its genes. Survival of the fittest 

expresses that evolution aims toward matching an organism to its environment. 

Fitness and forces cannot be understood without accounting for environmental 

conditions, such as food and nutrient levels, other competing or cooperating 

organisms, or stressors such as heat or drugs. Biological change can be driven by 

a changing environment.

• It incorporates a gene’s expression, not just its function. Cell fitness depends not 

only on a protein’s efficacy of action but also on a protein’s abundance, which is 

dictated by messenger RNA (mRNA) levels and gene regulatory networks.

• It incorporates a protein’s physics, not just its biology. Cell fitness depends on 

physical properties—the folding and aggregation health of the proteome (called 

proteostasis), protein diffusion and transport, and cellular balances of energy. 

These physical properties are relatively universal across the whole proteome, 

rather than particular to one protein or another. But like protein biology, protein 

physics also contributes to adaptive forces of homeostasis and evolution and 

plays a role in cellular growth laws and stress responses.

• It incorporates a cell’s fluctuations, not just its average properties. Inside a single 

cell, concentrations of a molecule can fluctuate, either because of small internal 

molecule numbers or because a cell changes environments (oxygen levels, 

nutrients, temperature, or stressors). A cell population can be highly diverse, 

even when its individual cells are genetically identical. Fluctuations can 

sometimes promote the average adaptive direction and sometimes oppose it.

This review emphasizes mechanism-based modeling. The aim is to explain adaptive forces 

in terms of underlying biomolecular actions and networks. We ask questions of “What if,” 

not just “What is.” This way of knowing is different from that of sequence comparison 

studies (1), for example. While some aspects of adaptation can be explained by this gene or 

that mutation, other adaptations are less pinpoint. Even the simplest traits, such as human 

height, are correlated with tens of thousands of genes. Sometimes cell fitness depends on a 

protein’s stability or its abundance. A protein’s stability can be altered by uncountably many 

different mutations. A protein’s abundance can be changed by many changes in a regulatory 

network. Metaphorically, there are many ways to change traffic lights in a city that speed up 

traffic flow, but no one traffic light will tell the story. Mechanistic models can help explain 

these adaptations.

New insights are coming not only from new modeling but also from new laboratory-scale 

controlled experiments (2–5). On the one hand, evolution in nature has major sources of 

unpredictability—environments are ever changing; competitors and cooperators come and 

go; and genomic complexity, redundancy, and natural fluctuations are present. On the other 

hand, new laboratory evolution experiments offer learning opportunities because internal and 

external variables can be held constant (6, 7). New data are coming from vast inventories of 
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DNA and protein sequences, from high-throughput -omics and gene editing (8–22), from 

single-cell methods (23), and from controlled artificial gene networks (24–29) that can poke 

and probe cells or can evolve (30–33) just like natural networks do (6, 7, 34, 35). Whereas 

yesterday’s advances gave fine control over proteins, today’s give finer control over 

networks (36–38).

2. THE FORCES OF ADAPTATION AND THEIR VISUALIZATION ON 

LANDSCAPES

The driving forces of nature can be expressed as principles of minimization of potential 

functions. They are often illustrated on mathematical landscapes as balls rolling downhill. A 

ball experiencing gravity tends to a minimum of the gravitational potential energy U(x) as a 

function of the ball’s spatial position x. The force on the ball is given by the local slope, f = 

−dU(x)/dx. Similarly, molecules and materials tend toward thermal equilibrium states, which 

are at the minima of free energy, ΔG(x), as a function of molecular or material degrees of 

freedom (DOFs), x. The slopes of free-energy functions give the forces acting on molecules 

or materials. Landscapes can be hierarchical: They can describe single-molecule tendencies 

toward molecular conformational equilibria or material tendencies toward multiple-molecule 

equilibria. Similarly, landscapes in biology can express behaviors of single cells or whole 

populations.

Biology’s driving forces—in homeostasis and evolution—can seem different from those of 

chemistry and physics. Biology’s forces seem purpose-like—acting to serve the well-being 

of the organism. Even so, they, too, can be expressed in terms of forces, potentials, and 

landscapes at the microscopic or macroscopic levels. Figure 2a shows a fitness landscape, 

which illuminates Darwin’s principle of survival of the fittest—that is, the evolutionary 

tendency of a population toward states of maximum fitness for its environment. What is 

fitness? It depends. At the macroscopic level, in simple cases, a cell population’s fitness may 

just be its growth rate. At the microscopic level, cellular fitness can be the division rate of a 

cell. In real-world cases, what evolution is optimizing can be complex and is seldom known, 

but plausible hypotheses can give useful insights.

Figure 2b shows an inversion of the fitness landscape, called the fitness potential (it is the 

negative logarithm of the fitness), which we prefer here because it retains the downhill 

convention of the metaphor of a ball rolling. Evolution happens in cell populations because 

DNA and protein sequences mutate and undergo natural selection, leading to increased 

fitness, like a ball rolling downhill on a fitness-potential landscape. Homeostasis uses similar 

terms, and similar math (but different variables), and refers to single cells rather than to 

populations. How can we model the purpose-like actions of single cells and cell populations 

in terms of the tendencies of biomolecular processes and networks?

Before describing the math, we summarize a few principles of cellular adaptation 

landscapes. (a) They are often high dimensional; there can be many DOFs. Even the 

simplest cells, like bacteria, have thousands of different types of proteins, each one of which 

is hundreds of amino acids long; every amino acid comes from a 20-letter alphabet; and each 

protein’s abundance level is controllable (38, 39). (b) Landscapes can be bumpy; rolling 

Agozzino et al. Page 3

Annu Rev Chem Biomol Eng. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



balls can get stuck or slowed down by kinetic traps. Even so, at some level, landscapes also 

must be relatively smooth, at least along some of the DOFs, or else adaptation would be 

impossible (40). (c) It is known from directed evolution experiments that evolutionary 

landscapes are dense with biochemical functions. This means that an enzyme can be 

switched to catalyzing a different reaction often with only a few mutations (41). (d) Proteins 

can evolve through a relatively small number of complicated routes along which 

contingencies can matter (42–44), with bottlenecks requiring permissive mutations that 

stabilize local structures and maintain correct conformational energy balances (45), and 

some of these routes may require high-order epistasis (i.e., interactions between three or 

more mutations) (46). (e) Early stages of evolution can be dominated by single mutations, 

increasing fitness steeply, whereas later stages can involve multiple competing mutations 

and epistasis, which can be stochastic and slow to reach but then occasionally fast to evolve 

further (7). (f) Evolution of a protein to a new function often begins without the loss of the 

previous function, making promiscuous proteins more evolvable (47). (g) While average 

tendencies can be toward adapted states, stochasticity and fluctuations can sometimes tend 

to oppose that direction.

How do we model cell adaptation mechanisms? First, we choose whether the model is 

microscopic (the cell), macroscopic (the population), or both (multiscale). Then, we define 

(a) the relevant DOFs, (b) the mathematical function that is being optimized, and (c) a 

mechanism for the fitness as a function of the DOFs. These are rarely known. So, in the 

spirit of theoretical physics and evolutionary biology, the learnings from modeling come in 

the reverse direction: First we hypothesize these premises, and then we see and test what 

they predict against existing data or new experiments.

3. THE THEORY OF ADAPTIVE LANDSCAPES

3.1. Simple Homeostasis: The Basic Idea

We first illustrate the basics of simple homeostasis. What balance of processes can hold the 

concentration x of some particular biomolecule constant? Consider an mRNA molecule that 

encodes a protein. Its concentration x can be increased by an amount Δx in time Δt through a 

biochemical network that (a) increases the mRNA synthesis (at rate Jsyn = ks) or (b) 

decreases its degradation (at rate Jdeg = kdx, proportional to the concentration) (Figure 3):

Δx
Δt = Jsyn − Jdeg = ks − kdx . 1.

Homeostasis is defined as the steady state where Δx/Δt = 0, that is, where Jsyn = Jdeg (see 

Figure 3). Let us express the tendency to sustain the steady state as a biochemical potential,

ϕ(x) = ∫x0

x
Jsyn − Jdeg dx′ = − ks x − x0 + kd x2 − x0

2 /2. 2.

The tendency toward homeostasis can be likened to a ball rolling downhill on this one-

dimensional landscape, where

Agozzino et al. Page 4

Annu Rev Chem Biomol Eng. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



force = Δx
Δt = − dϕ

dx . 3.

In homeostasis, the force (net rate) is the slope of this biochemical landscape, which equals 

zero at the well bottom. This force is a tendency to restore, resulting from an imbalance of 

flows. When x is small, synthesis dominates, increasing x. When x is large, degradation 

dominates, reducing x.

This example shows how opposing processes of synthesis and degradation can result in 

homeostasis, a fixed stable concentration. These flows can be expressed as a net tendency 

toward the minimum of a biochemical potential. Such landscapes can also have multiple 

minima—that is, multiple homeostatic concentrations (48–52). One main subpopulation of 

cells would have a stable concentration x1*, and another main subpopulation would have a 

biomolecule concentration x1*.

Biochemical potential landscapes underlie cellular homeostasis, but they are not fitness 

landscapes. In constant environments, evolution drives the regulatory networks controlling 

synthesis and degradation rates Jsyn = ks and Jdeg = kdx such that biochemical and fitness-

potential minima coincide. Since fluctuating environments imply fluctuating fitness-

potential landscapes within different peaks, regulatory networks can also evolve to give rise 

to multiple biochemical potential minima when environmental conditions fluctuate.

This example is a useful deterministic and continuum approximation when fluctuations are 

negligible. But in some cases, we also want to account for noise from the few-particle 

internal fluctuations or from fluctuations of external origin. Internal fluctuations arise from 

the discrete nature of individual molecules and can be expressed as birth and death events in 

a master equation for the probability Pn to have exactly n molecules in a given cell at time t:

dPn
dt = ksPn − 1 + (n + 1)kdPn + 1 − nkd + ks Pn . 4.

Below, we generalize the mathematics to handle more complex systems and treat evolution 

as well as homeostasis. It is easy to see how the math of homeostasis also applies to 

evolution; in the latter case, the driving mechanisms are mutation and selection instead of 

synthesis and degradation, but, as we show below, the dynamics of the two processes can be 

described in a similar way.

3.2. General Dynamic Theory of Adaptive Behaviors

A more general way to treat the dynamics of the changing concentrations of genes and 

proteins inside a single cell—or the changing allele frequencies in an evolving cell 

population—is through the Fokker–Planck diffusion equation. We start with the ordinary 

differential equation

dx
dt = F(x), 5.
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where dx/dt is the rate of change of some concentration (or population or allele prevalence) 

with respect to time t (see Figure 4). When describing homeostasis, x could be the set of 

concentrations of different proteins. When describing evolution, x is the collection of the 

frequencies of each allele (i.e., populations of different forms of a gene or protein). Since 

each species (proteins or genes) can have multiple values of concentrations/frequencies, say 

N, a network of M species will have a large number of states, NM. F(x) is the vector of 

driving forces for changing biochemical concentrations. Equation 5 describes forces as 

velocities or rates (like Newtonian particles in an overdamped regime, where acceleration 

terms are negligible).

Equation 5 is a fundamental equation for nonlinear dynamics (53). Such models are often 

studied by identifying the fixed points and performing a linear stability analysis to figure out 

the stability of each fixed point. However, this approach explores only small local changes 

(metastability), and not the larger-scale dynamics (global stability) such as the transitions 

between the fixed points. Moreover, Equation 5 does not account for intrinsic and extrinsic 

fluctuations. For fluctuations, we need stochastic dynamics, not deterministic dynamics. 

Fluctuations can be treated either through the master equation approach (Equation 4) or 

more simply by the Langevin equation approximation (8–11),

dx
dt = F(x) + ξ(x, t) . 6.

The function ξ(x, t) is a fluctuating force in time, with a given probability distribution, that 

adds to the deterministic model of the network dynamics. The statistical properties of the 

stochastic force are taken to be 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξT (x, t′)〉 = 2ϵD(x)δ(t − t′), where 

ϵ is a scale factor quantifying the fluctuation strength and D(x) is the diffusion matrix giving 

rise to the fluctuation correlations (8–11). Since there are many components of the 

fluctuation sources, it is generally assumed that the stochastic force follows a Gaussian 

distribution. Figure 4 shows how this formalism can be applied to both cellular homeostasis 

and evolutionary dynamics.

Now, while Equation 6 describes the dynamics of the mean value and variance of x, we often 

want to know, more generally, the dynamics of the whole probability distribution function 

P(x, t). This is given by the Fokker–Planck diffusion equation (8–11):

∂
∂t P (x, t) = − ∇ ⋅ F(x)P (x, t) − ϵ∇ ⋅ [D(x)P (x, t)] . 7.

The content of the curly brackets can be defined as a function J(x, t),

J(x, t) = F(x)P (x, t) − ϵ∇ ⋅ [D(x)P (x, t)], 8.

such that Equation 7 takes the form of a continuity equation, expressing the conservation of 

probability

∂tP (x, t) + ∇ ⋅ J(x, t) = 0; 9.

therefore, the function J(x, t) is the probability flux.

Agozzino et al. Page 6

Annu Rev Chem Biomol Eng. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equations 7 and 8 are linear (in P) and deterministic. So, while the individual trajectories 

themselves are not predictable, the dynamics of the statistical distribution is predictable. 

Furthermore, these expressions give a global description of the system (not limited to local 

linear stability analysis around fixed points), and this allows us to comprehend all the basins 

on the landscape and their connectivities.

This formulation illuminates an important principle of forces and flows. It says that there are 

two types of driving forces (more mathematical details are given in the following 

paragraphs). The first type is familiar; these forces can be computed from a slope on a 

potential landscape, as befits the metaphor of a ball rolling downhill. The second type is less 

familiar; these are forces that are not expressible as a slope on a landscape. The latter is a 

uniquely dynamical phenomenon. Sometimes, when energy is flowing into a nonequilibrium 

system, it acts as a force to drive balls to roll around on perfectly level paths on landscapes, 

where the slope is zero. How do we distinguish between these two types of forces? For any 

system at steady state, by definition, ∂Pss/∂t = 0 (8–11), so according to Equation 9, ∇∙Jss = 

0; this is called the zero-divergence condition. The two types of forces correspond to the two 

different ways steady-state systems can achieve the zero-divergence condition. First, zero 

divergence results when the steady-state flux itself is zero, Jss = 0, implying no net flux in or 

out and implying that the system is at equilibrium and satisfies the principle of detailed 

balance (8–11). If we imagine rain falling into a well, steady state is achieved only if water 

is hauled out in buckets at the same rate that rain is filling up the well.

A second way to achieve zero divergence, ∇∙Jss = 0, applies when Jss ≠ 0. In this case, Jss 

has a rotational nature; its force lines typically circulate in loops (8–11, 16, 54, 55). This is 

called the curl flux. Now, if we imagine that our water well has a horizontal ledge that forms 

a circular trough located halfway down the well, the rainwater has another option: It can 

swirl. It pours into the trough, converting vertical rain flow into horizontal flow around and 

around the ledge. This type of flow, perpendicular to the well axis, never changes the level of 

water in the well, so it, too, satisfies the requirement that the system be in steady state.

By rearranging the steady-state Equation 8, we find the driving force to have three 

components (16, 22, 54–56):

F = − ϵD ⋅ ∇U + Vss + ϵ∇ ⋅ D . 10.

Here, U = −ln Pss can be defined as the potential landscape, and Vss = Jss/Pss is the flux 

velocity. Thus, the driving force of nonequilibrium dynamical systems can be partitioned 

into three parts: the gradient-like force of the potential landscape U, which is associated with 

the steady-state probability distribution Pss; the rotational-like force Vss, related to the 

steady-state probability flux Jss; and the fluctuation-induced force originating from the 

fluctuations, which vanishes when D is independent of x. In systems at equilibrium, the net 

flux vanishes, and Jss = Vss = 0. In such cases, the global minimum of the potential 

landscape defines the global stability of the system, and the forces are given by the gradient 

of the landscape. But in nonequilibrium systems, where net flux does not vanish and Jss and 

Vss are not zero, the nonequilibrium potential landscape can still be used to quantify the 

system’s global stability together with the flux. The forces and dynamics of the system are 
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now determined by both the gradient of the potential landscape and the curl force of the flux 

velocity.

In the zero-fluctuation (i.e., deterministic) limit, the driving force can be decomposed into an 

intrinsic potential U0 = limϵ→0(ϵU) and an intrinsic flux velocity V0 (9, 22, 37, 55, 57, 58):

F = − D ⋅ ∇U0 + V0 . 11.

The intrinsic potential always decreases along the deterministic trajectory; therefore, it can 

be used to quantify the global stability of the deterministic nonequilibrium system. The 

underlying dynamics of the deterministic nonequilibrium system is determined by both the 

intrinsic potential landscape and the intrinsic flux velocity. The gradient of the intrinsic 

landscape is perpendicular to the intrinsic flux velocity in the deterministic case. While we 

describe steady states above, this formulation is readily generalized to handle transient 

dynamics, time-dependent external conditions, multiple-state-transition mechanisms, and 

spatially extended systems (22, 55). In the following sections, we discuss the important 

implications of curl-flux dynamics for homeostasis and evolutionary dynamics.

3.3. Static Fitness Landscapes Have Energy-Like and Entropy-Like Components

Like free-energy landscapes in thermodynamics, fitness landscapes have two components: 

One is energy-like, and one is entropy-like. Imagine one cell behavior A that can be 

achieved by NA different sequences and another behavior B that can be achieved by NB 

different sequences. On the one hand, evolution may tend toward B if those sequences have 

greater fitness. On the other hand, evolution may also tend toward B simply if the B 
sequences are more numerous. This distinction can be expressed in energy-like and entropy-

like terms. The rate at which a protein molecule evolves is given by the dependence on time 

t of the probability Pi(t) that a protein sequence i becomes fixed in a population by time t, 
through mutation and selection. The equilibrium distribution of such probabilities is a 

Boltzmann-like exponential (59–63):

Pi* = gi
e−λV i

Q , 12.

where Vi is the fitness potential, a function of the different mutations of a given protein (40), 

related to the fitness fi by Vi = −logfi (59); gi is the sequence degeneracy, that is, the number 

of different sequences of a given fitness; λ is the selective pressure; and Q = ∑igie−λV i is 

the sum over the relative populations of the different sequences of the protein.

In short, like the equilibrium thermodynamics of materials, evolutionary changes can be 

energy-like or entropy-like. Energy-like refers to cases where one sequence is preferred to 

another because of the higher fitness of that specific sequence. Entropy-like refers to cases 

where one whole category of sequences is preferred to another whole category of sequences 

simply because the former category has more sequences in it than the latter has. Entropy 

plays this role: Sometimes a cell population will not converge to a single perfect (maximally 

fit) amino acid sequence because there are so many alternative sequences that can achieve a 

sufficient (i.e., near-perfect) fitness instead. Note that these energy-like and entropy-like 
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components of evolution should not be confused with the thermal energies and entropies of 

materials. In thermal materials, the balance between energy and entropy is dictated by the 

temperature; in evolution, the balance of these tendencies is dictated by the selective 

pressure. Apes can evolve into humans by selective pressures, but not by a change in 

temperature. Equation 12 provides a general framework to address some questions of protein 

evolution in the Sections 3.4 and 4.1–4.3.

3.4. Evolution Speeds Range from Days to Millions of Years

Evolution can happen over a wide range of timescales. Some evolutionary processes take 

millions of years; others take weeks to months. What explains this broad range? Modeling 

shows that if a landscape of fitness potential is flat, evolution is slow; if it is funnel shaped, 

evolution can be fast. The term selection strength in evolutionary biology corresponds to the 

slope. Other factors affecting the speed are the rate of mutations and the effective population 

size (64, 65). To study the principle of how evolution speed depends on landscape shape, 

Equation 12 is combined with the simplest nonflat landscape, which has a slope that is linear 

in the number m of mutations; V (m) = constant × m away from the optimal sequence (63). 

The dynamics of this model is readily solved analytically in the limit of low mutation rate 

and large population size to give the adaptation time, τA, for a protein to reach its optimum 

sequence:

τA ≃
1 + ze−λV 0 L

ω0L , 13.

where z is the number of possible mutations a residue in the protein can have relative to its 

starting sequence (z = 19), L is the total number of residues in the protein, ω0 is the average 

fixation rate for a single point mutation, and V0 is the slope of the fitness potential. What 

explains the large dynamic range in evolutionary adaptation is that τA is an exponential of an 

exponential function in Equation 13 (Figure 5). All of this refers to a constant environment 

providing a constant landscape; changing environments can renew the driving forces of 

evolution.

4. PROTEIN FOLDING AS AN ACTOR IN HOMEOSTASIS AND EVOLUTION

4.1. Changing the Temperature Changes Proteome Folding Stabilities

How do cells adapt when put into an unfamiliar temperature? For simple cells, the fitness 

can be taken to be the growth rate. And the growth rate dependence on temperature is often 

known. Simple cells grow fastest at the temperature of their natural environment. Figure 6b 
shows the thermal growth law of Escherichia coli: Its growth rate as a function of its growth 

temperature has a peak. If a cold cell is heated up, it grows faster. This resembles simple 

Arrhenius-like chemical kinetics.

But if a cell is heated further, its growth rate slows down sharply. Why? The proposition of 

the thermal proteome unfolding model is that the plummeting growth rate, and death, when 

cells are too hot results from the denaturation of the proteome. In this model, the fitness 
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potential V (T) as a function of temperature T is taken to be proportional to the number of 

proteins that are folded:

V (T ) = − A exp( − ΔG/RT )
1 + exp( − ΔG/RT ) , 14.

where A is the protein abundance and ΔG(T, L) = ΔH(L)+ΔCp(L)(T − Th) − TΔS(L) − 

TΔCp(L) ln(T/Ts) is the free energy of folding as a function of chain length L in terms of 

known enthalpy ΔH, entropy ΔS, and heat capacity ΔCp and measured temperature constants 

Ts and Th of average proteins (66–68).

Cooled cells (Figure 6a) grow faster when heated. This increasing function can be fit by an 

Arrhenius temperature law, indicating that growth rates of cooled cells may be governed by 

one or more key biochemical processes. Warmed cells (Figure 6b) slow their growth 

dramatically upon heating and die. For many free-growing organisms, the peak point—that 

is, the temperature of fastest growth—happens to approximately equal the temperature of the 

cell’s natural environment.

What do we learn from the thermal proteome unfolding model? First, it shows how a cell-

level phenotype, its heat stress behavior, can be computed from physical properties of the 

cell’s biomolecules—namely, its proteome unfolding behavior. The thermal parameters of 

proteome unfolding are known from in vitro experiments on different proteins (67). Second, 

while this model describes the behavior of a given cell under varying temperatures, it also 

gives insights into how cell populations evolve under pressures to survive at different 

temperatures. A cell population can evolve to grow rapidly at an unfamiliar temperature via 

mutations that change the stability profile of the proteome’s average protein (see Figure 6).

Interestingly, individual cells may respond differently to temperature changes (69). In a 

population of heat-shocked yeast cells, a subpopulation was observed to become resistant 

and continue growing (albeit slower), while another subpopulation stopped growing 

completely and degraded its own proteins (70). Thus, different subpopulations of cells can 

respond quite differently to temperature, and possibly to other stresses.

4.2. Cells Acclimate Faster to Hotter Than Colder Environments

This growth law (growth rate versus temperature) is modeled through protein folding 

stability. Now, this same mechanism can predict how rates of protein evolution depend on 

temperature. How fast can a bacterial protein evolve when transferred into an environment of 

different temperature? The prediction below is that bacteria can adapt much faster to a 

warmer climate than to a colder climate. In Figure 6a, the mesophile that lives at 40°C is at a 

ridge peak of fitness because freestanding cells grow the fastest at the temperature of their 

natural environment. Suppose the mesophile is now upshifted to live at 70°C. Path ➊ 
indicates that, before any mutations have occurred, this upshift causes the mesophile to grow 

slower. Path ➋ indicates that, over time, mutations occur (30 are shown in the figure) that 

cause the protein to become well adjusted to the warmer environment. Alternatively, a 

thermophile that is preadapted to 70°C adapts to a colder environment following paths ➌ 
and ➍. Adaptation is much faster (up to 5, 000-fold) along path ➋ than along path ➍ (63).
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What is the mechanism? Folded proteins are destabilized by heating, but not by cooling. A 

cell with sicker proteins adapts fast (path ➋) because it is climbing a steep slope on a fitness 

landscape. In contrast, cooling does not destabilize folded proteins, so cells are slower to 

adapt to cooling (path ➍). In summary, cells should adapt to warm climates faster than to 

colder ones (63). This prediction has not been tested, as far as we know, but experiments 

show that a mesophile can successfully adapt to a warmer environment (71).

4.3. Proteins That Are Least Abundant in a Cell Are Fastest to Evolve

Through a cell’s evolution, the expression level of a gene (and thus the abundance level of its 

protein) can change (Figure 7). Proteins that are abundant tend to evolve slowly (63, 72–80). 

This is called the expression level–substitution rate anticorrelation. It has a simple 

explanation. If a mutation diminishes the fitness of a given type of protein, then the more 

abundant that protein is, the more deleterious that mutation is overall to the cell. If that 

mutation causes misfolding or reduces folding stability, the cell’s fitness V is reduced by the 

protein’s abundance A (Equation 14). Or, if that mutation causes protein aggregation (79), 

then the effect on cell fitness is proportional to A2 (63). Such protein folding contributions to 

fitness and evolution rates successfully predict the mutational fitness effects in viruses and 

simple cells (63, 81).

4.4. Proteostasis Is a Well-Oiled Protein Homeostasis Machine

Here we describe a model of proteostasis, the homeostatic maintenance within a cell of the 

folded states of cell’s proteins (collectively, its proteome). Folded proteins are maintained by 

flows from protein synthesis and degradation and by an adenosine triphosphate (ATP)-driven 

cellular machinery of chaperones that tip the cell’s kinetics in favor of folded states. This 

balance in E. coli bacteria has been expressed in the hospital model of proteostasis (HMOP) 

(82). This name signifies how folding sick proteins entails decision-making like that in 

hospitals that treat sick patients: (a) identify which protein is sick (misfolded or aggregated), 

and how sick it is, and (b) send it to the right doctor (i.e., the right chaperone system) to fix 

its folding/aggregation problem.

HMOP is composed of (a) prior biophysical models of spontaneous conformational change 

(folded, unfolded, misfolded, aggregated) of different classes of proteins and (b) coupled 

ordinary differential equations describing the trafficking flow of different proteins through 

different chaperones (see Figure 8). Nodes represent the different states of protein 

conformation and/or the binding of proteins to chaperones. Edges represent traffic flows. 

HMOP is a deterministic model, not including fluctuations, that has been applied to steady 

state to compute the steady-state average concentrations of all the node species and the 

fluxes between them. This modeling describes how stable proteostasis states are encoded 

within this particular physicochemical network. And it allows for studies of perturbations of 

these average states, either those that are imposed on a single cell with given rate 

coefficients or those that are imposed on cell populations that can evolve different values of 

rate coefficients.

Figure 8b shows one model prediction: Very sick proteins (stuck in deep misfolded kinetic 

traps) traffic mostly through the GroEl chaperone system. Several matters of principle are 
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resolved by the model that had not been obtainable from experiments alone: (a) It shows 

how complex decisions are encoded in this cell-wide asynchronous physicochemical 

network to find, identify, sort, and fix sick proteins. (b) It shows that the central physical 

property of a client protein that defines its trafficking is its dwell time in misfolded states. (c) 

It shows that this process is energy efficient, as the sickest proteins use the most energy-

expensive chaperones. (d) It shows that chaperone levels are adaptive, increasing at very fast 

growth rates to prevent rapidly produced proteins from aggregating and increasing at very 

slow growth rates to prevent protein degradation from costing the cell energy when it is not 

growing.

5. SOME ADAPTATIONS ARE IN PROTEIN PHYSICAL PROPERTIES

5.1. Salt Growth Laws Depend on Protein Diffusion Rates

Cells grow slowly when put into media with high salt concentrations. This has been modeled 

as an evolutionary adaptation of the protein density in the cell. Bacterial cells are densely 

packed with proteins, to a density of about 20% (68). In the protein transport rate model, 

adding external salt increases the osmotic pressure and draws water out of the cell, 

densifying the cell’s contents and squeezing together the proteins, which causes the proteins 

to diffuse more slowly due to crowding (68). The evolutionary DOF is taken to be c, the 

crowding (i.e., the protein density in the cell). The fitness proposition is that evolutionary 

changes can alter c and do so in a way that maximizes the rates of transport of proteins 

within the cell. If a type of protein is too crowded, it diffuses in the cell slowly; if a type of 

protein is too dilute, its net flux is small. This is described by the diffusion expression

rate = cD(c) = kT
6πηa c 1 − c

cxtal

2
, 15.

where D is the diffusion constant of a protein (assumed to be spherical) in the cell, kT is 

Boltzmann’s constant times temperature, η is the solvent viscosity, a is the protein’s radius, 

and cxtal is the maximum concentration achievable by sphere packing of the proteins. To 

predict the maximum fitness, we take the derivative d(rate)/dc and set it equal to zero. This 

gives the value c = cxtal = 0.20, which is consistent with the observed protein density inside 

E. coli. And Equation 15 gives the functional form of the salt growth law shown in Figure 9. 

Figure 9 shows additional confirmation of the protein transport rate model, namely, that 

added salt slows the diffusion of green fluorescent proteins in single-cell experiments (68) 

by two orders of magnitude.

5.2. Energy Efficiency Is a Fitness Function for Protein Production in Fast-Growing Cells

Simple cells grow and duplicate faster in media with more food. Added sugar leads to an 

upshifted concentration, R, of ribosomes relative to the concentration, P, of nonribosomal 

proteins. Many cell processes are involved in this global readjustment with growth rate. 

What cell fitness property is being optimized in the evolution of the many microscopic 

parameters involved? One hypothesis is that the cell simply aims at maximizing its 

duplication speed. But if so, cells ought to approach the ratio α = P/R → 0 in the limit of 

plenty of food. Instead, it is observed that P/R → 0.6 − 0.8 (Figure 10). The propositions of 
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the ribosomal upswitch model (83, 84) are that the cell’s ratio of P to R is determined by its 

concentration of ATP (A) and that the fitness function for well-fed cells is energy efficiency, 

that is, doubling rate per ATP molecule. The steady-state limit of this nonlinear model can 

be solved as a third-order polynomial for the fitness ϵ(α) as a function of the evolutionary 

DOF α, as shown in Figure 10. The maximum fitness is computed by setting dϵ/dα = 0 and 

gives a value of 0.72, which is consistent with the data.

5.3. Protein Motors and Pumps Can Trade Off Speed Versus Efficiency

Much of a cell’s energy is used by its motors, such as F0F1 ATPase (see Figure 11), and 

pumps. It may have been evolutionarily advantageous to optimize speed, efficiency, or some 

other property. A two-state kinetic model has been developed that describes a broad range of 

such motors by allowing for evolutionary DOFs, such as where the kinetic barrier steps 

happen in the motor cycle (85). By fitting these few parameters in simple models to nearly a 

dozen different biomolecular motors and pumps, we can learn what, if anything, is 

optimized and might serve as a fitness quantity.

Figure 11 shows that there are indeed properties that appear to be optimized for molecular 

motors and pumps. In these calculations, it is supposed that biomachines evolve only within 

a restricted range of operating specifications: (a) Their input is restricted to a small range of 

chemical free energies since their power is supplied by ATP. (b) Therefore, their output work 

per cycle cannot exceed this amount either. This model creates the freedom to look at 

different possible fitness functions and ask which such fitness function—if any—is 

maximized by the properties of known motors and pumps. Figure 11 shows that the fitness 

function satisfying this condition is the output power per unit input energy, where power is 

the work performed per unit time.

As a different mechanical adaptation, Schuech et al. (87) have shown that the shapes of 

bacteria—from straight to curved rods—can be understood as evolutionary Pareto optima of 

three properties: shapes that favor good swimming speeds, shapes (more rodlike) that give a 

better signal-to-noise ratio in detecting chemical gradients (fundamental for chemotaxis), 

and shapes that reduce the cost of cell construction.

6. PROTEIN ABUNDANCES ARE RESPONSIVE TO THE ENVIRONMENT

6.1. Protein Concentrations Result from a Balance of Factors

The vignettes above focus on physical properties of proteins—stability, aggregation, 

diffusion, and motor behaviors. Also important are protein abundances (concentrations) in 

the cell. Changing a cell’s environment can lead to changing concentrations of the proteins 

inside it. Fitness appears to be a Goldilocks balance. If a protein is too dilute, its effect on 

cell health is too feeble. If a protein is too abundant, the cell has wasted energy by 

overproducing it and is evolutionarily uncompetitive (88). Figure 12a shows experimental 

evidence for this latter contributor to fitness. Perfeito et al. (89) inserted the gene coding for 

the LacZ protein as an unnecessary gene in E. coli. The figure shows that increasing its 

concentration reduces the cell’s fitness. Interestingly, at sufficiently high protein 

concentrations, there is a sharp drop in fitness. This nonlinearity of fitness is the 
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consequence of a feedback loop: The production and the activity of Lac proteins affect the 

growth rate, which, in turn, modulates the density of these molecules.

The costs of excess protein levels can arise not only from protein synthesis but also 

indirectly through protein function (90, 91). In eukaryotes, the function of transcriptional 

activator proteins is often costly (92) because they recruit general transcription factors that 

are needed cell-wide. If such an activator protein is in excess, it will tie down the general 

transcription factors at particular genes, depleting their presence elsewhere and indirectly 

lowering the expression of other important genes. This is generally true for cellular 

resources such as ribosomes, polymerases, and global regulators: If they are tied down 

somewhere, the cell will suffer due to their depletion (93).

6.2. Drugs Can Diminish the Fitness of a Cell, Sometimes Sharply

Bacterial growth slows down when antibiotic drugs are added to the media. Bacterial growth 

rates reflect the fitness of bacteria for their environment, and bacteria are less fit for 

environments that contain drugs. Growth speeds diminish in a sigmoidal way as drug 

concentrations increase (see Figure 12b). Now, consider a multidimensional fitness 

landscape. What happens when we breed drug-resistant cells? Figure 12b shows two 

consequences. First, by definition, we need higher drug concentrations to slow the growth of 

drug-resistant cells than we need for wild-type cells. Second, in highly resistant cells, the 

transition to zero growth rate is very sharp, showing a bistability. The basis for this 

nonlinearity and bistability appears to be a positive feedback mechanism generated by an 

innate global effect of drug-inhibited growth on gene expression: Translation-inhibiting 

antibiotics reduce growth and thereby reduce gene expression, including expression of genes 

conferring drug resistance, increasing the effect of the drug in a positive feedback loop (91, 

94). The positive loop is responsible for bistability (49, 95).

6.3. Changing Environments Can Be Confusing; Cells Can Still Find the Optimal States

Consider a cell that lives in an environment E1. Suppose a gene G1 encodes a protein P1 that 

confers a benefit to the cell in E1. Then the cell will evolve its regulatory network to express 

the optimal level of P1. Now, we see if we can confuse the cell. The cell cosynthesizes with 

P1 another protein P2 that confers a cost when the cell is in a different environment E2. Now, 

we cause confusion by driving the environment to fluctuate between E1 and E2. Or we have 

both genes turn on in E2 and turn off in E1, maximizing the cost of P2 and minimizing the 

benefit of P1. Can the cell evolve a regulatory network that optimizes the levels of both P1 

and P2 to handle this fluctuating environment? Figure 12c shows that, indeed, the population 

adapts toward the optimal solution in a genetic module subject to the lac repressor in E. coli 
(3, 4). Evolution of the regulatory net proceeds during three cycles of mutation and 

selection. Evolution is delayed in crossing a fitness moat of confusion, requiring a few rare 

mutations to reach the high-fitness state of the cell, embodied by a new protein that responds 

inversely to the external inducer concentration.

6.4. Cell Enzymes Should Be Neither Too Dilute nor Too Concentrated

A cell’s fitness depends on its enzyme concentrations. Too little enzyme means too little 

metabolic flux of a particular pathway to serve the needs of the cell. Too much enzyme 
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means the cell overinvests in producing it, and the cell cannot compete with other cells that 

are more frugal. Each enzyme should achieve a balance: neither too little nor too much to 

contribute to a biochemical pathway that is properly balanced with other pathways. What 

determines how much enzyme is too much? The enzyme concentration should be below the 

Km (Michaelis–Menten binding constant) for the substrate, or else enzyme is wasted (96). In 

addition, the enzymes’ actions, and not just their expression levels, should be under 

evolutionary pressure. The enzymes of an optimal cell should have high catalytic efficiencies 

(97).

The levels of enzymes in a pathway depend on the efficiency of subsequent enzymes. This is 

important to avoid the accumulation of toxic intermediate metabolites that can occur if an 

enzyme’s flux exceeds what the next enzyme can process. For example, excess lactose flux 

imported into the E. coli cell can be toxic (98). To avoid this, cells regulate enzyme levels 

according to the fluxes through metabolic pathways.

In Sections 6.5 and 6.6, we describe studies in which gene expression levels are controlled 

through the insertion of synthetic gene circuits. Synthetic gene circuits can have adjustable 

expression levels and an expression-dependent fitness peak. That means that their protein 

levels can be controlled to be more or less nonoptimal, adjusting how far a cell population is 

from the fitness peak. Evolving such cells in the lab reveals whether they move toward the 

fitness peak in slow steps or in jumps, as well as the mutations that mediate these fitness 

improvements (30).

6.5. Drug-Resistant Cells Can Survive Harsh-Drug Environments

Multidimensional drug fitness landscapes have been explored by using synthetic gene 

circuits. Increasing the concentration of an antibiotic drug (here, Zeocin) makes the 

environment harsher for a bacterial cell. At the same time, a small inserted gene circuit (of 

two genes) can be used to vary the cell’s drug resistance. The level of resistance can be 

controlled by adding an inducer (here, anhydrotetracycline) in the medium (50). Figure 13 

shows the observed fitness landscape that results from systematically controlling these two 

variables. It shows that harsher environments cause cells to grow slower. It also shows that 

turning up the drug resistance to a certain point in the cells increases the growth rate of the 

cell population in harsh environments. However, drug resistance is costly: Turning it on 

alone, by adding inducer without antibiotic, slows the cell division rate. This causes the 

growth rate to slow down even in antibiotic if drug resistance is turned up too high, 

exceeding a certain Goldilocks point beyond which it becomes too costly. This creates a 

crest in the landscape, given by the line connecting fitness peaks at each drug concentration. 

In the section below, we describe additional important—but subtle—insights that come from 

this experiment.

6.6. Protein Abundances Are Distributions, Not Single Numbers; Some Are Bimodal

A population is the collection of its cells. Take a property such as protein abundance. In 

some cases, the population property will have a unimodal single-peaked distribution, with a 

mean value that reflects that of a typical cell. In other cases, the distribution will be 

multimodal, with multiple peaks. In that case, the population average does not well reflect a 
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typical cell. For a distribution of greenish beads and reddish beads in a barrel, the average is 

not a yellow bead. It has recently become possible to study subpopulations of cells 

systematically by using synthetic gene circuits. In the following example, one variable is the 

environmental harshness, which, as above, is controlled by the drug Zeocin. A second 

variable is the drug resistance of the cell, which is controlled by the inducer concentration. 

Now, beyond the experiment described above, which measured the whole-population 

response, we also examine the distribution of drug-resistance gene expression over 

individual cells (50, 99). Figure 14 shows that single cells can have bimodal distributions, 

with peaks labeled ON or OFF. Distinct protein levels in these bimodal distributions 

correspond to distinct division rates of single cells, λc(xON) and λc(xOFF), according to their 

locations xON and xOFF on microscopic cellular fitness landscapes λc(x). The macroscopic 

cell population growth rate Λ is then the weighted average of single-cell division rates λc(x), 

with weights taken from the protein-level distribution p(x):

Λ = ∫
0

∞
p(x)λc(x)dx ≈ λc xON pON + λc xOFF pOFF . 16.

This is how we obtain the macroscopic growth rate from microscopic single-cell division 

rates.

In multimodal distributions, it is not just the relative populations that matter. When gene 

expression is bimodal, individual cells can switch from one subpopulation to the other with 

rates of transition rON→OFF and rOFF→ON. These switching rates can affect the properties of 

the whole population. A simple model for the switching dynamics is

dNON
dt = λc xON − rON OFF NON + rOFF ONNOFF,

dNOFF
dt = λc xOFF − rOFF ON NOFF + rON OFFNON,

17.

where the Ns are the populations of the two states. The growth rate of the cell population is 

computed from the largest eigenvalue of this set of equations. The dwell time of a system in 

one state or the other is called the memory; for example, τON = ln(2)/rON→OFF. This dwell 

time is important because it affects the protein-level distribution, which affects the fitness in 

constant or fluctuating environments (5, 51). The timescale of such cellular memory in a 

population can be comparable to, or even longer than, the timescales of evolutionary events 

such as the fixation of new genotypes.

A useful insight derives from whether the cells populate a unimodal or multimodal 

distribution. If cells live in a constant environment, and if they have an initial bimodal 

distribution, they will evolve toward a unimodal distribution because that maximizes the 

fitness over the whole population. Mutant cells obeying this principle have indeed been 

observed experimentally (Figure 14) in multiple environments, indicating the generality of 

this principle (99).
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7. BIG ADAPTATIONS: DYNAMICS AND MULTISTABILITY

7.1. When Are Static Landscapes Not Enough? The Red Queen Effect

As noted above, the general dynamics of adaptation can be expressed as two types of forces 

(37): potential-like forces, which are seen in systems that relax to equilibrium and are 

computed as downhill slopes on a potential surface, and curl-flux forces, which apply to 

multidimensional systems that are out of equilibrium. Wright’s adaptive fitness landscapes 

did not account for the latter, the dynamical forces. Below are examples of where curl-flux 

components matter.

The Red Queen effect (100) can be viewed as a consequence of the curl flux. The term Red 

Queen comes from the Alice in Wonderland story. To paraphrase, sometimes you have to run 

just to stay in place. It describes predator-prey effects, or coevolution: Predator chases prey, 

prey evolves to escape the predator, and predator then evolves to better capture the prey, in a 

vicious cycle. In this process, neither species is necessarily changing its own individual 

fitness for its environment. Rather, both species can now be linked in a two-body cycle (100, 

101). Figure 15 illustrates the curl flux on a landscape that has the shape of a Mexican hat. 

The predator-prey pair is attracted to the cycle valley, where the curl flux describes the chase 

around the ring (16, 22, 37). Red Queen dynamics is a multiagent multidimensional 

property.

The curl-flux component has profound implications for adaptation dynamics. It means that 

the shape alone of an adaptive landscape is not always the whole story. This indicates that 

evolution does not always climb straight up fitness hills or act like balls rolling downhill into 

valleys of fitness potential. In the conventional Wright–Fisher adaptive landscape theory, the 

mean fitness (averaged over all the individuals in the population) is directly related to the 

equilibrium population. In the old Wright–Fisher view, the largest population is of cells that 

have the highest mean fitness, and the selection pressure is the slope of the landscape. In 

contrast, this new curl-flux perspective shows that evolutionary pressure is not equal to the 

gradient of the landscape. The state of highest fitness is not necessarily that of the most fit 

predator or prey alone. Likewise, fitness bottlenecks are not those of predator or prey alone 

either. Curl-flux effects arise not only in single-locus and coevolving systems but also in 

multilocus, multiallele evolution. An example is epistasis, where one gene affects another 

one. Protein 1 may affect cell fitness in a particular way, and then protein 2 may compensate, 

leading to yet another change in protein 1. These are situations where the simpler 

conventional adaptive landscapes of Wright and Fisher break down (37).

Curl fluxes apply when multiple actors are coevolving. However, there are many 

independent-actor situations, as described throughout this review, where curl-flux dynamics 

is not needed. Another example where curl-flux forces are important is in the cell cycle and 

differentiation, as described in Sections 7.2–7.4.

7.2. Stem Cell Differentiation: A Bifurcating Homeostasis Landscape

During the early-stage development of an organism, a primary stem cell turns into a 

differentiated cell. In the 1940s, Waddington described differentiation and development 

through his iconic epigenetic landscape, shown in Figure 16 (19, 22, 102). Metaphorically, a 
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ball rolls down a single valley (the stem cell state), which bifurcates into two valleys (the 

differentiated state). This description is rather qualitative. Figure 16 shows the simplest 

quantitative realization, a two-gene circuit for differentiation. The values x1 and x2 are the 

concentrations of the two proteins that both self-activate and mutually repress each other’s 

gene expression. The dynamics is given by

dx1
dt =

ax1
n

Sn + x1
n + bSn

Sn + x2
n − kx1 = F1,

dx2
dt =

ax2
n

Sn + x2
n + bSn

Sn + x1
n − kx2 = F2,

18.

where S represents the threshold and n represents the cooperativity on the gene regulation.

Each transcription factor has three actions: It can self-activate (at rate a), it can repress the 

other (at rate b), and it can degrade (at rate k). In this model, the transition from a primary 

stem cell to its differentiated state is a change from dominance of self-activation of the 

transcription factor to dominance of other-repression.

Here is the updated perspective on Waddington’s static differentiation model, now 

accounting for the curl-flux dynamics, correcting some earlier inconsistencies (19, 20, 49, 

103–109). The process of human embryonic stem cell differentiation and reprogramming 

has been modeled in terms of 50 key biomolecules (106; see also 17, 19, 20, 22, 108). The 

key genes and regulatory steps for differentiation/reprogramming have been identified by 

global sensitivity analysis based on the landscape topography—the barriers between basins 

of attractions of the cell states.

Figure 16 shows two pairs of pathways: one for differentiation and the other for 

reprogramming (reverse differentiation). There are important differences between the 

quantified Waddington landscape with the dynamics-corrected model and the original 

picture. First, Waddington’s stem cell should have been in a metastable state rather than an 

unstable state; its fitness potential needed to be higher than for the bifurcated states. Second, 

the dynamics-corrected model shows that differentiation processes are determined both by 

the induction driven by the programmed regulation changes along development and by the 

fluctuations. Differentiation is not purely spontaneous, as implied by the Waddington 

picture. Third, the dynamics-corrected model shows that the pathway from the multipotent 

to the differentiated state is different from the route of reprogramming from the 

differentiated state back to the stem state, in contrast to Waddington’s reversible paths. This 

is a signature of nonequilibrium and broken-detailed-balance contributions to adaptation.

7.3. Understanding the Direction of Time’s Arrow in Adaptive Processes Requires 
Accounting for Curl Fluxes

Fourth, differentiation is irreversible. The origin of the direction of time has been a puzzle in 

differentiation/development. This is because common descriptions of differentiation/

development show no apparent signature of such direction (22, 110). Accounting for the curl 

flux resolves this puzzle, because it shows how detailed balance, and hence time 
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reversibility, is broken in these nonequilibrium states. Time’s arrow points in the direction of 

a particular sequence of events on the curl-flux-dynamics-corrected landscape, whereas there 

is no direction on detailed-balanced landscapes (19, 108, 110). This dynamics-corrected 

picture is consistent with data from RNA sequencing experiments (111–115). In short, this 

modeling shows where static landscapes, and where the balls-rolling-downhill picture, are 

too simple to capture key dynamical aspects of the biology of differentiation and 

development (19).

7.4. Cell Cycles and Regulation Are Also Subject to Curl Fluxes

Curl-flux dynamics is also needed to account for cell cycle dynamics and cell regulation (16, 

116). The cell cycle has states G1, S, G2, and M, which are landscape basins on the cycle 

pathway. Cycle checkpoints are the transition states (locations of the barriers) between these 

local basins that affect go/no go decisions (16, 116). The cell cycle pathway combines (a) a 

Mexican hat landscape, where the system is stable anywhere along the hat brim, with (b) the 

curl-flux dynamics of cell cycle oscillations (running around the brim). This has also been 

described in the context of evolution with the group-help model (37). As a matter of 

principle in evolution, the adaptation rate—when curl-flux dynamics is taken into account—

is found to be dependent not purely on the genetic variance but also on interactions between 

evolving agents. This point is a generalization of Fisher’s fundamental theorem of natural 

selection (37), which states that the rate of mean fitness increase of an organism at a specific 

time is proportional to its genetic variance at that time (117). In short, even when evolution 

reaches fitness maxima, where the fitness cannot increase more, evolution can still continue: 

Agents can evolve further since the genetic variance is still driven by an intrinsic flux such 

as coevolution of predator and prey (37), in contrast with the traditional view that only 

fitness differences can drive evolution.

8. SUMMARY

Cells experience adaptive forces. Cells undergo homeostasis. Populations undergo evolution. 

These adaptive actions can be expressed in terms of driving forces and landscapes. Here, we 

review modeling that is quantitative, that is tested or testable, and that addresses more 

physical and combinatoric properties of the genotype-to-phenotype mapping problem than 

sequence comparisons alone are likely to reveal. For example, adaptation depends on protein 

expression levels, on folding and aggregation, and on physical transport and mechanical 

properties. Such properties are often not explainable from pinpoints in the genome; they are 

delocalized and combinatoric. We review how these forces contribute to cellular growth 

laws. Such models provide a way of knowing that is based on hypothesizing DOFs and 

fitness functions, making predictions, and testing experimentally.
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SUMMARY POINTS

1. New models are emerging for cell adaptation—homeostasis and evolution.

2. Insights come from postulating how fitness depends on degrees of freedom, 

visualizing them on landscapes, and testing them in experiments.

3. Adaptation has two kinds of forces: slopes of a potential function and curl 

fluxes. Curl fluxes explain important dynamical multibody effects, such as 

predator-prey relations.

4. Learning the cell adaptation code requires knowing mechanisms, not just 

comparing sequences, because fitness depends on high-order combinatorics, 

for example, in the folding stabilities, aggregation, abundance levels, or 

diffusional transport of proteins in the cell.
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Figure 1. 
Three ways a cell’s fitness is encoded in its proteins: (➊) its abundance in the cell, affected 

by messenger RNA (mRNA) levels; (➋) its efficacy of biological action, affected by 

mutations; and (➌) proteostasis, its folding and aggregation health, controlled by protein 

synthesis, degradation, and chaperoning.
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Figure 2. 
Evolution is described as populations moving on landscapes. This is represented in two 

different ways, as a tendency toward either (a) maxima on a landscape of fitness or (b) 

minima on a landscape of fitness potential. They are just different ways to visualize the same 

process.
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Figure 3. 
Homeostasis is a tendency toward the minimum of a potential function. (a, top) Homeostasis 

is maintained by a balance of two rates: synthesis (Jsyn), supplying material and increasing 

the concentration x, and degradation (Jdeg), decreasing x. The sum is the net rate of change, 

Δx/Δt. (a, bottom) The integrated net change rate is a potential ϕ(x). (b) After perturbation, 

x(t) relaxes to x0 over time. (c) The noisy stochastic version of this relaxation is shown, for 

example, for few-particle systems.
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Figure 4. 
Homeostasis dynamics and evolutionary dynamics often use similar math, but with different 

variables. (Top row) Gene module with two self-activating genes (x and y), mutually 

repressing each other (a and b are the strengths of self-activation and mutual repression, 

respectively; S is the minimal concentration needed to activate changes; and k is the 

degradation rate). (Bottom row) Allele frequency changes due to natural selection and 

random mutation (22) (w is the fitness of allele x, w0 is the average fitness, and m is the 

mutation rate between alleles x and y).
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Figure 5. 
Evolution happens over a large dynamic range of timescales, modeled with the simplest 

(linear) fitness potential (inset), V (m) = constant × m (63).
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Figure 6. 
(a) Fitness-landscape pathways for how cells evolve under changing temperatures. Route 

➊–➋ shows a (mesophilic) cell evolving to adapt to a warmer climate. Route ➌–➍ shows 

a (thermophilic) cell evolving to adapt to a colder climate. The thickness of the black arrows 

shows the adaptation speed computed from the thermal proteome unfolding model, which 

predicts that cells can adapt much faster to warmer climates than to colder ones (63). (b) 

Bacterial growth rates versus temperature. Panel b adapted with permission from Reference 

68.
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Figure 7. 
Proteins that are most abundant in the cell are slower to evolve; that is, they have a lower 

rate of amino acid substitutions. A cell’s fitness is more affected by mutating an abundant 

protein than by mutating a less abundant protein. There is a larger fitness cost to the cell for 

misfolding and aggregation, so the number of viable mutant sequences is smaller. The model 

predicts the roles of misfolding (red line) and of aggregation (blue line) for this 

anticorrelation between the evolution rate (given by the percentage sequence difference 

between orthologous proteins of related species) and abundance (measured by relative 

microRNA concentration) (63).
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Figure 8. 
The hospital model of proteostasis in bacteria. (a) The gray lane represents the pathway of 

protein folding, misfolding, and aggregation without chaperones. The other arrows show the 

proteostasis trafficking through different chaperones. (b) Hospital model predictions of 

proteostasis flows for a class II protein (mildly misfolded) indicate that it traffics mainly 

through the DnaK system. Heavy arrows show the main flux. (c) Hospital model predictions 

of proteostasis flows for a class III protein (strongly misfolded) indicate that it traffics 

mainly through the GroEl system.
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Figure 9. 
Adding external salt shrivels a cell osmotically, which increases internal protein crowding 

and slows protein diffusion, thus slowing cell growth. In the protein transport rate model, 

added salt in the surroundings (fp; horizontal axis) reduces the cell growth rate (vertical axis) 

by densifying the proteins inside and slowing their diffusional transport (68).
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Figure 10. 
Bacteria trade off producing ribosomes versus nonribosomal proteins. This trade-off 

maximizes energy efficiency. (a) In the ribosomal upswitch model, JATP is the rate of 

converting glucose to the nucleoside triphosphates, Jribo is the production rate of ribosomal 

proteins, and Jprot is the production rate of nonribosomal proteins. These relative flows are 

determined by the abundance of glucose. (b) In the predicted fitness landscape, the fast-

growth energy efficiency is maximized when the fraction of nonribosomal proteins is about 

75% (83).
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Figure 11. 
Fitness landscapes for (a) molecular motors and (b) ion pumps. A simple model asserts a 

fitness function for biomolecular machines of power output per unit energy input. Panel a 
shows that five different motors (red circles) appear to optimize their output work (for a 

given input chemical potential from ATP degradation) by how the rate barriers are 

distributed through the kinetic cycle. Panel b shows the same for six different ion pumps (red 
circles). The inset shows a diagram of the F0F1 ATPase motor. Figure adapted with 

permission from Reference 86.
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Figure 12. 
Experimental cell fitness landscapes in systematically controlled environments. (a) 

Producing excess protein (LacZ) reduces cellular fitness. The blue dots and line represent 

the fitness in the absence of the inducer isopropyl β-D-1-thiogalactopyranoside (IPTG), and 

the purple dots and line correspond to the environment with 1 mM IPTG. The red dot is a 

control strain with a deleted lacY gene in the presence of IPTG (89). (b) Increasing the 

concentration of an antibiotic drug in the medium diminishes bacterial fitness nonlinearly. 

Drug-resistant cells are more tolerant, but they are also more sharply inhibited at high drug 

concentrations. Drug resistance is measured by the activity of the the chloramphenicol-

resistance enzyme chloramphenicol acetyltransferase. Lines of different colors represent the 

shape of the fitness landscape at fixed values of drug resistance. Panel b adapted with 

permission from Reference 94. (c) In fluctuating environments, cells evolve across a fitness 

moat to reach higher fitness in those complex environments. The variable E0 is the 

expression level of an operon affecting the growth rate in the absence of IPTG; the colored 

dots represent different stages of adaptation to reach the optimal fitness, progressing from 

green, to blue, to gray, to red. Panel c adapted with permission from Reference 4.
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Figure 13. 
Population fitness landscape as a function of environmental factors. Each point on this 

landscape is the exponential growth rate of a yeast cell population for a given (antibiotic 

drug, drug resistance) combination. Experimentally measured values are indicated as colored 

dots. Abbreviations: atc, anhydrotetracycline; zeo, Zeocin.
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Figure 14. 
The Goldilocks balance that leads to a just-right level of protein: not too much and not too 

little. Population fitness is the result of some microscopic factors: cellular fitness and gene 

expression. For a given cellular fitness landscape (colored shading), cellular gene expression 

(black histograms) can be either unimodal (overlaid with the green fitness landscape) or 

bimodal (overlaid with the blue and orange fitness landscapes). Each point on the 

macroscopic population fitness landscape (colored dots) results from weighted averaging of 

cellular fitness values over the corresponding gene expression distribution. Cellular fitness 

landscapes predict the evolution of gene expression changes: In constant environments, cells 

evolve toward unimodal gene expression located at the peak of each cellular fitness 

landscape. Abbreviations: dox, doxycycline; zeo, Zeocin.
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Figure 15. 
(a) Illustrating the Red Queen idea. Predator chases prey, and neither increases its own 

individual fitness in the evolutionary chase. (b) Illustrating the curl-flux principle. The 

population flow on a landscape is not directly down the gradient of a potential function; it 

also swirls if the system has an out-of-equilibrium driving force.
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Figure 16. 
The Waddington landscape and the new curl-flux-based understanding of it. The stem cell 

state is represented by the valley at the top of the landscape. The differentiated state is 

represented by the two valleys at the bottom. Metaphorically, Waddington differentiation is 

like a ball rolling from the top valley to the bottom ones. Two transcription factors can self-

activate, other-repress, or degrade. The stem state is strong for self-activation (top right); the 

differentiated state is strong for repression (bottom right). What is new is our recent 

understanding of the curl-flux dynamics, showing how the stem cell state is also stable, why 

reprogramming is difficult, and how differentiation requires induction and is not just caused 

by spontaneous fluctuation (19). The full dynamical model shows that the stem cell state is 

stable, not unstable as in Waddington’s static landscape. It shows that the reprogramming 

path is uphill. The dynamics model shows that the reprogramming path is not identical to the 

differentiation path. In the static model, the stem cell state (the hill) is not stable, so a small 

perturbation would allow spontaneous differentiation.
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