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Abstract

Irreversible Thermodynamics and Hydrodynamics
of Biological Membranes

by

Amaresh Sahu

Doctor of Philosophy in Chemical Engineering
University of California, Berkeley

Professor Kranthi K. Mandadapu, Chair

This thesis is concerned with developing a wholistic description of biological membranes:
fascinating materials that make up the boundary of the cell, as well as many of the cell’s
internal organelles. Our formulation of the theory of such materials relies on two well-known
concepts: differential geometry and irreversible thermodynamics. The setting of differential
geometry allows us to describe curves and surfaces, which in this case are embedded in the
three-dimensional Euclidean space, while irreversible thermodynamics provides a theoretical
framework to develop constitutive relations between the various thermodynamic forces and
fluxes in a system. Both concepts are well-known, and are reviewed in Part A.

We build on these classic results in Part B, and develop the theory of irreversible thermo-
dynamics for arbitrarily curved and deforming lipid membranes. In particular, we treat the
membrane as a two-dimensional surface, in which lipids flow in-plane as a two-dimensional
fluid while the membrane bends out-of-plane as an elastic shell. We then obtain the funda-
mental balance laws of mass, linear momentum, angular momentum, energy, and entropy, as
well as the second law of thermodynamics. Finally, we apply the framework of irreversible
thermodynamics to determine appropriate constitutive relations, and substitute them into
the balance laws to obtain the equations governing membrane dynamics. Our main result is
to present the equations of motion and appropriate boundary conditions for three systems
of increasing complexity: (i) a compressible, inviscid membrane, (ii) a compressible, viscous
membrane, and (iii) an incompressible, viscous membrane.

Part C of this thesis focuses on applications of the single-component theory. We begin by
specializing the general governing equations to three commonly observed geometries in bio-
logical systems: planar sheets, spherical vesicles, and cylindrical tubes. A scaling analysis of
the resultant equations reveals membrane dynamics are governed by two dimensionless num-
bers. The well-known Föppl–von Kármán number, Γ , compares tension forces to the familiar
elastic bending forces, while a new dimensionless quantity—which we name the Scriven–Love
number, SL—compares out-of-plane forces arising from the in-plane, intramembrane viscous
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stresses to bending forces. Calculations of non-negligible Scriven–Love numbers in various
biological processes and in vitro experiments show in-plane intramembrane viscous flows
cannot generally be ignored when analyzing lipid membrane behavior, and can never be
ignored in lipid membrane tubes. Moreover, a stability analysis indicates membrane tubes
are unstable above a critical value of Γ , while SL governs the spatiotemporal evolution of the
deforming membrane. We close by investigating a novel hydrodynamic instability in which
an initially local disturbance to an unstable tube yields propagating fronts, which leave a
thin atrophied tube in their wake. Depending on the value of the Föppl–von Kármán number
Γ , the thin tube is connected to the unperturbed regions via oscillatory or monotonic shape
transitions—reminiscent of recent experimental observations on the retraction and atrophy
of axons.
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Chapter I

Introduction and Overview

I took a good clear piece of Cork, and . . . cut a piece off, . . . examining it very
diligently with a Microscope . . . I could exceedingly plainly perceive it to be all
perforated and porous, much like a Honey-comb . . . these pores, or cells, were not
very deep, but consisted of a great many little boxes . . . these . . . were indeed the
first microscopical pores I ever saw, and perhaps, that were ever seen, for I had
not met with any Writer or Person, that had made any mention of them before
this . . .

—ROBERT HOOKE, 1665 ‡

Biological membranes are unique materials comprised of lipids and proteins, which make
up the boundary of the cell and many of the cell’s internal organelles. A primary compo-
nent of such membranes are phospholipid molecules, which have a hydrophilic head group
and two hydrophobic tails—for which a bilayer is energetically favorable in an aqueous en-
vironment (see Fig. 1). One important feature of lipid bilayers is that they are essentially
two-dimensional: bilayers are roughly five nanometers thick, but their other two spatial
dimensions can span tens of microns. Moreover, the bilayer structure allows biological mem-
branes to act as protective barriers, as their hydrophobic interior prevents ions, proteins,
and other water-soluble compounds from passing through them. In this manner, biologi-
cal membranes serve an essential role in separating the cell from its surroundings, and also
compartmentalizing many of the cell’s internal organelles.

While biological membranes are often viewed as simply being static, semipermeable bar-
riers protecting their internal contents, they in fact play a dynamic role in many cellular
processes. Endocytosis, for example, begins when proteins in the surrounding fluid bind to
the cell membrane’s constituent lipids and proteins at a specific location. The bound proteins
locally induce a shallow invagination, to which additional proteins are recruited. A mature
bud eventually develops, and then pinches off into a membrane-bound vesicle that enters the
cell. † This vesicular membrane contains lipids and proteins that were previously on the cell
boundary, and furthermore the vesicle may enclose nutrients or other cargo. Endocytosis is

‡R. Hooke. Micrographia: or, Some Physiological Descriptions of Minute Bodies made by Magnifying
Glasses. With Observations and Inquiries thereupon. London: Royal Society of London, 1665

†M.K. Higgins and H.T. McMahon. “Snap-shots of clathrin-mediated endocytosis”. Trends Biochem.
Sci. 27 (2002), 257–263.
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hydrophobic
interior

aqueous
environment

hydrophobic
tails

hydrophilic
head group

(a) phospholipid molecule (b) lipid bilayer

Figure 1: Schematics of (a) a generic phospholipid molecule and (b) a portion of the
lipid bilayer. Phospholipid molecules are amphiphilic, with a hydrophilic head group and
two hydrophobic, fatty acid tails. In an aqueous environment, a bilayer is energetically
favorable. Moreover, the bilayer structure gives rise to the material’s in-plane fluidity and
out-of-plane elasticity.

thus a key process in transferring nutrients to the cell, regulating the expression of proteins
on the cell surface, and maintaining cell homeostasis. ‡

Another dynamic behavior of biological membranes is the rearrangement of the many
types of constituent lipids and proteins to form heterogeneous domains. For example, T cell
receptors form specific patterns at the immunological synapse when detecting antigens †, ∗—
a phenomenon which is sensitive to the rates of receptor binding and unbinding. §, ♯ It is also
well-known that membrane lipids can phase separate into liquid-ordered (Lo) and liquid-
disordered (Ld) domains, which coexist in many biological settings. ∥, ∀ A first-order phase
transition separates the two phases, and the associated line tension of the interface is relevant
when characterizing membrane behavior. For instance, in phase-separated systems, either
the Lo or Ld domains were observed to bulge outward to reduce the line tension between the
two phases. ♢, $ The boundary between Lo and Ld domains is also relevant in the fusion of
HIV-containing vesicles with target immune cells, as (i) fusion proteins primarily reside at

‡H.T. McMahon and E. Boucrot. “Molecular mechanism and physiological functions of clathrin-mediated
endocytosis”. Nat. Rev. Mol. Cell Bio. 12 (2011), 517–533.

†S.Y. Qi, J.T. Groves, and A.K. Chakraborty. “Synaptic pattern formation during cellular recognition”.
Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 6548–6553.

∗A. Carlson and L. Mahadevan. “Elastohydrodynamics and kinetics of protein patterning in the immuno-
logical synapse”. PLoS. Comput. Biol. 11 (2015), 1–16.

§M.M. Davis et al. “Ligand recognition by αβ T cell receptors”. Annu. Rev. Immunol. 16 (1998), 523–
544.

♯K. Matsui et al. “Kinetics of T-cell receptor binding to peptide/I-Ek complexes: Correlation of the
dissociation rate with T-cell responsiveness”. Proc. Natl. Acad. Sci. U.S.A. 91 (1994), 12862–12866.

∥S.L. Veatch and S.L. Keller. “Seeing spots: Complex phase behavior in simple membranes”. BBA-Mol.
Cell Res. 1746 (2005), 172–185.

∀S.L. Veatch et al. “Critical fluctuations in plasma membrane vesicles”. ACS Chem. Biol. 3 (2008),
287–293.

♢S.L. Veatch and S.L. Keller. “Separation of liquid phases in giant vesicles of ternary mixtures of phos-
pholipids and cholesterol”. Biophys. J. 85 (2003), 3074–3083.

$T. Baumgart, S.T. Hess, and W.W. Webb. “Imaging coexisting fluid domains in biomembrane models
coupling curvature and line tension”. Nature 425 (2003), 821–824.
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the interface between the two phases, and (ii) fusion is believed to be favorable because it
reduces the total line tension energy between the two phases. ‡

In the aforementioned phenomena, and in biological systems more generally, lipid mem-
branes often undergo morphological shape changes over several seconds, in which defor-
mations occur over hundreds of nanometers. Over such length and time scales, biological
membranes behave as unique materials in which lipids flow in-plane as a two-dimensional
fluid, while the entire membrane bends out-of-plane as an elastic shell. To understand this
constitutive behavior, we again consider the bilayer structure, as shown in Fig. 1. We first
recognize lipids and proteins are free to move around within the plane of the membrane: such
displacements maintain the separation between the hydrophobic interior and the surround-
ing fluid, and thus do not cost energy. Moreover, under physiological conditions, there is
no in-plane restoring force to return lipids and proteins to a prior configuration—as evident
from experimental investigations of the in-plane diffusion and coarsening of multi-component
membranes. †, ∗ The in-plane movement of lipids is thus irreversible, and biological mem-
branes have an in-plane fluidity.

The out-of-plane elasticity of lipid membranes can also be understood from the bilayer
structure. In particular, the out-of-plane movement of individual lipids is energetically costly
because it exposes the membrane’s hydrophobic interior to the surrounding, aqueous envi-
ronment. Accordingly, out-of-plane membrane deformations are largely restricted to shape
changes over longer length scales, for which the relative out-of-plane displacement between
adjacent phospholipid molecules remains small. The resultant deformations tend to com-
press one of the bilayer leaflets and stretch the other—both of which cost energy, in a manner
reminiscent of the bending of elastic beams and shells. § In particular, the out-of-plane dis-
placement of lipids during a deformation is reversible, as the lipids can be returned to their
original configuration via an elastic restoring force. ♯ With this understanding, we recognize
that over longer length and time scales, biological membranes deform in the out-of-plane
direction as an elastic shell.

Despite experimental evidence for the dynamic nature and unique constitution of bio-
logical membranes, the physical mechanisms underlying membrane behavior remain poorly
understood. Accordingly, theoretical efforts are required to gain deeper insights into the
many biological phenomena involving lipid membranes—some of which are described above.
The goal of this thesis is to develop a comprehensive theory of lipid membrane behavior,
with a particular emphasis on how the in-plane and out-of-plane dynamics are coupled in
giving rise to a variety of complex biological phenomena. In what follows, we present our
systematic developments.

‡S.-T. Yang, V. Kiessling, and L.K. Tamm. “Line tension at lipid phase boundaries as driving force for
HIV fusion peptide-mediated fusion”. Nat. Commun. 7 (2016), 11401–11409.

†P. Cicuta, S.L. Keller, and S.L. Veatch. “Diffusion of liquid domains in lipid bilayer membranes”. J.
Phys. Chem. B 111 (2007), 3328–3331. arXiv: cond-mat/0611492.

∗C.A. Stanich et al. “Coarsening dynamics of domains in lipid membranes”. Biophys. J. 105 (2013),
444–454.

§P.M. Naghdi. “Finite Deformation of Elastic Rods and Shells”. Proceedings of the IUTAM Symposium
on Finite Elasticity. Ed. by D.E. Carlson and R.T. Shield. Dordrecht: Springer Netherlands, 1982, pp. 47–
103.

♯E.A. Evans. “Bending resistance and chemically induced moments in membrane bilayers”. Biophys. J.
14 (1974), 923–931.
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1. The goals of this thesis
In developing a lipid membrane theory, the phenomena we seek to describe motivate cer-
tain choices for our models. For example, to describe membrane deformations over several
seconds and hundreds to thousands of nanometers, we employ the balance law formalism
of continuum mechanics. ‡ Next, because biological membranes are so thin relative to their
other spatial dimensions, they are treated as a single two-dimensional surface embedded in
the surrounding, three-dimensional space. In doing so, we implicitly assume no slip between
the two bilayer leaflets as the membrane deforms. At this point, we realize that biological
membranes are capable of undergoing arbitrarily large morphological shape transitions—for
which it is prohibitively difficult to use standard Cartesian, cylindrical, and spherical coor-
dinate systems to describe the membrane surface. Moreover, we seek to apply balance laws
on this highly curved surface, which is itself deforming over time. These issues are addressed
by employing the techniques of differential geometry, with which the membrane evolution
and associated balance laws can naturally be expressed. The basic concepts of differential
geometry are reviewed in Chapter II.

Another complexity in developing biological membrane models lies in the nontrivial cou-
pling between in-plane and out-of-plane behaviors—with some being elastic, and others being
dissipative. In fact, all of the membrane phenomena described above involve the out-of-plane
elastic bending being fully coupled to the irreversible processes of (i) the in-plane flow of
lipids, (ii) the in-plane diffusion of lipids and proteins, and (iii) the binding of peripheral pro-
teins to the membrane surface. While comprehensive models are needed to fully understand
the complex behavior of biological membranes, developing such models is difficult because
of the aforementioned coupling between various processes. Prior theoretical efforts instead
focused on the dynamics about specific geometries, †, ∗, § or considered surface flows on a
stationary membrane and their coupling to the hydrodynamics of the surrounding fluid. ♯, ∥

In addition, more general geometric frameworks relying on variational methods were also
established. ∀, ♢, $ However, while the formulation of models from variational models is the-
oretically sound, the techniques involved are not easily extendable to model the coupling
between membrane bending, lipid flow, species diffusion, and chemical reactions.

‡P. Chadwick. Continuum Mechanics: Concise Theory and Problems. 2nd ed. Mineola: Dover, 1999.
†N. Dan, P. Pincus, and S.A. Safran. “Membrane-induced interactions between inclusions”. Langmuir 9

(1993), 2768–2771.
∗T.R. Powers, G. Huber, and R.E. Goldstein. “Fluid-membrane tethers: Minimal surfaces and elastic

boundary layers”. Phys. Rev. E 65 (2002), 041901. arXiv: cond-mat/0201290.
§J.K. Sigurdsson, F.L.H. Brown, and P.J. Atzberger. “Hybrid continuum-particle method for fluctuating

lipid bilayer membranes with diffusing protein inclusions”. J. Comp. Phys. 252 (2013), 65–85.
♯J.K. Sigurdsson and P.J. Atzberger. “Hydrodynamic coupling of particle inclusions embedded in curved

lipid bilayer membranes”. Soft Matter 12 (2016), 6685–6707. arXiv: 1601.06461.
∥B.J. Gross and P.J. Atzberger. “Hydrodynamic flows on curved surfaces: Spectral numerical methods

for radial manifold shapes”. J. Comp. Phys. 371 (2018), 663–689. arXiv: 1803.07594.
∀R. Capovilla and J. Guven. “Stresses in lipid membranes”. J. Phys. A: Math. Gen. 35 (2002), 6233–

6247. arXiv: cond-mat/0203148.
♢A. Agrawal and D.J. Steigmann. “Modeling protein-mediated morphology in biomembranes”. Biomech.

Model. Mechan. 8 (2009), 371–379.
$M. Rahimi and M. Arroyo. “Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of

bilayer membranes”. Phys. Rev. E 86 (2012), 11932–11946.
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In our prior work, ‡ we developed comprehensive membrane models through the framework
of irreversible thermodynamics, within a differential geometric setting. In doing so, we
determined the coupling between all the reversible and irreversible processes mentioned thus
far. In general, irreversible thermodynamics provides a natural way to determine the fluxes
and stresses in any system, as demonstrated in Chapter III—where we review the most
relevant concepts of this framework in the context of a three-dimensional, bulk material.
In doing so, we demonstrate how the equations governing a Newtonian fluid and linear
elastic solid can both be obtained from a single application of the theory. While none
of the results of this chapter are new, many of the ideas will be useful when developing
a lipid membrane theory in Part B. We note that only single-component membranes are
considered in this thesis, and we direct interested readers to our earlier study ‡ for the
equations governing biological membranes in more complicated settings. Given the limited
scope of the presentation in this thesis, it is important to mention we were not the first to
present the equations governing a single-component, arbitrarily curved and deforming lipid
membrane. In fact, three prior independent investigations †, ∗, § arrived at these equations
via different methods—with the timeline of previous efforts discussed in Chapter IV.

After the single-component membrane equations are systematically obtained, we investi-
gate the hydrodynamic stability of these equations in Part C. We focus on the three predom-
inantly observed membrane geometries in biological systems: flat patches, spherical vesicles,
and cylindrical tubes—each of which is a static solution to the governing membrane equa-
tions. For each geometry, the linearized dynamical equations about the base configuration
are determined, and then subsequently non-dimensionalized via a scaling analysis. We close
our investigation of each morphology by examining the membrane’s hydrodynamic stability,
i.e. its response to infinitesimal perturbations. The general findings of our analysis are sum-
marized in Chapter VI, with Chapters VII, VIII, and IX respectively containing the detailed
calculations for flat patches, spherical vesicles, and cylindrical tubes.
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Part A

Basic Concepts



Chapter II

Differential Geometry

In order to describe their mechanics, it is essential to give serious consideration to
the differential geometry of time-dependent surfaces.

—ALLEN M. WAXMAN, 1984 ‡

A characteristic feature of lipid membranes is that their thickness, roughly five nanome-
ters, is much smaller than either of their other two spatial dimensions—typically hundreds
of nanometers to tens of microns. Consequently, within our continuum description, lipid
membranes are modeled as two-dimensional surfaces embedded in the Euclidean 3-space
R3. Lipid membranes can also undergo arbitrarily large shape deformations, and we seek to
develop balance laws and determine the equations of motion on such configurations. It is
therefore necessary to describe the geometry of an arbitrarily curved surface, for which we
turn to the formalism of differential geometry. This chapter is meant to call attention to
the most relevant features of the subject, but for those seeking a deeper understanding we
refer the reader to the works by S. Carroll † and D.J. Struik. ∗ We assume the reader
is familiar with the general concepts of vectors and tensors.

1. The geometry of curves
The description of a one-dimensional curve embedded in R3 is well-known from vector cal-
culus, yet we review several concepts here due to their utility in understanding the more
complicated geometry of surfaces. Suppose we have a curve C parametrized by a general
variable θ, such that the position of the curve x is given by

x = x(θ) . (1)

Equation (1) indicates that for any value of the parameter θ, the position of a point on the
curve, x, is specified in R3. A schematic of such a curve is depicted in Fig. 1.

It is a well-known result of vector calculus that for a curve of the form given in Eq. (1),
the quantity dx/dθ is a vector tangent to the curve. For example, if the curve represents the

‡A.M. Waxman. “Dynamics of a couple-stress fluid membrane”. Studies Appl. Math. 70 (1984), 63–86.
†S. Carroll. “Lecture notes on general relativity”. arXiv preprint (1997). arXiv: gr-qc/9712019.
∗D.J. Struik. Lectures on Classical Differential Geometry. 2nd ed. New York: Dover, 1988.
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Figure 1: A schematic of a curve C in R3. The curve is arc length parametrized, such that
θ = ℓ. At a single point, the unit tangent τ and curvature vector κ are shown. Note κ lies
in the plane normal to τ , depicted in light gray.

trajectory of a point particle parametrized by the time t, the quantity dx/dt is the velocity
of the particle—which points in the direction of the curve. In another example, consider a
curve parametrized by its arc length ℓ, for which (dℓ)2 = dx · dx.. The unit tangent to the
curve, τ , satisfies τ · τ = 1 and is given by

τ :=
dx

dℓ
. (2)

The unit tangent to the curve only carries information about the curve’s orientation, and
changes in τ along the length of the curve C indicate the curve is bending. Accordingly, we
define the curvature vector κ as

κ :=
dτ

dℓ
. (3)

Both the unit tangent τ and curvature vector κ are depicted in Fig. 1. Intuitively, for a
straight line the unit tangent τ will not change along the length of the curve, and so the
curvature vector κ = 0. Furthermore, by taking the derivative of the identity τ · τ = 1
with respect to ℓ, we find κ · τ = 0, such that the curvature vector lies entirely in the plane
normal to the curve.

As mentioned earlier, we presented the well-known description of a parametrized curve
in R3 to review familiar concepts and develop an intuition which will aid in the study of
surface geometries. Indeed, when analyzing a surface it is often helpful to consider a curve on
the surface and then recall the above concepts. Two especially useful results are as follows:
(i) the derivative of a position vector field with respect to a parametric variable yields a
vector tangent to the curve, and (ii) the derivative of the tangent vector with respect to a
parametric variable quantifies the curvature.

2. The geometry of surfaces
Just as the position of a curve is parametrized by a single variable θ, the position of a
two-dimensional surface is parametrized by two variables—which we denote θ1 and θ2. Ac-
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Figure 2: A schematic of a parametrized surface. Lines of constant θα are depicted with
dotted lines, and the tangent plane at a particular point x is shown in gray. The tangent
plane is defined by the two in-plane basis vectors a1 and a2, which in turn define the unit
normal to the surface n.

cordingly, the position of the surface is written as

x = x(θ1, θ2) . (4)

As a shorthand from now on, α and other Greek indices span the set {1, 2}, such that θα
refers to both θ1 and θ2, and the position in Eq. (4) can be written as x = x(θα).

With the surface position given in Eq. (4), we construct curves of constant θα by holding
either θ1 or θ2 fixed and allowing the other coordinate to vary (Fig. 2). These curves will
in general not be arc length parametrized, so the vectors ∂x/∂θα will be tangent to the
curve but in general will not be normalized. We denote the tangent vectors induced by the
parametrization as

aα := x,α , (5)

where here and from now on we use the shorthand ( · ),α := ∂( · )/∂θα to denote the partial
derivative with respect to θα.

Now consider two curves—one of constant θ1 and one of constant θ2—crossing at a point
x. Because θ1 and θ2 parametrize the surface, the tangent vectors a1 and a2 at that point
are linearly independent and thus form a basis of the tangent plane at x, as shown in Fig.
2. The basis vectors {aα} play a fundamental role in describing the geometry of a surface,
and we now describe several of their important properties.

(a). The metric tensor
For a general surface, the change in position dx resulting from differential changes in the
parametrized values dθα is given by

dx =
2∑

α=1

x,α dθ
α = aα dθ

α , (6)
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a2

a1
a1

a2

a1

a2

a1

a2

(a) (b)

Figure 3: The relationship between the covariant and contravariant bases vectors. In (a),
the in-plane basis vectors are portrayed on the tangent plane above a surface. In (b), we
zoom in on the tangent plane. Note a1 and a2, as well as a1 and a2, are required to be
orthogonal.

where in the second equality we substituted Eq. (5) and introduced the Einstein summation
convention—in which indices repeated in a superscript and subscript are always summed
over. We use this convention throughout for notational convenience. To find the length of
the differential element in Eq. (6), we calculate

|dx|2 = dx · dx = aαdθ
α · aβdθ

β = aαβ dθ
α dθβ . (7)

In the last term of Eq. (7) we introduced the metric tensor aαβ (sometimes referred to as
the covariant metric tensor), defined as

aαβ := aα · aβ (8)

and so-called because it relates changes in the parametrization to a length measured on the
surface. Note that as the indices ‘α’ and ‘β’ span the set {1, 2}, the metric tensor has four
components: a11 = a1 · a1, a12 = a21 = a1 · a2, and a22 = a2 · a2.

The basis vectors {aα} at any point on the surface define a tangent plane to the surface,
and we correspondingly define a dual basis {aα} such that

aα · aβ = δαβ , (9)

where δαβ is the Kronecker delta given by δ11 = δ22 = 1 and δ12 = δ21 = 0. The geometric
relationship between the {aα} and {aα} bases is shown in Fig. 3. Note in particular a1 need
not be orthogonal to a2, and a1 need not be orthogonal to a2. The {aα} basis is also known
as the contravariant basis. We explain the notion of contravariance, as well as the reason for
our raising and lowering Greek indices, in the next section. As aα is a vector in the tangent
plane, we can decompose it in the {aλ} basis as

aα = aαλaλ , (10)

where aαλ is an unknown quantity we solve for. On substituting Eqs. (8) and (10) into Eq.
(9), we find

aαλaλβ = δαβ , for which
(
aαβ
)
=
(
aαβ
)−1

. (11)
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In Eq. (11), (aαβ)−1 denotes the matrix inverse of aαβ. We have thus determined the form
of aαβ, which is called the contravariant metric tensor. It can additionally be calculated as

aαβ = aα · aβ . (12)

By applying the matrix inverse (aαλ)−1 to both sides of Eq. (10) and substituting Eq. (11),
we obtain the relation

aα = aαβ a
β . (13)

(b). The notions of covariance and contravariance
In this section we explain our notation, in which Greek indices can be either raised or
lowered, and the closely related concepts of covariant and contravariant quantities. An
arbitrary vector t in the tangent plane can be expressed in the {aα} basis as

t = tαaα , (14)

and as per the definition of a vector, t is invariant to our choice of the parametrization θα.
The basis vectors aα, however, clearly depend on the choice of parametrization [see Eq. (5)].
Accordingly, the vector components tα must depend on θα in an inverse sense, such that
under a change of coordinates the vector t does not change. In general, raised and lowered
indices indicate how a quantity transforms—thus, for example, θα and tα transform in the
same way. We proceed to describe these ideas in detail.

Consider a change of the parametrization from unprimed to primed coordinates

θα → θα
′
, (15)

in which we use primed coordinates to indicate a different parametrization of the surface.
Under the coordinate transformation in Eq. (15), the basis vectors aα are transformed to
the primed coordinates according to

aα′ =
∂x

∂θα′ =
∂x

∂θα
∂θα

∂θα′ =
∂θα

∂θα′ aα , (16)

where ∂θα/∂θα′ is the 2×2 matrix representing the coordinate transformation. As mentioned
earlier, for the vector t to be invariant to a change of coordinates, the components tα must
transform in an inverse manner to aα. The coordinate transformation in Eq. (15) is invertible,
so we write the inverse transformation matrix as(

∂θα

∂θα′

)−1

=
∂θα

′

∂θα
, such that tα

′
=

∂θα
′

∂θα
tα . (17)

With Eqs. (16) and (17), we find the vector t can be expressed as

t = tα
′
aα′ = tβ

∂θα
′

∂θβ
∂θα

∂θα′ aα = tβ
∂θα

∂θβ
aα = tαδαβ aα = tαaα , (18)

and is thus invariant to a change of coordinates.
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In general, every quantity with a single Greek index will transform under a change of
coordinates. As we have seen, such quantities can transform in the same way as the basis
vectors aα, or in the opposite way. Those which “co-vary,” or transform in the same way,
are termed covariant, while those which “contra-vary,” or transform in the opposite way, are
termed contravariant. The notions of covariance and contravariance are essential because
physical, measurable quantities are invariant to our choice of coordinates. Furthermore, our
notation automatically dictates whether an indexed quantity is covariant or contravariant—
consider, for example, expanding the vector t in the {aα} basis as

t = tαa
α . (19)

Based on the index placement alone, tα is a covariant quantity while aα is a contravariant
one. As our notation dictates which basis we are working in, we will often refer to tα as a
contravariant vector and tα as a covariant vector, with the basis implied.

The notions of covariance and contravariance apply to the components of a tensor as well.
A general second-order tensor T defined in the tangent plane can be written equivalently as

T = Tαβ aα ⊗ aβ = Tα
β aα ⊗ aβ = Tα

β aα ⊗ aβ = Tαβ a
α ⊗ aβ , (20)

where ⊗ denotes the outer or dyadic product between two vectors. We therefore refer to
the covariant tensor components Tαβ, the contravariant tensor components Tαβ, and the
mixed tensor components Tα

β and Tα
β. The tensor components transform under Eq. (15)

as expected given the placement of the indices, as for example

Tα′
β′ =

∂θβ

∂θβ′

∂θα
′

∂θα
Tα

β . (21)

Just as in the case of vectors, we often refer to Tαβ as a contravariant tensor, as the basis
is implied. We have already done so in calling aαβ the covariant metric tensor and aαβ the
contravariant metric tensor.

It will often be useful to convert a covariant quantity into a contravariant quantity and
vice versa, for which we use the metric tensor aαβ and contravariant metric tensor aαβ. The
covariant and contravariant components of an in-plane vector t are related by

tα = aαβ tβ and tα = aαβ t
β . (22)

Equation (22) holds for any covariant and contravariant quantities, as already seen in Eqs.
(10) and (13). Just as the metric tensor aαβ and dual metric tensor aαβ convert between
covariant indices and contravariant indices in Eq. (22), the indices of tensors are raised and
lowered according to

Tα
β = Tαλ aλβ and Tαβ = Tα

λ a
λβ . (23)

Note that a covariant tensor Sαβ is symmetric if Sαβ = Sβα. If one index is then raised, the
order of the indices is not important and the tensor may be written as Sα

β .
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(c). The Christoffel symbols and the covariant derivative
At this point, we consider how the partial derivatives of covariant and contravariant quanti-
ties transform under Eq. (15). Note the partial derivative of the position x with respect to θα
gave the covariant vectors aα, and in general the partial derivative of an invariant quantity
will be covariant. We seek to determine how the partial derivative acts on the components of
a vector, and whether the resultant quantity transforms as the components of a tensor. To
this end, we calculate how tα,β transforms under the coordinate transformation in Eq. (15)
and find

tα
′

,β′ =
∂

∂θβ′

[ = tα
′︷ ︸︸ ︷

∂θα
′

∂θα
tα
]

=
∂θβ

∂θβ′

∂

∂θβ

[
∂θα

′

∂θα
tα
]

=
∂θβ

∂θβ′

∂θα
′

∂θα
tα,β + tα

∂θβ

∂θβ′

∂

∂θβ

[
∂θα

′

∂θα

]
.

(24)

In Eq. (24), we started by writing out how tα
′ transformed in the first line, used the chain

rule to get to the second line, and used the product rule to get to third line. If tα,β were to
transform as a tensor, only the first term in the third line of Eq. (24) would remain, as was
the case for Tα

β in Eq. (21). Consequently, tα,β is not a tensor, and by similar arguments we
can show tα,β is not a tensor either.

While the partial derivatives of covariant and contravariant vectors are non-tensorial, it is
possible to add quantities to the partial derivatives such that they transform appropriately.
Such quantities are called Christoffel symbols, denoted Γα

βµ, and are defined according to

Γα
βµ :=

1

2
aαν
(
aνβ,µ + aνµ,β − aβµ,ν

)
, (25)

and are equivalently calculated as

Γα
βµ = aα · aβ,µ = −aα

,µ · aβ . (26)

The covariant derivative, denoted ( · );α, is defined as

tα;β := tα,β + Γα
βµt

µ and tα;β := tα,β − Γµ
αβ tµ (27)

for contravariant and covariant vectors, respectively. Importantly, tα;β and tα;β now obey the
tensor transformation law [cf. Eq. (21)]

We provide several useful relations involving the covariant derivative. First, the covariant
derivative of the covariant and contravariant metric tensor is zero, written as

aαβ;µ = 0 and aαβ;µ = 0 . (28)

Furthermore, when operating on an invariant quantity the covariant derivative reduces to
the partial derivative, such that

ϕ;α = ϕ,α and v;α = v,α (29)
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for an arbitrary scalar field ϕ and arbitrary vector field v. Finally, we introduce the surface
Laplacian operator ∆s (also called the Laplace–Beltrami operator), defined as

∆s( · ) := aαβ ( · );αβ . (30)

(d). The unit normal vector
Because the two-dimensional surface under consideration is embedded in R3, we can construct
a unit vector normal to the surface at every point. The unit normal, denoted n, is also
orthogonal to the tangent plane and is constructed from the in-plane basis vectors a1 and
a2 according to (see Fig. 2)

n :=
a1 × a2

|a1 × a2|
. (31)

We simplify the denominator of Eq. (31) by calculating

|a1 × a2|2 =
(
a1 × a2

)
·
(
a1 × a2

)
=
(
a1 · a1

) (
a2 · a2

)
−
(
a1 · a2

) (
a2 · a1

)
= a11a22 − a12a21

= det aαβ ,

(32)

such that n can be written as
n =

a1 × a2√
det aαβ

. (33)

With a unit normal n at every point on the surface, the sets {a1,a2,n} and {a1,a2,n}
form bases of R3 such that any general vector v can be decomposed as

v = vαaα + vn = vαa
α + vn . (34)

In Eq. (34), vα and vα are the contravariant and covariant components, respectively, of
the vector v while v is the normal component and is invariant to a change in the surface
parametrization. We can furthermore define the surface identity tensor i in the tangent
plane and identity tensor 1 in R3, respectively, as

i := aα ⊗ aα and 1 := i + n⊗ n . (35)

(e). The curvature of a surface
The derivatives of the unit normal n in the θα directions contain information about the
curvature of the surface. We accordingly define the curvature tensor b as

b := −n,α ⊗ aα , (36)

where the dyadic product ensures b is an invariant quantity. Taking the partial derivative of
both sides of the identity n · n = 1 with respect to θα gives n · n,α = 0, so n,α lies entirely
in the tangent plane. We expand n,α in the {aβ} basis as

n,α = −bβαaβ , (37)
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substitute Eq. (37) into Eq. (36), and swap the dummy indices ‘α’ and ‘β’ to obtain

b = bαβ a
α ⊗ aβ . (38)

The covariant components of the curvature tensor, bαβ, can be obtained by contracting Eq.
(37) with aµ—yielding aµ · n,α = −bαβaβ · aµ = −bαβ δβµ = −bαµ. By rearranging dummy
indices, we find

bαβ = −n,β · aα = −
(
n · aα︸ ︷︷ ︸

=0

)
,β

+ n · aα,β = n · x,αβ , (39)

where we used the orthogonality of n and aβ, as well as the relation aβ = x,β. Equation
(39) shows the surface curvature is connected to the second derivative of the position with
respect to the parametrization; the analogous result for curves was presented in Eq. (3).
Moreover, Eq. (39) indicates the curvature tensor is symmetric. We note Eq. (37) is called
the Weingarten equation, and plays an important role in calculating the gradients of vectors
and tensors—as will be discussed in §2 (g). The curvature tensor obeys the relations

bαµ;β = bβµ;α , (40)

which are known as the Mainardi–Codazzi equations (stated without proof here). In two
dimensions, the only nontrivial equations are b12;2 = b22;1 and b21;1 = b11;2.

With the metric and curvature tensors we calculate the mean and Gaussian curvatures of
the surface. The mean curvature H is defined as

H :=
1

2
tr b =

1

2
aαβ bαβ , (41)

and the Gaussian curvature K is defined as

K := det b =
1

2
εαβ εµν bαµ bβν =

det(bαβ)

det(aαβ)
, (42)

where the Levi–Civita tensor εαβ is given by ε12 = −ε21 = 1/
√

det(aαβ) and ε11 = ε22 = 0.
We also introduce the cofactor of curvature b̄αβ, defined as

b̄αβ := 2Haαβ − bαβ , or equivalently b̄αβ = εαµεβν bµν , (43)

where bαβ = aαµaβν bµν are the contravariant components of the curvature tensor. We use
the cofactor of curvature as a matter of convenience, because it satisfies

b̄αβ;β = 0 . (44)

The Gaussian curvature is related to the metric, curvature, and cofactor of curvature
tensors via

b̄αµ bβµ = Kaαβ and b̄αβ bαβ = 2K . (45)
The Gaussian curvature also plays an important role in breaking the commutativity of the
covariant derivative, as we now demonstrate. We introduce the Riemann–Christoffel tensor
Rα

βµν , given by the relations

Rα
βµν = aαλRλβµν and Rαβµν = K

(
aαµaβν − aανaβµ

)
. (46)
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Equation (46) is K.F. Gauss’ Theorema Egregium. ‡ The Riemann–Christoffel tensor con-
tains information about how covariant derivatives commute, as shown in the relations

vα;βµ = vα;µβ + Rν
αβµvν and vα;βµ = vα;µβ − Rα

νβµv
ν . (47)

It is also useful to define the Ricci curvature tensor Rαβ as the contraction of the first and
third indices of the Riemann–Christoffel tensor, which is found to be

Rαβ := Rµ
αµβ = aµνRµανβ = Kaαβ . (48)

With Eqs. (47) and (48), we find

vα;αβ = vα;βα − Kvβ , (49)

indicating nonzero Gaussian curvatures break the commutativity of the covariant derivative.
Equation (49) is useful when obtaining the in-plane equations of motion governing biological
membranes, as viscous forces arise in part from two derivatives of the in-plane velocity.

(f). Considerations at the edge of a surface
When describing an arbitrary surface patch P , the surface boundary will not in general be
aligned with one of the in-plane basis vectors aα. It is thus useful to define a new basis
on the patch boundary ∂P . Consider the tangent plane at a point xb = x(θαb ) on ∂P , with
normal vector n (see Fig. 4). We define in-plane orthonormal basis vectors τ and ν, where
τ is tangent to the boundary while ν is orthogonal to τ . Both τ and ν are orthogonal to the
surface normal n, as they lie in the tangent plane. If the surface boundary is parametrized
by its arc length ℓ, the in-plane unit tangent τ and unit normal ν are defined as [cf. §1]

τ :=
dxb

dℓ
= aα

dθαb
dℓ

and ν := τ × n . (50)

The orthonormal basis {τ ,ν,n} at position xb on the boundary ∂P is depicted in Fig. 4.
With a new set of basis vectors on the patch boundary, it is convenient to relate ν and

τ to the covariant and contravariant basis vectors aα and aα. To this end, we decompose ν
and τ in the {aα} basis as

ν = ναaα and τ = ταaα , (51)

such that τα = dθαb/dℓ [cf. Eq. (50)1]. By swapping repeated indices in Eq. (51) and con-
tracting the two relations with aα we find

aα · ν = να and aα · τ = τα . (52)

As {ν, τ} is a basis of the tangent space, we express the surface identity tensor i (35) as

i := ν ⊗ ν + τ ⊗ τ . (53)
‡K.F. Gauss. General investigations of curved surfaces of 1827 and 1825. Transl. by J.C. Morehead and

A.M. Hiltebeitel. Princeton: Princeton University Library, 1902.
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Figure 4: A schematic of a patch of surface P. At each point x on the patch we define the
in-plane vectors a1 and a2 as well as the normal vector to the plane n. The set {a1,a2}
constitutes a basis for the tangent plane at any location, while the set {a1,a2,n} forms a
basis of R3. At every point xb = x(θαb ) on the patch boundary ∂P, we define the in-plane
unit tangent τ and unit normal ν—which also form a basis of the tangent plane.

Accordingly, with Eqs. (51) and (52), we find

aα = i aα = ν (ν · aα) + τ (τ · aα) = ναν + τατ . (54)

By substituting Eq. (54) into the expression of the curvature tensor b in Eq. (38), we obtain

b = bαβ
(
ναν + τατ

)
⊗
(
νβν + τβτ

)
= bαβ ν

ανβ ν ⊗ ν + bαβ τ
ατβ τ ⊗ τ + bαβ ν

ατβ ν ⊗ τ + bαβ τ
ανβ τ ⊗ ν

= κν ν ⊗ ν + κτ τ ⊗ τ + ξ
(
ν ⊗ τ + τ ⊗ ν

)
.

(55)

In Eq. (55), the normal curvatures in the ν and τ directions, κν and κτ , are calculated as

κν := bαβ ν
ανβ = b̄αβ τατβ and κτ := bαβ τ

ατβ = b̄αβ νανβ , (56)

respectively. Additionally, the twist on the boundary ξ is defined as

ξ := bαβ ν
ατβ . (57)

We can thus express the curvature tensor b in the orthonormal basis {ν, τ} as

b =

(
κν ξ
ξ κτ

)
. (58)

The components κν and κτ are the magnitudes of the curvature vector κ (3) for curves in
the ν and τ directions along the surface, respectively, while the twist ξ accounts for how,
for example, the normal to a curve along ν changes in the τ direction. We also find, based
on the relations H = 1

2
tr b (41) and K = det b (42), that the mean and Gaussian curvatures

at the membrane boundary can be written as

H =
1

2

(
κν + κτ

)
and K = κν κτ − ξ2 . (59)



Ch. II §2 differential geometry 20

(g). The variation of the basis vectors
To conclude our discussion, we note that for an arbitrarily curved surface, the basis vectors
aα and n will in general vary along the surface. We calculate n,α by recognizing n · n = 1,
such that taking the partial derivative of both sides yields n · n,α = 0 and thus n,α has
components only in the tangent plane. We already recognized how n,α is connected to the
curvature tensor through the Weingarten equation (39), which is more often written as

n,α = −bβα aβ . (60)

To calculate the covariant derivative of aα, we first calculate

aα;β · n =
(
aα · n︸ ︷︷ ︸

=0

)
;β
− aα · n,β︸︷︷︸

=n;β

= bαβ , (61)

where in the first equality we used the product rule as well as the equality of covariant and
partial derivative for invariant quantities, while in the second equality we used the result of
Eq. (39). We next calculate

aα;β · aµ = aα,β · aµ − Γν
αβ aν · aµ︸ ︷︷ ︸

= δµν

= Γµ
αβ − Γµ

αβ = 0 , (62)

where we used the definition of the covariant derivative (27) and the Christoffel symbols
(26). With these two results we find

aα;β = bαβ n , (63)

which is known as the Gauss equation.
The Gauss (63) and Weingarten (60) equations are of tremendous practical importance

when calculating the gradients of vectors and tensors on a surface. Consider, for example,
the partial derivative of the general vector v given in Eq. (34), which we calculate as

v,α = v;α =
(
vβaβ + vn

)
;α

= vβ;αaβ + vβaβ;α + v,αn + vn,α

=
(
vβ;α − vbβα

)
aβ +

(
v,α + vβ bβα

)
n .

(64)

In Eq. (64), we used the equivalence of partial and covariant derivatives for invariant quan-
tities, then used the product rule in the second line, and substituted the Gauss (63) and
Weingarten (60) equations in the third line.

(h). Examples
To demonstrate how the tools described above are used in practice, we work through two
examples involving geometries in which biological membranes are frequently observed. In
the first case, we describe the geometry of an unperturbed sphere. In the second case, we
describe a slightly deformed planar surface, which remains in one-to-one correspondence with
a plane. The well-known parametrization used in the latter is attributed to G. Monge ‡,
and called the Monge parametrization.

‡G. Monge. Application de l’analyse à la géométrie. Paris: Bernard, 1807.
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Example 1: Spherical Geometry

φ

θ R

Consider a spherical surface with polar an-
gle θ and azimuthal angle φ, such that the
surface position is given by

x(θ, φ) = R er(θ, φ) ,

where R is the sphere radius. We choose the
parametrization θ1 = θ and θ2 = φ, such that
the in-plane basis vectors are given by

a1 =
∂x

∂θ
= R

∂er

∂θ
= R eθ

and
a2 =

∂x

∂φ
= R

∂er

∂φ
= R sin θ eφ .

The normal vector n is calculated to be

n =
a1 × a2

|a1 × a2 |
=

R2 sin θ (eθ × eφ)

R2 sin θ |eθ × eφ |
= er ,

as expected. Note that if we switched our parametrization such that θ1 = φ and
θ2 = θ, the normal would point towards the center rather than outwards. For our
purposes, we will always choose a surface parametrization for which the normal points
outwards. We calculate a1 · a1 = R2, a1 · a2 = 0, and a2 · a2 = R2 sin2 θ, such that
the covariant metric tensor is given by

aαβ =

(
R2 0

0 R2 sin2 θ

)
.

Next, we calculate
x,11 = a1,1 = R

∂eθ

∂θ
= −R er ,

x,12 = x,21 = a1,2 = R
∂eθ

∂φ
= R cos θ eφ ,

and
x,22 = a2,2 = R sin θ

∂eφ

∂φ
= −R sin θ

(
cos θ eθ + sin θ er

)
.
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With these relations, we calculate the curvature tensor through the relation bαβ =
n · x,αβ, and obtain

bαβ =

(
−R 0

0 −R sin2 θ

)
.

We then determine the contravariant metric and curvature tensors according to aαβ =
(aαβ)

−1 and bαβ = aαµaβνbµν , for which

aαβ =

(
R−2 0

0 R−2 csc2 θ

)
and bαβ =

(
−R−3 0

0 −R−3 csc2 θ

)
.

At this point, we calculate the mean curvature as

H =
1

2
aαβ bαβ =

1

2

{
a11b11︸ ︷︷ ︸

=R−2·(−R)

+ a12b12︸ ︷︷ ︸
=0

+ a21b21︸ ︷︷ ︸
=0

+ a22b22︸ ︷︷ ︸
=R−2 csc2 θ·(−R sin2 θ)

}

= − 1

R
,

and the Gaussian curvature as

K =
det(bαβ)

det(aαβ)
=

R2 sin2 θ

R4 sin2 θ
=

1

R2
.

Finally, by using the relation Γα
βµ = aα · aβ,µ, we find a sphere has four non-zero

Christoffel symbols—given by

Γ1
22 = a1 · a2,2 = R−1eθ · (−R sin θ cos θ eθ −R sin2 θ er) = − sin θ cos θ ,

Γ2
12 = a2 · a1,2 = R−1 csc θ eφ ·R cos θ eφ = cot θ ,

and
Γ2
21 = a2 · a2,1 = a2 · a1,2 = Γ2

12 = cot θ .

We note here that Christoffel symbols are symmetric in the lower two indices, as can
be seen from how they are calculated.
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Example 2: Monge Parametrization

Consider a nearly planar surface lying above the x–y plane, such that the position
of the surface can be specified everywhere as the height h(x, y) above each point
(x, y) in the plane. We choose the parametrization θ1 = x and θ2 = y, such that the
position of the surface is given by

x = xe1 + ye2 + h(x, y)e3 = θαeα + h(θα)e3 ,

where ei are unit vectors in the ith direction in R3. In choosing such a parametriza-
tion, we have implicitly assumed there is no point (x, y) for which two heights exist—
as would be the case for a sphere or cylinder. Thus the Monge parametrization is
generally used in the limit of small deformations, where h ≪ 1, such that no tubes
or buds form. In this example, we will first consider a general height h and then
afterwards take the small deformation limit.

For the chosen parametrization, the in-plane basis vectors aα are given by

aα = x,α = eα + h,αe3 .

We then calculate

a1 × a2 =
(
e1 + h,xe3

)
×
(
e2 + h,ye3

)
= e3 − h,xe1 − h,ye2 = e3 − h,αeα

and
|a1 × a2 | =

√
1 + (h,x)2 + (h,y)2 ,

for which the unit normal n is found to be

n =
a1 × a2

|a1 × a2 |
=

e3 − h,αeα√
1 + (h,x)2 + (h,y)2

.

With the basis vectors {aα,n}, we calculate the metric tensor as

aαβ = aα · aβ =
(
eα + h,αe3

)
·
(
eβ + h,βe3

)
= δαβ + h,αh,β .

Next, we recognize x,αβ = aα,β = (eα + h,αe3),β = h,αβ e3, from which we calculate
the curvature tensor via the relation bαβ = n · x,αβ as

bαβ =
h,αβ√

1 + (h,x)2 + (h,y)2
.

As we have seen in this and the previous example, it is evident that once a parametriza-
tion θα is chosen and the position x is known, all of the geometric quantities can be
calculated.
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At this point, we choose to work in the small deformation limit where |h,α| ≪ 1
to simplify further calculations. Keeping terms to second order in h, the in-plane
basis vectors and metric tensor are unchanged. The normal vector simplifies to

n =

(
1 − 1

2

[
(h,x)

2 + (h,y)
2
])

e3 − h,αeα ,

and consequently the curvature tensor simplifies to

bαβ = n · x,αβ = n · h,αβ e3 = h,αβ .

From the metric tensor aαβ we calculate the contravariant metric tensor as

aαβ =
(
aαβ
)−1

= δαβ − h,αh,β + O(h3) .

To lowest order in h, the mean curvature H is calculated to be

H =
1

2

(
h,xx + h,yy

)
=

1

2
∆sh ,

where for nearly planar systems the surface Laplacian is given by

∆s( · ) = ( · ),xx + ( · ),yy .

Again to lowest order in h, the Gaussian curvature K is found to be

K = h,xx h,yy − (h,xy)
2 ,

which is the determinant of the Hessian matrix h,αβ. These results, valid for small
deformations, give an intuition about the geometric description of the surface.
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Chapter III

Irreversible Thermodynamics

Classical thermodynamics has solved the problem of the competition between ran-
domness and organization for equilibrium situations. How then is it possible to
extend these results to dissipative systems? What part of the energy flow may be
used to create and maintain some structure in such systems?

—ILYA R. PRIGOGINE, 1955 ‡

In arriving at a continuum description of any material, an essential requirement is to
determine the form of the stresses in said material. In doing so, one captures how forces
are transmitted between different portions of the body. Experiments are used to determine
the material stresses whenever possible. For example, measurements of the stress versus
strain in three-dimensional elastic solids and stress versus strain rate in three-dimensional
Newtonian fluids yield the well-known stress tensors of the aforementioned materials. For
lipid membranes, however, it is prohibitively difficult to perform the analogous experiments.
Accordingly, other techniques are required in order to determine the form of the membrane
stresses.

In this work, we employ the framework of irreversible thermodynamics † to determine
the equations governing lipid membrane systems. The present chapter serves to introduce
the most important concepts of the framework by considering two more familiar systems: a
bulk ∗ Newtonian fluid and a bulk elastic solid. In doing so, we show how a single continuum
description can be used to describe both fluids and solids. Moreover, we demonstrate how
within the framework of irreversible thermodynamics, one can obtain the governing equations
of two different materials by choosing the appropriate form of the Helmholtz free energy, and
with knowledge of the dissipative phenomena within the system. None of the results here are
new: the unified description of fluids and solids was first presented by K.K. Mandadapu, §

‡I. Prigogine. Introduction to Thermodynamics of Irreversible Processes. 3rd ed. New York: Interscience
Publishers, 1967.

†The framework also goes by the name non-equilibrium thermodynamics.
∗Throughout this work, we will use ‘bulk’ synonymously with ‘three-dimensional.’
§K.K. Mandadapu. “Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the

Heat Transport Coefficient of Solids and Mixtures”. PhD thesis. University of California, Berkeley, 2011.
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who extended the seminal works of I. Prigogine, ‡ L. Onsager, †, ∗ S.R. de Groot, §

and P. Mazur. §

The chapter is organized as follows. We begin by presenting the canonical kinematic
description of continuum systems. Next, the local forms of the balance of mass, linear mo-
mentum, and angular momentum are obtained. At this point, rather than postulating the
form of the stress tensor for a given material, we develop local forms of the first and sec-
ond laws of thermodynamics. By relating the rate of change of internal energy and entropy
via the Helmholtz free energy, we combine the aforementioned balance laws into a single
equation. Only then do we differentiate between fluid and solid materials: the fundamental
thermodynamic variables describing a fluid are its density and temperature, while those of an
elastic solid are its deformation gradient and temperature. With the fundamental thermo-
dynamic variables, and our knowledge that fluid flow is dissipative and elastic deformations
are reversible, we follow the standard techniques of irreversible thermodynamics to obtain
general relations for the stress tensor of a fluid and solid. By then proposing a form of the
Helmholtz free energy and substituting the resultant fluid and solid stresses into the linear
momentum balance, we respectively obtain the Navier–Stokes and Cauchy–Navier equations.

1. The kinematics of a bulk material
We begin by describing the kinematics of a general continuum material. Consider an abstract
body B as a collection of material points. At any time t, we define the configuration of the
body to be the domain Q ⊂ R3 occupied by B, of which we consider an arbitrary region
R ⊆ Q. The position of any point within the region R is given by

x = xiei , with xi = x · ei . (1)

In Eq. (1), summation is implied over repeated Roman indices, which span the set {1, 2, 3}.
Here, {ei} is an orthonormal basis of R3. The configuration of the body B at time t, or
equivalently R(t), is called the current configuration. We next consider the configuration of
B at an arbitrary reference time t0, for which we are concerned with the region R0 := R(t0).
The position of any point in R0 is written as

X = XAEA , with XA = X ·EA (2)

and the orthonormal basis {EA} not necessarily equal to {ei}. We follow the standard
notation in which quantities in the reference configuration R0 either have a subscript ‘0’ or
are capitalized.

We seek to describe how the body evolves over time from its reference configuration R0 to
its current configuration R(t). To this end, we define the motion χ̂ : R3 ×R → R3 mapping
the reference position X to the current position x, as a function of time t. Formally, we
write

x = χ̂(X, t) or equivalently xi = χ̂i(XA, t) . (3)
‡Prigogine, Introduction to Thermodynamics of Irreversible Processes.
†L. Onsager. “Reciprocal relations in irreversible processes. I.”. Phys. Rev. 37 (1931), 405–426.
∗L. Onsager. “Reciprocal relations in irreversible processes. II.”. Phys. Rev. 38 (1931), 2265–2279.
§S.R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. New York: Dover, 1984

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265


Ch. III §1 the kinematics of a bulk material 27
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Figure 1: A schematic of the mappings χ̂(X, t) and χ−1(x, t) between the reference (left)
and current (right) configurations.

As all configurations can be mapped to the reference configuration, the reference position
X labels material points, while χ̂ tracks those material points over time. We additionally
introduce the inverse mapping χ−1 : R3 × R → R3 as

X = χ−1(x, t) or equivalently XA = χ−1
A (xi, t) . (4)

A schematic of the reference and current configurations, and the mapping between them, is
illustrated in Fig. 1.

With the motion χ̂ of the material over time, we describe the kinematics of the body.
The deformation gradient

F̂ (X, t) :=
∂χ̂

∂X
, or equivalently F̂iA(XB, t) =

∂χ̂i

∂XA

, (5)

describes the change in distance between neighboring points as the material deforms. In
Eq. (5) and from now on, a ‘hat’ accent indicates we are using a Lagrangian description, in
which the function depends on the reference position X and time t. Note the deformation
gradient is a so-called two-point tensor: as F̂ = F̂iA ei ⊗EA, it has one ‘leg’ in the current
configuration and one ‘leg’ in the reference configuration. When the material deforms, the
relative volume change of an infinitesimal element of the body B is captured by the Jacobian
J̃ , given by

J̃ = Ĵ(X, t) = det
(
F̂ (X, t)

)
=

dv

dV
, (6)

where dv is a differential volume element in the current configuration and dV is the volume
of that same element in the reference configuration (we will comment on our use of the ‘tilde’
accent below). The velocity ṽ is the rate of change of position of a material point, and is
given by

ṽ = v̂(X, t) =
∂

∂t

(
χ̂(X, t)

)
. (7)
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The acceleration c̃ is similarly expressed as ‡

c̃ = ĉ(X, t) =
∂

∂t

(
v̂(X, t)

)
=

∂2

∂t2

(
χ̂(X, t)

)
, (8)

i.e. the rate of change of velocity of a material point.
While Eqs. (6)–(8) are useful to study solid materials, in fluid descriptions quantities are

often expressed in terms of the current configuration. We formally define the velocity as a
function of the current position x and time t as

ṽ = v(x, t) = v̂
(
χ−1(x, t), t

)
, (9)

where here and from now on a quantity with a ‘hat’ accent depends on X and t, a quantity
with no accent depends on x and t, and a quantity with a ‘tilde’ accent can refer to either
description. We then calculate the acceleration c as the material time derivative of the
velocity, given by

c̃ = c(x, t) =
∂

∂t

(
v(x, t)

)∣∣∣
X

=
∂

∂t

(
v(x, t)

)
+

[
∂

∂x

(
v(x, t)

)] ∂
∂t

(
χ̂(X, t)

)
=

∂v

∂t
+
(
∇v
)
v .

(10)

In the last line in Eq. (10), we introduced the shorthand ∇( · ) := [∂( · )/∂x]|t for the spatial
gradient in the current configuration. Often, we use a ‘dot’ accent to indicate a material time
derivative in the Eulerian description, where quantities are written in terms of the current
position x and time t. For example, c(x, t) = v̇(x, t). By introducing the velocity gradient

L :=
∂

∂x

(
v(x, t)

)
, or equivalently Lij =

∂vi
∂xj

, (11)

Eq. (10) can also † be written as c(x, t) = ∂v/∂t+Lv. The relationship between the velocity
and deformation gradient is obtained by taking the material time derivative of the latter, for
which we find

dF̃

dt
=

∂

∂t

(
F̂ (X, t)

)
=

∂

∂t

[
∂

∂X

(
χ̂(X, t)

)]
=

∂

∂X

[
∂

∂t

(
χ̂(X, t)

)]

=
∂

∂X

(
v̂(X, t)

)
=

∂

∂X

(
v(x, t)

)
=

[
∂

∂x

(
v(x, t)

)] ∂

∂X

(
χ̂(X, t)

)
,

(12)

‡The acceleration is denoted c rather than a to avoid notational confusion with the vectors aα in subse-
quent sections, following P.M. Naghdi. “The Theory of Shells and Plates”. Linear Theories of Elasticity and
Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells. Ed. by C. Truesdell. Berlin,
Heidelberg: Springer, 1973, pp. 425–640.

†In fluid mechanics, the result of Eq. (10) is often written as a = ∂v/∂t + (v · ∇)v. However, in
understanding ∇v to be the velocity gradient tensor L, we prefer to express the acceleration as in Eq. (10).

https://doi.org/10.1007/978-3-662-39776-3_5
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such that
dF̃

dt
= L̃F̃ , or equivalently dF̃iA

dt
= L̃ijF̃jA . (13)

Equations (9), (10), and (12) show how to switch between Lagrangian and Eulerian de-
scriptions, and take material time derivatives in the latter. In particular, for any scalar
function f̃ ,

f̃ = f(x, t) = f
(
χ̂(X, t), t

)
= f̂(X, t) , (14)

and furthermore
df̃

dt
=

∂f̂

∂t
⇔ df̃

dt
=

∂f

∂t

∣∣∣
X

=
∂f

∂t
+
∂χ̂

∂t
· ∂f
∂x

=
∂f

∂t
+ v · ∇f . (15)

Note that in general, some care must be applied when taking the material time derivative of
vectorial and tensorial quantities.

2. The balance laws
The formulation of global and local forms of various balance laws is an essential component of
any continuum mechanical formulation. Before obtaining the relevant balance laws, however,
we provide several results which will be used repeatedly. With Eq. (6), integrals over the
body can be expressed in either the current or reference configurations as∫

R
f(x, t) dv =

∫
R0

f̂(X, t) Ĵ(X, t) dV , (16)

where the functions f and f̂ are related by Eq. (14). Taking the total time derivative of
both sides of Eq. (16) yields

d

dt

(∫
R
f(x, t) dv

)
=

d

dt

(∫
R0

f̂(X, t) Ĵ(X, t) dV

)

=

∫
R0

[
∂

∂t

(
f̂(X, t)

)
Ĵ(X, t) + f̂(X, t)

∂

∂t

(
Ĵ(X, t)

)]
dV

=

∫
R0

(
df̂

dt
Ĵ + f̂

dĴ

dt

)
dV

=

∫
R

(
ḟ + f

J̇

J

)
dv .

(17)

In going from the first to the second line in Eq. (17), we recognized the domain of integration
R0 is constant and brought the time derivative inside the integral. In the third line, quantities
are equivalently expressed in terms of the material derivative via Eq. (15), and in the fourth
line we mapped quantities back to the current configuration. By using the matrix identity
∂(det F̂ )/∂t = det F̂ tr (F̂−1 ∂F̂ /∂t), where Ĵ = det F̂ (6), we find

∂Ĵ

∂t
= Ĵ tr

(
F̂−1∂F̂

∂t

)
= Ĵ tr

(
F̂−1L̂F̂

)
= Ĵ tr

(
L̂F̂ F̂−1

)
= Ĵ tr L̂ , (18)
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such that
J̇ = J trL = J∇ · v . (19)

By Substituting Eq. (19) into Eq. (17), we obtain the well-known Reynolds Transport The-
orem, given by

d

dt

(∫
R
f(x, t) dv

)
=

∫
R

(
ḟ + f∇ · v

)
dv . (20)

At this point, we provide two additional results without proof. The first is the divergence
theorem, which can be written as∫

∂R
fn da =

∫
R
∇f dv , (21)

where da is a differential area element on the region boundary ∂R, with outward pointing
normal n. The second is the localization theorem, which states∫

R
f dv = 0 ∀ R ⊆ Q if and only if f = 0 in Q , (22)

and is useful in converting global equations to their local forms.

(a). The balance of mass
For the body B under consideration, we assume a mass density ρ(x, t) in the current config-
uration, which is expressed in the reference configuration as ρ̂(X, t). We furthermore define
ρ̂0(X) := ρ̂(X, t = t0) to be the mass density, at the reference time t0, in the reference
configuration. In the region R(t), which tracks the same material points over time, the total
mass of the material is conserved. The global form of the balance of mass is then given by

d

dt

(∫
R
ρ(x, t) dv

)
= 0 . (23)

By applying the Reynolds Transport Theorem (20) to Eq. (23), we obtain∫
R

(
ρ̇ + ρ∇ · v

)
dv = 0 . (24)

As Eq. (24) is true for any R ⊆ Q, we apply the localization theorem (22) and find the local
form of the balance of mass to be

ρ̇ + ρ∇ · v = 0 . (25)

By expanding the material time derivative with Eq. (15) and rearranging terms, Eq. (25)
can also be written as

∂ρ

∂t
+ ∇ ·

(
ρv
)
= 0 . (26)

Additionally, for an incompressible material, the density is ρ is constant—for which

∇ · v = 0 , (27)
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often called the incompressibility condition.
While Eq. (25) was obtained by considering only quantities in the current configuration,

we find another useful relation by expressing the total mass in the reference configuration.
In particular, as the total mass of the body B does not change in time, we have∫

R
ρ(x, t) dv =

∫
R0

ρ̂0(X) dV . (28)

By mapping the left-hand side of Eq. (28) to the reference configuration according to Eq.
(14), we obtain ∫

R0

ρ̂(X, t) Ĵ(X, t) dV =

∫
R0

ρ̂0(X) dV , (29)

thus implying the Jacobian J̃ is given by

J̃ = Ĵ(X, t) =
ρ̂0(X)

ρ̂(X, t)
, (30)

in addition to the form of the Jacobian presented in Eq. (6).
We end by substituting f = ρu, for some arbitrary quantity u, into Eq. (20) to find

d

dt

(∫
R
ρu dv

)
=

∫
R

[
ρu̇ + u

(
ρ̇ + ρ∇ · v︸ ︷︷ ︸

=0

)]
dv =

∫
R
ρu̇ dv . (31)

In going from the second to third term in Eq. (31), we substituted the local form of the
balance of mass (25). As we will see, Eq. (31) will be used frequently in our balance law
developments.

(b). The balance of linear momentum
According to Newton’s second law, the rate of change of momentum of an object is equal to
the sum of all external forces acting on said object. For a continuum material, the external
forces can be classified as either body forces acting on the entire volume, or boundary forces
acting on the surface of the body. Denoting f to be the body force per unit volume and
t to be the traction, or boundary force per unit area of the surface, the global form of the
balance of linear momentum is given by

d

dt

(∫
R
ρv dv

)
=

∫
R
f dv +

∫
∂R

t da , (32)

where
∫
R ρv dv is the total linear momentum of the body.

To simplify Eq. (32), it is necessary to convert the last term from a surface integral to a
volume integral. To this end, we introduce two results. The first is known as either Cauchy’s
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Hypothesis or Noll’s Theorem, ‡ given by

t(x, t; ∂R) = t(x, t;n) (33)

and indicating the traction t depends on the region boundary only through the unit normal
n. The second is Cauchy’s Lemma, which states

t(x, t;−n) = −t(x, t;n) . (34)

Using Eqs. (33) and (34), one arrives at Cauchy’s Theorem—written as

t(x, t;n) = T (x, t)n , or equivalently ti = Tijnj , (35)

where T = Tij ei ⊗ ej is the Cauchy stress tensor and is independent of the orientation of
the surface. Upon substituting Eq. (35) into (32), we obtain

d

dt

(∫
R
ρv dv

)
=

∫
R
f dv +

∫
∂R

Tn da . (36)

With Eq. (36), we apply Eq. (31) to the first term and the divergence theorem (21) to the
last term and find ∫

R
ρv̇ dv =

∫
R
f dv +

∫
R
∇ · T dv , (37)

where ∇ · T = Tij,j ei and ( · ),j := ∂( · )/∂xj. Finally, by applying the localization theorem
(22), we obtain the local form of the balance of linear momentum as

ρv̇ = f + ∇ · T , or equivalently ρv̇i = fi + Tij,j . (38)

Equation (38) is also known as the Cauchy momentum equation.

(c). The balance of angular momentum
In this section, we determine the local form of the balance of angular momentum, and its
consequences on the symmetry of the stress tensor T . We begin with the global statement,
written as

d

dt

(∫
R
x× ρv dv

)
=

∫
R
x× f dv +

∫
∂R

x× t da , (39)

where we assume the angular momentum of a body is only altered via the moments of external
forces. While it is not considered here, J.S. Dahler and L.E. Scriven † discussed how the
balance laws are extended to the case with internal angular momentum degrees of freedom.

‡Equation (33) was introduced in 1823 [A.-L. Cauchy. “Recherches sur l’équilibre et le mouvement
intérieur des corps solides ou fluides, élastiques ou non élastiques”. Bulletin de la Société Philomatique
(1823), 9–13], but was proved only in 1957 [W. Noll. “The Foundations of Classical Mechanics in the Light
of Recent Advances in Continuum Mechanics”. The Axiomatic Method. Ed. by L. Henkin, P. Suppes, and A.
Tarski. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing Co.,
1959, pp. 266–281]. We acknowledge the succinct summary of these accounts, both historical and technical,
by A. Gupta at http://home.iitk.ac.in/~ag/ME321/stress.pdf.

†J.S. Dahler and L.E. Scriven. “Angular momentum of continua”. Nature 192 (1961), 36–37.

https://doi.org/10.1016/S0049-237X(09)70033-3
https://doi.org/10.1016/S0049-237X(09)70033-3
http://home.iitk.ac.in/~ag/ME321/stress.pdf
https://doi.org/10.1038/192036a0
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We now follow a similar procedure to our previous balance law developments. We apply
Eq. (31) to the first term in Eq. (39), recognize ẋ = v and v × v = 0, and obtain∫

R
x× ρv̇ dv =

∫
R
x× f dv +

∫
∂R

x× t da . (40)

Next, we substitute Eq. (35) into the last term in Eq. (40) and simplify by switching to
indicial notation. To do so, we introduce the components of the three-dimensional Levi–
Civita tensor, ϵijk, in which ϵ123 = +1, ϵ321 = −1, and cyclic permutations of the indices
yield an identical value. All other components of the Levi–Civita tensor are zero, such that
for example x × v = ϵijk xj vk ei. The ith component of the last term of Eq. (40) then
simplifies to∫

∂R
ϵijk xj tk da =

∫
∂R
ϵijk xj Tkℓ nℓ da =

∫
R

(
ϵijk xj Tkℓ

)
,ℓ
dv

=

∫
R
ϵijk

(
xj,ℓ︸︷︷︸
= δjℓ

Tkℓ + xj Tkℓ,ℓ

)
dv =

∫
R
ϵijk

(
Tkj + xj Tkℓ,ℓ

)
dv .

(41)

In Eq. (41), we substituted Cauchy’s Theorem (35), used the divergence theorem (21) to
go from the second to the third term, then expanded the derivative and used the identity
xj,l = δjl, where the Kronecker delta δij = 1 if i = j and δij = 0 otherwise. The ith component
of Eq. (40) can then be written as∫

R
ϵijk xj ρv̇k dv =

∫
R
ϵijk xj fk dv +

∫
R
ϵijk

(
Tkj + xj Tkℓ,ℓ

)
dv , (42)

upon which application of the localization theorem (22) yields

ϵijk xj ρv̇k = ϵijk xj fk + ϵijk
(
Tkj + xj Tkℓ,ℓ

)
, (43)

namely the ith component of the local form of the balance of angular momentum.
At this point, we recognize that by taking the cross product of the position x with Eq.

(38) and subtracting the ith component of the result from Eq. (43), we obtain

ϵijk Tkj = 0 , (44)

which implies the stress tensor is symmetric—written as

Tij = Tji or equivalently T = T T . (45)

(d). The balance of mechanical power
While mechanical power is not a fundamentally conserved quantity, its description is useful
in our later thermodynamic developments. We begin by contracting the local form of the
linear momentum balance (38) with the velocity v, and integrating over the region R to
obtain ∫

R
v · ρv̇ dv =

∫
R
v · f dv +

∫
R
v ·
(
∇ · T

)
dv . (46)
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With Eq. (31), the left-hand side of Eq. (46) can be written as∫
R
v · ρv̇ dv =

d

dt

(∫
R

ρv · v
2

dv

)
, (47)

i.e. the time derivative of the total kinetic energy. Additionally, the last term in Eq. (46)
can be simplified by using indicial notation, with which we find∫

R
v ·
(
∇ · T

)
dv =

∫
R
vi Tij,j dv

=

∫
R

[(
vi Tij

)
,j
− vi,j Tij

]
dv

=

∫
∂R
vi Tij nj da −

∫
R
Lij Tij dv .

(48)

In Eq. (48), we began by distributing the spatial derivative, used the divergence theorem
(21) on the first term, and substituted the velocity gradient Lij (11) into the second term.
According to the traction decomposition (35), Tijnj = ti. The last term in the third line of
Eq. (48) is simplified by recognizing the stress tensor is symmetric (45), such that only the
symmetric portion of Lij remains:

LijTij =
1

2

(
Lij + Lji︸ ︷︷ ︸

=: 2Dij

)
Tij +

1

2

(
Lij − Lji

)
Tij

= Dij Tij +
1

2

(
LijTij − LjiTij︸ ︷︷ ︸

=0

)
= Dij Tij .

(49)

Here, we define D as the symmetric portion of the velocity gradient tensor L = ∇v, whose
components are given by

Dij :=
1

2

(
vi,j + vj,i

)
=

1

2

(
Lij + Lji

)
. (50)

Denoting the double contraction of two tensors as D : T = tr(DT T) = DijTij, Eq. (48) can
be equivalently expressed as∫

R
v ·
(
∇ · T

)
dv =

∫
∂R
vi ti da −

∫
R
Dij Tij dv =

∫
∂R

v · t da −
∫
R
D : T dv . (51)

Finally, with Eqs. (47) and (51), we rewrite Eq. (46) as

d

dt

(∫
R

ρv · v
2

dv

)
+

∫
R
D : T dv =

∫
R
v · f dv +

∫
∂R

v · t da . (52)

Equation (52) is the mechanical power balance: the left-hand side contains the time deriva-
tive of the kinetic energy and the internal power of the body, with the latter capturing the
rate of work done by internal forces on material elements; the right-hand side captures the
work done by external forces on the body.
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3. A thermodynamic description of a bulk material
In equilibrium thermodynamics, a material is assumed to be uniform throughout its domain,
such that no spatial derivatives exist. As a consequence, one often speaks of global ther-
modynamic quantities, such as the total internal energy U , entropy S, or temperature T .
In the study of non-equilibrium materials, on the other hand, it is of fundamental impor-
tance to describe how such quantities vary in space and time. As a result, we introduce
thermodynamic fields, such as the internal energy per unit mass u(x, t), the entropy per
unit mass s(x, t), and the temperature field T (x, t). In this section, we use our continuum
description and balance law framework to develop local forms of the first and second laws of
thermodynamics, as well as the local form of the balance of entropy.

(a). The first law: The balance of energy
According to the first law of thermodynamics, the total energy of a body B changes if
either heat is supplied to the body or work is done on the body. The latter is described by
the right-hand side of the mechanical power balance (52), while the former is captured by
two terms. The first term involves the heat flux Jq, which describes the flow of energy per
unit area per unit time; the second involves an external heat source per unit mass r(x, t),
supplied in the volume of the body. We define e(x, t) to be the total energy per unit mass,
such that the total energy of the body is given by

∫
R ρe dv. The global form of the first law

of thermodynamics is then given by
d

dt

(∫
R
ρe dv

)
=

∫
R
ρr dv −

∫
∂R

Jq · n da +

∫
R
v · f dv +

∫
∂R

v · t da , (53)

where the heat flux Jq is defined to be positive when heat is leaving the system.
We now simplify Eq. (53) to obtain the local form of the balance of internal energy. To

this end, the total energy per unit mass e can be decomposed into the kinetic energy per
unit mass 1

2
v · v and the internal energy per unit mass u, ‡ for which

ρe = ρu +
ρv · v

2
. (54)

Substituting Eq. (54) into Eq. (53), applying Eq. (31) to the resulting left-hand side, and
applying the divergence theorem (21) to the heat flux term yields∫

R

(
ρv · v̇ + ρu̇

)
dv =

∫
R
ρr dv −

∫
R
∇ · Jq dv +

∫
R
v · f dv +

∫
∂R

v · t da . (55)

By subtracting the mechanical power balance (52) from Eq. (55) and then applying the
localization theorem (22), we find the local form of the first law of thermodynamics—written
as

ρu̇ = ρr − ∇ · Jq + D : T . (56)
According to Eq. (56), the internal energy changes due to a heat supply, a flow of heat, and
internal work done on the system, respectively.

‡For simplicity, we neglect potential energy contributions, i.e. those due to gravity or electric fields.
However, such contributions can be easily incorporated.
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(b). The second law and the balance of entropy
While the second law of thermodynamics is generally stated in its global form, we seek a
local description within our irreversible thermodynamic formulation. To this end, we define
the entropy per unit mass, s(x, t), such that the total entropy of the body B is

∫
R ρs dv,

which can change in one of three ways. First, entropy can flow across the system boundary,
as accounted for by the entropy flux Js(x, t)—which has units of entropy per area per time,
and is defined to be positive when entropy is flowing out of the system. Second, entropy can
be locally absorbed or emitted, for which we introduce the rate of external entropy supply
per unit mass ηe(x, t) throughout the volume of the body. By definition, the entropy flux
and supply both describe the redistribution of entropy which has already been created; we
capture the entropy generated at a specific location with the internal entropy production per
unit mass, ηi(x, t). According to this classification, the second law of thermodynamics can
be written as ∫

R
ρηi dv ≥ 0 ∀ R ⊆ Q , for which ρηi ≥ 0 (57)

according to the localization theorem (22). Equation (57)2 is the local form of the second
law of thermodynamics.

With the aforementioned definitions, we describe how the entropy in a body can change
over time. The global form of the balance of entropy is given by

d

dt

(∫
R
ρs dv

)
= −

∫
∂R

Js · n da +

∫
R
ρηe dv +

∫
R
ρηi dv . (58)

Applying Eq. (31) to the left-hand side of Eq. (58) and the divergence theorem (21) to the
boundary integral, we obtain∫

R
ρṡ dv = −

∫
R
∇ · Js dv +

∫
R
ρηe dv +

∫
R
ρηi dv , (59)

for which application of the localization theorem (22) yields the local form of the balance of
entropy, written as

ρṡ = −∇ · Js + ρηe + ρηi . (60)

(c). The choice of thermodynamic potential
At this point, within the framework of irreversible thermodynamics, we seek to determine
the form of the internal entropy production ρηi. However, in the equations obtained thus
far, the internal entropy production only appears in the local form of the second law of
thermodynamics (57) and the entropy balance (60). To obtain an expression for ρηi, we
recognize the natural thermodynamic potential for continuum materials is the Helmholtz free
energy—which depends on the temperature and the appropriate measure of deformation. ‡

We accordingly introduce the Helmholtz free energy per unit mass ψ(x, t), given by

ψ := u − T s , (61)
‡Mandadapu, “Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat

Transport Coefficient of Solids and Mixtures”.
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where T̃ = T (x, t) is the local temperature field of the body. By taking the material time
derivative of Eq. (61) and multiplying by ρ, we obtain

ρψ̇ = ρu̇ − ρṪ s − ρT ṡ . (62)

Substituting the local forms of the first law of thermodynamics (56) and the entropy balance
(60) into Eq. (62) and rearranging terms yields

ρṡ = −∇ · Js + ρηe + ρηi =
1

T

(
ρr − ∇ · Jq + D : T − ρṪ s − ρψ̇

)
. (63)

Importantly, Eq. (63) involves thermodynamic quantities, velocity gradients, and the mate-
rial stresses. As we will see, upon a choice of the fundamental thermodynamic variables for
the Helmholtz free energy, the entropy flux, external entropy supply, and internal entropy
production are determined. Irreversible thermodynamics then provides a procedure with
which to determine the material stresses.

The developments thus far described a general continuum material. However, different
materials are described by different fundamental thermodynamic variables, and further anal-
ysis relies on knowledge of the material of interest. To demonstrate the generality of our
framework, we at this point separately consider two materials: a Newtonian fluid and an
elastic solid.

4. The case of a Newtonian fluid
We begin by considering a bulk Newtonian fluid. As discussed previously, we first choose
the fundamental thermodynamic variables for the Helmholtz free energy, from which we
determine the form of the internal entropy production. We then take advantage of the local
form of the second law of thermodynamics to arrive at an expression for the fluid stresses.

(a). The internal entropy production
In equilibrium thermodynamics, the Helmholtz free energy of a fluid depends on the tem-
perature T and volume V . In our continuum description of an out-of-equilibrium system,
the analogous quantities are the temperature field T (x, t) and mass density ρ(x, T ), ‡ such
that

ψ̃ = ψ(ρ, T ) . (64)

By substituting Eq. (64) into Eq. (63), we obtain

ρṡ = −∇·Js + ρηe + ρηi =
1

T

{
ρr − ∇·Jq + D : T − ρṪ

(
s +

∂ψ

∂T

)
− ρ

∂ψ

∂ρ
ρ̇

}
. (65)

We now make several simplifications. First, though the system is globally out of equilib-
rium, we make the local equilibrium assumption. † In any physical system, each continuum

‡The Helmholtz free energy density may instead be expressed as a function of the specific volume v̄ = 1/ρ.
†Prigogine, Introduction to Thermodynamics of Irreversible Processes.



Ch. III §4 irreversible thermodynamics 38

point x describes a large number of constituent molecules in a neighborhood about x. As
there is a large separation in length and time scales of the microscopic and macroscopic dy-
namics, we posit that at any point x the usual thermodynamic relations hold. For example,
for a fluid the entropy density s(ρ, T ) and pressure p(ρ, T ) are given by

s(ρ, T ) = −
(
∂ψ

∂T

)
ρ

and p(ρ, T ) = ρ2
(
∂ψ

∂ρ

)
T

, (66)

where we recognize p = −(∂ψ/∂v̄)T for specific volume v̄ = 1/ρ. In following the terminology
introduced by other authors, we will from now on refer to Eq. (66)1 as the local equilibrium
assumption. By substituting Eq. (66) into Eq. (65), we obtain

ρṡ = −∇ · Js + ρηe + ρηi =
1

T

{
ρr − ∇ · Jq + D : T − pρ̇

ρ

}
. (67)

Next, we rewrite the heat flux term in Eq. (67) as

− ∇ · Jq
T

= −∇ ·
(
Jq
T

)
− ∇T · Jq

T 2
. (68)

Finally, we introduce the identity tensor I := δij ei⊗ej, such that the local form of the mass
balance (25) can be expressed as ρ̇ = −ρ∇ · v = −ρD : I. Substituting this result, along
with Eq. (68), into Eq. (67) leads to

ρṡ = −∇ · Js + ρηe + ρηi

= −∇ ·
(
Jq
T

)
+
ρr

T
− ∇T · Jq

T 2
+

1

T
D :

(
T + pI

)
.

(69)

At this stage, we determine the form of the various terms in the entropy balance. From
dimensional arguments, Eq. (69) reveals

Js =
Jq
T
, (70)

i.e. the entropy flux and heat flux through the body are related by a factor of the temperature.
Moreover, as the external entropy supply captures a local change in entropy by the body’s
surroundings, we find

ρηe =
ρr

T
, (71)

which similarly states the relation between the heat supply and corresponding entropy supply.
Finally, the remaining terms contribute to the internal entropy production, which is given
by

ρηi = − ∇T · Jq
T 2

+
1

T
D :

(
T + pI

)
≥ 0 . (72)
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(b). The thermodynamic fluxes and forces
With the form of the internal entropy production, irreversible thermodynamics provides a
method to calculate the stresses in a material. Before doing so, we make several observations
regarding Eq. (72). First, when the entire system is in thermodynamic equilibrium, there are
no temperature gradients, no velocity gradients, and the entropy production is zero. When
the body is not in thermodynamic equilibrium, either ∇T ̸= 0, D ̸= 0, or both; in any of
these cases, we expect entropy to be produced. Moreover, in the aforementioned scenarios
there is a driven response in the system: a temperature gradient drives a heat flux, while a
velocity gradient drives a momentum flux.

In the language of irreversible thermodynamics, temperature and velocity gradients are
thermodynamic forces, which lead to corresponding thermodynamic fluxes. Denoting the
former as {Xk} and the latter as {Jk}, the internal entropy production is of the general form

ρηi =
∑
k

Jk ·Xk ≥ 0 , (73)

where Xk and Jk can be scalar, vector, or tensor quantities. We posit that if the system is
close to equilibrium, then the thermodynamic fluxes and forces are linearly related, ‡, † and
can be expressed as

Ji =
∑
k

LikXk . (74)

In Eq. (74), Lik are known as phenomenological coefficients. ∗ We substitute Eq. (74) into
Eq. (73) to find

ρηi =
∑
i,k

LikXiXk ≥ 0 ∀ {Xi} , (75)

implying the matrix [Lik] of the phenomenological coefficients is positive semidefinite. We
also note the phenomenological coefficients are symmetric, i.e. Lik = Lki, when the micro-
scopic dynamics are time-reversal symmetric. §, ♯

In the internal entropy production of a bulk fluid (72), there are two thermodynamic
forces: −∇T/T 2 = ∇(1/T ) and D/T . However, as the temperature T > 0 everywhere, we
treat −∇T and D as the thermodynamic forces, with Jq and (T + pI) the corresponding
fluxes. Thus, according to Eq. (74) we find

Jq = −κ∇T + αD (76)
and

T + pI = µD − β∇T . (77)

‡Prigogine, Introduction to Thermodynamics of Irreversible Processes.
†de Groot and Mazur, Non-Equilibrium Thermodynamics.
∗Though the phenomenological coefficients describe transport at the continuum scale, they also cap-

ture how an equilibrium system relaxes from spontaneous thermal fluctuations, according to the celebrated
Onsager regression hypothesis. §, ♯

§Onsager, “Reciprocal relations in irreversible processes. I.”
♯Onsager, “Reciprocal relations in irreversible processes. II.”
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In Eqs. (76) and (77), we recognize κ to be the second-order thermal conductivity tensor
connecting temperature gradients to heat fluxes, while µ is the fourth-order viscosity tensor
describing the irreversible fluid stresses arising from velocity gradients. The third-order
tensors α and β describe cross-coupling between heat and momentum transport, with the
symmetry of the phenomenological coefficients implying αijk = βjki.

If the fluid is isotropic, the phenomenological coefficients are isotropic as well. It was
recently shown that in d dimensions, any isotropic tensor can be expressed as a linear com-
bination of terms involving only the Kronecker delta δij and the d-dimensional Levi–Civita
tensor—in this case ϵijk for d = 3. ‡ Thus, the most general forms of the tensors κ, α, β,
and µ in three dimensions are given by

κij = κ δij , (78)

αijk = α ϵijk , (79)

βijk = β ϵijk , (80)
and

µijkℓ = ν δijδkℓ + µ
(
δikδjℓ + δiℓδjk

)
− ξ

(
δikδjℓ − δiℓδjk

)
. (81)

Additionally, to respect the required symmetry αijk = βjki, we find α = β, such that

αijk = βijk = α ϵijk . (82)

By substituting Eqs. (78)–(82) into Eqs. (76) and (77) and noting Dij = Dji, we obtain

Jq = −κ∇T + α ϵijkDjk ei (83)
and

T + pI = 2µD + ν
(
D : I

)
I − α ϵijk T,k ei ⊗ ej . (84)

In Eq. (84), all quantities are symmetric except for the last term, which is antisymmetric—
thus implying the coefficient α = 0. Equations (83) and (84) then simplify to

Jq = −κ∇T (85)
and

T = −pI + 2µD + ν
(
D : I

)
I , (86)

from which we recognize κ is the scalar thermal conductivity. At this point, it is useful
to partition D into deviatoric [traceless, superscript ‘(d)’] and isotropic [superscript ‘(i)’]
components as

D =

(
D − 1

3

(
D : I

))
︸ ︷︷ ︸

D(d)

+

(
1

3

(
D : I

)
I

)
︸ ︷︷ ︸

D(i)

. (87)

‡J.M. Epstein and K.K. Mandadapu. “Time-reversal symmetry breaking in two dimensional nonequilib-
rium viscous fluids”. Phys. Rev. E 101 (2020), 052614. arXiv: 1907.10041.

https://doi.org/10.1103/PhysRevE.101.052614
https://doi.org/10.1103/PhysRevE.101.052614
http://arxiv.org/abs/1907.10041
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By substituting Eq. (87) into Eq. (86), rearranging terms, and defining

λ :=
2µ

3
+ ν , (88)

we find the stress tensor is given by

T = −pI + 2µD(d) + λ
(
D(i) : I

)
I

= −pI + µ

[(
∇v
)
+
(
∇v
)T − 2

3

(
∇ · v

)
I

]
+ λ

(
∇ · v

)
I ,

(89)

thus revealing µ is the shear viscosity and λ is the dilational viscosity. ‡ Finally, by substi-
tuting Eqs. (85) and (89) into Eq. (72) and noting (D : I)2 = 3D(i) : D(i), we find

ρηi =
κ∇T · ∇T

T 2
+

1

T

(
2µD(d) : D(d) + 3λD(i) : D(i)

)
≥ 0 . (90)

As we can construct processes in which ∇T , D(d), and D(i) are specified arbitrarily, Eq. (90)
reveals κ > 0, µ > 0, and λ > 0.

Equations (85) and (89) present one of the main results of our introduction to irreversible
thermodynamics. Namely, in the linear irreversible regime, for which Eq. (74) is valid, we
recover the heat flux Jq of Fourier’s first law, and also obtain the well-known stress tensor
of an isotropic Newtonian fluid. Thus, irreversible thermodynamics provides a framework
to determine the thermodynamic fluxes in an out-of-equilibrium system. We close our dis-
cussion by proposing a form of the Helmholtz free energy density for both compressible and
incompressible fluids.

The case of a compressible fluid
Thus far, our fluid developments assumed a general Helmholtz free energy density ψ(ρ, T ).
To propose a form of ψ for an isotropic compressible fluid, we recognize the total Helmholtz
free energy W is given by

W =

∫
R
ρψ dv =

∫
R0

ρ̂ψ̂ Ĵ dV . (91)

To energetically penalize deviations in the volume of a material element with respect to the
reference configuration, we posit

W =

∫
R0

1

2
kc
(
Ĵ − 1

)2
dV , (92)

in which kc is a compressibility modulus with units of energy per volume. By comparing
Eqs. (91) and (92), and recognizing Ĵ = ρ̂0/ρ̂ (30), we find

ψ =
1

2

kc
ρ0

(
J − 1

)2
. (93)

‡The phenomenological coefficient λ is also known as the bulk viscosity or second coefficient of viscosity.
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At this point, we recognize p = −kc(J−1) according to Eq. (66)2, for which the stress tensor
T is given by

T = kc
(
J − 1

)
I + 2µD(d) + λ

(
D(i) : I

)
I

= kc
(
J − 1

)
I + µ

[(
∇v
)
+
(
∇v
)T − 2

3

(
∇ · v

)
I

]
+ λ

(
∇ · v

)
I .

(94)

Substituting Eq. (94) into Eq. (38) and including the local form of the mass balance (25)
yields the compressible Navier–Stokes equations, written as

ρ̇ + ρ∇ · v = 0 and ρv̇ = f − kc
ρ0
ρ2

∇ρ + µ∇2v +

(
µ

3
+ λ

)
∇
(
∇ · v

)
. (95)

The case of an incompressible fluid
When the fluid is incompressible, ρ = ρ0 = constant, such that ∇ · v = 0 and J = 1. The
total Helmholtz free energy W now enforces the incompressibility constraint J − 1 = 0 with
the Lagrange multiplier Π = Π(x, t), for which

W =

∫
R0

−Π
(
Ĵ − 1

)
dV , (96)

and correspondingly

ψ = −Π

(
1

ρ
− 1

ρ0

)
. (97)

From Eq. (97), we calculate p = ρ2(∂ψ/∂ρ) = Π, thus revealing the hydrodynamic pres-
sure is a Lagrange multiplier enforcing the incompressibility of the fluid. In this case, by
including the incompressibility constraint, we arrive at the Navier–Stokes equations of an
incompressible Newtonian fluid, given by

∇ · v = 0 and ρv̇ = f − ∇p + µ∇2v . (98)

5. The case of an elastic solid
We end our discussion of irreversible thermodynamics for bulk materials by considering an
elastic solid. We follow a similar procedure to that of a Newtonian fluid, except in this case
deformations of the material are reversible and do not lead to internal entropy production.
We close by presenting the stress tensor of an elastic solid, which in the limit of infinitesimal
strains yields the Cauchy–Navier equations when substituted into the linear momentum
balance.

(a). The internal entropy production
When deforming a solid from its reference configuration, the energy required to do so depends
not only on the relative change in volume of the material, but also on the direction in which
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it deforms. For example, in general it does not take the same amount of energy to compress
the object isotropically as it does to shear the solid, with the latter preserving the volume
of the material. The state of the deformed material is captured by the deformation gradient
F̃ , and thus the Helmholtz free energy per unit mass is of the functional form

ψ̃ = ψ(F , T ) . (99)

Note that while we usually express the deformation gradient as a function of the reference
position, in this analysis all of our balance laws are written in terms of the current position
and so we write F̃ = F (x, t). Substituting Eq. (99) into Eq. (63) yields

ρṡ = −∇·Js + ρηe + ρηi =
1

T

{
ρr −∇·Jq +D : T − ρṪ

(
s+

∂ψ

∂T

)
− ρ

∂ψ

∂F
: Ḟ T

}
.

(100)
For an elastic solid, the local equilibrium assumption is given by [cf. Eq. (66)]

s(F , T ) = −
(
∂ψ

∂T

)
F

. (101)

Upon substituting Eq. (101) into Eq. (100), we obtain

ρṡ = −∇ · Js + ρηe + ρηi =
1

T

{
ρr − ∇ · Jq + D : T − ρ

∂ψ

∂F
: Ḟ T

}
. (102)

The last term in Eq. (102) is simplified by recognizing Ḟ = LF (13), for which

∂ψ

∂F
: Ḟ T =

∂ψ

∂F
:
(
LF

)T
=

∂ψ

∂F
:
(
F TLT

)
= tr

{
∂ψ

∂F

(
F TLT

)}
= tr

{(
∂ψ

∂F
F T

)
LT

}
=

(
∂ψ

∂F
F T

)
: LT .

(103)

By substituting Eq. (103) into Eq. (102), rewriting the heat flux term as in Eq. (68), and
recognizing D : T = T : LT due to the symmetry of the stress tensor (45), we obtain

ρṡ = −∇ · Js + ρηe + ρηi

= −∇ ·
(
Jq
T

)
+
ρr

T
− ∇T · Jq

T 2
+

1

T

(
T − ρ

∂ψ

∂F
F T

)
: LT .

(104)

As in the analysis of a bulk fluid, we now use Eq. (104) to determine the various terms
in the entropy balance. We once again find

Js =
Jq
T

(105)

and
ρηe =

ρr

T
, (106)

however in this case the internal entropy production is given by

ρηi = −∇T · Jq
T 2

+
1

T

(
T − ρ

∂ψ

∂F
F T

)
: LT ≥ 0 . (107)
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(b). The thermodynamic fluxes and forces
The internal entropy production of a solid (107) is similar in form to that of a Newtonian fluid
(72). Due to the temperature T being positive, we treat −∇T and LT as thermodynamic
forces, with Jq and (T − ρ[∂ψ/∂F ]F T) being the corresponding thermodynamic fluxes. In
the linear irreversible regime, we find

Jq = −κ∇T + α ϵijk Ljk ei (108)
and

T = ρ
∂ψ

∂F
F T + µLT − α ϵijk T,k ei ⊗ ej , (109)

where the cross-coupling coefficients are identical in structure to those of the Newtonian
fluid. As before, we recognize that the symmetry of the stress tensor and antisymmetry of
the Levi–Civita symbol require α = 0 in Eq. (109), such that the heat flux and stress tensor
are respectively given by

Jq = −κ∇T (110)
and

T = ρ
∂ψ

∂F
F T + µLT . (111)

Equation (110) is again the general form of Fourier’s first law. In Eq. (111), we recognize µ
captures an irreversible flux of momentum resulting from velocity gradients in the material.
However, an elastic solid by definition deforms reversibly, implying µ = 0. Thus, for an
elastic solid with Helmholtz free energy of the form given in Eq. (99), the stress tensor is
given by

T = ρ
∂ψ

∂F
F T . (112)

Equation (112) is the usual form of the stress tensor of a hyperelastic material. ‡

The case of infinitesimal strains
The result of Eq. (112) is valid for a wide range of materials; we conclude by considering the
simplest example: an isotropic solid in which the strains are infinitesimal. In this case, we
choose the bases in the current and reference configurations to be equal, i.e. {EA} = {ei},
and introduce the displacement field û = ûi ei satisfying

χ̂(X, t) = X + û(X, t) . (113)

The deformation gradient can then be written as

F̂ = I +
∂û

∂X
. (114)

In the limit of infinitesimal strains, |∂û/∂X| ≪ 1 and |∂u/∂x| ≪ 1, such that

∂û

∂X
=

∂u

∂x

∂χ̂

∂X
=

∂u

∂x
F̂ =

∂u

∂x

(
I +

∂û

∂X

)
=

∂u

∂x
+ O

(∣∣∣ ∂û
∂X

∣∣∣2) . (115)

‡R.W. Ogden. Non-Linear Elastic Deformations. New York: Dover, 1997.
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Equation (115) indicates gradients of the displacement with respect to the reference and
current positions are equal to first order. We thus define the infinitesimal strain tensor

εεε :=
1

2

[(
∇u

)
+
(
∇u

)T ]
, (116)

which to first order satisfies

F TF = FF T = 2εεε + I . (117)

At this point, we have a simplified kinematic description of the material. We choose the
total Helmholtz free energy to be quadratic in the strains, which for an isotropic material is
written as

W =

∫
R0

[
µεεε : εεε +

λ

2

(
εεε : I

)2]
dV . (118)

In Eq. (118), µ and λ are the Lamé coefficients: µ penalizes shearing modes while λ penalizes
volume changes relative to the reference configuration. With Eqs. (91) and (118), we find
the Helmholtz free energy per unit mass to satisfy

ρ0ψ = µεεε : εεε +
λ

2

(
εεε : I

)2
. (119)

By substituting Eq. (119) into Eq. (112) and taking advantage of Eq. (117), we find the
stress tensor T is given by

T = 2µεεε + λ
(
εεε : I

)
I . (120)

Finally, substituting Eq. (120) into the linear momentum balance (38) and including the
mass balance (30) yields the well-known Cauchy–Navier equations—written in terms of the
displacement u as

ρ = ρ0
(
1 − ∇ · u

)
and ρü = f + µ∇2u +

(
λ + µ

)
∇
(
∇ · u

)
. (121)

Note Eq. (121) is similar in structure to the Navier–Stokes equations of a compressible fluid
[cf. Eq. (95)].
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List of important symbols

1 identity tensor in R3

a current membrane area
A reference membrane area
aα in-plane covariant basis vectors
aα in-plane contravariant basis vectors
aα,β partial derivative of aα w.r.t. θβ
aα;β covariant derivative of aα w.r.t. θβ
aαβ covariant metric
aαβ contravariant metric
ȧαβ material time derivative of metric
bαβ covariant curvature components
bαβ contravariant curvature components
ḃαβ material time derivative of curvature
b̄αβ cofactor of curvature
c membrane acceleration
d director field
∆s surface Laplacian operator
e total energy per mass
εαβ Levi–Civita tensor
η in-plane bulk viscosity coefficient
ηe external entropy per mass
ηi internal entropy per mass
f body force per area
F force at membrane boundary
Fi force on the ith corner of

the membrane boundary
Γα
βµ Christoffel symbols of the 2nd kind
H mean curvature
i surface identity tensor
J Jacobian determinant
Jk thermodynamic flux
Jq in-plane heat flux
Js in-plane entropy flux
kb mean bending modulus
kg Gaussian bending modulus
kc compression modulus
K Gaussian curvature
κ scalar thermal conductivity
καβ thermal conductivity components
ℓ arc length parametrization of a curve
Lik phenomenological coefficient matrix

λ surface tension
m bending moment per length
mν component of m in the ν direction
mτ component of m in the τ direction
M boundary moment in ν direction
M director traction
Mαβ bending moment components
µ couple-stress tensor
n normal vector to membrane surface
Nαβ in-plane stress components
ν in-plane unit normal on ∂P
ωαβ out-of-plane dissipation componentsJpK pressure drop across membrane
P membrane patch
∂P membrane patch boundary
παβ in-plane dissipation components
ψ Helmholtz free energy per mass,

as a function of aαβ and bαβ
ψ̄ Helmholtz free energy per mass,

as a function of ρ, H, and K
r heat source or sink per mass
ρ areal mass density
s entropy per mass
Sα out-of-plane stress components
σ Cauchy stress tensor
σαβ moment-free in-plane stresses
T boundary traction
T α stress vector across θα = const.
θα surface-fixed coordinates
τ in-plane unit tangent on ∂P
u internal energy per mass
v membrane velocity
w total membrane energy per area
wc compression energy density
wH Helfrich energy per area
W total membrane energy
x membrane position in R3

xb position of membrane boundary
Xk thermodynamic force
ξα convected coordinates
ζ in-plane shear viscosity coefficient



Chapter IV

Introduction and Overview

The first part of the growth of a physical science consists in the discovery of a
system of quantities on which its phenomena may be conceived to depend. The
next stage is the discovery of the mathematical form of the relations between these
quantities. After this, the science may be treated as a mathematical science . . .

—JAMES C. MAXWELL, 1869 ‡

From a theoretical perspective, lipid membranes are fascinating and unique materials.
Lipids flow in-plane as a two-dimensional fluid, the membrane bends out-of-plane as an elas-
tic shell, multi-component membranes can phase separate at low temperatures, and various
proteins bind to the membrane surface and locally induce curvature. Moreover, all of the
aforementioned phenomena are highly coupled. As lipids flow in-plane across curved mem-
brane morphologies, additional out-of-plane forces are generated and compete with their
bending counterparts. When membranes phase separate, line tensions energetically penal-
ize phase boundaries and favor domain coarsening—yet domains also bulge out-of-plane to
reduce the line tension penalty, resulting in energetic barriers to domains coming together.
If proteins bind to the membrane surface and locally induce curvature, additional in-plane
stresses and out-of-plane forces ensue, leading to a rich variety of dynamics and morpholo-
gies. Comprehensive membrane models that include all these effects, and especially their
coupling to one another, are needed to fully understand the diverse and complex physical
behaviors of biological membranes.

A major complexity arises when developing lipid membrane theories because the sur-
face on which we apply continuum and thermodynamic balance laws is itself arbitrarily
curved and deforming over time. Thus, significant technical challenges emerge even when
considering the simplest system: a membrane comprised of only a single type of phospho-
lipid molecule, in which no phase transitions nor chemical reactions occur. Consequently,
though we previously derived a non-equilibrium thermodynamic framework incorporating
all of the aforementioned processes in arbitrary geometries, † the present work seeks to pro-
vide a wholistic perspective by discussing only the thermodynamics and hydrodynamics of

‡J.C. Maxwell. “Remarks on the mathematical classification of physical quantities”. Proc. London Math.
Soc. 1 (1871), 224–233.

†A. Sahu et al. “Irreversible thermodynamics of curved lipid membranes”. Phys. Rev. E 96 (2017),
042409. arXiv: 1701.06495.
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single-component lipid membranes. For the remainder of this chapter, we discuss the rele-
vant history in the development of such models. At the close of this theoretical introduction,
we motivate our systematic investigation of single-component membranes with increasingly
complex constitutive behaviors.

From a continuum perspective, single-component lipid membranes are characterized by
lipids flowing in-plane as a viscous fluid while the membrane deforms out-of-plane as a thin
elastic shell. Accordingly, the theory of such materials incorporates results and techniques
from investigations of two-dimensional viscous fluids, as well as solid plates and shells. In
what follows, we present what we believe to be the most significant contributions to these two
disparate fields, through the lens of developing an understanding of biological membranes.
We then provide a historical account of the development of single-component lipid membrane
theory, and conclude this introductory chapter with a summary of the major theoretical
developments of the present work.

1. The investigation of viscous fluid films
Consider an arbitrarily curved and deforming viscous fluid film, lying between two bulk
phases (either vapor or liquid). Following our developments and notation from Chapters
II and III, we decompose the material acceleration c = v̇ into in-plane and out-of-plane
components as c = cαaα + cn. Similarly, we decompose the total body force f acting on
the fluid film by its surroundings as f = fαaα + fn. If the fluid film is area-incompressible,
then the in-plane equations of motion are given by

ρcα︸ ︷︷ ︸
inertia

= aαβλ,β︸ ︷︷ ︸
tension

gradients

+ πβα
;β︸ ︷︷ ︸

viscous
shear forces

+ fα︸ ︷︷ ︸
external
forces

, (1)

where ρ = ρ(θα, t) is the mass per unit area, λ = λ(θα, t) is the surface tension, and παβ are
the in-plane viscous stresses. Equation (1) is similar to the incompressible Navier–Stokes
equations [Chapter III, Eq. (98)], where a negative gradient in pressure is replaced by a
positive gradient in surface tension. The out-of-plane equation of motion is also found to be

ρc︸︷︷︸
inertia

= 2λH︸ ︷︷ ︸
tension–curvature

coupling

+ παβbαβ︸ ︷︷ ︸
viscous–curvature

coupling

+ f︸︷︷︸
external
forces

. (2)

We will see in Chapter V how Eqs. (1) and (2) are a limiting case of the lipid membrane
equations when no elastic bending energy is stored in the membrane. For now, we provide
a historical perspective on how the terms in the in-plane and out-of-plane equations arose.

Let us begin by considering a static soap bubble. As there is no material motion, there
are no inertial or viscous forces. Moreover, when the surrounding bulk medium is stationary,
it serves only to apply a pressure drop JpK across the fluid surface. The in-plane equation
(1) yields λ,β = 0, for which the surface tension is constant, while the force balance in the
normal direction (2) simplifies to the well-known Young–Laplace equation ‡, †

0 = JpK + 2λH , (3)
‡T. Young. “III. An essay on the cohesion of fluids”. Philos. Trans. R. Soc. 95 (1805), 65–87.
†P.S. Laplace. Traité Mécanique Céleste. Vol. 4. Supplément au Livre X. Paris: Gauthier-Villars, 1805.

https://doi.org/10.1098/rstl.1805.0005
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in which a pressure drop is balanced by tension–curvature coupling forces.
Next, we discuss the dynamics of the interface between two fluid phases, which moti-

vated much of the early work on what is now called interfacial hydrodynamics or interfa-
cial rheology. In the latter portion of the 19th century, J. Thomson ‡ and later C.G.M.
Marangoni † observed that surface tension gradients at the fluid–fluid interface would drive
flows in the surrounding bulk phases—a phenomena now known as the Marangoni effect. To
describe the dynamics of such flows, we first recognize fluid–fluid boundaries are not material
interfaces: while a surface tension λ characterizes the energy per area of the phase boundary,
there is no mass at the interface. However, a force balance on the interface again yields Eqs.
(1) and (2), where in this case ρ = 0. If we additionally assume the interface itself has no
surface viscosity, then παβ = 0 and the governing equations simplify to

0 = aαβλ,β + fα and 0 = 2λH + f . (4)

In Eq. (4), f = fαaα + fn is the jump in normal traction exerted by the surrounding bulk
fluid on the interface. We can thus understand Eq. (4)1 in one of two ways. First, if in-
plane tension gradients exist and λ,β ̸= 0, then fα ̸= 0—for which in-plane forces, caused by
viscous flows in the surrounding fluid, are required. From another perspective, we recognize
viscous flows in the bulk phases cause an in-plane traction jump at the interface, which in
turn drives surface tension gradients to maintain a force balance.

In 1913, J. Boussinesq ∗ investigated how spherical liquid droplets would fall in a fluid
medium under the influence of gravity. To explain some of his experimental observations,
Boussinesq hypothesized the existence of a surface viscosity, which was a property of the
fluid–fluid interface itself. Such a notion was expanded upon by C.V. Sternling and
Scriven in 1959 in their studies of interfacial turbulence at a nearly planar interface. § In a
parallel effort, Scriven incorporated the effects of in-plane viscous stresses on the mechanics
and dynamics of arbitrarily curved and deforming fluid interfaces ♯ to arrive at Eqs. (1) and
(2). These developments marked a major shift towards our current understanding of such
materials, and Scriven’s equations were incorporated into the last chapter of the monograph
by R. Aris ∥ as well as a later text on interfacial rheology. ∀ All three of these works, however,
contain errors in their expressions for the inertial terms, as discussed and corrected by A.M.
Waxman. ♢ For those readers interested in recent develops involving interfacial phenomena
and fluid interfaces, we recommend the insightful perspective by H.A. Stone. $

‡J. Thomson. “On certain curious motions observable at the surfaces of wine and other alcoholic liquors”.
Philos. Mag. 10 (1855), 330–333.

†C. Marangoni. “Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen”.
Ann. Phys. Chem. 219 (1871), 337–354.

∗J. Boussinesq. “Sur l’existence d’une viscosité superficielle, dans la mince couche de transition séparant
un liquide d’un autre fluide contigu”. Ann. Chim. Phys. 29 (1913), 349–357.

§C.V. Sternling and L.E. Scriven. “Interfacial turbulence: Hydrodynamic instability and the Marangoni
effect”. A.I.Ch.E. J. 5 (1959), 514–523.

♯L.E. Scriven. “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”. Chem.
Eng. Sci. 12 (1960), 98–108.

∥R. Aris. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. New York: Dover, 1989.
∀D.A. Edwards, H. Brenner, and D.T. Wasan. Interfacial Transport Processes and Rheology. Butterworth

Heinemann Series in Chemical Engineering. Boston: Butterworth-Heinemann, 1991.
♢A.M. Waxman. “Dynamics of a couple-stress fluid membrane”. Studies Appl. Math. 70 (1984), 63–86.
$H.A. Stone. “Interfaces: in fluid mechanics and across disciplines”. J. Fluid Mech. 645 (2010), 1–25.

https://doi.org/10.1080/14786445508641982
https://doi.org/10.1002/andp.18712190702
https://doi.org/10.1002/aic.690050421
https://doi.org/10.1002/aic.690050421
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1016/C2009-0-26916-9
https://doi.org/10.1002/sapm198470163
https://doi.org/10.1017/S0022112009994186
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2. The investigation of solid plates and shells
Over the same time period in which the behavior of fluid films was being investigated, there
was considerable effort to understand the mechanics and dynamics of elastic structures in
which one spatial dimension (the thickness) was much smaller than the other two. In consid-
ering elastic plates, which shear in-plane and deform out-of-plane, G. Kirchhoff ‡ began
with the three-dimensional equations of linear elasticity and arrived at the corresponding
two-dimensional equations when deformations are small. In doing so, Kirchhoff made two
assumptions regarding how elements of the material deform relative to the material’s mid-
plane:

1. A linear element of the material (a filament) which is normal to the mid-plane prior
to deformation remains straight and normal to the mid-plane after deformation, and

2. All elements of the mid-plane do not undergo any strain.

Shortly afterwards, A.E.H. Love studied the behavior of thin elastic shells, in which mate-
rial elements can rotate and translate in all directions. By making the same assumptions as
Kirchhoff, Love began with the equations of three-dimensional linear elasticity and obtained
the two-dimensional elastic shell equations—again in the limit of small deformations. † The
above assumptions have accordingly become known as the Kirchhoff–Love assumptions, and
the corresponding materials are called Kirchhoff–Love shells. A detailed account of the de-
velopment of elastic theories prior to 1890 is provided in the Historical Introduction of the
seminal monograph by Love. ∗

As it turns out, there were some limitations in Love’s development of the two-dimensional
elastic shell equations. One advancement was made by the brothers E. and F. Cosserat, §

who approximated an elastic shell as a two-dimensional surface endowed with a triad of
rigid, orthogonal vectors at every location—meant to capture rotations and stretches of the
material independent of the overall deformation. The theory of such materials, now know
as Cosserat surfaces, was significantly advanced in the latter half of the 20th century. ♯ For
the purpose of describing shells and plates, a single independent vector at each location—
known as a director field—was found to be sufficient. ∥, ∀ In the case where the director
field is of unit length and constrained to lie in the direction normal to the surface, as we
assume when developing the lipid membrane theory in Chapter V, the state of stress in the
two-dimensional material is captured by the Cauchy stress tensor

σ = Nαβaα ⊗ aβ + Sαaα ⊗ n . (5)
‡G. Kirchhoff. “Über das Gleichgewicht und die Bewegung einer elastischen Schiebe”. Crelles J. 40

(1850), 51–88.
†A.E.H. Love. “The small free vibrations and deformation of a thin elastic shell”. Phil. Trans. R. Soc.

London 179 (1888), 491–546.
∗A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York: Dover, 1944.
§E. Cosserat and F. Cosserat. Théorie des Corps Déformables. Paris: A. Hermann et Fils, 1909.
♯J.L. Ericksen and C. Truesdell. “Exact theory of stress and strain in rods and shells”. Arch. Ration.

Mech. Anal. 1 (1958), 295–323.
∥C. Truesdell and R. Toupin. “The classical field theories”. Principles of Classical Mechanics and Field

Theory. Ed. by S. Flügge. Berlin, Heidelberg: Springer, 1960, pp. 226–858.
∀An illustration of a director field, in the context of lipid membranes, is provided in Fig. 3 of Chapter V.

https://doi.org/10.1515/crll.1850.40.51
https://doi.org/10.1098/rsta.1888.0016
https://doi.org/10.1007/BF00298012
https://doi.org/10.1007/978-3-642-45943-6_2
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Here, Nαβ captures in-plane stresses and Sα captures out-of-plane elastic shear forces across
the shell thickness. For elastic shells, both Nαβ

el and Sα
el are calculated from the Helmholtz

free energy per unit mass ψel. Moreover, given the stress components and our assumption
regarding the director field, the in-plane and out-of-plane governing equations were found to
be given by ‡

ρcα︸ ︷︷ ︸
inertia

= Nβα
el;β︸ ︷︷ ︸

in-plane
elastic forces

− Sβ
elb

α
β︸ ︷︷ ︸

shear–curvature
coupling

+ fα︸ ︷︷ ︸
external
forces

(6)

and
ρc︸︷︷︸

inertia

= Nαβ
el bαβ︸ ︷︷ ︸

in-plane–curvature
coupling

+ Sα
el;α︸ ︷︷ ︸

shear
gradients

+ f︸︷︷︸
external
forces

, (7)

respectfully. A comprehensive discussion of the above equations, as well as their extension
to surfaces with more complicated director fields, is given by P.M. Naghdi. †

At this point, we observe that Eqs. (6) and (7) bear a strong resemblance to the fluid
film equations, namely Eqs. (1) and (2). In fact, the latter pair is recovered from the former
if we replace Nαβ

el and Sα
el with the in-plane stresses and out-of-plane shear forces of a fluid

film: Nαβ
fl = λaαβ + παβ and Sα

fl = 0. Moreover, our irreversible thermodynamic analysis
in Chapter V demonstrates how both sets of equations can be obtained within a single
framework—just as we found the three-dimensional fluid and solid equations in Chapter III.

3. The development of a lipid membrane theory
As noted previously, a single-component lipid membrane has qualities of both a two-dimensional
viscous fluid film and a thin elastic shell. In what follows, we divide the development of the
general, dynamical lipid membrane equations into two time periods: (i) the early years, from
1970–1980, in which efforts largely focused on understanding lipid membrane energetics, and
(ii) the later years, from 1980 onwards, during which the dynamical lipid membrane equa-
tions were developed. Our historical account is focused on contributions towards describing
the behavior of arbitrarily curved and deforming lipid membranes, and so here we do not
discuss the many works investigating more specific membrane phenomena.

(a). The early years: 1970–1980
Just as theories of both fluid films and elastic shells reached a finalized form in the 1960’s,
there were three significant developments towards quantitatively describing lipid membrane
behavior. First, P.B. Canham sought to explain the biconcave shape in human red blood

‡A.E. Green, P.M. Naghdi, and W.L. Wainwright. “A general theory of a Cosserat surface”. Arch. Ration.
Mech. Anal. 20 (1965), 287–308.

†P.M. Naghdi. “The Theory of Shells and Plates”. Linear Theories of Elasticity and Thermoelasticity:
Linear and Nonlinear Theories of Rods, Plates, and Shells. Ed. by C. Truesdell. Berlin, Heidelberg: Springer,
1973, pp. 425–640.

https://doi.org/10.1007/BF00253138
https://doi.org/10.1007/978-3-662-39776-3_5
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cells, ‡ and in doing so correctly recognized (i) there is an energetic penalty for membrane
bending, as lipids in one leaflet are compressed while lipids in the other leaflet are stretched,
(ii) the membrane will elastically resist in-plane isotropic stretching or compression, and
(iii) lipids flow as a viscous fluid in response to in-plane shear stresses, during which no
elastic energy is stored in the membrane. Accordingly, Canham proposed that the elastic
energy required to bend a lipid membrane is given by †

WCanham = κb

∫ (
2H2 − K

)
da , (8)

where κb is a bending modulus with units of energy. The minimum energy shapes, according
to Eq. (8), were calculated numerically and then compared to experimental observations.
However, no dynamical equations governing membrane behavior were provided.

In an independent effort just a few years later, W. Helfrich ∗ proposed an elastic energy
for lipid membranes by considering three effects: (i) stretching of a local area element, (ii)
tilt of lipids relative to the unit normal to the surface, and (iii) curvature of the surface.
Moreover, while Canham simply posited a form of the bending energy, Helfrich used symme-
try arguments to obtain the lowest-order term for each of the aforementioned effects. When
lipid tilt is neglected, the total energy is written (in our notation §) as

WHelfrich =
κs
2

∫ (
J − 1

)2
da +

κb
2

∫ (
2H − C0

)2
da + κg

∫
K da , (9)

where J captures the relative, local area change with respect to the unstretched membrane.
In Eq. (9), κs is the stretching modulus, which has units of energy per area, such that the first
term on the right-hand side accounts for the total stretching energy. Importantly, Helfrich
found the bending modulus multiplying the square of the mean curvature [denoted κb to be
consistent with Eq. (8)] need not be equal to the modulus multiplying the Gaussian curva-
ture (here denoted κg). The quantity C0 is the so-called spontaneous curvature and arises
when the two monolayer leaflets are in different chemical environments. Interestingly, though
Helfrich recognized the connection between Eq. (9) and Naghdi’s (at the time) recent devel-
opments in thin elastic shells, he chose not to proceed via Naghdi’s well-established methods.
Instead, Helfrich used variational methods to obtain the Euler–Lagrange equations governing
axisymmetric, equilibrium membrane shapes, and later extended his calculations to obtain
the general equations governing arbitrarily curved equilibrium membrane morphologies. ♯

Around the same time, in the early 1970’s, E.A. Evans investigated the behavior of bio-
logical membranes (often those of red blood cells) via micropipette aspiration methods, and

‡P.B. Canham. “The minimum energy of bending as a possible explanation of the biconcave shape of the
human red blood cell”. J. Theor. Biol. 26 (1970), 61–81.

†Canham chose to express his result in terms of the two principal radii of curvature R1 and R2, which
are related to the mean and Gaussian curvature by 2H = (1/R1) + (1/R2) and K = 1/(R1R2).

∗W. Helfrich. “Elastic properties of lipid bilayers: Theory and possible experiments”. Z. Naturforsch. C
28 (1973), 693–699.

§The equations in Helfrich’s manuscript are expressed in terms of a locally orthogonal coordinate system,
and so look quite different, yet are equivalent to the ones provided here.

♯O.-Y. Zhong-can and W. Helfrich. “Bending energy of vesicle membranes: General expressions for the
first, second, and third variation of the shape energy and applications to spheres and cylinders”. Phys. Rev.
A 39 (1989), 5280–5288.
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sought to characterize the bending modulus κb in Canham’s proposed membrane energy (8).
By considering the mechanics of two monolayer leaflets as the membrane is deformed, Evans
arrived at an expression for the bending modulus in terms of the stretching moduli of the
two individual leaflets, and the membrane thickness. ‡ Moreover, in examining the effect of
asymmetric chemical interactions in the two leaflets, Evans expressed the spontaneous cur-
vature C0 in Eq. (9) in terms of the change in free energy of each leaflet due to chemical
interactions. As Evans was unaware of Helfrich’s developments at that time, the connection
between the two results was not made until several years later. †

(b). The later years: 1980–
At the start of the 1980’s, Helfrich had obtained the general Euler–Lagrange equations gov-
erning equilibrium membrane shapes. ∗ However, the Euler–Lagrange equations by construc-
tion include only thermodynamically reversible phenomena, and thus do not contain viscous
forces arising from the in-plane flow of lipids. In an effort to provide a dynamical description
of such systems, Waxman § applied a balance law formulation to a Cosserat surface to recover
the dynamical equations obtained by Naghdi, ♯ provided in Eqs. (6) and (7). Waxman also
realized that by proposing constitutive relations between the in-plane stresses and in-plane
rate of strain, for example, one could incorporate Scriven’s fluid film results ∥ into Naghdi’s
description. However, Waxman failed to recognize that the elastic contributions to the in-
plane stresses Nαβ and the out-of-plane shear forces Sα arise from a single thermodynamic
potential. This inconsistency, in violation of the second law of thermodynamics, was pointed
out by D. Hu, P. Zhang, and W. E in 2007; ∀ the authors extended Waxman’s result
by properly accounted for the energetics of a Cosserat surface using variational techniques.
This result marks the first correct presentation of the fully nonlinear equations governing the
dynamics of an arbitrarily curved and deforming single-component lipid membrane. In our
notation, the in-plane stresses and shear forces can be expressed as Nαβ = Nαβ

b +Nαβ
fl and

Sα = Sα
b , where the bending contributions Nαβ

b and Sα
b are both obtained from the bending

terms in the Helfrich energy (9), and the fluid film contributions were introduced previously.
We feel the work by Hu, Zhang, and E ∀ deserves special attention as it is relatively unknown
within the membrane biophysics community. Deriving the constitutive forms of Nαβ and Sα

will be a major focus of Chapter V.
In an independent effort, D.J. Steigmann ♢ clarified the relationship between a Kirchhoff–

‡E.A. Evans. “Bending resistance and chemically induced moments in membrane bilayers”. Biophys. J.
14 (1974), 923–931.

†E.A. Evans and R.M. Hochmuth. “Mechanochemical Properties of Membranes”. Membrane Properties:
Mechanical Aspects, Receptors, Energetics and Calcium-Dependence of Transport. Ed. by F. Bronner and
A. Kleinzeller. Vol. 10. Current Topics in Membranes and Transport. Academic Press, 1978, pp. 1–64.

∗Zhong-can and Helfrich, “Bending energy of vesicle membranes: General expressions for the first, second,
and third variation of the shape energy and applications to spheres and cylinders”.

§Waxman, “Dynamics of a couple-stress fluid membrane”.
♯Naghdi, “The Theory of Shells and Plates”.
∥Scriven, “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”.
∀D. Hu, P. Zhang, and W. E. “Continuum theory of a moving membrane”. Phys. Rev. E 75 (2007),

041605
♢D.J. Steigmann. “On the relationship between the Cosserat and Kirchhoff–Love theories of elastic shells”.
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Love shell and a Cosserat surface whose director field is constrained to lie normal to the sur-
face, within Naghdi’s framework. Steigmann then applied this understanding to obtain the
equilibrium equations governing such an elastic material, with additional insights regarding
possible boundary conditions if one were to consider only a patch of material, as well as
how to enforce areal incompressibility via a Lagrange multiplier field. ‡ By then recognizing
that the membrane energy must be invariant under Galilean transformations, Steigmann
obtained the general, fully nonlinear equilibrium equations for a fluid film with an elastic
bending energy depending only on the mean curvature H and Gaussian curvature K—from
which the out-of-plane equilibrium equation of Helfrich could easily be obtained. Impor-
tantly, in enforcing areal incompressibility with a Lagrange multiplier field, Steigmann also
found the in-plane equilibrium equations governing such a material, namely Eq. (4)1. Just
over a decade later, Steigmann and his collaborators incorporated the in-plane fluid stresses
first obtained by Scriven to obtain a dynamical description of lipid membrane behavior, †

which—though the authors were unaware of it at the time—was identical to that of Hu,
Zhang, and E when inertial forces were negligible.

The final major theoretical contribution we wish to highlight is that of M. Arroyo and
A. DeSimone, ∗ who used variational methods to determine the elastic contributions to
membrane dynamics, combined with the so-called Rayleigh dissipation potential to determine
the viscous forces. In the limit of negligible inertial forces, the resultant equations of motion
agree with the earlier work of Hu, Zhang, and E, as well as the later of work of Steigmann
and his colleagues. Importantly, at the end of 2012, there were three different theoretical
approaches to obtain the dynamical equations of motion governing a single-component lipid
membrane.

(c). Our theoretical contributions
While the aforementioned theoretical developments used different frameworks to obtain the
dynamical membrane equations, each study used what are now standard methods to deter-
mine the elastic stresses and forces, and generally included the in-plane viscous stresses in
an ad-hoc fashion. While such developments are theoretically sound, they cannot easily be
extended to model more complicated membrane systems—such as those with in-plane phase
transitions, or with proteins binding to and diffusing on the membrane surface. In particular,
multi-component lipid membranes undergoing chemical reactions have complicated in-plane
and out-of-plane couplings between both reversible and irreversible phenomena, and it is not
straightforward to posit the form of various stresses and forces. Thus, at the time when we
developed our membrane theory, § there was no comprehensive framework to include all the
biologically relevant processes mentioned thus far, and it was unclear how such phenomena

Math. Mech. Solids 4 (1998), 275–288.
‡D.J. Steigmann. “Fluid films with curvature elasticity”. Arch. Ration. Mech. Anal. 150 (1999), 127–

152.
†P. Rangamani et al. “Interaction between surface shape and intra-surface viscous flow on lipid mem-

branes”. Biomech. Model. Mechan. 12 (2012), 833–845.
∗M. Arroyo and A. DeSimone. “Relaxation dynamics of fluid membranes”. Phys. Rev. E 79 (2009),

31915–31931.
§Sahu et al., “Irreversible thermodynamics of curved lipid membranes”.
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https://doi.org/10.1007/s10237-012-0447-y
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would be coupled to in-plane viscous flows and elastic out-of-plane shape deformations in
arbitrary geometries.

In the following chapter, we develop the general theory of irreversible thermodynamics for
arbitrarily curved and deforming lipid membranes, and provide a formalism to determine the
equations governing membrane dynamics. While single-component lipid membranes are the
focus of this thesis, we previously demonstrated how the theory can be extended to describe
multi-component systems with in-plane phase transitions and chemical reactions. ‡ Our work
is inspired by the seminal developments of irreversible thermodynamics by Prigogine † as well
as de Groot and Mazur. ∗ While these classical developments are for systems modeled using
Cartesian coordinate systems, we carry out all of our analysis within a differential geometric
framework. We first obtain the local form of the balance of mass, linear momentum, angular
momentum, energy, and entropy, as well as the second law of thermodynamics. We then
determine the internal entropy production, from which we posit linear relationships between
the thermodynamic fluxes and forces. In going so, we find the in-plane stresses Nαβ and
shear forces Sα in three cases: (i) a compressible, inviscid membrane, (ii) a compressible,
viscous membrane, and (iii) an incompressible, viscous membrane. We close by presenting
the governing equations and admissible boundary conditions in each scenario.
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Chapter V

Single-Component Lipid Membranes

The notion of a model for an idealized body, a system or even a universe perme-
ates the structure of classical physics; and is, in fact, the cornerstone of all field
theories . . . To elaborate, we recall that since the field equations of the classical
continuum mechanics hold for every medium, it is only the constitutive equations
which differ from one medium to another. Now constitutive equations (even those
which embrace considerable generality) are always developed with a view towards
a particular model . . . We have come to accept the point of view describing the be-
havior of different materials through different sets of continuum equations which,
in turn, represent characterization of a particular model we have in mind.

—PAUL M. NAGHDI, 1973 ‡

In this chapter, we develop a comprehensive description of a single-component lipid mem-
brane, in which lipids flow in-plane as a two-dimensional viscous fluid while the membrane
bends out-of-plane as an elastic shell. We follow the same general structure as in our anal-
ysis of bulk materials in Chapter III: the kinematics of an arbitrarily curved and deforming
surface are presented in §1, the balance laws are provided in §2, membrane thermodynamics
are described in §3, and the equations governing lipid membranes with different constitutive
behaviors are obtained in §4, §5, and §6. Much of the contents of this chapter are contained
in Secs. II and III of our previous theoretical development. †

1. The kinematics of a deforming surface
Throughout this work, the phospholipid bilayer is modeled as a single differentiable manifold
about the membrane mid-plane, for which it is implicitly assumed there is no slip between the
two bilayer leaflets. The geometry of the membrane surface is characterized in Chapter II;
we now describe the kinematics of how such a surface evolves in time. Although we were not

‡P.M. Naghdi. “The Theory of Shells and Plates”. Linear Theories of Elasticity and Thermoelasticity:
Linear and Nonlinear Theories of Rods, Plates, and Shells. Ed. by C. Truesdell. Berlin, Heidelberg: Springer,
1973, pp. 425–640.

†A. Sahu et al. “Irreversible thermodynamics of curved lipid membranes”. Phys. Rev. E 96 (2017),
042409. arXiv: 1701.06495.
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aware of it until recently, the discussion by Waxman ‡ provides an excellent account of surface
kinematics, and resolves several important discrepancies in established works. Unfortunately,
many more recent studies—including our aforementioned theoretical contribution—do not
include Waxman’s corrections. Luckily, however, the resultant errors tend to arise in the
inertial terms of the equations of motion—which, as will be shown in Part C, contribute
negligibly to membrane dynamics in biologically relevant situations.

(a). The current configuration and surface-fixed coordinates
Consider an abstract body B as a collection of points belonging to a material surface. At
any time t, the configuration of the body is defined to be the surface S occupied by B, of
which we consider an arbitrary patch P ⊂ S. Moreover, the patch P is parametrized by
the two variables θα, as introduced in Chapter II. The position of any point x̃ ∈ P on the
membrane patch, at time t, is given by

x̃ = x
(
θα, t

)
, or equivalently x̃ = xi(θα, t) ei , (1)

for a time-independent choice of orthonormal basis {ei}. The configuration of the membrane
patch at time t, denoted P(t), is referred to as the current configuration. As the membrane
surface evolves in time, the position corresponding to a particular choice of coordinates θα will
in general evolve as well—expressed mathematically as [∂x/∂t]|θα ̸= 0. In our developments,
we choose for a point x of constant θα to move only in the direction normal to the surface,
for which aβ · [∂x/∂t]|θα = 0, as discussed further below. The coordinates θα are hereafter
referred to as surface-fixed coordinates, as a point of constant θα does not change its position
when there are no out-of-plane deformations and only in-plane flows (see Fig. 1).

(b). The reference configuration and convected coordinates
Consider the configuration of the body B at an arbitrary reference time t0, which we label
the reference configuration of the membrane and denote as P0 := P(t0). The coordinates ξα̂,
which we define to be the value of θα at time t0, parametrize the reference configuration.
At any later time t > t0, the membrane patch can be mapped back to its reference config-
uration, such that a membrane element of constant ξα̂ is a material element (see Fig. 1).
The coordinates ξα̂ are thus convected along with the material, and are referred to as con-
vected coordinates. At any time t, a mapping exists between the surface-fixed and convected
coordinates, expressed as

θα = θα(ξα̂, t) and ξα̂ = ξα̂(θα, t) . (2)

Moreover, given that θα and ξα̂ coincide at time t0 by construction, the reference position
X̂ satisfies

X̂(ξα̂) = x(θα(ξα̂, t0), t0) . (3)

‡A.M. Waxman. “Dynamics of a couple-stress fluid membrane”. Studies Appl. Math. 70 (1984), 63–86.
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(b) convected

ξα̂

(a) surface-fixed

θα

Figure 1: Schematic showing the different surface parametrizations as the membrane un-
dergoes a rigid body translation. (a) The surface-fixed coordinates θα move only normal
to the surface—in this case spreading out as the surface moves upward. The surface-fixed
parametrization is particularly useful in describing surfaces with in-plane fluidity, as a point
of constant θα is not convected by in-plane flows. (b) The coordinates ξα̂, on the other
hand, are attached to material points, and so maintain the same distance from one another
during the translation. If there are in-plane shear flows, two material points initially close
to one another can flow arbitrarily far apart.

With a notion of a reference configuration, we describe the change in the differential area
of a membrane element over time. First consider the parametric area element dθ1 dθ2. The
corresponding area element in physical space is a parallelogram with sides of length a1 dθ

1

and a2 dθ
2, whose area da is given by

da =
∣∣a1 dθ

1 × a2 dθ
2
∣∣ = ∣∣a1 × a2

∣∣ dθ1 dθ2 =
√

det aαβ dθ1 dθ2 , (4)

where we used the relation a1 ×a2 =
√
det aαβ n [Chapter II, Eq. (33)]. The reference area

dA is similarly
dA =

√
detAα̂β̂ dξ1̂ dξ2̂ , (5)

where Aα̂β̂ := X̂,α̂ · X̂,β̂ is the metric tensor of the reference patch. As we are tracking a
material element, dθ1 dθ2 = dξ1̂ dξ2̂, in which case the Jacobian determinant of the motion
is given by

J :=
da

dA
=

(
det aαβ
detAα̂β̂

)1/2

. (6)

In obtaining Eq. (6), we considered a current configuration parametrized by θα and a
reference configuration parametrized by ξα̂. It is important to note, however, that the
convected coordinates can also be used to parametrize the current configuration—for which
the position is written as

x̃ = x̂(ξα̂, t) . (7)

With Eq. (7), we can construct another set of in-plane basis vectors aα̂ := ∂x̂/∂ξα̂, metric
tensor aα̂β̂ := aα̂ · aβ̂, and all other geometric quantities discussed in Chapter II. Moreover,
as both parametrizations describe the same physical surface, Eqs. (1), (2), and (7) require

x̃ = x(θα, t) = x(θα(ξα̂, t), t) = x̂(ξα̂, t) . (8)
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We can similarly decompose any vector ṽ ∈ R3 in terms of either set of basis vectors, as
given by

ṽ = v(θα, t) = vαaα + vn = vαa
α + vn

= v̂(ξα̂, t) = vα̂aα̂ + v̂n̂ = vα̂a
α̂ + v̂n̂ .

(9)

Note that when a quantity is a function of the convected coordinates and contains a Greek
index, we place the ‘hat’ accent only on the index, while for scalar quantities we place the
accent over the quantity itself: for example, n̂ = n̂(ξα̂, t), and vα̂ = vα̂(ξβ̂, t). The usual
tensor transformation laws relate quantities parametrized by θα and ξα̂, for example [cf.
Chapter II, Eq. (21)]

vα =
∂θα

∂ξα̂
vα̂ , aα =

∂ξα̂

∂θα
aα̂ , and aαβ =

∂ξα̂

∂θα
∂ξβ̂

∂θβ
aα̂β̂ . (10)

Note the mapping between surface-fixed and convected coordinates (2) can be used to express
any quantity in terms of either parametrization, as for a general quantity f̃

f̃ = f(θα, t) = f(θα(ξα̂, t), t) = f̂(ξα̂, t) . (11)

(c). The time evolution of kinematic quantities
We end our discussion of surface kinematics by calculating the time derivatives of various
quantities. The membrane velocity ṽ is defined as the rate of change of position of a material
point, and is calculated according to

ṽ = v̂(ξα̂, t) :=
∂

∂t

(
x̂(ξα̂, t)

)
. (12)

To express the velocity in terms of the surface-fixed coordinates, Eq. (8) is substituted into
Eq. (12) to yield

v =
∂

∂t

(
x(θα, t)

)∣∣∣
ξα̂

=
∂

∂t

(
x(θα, t)

)
+
∂θα

∂t

∣∣∣∣
ξα̂

∂

∂θα

(
x(θα, t)

)
=

∂x

∂t
+
∂θα

∂t

∣∣∣∣
ξα̂
aα . (13)

At this point, we introduce the shorthand ( · ),t := [∂( · )/∂t]|θα . As discussed previously, the
surface-fixed coordinates θα are chosen such that a point of constant θα moves only normal
to the surface—for which x,t · aα = 0. Contracting the result of Eq. (13) with aβ and n,
and recognizing v = v · n and vα = v · aα, then reveals

v = x,t · n and vα =
∂θα

∂t

∣∣∣∣
ξα̂
. (14)

As the membrane surface deforms over time, the in-plane velocity components vα will
vary, such that θα = θα(ξα̂, t) is some nontrivial function. Consequently, care must be taken
when obtaining the time derivative of tensorial components. Consider, for example, the
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usual tensor transformation law relating components expressed in convected and surface-
fixed coordinates—written as [cf. Chapter II, Eq. (21)]

∂θα

∂ξα̂
T α̂

β̂ =
∂θβ

∂ξβ̂
Tα

β . (15)

Importantly, as noticed by J.G. Oldroyd ‡ in his study of bulk materials, ∂θα/∂ξα̂ are
time-dependent quantities. Thus, taking the time derivative of both sides of Eq. (15) at
fixed ξµ̂ yields

∂

∂t

(
∂θα

∂ξα̂

)∣∣∣∣
ξµ̂
T α̂

β̂ +
∂θα

∂ξα̂
∂T α̂

β̂

∂t

∣∣∣∣
ξµ̂

=
∂

∂t

(
∂θβ

∂ξβ̂

)∣∣∣∣
ξµ̂
Tα

β +
∂θβ

∂ξβ̂
∂Tα

β

∂t

∣∣∣∣
ξµ̂
. (16)

By recognizing partial derivatives with respect to time and the convected coordinates com-
mute, such that

∂

∂t

(
∂θα

∂ξα̂

)∣∣∣∣
ξµ̂

=
∂

∂ξα̂

(
∂θα

∂t

∣∣∣∣
ξµ̂

)
=

∂vα

∂ξα̂
= vα,α̂ , (17)

and applying the chain rule to obtain

∂Tα
β

∂t

∣∣∣∣
ξµ̂

=
∂Tα

β

∂t

∣∣∣∣
θµ

+
∂θµ

∂t

∣∣∣∣
ξµ̂

∂Tα
β

∂θµ
= Tα

β,t + vµ Tα
β,µ , (18)

we find Eq. (16) can be written as

∂T α̂
β̂

∂t

∣∣∣∣
ξµ̂

=
∂ξα̂

∂θα
∂θβ

∂ξβ̂

[
Tα

β,t + vµTα
β,µ − vα,µT

µ
β + vµ,βT

α
µ

]
. (19)

Equation (19) has the usual structure of a tensor transformation law, from which we define
the material time derivative of Tα

β, denoted Ṫα
β, to be given by

Ṫα
β :=

∂θα

∂ξα̂
∂ξβ̂

∂θβ

(
∂T α̂

β̂

∂t

∣∣∣∣
ξµ̂

)
= Tα

β,t + vµ Tα
β,µ − vα,µ T

µ
β + vµ,β T

α
µ . (20)

By applying Eq. (20) to a general scalar quantity f and the vector components hα and hα
of a general vector h, we find

ḟ = f,t + vαf,α , (21)

ḣα = hα,t + vβhα,β − vα,βh
β , (22)

and
ḣα = hα,t + vβhα,β + vβ,αhβ . (23)

‡J.G. Oldroyd. “On the formulation of rheological equations of state”. P. Roy. Soc. Lond. A Mat. 200
(1950), 523–541.

https://doi.org/10.1098/rspa.1950.0035
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Equations (20)–(23) are collectively referred to as Oldroyd’s Theorem, a terminology intro-
duced by Waxman. ‡

From the general form of Oldroyd’s Theorem (20), we find partial derivatives with respect
to θα commute with partial time derivatives at fixed ξγ̂—for example,

ȧα =
∂ξα̂

∂θα
∂aα̂

∂t

∣∣∣∣
ξγ̂

=
∂ξα̂

∂θα
∂

∂t

(
∂x̂

∂ξα̂

)∣∣∣∣
ξγ̂

=
∂ξα̂

∂θα
∂

∂ξα̂

(
∂x̂

∂t

∣∣∣∣
ξγ̂

)
=

∂ξα̂

∂θα
∂v̂

∂ξα̂
= v,α . (24)

The expression for v,α was obtained in Chapter II, Eq. (64), for which

ȧα = v,α =
(
vβ;α − vbβα

)
aβ +

(
v,α + vβbαβ

)
n . (25)

With Eq. (25), we calculate the material time derivative of several geometric quantities. By
taking the material derivative of the identities n · n = 1 and n · aα = 0, we find

ṅ · n = 0 and ṅ · aα = −n · ȧα = −
(
v,α + vβ bαβ

)
. (26)

By further recognizing ṅ = 1ṅ = n (n · ṅ) + aα(aα · ṅ), where 1 is the three-dimensional
identity tensor, we obtain

ṅ = −
(
aα ⊗ n

)
ȧα = −

(
aαβv,β + vβ bαβ

)
aα . (27)

The material derivative of the metric tensor is calculated from the relation aαβ = aα · aβ,
and is given by

ȧαβ = ˙aα · aβ = ȧα · aβ + aα · ȧβ = vα;β + vβ;α − 2vbαβ . (28)

As the metric and contravariant metric are related by aαβ = aµνa
αµaβν , we obtain

ȧαβ = ȧµν a
αµ aβν + aµν ȧ

αµ aβν + aµν a
αµ ȧβν

= ȧµν a
αµ aβν + ȧαβ + ȧβα ,

(29)

where the product rule was used in the first line and the identity aµνa
βν = δβµ was used in

the second line. As aαβ is symmetric, ȧαβ is symmetric as well. Rearranging terms in Eq.
(29) then reveals

ȧαβ = −ȧµν aαµ aβν . (30)
The material derivative of aα is calculated by first recognizing aα ·n = 0 and aα · aβ = δαβ ,
such that ȧα ·n = −aα · ṅ and ȧα · aβ = −aα · ȧβ. As ȧα = 1 ȧ = aβ(aβ · ȧα) +n(n · ȧα),
we find

ȧα =
(
aαβn⊗ n − aβ ⊗ aα

)
ȧβ = −

(
vα;β − bαβ

)
aβ +

(
aαβv,β + vβ bαβ

)
n . (31)

Since the metric tensor of the reference configuration Aα̂β̂ does not change in time, the
material derivative of the Jacobian determinant (6) is calculated as

J̇ =
1

(detAα̂β̂)
1/2

1

2 (det aαβ)1/2
˙det aαβ . (32)

‡Waxman, “Dynamics of a couple-stress fluid membrane”.
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By recognizing aαβ is the matrix inverse of aαβ, such that a11 = a22/(det aαβ), a22 =
a11/(det aαβ), and a12 = a21 = −a12/(det aαβ), we can express

aαβ ȧαβ =
1

det aαβ

˙det aαβ . (33)

Upon substituting Eq. (33) into Eq. (32) and applying Eq. (28), we obtain

J̇

J
=

1

2
aαβ ȧαβ = vα;α − 2vH . (34)

In three-dimensional Cartesian systems, J̇/J = div v; Eq. (34) indicates the two-dimensional
analog for the divergence of the velocity field is the surface divergence vα;α − 2vH.

To calculate the material derivative of the curvature components, we once again take
advantage of the material time derivative commuting with spatial derivatives in the convected
coordinates. Taking the material time derivative of the equation bαβ = n · x;αβ yields

ḃαβ = ṅ · x;αβ + n · ˙x;αβ , (35)

where the first term on the right-hand side simplifies to ṅ · bαβn = 0. The last term in Eq.
(35) can be expanded as

n · ˙x;αβ = n · ˙
(x,αβ − aµΓ

µ
αβ) = n · ˙x,αβ −

=0︷ ︸︸ ︷
n · aµ Γ̇µ

αβ − n · ȧµ Γ
µ
αβ . (36)

At this point, we recognize n · aµ = 0 by definition, ȧµ = v,µ (25), and through Oldroyd’s
Theorem ˙x,αβ = v,αβ—for which

ḃαβ = n · ˙x;αβ = n · v,αβ − n · v,µ Γ
µ
αβ = n ·

(
v,αβ − v,µ Γ

µ
αβ

)
= n · v;αβ . (37)

By recognizing v;α = v,α and substituting the expression for v,α (25) into Eq. (37), we obtain

n · v;αβ = n ·
(
v;α

)
;β

(38)

= n ·
[ (
vµ;α − vbµα

)
aµ +

(
v,α + vµbαµ

)
n
]
;β

= n ·
[ (
vµ;α − vbµα

)
;β
aµ +

(
vµ;α − vbµα

)
aµ;β︸︷︷︸
bβµn

+
(
v,α + vµbαµ

)
;β
n +

(
v,α + vµbαµ

)
n;β︸︷︷︸

−bνβ aν

]
.

With the identities n · n = 1 and n · aα = 0, we find the material time derivative of the
curvature tensor to be given by

ḃαβ =
(
vµ;α − vbµα

)
bβµ +

(
v,α + vµbαµ

)
;β
. (39)

We end our discussion of the surface kinematics by determining the acceleration c =
cαaα + cn. By definition, the acceleration is the material time derivative of the velocity, for
which

c = v̇ = ˙vαaα + vn = v̇αaα + vα ȧα + v̇n + vṅ . (40)
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The material time derivatives of the in-plane and out-of-plane velocity components are found
to be [see Eqs. (21) and (22)]

v̇α = vα,t and v̇ = v,t + vαv,α . (41)

Substituting Eqs. (25), (27), and (41) into Eq. (40) reveals the components of the acceleration
are given by

cα = vα,t + vβvα;β − 2vvβ bαβ − vv,βa
αβ (42)

and
c = v,t + 2vαv,α + vαvβ bαβ . (43)

Though Eqs. (42) and (43) were first given by Waxman ‡ in 1984 and incorporated into the
membrane literature by Hu, Zhang, and E † in 2007, recent work by both ourselves ∗ and
others § had incorrect expressions for the components of the material acceleration.

Example 1: Vortex Acceleration

Consider a two-dimensional fluid on a pla-
nar surface, flowing with a constant angular
velocity ω about the origin, as shown to the
right. The surface is parametrized by the dis-
tance from the origin r and azimuthal angle
θ, for which the surface-fixed coordinates are
θ1 = r and θ2 = θ. The position is given by

x = r er(θ) ,

with the basis vectors given by

a1 = er , a2 = r eθ , and n = ez .

In order to calculate the components of the acceleration, we require the curvature
tensor bαβ the Christoffel symbols Γα

βµ. It is left as an exercise to the reader to
calculate

bαβ = 0 , Γ2
12 = r−1 , and Γ1

22 = −r ,

with all other Christoffel symbols being zero. Finally, we express the velocity v in

‡Waxman, “Dynamics of a couple-stress fluid membrane”.
†D. Hu, P. Zhang, and W. E. “Continuum theory of a moving membrane”. Phys. Rev. E 75 (2007),

041605.
∗Sahu et al., “Irreversible thermodynamics of curved lipid membranes”.
§M. Arroyo and A. DeSimone. “Relaxation dynamics of fluid membranes”. Phys. Rev. E 79 (2009),

31915–31931.

https://doi.org/10.1103/PhysRevE.75.041605
https://doi.org/10.1103/PhysRevE.79.031915
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terms of the basis vectors as

v = ωreθ = ωa2 ,

for which
v1 = 0 , v2 = ω , and v = 0 .

Through Eqs. (42) and (43), we calculate

c1 = v1,t︸︷︷︸
=0

+ vβv1;β − 2vvβ b1β︸ ︷︷ ︸
=0

− vv,βa
1β︸ ︷︷ ︸

=0

= v2 Γ1
22 v

2 = −rω2 ,

c2 = v2,t︸︷︷︸
=0

+ vβv2;β − 2vvβ b2β︸ ︷︷ ︸
=0

− vv,βa
2β︸ ︷︷ ︸

=0

= v2
(
Γ2
21v

1 + Γ2
22v

2
)
= 0 ,

and
c = v,t + 2vαv,α + vαvβ bαβ = 0 .

In vector form, the acceleration is expressed as

c = cαaα + cn = −rω2 er ,

which is the well-known centripetal acceleration of uniform circular motion.

2. The balance laws

With the mathematical machinery to describe the membrane geometry and kinematics, we
now derive the fundamental balance laws. Our general procedure is to start with a global
form of the balance law for an arbitrary membrane patch P , convert each term to an integral
over the membrane surface, and invoke the arbitrariness of P to determine the local form of
the balance law. To convert terms in the global balance laws to integrals over the membrane
patch, we employ three results with bulk analogs: the Reynolds transport theorem, the
surface divergence theorem, and the localization theorem.

The Jacobian determinant (6) relates the area of differential elements in the current
and reference configurations. Consequently, the integral of a general quantity f̃ over the
membrane area can be equivalently written as∫

P
f(θα, t) da =

∫
P0
f̂(ξα̂, t) Ĵ(ξα̂, t) dA , (44)

where f and f̂ are related by Eq. (11). Taking the material time derivative of Eq. (44) and
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recognizing the reference patch does not change in time yields [cf. Chapter III, Eq. (17)]

d

dt

(∫
P
f(θα, t) da

)
=

d

dt

(∫
P0
f̂(ξα̂, t) Ĵ(ξα̂, t) dA

)

=

∫
P0

[
∂

∂t

(
f̂(ξα̂, t)

)
Ĵ(ξα̂, t) + f̂(ξα̂, t)

∂

∂t

(
Ĵ(ξα̂, t)

)]
dA

=

∫
P0

(
df̂

dt
Ĵ + f̂

dĴ

dt

)
dA

=

∫
P

(
ḟ + f

J̇

J

)
da .

(45)

By substituting Eq. (34) into the result of Eq. (45), we obtain the Reynolds transport
theorem—given by

d

dt

(∫
P
f(θα, t) da

)
=

∫
P

(
ḟ + f

(
vα;α − 2vH

))
da . (46)

The surface divergence theorem is provided here without proof, and is written as∫
∂P
hανα ds =

∫
P
hα;α da . (47)

In Eq. (47), h = hαaα + hn is a general vector, hανα = h · ν, ds is an infinitesimal line
element on the membrane boundary, and ν is the in-plane unit normal [see Chapter II, Eq.
(50)]. The localization theorem is similarly presented without proof, and states∫

P
f da = 0 ∀ P ⊂ S if and only if f = 0 in S . (48)

For readers seeking more details regarding the surface divergence and localization theorems,
we refer to the detailed treatment by Naghdi. ‡

(a). The balance of mass
Consider a membrane patch P(t) which tracks the same material points over time. We
denote the mass per unit area of the patch as ρ(θα, t). The total mass of the membrane
patch is conserved, and the global form of the conservation of mass can be written as

d

dt

(∫
P
ρ da

)
= 0 . (49)

Applying the Reynolds transport theorem (46) to the global mass balance (49) brings the
time derivative inside the integral, and we obtain∫

P

(
ρ̇ + ρ

(
vα;α − 2vH

))
da = 0 . (50)

‡Naghdi, “The Theory of Shells and Plates”.
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Since Eq. (50) holds for all P ∈ S, application of the localization theorem (48) yields the
local form of the conservation of mass, given by

ρ̇ + ρ
(
vα;α − 2vH

)
= 0 . (51)

Lipid membranes are nearly area-incompressible, and stretch only 2–3 % before tearing. ‡ It
is often useful to model lipid membranes as area-incompressible materials, in which case the
density ρ is constant, ρ̇ = 0, and Eq. (51) simplifies to

vα;α − 2vH = 0 . (52)

Equations (51) and (52) are often referred to as the continuity equation for compressible and
incompressible membranes, respectively.

For both compressible and incompressible membranes, several useful relations can be
obtained. The total mass of the membrane patch is conserved, and the mass at any time t
is equal to the mass at time t0. Introducing ρ̂0(ξα̂) = ρ̂(ξα̂, t0) as the areal mass density of
the reference patch at time t0, conservation of mass requires∫

P
ρ(θ, t) da =

∫
P0
ρ̂0(ξ

α̂) dA . (53)

Applying Eq. (44) to the left hand side of Eq. (53) yields∫
P0
ρ̂(ξα̂, t) Ĵ(ξα̂, t) dA =

∫
P0
ρ̂0(ξ

α̂) dA . (54)

As the membrane patch P is arbitrary, the reference patch P0 is arbitrary as well. With the
localization theorem (48), Eq. (54) implies the Jacobian determinant J̃ is given by

J̃ = Ĵ(ξα̂, t) =
ρ̂0(ξ

α̂)

ρ̂(ξα̂, t)
, (55)

in addition to the form provided in Eq. (6). Additionally, by substituting f = ρu into
the Reynolds transport theorem (46) for an arbitrary quantity per unit mass u, and then
substituting the local form of the balance of mass (51), we obtain

d

dt

(∫
P
ρu da

)
=

∫
P

(
ρu̇ + u

[
ρ̇ + ρ

(
vα;α − 2vH

)︸ ︷︷ ︸
=0

])
da =

∫
P
ρu̇ da . (56)

Equation (56) is a modified Reynolds transport theorem and will be used often in our later
developments.

‡E.A. Evans and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton: CRC
Press, 1980.

https://doi.org/10.1201/9781351074339
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(b). The balance of linear momentum
It is well-known from Newtonian and continuum mechanics that the rate of change of mo-
mentum of a body is equal to the sum of the external forces acting on it. Lipid membranes
may be acted upon by two types of forces: body forces on the membrane patch P and
tractions on the membrane boundary ∂P . The body force per unit area of the patch is
denoted f(θα, t). At a point xb = x(θαb , t) on the membrane boundary ∂P with in-plane
unit normal ν, the boundary traction is the force per unit length acting on the membrane
boundary—denoted T (θαb , t;ν). The global form of the balance of linear momentum is then
given by

d

dt

(∫
P
ρv da

)
=

∫
P
f da +

∫
∂P
T ds , (57)

where the left hand side is the time derivative of the total linear momentum of the membrane
patch and the right hand side is the sum of the external forces acting on the body.

For three-dimensional systems in Cartesian coordinates, one may use Cauchy’s tetrahe-
dron arguments to decompose the boundary tractions and define the Cauchy stress tensor,
which specifies the total state of stress at any location. ‡ Naghdi performed an analogous
procedure on a curvilinear triangle, as a subset of an arbitrary surface, to show boundary
tractions may be expressed as a linear combination of the stress vectors T α according to †

T (θαb , t;ν) = T α(θαb , t) να . (58)

The stress vectors T α describe the tractions along curves of constant θα and are independent
of the in-plane boundary unit normal ν. Substituting the traction decomposition (58) into
the global linear momentum balance (57), applying the surface divergence theorem (47) on
the traction term, and applying the Reynolds transport theorem (56) on the left hand side,
we obtain ∫

P
ρc da =

∫
P
f da +

∫
P
T α
;α da , (59)

where the acceleration c = v̇ is given by Eq. (40). Since the patch P is arbitrary, applying the
localization theorem (48) to Eq. (59) yields the local form of the linear momentum balance
as

ρc = f + T α
;α . (60)

To recast the traction decomposition (58) into a more familiar form involving the Cauchy
stress tensor, we express the stress vectors T α in the {aβ,n} basis without loss of generality
as

T α = Nαβaβ + Sαn , (61)

where the physical interpretation of Nαβ and Sα is shown in Fig. 2. Substituting the form
of the stress vectors T α (61) into the traction decomposition (58) allows us to write

T = σTν , (62)

‡P. Chadwick. Continuum Mechanics: Concise Theory and Problems. 2nd ed. Mineola: Dover, 1999.
†Naghdi, “The Theory of Shells and Plates”.
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θ2
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N21a1

N22a2

S2n
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N11a1N12a2

T 1
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Figure 2: Schematic showing the decomposition of the stress vectors T α in the {aβ,n}
basis, according to Eq. (61). The four components N11, N12, N21, and N22, collectively
denoted Nαβ, are the in-plane stress components. On the other hand, the two components
S1 and S2—referred to as Sα—are the out-of-plane stress components, and are sometimes
called the out-of-plane shears. Together, the six quantities are the components of the
Cauchy stress tensor σ [see Eq. (63)].

where σ is the Cauchy stress tensor given by

σ = Nαβaα ⊗ aβ + Sαaα ⊗ n . (63)

Consequently, Nαβ and Sα can be interpreted as the in-plane and out-of-plane components
of the stress tensor σ. In specifying Nαβ and Sα, we will have completely determined the
total state of stress at any location on the membrane.

When solving for and analyzing the dynamical equations of motion, it is often useful
to consider the linear momentum balance (60) in component form. In what follows, we
decompose the equations of motion in the directions normal and tangential to the surface.
To this end, the body force f is decomposed as

f = fαaα + fn . (64)

We note that f is the net force per area acting normal to the membrane, often attributed
to a pressure drop across the membrane surface. Here, fα are the in-plane contravariant
components of the body force per unit area—arising, for example, when the surrounding
fluid exerts shear forces on the membrane. To express T α

;α in component form, we apply
the Gauss (63) and Weingarten (60) equations to the stress vector decomposition (61) and
obtain

T α
;α =

(
Nαβaβ + Sαn

)
;α

= Nαβ
;α aβ + Nαβaβ;α︸︷︷︸

bαβn

+ Sα
;αn + Sαn,α︸︷︷︸

−bβαaβ

=
(
Nβα

;β − Sβbαβ

)
aα +

(
Nαβbαβ + Sα

;α

)
n ,

(65)

where in the last line we swapped the dummy indices ‘α’ and ‘β’. Substituting the body
force decomposition (64) and divergence of the stress vectors (65) into the local form of the
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linear momentum balance (60), we find the tangential and normal momentum equations are
respectively given by

ρcα = fα + Nβα
;β − Sβbαβ (66)

and
ρc = f + Nαβbαβ + Sα

;α . (67)

The normal component of the linear momentum balance (67) is often referred to as the
shape equation. ‡ Although we do not yet know the form of the stresses Nαβ and Sα, Eqs.
(66) and (67) already reveal coupling between in-plane and out-of-plane membrane behavior.
In particular, the in-plane stresses Nαβ and the out-of-plane shears Sα appear in both the
tangential equations (66) and the shape equation (67). Thus, we expect in-plane flows to
influence and be influenced by out-of-plane shape changes. Such couplings lead to a rich
variety of nonlinear membrane behaviors, as will be detailed subsequently.

At this point, local forms of the mass and linear momentum balances are obtained, and
are collectively referred to as the governing equations. To solve these equations, however, we
must first determine the forms of Nαβ and Sα. In what follows, we systematically determine
the in-plane and shear stresses in the membrane before returning to the equations of motion,
in a similar fashion to our bulk analysis in Chapter III.

(c). The balance of angular momentum
Thus far, the global forms of the membrane balance laws were similar to their bulk coun-
terparts. When analyzing the balance of angular momentum, however, care must be taken
in treating a lipid membrane as an infinitely thin, two-dimensional surface. We account for
the membrane’s five nanometer thickness within our theory by endowing the surface with
a director field d(θ, t): a dimensionless vector field capturing rotations and stretches of the
material that are independent from the deformation of the overall surface. † For example,
if the director field d is not aligned with the unit normal n, i.e. when d × n ̸= 0, then the
phospholipids are tilted relative to the orientation of the surface (see Fig. 3). Importantly,
at a point xb = x(θαb , t) on the membrane patch boundary ∂P , so-called director tractions
M (θαb , t) can exert equal and opposite forces on the director—thus inducing a couple per
length m = d × M which either twists or bends the membrane (see Fig. 4). Such cou-
ples play a crucial role in the mechanics and dynamics of lipid membranes, and are in fact
necessary to sustain the out-of-plane shear stresses Sα introduced in Eq. (61).

To properly account for a director field as a new kinematic quantity, it would be necessary
to include the director velocity ḋ in an additional balance law for the director momentum, as
described by Naghdi ∗ and the references cited therein. Including the director as an additional
unknown would enable us to examine small length scale phenomena, for example transmem-
brane proteins causing phospholipids to tilt—which would induce local inhomogeneities in

‡The term “shape equation” was originally used by O.-Y. Zhong-can and W. Helfrich. “Instability and
deformation of a spherical vesicle by pressure”. Phys. Rev. Lett. 59 (1987), 2486–2488.

†As discussed in our historical introduction to the membrane theory (Chapter IV, §2), a surface endowed
with a director field is known as a Cosserat surface [E. Cosserat and F. Cosserat. Théorie des Corps
Déformables. Paris: A. Hermann et Fils, 1909].

∗Naghdi, “The Theory of Shells and Plates”.

https://doi.org/10.1103/PhysRevLett.59.2486
https://doi.org/10.1103/PhysRevLett.59.2486


Ch. V §2 single-component lipid membranes 74

d

n

(a) d× n = 0

d

n

(b) d× n ̸= 0

Figure 3: Close-up schematics of a lipid bilayer, in which phospholipid molecules are either
(a) not tilted or (b) tilted relative to the unit normal to the surface n. In both situations,
our two-dimensional continuum description models the lipid bilayer as a flat sheet, repre-
sented by a dashed horizontal line. The surface is endowed with a director field d to capture
small length scale effects of the lipid orientation, and differentiate the two situations.

the director field. In this work, however, we choose not to study such phenomena. In this
case, the director is prescribed to be equal to the normal at every point on the membrane
surface, written as

d(θα, t) = n(θα, t) . (68)
Equation (68) is equivalent to the Kirchhoff–Love assumption discussed in §2 of Chapter
IV. With the simplification in Eq. (68), the moment per unit length acting on the patch
boundary, m, is given by

m = n×M . (69)
Importantly, Eq. (69) is necessary to write the global form of the angular momentum balance,
which states that the rate of change of the total angular momentum of the membrane patch
is equal to the sum of the external torques and couples acting on it—expressed as

d

dt

(∫
P
x× ρv da

)
=

∫
P
x× f da +

∫
∂P

(
x× T + n×M

)
ds . (70)

In Eq. (70), x× ρv is the angular momentum density at the point x, and x× f and x× T
are the torque densities due to body forces and tractions, respectively.

While the director traction M may in general have normal and tangential components,
the component in the normal direction has no effect on the resulting couple m, as can be seen
from Eq. (69). We thus restrict M to be in the plane of the membrane. Once again using
the elementary curvilinear triangle arguments described by Naghdi, the director traction M
can be written as

M(θαb , t;ν) = Mα(θαb , t) να . (71)
The couple-stress vectors Mα in Eq. (71) must be in the plane of the membrane due to our
imposed restriction, and can be written without loss of generality as

Mα = −Mαβaβ . (72)

Substituting the couple-stress decomposition (72) into the director traction decomposition
(71) allows us to express the director traction as

M = µT ν , (73)
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Figure 4: A director traction M acting on the unit normal n at the membrane boundary
results in edge twisting (top) and bending (bottom). The director traction, which has units
of couple per length, acts in the manner of a force on the dimensionless normal vector to
produce a moment per length m. The left column gives a microscopic perspective of how
the director tractions act on the membrane, the center column shows the corresponding
continuum picture, and the right column depicts the resultant membrane configuration. In
general, the couple per length m acting on the membrane is a superposition of that shown
in the top and bottom rows, and lies in the tangent plane.

where µ is the couple-stress tensor—given by

µ = −Mαβaα ⊗ aβ . (74)

As we require director tractions to not lie in the normal direction, the couple-stress tensor
µ in Eq. (74) does not have any aα ⊗ n component.

Returning to the global form of the angular momentum balance (70), we substitute the
director traction decomposition (71) and stress vector decomposition (58) to obtain

d

dt

(∫
P
x× ρv da

)
=

∫
P
x× f da +

∫
∂P

(
x× T α + n×Mα

)
να ds . (75)

Using the Reynolds transport theorem (56) and the surface divergence theorem (47), and
recalling ẋ = v and v × v = 0, Eq. (75) simplifies to∫

P
x× ρc da =

∫
P

[
x× f +

(
x× T α

)
;α

+
(
n×Mα

)
;α

]
da . (76)

Since the membrane patch P is arbitrary, application of the localization theorem (48) to Eq.
(76) yields the local form of the angular momentum balance, given by

x× ρc = x× f + aα × T α + x× T α
;α − bβαaβ ×Mα + n×Mα

;α . (77)

In obtaining Eq. (77), we distributed the covariant derivatives and used the Weingarten
equation [Chapter II, Eq. (60)].
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It is useful to know what constraints the local form of the angular momentum balance
(77) imposes in addition to what was known from the linear momentum balance (60). Taking
the cross product of x with Eq. (60) and subtracting the result from Eq. (77) yields

aα × T α − bβα aβ ×Mα + n×Mα
;α = 0 . (78)

Next, by substituting the couple-stress decomposition (72) and traction decomposition (58)
into Eq. (78) and then applying the Gauss equation [Chapter II, Eq. (63)], we obtain

aα ×
[(
Nαβ − bβµM

µα
)
aβ +

(
Sα + Mβα

;β

)
n

]
= 0 . (79)

Equation (79) indicates that in order for both the linear momentum balance and the angular
momentum balance to be locally satisfied,

σαβ :=
(
Nαβ − bβµM

µα
)

is symmetric (80)
and

Sα = −Mβα
;β . (81)

In Eq. (80), we introduced the tensor σαβ, which captures the moment-free components of the
in-plane stresses Nαβ. Equations (80) and (81) reveal the combination of linear and angular
momentum balances impose restrictions between the in-plane stress components Nαβ, out-
of-plane shear stress components Sα, and the couple-stress components Mαβ. Moreover, as
the boundary moment per length m is related to the components of Mαβ, Eq. (81) reveals
how out-of-plane shear stresses and boundary moments are related. If director tractions
had not been included in the global form of the balance of angular momentum, there would
consequently be no out-of-plane shears at any point on the membrane surface.

We close our discussion by noting that it will later be useful to express the boundary
moment per length, m, in terms of the in-plane boundary tangent τ and boundary normal
ν as

m = mνν + mτ τ . (82)
Recognizing

aβ × n = (τβτ + νβν)× n = τβ(τ × n) + νβ(ν × n) = τβν − νβτ , (83)

we can combine Eqs. (69), (71) and (72) to obtain

m = Mαβναaβ × n = Mαβνατβ ν − Mαβνανβ τ , (84)

from which we find the components of the boundary moment per length m to be given by

mν = Mαβνατβ and mτ = −Mαβνανβ . (85)

With Eqs. (71), (72), and (85), as well as the decomposition aβ = νβν + τβτ , the director
traction M can be expressed as

M = mτ ν − mντ . (86)

We will return to Eqs. (85) and (86) when considering possible boundary conditions for the
membrane equations.
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(d). The balance of mechanical power
While a mechanical power balance does not impose any new constraints on membrane dy-
namics, it expresses the relationship between the kinetic energy, internal forces, and external
forces—which is useful in our thermodynamic considerations in subsequent sections. We
begin by taking the dot product of the local momentum balance (60) with the velocity v
and integrating over the membrane patch P to obtain∫

P
v · ρc da =

∫
P
v · f da +

∫
P
v · T α

;α da . (87)

At this point, Eq. (87) is expressed in a more useful form. We first recognize the left-hand
side of Eq. (87) is the material derivative of the total kinetic energy, as an application of the
Reynolds transport theorem (56) shows

d

dt

(∫
P

ρv · v
2

da

)
=

∫
P
ρv · c da . (88)

Next, the second term on the right-hand side of Eq. (87) is expanded as∫
P
v · T α

;α da =

∫
P

[(
v · T α

)
;α

− v,α · T α
]
da

=

∫
∂P

(
v · T α

)
να ds −

∫
P
v,α · T α da

=

∫
∂P
v · T ds −

∫
P
v,α · T α da ,

(89)

where the second equality is obtained by invoking the surface divergence theorem (47) and
the third equality from the boundary traction decomposition (58). With Eqs. (61), (80), and
(81), the stress vectors can be written as

T α =
(
σαβ + bβµM

µα
)
aβ − Mβα

;β n = σαβaβ −
(
Mβαn

)
;β
, (90)

where in the second equality we employed the Weingarten equation [Chapter II, Eq. (60)]
and swapped dummy indices. Substituting Eq. (90) into the last term in Eq. (89) then yields∫

P
v,α · T α da =

∫
P
v,α · σαβaβ da −

∫
P
v,α ·

(
Mβαn

)
;β
da . (91)

Additionally, the last term in Eq. (91) is rearranged as

−
∫
P
v,α ·

(
Mβαn

)
;β
da = −

∫
P

(
v,α ·Mβαn

)
;β
da +

∫
P
v;αβ ·Mβαn da

= −
∫
∂P

v,α ·Mβανβ n ds +

∫
P
v;αβ ·Mβαn da , (92)

where the product rule and surface divergence theorem were used in the first and second
lines, respectively. By recalling that aµ · aα = δµα is an identity for the Kronecker delta, ṅ
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is provided in Eq. (27), and M = −Mβανβ aα is the director traction, the integrand of the
first term in the last line of Eq. (92) is expressed as

v,α ·Mβανβ n =
(
v,µ δ

µ
α

)
·Mβανβ n

=
(
v,µ · n

)
Mβανβ

(
aα︸ ︷︷ ︸

=M

· aµ
)
= −

(
v,µ · n

)
aµ︸ ︷︷ ︸

= ṅ

· M = ṅ ·M .
(93)

Substituting Eqs. (88)–(93) into Eq. (87) yields

d

dt

(∫
P

ρv · v
2

da

)
+

∫
P
v,α · σαβ aβ da +

∫
P
v;αβ ·Mαβ n da

=

∫
P
v · f da +

∫
∂P

(
v · T + ṅ ·M

)
ds .

(94)

Finally, with the symmetry of σαβ (80) and the kinematic results ȧαβ = v,α · aβ + aα · v,β

and ḃαβ = n · v;αβ from §1, we find

v,α ·σαβaβ =
1

2

(
v,α ·σαβaβ + v,β ·σαβaα

)
=

1

2
σαβ
(
v,α ·aβ + v,β ·aα

)
=

1

2
σαβ ȧαβ

(95)
and

v;αβ ·Mαβ n = Mαβ ḃαβ . (96)

By substituting Eqs. (95) and (96) into Eq. (94), we obtain the global form of the balance
of mechanical power, written as

d

dt

(∫
P

ρv · v
2

da

)
+

∫
P

(
1

2
σαβ ȧαβ + Mαβ ḃαβ

)
da =

∫
P
v ·f da +

∫
∂P

(
v ·T + ṅ ·M

)
ds .

(97)
The left-hand side of Eq. (97) contains the material derivative of the kinetic energy (88), as
well as a term capturing internal changes involving the shape and stresses of the membrane—
which describe the membrane’s internal power. The terms on the right-hand side of the
mechanical power balance (97) describe the power due to external forces and moments acting
on the membrane patch.

3. A thermodynamic description of a material surface
At this stage, the equations governing single-component lipid membrane dynamics are com-
pletely specified by the couple-free in-plane stress tensor σαβ and the couple-stress tensor
Mαβ. With these quantities, one calculates the in-plane stresses Nαβ and the out-of-plane
shear stresses Sα from the results of the angular momentum balance [Eqs. (80) and (81)],
and then substitutes them into the in-plane and out-of-plane equations of motion [Eqs. (66)
and (67)]. All previous works modeling the dissipative in-plane flows of lipids used either
variational methods or balance law formulations, and proposed constitutive forms of the
in-plane viscous stresses in an ad-hoc manner. While such approaches are theoretically
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sound, they cannot easily be extended to more complicated systems—for example, multi-
component membranes with chemical reactions. In the present work, however, we develop
the irreversible thermodynamic framework required to understand general couplings between
reversible and irreversible membrane phenomena. Within the setting of differential geom-
etry, we formulate local forms of the first and second laws of thermodynamics, as well as
the balance of entropy. We then follow the approach developed by Mandadapu, ‡ in which
the Helmholtz free energy plays a central role and connects the balances of energy and en-
tropy. Next, we choose the fundamental thermodynamic variables for the free energy, and
determine the contributions to the entropy flux, external entropy supply, and internal en-
tropy production. Single-component lipid membranes with different constitutive behaviors
are analyzed subsequently. Importantly, the irreversible thermodynamic framework—based
on entropy production—is naturally extendable to multi-component systems and systems
with chemical reactions, as we previously demonstrated. †

(a). The first law: The balance of energy
According to the first law of thermodynamics, the total energy of the membrane patch
changes due to work being done on the membrane or heat flowing into the membrane. The
mechanical power balance (97) describes the rate of work being done on the membrane due to
external tractions, moments, and forces. Furthermore, heat may enter or exit the membrane
patch in one of two ways: from the surrounding bulk material, as a flux of heat in the normal
direction, or in the plane of the membrane across the patch boundary. We denote the heat
source per unit mass as r(θα, t), and the in-plane heat flux as Jq = Jα

q aα, to respectively
account for these two terms. ∗ By convention, the heat flux Jq is positive when heat flows
out of the system. Defining e(θα, t) to be the total energy per unit mass of the membrane,
the global form of the first law of thermodynamics is written as
d

dt

(∫
P
ρe da

)
=

∫
P
ρr da −

∫
∂P
Jq ·ν ds +

∫
P
v ·f da +

∫
∂P

(
v ·T + ṅ ·M

)
ds . (98)

The total energy per unit mass e, by definition, consists of the internal energy per unit
mass u and the kinetic energy per unit mass 1

2
v · v—written as §

ρe := ρu +
ρv · v

2
. (99)

By substituting Eq. (99) into Eq. (98), applying the Reynolds transport theorem (56), and
recognizing Jq · ν = Jα

q να, we obtain∫
P

(
ρu̇ + ρv · v̇

)
da =

∫
P
ρr da −

∫
∂P
Jα
q να ds +

∫
P
v ·f da +

∫
∂P

(
v ·T + ṅ ·M

)
ds .

(100)
‡K.K. Mandadapu. “Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the

Heat Transport Coefficient of Solids and Mixtures”. PhD thesis. University of California, Berkeley, 2011.
†Sahu et al., “Irreversible thermodynamics of curved lipid membranes”.
∗The heat source per unit area, ρr, is equivalently the heat flux from the surrounding bulk to the

membrane in the normal direction. If J+
q is the heat flux in the fluid above the membrane and J−

q that in
the fluid below the membrane, then ρr = −(J+

q − J−
q ) · n.

§As in the bulk analysis in Chapter III, we do not consider potential energy contributions for simplicity.

https://escholarship.org/uc/item/9h02x1md
https://escholarship.org/uc/item/9h02x1md
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Equation (100) shares several terms with the mechanical power balance (97). By subtracting
the latter from the former, the balance of internal energy is obtained as∫

P
ρu̇ da =

∫
P
ρr da −

∫
∂P
Jα
q να ds +

∫
P

(
1

2
σαβȧαβ + Mαβ ḃαβ

)
da

=

∫
P

(
ρr − Jα

q ;α +
1

2
σαβȧαβ + Mαβ ḃαβ

)
da ,

(101)

where the second equality is obtained by using the surface divergence theorem (47) on the
boundary term. Since the membrane patch P is arbitrary, we apply the localization theorem
(48) to Eq. (101) and find the local form of the internal energy balance to be given by

ρu̇ = ρr − Jα
q ;α +

1

2
σαβȧαβ + Mαβ ḃαβ . (102)

The first two terms on the right hand side of Eq. (102) describe the rate of heat flow into the
system, and the last two terms describe the rate of internal energy change due to internal
work being done on the system.

(b). The second law and the balance of entropy
As discussed in our bulk analysis [Chapter III, §3 (b)], our irreversible thermodynamic for-
mulation requires a local description of the second law of thermodynamics. To this end, we
introduce the entropy per unit mass s̃ = s(θα, t), for which the entropy of the patch is given
by
∫
P ρs da. Moreover, we posit that the entropy of the patch can change in one of three

ways, as described by de Groot and Mazur. ‡ First, entropy can flow in the plane of the mem-
brane across the patch boundary—captured by the in-plane entropy flux Js(θ

α, t) = Jα
s aα.

Second, entropy can be supplied to the membrane as a flux from the surrounding material.
We accordingly define ηe(θ

α, t) to be the rate of external entropy supply per unit mass.
Importantly, the first two mechanisms describe a flow of entropy that has already been cre-
ated. The third mechanism, however, captures new entropy that is produced—for which
we define ηi(θα, t) to be the rate of internal entropy production per unit mass. Given how
entropy changes to the membrane are accounted for, the global form of the second law of
thermodynamics is given by ∫

P
ρηi da ≥ 0 . (103)

Since the membrane patch in Eq. (103) is arbitrary, application of the localization theorem
(48) reveals

ρηi ≥ 0 . (104)
Equation (104) is the local form of the second law of thermodynamics, with the equality
holding only when all processes are reversible.

With the definitions for the in-plane entropy flux, rate of external entropy supply, and
rate of internal entropy production, the global form of the balance of entropy is given by

d

dt

(∫
P
ρs da

)
= −

∫
∂P
Js · ν ds +

∫
P
ρηe da +

∫
P
ρηi da , (105)

‡S.R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. New York: Dover, 1984.
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where by definition Js · ν = Jα
s να is positive when entropy flows out of the system. By

applying Eq. (56) to the left-hand side of Eq. (105) and the surface divergence theorem (47)
to the boundary term, we obtain∫

P
ρṡ da =

∫
P

(
− Jα

s ;α + ρηe + ρηi

)
da . (106)

Again, owing to the arbitrariness of the membrane patch P , application of the localization
theorem (48) to Eq. (106) yields the local form of the balance of entropy, written as

ρṡ = −Jα
s ;α + ρηe + ρηi . (107)

(c). The choice of thermodynamic potential
The internal entropy production is central to our irreversible thermodynamic framework.
Thus far, however, ρηi only appears in Eqs. (104) and (107). To obtain the form of the
internal entropy production, we follow Mandadapu ‡ and recognize the natural thermody-
namic potential describing the membrane patch is the Helmholtz free energy. Accordingly,
we introduce the Helmholtz free energy per unit mass ψ̃ = ψ(θα, t), which satisfies

ψ = u − T s . (108)

In Eq. (108), T̃ = T (θα, t) is the local temperature field of the membrane. By taking the
material derivative of Eq. (108) and multiplying the result by the mass density ρ, we find

ρψ̇ = ρu̇ − ρṪ s − ρT ṡ . (109)

Equation (109) relates the local forms of the balances of internal energy (102) and entropy
(107) through the terms ρu̇ and ρṡ; combining the three equations leads to

ρṡ = −Jα
s ;α + ρηe + ρηi =

1

T

(
ρr − Jα

q ;α +
1

2
σαβ ȧαβ + Mαβ ḃαβ − ρṪ s − ρψ̇

)
. (110)

Equation (110) is important to our irreversible thermodynamic developments, as it relates
thermodynamic quantities, the membrane stresses and couple-stresses, and heat flows. We
now show how a choice of the fundamental thermodynamic variables for the Helmholtz free
energy allows us to determine the in-plane entropy flux, rate of external entropy supply, and
internal entropy production.

(d). The internal entropy production
Thus far, we considered only a general Helmholtz free energy density ψ. As a thermody-
namic state function, ψ captures all reversible (or elastic) behavior. For the two-dimensional
membrane under consideration, the fundamental thermodynamic variables are the metric

‡Mandadapu, “Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat
Transport Coefficient of Solids and Mixtures”.



Ch. V §3 single-component lipid membranes 82

tensor aαβ, the curvature tensor bαβ, and the temperature T . ‡ The simplest form of the
Helmholtz free energy density is written as

ψ = ψ(aαβ, bαβ, T ) . (111)

As the metric and curvature tensors are symmetric, the material time derivative of ψ is given
by

ψ̇ =
1

2

(
∂ψ

∂aαβ
+

∂ψ

∂aβα

)
ȧαβ +

1

2

(
∂ψ

∂bαβ
+

∂ψ

∂bβα

)
ḃαβ +

∂ψ

∂T
Ṫ . (112)

By multiplying Eq. (112) by ρ, substituting the result into Eq. (110), and rearranging terms,
we obtain

ρṡ = −Jα
s ;α + ρηe + ρηi (113)

=
1

T

{
ρr − Jα

q ;α − ρṪ

(
s +

∂ψ

∂T

)
+

1

2

[
σαβ − ρ

(
∂ψ

∂aαβ
+

∂ψ

∂aβα

)]
ȧαβ +

[
Mαβ − ρ

2

(
∂ψ

∂bαβ
+

∂ψ

∂bβα

)]
ḃαβ

}
.

At this point, we make several simplifications. First, for notational convenience, we define

παβ := σαβ − ρ

(
∂ψ

∂aαβ
+

∂ψ

∂aβα

)
(114)

and

ωαβ := Mαβ − ρ

2

(
∂ψ

∂bαβ
+

∂ψ

∂bβα

)
. (115)

As we will see in §5 and §6, παβ and ωαβ capture irreversible stresses and couple-stresses,
respectively, as the membrane deforms. Next, we recognize that while the entire membrane
system is in general out of thermodynamic equilibrium, a continuum point x on the mem-
brane surface captures many phospholipid molecules in its local neighborhood. Thus, as-
suming length and time scale separation between the microscopic and continuum dynamics,
we posit that the usual thermodynamic relations hold locally in our continuum descrip-
tion. † Given this local equilibrium assumption, the entropy density can be obtained from
the Helmholtz free energy density as

s = −
(
∂ψ

∂T

)
aαβ , bαβ

, (116)

where the partial derivative is taken at constant aαβ and bαβ. Our final simplification is to
rewrite the heat flux term in Eq. (113) as

−
Jα
q ;α

T
= −

(
Jα
q

T

)
;α

−
Jα
q T,α

T 2
. (117)

‡D.J. Steigmann. “Fluid films with curvature elasticity”. Arch. Ration. Mech. Anal. 150 (1999), 127–
152.

†de Groot and Mazur, Non-Equilibrium Thermodynamics.

https://doi.org/10.1007/s002050050183
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By substituting Eqs. (114)–(117) into Eq. (113), we obtain

ρṡ = −Jα
s ;α + ρηe + ρηi

= −
(
Jα
q

T

)
;α

+
ρr

T
−
Jα
q T,α

T 2
+

1

T

{
1

2
παβ ȧαβ + ωαβ ḃαβ

}
.

(118)

Equation (118) arose from our choice of the fundamental thermodynamic variables (111)
and the local equilibrium assumption (116), and is used to determine the in-plane entropy
flux, rate of external entropy supply, and rate of internal entropy production. From dimen-
sional arguments, equating the surface divergence terms in the first and second lines of Eq.
(118) reveals

Jα
s =

Jα
q

T
, or equivalently Js =

Jq
T
. (119)

Next, the rate of external entropy supply ρηe captures entropy being absorbed or emitted
from the surrounding material. The only term on the second line of Eq. (118) describing
such a change involves the heat supply r, for which

ρηe =
ρr

T
. (120)

Equations (119) and (120) capture a familiar result: heat flow into or out of the system is
accompanied by an entropy change. The remaining terms on the second line of Eq. (118) all
contribute to the internal entropy production, written as

ρηi = −
Jα
q T,α

T 2
+

1

T

{
1

2
παβ ȧαβ + ωαβ ḃαβ

}
≥ 0 . (121)

The inequality in Eq. (121) arises from the local form of the second law of thermodynam-
ics (104). Now that we have obtained the internal entropy production (121), irreversible
thermodynamics provides a framework to determine παβ and ωαβ, from which σαβ and Mαβ

are calculated [see Eqs. (114) and (115)] and the dynamical membrane equations are fully
specified. In the following sections, we systematically consider three situations of increasing
complexity: (i) a compressible, inviscid membrane in §4, (ii) a compressible, viscous mem-
brane in §5, and (iii) an incompressible, viscous membrane in §6. In all cases, the membrane
is assumed to bend elastically out-of-plane.

4. The case of a compressible, inviscid membrane
In this section, we consider an inviscid lipid membrane, in which membrane deformations
are reversible and do not produce any entropy. Such a situation is not biologically relevant,
as lipids flow in-plane as a two-dimensional viscous fluid. However, our analysis highlights
several important features that will be useful in subsequent sections. In the limiting case of no
dissipation in the system, we begin by obtaining the membrane stresses and couple-stresses.
Next, we present the Gibbs equation, which relates infinitesimal changes in thermodynamic
state functions of the membrane. We then demonstrate how the functional form of the
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Helmholtz free energy ψ is restricted by the requirements of Galilean invariance and material
symmetries. When changing to the restricted set of thermodynamic variables, the membrane
stresses and couple-stresses obtain a new form. We close by substituting the stresses and
couple-stresses into the equations of motion, and specializing our results to a particular,
well-known choice of the Helmholtz free energy: the Helfrich free energy.

(a). The Gibbs equation
When membrane deformations are reversible, the form of the internal entropy production
(121) requires παβ = 0 and ωαβ = 0. ‡ From Eqs. (114) and (115), we find

σαβ
el = ρ

(
∂ψ

∂aαβ
+

∂ψ

∂aβα

)
and Mαβ

el =
ρ

2

(
∂ψ

∂bαβ
+

∂ψ

∂bβα

)
, (122)

where the subscript ‘el’ indicates that only the elastic membrane behavior is captured. At
this stage, we derive the Gibbs equation for a single-component membrane system. By
multiplying Eq. (112) by the mass density ρ and substituting Eqs. (116) and (122), we
obtain

ρψ̇ =
1

2
σαβ

el ȧαβ + Mαβ
el ḃαβ − ρṪ s . (123)

Next, by substituting Eq. (123) into Eq. (109) and rearranging terms, we obtain

ρT ṡ = ρu̇ − 1

2
σαβ

el ȧαβ − Mαβ
el ḃαβ . (124)

Finally, by considering the changes to the thermodynamic quantities in Eq. (124) over a
time interval dt, we obtain the Gibbs equation for a two-dimensional single-component lipid
membrane—given by

ρT ds = ρdu − 1

2
σαβ

el daαβ − Mαβ
el dbαβ . (125)

Equation (125) is the Gibbs equation for a two-dimensional membrane surface with out-of-
plane elastic bending and in-plane elastic compression and stretching.

We wish to highlight here that, in general, it is technically difficult to write the Gibbs
equation for a system whose energetics depend on tensorial quantities. For this reason, we
began by choosing an appropriate form of the Helmholtz free energy, and naturally obtained
the Gibbs equation after the internal entropy production was determined. Our sequence of
developments thus contains an important difference from that of de Groot and Mazur, † who
instead begin with the local equilibrium assumption and Gibbs equation—from which they
arrive at the internal entropy production.

(b). The change of thermodynamic variables
We have so far developed general equations of how the elastic membrane stresses and couple-
stresses depend on the Helmholtz free energy density ψ [see Eq. (122)], which in turn depends

‡This requirement will be shown explicitly in the following section.
†de Groot and Mazur, Non-Equilibrium Thermodynamics.
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on the metric tensor aαβ, the curvature tensor bαβ, and the temperature T (111). However,
as the Helmholtz free energy ψ is an absolute scalar field, it must be invariant to Galilean
transformations. For materials with in-plane fluidity, Steigmann ‡ showed Galilean invariance
requires ψ to depend on the surface configuration only through the areal mass density ρ
and the invariants of the curvature tensor b = bαβa

α ⊗ aβ—which are the mean curvature
H = 1

2
tr(b) and Gaussian curvature K = det(b) [see Chapter II, §2 (e)]. Accordingly, the

Helmholtz free energy density can be written as

ψ(aαβ, bαβ, T ) = ψ̄(ρ,H,K, T ) . (126)

We note that Eq. (126) can also be shown using material symmetry arguments. †

Our task now is to express σαβ
el and Mαβ

el (122) in terms of ψ̄ rather than ψ. To this end,
we recognize that when substituting Eq. (126) into Eq. (122) and applying the chain rule,
we encounter the terms

∂ψ̄

∂aαβ
=

∂ψ̄

∂ρ

∂ρ

∂aαβ
+

∂ψ̄

∂H

∂H

∂aαβ
+

∂ψ̄

∂K

∂K

∂aαβ
(127)

and
∂ψ̄

∂bαβ
=

∂ψ̄

∂ρ

∂ρ

∂bαβ
+

∂ψ̄

∂H

∂H

∂bαβ
+

∂ψ̄

∂K

∂K

∂bαβ
, (128)

as well as their transposes. In what follows, we calculate the partial derivatives of ρ, H, and
K with respect to aαβ and bαβ. Our results are summarized in Table 1.

Useful relations
We begin by calculating the partial derivatives of various quantities with respect to one
another, which will be useful both here and in later developments. First, as aαβ and bαβ are
symmetric, we have

∂aµν
∂aαβ

=
∂bµν
∂bαβ

=
1

2

(
δαµ δ

β
ν + δαν δ

β
µ

)
. (129)

Next, as the quantities aαβ and bαβ are independent,

∂aµν
∂bαβ

= 0 and ∂bµν
∂aαβ

= 0 . (130)

To calculate the partial derivative of the contravariant metric tensor with respect to the
covariant metric tensor, we recognize aµν = aγλa

µγaνλ, such that

∂aµν

∂aαβ
=

∂

∂aαβ

(
aγλ a

µγ aνλ
)

=
∂aγλ
∂aαβ

aµγ aνλ +
∂aµγ

∂aαβ
aγλ a

νλ︸ ︷︷ ︸
= δνγ

+
∂aνλ

∂aαβ
aγλ a

µγ︸ ︷︷ ︸
= δµλ

. (131)

‡Steigmann, “Fluid films with curvature elasticity”.
†J.T. Jenkins. “The equations of mechanical equilibrium of a model membrane”. SIAM J. Appl. Math.

32 (1977), 755–764.

https://doi.org/10.1137/0132063
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Table 1: Partial derivatives of the areal mass density ρ, mean curvature H, and Gaussian
curvature K with respect to the metric tensor aαβ and curvature tensor bαβ.

∂ρ

∂aαβ
= − 1

2
ρ aαβ

∂H

∂aαβ
= − 1

2
bαβ

∂K

∂aαβ
= −K aαβ

∂ρ

∂bαβ
= 0

∂H

∂bαβ
=

1

2
aαβ

∂K

∂bαβ
= b̄αβ

By recognizing the right-most term in Eq. (131) is ∂aµν/∂aαβ, which is also the left-most
term, and substituting Eq. (129), we obtain

∂aµν

∂aαβ
= − 1

2

(
aµαaνβ + aµβaνα

)
. (132)

Our next two results rely on the relation bµν = bγλa
µγaνλ. First, we calculate the partial

derivative with respect to bαβ:

∂bµν

∂bαβ
=

∂

∂bαβ

(
bγλ a

µγ aνλ
)

=
∂bγλ
∂bαβ

aµγ aνλ =
1

2

(
aµαaνβ + aµβaνα

)
. (133)

In the third equality in Eq. (133), we substituted Eq. (129); note also that ∂aµν/∂aαβ =
−∂bµν/∂bαβ. Second, we find

∂bµν

∂aαβ
=

∂

∂aαβ

(
bγλ a

µγ aνλ
)

=
∂aµγ

∂aαβ

= bνγ︷ ︸︸ ︷
bγλ a

νλ +
∂aνλ

∂aαβ

= bµλ︷ ︸︸ ︷
bγλ a

µγ

= − 1

2

(
vνγ
(
aµαaγβ + aµβaγα

)
+ bµλ

(
aναaλβ + aνβaλα

) )
= − 1

2

(
bνβaµα + bναaµβ + bµβaνα + vµαaνβ

)
.

(134)

Finally, we calculate the partial derivatives of the determinant of the metric tensor. Recalling
that det(aαβ) = a11a22 − a12a21, we immediately note Eq. (130) implies

∂ det(aµν)

∂bαβ
= 0 . (135)

At this point, we recognize that from the properties of symmetric 2× 2 matrices,

a22 = det(aµν) a
11 , a11 = det(aµν) a

22 , and a12 = a21 = − det(aµν) a
12 .
(136)



Ch. V §4 the case of a compressible, inviscid membrane 87

With Eqs. (129), (136), and the expression for the determinant, we calculate

∂ det(aµν)

∂aαβ
=

∂

∂aαβ

(
a11a22 − (a12)

2
)

= a22
∂a11
∂aαβ

+ a11
∂a22
∂aαβ

− 2a12
∂a12
∂aαβ

= det(aµν)
(
δα1 δ

β
1 a

11 + δα2 δ
β
2 a

22 + δα1 δ
β
2 a

12 + δα2 δ
β
1 a

21
)

= aαβ det(aµν) .

(137)

As it turns out, we do not explicitly require the partial derivatives of the determinant of the
curvature tensor in our calculations.

Partial derivatives of the density
According to Eqs. (6) and (55), the areal mass density ρ can be expressed in terms of the
determinant of the metric tensor as

ρ = ρ0
(
det Aαβ

)1/2 (
det aαβ

)−1/2
, (138)

where ρ0 and Aαβ do not vary as the membrane deforms. We thus calculate

∂ρ

∂aαβ
= − 1

2
ρ0
(
det Aµν

)1/2 (
det aµν

)−3/2 ∂ det(aµν)

∂aαβ

= − 1

2
ρ0
(
det Aµν

)1/2 (
det aµν

)−1/2︸ ︷︷ ︸
= ρ

aαβ

= − 1

2
ρ aαβ .

(139)

In the first equality of Eq. (139) we applied the chain rule, in the second equality we substi-
tuted Eq. (137), and in the third equality we recognized the form of ρ (138). Additionally,
with Eq. (135), we find

∂ρ

∂bαβ
= 0 . (140)

Equations (139) and (140) constitute the left column of Table 1.

Partial derivatives of the mean curvature
We next consider the mean curvature H, which is conveniently expressed as H = 1

2
aαβ bαβ

[Chapter II, Eq. (41)]. With Eqs. (132) and (133), as well as the symmetry of the metric
and curvature tensors, we calculate

∂H

∂aαβ
=

1

2

∂aµν

∂aαβ
= − 1

4

(
aµαaνβ + aµβaνα

)
bµν = − 1

2
bαβ (141)

and
∂H

∂bαβ
=

1

2
aµν

∂bµν
∂bαβ

=
1

4
aµν
(
δαµ δ

β
ν + δαν δ

β
µ

)
=

1

2
aαβ . (142)

Equations (141) and (142) are given in the middle column of Table 1.
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Partial derivatives of the Gaussian curvature
In Eq. (42) of Chapter II, we presented two equivalent expressions for the Gaussian curvature:
K = 1

2
εαβεµν bαµbβν = det(bαβ)/ det(aαβ), where εαβ is the Levi–Civita tensor. We use both

expressions to calculate the partial derivatives of the Gaussian curvature. First, we find

∂K

∂aαβ
=

∂

∂aαβ

(
det(bµν)

det(aµν)

)
= − det(bµν)

[det(aµν)]2
∂ det(aµν)

∂aαβ
= − det(bµν)

det(aµν)
aαβ = −K aαβ ,

(143)
where in the second equality we used the chain rule, and in the third equality we substituted
Eq. (137). Next, we calculate

∂K

∂bαβ
=

∂

∂bαβ

(
1

2
εγλ εµν bγµ bλν

)
=

1

2
εγλ εµν

(
∂bγµ
∂bαβ

bλν +
∂bλν
∂bαβ

bγµ

)
=

1

4
εγλ εµν

(
bλν
(
δαγ δ

β
µ + δαµ δ

β
γ

)
+ bγµ

(
δαλ δ

β
ν + δαν δ

β
λ

))
=

1

4

(
εαλ εβν bλν + εβλ εαν bλν + εγα εµβ bγµ + εγβ εµα bγµ

)
= εαλ εβν bλν = b̄αβ .

(144)

In Eq. (144), we used the product rule in the first line, substituted Eq. (129) in the second
line, expanded terms in the third line, and simplified terms in the fourth line. In the last
line of Eq. (144), we substituted the form of the cofactor of curvature provided in Eq. (43)
of Chapter II. Equations (143) and (144) are presented in the right column of Table 1.

Modified form of the stresses and couple-stresses
With the results of our partial derivative calculations presented in Table 1, we express the
tensors σαβ

el and Mαβ
el in terms of the energy density ψ̄. To this end, Eqs. (127) and (128)

are rewritten as
∂ψ̄

∂aαβ
= − 1

2
ρ aαβ

∂ψ̄

∂ρ
− 1

2
bαβ

∂ψ̄

∂H
− Kaαβ

∂ψ̄

∂K

= aαβ
(
− ρ

2

∂ψ̄

∂ρ
− H

∂ψ̄

∂H
− K

∂ψ̄

∂K

)
+

1

2
b̄αβ

∂ψ̄

∂H

(145)

and
∂ψ̄

∂bαβ
=

1

2
aαβ

∂ψ̄

∂H
+ b̄αβ

∂ψ̄

∂K
. (146)

In Eqs. (145) and (146), we choose to include only the contravariant metric tensor aαβ and
cofactor of curvature b̄αβ, as doing so simplifies our later calculations. Substituting Eqs.
(145) and (146) into Eq. (122) yields

σαβ
el = −ρ aαβ

(
ρ
∂ψ̄

∂ρ
+ 2H

∂ψ̄

∂H
+ 2K

∂ψ̄

∂K

)
+ ρ b̄αβ

∂ψ̄

∂H
(147)
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Table 2: Elastic stresses and couple-stresses in a single-component lipid membrane with
Helmholtz free energy density of the general form in Eq. (126). This table is provided for
visual convenience: the same results are provided in Eqs. (147)–(150).

σαβ
el = −ρ aαβ

(
ρ
∂ψ̄

∂ρ
+ 2H

∂ψ̄

∂H
+ 2K

∂ψ̄

∂K

)
+ ρ b̄αβ

∂ψ̄

∂H

Mαβ
el =

ρ

2
aαβ

∂ψ̄

∂H
+ ρ b̄αβ

∂ψ̄

∂K

Nαβ
el = −ρ aαβ

(
ρ
∂ψ̄

∂ρ
+ H

∂ψ̄

∂H
+ K

∂ψ̄

∂K

)
+

ρ

2
b̄αβ

∂ψ̄

∂H

Sα
el = −aαβ

(
ρ

2

∂ψ̄

∂H

)
;β

− b̄αβ
(
ρ
∂ψ̄

∂K

)
;β

and

Mαβ
el =

ρ

2
aαβ

∂ψ̄

∂H
+ ρ b̄αβ

∂ψ̄

∂K
. (148)

At this point, we also calculate the elastic in-plane stresses Nαβ
el and out-of-plane shears Sα

el,
which enter the equations of motion. By substituting Eqs. (147) and (148) into Eq. (80),
rearranging terms, and applying the relations b̄αβ = 2Haαβ − bαβ and bβµ b̄

µα = Kaαβ from
Chapter II, §2 (e), we obtain

Nαβ
el = −ρ aαβ

(
ρ
∂ψ̄

∂ρ
+ H

∂ψ̄

∂H
+ K

∂ψ̄

∂K

)
+

ρ

2
b̄αβ

∂ψ̄

∂H
. (149)

Finally, by substituting Eq. (148) into Eq. (81) and recognizing aαβ;α = 0 and b̄αβ;α = 0, we
calculate the elastic out-of-plane shear stresses to be given by

Sα
el = −aαβ

(
ρ

2

∂ψ̄

∂H

)
;β

− b̄αβ
(
ρ
∂ψ̄

∂K

)
;β

. (150)

Equations (147)–(150) are collected in Table 2 for visual convenience, and capture the elas-
tic stresses and couple-stresses in a single-component lipid membrane. We note that Eqs.
(147)–(150) are identical to the results of a prior study using variational methods; ‡ the two
techniques agree as there is no dissipation in the system.

‡Steigmann, “Fluid films with curvature elasticity”.
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(c). The equations of motion
With the results presented in Table 2, we have completely determined the thermodynamically
consistent elastic stresses and couple-stresses in a single-component lipid membrane. To
obtain the equations of motion, we simply substitute the results of Table 2 into Eqs. (66)
and (67). We note, however, that there are four fundamental unknowns describing the
behavior of a compressible lipid membrane: the three components of the velocity v, as well
as the mass density ρ. As such, the compressible continuity equation (51) is required to
close the problem; we refer to these four equations as the governing equations. After much
algebra, we find the governing equations to be given by ‡

ρ,t + vαρ,α + ρ
(
vα;α − 2vH

)
= 0 , (151)

ρ
(
vα,t + vβvα;β − 2vvβ bαβ − vv,βa

αβ
)

= fα − ρ aαβ
(
ψ̄ + ρ

∂ψ̄

∂ρ

)
,β

, (152)

and

ρ
(
v,t + 2vαv,α + vαvβ bαβ

)
(153)

= f − ρ
(
2H2 −K

) ∂ψ̄
∂H

− 2ρH

(
ρ
∂ψ̄

∂ρ
+ K

∂ψ̄

∂K

)
− ∆s

(
ρ

2

∂ψ̄

∂H

)
− b̄αβ

(
ρ
∂ψ̄

∂K

)
;βα

,

where the surface Laplacian operator ∆s is defined in Eq. (30) of Chapter II. In Eqs. (151)–
(153), we expanded the material time derivative of the density and substituted the compo-
nents of the acceleration from Eqs. (42) and (43). In doing so, we highlight that ρ and v
are the fundamental unknowns. Note the membrane position x can be calculated from the
initial position x0(θ

α) := x(θα, t = t0) at a known time t0 by recognizing x,t = vn, for which

x(θα, t) = x0(θ
α) +

∫ t

t0

v(θα, t)n(θα, t) dt . (154)

Accordingly, all geometric quantities can be calculated with knowledge of the initial position
and the membrane velocity over time.

Equations (151)–(153) describe an elastic lipid membrane with no in-plane viscosity. As
such a system is unphysical, we delay our discussion of appropriate boundary conditions
until our analysis of a membrane with in-plane viscosity in §5. Instead, in what follows,
we specialize the governing equations to a specific, well-known choice of the Helmholtz free
energy.

(d). The Helfrich free energy
Our analysis thus far assumed a general form of the Helmholtz free energy per unit mass,
as a function of the areal mass density ρ, mean curvature H, Gaussian curvature K, and

‡Equations (152) and (153), in the absence of inertial forces, are presented by Steigmann, “Fluid films
with curvature elasticity”.
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temperature T . To predict the geometry and dynamics of lipid membranes, however, a
specific form of the free energy must be chosen. We apply simple energetic arguments to
arrive at an expression for the free energy, which is similar to the celebrated results of
Canham ‡ and Helfrich † (see Chapter IV, §3 (a) for historical notes). We then calculate the
membrane stresses and couple-stresses, and obtain the governing equations.

To begin, it is convenient to consider the entire Helmholtz free energy of the patch, as
well as the free energy per unit area—respectively denoted W and w. Given that ψ̄ is the
Helmholtz free energy per unit mass, W , w, and ψ̄ are related by

w = ρψ̄ and W =

∫
P
w da =

∫
P
ρψ̄ da . (155)

Next, we consider the energetic contributions from two categories of deformations: (i) mem-
brane bending, which leads to changes in curvatures, and (ii) membrane stretching and
compressing, which changes the areal mass density. The total free energy can then be de-
composed as

W = WH + Wc , with WH =

∫
P
wH da and Wc =

∫
P
wc da . (156)

In Eq. (156), the subscript ‘H’ refers to the Helfrich free energy, given by ∗

wH = kbH
2 + kgK , (157)

where kb is the mean bending modulus and kg is the Gaussian bending modulus. We note
that Eq. (157) can be understood as an expansion of the free energy to lowest order in
the membrane curvature, § with both mean and Gaussian curvatures being penalized. The
subscript ‘c’ in Eq. (157) refers to compression (or stretching) of the membrane relative to
some reference configuration. To energetically penalize dilation or compression with respect
to the reference configuration, we posit a total energy cost of the form

Wc =

∫
P0

1

2
kc
(
Ĵ − 1

)2
dA , (158)

where kc is the compressibility modulus and J = ρ0/ρ measures the change in area relative
to the reference configuration. By recalling Wc =

∫
P wc da =

∫
P0
ŵc Ĵ dA, we express wc as

wc =
1

2

kc
J

(
J − 1

)2
. (159)

‡P.B. Canham. “The minimum energy of bending as a possible explanation of the biconcave shape of the
human red blood cell”. J. Theor. Biol. 26 (1970), 61–81.

†W. Helfrich. “Elastic properties of lipid bilayers: Theory and possible experiments”. Z. Naturforsch. C
28 (1973), 693–699.

∗Here, we assume the monolayer leaflets are symmetric, such that there is no spontaneous curvature (as
considered by Helfrich).

§R. Capovilla, J. Guven, and J.A. Santiago. “Deformations of the geometry of lipid vesicles”. J. Phys.
A: Math. Gen. 36 (2003), 6281–6295. arXiv: cond-mat/0212118.

https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1088/0305-4470/36/23/301
http://arxiv.org/abs/cond-mat/0212118
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Finally, Eqs. (156)–(159) can be combined to yield the Helmholtz free energy density of a
compressible, single-component membrane—written as

w = ρψ̄ = wH + wc = kbH
2 + kgK +

1

2

kc
J

(
J − 1

)2
. (160)

Importantly, as the free energy by definition only captures reversible behavior, Eq. (160)
also describes the energetics of a compressible lipid membrane with viscous in-plane flows.

With a form of the Helmholtz free energy, we simply substitute Eq. (160) into the results
of §4 (b) and §4 (c) to arrive at the membrane stresses and governing equations. We first
calculate the partial derivatives

∂ψ̄

∂ρ
= − 1

ρ2

(
kbH

2 + kgK + kc
(
J − 1

))
,

∂ψ̄

∂H
=

2kbH

ρ
,

∂ψ̄

∂K
=

kg
ρ
. (161)

Substituting Eq. (161) into the results of Table 2 show the elastic membrane stresses and
couple-stresses are given by

σαβ
el = aαβ

(
− 3kbH

2 − kgK + kc(J − 1)
)
+ 2kbHb̄

αβ , (162)

Mαβ
el = kbHa

αβ + kg b̄
αβ , (163)

Nαβ
el = aαβ

(
− kbH

2 + kc(J − 1)
)
+ kbHb̄

αβ , (164)
and

Sα
el = −kb aαβH,β . (165)

Here we notice that the out-of-plane shears Sα
el contain a derivative of the mean curvature

H—which itself contains two derivatives of the position. Such a result is well-known from
the study of beam bending. We also calculate the isotropic portion of the in-plane stresses
as 1

2
Nαβaαβ = kc(J − 1)—revealing that areal compression or dilation leads to an in-plane

tension. By substituting Eq. (161) into the equations of motion (151)–(153), we arrive at
the governing equations:

ρ,t + vαρ,α + ρ
(
vα;α − 2vH

)
= 0 , (166)

ρ
(
vα,t + vβvα;β − 2vvβ bαβ − vv,βa

αβ
)

= fα − kc
ρ0
ρ2
aαβρ,β , (167)

and
ρ
(
v,t + 2vαv,α + vαvβ bαβ

)
= f + 2kcH

(
J − 1

)
− 2kbH

(
H2 −K

)
− kb∆sH . (168)

Equations (166)–(168) are respectively the continuity, in-plane, and shape equations. As
no dissipative terms were included by construction, these are the Euler–Lagrange equations
corresponding to the Helmholtz free energy density in Eq. (160). The right-hand side of Eq.
(167) contains the gradient of the in-plane tension kc(J − 1); these Marangoni forces drive
an in-plane flow of lipids. The first two terms on the right-hand side of the shape equation
(168) are those found in the Young–Laplace equation if f arises due to a pressure drop across
the membrane surface. The remaining terms are bending forces, and are expected to arise
when the membrane is curved.
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5. The case of a compressible, viscous membrane
Thus far, we have calculated only specific forms of the elastic membrane stresses and couple-
stresses, in which no entropy is produced as the material deforms. However, the main
advantage of our irreversible thermodynamic framework is the ability to naturally capture
dissipative behavior. In this section, we consider the biologically relevant situation of a
compressible lipid membrane in which lipids flow in-plane as a viscous fluid. We begin with
the internal entropy production, from which we determine the thermodynamic forces and
fluxes in the system. By proposing linear relationships between the forces and fluxes in the
linear irreversible regime, we arrive at forms for the membrane stresses and couple-stresses
which account for the viscous in-plane flow of lipids. We end by obtaining the governing
equations, both for generic energy densities and the specific case of the Helfrich free energy
density, and providing possible boundary conditions.

(a). The internal entropy production
Recall the general form of the internal entropy production in Eq. (121). As discussed in
§4 (a) of Chapter III, the internal entropy production can be expressed as a product of
thermodynamic forces and thermodynamic fluxes: the former can be imposed on the system,
while the latter are the system’s driven response. We denote the set of thermodynamic forces
as {Xk} and the set of corresponding fluxes as {Jk}, such that Eq. (121) is equivalently
written as

ρηi =
∑
k

Jk ·Xk ≥ 0 . (169)

In Eq. (169), the indices k are used as a label; Xk and Jk may be scalars, vectors, or tensors.
As described by Prigogine ‡ as well as de Groot and Mazur, † we posit that we are in the
linear irreversible regime, where the system is close to thermodynamic equilibrium. In this
case, there is a linear relationship between thermodynamic fluxes and forces, given by

J j =
∑
k

LjkXk , (170)

where Ljk are the phenomenological coefficients. Substituting Eq. (170) into Eq. (169) reveals

ρηi =
∑
j,k

LjkXj Xk ≥ 0 , (171)

implying the matrix representation of the phenomenological coefficients is positive semi-
definite. As shown by Onsager, ∗, § when microscopic dynamics are time-reversal symmetric,
the phenomenological coefficients are symmetric as well.

‡I. Prigogine. Introduction to Thermodynamics of Irreversible Processes. 3rd ed. New York: Interscience
Publishers, 1967.

†de Groot and Mazur, Non-Equilibrium Thermodynamics.
∗L. Onsager. “Reciprocal relations in irreversible processes. I.”. Phys. Rev. 37 (1931), 405–426.
§L. Onsager. “Reciprocal relations in irreversible processes. II.”. Phys. Rev. 38 (1931), 2265–2279.

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
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Our first task is to determine the thermodynamic fluxes and forces in Eq. (121). As the
temperature T is always positive, we treat

−T,α , ȧαβ , and ḃαβ (172)

as the thermodynamic forces, with

Jα
q , παβ , and ωαβ (173)

being the corresponding thermodynamic fluxes. According to Eq. (170), and with the sym-
metry of the phenomenological coefficients, we express the linear relationships between the
forces and fluxes as

Jα
q = καβ (−T,β) + Pαµν ȧµν + Qαµν ḃµν , (174)

παβ = Pαβµ(−T,µ) + Rαβµν ȧµν + Sαβµν ḃµν , (175)
and

ωαβ = Qαβµ(−T,µ) + Sαβµν ȧµν + Tαβµν ḃµν . (176)

Now, assuming the membrane is isotropic in-plane, all the tensorial phenomenological coef-
ficients are isotropic as well. For two-dimensional surfaces, the contravariant components of
any isotropic tensor can be expressed as a combination of the contravariant metric aαβ and
the contravariant Levi–Civita tensor εαβ [defined in Chapter II, §2 (e)]. ‡. Accordingly, there
are no isotropic third-order tensors in two dimension, implying Pαµν = 0 and Qαµν = 0.
Accordingly, Eq. (176) simplifies to

Jα
q = −καβT,β , (177)

and we recognize καβ as the thermal conductivity tensor. The symmetry of the phenomeno-
logical coefficients implies καβ = κβα, and thus for καβ being isotropic we have καβ = κaαβ,
where the constant κ is the scalar thermal conductivity. In this case, equation (177) simplifies
to

Jα
q = −κ aαβT,β . (178)

Equation (178) is the two-dimensional version of Fourier’s first law. Note that in the case
of lipid bilayers, there are usually no temperature gradients and Eq. (178) does not play a
major role in describing irreversible phenomena.

With the understanding that there are no third-order isotropic tensors on two-dimensional
surfaces, Eqs. (175) and (176) simplify to

παβ = Rαβµν ȧµν + Sαβµν ḃµν (179)
and

ωαβ = Sαβµν ȧµν + Tαβµν ḃµν . (180)
‡Here, we generalize to curved surface the result of J.M. Epstein and K.K. Mandadapu. “Time-reversal

symmetry breaking in two dimensional nonequilibrium viscous fluids”. Phys. Rev. E 101 (2020), 052614.
arXiv: 1907.10041

https://doi.org/10.1103/PhysRevE.101.052614
https://doi.org/10.1103/PhysRevE.101.052614
http://arxiv.org/abs/1907.10041
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where the fourth-order contravariant tensors Rαβµν , Sαβµν , and Tαβµν are general phe-
nomenological viscous coefficients. Note the quantity Sαβµν describes interference or cross-
coupling between two irreversible processes driven by ȧαβ and ḃαβ, which we assume to be
zero for the case of lipid bilayers. Equations (179) and (180) then reduce to

παβ = Rαβµν ȧµν (181)
and

ωαβ = Tαβµν ḃµν . (182)

Given the form of the internal entropy production (121), Eqs. (181) and (182) indicate
παβ captures the dissipation due to in-plane flows and ωαβ captures the dissipation due to
out-of-plane bending. In general, Tαβµν need not be equal to zero and bending can be a
mechanism by which the membrane dissipates energy. However, in this work we assume
out-of-plane-bending is not a dissipative process, and so Tαβµν = 0. Consequently,

ωαβ = 0 . (183)

For a membrane in which lipids flow in-plane as a two-dimensional viscous fluid, entropy
is produced as lipids flow and παβ is nonzero. We thus seek the form of Rαβµν , which is a
fourth-order isotropic tensor. As detailed by J.M. Epstein and K.K. Mandadapu, ‡ in
two spatial dimensions the space of such tensors is six-dimensional. However, we assume the
flow does not have any chiral nature—equivalently expresses as the dynamics being invariant
to exchanging the basis vectors a1 and a2, for which n 7→ −n. With this parity requirement,
the space of such tensors reduces from six to three, and we can represent Rαβµν as

Rαβγµ =
1

2
ζ
(
aαµaβν + aανaβµ

)
+

1

2
ξ aαβaµν +

1

2
Ω εαβεµν . (184)

In Eq. (184), ζ, ξ, and Ω are constants, † with the factors of 1
2

included for notational
simplicity later on. By substituting Eq. (184) into Eq. (181), we obtain

παβ =
1

2
ζ
(
aαµaβν + aανaβµ

)
ȧµν +

1

2
ξ aαβ aµν ȧµν︸ ︷︷ ︸

2(vµ;µ−2vH)

+
1

2
Ω εαβ εµν ȧµν︸ ︷︷ ︸

=0

. (185)

In Eq. (185), we recognized (i) ȧµν is symmetric, (ii) aµν ȧµν = 2(vµ;µ − 2vH) [see Eq. (34)],
and (iii) εµν is antisymmetric. Accordingly, the terms in parenthesis in Eq. (185) both give
the same contribution to παβ, and the last term is zero. The form of the dissipative in-plane
stresses can then be written as

παβ = ζ aαµaβν ȧµν + ξ aαβ
(
vµ;µ − 2vH

)
. (186)

At this point, similar to our bulk developments in §4 (b) of Chapter III, we partition ȧαβ
into deviatioric [superscript ‘(d)’] and isotropic [superscript ‘(i)’] components as

ȧαβ = ȧ
(d)
αβ + ȧ

(i)
αβ , where by construction aαβ ȧ

(d)
αβ = 0 . (187)

‡Epstein and Mandadapu, “Time-reversal symmetry breaking in two dimensional nonequilibrium viscous
fluids”.

†In this section only, ξ denotes a viscous coefficient rather than the twist at the boundary.
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By once again recognizing aαβ ȧαβ = 2(vµ;µ − 2vH) [see Eq. (34)], we find the deviatoric and
isotropic components of ȧαβ to be given by

ȧ
(d)
αβ = ȧαβ −

(
vµ;µ − 2vH

)
aαβ and ȧ

(i)
αβ =

(
vµ;µ − 2vH

)
aαβ . (188)

Given the partition of ȧαβ in Eqs. (187) and (188), the in-plane stresses can be written as

παβ = ζ aαµaβν ȧ(d)µν + η aαβ
(
vµ;µ − 2vH

)
, (189)

where we define
η := ζ + ξ . (190)

We now substitute Eqs. (178), (183), and (189) into Eq. (121), and recall aαµaβν ȧ(i)αβ ȧ
(i)
µν =

2(vµ;µ − 2vH)2, to obtain the internal entropy production as

ρηi =
κ aαβT,α T,β

T 2
+

1

2T

{
ζ aαµaβν ȧ

(d)
αβ ȧ

(d)
µν + η aαµaβν ȧ

(i)
αβ ȧ

(i)
µν

}
≥ 0 . (191)

From Eq. (191), we recognize ζ as the two-dimensional intramembrane shear viscosity and
η as the two-dimensional dilational viscosity, with κ noted earlier to be the scalar thermal
conductivity. Since we can construct processes in which T,α , ȧ(d)αβ , and ȧ

(i)
αβ are specified

independently, Eq. (191) reveals κ > 0, ζ > 0, and η > 0.
While the forms of the in-plane viscous stresses παβ in Eqs. (186) and (189) are theo-

retically sound, they are not amenable for obtaining the relevant equations of motion and
boundary conditions. For ease in our later calculations, we express παβ as

παβ = ζ aαµaβν ȧµν +
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
= ζ

(
vβ;µ a

αµ + vα;ν a
βν − 2vbαβ

)
+
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
= ζ

(
vβ;µ a

αµ + vα;ν a
βν + 2vb̄αβ − 4vHaαβ

)
+
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
.

(192)

In Eq. (192), we substituted the expression for ȧµν in the second line, and then the expression
for b̄αβ in the third line.

(b). The membrane stresses and couple-stresses
With our calculation of ωαβ and παβ, the membrane stresses and couple-stresses are com-
pletely determined. Equations (115) and (183) reveal the constitutive form of the couple-
stress tensor Mαβ is given by Mαβ = Mαβ

el , for which the out-of-plane shear stresses Sα are
given by Sα = Sα

el. Moreover, with our determination of the viscous stresses παβ in Eq.
(186), the couple-free in-plane stresses are written as σαβ = σαβ

el + παβ, and the correspond-
ing in-plane stresses are given by Nαβ = Nαβ

el + παβ. In terms of a general Helmholtz free
energy density ψ̄ (126), the membrane stress and couple-stresses are listed in Table 3; those
corresponding to our choice of Helfrich and compression energies (160) are given in Table 4.
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Table 3: Stresses and couple-stresses in a single-component lipid membrane with Helmholtz
free energy density of the general form in Eq. (126), and an in-plane viscous flow of lipids.
Here, παβ is given by Eq. (192).

σαβ = −ρ aαβ
(
ρ
∂ψ̄

∂ρ
+ 2H

∂ψ̄

∂H
+ 2K

∂ψ̄

∂K

)
+ ρ b̄αβ

∂ψ̄

∂H
+ παβ

Mαβ =
ρ

2
aαβ

∂ψ̄

∂H
+ ρ b̄αβ

∂ψ̄

∂K

Nαβ = −ρ aαβ
(
ρ
∂ψ̄

∂ρ
+ H

∂ψ̄

∂H
+ K

∂ψ̄

∂K

)
+

ρ

2
b̄αβ

∂ψ̄

∂H
+ παβ

Sα = −aαβ
(
ρ

2

∂ψ̄

∂H

)
;β

− b̄αβ
(
ρ
∂ψ̄

∂K

)
;β

Table 4: Stresses and couple-stresses in a single-component lipid membrane with a
Helmholtz free energy containing Helfrich and compressible contributions (160), where
lipids flow in-plane as a viscous fluid and παβ is given by Eq. (192).

σαβ = aαβ
(
− 3kbH

2 − kgK + kc(J − 1)
)

+ 2kbHb̄
αβ + παβ

Mαβ = kbHa
αβ + kg b̄

αβ

Nαβ = aαβ
(
− kbH

2 + kc(J − 1)
)

+ kbHb̄
αβ + παβ

Sα = −kb aαβH,β
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(c). The equations of motion
Let us compare the membrane stresses and couple-stresses in two different cases: when the
in-plane flow of lipids is inviscid (Table 2), and when viscous dissipation arises from lipid
flow (Table 3). The only difference is the presence of the in-plane viscous stresses παβ in
σαβ, and consequently Nαβ, in the latter case. Thus, in order to determine the governing
equations for a lipid membrane with viscous in-plane flows, we need only to add the quantity
πβα
;β to the in-plane equations (152) and παβbαβ to the shape equation (153) [cf. Eqs. (66)

and (67)]. To this end, we calculate

πβα
;β = ζ

(
vα;µ a

βµ + vβ;ν a
αν + 2vb̄αβ − 4vHaαβ

)
;β

+
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
;β

= ζ
(
vα;µβ a

βµ︸ ︷︷ ︸
∆svα

+ vβ;νβ a
αν︸ ︷︷ ︸

vβ;βν aαν+Kvα

+ 2v,β b̄
αβ − 4(vH),βa

αβ
)
+
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
;β

= ζ
(
∆sv

α + Kvα + vβ;βν a
αν − 2(vH),βa

αβ︸ ︷︷ ︸
aαβ(vµ;µ−2vH);β

+2v,β b̄
αβ − 2(vH),βa

αβ
)

+
(
η − ζ

)
aαβ
(
vµ;µ − 2vH

)
;β
,

(193)

where in the second line we distributed the covariant derivative, and in the third line we
substituted Eqs. (30) and (47) from Chapter II. After some rearrangement, the result of Eq.
(193) can be written as

πβα
;β = ζ

(
∆sv

α + Kvα + 2v,βHa
αβ − 2v,β b

αβ − 2vH,βa
αβ
)
+ η aαβ

(
vµ;µ − 2vH

)
;β
. (194)

We also use the identities aαβ bαβ = 2H and b̄αβ bαβ = 2K to find

παβ bαβ = 2ζ
(
vα;β b

β
α − 2v

(
2H2 −K

)
− H

(
vα;α − 2vH

))
+ 2ηH

(
vα;α − 2vH

)
. (195)

In the case where the membrane energetics are captured by the Helfrich and compression
energies (160), the governing equations are given by [cf. Eqs. (166)–(168)]

ρ,t + vαρ,α + ρ
(
vα;α − 2vH

)
= 0 , (196)

ρ
(
vα,t + vβvα;β − 2vvβ bαβ − vv,βa

αβ
)

= fα − kc
ρ0
ρ2
aαβρ,β + η aαβ

(
vµ;µ − 2vH

)
;β

+ ζ
(
∆sv

α + Kvα + 2v,βHa
αβ − 2v,β b

αβ − 2vH,βa
αβ
)
,

(197)

and

ρ
(
v,t + 2vαv,α + vαvβ bαβ

)
= f + 2kcH

(
J − 1

)
− 2kbH

(
H2 −K

)
− kb∆sH

+2ζ
(
vα;β b

β
α − 2v

(
2H2 −K

)
− H

(
vα;α − 2vH

))
+ 2ηH

(
vα;α − 2vH

)
.

(198)



Ch. V §5 the case of a compressible, viscous membrane 99

Equations (196)–(198) are the continuity, in-plane, and shape equations, which respectively
govern the areal mass density ρ, the in-plane velocity components vα, and the out-of-plane
velocity v.

At this point, it is useful to discuss the nature of the governing equations. We first note
that the membrane position x is calculated from the velocity v according to Eq. (154).
Thus, all geometric quantities in the governing equations—including the mean and Gaussian
curvatures and the Christoffel symbols—can be thought of as functions of the out-of-plane
velocity v. With this perspective, the in-plane equations (197) contain two derivatives of
the in-plane velocities vα through the surface Laplacian term, as is often found in fluid
equations. The shape equation, on the other hand, contains two derivatives of the mean
curvature H in the surface Laplacian, and the mean curvature itself contains two derivatives
of the position through the curvature tensor. Thus, the shape equation (198) is a fourth-
order equation for the out-of-plane velocity v; the four spatial derivatives are reminiscent
of classic beam bending problems. We also note that when viscous terms are included, all
governing equations (196)–(198) involve the density ρ and three components of the velocity
v, such that membrane dynamics are highly coupled. We address this coupling in more
detail in later chapters.

(d). The boundary conditions
The decomposition of the equations of motion into in-plane and out-of-plane components
gives us an intuition of the types of allowed boundary conditions. The in-plane equations
are in fact identical to those of a two-dimensional viscous fluid film, such that we expect
to prescribe either the in-plane velocities vα or the in-plane forces at the membrane patch
boundary. The shape equation contains four spatial derivatives of the membrane shape; in
drawing analogy to the study of elastic plates and shells we expect to specify two of the
following boundary conditions at each point on the patch boundary: the position, slope,
moment, and out-of-plane force. In what follows, we systematically determine a well-posed
set of boundary conditions by drawing on techniques from variational calculus, as motivated
by standard practices in finite element analysis.

We begin by contracted the vector form of the linear momentum balance (60) with an
arbitrary velocity variation δv, and integrating over the membrane patch to obtain∫

P
δv · ρv̇ da =

∫
P
δv · f da +

∫
P
δv · T α

;α da . (199)

Equation (199) is similar to the starting point of the mechanical power balance (87); by
following an analogous set of manipulations, we find it can be expressed as [cf. Eq. (94)]∫

P
δv · ρv̇ da +

∫
P
(δv),α · σαβ aβ da +

∫
P
(δv);αβ ·Mαβ n da

−
∫
P
δv · f da −

∫
∂P

(
δv · T + δṅ ·M

)
ds = 0 ,

(200)

where δṅ = −(aα ⊗ n)(δv),α in analogy to Eq. (27). Generally, with a boundary term like
that of Eq. (200), we would conclude that either v or T is specified on the boundary, and
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similarly either ṅ or M is specified there as well. In this case, however, δv and δṅ are not
independent, ‡, † and such a conclusion cannot be drawn. The boundary term in Eq. (200)
is rewritten by first decomposing δṅ in the {ν, τ} basis, ∗ for which

δṅ · ν = −n · να(δv),α = −n · ∂(δv)
∂ν

(201)

and

δṅ · τ = −n · τα(δv),α = −n · ∂(δv)
∂s

. (202)

In Eqs. (201) and (202), we introduced the notation

∂( · )
∂ν

:= να( · ),α and ∂( · )
∂s

:= τα( · ),α , (203)

as the partial derivatives along the ν and τ directions, respectively. With Eqs. (201) and
(202), as well as the representation of the director traction M as M = mτ ν−mντ provided
in Eq. (86), we find

δṅ ·M = δṅ ·
(
mτ ν − mντ

)
= −mτ n · ∂(δv)

∂ν
+ mν n · ∂(δv)

∂s
,

= −mτ n · ∂(δv)
∂ν

+
∂

∂s

(
mν δv · n

)
− δv · ∂

∂s

(
mν n

)
,

(204)

where the product rule was used in the second line. Next, substituting Eq. (204) into the
boundary term in Eq. (200) yields∫

P

(
δv · T + δṅ ·M

)
da

=

∫
∂P

(
δv ·

[
T − ∂

∂s

(
mν n

)]
− ∂(δv)

∂ν
·mτ n +

∂

∂s

(
δv ·mν n

))
ds .

(205)

By recognizing we are integrating around a closed curve, namely the patch boundary, the
last term in Eq. (205) only contributes to the integral at the corners of the domain—where
τ is discontinuous. Denoting Nc as the number of corners on the patch boundary, and J · Ki
as the jump in ( · ) when traversing the ith corner, Eq. (205) simplifies to∫

P

(
δv · T + δṅ ·M

)
da

=

∫
∂P

(
δv ·

[
T − ∂

∂s

(
mν n

)]
− ∂

∂ν

(
δv
)
·mτn

)
ds +

Nc∑
i=1

δv · Jmν nKi . (206)

‡A.E. Green and P.M. Naghdi. “The Cosserat Surface”. Mechanics of Generalized Continua. Ed. by
E. Kröner. Berlin, Heidelberg: Springer, 1968, pp. 36–48.

†D.J. Steigmann. “On the relationship between the Cosserat and Kirchhoff–Love theories of elastic shells”.
Math. Mech. Solids 4 (1998), 275–288.

∗We note that δṅ has no component in the normal direction, as δṅ · n = −(n · aα)[n · (δv),α] = 0.

https://doi.org/10.1007/978-3-662-30257-6
https://doi.org/10.1177/108128659900400301
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Importantly, δv and ∂(δv)/∂ν are independent quantities, and are respectively conjugate to
the force and moment on the boundary. ‡, † Thus, we define the force on the boundary F ,
moment on the boundary M , and force on the ith corner of the boundary Fi as

F := T − ∂

∂s

(
mν n

)
, M := −mτ , and Fi := Jmν nKi . (207)

With the result of Eq. (206) and the shorthand introduced in Eq. (207), Eq. (200) is equiv-
alently given by∫

P
δv · ρv̇ da +

∫
P
(δv),α · σαβ aβ da +

∫
P
(δv);αβ ·Mαβ n da (208)

−
∫
P
δv · f da −

∫
∂P

(
δv · F +

∂(δv)

∂ν
·Mn

)
ds −

Nc∑
i=1

δv · Fi = 0 .

The boundary integral in Eq. (208) implies we can specify either v = vαaα + vn or
F = Fνν + Fτ τ + Fnn on the membrane boundary, and similarly either n · (∂v/∂ν) or M ;
note that specifying n · (∂v/∂ν) is essentially specifying the slope of the patch boundary. In
component form, we recognize the in-plane equations (197) are well-posed if we specify{

v1 = v̄1 and v2 = v̄2
}

or
{
Fν = F ν and Fτ = F τ

}
(209)

on the membrane boundary, where v̄1, v̄2, F ν , and F τ are known entities. The former set of
conditions are known as Dirichlet boundary conditions, while the latter are called Neumann
boundary conditions. Equation (209) confirms our intuition that the in-plane fluid equations
are well-posed if we specify either the in-plane velocities or in-plane tractions. Next, we
consider the boundary conditions in the normal direction, which correspond to the shape
equation. Here, we are required to specify either

v = v̄ or Fn = F n (210)

on the boundary, as well as either

n · ∂v
∂ν

= v̄ν or M = M , (211)

where v̄, F n, v̄ν , and M are prescribed quantities. Here, we again see that our intuition was
correct: the shape equation contains four spatial derivatives, and we consequently specify
two boundary conditions—either the change in position or the force, and either the change
in slope or the moment.

Our final task is to determine the functional form of the boundary force F and moment
M , such that they can be prescribed as required. We begin by writing the force F in Eq.
(207)1 as

F = Nαβνα
(
νβν + τβτ

)
+ Sαναn − ∂mν

∂s
n − mν

∂n

∂s
, (212)

‡Green and Naghdi, “The Cosserat Surface”.
†Steigmann, “On the relationship between the Cosserat and Kirchhoff–Love theories of elastic shells”.
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where we substituted the traction decomposition (58), stress vector decomposition (61), and
expanded the partial derivative. Next, we calculate

∂n

∂s
= n,α

∂θα

∂s
= n,ατ

α = −bβα aβ τ
α = −bαβ τανβ ν − bαβ τατβ τ , (213)

where we applied the chain rule, definition of τ , the Weingarten equation, and the decompo-
sition of aβ provided in Chapter II. By substituting Eq. (213) into Eq. (212) and rearranging
terms, we obtain

F =

(
Nαβνανβ + mν b

αβ τανβ

)
ν +

(
Nαβνατβ + mν b

αβ τατβ

)
τ +

(
Sανα − ∂mν

∂s

)
n ,

(214)
for which the components of the boundary force are given by

Fν = Nαβνανβ + mν b
αβ τανβ , (215)

Fτ = Nαβνατβ + mν b
αβ τατβ , (216)

and

Fn = Sανα − ∂mν

∂s
. (217)

For completeness, we reiterate the expression for boundary moment M provided in Eq. (85)
as

M = −mτ = Mαβνανβ . (218)

The three components of the boundary force, provided in Eqs. (215)–(217), and the bound-
ary moment M (218) are the general forms of the forces and moments on the membrane
boundary.

We close by providing the boundary forces and moments for the membrane systems con-
sidered thus far, expressed in terms of the boundary curvatures. To this end, recall the
definitions of the normal curvatures κν and κτ in the ν and τ directions, the twist ξ, and
their relation to the mean and Gaussian curvatures [see Chapter II, §2 (f)]. For a general
Helmholtz free energy per unit mass ψ̄, the membrane stresses are given in Table 3; substi-
tuting these results into Eqs. (215)–(218) and rearranging terms yields

Fν = −ρ2 ∂ψ̄
∂ρ

− ρ κν
2

∂ψ̄

∂H
− ρ κν κτ

∂ψ̄

∂K
+ παβνανβ , (219)

Fτ = − ρ ξ

2

∂ψ̄

∂H
− ρ κτ ξ

∂ψ̄

∂K
+ παβ τανβ , (220)

Fn = − 1

2

∂

∂ν

(
ρ
∂ψ̄

∂H

)
− b̄αβνα

(
ρ
∂ψ̄

∂K

)
,β

+
∂

∂s

(
ρ ξ

∂ψ̄

∂K

)
, (221)

and

M =
ρ

2

∂ψ̄

∂H
+ ρ κτ

∂ψ̄

∂K
. (222)
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For the specific case of the Helfrich and compression energies (160), we substitute the results
of Eq. (161) into the above equations to obtain

Fν =
kb
4

(
κ2τ − κ2ν

)
− kg ξ

2 + kc
(
J − 1

)
+ παβνανβ , (223)

Fτ = − kb ξ

2

(
κν + κτ

)
− kg ξ κτ + παβ τανβ , (224)

Fn = − kb
2

(
∂κν
∂ν

+
∂κτ
∂ν

)
+ kg

∂ξ

∂s
, (225)

and
M =

kb
2

(
κν + κτ

)
+ kgκτ . (226)

We have now provided the governing equations, with possible boundary conditions, for
both the in-plane and shape equations. As such, our problem is mathematically well-posed.
This concludes the theoretical development of a single-component, area-compressible lipid
membrane with elastic out-of-plane bending and viscous in-plane lipid flow.

6. The case of an incompressible, viscous membrane
In biologically relevant systems, lipid membranes can only stretch 2–3% before they tear, ‡

and are thus practically area-incompressible. In this section, we obtain the equations gov-
erning a perfectly incompressible membrane, for which the areal mass density ρ is constant
and the Jacobian determinant J = 1. The continuity equation simplifies to the incompress-
ibility constraint provided in Eq. (52), which is enforced at each point on the membrane
surface with the Lagrange multiplier field λ̃ = λ(θα, t). Physically, we recognize λ as the
surface tension, in analogous fashion to the pressure p enforcing bulk incompressibility in a
three-dimensional fluid [see Chapter III, §4 (b)].

(a). The Helmholtz free energy
As was the case for a compressible membrane, we begin by considering the Helmholtz free
energy W of the entire patch, and the free energy per area w (155). In this case, the total
free energy is decomposed as [cf. Eqs. (156) and (157)]

W = WH + Wi , with WH =

∫
P
wH da and Wi =

∫
P
wi da . (227)

Here, WH is again the Helfrich free energy, while Wi is the portion of the free energy arising
from the incompressibility constraint J = 1. We enforce the constraint in the reference
configuration, about which area dilations and compressions are measured, for which

Wi =

∫
P0
λ̂
(
Ĵ − 1

)
dA =

∫
P

λ

J

(
J − 1

)
da . (228)

‡Evans and Skalak, Mechanics and Thermodynamics of Biomembranes.
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Recalling J = ρ0/ρ (55) and J dA = da (6), from Eqs. (227)3 and (228) we recognize

wi =
λ

J

(
J − 1

)
and ψ̄i = λ

(
1

ρ
− 1

ρ0

)
. (229)

Thus, the total Helmholtz free energy per unit area and per unit mass are respectively given
by

w = kbH
2 + kgK +

λ

J

(
J − 1

)
and ψ̄ =

1

ρ

(
kbH

2 + kgK
)
+ λ

(
1

ρ
− 1

ρ0

)
.

(230)

(b). The internal entropy production
With a form for the Helmholtz free energy we can calculate the elastic components of the
stresses and couple-stresses, and our irreversible thermodynamic framework naturally allows
us to determine the irreversible components as well. The internal entropy production is
again given by Eq. (121), with the definitions of παβ and ωαβ unchanged from Eqs. (114)
and (115). We then follow the same procedure as in §5 (a) to determine the thermodynamic
fluxes and forces, with the assumption that out-of-plane bending is reversible while in-plane
flows are dissipative. In this case, the irreversible couple-stresses are given by

ωαβ = 0 (231)

as in Eq. (183), and the expression for παβ can be simplified with the incompressibility
constraint vα;α − 2vH = 0 [see Eq. (52)]—for which Eq. (186) simplifies to

παβ = ζ aαµaβν ȧµν . (232)

Equation (232) indicates there is no longer a two-dimensional dilational viscosity, as ex-
pected. With the in-plane heat flux unchanged from Eq. (178), the internal entropy produc-
tion is given by

ρηi =
κ aαβT,α T,β

T 2
+

1

2T
ζ aαµaβν ȧαβ ȧµν ≥ 0 . (233)

According to Eq. (233), the scalar thermal conductivity κ and the two-dimensional membrane
shear viscosity ζ are both positive.

(c). The membrane stresses and couple-stresses
At this point, we have determined both the elastic and irreversible contributions to the
membrane stresses and couple-stresses. We begin by rewriting the form of παβ in Eq. (232)
as

παβ = ζ
(
vβ;µ a

αµ + vα;ν a
βν + 2vb̄αβ − 4vHaαβ

)
. (234)

With the expression in Eq. (234), the general results of Table 3 once again hold for an area-
incompressible membrane. By substituting Eq. (229) into the results of Table 3, we obtain
the stresses and couple-stresses for an area-incompressible membrane with in-plane viscous
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Table 5: Stresses and couple-stresses in a single-component, incompressible lipid membrane
with viscous in-plane flows. The Helmholtz free energy contains Helfrich and incompressible
contributions (230), and the in-plane viscous stresses παβ are given by Eq. (234).

σαβ = aαβ
(
− 3kbH

2 − kgK + λ
)

+ 2kbHb̄
αβ + παβ

Mαβ = kbHa
αβ + kg b̄

αβ

Nαβ = aαβ
(
− kbH

2 + λ
)

+ kbHb̄
αβ + παβ

Sα = −kb aαβH,β

flows given in Table 5. All the bending components are identical to those in Table 4, and
the quantity kc aαβ (J − 1) is replaced by λ aαβ in both σαβ and Nαβ. We can thus associate
kc(J − 1) as the surface tension of a compressible membrane, as noted previously, and λ as
the surface tension of an incompressible membrane.

(d). The equations of motion
The equations of motion are determined by substituting the result of Table 5 into the equa-
tions of motion [Eqs. (66) and (67)]. However, in comparing the compressible stresses in
Table 4 to the incompressible stresses, we note all the bending terms are identical. Thus,
we expect only a few differences from the governing equations of a compressible membrane
(196)–(198): (i) the continuity equation simplifies to the incompressibility constraint, (ii)
there is no longer a dilational viscosity, and (iii) terms involving the compressibility modulus
kc are replaced by terms involving the surface tension λ. Indeed, by substituting the results
of Table 5 into the equations of motion, we find the governing equations are given by

vα;α − 2vH = 0 , (235)

ρ
(
vα,t + vβvα;β − 2vvβ bαβ − vv,βa

αβ
)

= fα + aαβλ,β + ζ
(
∆sv

α + Kvα + 2v,βHa
αβ − 2v,β b

αβ − 2vH,βa
αβ
)
,

(236)

and

ρ
(
v,t + 2vαv,α + vαvβ bαβ

)
= f + 2λH − 2kbH

(
H2 −K

)
− kb∆sH + 2ζ

(
vα;β b

β
α − 2v(2H2 −K)

)
.

(237)
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We note that Eq. (235) was used to simplify Eqs. (236) and (237). Notice that the in-plane
equations (236) contain a surface tension gradient, just as the three-dimensional Navier–
Stokes equations [Chapter III, Eq. (98)] contain a negative gradient in pressure. Additionally,
in the limit where inertial forces, viscous forces, and bending forces are negligible, the shape
equation simplifies to f + 2λH = 0—which, when f = JpK is the pressure drop across the
membrane, is the celebrated Young–Laplace equation.

(e). The boundary conditions
Our discussion of relevant boundary conditions for membrane dynamics in §5 (d) was com-
pletely general, and only specialized to the case of a compressible membrane when we calcu-
lated the components of the boundary force F and moment M in Eqs. (223)–(226). More-
over, as all the bending stresses and forces are identical for compressible and incompressible
membranes, we need only to calculate how the surface tension contribution is different. We
easily obtain [cf. Eqs. (223)–(226)]

Fν =
kb
4

(
κ2τ − κ2ν

)
− kg ξ

2 + λ + παβνανβ , (238)

Fτ = − kb ξ

2

(
κν + κτ

)
− kg ξ κτ + παβ τανβ , (239)

Fn = − kb
2

(
∂κν
∂ν

+
∂κτ
∂ν

)
+ kg

∂ξ

∂s
, (240)

and
M =

kb
2

(
κν + κτ

)
+ kgκτ , (241)

where παβ is now given by Eq. (234). The Lagrange multiplier λ only enters the boundary
force in the direction of the in-plane unit normal ν, thus reinforcing the idea that λ is the
membrane surface tension. With Eqs. (235)–(241), and the general result of §5 (d), we de-
termined the governing equations and possible boundary conditions for a single-component,
area-incompressible lipid membrane; this concludes our development of the theory. We see
that the general equations governing membrane dynamics are highly nonlinear, with in-plane
flows and out-of-plane deformations coupled by the continuity equation and curvature of the
surface. We probe this coupling in Part C via approximate analytical methods.
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List of important symbols

A(0) generic, base state fundamental unknown
Ã generic, perturbed fundamental unknown
Âq normal mode of Ã corresponding to q
ϵ small parameter used in linearization
Γ Föppl–von Kármán number: ΛL2/kb
ℓ in-plane length scale arising if v(0) ̸= 0
L characteristic length scale
Λ characteristic surface tension scale
ω normal mode frequency, assumed complex
q generic normal mode wavevector
Re membrane Reynolds number: ρVL/ζ
SL Scriven–Love number: ζVL/kb
τ characteristic time scale
V characteristic velocity scale
( · )∗ dimensionless form of the quantity ( · )
( · )′ quantity ( · ) non-dimensionalized by ℓ

Flat Patches
h̃ perturbed membrane height
qx, qy wavevector components in x and y

Spherical Vesicles
γ̇ shear rate, often in vesicle experiments
Ω characteristic angular velocity
φ azimuthal angle, in spherical coordinates
r̃ perturbed membrane radius
θ polar angle, in spherical coordinates
Yℓm scalar spherical harmonics
Yℓm vector spherical harmonic (generic)

Cylindrical Tubes
δ ratio of angular to axial length scales
fpull pull force on a cylindrical tether
m angular wavenumber
ω0 absolute wavenumber of the saddle point
q axial wavenumber
qms marginally stable wavenumber
q0 absolute wavenumber of the saddle point
θ azimuthal angle, in cylindrical coordinates
SLac absolute-to-convective value of SL
SLf dimensionless speed of propagating front



Chapter VI

Introduction and Overview

In considering the stability of such a system we essentially seek to determine the
reaction of the system to small disturbances. Specifically, we ask: if the system is
disturbed, will the disturbance gradually die down, or will the disturbance grow
in amplitude in such a way that the system progressively departs from the initial
state and never reverts to it? In the former case, we say the system is stable
with respect to the particular disturbance; and in the latter case, we say that it is
unstable.

—SUBRAHMANYAN CHANDRASEKHAR, 1961 ‡

In Part B of the present work, we obtained the general equations governing the dynamics
of lipid membranes, as well as appropriate boundary conditions. With these results, we now
analyze the behavior of lipid membranes in various biologically relevant situations. It is im-
portant to reiterate that the governing membrane equations are intricately coupled, highly
nonlinear partial differential equations written on a surface which is itself arbitrarily curved
and deforming over time. Thus, the dynamical evolution of lipid membranes cannot in gen-
eral be solved for analytically. Consequently, the present portion of this thesis uses approx-
imate analytical methods to understand the dynamical evolution of biological membranes.
Here, our analytical techniques take advantage of an experimental observation: in biological
systems, lipid membranes are predominantly observed in one of three geometries, namely flat
patches, spheres, and cylinders. For example, at the neuronal synapse, spherical lipid mem-
brane vesicles rapidly develop from planar membrane sheets to recycle lipids and proteins
during ultrafast endocytosis. † It is also known that spherical white blood cells rapidly rotate
as they travel through the blood stream, ∗ and additionally that thin membrane tubes can
shoot suddenly from the endoplasmic reticulum into the cell cytoplasm §, ♯—often fusing with

‡S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. New York: Dover, 1981.
†S. Watanabe et al. “Ultrafast endocytosis at mouse hippocampal synapses”. Nature 504 (2013), 242–

247.
∗E. Kolaczkowska and P. Kubes. “Neutrophil recruitment and function in health and inflammation”.

Nat. Rev. Immunol. 13 (2013), 159–175.
§M. Terasaki, L.B. Chen, and K. Fujiwara. “Microtubules and the endoplasmic reticulum are highly

interdependent structures”. J. Cell Biol. 103 (1986), 1557–1568.
♯J. Nixon-Abell et al. “Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices

in the peripheral ER”. Science 354 (2016), aaf3928.
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one another when they cross. Importantly, the general equations governing membrane be-
havior in the aforementioned situations show in-plane and out-of-plane membrane dynamics
are nontrivially coupled through the continuity and curvature of the material [see Chapter
V, §6 (d)]. Consequently, the equations governing a flat sheet at the neuronal synapse are
different from those describing spherical lipid membrane vesicles carrying chemical cargo in a
shear flow, which are again different from the equations governing cylindrical tubes shooting
from the endoplasmic reticulum. Moreover, though the general single-component govern-
ing equations were first provided in 2007, ‡ there were no additional efforts to methodically
analyze membrane dynamics in biologically relevant settings and geometries. As a result,
despite much experimental evidence for the dynamic behavior of lipid membranes in biolog-
ical systems, the physical mechanisms governing membrane motion—and their coupling to
membrane geometry—remained poorly understood.

In what follows, we employ the concepts of non-dimensionalization, scaling and hydro-
dynamic stability to systematically study how lipid membrane geometry and dynamics are
coupled. To this end, we begin by choosing the geometry of the system we would like to con-
sider, and seek to determine a biologically relevant stationary state—in which the membrane
behavior is not changing in time. For the systems under investigation, a stationary state
consists of the membrane position x(0)(θ

α), velocity v(0)(θ
α), and surface tension λ(0)(θ

α).
Here and from now on, a subscript or superscript ‘(0)’ signifies that a quantity corresponds
to the stationary state, which by construction does not vary in time. For any such state, we
follow S. Chandrasekhar † in asking a fundamental question: How does the membrane
respond to an infinitesimal perturbation, and what are the relevant parameters governing
the response? This question is systematically addressed for planar, spherical, and cylindrical
geometries in Chapters VII, VIII, and IX, respectively. The general procedure we employ is
outlined below.

Consider a membrane of a particular geometry, with position x(0)(θ
α). Now, suppose

we begin with a valid stationary state, in which the surface tension and velocity fields (i)
satisfy the governing membrane equations and (ii) are consistent with a stationary membrane
solution. In practice, a necessary condition for the latter requirement is v(0) := v(0) ·n(0) = 0.
An infinitesimal disturbance is then applied to the system, such that the perturbed state
can be represented as

x(θα, t) = x(0)(θ
α) + ϵx̃(θα, t) , (1)

v(θα, t) = v(0)(θ
α) + ϵṽ(θα, t) , (2)

and
λ(θα, t) = λ(0)(θ

α) + ϵλ̃(θα, t) . (3)

In Eqs. (1)–(3) and from now on, ϵ is an infinitesimal dimensionless parameter and a ‘tilde’
accent denotes a perturbed, time-dependent quantity. We substitute Eqs. (1)–(3) into the
general equations governing membrane dynamics, and separate the resultant terms based on
the number of factors of ϵ they contain. The terms which only involve unperturbed quantities,

‡D. Hu, P. Zhang, and W. E. “Continuum theory of a moving membrane”. Phys. Rev. E 75 (2007),
041605.

†Chandrasekhar, Hydrodynamic and Hydromagnetic Stability.

https://doi.org/10.1103/PhysRevE.75.041605
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i.e. those with no factors of ϵ, correspond to the stationary state. As such terms already
satisfy the governing equations, they do not contribute to the dynamics of the perturbed
system. Next, since the parameter ϵ is assumed to be infinitesimal, all terms containing two
or more powers of ϵ can be neglected relative to those terms which are linear in the perturbed
variables. The resultant linearized equations govern the temporal evolution of a membrane
of a particular geometry, subject to small disturbances. The following sections discuss how
we study such equations: a convenient form of the governing equations is provided in §1,
non-dimensionalization and scaling are discussed in §2, and the general procedure to assess
the stability of the system is presented in §3.

1. The general governing equations
The general equations governing single-component, area-incompressible lipid membranes are
provided in Chapter V, Eqs. (235)–(237). ‡ However, these equations are presented in a
compact form, where we understand covariant derivatives are to be expanded using the
Christoffel symbols. As small disturbances to the membrane shape will correspondingly
alter the Christoffel symbols, it is convenient to expand all covariant derivatives and provide
the governing equations in a form more amenable to linearization. To this end, we begin
with the continuity equation [Chapter V, Eq. (235)], which involves the covariant derivative
vα;α and is easily expanded to yield

vα,α + Γα
αβ v

β − 2vH = 0 . (4)

We next consider the in-plane equations, which are presented as Eq. (236) in Chapter V.
Here, the inertial terms involve the covariant derivative vα;β, which is equivalently expressed
as vα,β + Γα

βµv
µ. However, the in-plane viscous stresses now involve the surface Laplacian of

the in-plane velocity components, ∆sv
α = vα;βµa

βµ. Some care is required when expanding
the two covariant derivatives, and we find

vα;βµ = vα,βµ + Γα
βν,µ v

ν + Γα
βνv

ν
,µ + Γα

µνv
ν
,β + Γα

µνΓ
ν
βγv

γ − Γν
βµv

α
,ν − Γν

βµΓ
α
νγv

γ .

The in-plane equations, without body forces, are then given by [cf. Chapter V, Eq. (236)]

ρ
(
vα,t − vv,β a

αβ − 2vvβ bαβ + vβ
(
vα,β + Γα

λβv
λ
))

= ζ
[
2
(
v,βH − vH,β

)
aαβ + Kvα +

(
vα,βµ + Γα

βν,µ v
ν + Γα

βνv
ν
,µ (5)

+ Γα
µνv

ν
,β + Γα

µνΓ
ν
βγv

γ − Γν
βµv

α
,ν − Γν

βµΓ
α
νγv

γ
)
aβµ − 2v,µb

µα
]
+ aαβλ,β .

We finally examine the shape equation [Chapter V, Eq. (237)], which contains two terms
with covariant derivatives: vα;β and ∆sH. The former is easily expanded, and we also recall
that H;α = H,α is a vector component. Thus, the surface Laplacian of the mean curvature

‡For the remainder of this thesis, we consider only area-incompressible lipid membranes for simplicity.
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is given by ∆sH = (H,αβ − Γµ
αβH,µ)a

αβ, and the shape equation is equivalently written as

ρ
(
v,t + 2vαv,α + vαvβ bαβ

)
= JpK + 2λH − 2kb

(
H3 − HK

)
− kb

(
H,αβ − Γµ

αβH,µ

)
aαβ

+ ζ
(
2bβα

(
vα,β + Γα

βµv
µ
)
− 4v

(
2H2 − K

))
.

(6)

In Eq. (6) and from now on, we use the symbol JpK to denote the jump in normal stress across
the membrane surface—which is usually attributed to the jump in hydrodynamic pressure
in the surrounding fluid. Equations (4)–(6) are respectively the continuity, in-plane, and
shape equations governing an area-incompressible, single-component lipid membrane, and
are identical to Eqs. (235)–(237) in Chapter V.

2. The Scriven–Love and Föppl–von Kármán numbers
With the linearized equations, our first task is to determine how many independent pa-
rameters govern the dynamics of the membrane. To this end, we non-dimensionalize the
governing equations via a scaling analysis. When the dynamics of the surrounding medium
are neglected, three dimensionless numbers govern membrane dynamics, only two of which
are relevant. ‡ To see how the first of these numbers emerges, we reproduce the in-plane
equations, without body forces, as [cf. Chapter V, Eqs. (66) and (236)]

ρcα︸︷︷︸
O(ρV 2/L)

= aαβλ,β︸ ︷︷ ︸
O(Λ/L)

+ πβα
;β︸︷︷︸

O(ζV/L2)

. (7)

In Eq. (7), each term is annotated with its order of magnitude. Here, L is a typical length
in the system, V is a typical velocity scale, and Λ is the scale of the surface tension; the
dimension of all quantities is provided in Table 1. By taking the ratio of inertial to viscous
forces, we obtain the well-known Reynolds number Re, given by

Re :=
ρVL

ζ
. (8)

As is generally the case in cellular and sub-cellular systems, † the Reynolds number is ex-
ceedingly small in the situations we consider. Inertial forces can then, to an excellent ap-
proximation, be entirely neglected in the study of membrane dynamics. It is useful to note
the right-hand side of Eq. (7) can be written as (λaαβ + πβα);β, i.e. the surface divergence of
the in-plane fluid stresses λaαβ + παβ.

‡If we consider a membrane surrounded by a Newtonian fluid, and include the dynamics of the fluid
as the membrane deforms, then an additional dimensionless parameter emerges. The Boussinesq number
Bo := ζ/(µL) compares the dissipative mechanisms of in-plane lipid flow and the flow of the surrounding
fluid; here µ is the fluid shear viscosity and L is a characteristic length scale. In the systems of interest,
Bo ≫ 1, and dissipation is primarily driven by the intramembrane viscosity. Consequently, the dynamics of
the surrounding fluid are not considered in this work.

†E.M. Purcell. “Life at low Reynolds number”. Am. J. Phys. 45 (1977), 3–11.

https://doi.org/10.1119/1.10903
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Table 1: Dimension and units of various membrane quantities.

Sym. Parameter Dimension Units
ρ mass density mass/length2 pg/nm2

V velocity length/time nm/μsec
L typical length length nm
Λ surface tension force/length pN/nm
ζ membrane viscosity force·time/length pN · μsec/nm
kb bending modulus force·length pN · nm

We now consider the membrane shape equation, which in the absence of body forces can
be written as [cf. Chapter V, Eqs. (67) and (237)]

ρc︸︷︷︸
O(ρV 2/L)

= λaαβ bαβ︸ ︷︷ ︸
O(Λ/L)

+ παβbαβ︸ ︷︷ ︸
O(ζV/L2)

+ kb
[
− 2H

(
H2 −K

)
− ∆sH

]︸ ︷︷ ︸
O(kb/L3)

. (9)

Before discussing the order of magnitude of the various terms in Eq. (9), it is useful to discuss
their origin. The inertial term ρc is expected, as it accounts for the out-of-plane acceleration
of the surface. Terms involving the bending modulus kb are also not surprising, as lipid
membranes are known to bend in the out-of-plane direction. The two remaining terms in
Eq. (9), (λaαβ + παβ)bαβ, couple the in-plane fluid stresses to membrane curvature and lead
to both tensile and viscous forces in the normal direction. Interestingly, the viscous forces
arise despite the membrane deforming elastically, or reversibly, in the out-of-plane direction
[see Chapter V, §5 (a)]. To understand how in-plane stresses lead to out-of-plane forces, first
consider the surface tension term in Eq. (9). The stress associated with the surface tension,
λaαβ, is in-plane and isotropic—yet when the membrane is curved and H = 1

2
aαβbαβ ̸= 0,

the surface tension acts in different directions at different locations (see Fig. 1a). These
contributions sum to give the well-known λaαβ bαβ = 2λH term in the shape equation, often
called the Laplace pressure. Now consider the shear stresses arising from a planar extensional
flow, for which streamlines and boundary tractions are shown on the left-hand side of Fig.
1b as solid and dotted arrows, respectively. Just as in the case of the surface tension, when
the membrane is curved, the viscous stresses act in different directions at different locations
on the surface and give rise to the παβbαβ force in the normal direction (Fig. 1b).

With an understanding of the origin of all the terms in the shape equation (9), we return
to our original question regarding the different parameters governing membrane dynamics. A
comparison of the out-of-plane tension forces to bending forces yields the Föppl–von Kármán
number, ‡ denoted Γ and defined as

Γ :=
ΛL2

kb
. (10)

‡J. Lidmar, L. Mirny, and D.R. Nelson. “Virus shapes and buckling transitions in spherical shells”. Phys.
Rev. E 68 (2003), 051910.

https://doi.org/10.1103/PhysRevE.68.051910
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(a) tension forces: λaαβbαβ = 2λH (b) viscous forces: παβbαβ

Figure 1: A schematic showing how surface tension and viscous forces arise in the normal
direction, with dashed arrows depicting boundary tractions. (a) The surface tension λ
pulls the membrane at each edge, such that when the shape is perturbed a normal force
2λH arises. (b) In an extensional flow, the velocity field is given by v = γ̇ (xex − yey) for
strain rate γ̇, as depicted by the solid arrows. The tractions push and pull the fluid, as
shown with the dashed arrows. When the membrane is perturbed, a viscous force παβbαβ
arises in the normal direction.

Tension forces in the out-of-plane direction are well-understood from the study of soap
bubbles and the Young–Laplace equation. Accordingly, tensile forces are generally prop-
erly accounted for in membrane studies, where the Föppl–von Kármán number naturally
emerges—though it is sometimes referred to as the dimensionless surface tension.

While the Laplace pressure is expected in the shape equation from the study of bubbles
and droplets, the connection between in-plane viscous stresses and membrane curvature
was not well-established prior to our own efforts. ‡ By comparing the magnitude of out-of-
plane viscous forces and bending forces, we found a new dimensionless number—named the
Scriven–Love number, denoted SL and given by

SL :=
ζVL

kb
. (11)

The Scriven–Love number was named in honor of the seminal works on the surface flows of
arbitrarily curved two-dimensional fluids by Scriven † and on the elasticity of two-dimensional
shells by Love. ∗ However, because the out-of-plane viscous forces were previously not well-
understood, they were often omitted from prior investigations. §, ♯, ∥, ∀, ♢, $

‡A. Sahu et al. “Geometry and dynamics of lipid membranes: The Scriven–Love number”. Phys. Rev. E
101 (2020), 052401. arXiv: 1910.10693.

†L.E. Scriven. “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”. Chem.
Eng. Sci. 12 (1960), 98–108.

∗A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York: Dover, 1944.
§T.R. Powers, G. Huber, and R.E. Goldstein. “Fluid-membrane tethers: Minimal surfaces and elastic

boundary layers”. Phys. Rev. E 65 (2002), 041901. arXiv: cond-mat/0201290.
♯J. Guven. “Membrane geometry with auxiliary variables and quadratic constraints”. J. Phys. A: Math.

Gen. 37 (2004), L313–L319.
∥A. Agrawal and D.J. Steigmann. “Boundary-value problems in the theory of lipid membranes”. Con-

tinuum Mech. Therm. 21 (2009), 57–82.
∀H. Zhao and E.S.G. Shaqfeh. “The dynamics of a vesicle in simple shear flow”. J. Fluid Mech. 674

(2011), 578–604.
♢A. Maitra et al. “Activating membranes”. Phys. Rev. Lett. 112 (2014), 258101.
$S.C. Al-Izzi et al. “Hydro-osmotic instabilities in active membrane tubes”. Phys. Rev. Lett. 120 (2018),

138102. arXiv: 1709.02703.
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Figure 2: Plot of the Scriven–Love number SL (11) and Föppl–von Kármán number Γ (10)
in past experiments involving planar, spherical, and cylindrical geometries. The magnitude
of these two parameters governs the constitutive behavior of the membrane. For example,
in the lower left quadrant the out-of-plane bending forces dominates, while in the upper
right quadrant these forces are negligible. The experimental details for membranes with
planar, spherical, and cylindrical morphologies are respectively provided in Chapters VII,
VIII, and IX.

Though the Scriven–Love number was implicitly set to zero in the many studies which ig-
nore viscous in-plane flows, we seek to determine its relevance—as well as the importance of
tensile forces—in governing the dynamics of biological systems. To this end, we analyze the
linearized dynamics of planar, spherical, and cylindrical membranes in subsequent chapters,
and determine the relevant length, velocity, and surface tension scales. We then examine
past experimental results, and calculate SL and Γ when sufficient data is reported for us to
do so. Figure 2 summarizes the findings from this analysis, and also shows how the values
of SL and Γ dictate the approximate constitutive behavior of a biological membrane. For
example, if SL ≪ 1 and Γ ≪ 1, then bending forces dominate the membrane shape. If
instead SL ≪ 1 while Γ ≫ 1, then tension forces dominate bending and viscous forces—for
which the membrane behaves constitutively like a soap bubble. As mentioned previously,
the scenarios where SL ≪ 1 were generally properly accounted for in prior studies, as vis-
cous forces do not significantly affect membrane shape. However, all experiments in which
SL ≥ 1 have non-negligible viscous forces in the normal direction. Figure 2 shows SL ≫ 1
and Γ ≫ 1 in several experiments involving spherical vesicles and cylindrical tubes, such
that the membrane behaves constitutively more like a fluid film than an elastic shell. In such
cases, the out-of-plane forces are highly coupled to in-plane flows. Consequently, it is gener-
ally necessary to incorporate all hydrodynamic couplings between in-plane and out-of-plane
behavior when analyzing membrane dynamics.
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3. The analysis in terms of normal modes
Our earlier discussion details how, for a given geometry, the linearized equations governing
infinitesimal disturbances are obtained and expressed in dimensionless form. The task now at
hand is to investigate the dynamical response of the stationary state to small perturbations.
Moreover, since our scaling analysis revealed Γ and SL to be the relevant parameters charac-
terizing the system’s response, we investigate how the membrane responds over biologically
relevant ranges of these two dimensionless numbers.

As is common in a linear stability analysis of a dynamical system, we seek to characterize
how membranes of a particular geometry respond to any arbitrary perturbation. If, for even
a single disturbance, the system does not return to the stationary state but rather departs
to another state, then the system is said to be unstable. Conversely, if the system always
returns to its starting state, then it is referred to as stable. In order to represent the entire
range of permissible disturbances, it is natural to decompose the arbitrary disturbance into
a complete set of normal modes. Symbolically, such a decomposition is written as

Ã(θα, t) =
∑
q

Âq(θ
α) e−iωt , (12)

where Ã represents any perturbed membrane unknown and q represents the various indepen-
dent modes pertaining to a specific geometry. By substituting Eq. (12) into the linearized
equations and recognizing the different modes are independent, we can solve for the fre-
quency ω = ω(q), which captures the temporal evolution of each mode and is often referred
to as the dispersion relation. The time evolution of the system also depends on the Föppl–
von Kármán and Scriven–Love numbers; this dependence is sometimes explicitly written as
ω = ω(q;Γ , SL).

In the normal mode analysis, the frequency ω is in general complex, here represented as
ω = ω(r) + iω(i). The decomposition in Eq. (12) can then be rewritten as

Ã(θα, t) =
∑
q

Âq(θ
α) e−iω(r) t eω

(i) t . (13)

From Eq. (13), it is immediately clear that the imaginary part of the complex frequency
informs us as to whether the system is stable or unstable. If ω(i)(q;Γ , SL) < 0 for all q, and
over all biologically relevant values of the parameters Γ and SL, then the system is stable.
On the other hand, if there exists even a single mode q, and choice of Γ and SL, for which
ω(i) > 0, then the system is unstable. For an unstable mode, the real part of the frequency
dictates the nature of the temporal response. In particular, if ω(r) = 0 then the instability
will grow monotonically, while if ω(r) ̸= 0 then we expect an oscillatory response as the
instability grows.

The above discussion outlines the general procedure with which we investigate the sta-
bility of a stationary state, i.e. a stationary solution of the governing equations. In the
following chapters, we apply these techniques to three commonly observed membrane ge-
ometries in biological systems: flat patches (Chapter VII), spherical vesicles (Chapter VIII),
and cylindrical tubes (Chapter IX).
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Chapter VII

Flat Membrane Patches

Let us imagine ourselves inhabitants of a surface. Like the Lines and Polygons who
populate Abbott’s FLATLAND ‡ we are not aware of a third dimension except as an
abstract mathematical notion. Unlike the inhabitants of Flatland we find that
our surface may at times have curvature—curvature which changes with time. As
hydrodynamicists and engineers we seek to describe mathematically the motion of
material in our world . . .

—LAURENCE E. SCRIVEN, 1960 †

We begin our hydrodynamic stability analysis by studying nearly planar lipid membranes.
Following the procedure outline in Chapter VI, we first obtain the unperturbed equations
describing an undeformed flat membrane. We then select two stationary states: one without
a flow of lipids, and one with an in-plane flow of lipids. In each case, an infinitesimal distur-
bance is applied to the system. The linearized equations are then obtained and subsequently
non-dimensionalized. Regardless of whether or not there is a base flow, the Föppl–von Kár-
mán number Γ determines the relative importance of surface tension and bending forces in
governing the membrane’s dynamical response to a shape perturbation. Interestingly, how-
ever, the Scriven–Love number SL arises only in the stationary state with a base flow—in
which case it quantifies the relative importance of out-of-plane viscous forces to bending
forces. An investigation of past experimental data reveals that even in biologically relevant
systems with an in-plane flow of lipids, SL ≪ 1. Accordingly, membrane shape changes
about planar geometries are governed by surface tension and bending forces—irrespective of
whether lipids are flowing in the stationary state.

Once the linearized governing equations are obtained and non-dimensionalized, a natural
next step is to investigate the stability of the aforementioned stationary states by follow-
ing the procedure outlined in Chapter VI, §3. However, when the hydrodynamics of the
surrounding fluid are neglected, we find the linearized equations admit only the trivial solu-
tion in which all perturbed quantities are zero. These seemingly unphysical results can be
remedied by including the fluid flows in the surrounding medium, which are induced when
the membrane shape is disturbed, or by considering the second-order governing equations—

‡E.A. Abbott. Flatland: A Romance of Many Dimensions. 6th ed. New York: Dover, 1952.
†L.E. Scriven. “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”. Chem.

Eng. Sci. 12 (1960), 98–108.
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where each term is O(ϵ2). However, both of these analyses are outside the scope of this
thesis: the hydrodynamics of the surrounding medium are not incorporated here, and we
also do not consider higher-order effects.

1. The unperturbed equations
Consider a perfectly flat lipid membrane patch with a characteristic size L, as shown in Fig.
1a. The surface is parametrized by the canonical Cartesian coordinates

θ1 := x ∈ [0, L] and θ2 := y ∈ [0, L] . (1)

In this case, the unperturbed position is written as

x(0)(x, y) = xe1 + ye2 , (2)

where e1 and e2 are the usual Cartesian unit vectors. With a parametrization of the surface,
all geometric quantities described in Chapter II, §2 can be calculated. We find

a
(0)
α = eα , a

(0)
αβ = δαβ , aαβ(0) = δαβ , n(0) = e3 ,

b
(0)
αβ = 0 , H(0) = 0 , K(0) = 0 , Γ

α (0)
λµ = 0 ,

(3)

where δαβ and δαβ denote the Kronecker delta.
Next, we consider the kinematics of a planar stationary state. For a perfectly flat mem-

brane, the surface by construction does not deform in time. The normal velocity v(0) then
satisfies v(0) := v(0) · n(0) = 0. Accordingly, the velocity v(0) lies entirely in the plane of the
membrane, and is expressed as

v(0) = v1(0) e1 + v2(0) e2 . (4)

As the stationary state corresponding to any fixed geometry has zero out-of-plane velocity
by definition, we will find the unperturbed velocity always lies in the tangent plane to the
undisturbed surface—irrespective of the starting geometry.

Finally, by substituting Eqs. (3) and (4) into the general continuity, in-plane, and shape
equations [see Chapter VI, Eqs. (4)–(6)], we respectively obtain

vα(0),α = 0 , (5)

ρ vβ(0)v
α
(0),β = δαβλ(0),β + ζ

(
vα(0),xx + vα(0),yy

)
, (6)

and JpK = 0 . (7)

The continuity equation (5) and in-plane equations (6) are identical to the continuity and
Navier–Stokes equations of an incompressible two-dimensional Newtonian fluid, in which the
pressure is replaced with the negative surface tension [cf. Chapter III, Eq. (98)] and vα(0),t = 0

in the stationary state. The shape equation (7) indicates that for a perfectly flat membrane,
there are no out-of-plane forces arising from viscous–curvature coupling, surface tension, or
the bending energy.
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(a) unperturbed: x(0)(x, y)
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(b) perturbed: x(x, y, t)

Figure 1: Schematic of the unperturbed (a) and perturbed (b) flat plane geometries. The
membrane patch has a characteristic length L, and perturbations are of a characteristic
height Z, with ϵ := Z/L ≪ 1.

2. The perturbed equations
We now introduce a height disturbance in the normal direction, such that the perturbed
membrane position is given by

x(x, y, t) = xe1 + ye2︸ ︷︷ ︸
x(0)(x,y)

+ ϵ h̃(x, y, t) e3 . (8)

In Eq. (8), the total height perturbation ϵ h̃(θα, t) is assumed to be O(Z), where Z ≪ L
by construction. In this case, ϵ := Z/L is a small parameter and h̃ is O(L), as depicted in
Fig. 1b. The surface parametrization in Eq. (8) is commonly used in the study of nearly
planar surfaces, and is called the Monge parametrization. ‡ The height disturbance modifies
the geometry of the surface, and to first order in ϵ we employ the results of Chapter II, §2
to find

aα = eα + ϵh̃,αe3 , aαβ = δαβ , aαβ = δαβ , n = e3 − ϵh̃,1e1 − ϵh̃,2e2 ,

bαβ = ϵ h̃,αβ , Γµ
αβ = 0 , H =

1

2
ϵ∆s h̃ , and K = 0 .

(9)

In Eq. (9), ∆s denotes the surface Laplacian [see Chapter II, Eq. (30)]. For scalar quantities
on a nearly planar membrane, the surface Laplacian is given by

∆s ( · ) := ( · ),xx + ( · ),yy , (10)

and is identical to the two-dimensional Cartesian Laplacian.
Just as we applied a shape disturbance in Eq. (8), the membrane velocity components

and surface tension are similarly expanded as

v1 = v1(0) + ϵ ṽ1 , v2 = v2(0) + ϵ ṽ2 ,

v = ϵ h̃,t , and λ = λ(0) + ϵ λ̃ ,
(11)

‡G. Monge. Application de l’analyse à la géométrie. Paris: Bernard, 1807.
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where the parameter ϵ captures the smallness of the perturbations to the velocity components
and surface tension. In Eq. (11), quantities with a ‘tilde’ accent are assumed to be of the
same order as their unperturbed counterparts. For example, vα(0) and ṽα are both the same
order, and the smallness of the velocity perturbation is contained in ϵ. The normal velocity
component v in Eq. (11)3 is calculated from the definition [see Chapter V, §1 (c)]

v = x,t · n

= ϵ h̃,t e3 ·
(
e3 − ϵ h̃,x e1 − ϵ h̃,y e2

)
= ϵ h̃,t .

(12)

Substituting Eqs. (9) and (11) into the general governing equations in Chapter VI, §1 and
keeping terms to first order in ϵ, the linearized perturbed equations are obtained as ‡

ṽα,α = 0 , (13)

ρ
(
ṽα,t + ṽβ vα(0),β + vβ(0) ṽ

α
,β

)
= δαβ λ̃,β + ζ

(
ṽα,xx + ṽα,yy

)
, (14)

and

ρ
(
h̃,tt + 2vα(0) h̃,tα + vα(0) v

β
(0) h̃,αβ

)
= 2ζ h̃,αλ δ

λβ vα(0),β − 1

2
kb ∆

2
s h̃ + λ(0)∆s h̃ . (15)

Equation (15) indicates that velocity gradients in the base state (vα(0),β ̸= 0) lead to viscous
forces in the normal direction, and bring about the Scriven–Love number. In the following
sections, the unperturbed (5)–(7) and perturbed (13)–(15) governing equations are non-
dimensionalized for two cases: (i) an initially static membrane, and (ii) a membrane with
an initial base flow.

3. The dynamics about an initially static patch
We first non-dimensionalize the unperturbed and perturbed governing equations in the case
of an initially flat, static lipid membrane, for which v(0) = 0. According to Eqs. (5)–(7), λ(0)
is a constant, which we denote λ0 and assume to be known from how the membrane patch
is constrained at its boundary. The unperturbed solution is then written as

vα(0) = 0 , v(0) = 0 , and λ(0) = λ0 . (16)

We introduce the surface tension scale Λ as

Λ := λ0 , (17)
‡As discussed in Chapter V, §1 (c), the form of the acceleration in our prior works contained an error.

Here, the factor of 2 appearing in the left-hand side of Eq. (15) was not present in the Supplemental Material
of A. Sahu et al. “Geometry and dynamics of lipid membranes: The Scriven–Love number”. Phys. Rev. E
101 (2020), 052401. arXiv: 1910.10693. The same correction will be made throughout our analysis of
different membrane geometries in Chapters VII, VIII, and IX.

https://doi.org/10.1103/PhysRevE.101.052401
http://arxiv.org/abs/1910.10693
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and assume the size of the patch L sets the characteristic length over which perturbed
quantities vary. However, the stationary state does not set a characteristic time or velocity
scale, which are instead determined by non-dimensionalizing the linearized equations.

Substituting the unperturbed solution (16) into the first-order perturbed equations (13)–
(15) yields

ṽα,α = 0 , (18)

ρ ṽα,t = δαβ λ̃,β + ζ
(
ṽα,xx + ṽα,yy

)
, (19)

and
ρ h̃,tt = − 1

2
kb∆

2
s h̃ + λ0∆s h̃ . (20)

Note that in a flat geometry with no initial flow, viscous forces do not arise in the shape
equation (20) and so the Scriven–Love number will not appear when the equations are non-
dimensionalized.

At this point, we determine the appropriate dimensionless variables. The perturbation
in the normal direction, ϵh̃, is prescribed to be of a length scale Z such that ϵh̃/Z is O(1),
where ϵ := Z/L≪ 1 is a small parameter and h̃ is O(L). An initial perturbation is assumed
to relax over a time scale τ , such that h̃,t is O(L/τ). Moreover, the out-of-plane perturbation
induces in-plane flows of a characteristic velocity, denoted V , which vary in-plane over the
length scale L, such that ṽα is O(V ) and ṽα,β is O(V/L). Finally, λ̃ is assumed to be O(Λ),
where Λ is known [see Eq. (17)]. Corresponding dimensionless quantities are then defined as

θα∗ :=
θα

L
, h̃∗ :=

h̃

L
, ṽα∗ :=

ṽα

V
,

λ̃∗ :=
λ̃

Λ
, and t∗ :=

t

τ
,

(21)

and are all assumed to be O(1). We now seek to determine the velocity scale V and the time
scale τ from a scaling analysis of the perturbed equations.

Upon substituting Eq. (21) into Eq. (18), the dimensionless perturbed continuity equation
is obtained as

V

L
ṽα∗,α∗ = 0 or equivalently ṽα∗,α∗ = 0 . (22)

Although Eq. (22) does not contain the out-of-plane velocity v, the general continuity equa-
tion [Chapter VI, Eq. (4)] requires lipids to flow in-plane to accommodate out-of-plane shape
changes. We thus assume the time scale τ and velocity scale V are related by

τ =
L

V
. (23)

Equation (23) implies that in-plane velocities and out-of-plane velocities take on the same
characteristic values, with the latter also being given by L/τ .

Next, the in-plane equations (19) are considered. Substituting Eq. (21) into Eq. (19)
yields

ρV

τ
ṽα∗,t∗ =

Λ

L
δα

∗β∗
λ̃∗,β∗ +

ζ V

L2

(
ṽα∗,x∗x∗ + ṽα∗,y∗y∗

)
, (24)
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which consists of inertial, tensile, and viscous forces, respectively. At this point, the time
scale τ (23) is substituted into Eq. (24), and terms are rearranged to yield

Re ṽα∗,t∗ =
ΛL

ζV
δα

∗β∗
λ̃∗,β∗ + ṽα∗,x∗x∗ + ṽα∗,y∗y∗ . (25)

In Eq. (25), the Reynolds number Re compares the magnitude of inertial to viscous forces,
and is defined as

Re :=
ρVL

ζ
, (26)

where the dimensions of the various entities are provided in Chapter VI, Table 1. For
biological lipid membranes, inertial terms are generally negligible (Re ≪ 1), as will be
justified shortly. The surface tension and velocity terms in Eq. (24) are then assumed to
balance, such that [cf. Eq. (23)]

V =
LΛ

ζ
and τ =

ζ

Λ
. (27)

Given the scaling in Eq. (27), we now check to see if inertial terms are negligible, as was as-
sumed. Characteristic values of the various dimensional parameters are provided in Table 1.
With these values, we find the Reynolds number (26) ranges from Re ∼ 10−10–10−5, such
that inertial terms are indeed negligible. The in-plane equations (25) then simplify to

ṽα∗,x∗x∗ + ṽα∗,y∗y∗ + δα
∗β∗
λ̃∗,β∗ = 0 , (28)

and are identical to the two-dimensional Stokes equation—in which the negative pressure is
replaced by the surface tension.

Combined with the continuity equation (22), we observe that the perturbed system be-
haves as a two-dimensional fluid film. Moreover, the in-plane dynamics are not affected by
the shape disturbance, as h̃∗ does not appear in Eqs. (22) or (28). Rather, the continuity
and in-plane equations constitute three equations for the unknowns ṽα and λ̃, which we can
solve for using standard hydrodynamic techniques. The general procedure to do so was de-
scribed in Chapter VI, §3—though in this case we can determine the in-plane solution with
several algebraic manipulations. In particular, by taking the partial derivative of Eq. (28)
with respect to θα∗ and substituting the continuity equation (22), we find

∆∗
s λ̃

∗ = 0 . (29)

Assuming there is no surface tension perturbation at the edge of the domain, we find λ̃∗ = 0.
The in-plane equations (28) then simplify to

ṽα∗,x∗x∗ + ṽα∗,y∗y∗ = 0 , (30)

which—now assuming no perturbed velocity at the domain edge—yields ṽα∗ = 0. Thus, the
linearized in-plane equations admit only the trivial solution where all perturbed quantities
are identically zero. ‡

‡Nontrivial solutions are possible if λ̃ or ṽα are nonzero at the membrane boundary. However, it is
generally assumed that the base state satisfies all boundary conditions, for which perturbed quantities are
zero on the domain boundary.
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Table 1: Characteristic membrane material parameters. The surface tension can span a
wide range of values to prevent significant areal dilation; characteristic low and high values
are provided.

Sym. Parameter Value Ref.
kb bending modulus 102 pN · nm ‡

Λ surface tension 10−4–10−1 pN/nm ‡, †

ζ membrane viscosity 10 pN · μsec/nm ∗, §

ρ mass density 10−8 pg/nm2 ♯

L patch size 102–103 nm –

Finally, the perturbed shape equation is analyzed. Substituting Eq. (21) into Eq. (20)
yields

ρL

τ 2
h̃∗,t∗t∗ = − 1

2

kb
L3

(∆∗
s)

2 h̃∗ +
Λ

L
∆∗

s h̃
∗ , (31)

which consists of inertial, bending, and tension terms, respectively. In Eq. (31),

∆∗
s( · ) := L2∆s( · ) (32)

is the dimensionless surface Laplacian. We define the Föppl–von Kármán number Γ to be
the ratio of tension to bending terms, given by

Γ :=
ΛL2

kb
. (33)

With Eq. (33) and the definition of the Reynolds number (26), Eq. (31) can be rewritten as

ReΓ h̃∗,t∗t∗ = − 1

2
(∆∗

s)
2 h̃∗ + Γ ∆∗

s h̃
∗ . (34)

With the values of various quantities provided in Table 1, we calculate Γ ∼ 10−2–103. We now
seek to determine if the magnitude of the inertial forces, ReΓ , is negligible in the biological
systems of interest. To this end, we recognize that with the choice of velocity scale in Eq.
(27)1, the magnitude of the left-hand side of Eq. (34) can be expressed as ReΓ = Γ 2ρkb/ζ

2,
where the dimensionless parameter ρkb/ζ2 ∼ 10−8. Thus, when Γ ≤ 1, then Re Γ ≪ Γ

‡J. Pécréaux et al. “Refined contour analysis of giant unilamellar vesicles”. Eur. Phys. J. E 13 (2004),
277–290

†J. Dai et al. “Membrane tension in swelling and shrinking molluscan neurons”. J. Neurosci. 18 (1998),
6681–6692

∗P. Cicuta, S.L. Keller, and S.L. Veatch. “Diffusion of liquid domains in lipid bilayer membranes”. J.
Phys. Chem. B 111 (2007), 3328–3331. arXiv: cond-mat/0611492

§A.R. Honerkamp-Smith et al. “Membrane viscosity determined from shear-driven flow in giant vesicles”.
Phys. Rev. Lett. 111 (2013), 038103. arXiv: 1308.6440

♯P. Parkkila et al. “Biophysical characterization of supported lipid bilayers using parallel dual-wavelength
surface plasmon resonance and quartz crystal microbalance measurements”. Langmuir 34 (2018), 8081–8091

https://doi.org/10.1140/epje/i2004-10001-9
https://doi.org/10.1523/JNEUROSCI.18-17-06681.1998
https://doi.org/10.1021/jp0702088
http://arxiv.org/abs/cond-mat/0611492
https://doi.org/10.1103/PhysRevLett.111.038103
http://arxiv.org/abs/1308.6440
https://doi.org/10.1021/acs.langmuir.8b01259
https://doi.org/10.1021/acs.langmuir.8b01259
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and inertial terms are negligible relative to both surface tension and bending forces. On the
other hand, when Γ is large, we compare ReΓ to the O(1) bending terms. For even the
largest values of the Föppl–von Kármán number (Γ ∼ 103), Re Γ ∼ 10−2 ≪ 1, and inertial
terms can again be neglected. Thus, inertial terms are negligible over the entire range of
biologically relevant Föppl–von Kármán numbers, and Eq. (34) simplifies to

Γ ∆∗
s h̃

∗ − 1

2
(∆∗

s)
2 h̃∗ = 0 . (35)

Table 1 provides characteristic values of various membrane parameters. Note that the surface
tension scale Λ is set in the base state, and can be arbitrarily small or large as required by
the membrane’s areal incompressibility constraint—up to values as large as ∼1–10 pN/nm,
at which point the membrane tears. ‡, † We additionally recognize that in the dimensionless
governing equations [Eqs. (22), (28), and (35)], the Föppl–von Kármán number Γ is the
only relevant dimensionless number. At low tensions of Λ ∼ 10−4 pN/nm with L ∼ 100
nm, Γ ∼ 10−2 ≪ 1 and bending dominates the shape equation (35)—which simplifies to
(∆∗

s)
2 h̃∗ = 0, i.e. the well-known biharmonic equation that often arises in the study of beam

bending. At high tensions of Λ ∼ 10−1 pN/nm with L ∼ 103 nm, Γ ∼ 103 ≫ 1 and the
shape equation ∆∗

s h̃
∗ = 0 is tension-dominated as for a fluid film or soap bubble. Finally,

at moderate tensions of Λ ∼ 10−2 pN/nm and length scales L ∼ 100 nm, Γ ∼ 1 and the
surface tension and bending terms balance in governing the membrane shape. In all three
cases, intramembrane viscous forces play no role in determining the membrane shape.

In the above analysis of the shape equation (35), inertia was neglected due to scaling
arguments. However, the inertial term is the only time-dependent quantity in Eq. (34),
and its removal in Eq. (35) leads to a singular perturbation problem. ∗ We recognize that
while inertial forces are small on the membrane timescale τ = ζ/Λ (27)2, they are significant
on smaller timescales. Suppose, for example, that Γ < 1—in which case we define t′ :=
t∗/

√
ReΓ and express Eq. (34) as

h̃∗,t′t′ = Γ∆∗
sh̃

∗ − 1

2
∆∗2

s h̃
∗ . (36)

If Γ ≥ 1 on the other hand, we define t := t∗/
√

Re and write the shape equation (34) as

h̃∗,t t = ∆∗
sh̃

∗ − 1

2Γ
∆∗2

s h̃
∗. (37)

In both cases, however, an additional complexity arises because the fluid surrounding the
membrane provides a dissipative mechanism that causes the height deviation to relax to
zero over time. The analysis of how the surrounding fluid exerts forces on the membrane is
outside the scope of this thesis, though in planar geometries it is well-known how to include
such effects. §

‡E.A. Evans and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton: CRC
Press, 1980.

†J.A. Nichol and O.F. Hutter. “Tensile strength and dilatational elasticity of giant sarcolemmal vesicles
shed from rabbit muscle”. J. Physiol. 493 (1996), 187–198.

∗When solving Eq. (35) with appropriate boundary conditions, we find the trivial solution h̃∗ = 0.
§See §3.1 of H. Turlier and T. Betz. “Fluctuations in Active Membranes”. Physics of Biological Mem-

branes. Ed. by P. Bassereau and P. Sens. Cham: Springer Nature Switzerland, 2018, pp. 581–619.

https://doi.org/10.1201/9781351074339
https://doi.org/10.1113/jphysiol.1996.sp021374
https://doi.org/10.1113/jphysiol.1996.sp021374
https://doi.org/10.1007/978-3-030-00630-3_21
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4. The dynamics about a patch with a base flow
We next consider a planar membrane with some initial nontrivial in-plane flow satisfying
the unperturbed equations (5)–(7), for which vα(0),β ̸= 0. As in the case with no base flow,
the base state sets the characteristic surface tension scale Λ. In this case, however, the
base in-plane flow vα(0) sets the characteristic velocity scale V , where in-plane speeds vary
from zero to V over the patch size L. The specification of the velocity scale from the base
flow leads to an additional complexity: we are no longer free to choose a velocity scale
such that in-plane surface tension and viscous forces balance in the perturbed dynamics.
Thus, if were to assume that all perturbed unknowns—ṽ1, ṽ2, h̃, and λ̃—varied over the
length L, we arrive at an unphysical result in the in-plane dynamics. Conversely, if we
assume the aforementioned quantities all vary over a new length scale ℓ, then tension and
viscous forces can be balanced in the in-plane equations with an appropriate choice of ℓ.
Unfortunately, under this assumption, the shape equation becomes unphysical. We thus
arrive at a nontrivial result: when the base state involves a flow of lipids, different perturbed
unknowns vary over different length scales. Namely, the in-plane quantities ṽ1, ṽ2, and λ̃
vary over a to-be-determined length scale ℓ, while membrane deformations h̃ vary over the
patch size L. Despite this complexity, we find that when the perturbed shape equation is
non-dimensionalized, the competition between viscous forces and bending forces gives rise to
the Scriven–Love number SL—as defined in Eq. (11) of Chapter VI. We then go on to analyze
past experimental data, in which planar membranes have a base lipid flow. In all biologically
relevant situations, SL ≪ 1 and out-of-plane bending forces are negligible. Accordingly, the
Föppl–von Kármán number Γ is the only relevant parameter governing membrane dynamics
about planar geometries.

(a). The unperturbed equations
We begin by assuming a known stationary state, in which the membrane velocity and surface
tension are expressed as [cf. Eqs. (2), (4)]

vα(0) = vα(0)(θ
β) , v(0) = 0 , and λ(0) = λ(0)(θ

α) . (38)

Here, vα(0) and λ(0) dictate the velocity scale V and surface tension scale Λ, for which we
define

vα∗(0) :=
vα(0)
V

and λ∗(0) :=
λ(0)
Λ

. (39)

The unperturbed governing equations (5)–(7) can then be recast in dimensionless form as

vα∗(0),α∗ = 0 , (40)

Re vβ∗(0) v
α∗
(0),β∗ =

ΛL

ζV
δα

∗β∗
λ∗(0),β∗ + vα∗(0),x∗x∗ + vα∗(0),y∗y∗ , (41)

and Jp∗K = 0 , (42)

where in Eq. (41) the Reynolds number Re is again given by Eq. (26).
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At this point, we characterize the order of magnitude of the various terms in the in-plane
equations (41). To this end, we investigate three prior experimental efforts with lipids flowing
in planar geometries, as discussed in §4 (c). We find the base velocity scale V ranges from
10−6–10−3 nm/μsec (equivalently 10−3–1 μm/sec); all other parameters are provided in Table
1. For these characteristic values, the Reynolds number Re (26) ranges from 10−13 to 10−9

and ζV/(ΛL) ranges from 10−7 to 1. Accordingly, inertial terms are neglected in Eq. (41),
which simplifies to

ζV

ΛL

(
vα∗(0),x∗x∗ + vα∗(0),y∗y∗

)
+ δα

∗β∗
λ∗(0),β∗ = 0 . (43)

Equation (43) consists of the two in-plane equations describing a stationary state with a
base flow, and is equivalent to the two-dimensional Stokes equation. Thus, we can easily
choose the well-known Stokes flow solutions to be the membrane base state. For example,
we previously investigated the dynamics of a membrane with a simple shear flow in the
stationary state. ‡

(b). The perturbed equations
We now consider the linearized dynamics of a perturbed membrane patch with a base flow.
As before, all perturbed quantities are assumed to be the same order as their unperturbed
counterparts, with ϵ capturing the smallness of the perturbation [see discussion below Eq.
(11)]. All perturbed quantities are non-dimensionalized as in Eq. (21), where in this case the
velocity scale V is set by the base state. We then seek to determine the order of magnitude of
the various membrane forces, with one important condition: in the limit where the velocity
scale V goes to zero, we expect to recover the results of §3—in which the membrane had
no flow in the base state. As we will see, this requirement brings about a new length scale
over which only ṽ1, ṽ2, and λ̃ vary, while h̃ continues to vary over the patch size L. To
demonstrate how such a nontrivial scaling arises, we first attempt two more straightforward
scaling choices, with inertial terms neglected for simplicity. We show how each attempt
breaks down, and then provide the correct scaling solution.

Scaling Attempt #1: Variations over patch size L (incorrect)
We begin by assuming all membrane unknowns vary over the patch size L, such that every
spatial derivative introduces a factor of 1/L in our scaling analysis. By substituting Eq. (21)
into the perturbed continuity (13) and in-plane (14) equations and neglecting inertial terms
for simplicity, we obtain

ṽα∗,α∗ = 0 (44)
and

δα
∗β∗
λ̃∗,β∗ +

ζV

ΛL

(
ṽα∗,x∗x∗ + ṽα∗,y∗y∗

)
= 0 . (45)

In the limit where ζV/(ΛL) ≪ 1, as is the case when the velocity scale is small, the in-plane
equations (45) simplify to λ̃∗,β∗ = 0. In this case, λ̃∗ is constant and surface tension gradients

‡Sahu et al., “Geometry and dynamics of lipid membranes: The Scriven–Love number”.
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no longer balance in-plane viscous forces. However, as described above, we expect to recover
the perturbed in-plane equations governing the dynamics of an initially static patch (28)
in the limit where the base velocity scale V tends to zero. As this is not the case, the
solution of λ̃∗ being constant in the limit of small V is unphysical, and our assumption that
all quantities vary over a length scale L is incorrect.

Scaling Attempt #2: Variations over new length scale ℓ (incorrect)
Since our first attempt led to an unphysical scaling, we next assume all perturbed quantities
vary over some unknown length scale ℓ, which is to be determined via a scaling analysis. In
this case, we define

x′ :=
x

ℓ
, y′ :=

y

ℓ
and ∆′

s( · ) := ℓ2∆s( · ) , (46)

such that the dimensionless continuity (13) and in-plane (14) equations are given by

ṽα∗,α′ = 0 (47)
and

δα
∗β′
λ̃∗,β′ +

ζV

Λℓ

(
ṽα∗,x′x′ + ṽα∗,y′y′

)
= 0 . (48)

Again, for the sake of argument, we ignore inertial terms for simplicity. Given Eq. (48), we
choose the length scale ℓ to be given by

ℓ :=
ζV

Λ
, (49)

such that viscous and tension forces balance. The in-plane equations then have the same
structure as their initially static counterparts (28) for any base state velocity scale V , as
required by our analysis.

With the determination of a new length scale ℓ, the perturbed shape equation (15) is
non-dimensionalized with Eqs. (21), (39), and (46)—yielding

2
ζV

ℓ2
h̃∗,α′λ′ δλ

′β∗
vα∗(0),β∗ − 1

2

kbL

ℓ4
∆′ 2

s h̃
∗ +

ΛL

ℓ2
λ∗(0) ∆

′
s h̃

∗ = 0 . (50)

Substituting Eq. (49) into Eq. (50), rearranging terms, and defining

ℓ∗ :=
ℓ

L
=

ζV

ΛL
(51)

for notational convenience, we obtain

ζ2V 2

kbΛ

(
2ℓ∗ h̃∗,α′λ′ δλ

′β∗
vα∗(0),β∗ + λ∗(0)∆

′
s h̃

∗
)
− 1

2
∆′ 2

s h̃
∗ = 0 . (52)

However, in the limit of vanishing base state velocity (i.e. when V goes to zero), Eq. (52)
simplifies to ∆′ 2

s h̃
∗ = 0, and the initially static solution (35) is not recovered. Consequently,

the assumption that all perturbed quantities vary over the length scale ℓ is also incorrect.
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Scaling Attempt #3: Variations over multiple length scales (correct)
At this point, neither of our scaling attempts were valid. However, our two incorrect attempts
reveal (i) the problem requires an additional length scale ℓ over which ṽα and λ̃ vary, and (ii)
the out-of-plane shape disturbance h̃ cannot vary over that same length scale. We therefore
posit that h̃ varies over the patch size L, while ṽα and λ̃ vary over the length scale ℓ obtained
in Eq. (49). The first-order continuity equation (13) is then non-dimensionalized as

ṽα∗,α′ = 0 . (53)

The in-plane equations are non-dimensionalized by substituting Eqs. (21) and (46) into Eq.
(14), yielding

ρV 2

ℓ

( ℓ

V τ
ṽα∗,t∗ +

ℓ

L
ṽβ∗ vα∗(0),β∗ + vβ∗(0) ṽ

α∗
,β′

)
=

Λ

ℓ
δα

′β′
λ̃∗,β′ +

ζV

ℓ2

(
ṽα∗,x′x′ + ṽα∗,y′y′

)
. (54)

In considering the inertial terms in Eq. (54), we first recognize ℓ/L = ζV/(ΛL), which was
found in §4 (a) to range from 10−7 to 1 over the experiments of interest. Accordingly, we
choose the time scale τ to be given by

τ =
ℓ

V
=

ζ

Λ
, (55)

such that the first and third terms on the left-hand side of Eq. (54) are balanced. By
substituting Eqs. (26), (49), (51), and (55) into Eq. (54) and rearranging terms, we obtain

Re ℓ∗
(
ṽα∗,t∗ + ℓ∗ ṽβ∗ vα∗(0),β∗ + vβ∗(0) ṽ

α∗
,β′

)
= δα

′β′
λ̃∗,β′ + ṽα∗,x′x′ + ṽα∗,y′y′ . (56)

As Re ≪ 1 for the experimental systems under consideration [see §4 (a)] and ℓ∗ ≤ 1, inertial
terms are negligible in Eq. (56). The dimensionless perturbed in-plane equations are given
by

ṽα∗,x′x′ + ṽα∗,y′y′ + δα
′β′
λ̃∗,β′ = 0 , (57)

and are nearly identical to their analogs about a stationary state with no base flow (28). The
only difference between the two equations is the length scale over which in-plane quantities
vary.

Thus far, the in-plane and continuity equations are identical to those of our second scaling
attempt. However, we now analyze the perturbed shape equation with the assumption that
the perturbed membrane height h̃ varies over the patch size L—as was the case in our first
scaling attempt. To this end, we substitute Eqs. (21), (39), and (46) into Eq. (15) and obtain

ρ

(
L

τ 2
h̃∗,t∗t∗ +

V 2

L
vα∗(0)v

β∗
(0)h̃

∗
,α∗β∗ +

V

τ
vα∗(0)h̃

∗
,t∗α∗

)
= 2

ζ V

L2
h̃∗,α∗λ∗ δλ

∗β∗
vα∗(0),β∗ − 1

2

kb
L3

(∆∗
s)

2 h̃∗ +
Λ

L
λ∗(0)∆

∗
s h̃

∗ .

(58)

Note that in Eq. (58), all spatial derivatives of the perturbed shape are taken with respect
to the length L, denoted by ( · ),α∗ . With Eqs. (26), (33), (49), (51), and (55), Eq. (58) can
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be rewritten as
ReΓ
ℓ∗

(
h̃∗,t∗t∗ + (ℓ∗)2 vα∗(0) v

β∗
(0) h̃

∗
,α∗β∗ + ℓ∗ vα∗(0) h̃

∗
,t∗α∗

)
= 2

ζVL

kb
h̃∗,α∗λ∗ δλ

∗β∗
vα∗(0),β∗ + Γ λ∗(0)∆

∗
s h̃

∗ − 1

2
(∆∗

s)
2 h̃∗ .

(59)

The coefficient ReΓ/ℓ∗ on the left-hand side of Eq. (59) can be expressed as ρL4Λ2/(kbζ
2),

which ranges from 10−12 to 10−2 over the experiments considered. Accordingly, inertial terms
are negligible in the shape equation (59), which simplifies to

2
ζVL

kb
h̃∗,α∗λ∗ δλ

∗β∗
vα∗(0),β∗ + Γ λ∗(0) ∆

∗
s h̃

∗ − 1

2
(∆∗

s)
2 h̃∗ = 0 . (60)

In Eq. (60), the coefficient of the first term is the ratio of viscous forces to bending forces in
the out-of-plane direction. We thus define the Scriven–Love number to be given by

SL :=
ζVL

kb
, (61)

such that the dimensionless perturbed shape equation is found to be

2SL h̃∗,α∗λ∗ δλ
∗β∗
vα∗(0),β∗ + Γ λ∗(0)∆

∗
s h̃

∗ − 1

2
(∆∗

s)
2 h̃∗ = 0 . (62)

As quantified in §4 (c), SL ≪ 1 in all biologically relevant planar systems with a base flow.
Accordingly, Eq. (62) simplifies to

Γ λ∗(0)∆
∗
s h̃

∗ − 1

2
(∆∗

s)
2 h̃∗ = 0 , (63)

which—when λ(0) is constant—is identical to the initially static result (35). As before, our
decision to not include the dynamics of the surrounding fluid prevents us from investigating
the stability of such systems.

(c). The analysis of past experimental data
We now present the experimental data used to calculate the Scriven–Love and Föppl–von
Kármán numbers in planar systems with a base flow, and reiterate that the Scriven–Love
number does not appear in initially static planar systems. The results of the three past
experiments are summarized in Fig. 2, and detailed in Tables 2–4. In all cases, we assume
kb = 100 pN · nm, Λ = 10−3 pN/nm, and ζ = 10 pN · μsec/nm, ‡, † as these values were not
provided in the experimental studies.

The three situations considered in Tables 2–4 involve vesicles being released from an
initially planar membrane during endocytosis. To estimate the velocity scale of in-plane flows

‡P. Cicuta, S.L. Keller, and S.L. Veatch. “Diffusion of liquid domains in lipid bilayer membranes”. J.
Phys. Chem. B 111 (2007), 3328–3331. arXiv: cond-mat/0611492.

†A.R. Honerkamp-Smith et al. “Membrane viscosity determined from shear-driven flow in giant vesicles”.
Phys. Rev. Lett. 111 (2013), 038103. arXiv: 1308.6440.

https://doi.org/10.1021/jp0702088
http://arxiv.org/abs/cond-mat/0611492
https://doi.org/10.1103/PhysRevLett.111.038103
http://arxiv.org/abs/1308.6440
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Experiment #1: Ultrafast endocytosis

Table 2: Calculations from S. Watanabe et al. “Ultrafast endocytosis at Caenorhabditis
elegans neuromuscular junctions”. eLife 2 (2013), e00723.

Quantity Value Calculation

V 8 · 10−4 nm/μsec Eq. (64); Rv ∼ 20 nm, ∆t ∼ 50 ms (Fig. 2)

L 1 · 102 nm Estimated from Figs. 2(e) and 2(f)

SL 8 · 10−3 Eq. (61)

Γ 1 · 10−1 Eq. (33)

Experiment #2: Ultrafast endocytosis

Table 3: Calculations from S. Watanabe et al. “Ultrafast endocytosis at Caenorhabditis
elegans neuromuscular junctions”. eLife 2 (2013), e00723.

Quantity Value Calculation

V 3 · 10−5 nm/μsec Eq. (64); Rv ∼ 40 nm, ∆t ∼ 3 s (Fig. 6)

L 5 · 101 nm Estimated from Fig. 6(g)

SL 2 · 10−4 Eq. (61)

Γ 2 · 10−2 Eq. (33)

Experiment #3

Table 4: Calculations from E. Cocucci et al. “The first five seconds in the life of a Clathrin-
coated pit”. Cell 150 (2012), 495–507.

Quantity Value Calculation

V 6 · 10−6 nm/μsec Eq. (64); Rv ∼ 100 nm, ∆t ∼ 30 s [Figs. 3(a), 5(a)]

L 1 · 103 nm Estimated from Fig. 5(a)

SL 6 · 10−4 Eq. (61)

Γ 1 · 101 Eq. (33)

https://doi.org/10.7554/eLife.00723
https://doi.org/10.7554/eLife.00723
https://doi.org/10.7554/eLife.00723
https://doi.org/10.7554/eLife.00723
https://doi.org/10.1016/j.cell.2012.05.047
https://doi.org/10.1016/j.cell.2012.05.047
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Figure 2: Plot of the Scriven–Love number SL and Föppl–von Kármán number Γ in three
past experiments involving planar geometries [cf. Chapter VI, Fig. 2]. Each numbered
figure corresponds to a single experiment, which is described in Tables 2–4. Experiment
#1 and #2 are bending-dominated, while Experiment #3 is tension-dominated. In all
cases, viscous forces do not significantly affect membrane shape.

on the planar membrane, we approximate the distance moved by lipids near the endocytic
site, over the time ∆t of the event. Consider an initially flat circular patch of lipids, with
radius Rf , that eventually forms a vesicle of radius Rv. The continuity of the material
requires πR2

f = 4πR2
v, such that the in-plane velocity scale V ∼ Rf/∆t can be approximated

as
V ∼ 2Rv

∆t
. (64)

In the experiments under consideration, Rv and ∆t are reported and Eq. (64) is used to
approximate the velocity scale V .

(d). Concluding remarks
In comparing the dimensionless perturbed equations for an initially flat membrane patch with
a base flow [Eqs. (53), (57), and (63)] to their counterparts without a base flow [Eqs. (22),
(28), and (35)], we make several observations. First, the continuity and in-plane equations
now involve spatial derivatives over the length scale ℓ, rather than the patch length L. As a
result, in-plane viscous and tension forces are both O(Λ2/(ζV )), a scaling which is difficult
to predict from a simple non-dimensionalization of the governing equations. Second, the
length scale ℓ satisfies the relation ℓ = LΓ−1SL, such that the relative distance over which
perturbed in-plane and out-of-plane quantities vary is set by the ratio of the Scriven–Love
and Föppl–von Kármán numbers. In the limit of V going to zero, both SL and ℓ tend to zero
and there is no longer a new length scale over which perturbed in-plane quantities vary. The
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Scriven–Love number emerges in Eq. (62) due to the perturbed παβbαβ term, which contains
the coupling between in-plane shear stresses and membrane curvature (see Chapter VI, §1).
Linearizing παβbαβ in planar geometries yields παβ

(0) h̃,αβ, and thus shear stresses must exist
in the stationary state in order for the Scriven–Love number to emerge.

At this point, we conclude our calculations for an initially flat membrane patch. We
note the Föppl–von Kármán number enters the shape equation both when the membrane is
initially static (35) and has a base flow (63). The Scriven–Love number appears only in the
latter case. Though we find viscous forces in the out-of-plane direction to be negligible in all
experimental systems considered, as shown in §4 (c), the tension forces can be significant—
and in some instances dominate bending forces in governing the perturbed membrane’s
dynamical response.
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Chapter VIII

Spherical Membrane Vesicles

We wish to obtain equations of motion and boundary-conditions in terms of the
displacements of a point on the middle-surface of the shell . . . As the geometrical
theory of the deformation of extensible surfaces appears not to have been hitherto
made out, it was necessary to give the elements of such a theory for small defor-
mations.

—AUGUSTUS E.H. LOVE, 1888 ‡

We next consider spherical lipid membrane vesicles, which are found throughout the cell:
vesicles are involved in endocytosis † and exocytosis ∗ as material is transported across the
cell membrane, lysosomes fuse with food vacuoles to break down chemical compounds during
phagocytosis, § and transport vesicles shuttle proteins and lipids between the endoplasmic
reticulum and Golgi complex. ♯ Moreover, spherical GUVs are a canonical tool of in vitro
studies. GUVs are often used to probe static membrane properties, such as the bending
modulus kb and base state surface tension λ0, ∥,∀ as well as dynamic properties—such as the
membrane’s response to a shear flow. ♢, $,&,¶

‡A.E.H. Love. “The small free vibrations and deformation of a thin elastic shell”. Phil. Trans. R. Soc.
London 179 (1888), 491–546.
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To study the dynamics of spherical membrane vesicles, we follow the general procedure
described in Chapter VI and employed when characterizing planar membranes in Chapter
VII. We first obtain the unperturbed governing equations, from which we select two station-
ary states to analyze: (i) a static spherical vesicle and (ii) a spherical vesicle rotating with
constant angular velocity about an axis. ‡ We then investigate how each system responds to
an infinitesimal perturbation. In both cases, the Föppl–von Kármán number Γ quantifies the
relative importance of surface tension and bending forces in the dynamics of the perturbed
system. Just as in the planar geometry, the Scriven–Love number SL does not appear in the
initially static case—a surprising result, since we generally expect both when the membrane
is curved [see Chapter VI, Eq. (6)]. However, when a rotating spherical vesicle is perturbed,
the Scriven–Love number emerges and characterizes the relative importance of viscous and
bending forces in the membrane’s dynamical response. We analyze past experiments in
which vesicles have such a base flow, and find both the Föppl–von Kármán and Scriven–
Love numbers span a wide range of values. Our analysis reveals that in many biologically
relevant situations involving rotating spherical vesicles, the membrane can behave as either
a fluid film or an elastic shell—or some nontrivial combination of the two.

With the dimensionless perturbed equations, we proceed to examine the linear stability
of lipid membrane vesicles. To this end, we decompose the membrane unknowns into normal
modes, and then solve for the dispersion relation governing the temporal evolution of each
mode. However, unlike the planar case, some care must be taken when choosing the normal
mode decomposition. As we will see, one cannot simply expand each membrane velocity
component in terms of the well-known scalar spherical harmonics. Rather, the perturbed
membrane velocity ṽ is expanded in terms of the vector spherical harmonics, which necessi-
tates a reformulation of the governing equations. Our analysis reveals the natural relaxation
frequency of each mode due only to internal membrane forces, and also shows that the base
surface tension λ0—through the Föppl–von Kármán number—completely specifies the sta-
bility of the system. In particular, when a spherical vesicles is under tension and Γ > 0,
the vesicle is stable. On the other hand, when the vesicle is under compression (Γ < 0),
long-wavelength undulations become unstable. Since the base surface tension λ(0) is speci-
fied by the hydrodynamic pressure difference between the interior and exterior of the vesicle,
our analysis leads to quantitative predictions of the time evolution of spherical membrane
systems.

1. The unperturbed equations
An unperturbed spherical lipid membrane vesicle of radius R is parametrized by the polar
angle θ and azimuthal angle φ, as shown in Fig. 1a. In terms of our differential geometric
formulation, we define

θ1 := θ ∈ [0, π] and θ2 := φ ∈ [0, 2π) (1)

‡One could in principle investigate systems with more complicated lipid flows in the stationary state.
However, the algebra required to describe such systems is cumbersome. In an effort to extract the most
significant physical insights from our analysis, we consider only the simplest stationary states in the present
work.
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φ

θ R

(a) unperturbed: x(0)(θ, φ)

δR

(b) perturbed: x(θ, φ, t)

Figure 1: Schematic of the unperturbed (a) and perturbed (b) spherical geometries. The
sphere has radius R and is characterized by the polar angle θ and azimuthal angle φ.
Membrane perturbations are of characteristic size δR, with ϵ := δR/R ≪ 1.

to be the generalized coordinates. The unperturbed membrane position is given by

x(0)(θ, φ) = R er(θ, φ) , (2)

where er is the usual unit vector in the radial direction. With the machinery described in
Chapter II, we determine the geometric quantities

a
(0)
1 = R eθ , a

(0)
2 = R sin θ eφ , n(0) = er ,

a
(0)
αβ = R2 diag (1, sin2 θ) , H(0) = −R−1 , K(0) = R−2 ,

aαβ(0) = R−2 diag (1, csc2 θ) , Γ
2(0)
21 = Γ

2(0)
12 = cot θ ,

b
(0)
αβ = −R diag (1, sin2 θ) , and Γ

1(0)
22 = − sin θ cos θ ,

(3)

where only the nonzero Christoffel symbols are provided. As the stationary state by definition
has no out-of-plane velocity, v(0) := v(0) · n(0) = 0 and the unperturbed membrane velocity
v(0) is expressed as

v(0)(θ, φ) = vα(0) aα = v1(0)R eθ + v2(0)R sin θ eφ . (4)

From Eq. (4), we see that v1(0) and v2(0) have units of inverse time. It is important to note
the difference between the velocity components v1 and v2 in our differential geometric for-
mulation, and the more common decomposition in spherical coordinates:

v(0)(θ, φ) = v
(0)
θ eθ + v(0)φ eφ . (5)

In comparing Eqs. (4) and (5), we recognize

v
(0)
θ = v1(0)R and v(0)φ = v2(0)R sin θ , (6)

with v
(0)
θ and v

(0)
φ having units of length per time.
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With our geometric and kinematic description of the unperturbed system, we substi-
tute Eqs. (3) and (4) into the general governing equations [Chapter VI, Eqs. (4)–(6)]. The
unperturbed continuity equation is expressed as

v1(0),θ + v2(0),φ + cot θ v1(0) = 0 , (7)

and relates the spatial derivatives of the two velocity components. The in-plane θ and
in-plane φ equations are respectively given by

ρR2
(
v1(0),t + v1(0) v

1
(0),θ + v2(0) v

1
(0),φ − sin θ cos θ (v2(0))

2
)

(8)

= ζ
(
v1(0) + v1(0),θθ + csc2 θ v1(0),φφ − cot θ v2(0),φ + 2 cot θ v1(0),θ

)
+ λ(0),θ ,

and

ρR2
(
v2(0),t + v1(0) v

2
(0),θ + v2(0) v

2
(0),φ + 2 cot θ v1(0) v

2
(0)

)
(9)

= ζ
(
v2(0),θθ + csc2 θ v2,(0)φφ + 2 cot θ csc2 θ v1(0),φ + 3 cot θ v2(0),θ

)
+ csc2 θ λ(0),φ ,

and have a similar structure to their planar counterparts [Chapter VII, Eq. (6)]. In particular,
they involve inertial, viscous, and tensile forces—and are identical to the equations governing
a two-dimensional Newtonian fluid. Finally, the unperturbed shape equation is found to be

− ρR2
[
(v1(0))

2 + (v2(0))
2 sin2 θ

]
= JpKR − 2λ(0) . (10)

Unlike in the planar system [Chapter VII, Eq. (7)], here Eq. (10) involves a balance of
inertial, external, and tensile forces. In the limit where inertial forces are negligible, the
shape equation simplifies to the Young–Laplace equation JpK = 2λ(0)/R, which (assuming a
constant pressure drop JpK) defines the surface tension scale

Λ := λ(0) =
JpKR
2

. (11)

In principle, one could choose any base state satisfying Eqs. (7)–(10), and then consider
the linearized dynamics when such a system is perturbed. However, doing so involves much
algebra—yet does not yield many additional insights. Thus, from now on, we consider only
systems with base velocity given by

v1(0) = 0 , v2(0) = Ω , and v(0) = 0 , (12)

where Ω is a constant that we select. When Ω = 0, the base state is static, while if Ω ̸= 0
then the sphere is rotating at a constant angular velocity about the z-axis prior to being
perturbed. In either case, Eq. (10) requires the base surface tension be given by

λ(0) =
JpKR
2

+
ρR2Ω2

2
sin2 θ . (13)
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2. The perturbed equations
At this point, we introduce a radial shape perturbation, such that the membrane position is
given by

x(θ, φ, t) = R er(θ, φ)︸ ︷︷ ︸
x(0)(θ,φ)

+ ϵ r̃(θ, φ, t) er(θ, φ) =
[
R + ϵ r̃(θ, φ, t)

]
er(θ, φ) . (14)

In Eq. (14), the total radial perturbation ϵr̃ is of characteristic size δR ≪ R, with O(r̃) = R
and ϵ := δR/R ≪ 1 being the small parameter (see Fig. 1b). With the perturbed membrane
shape, we find the following geometric quantities to first order in ϵ:

a1 =
(
R + ϵ r̃

)
eθ + ϵ r̃,θ er , a2 =

(
R + ϵ r̃

)
sin θ eφ + ϵ r̃,φ er ,

n = er − ϵ r̃,θ
R

eθ − ϵ r̃,φ
R

csc θ eφ , aαβ =
(
R2 + 2ϵ r̃R

)
diag (1, sin2 θ) ,

H = − 1

R
+

ϵ

2R2

(
2r̃ + R2∆s r̃

)
, K =

1

R2
− ϵ

R3

(
2r̃ + R2∆s r̃

)
,

Γ1
22 = − sin θ cos θ − ϵ r̃,θ

R
sin2 θ , Γ2

21 = Γ2
12 = cot θ +

ϵ r̃,θ
R

,

Γ1
12 = Γ1

21 =
ϵ r̃,φ
R

, Γ2
11 = − ϵ r̃,φ

R
csc2 θ ,

Γ1
11 =

ϵ r̃,θ
R

, Γ2
22 =

ϵ r̃,φ
R

,

(15)

and

bαβ =

 −R − ϵ r̃ + ϵ r̃,θθ ϵ r̃,θφ − ϵ r̃,φ cot θ

ϵ r̃,θφ − ϵ r̃,φ cot θ −R sin2 θ + ϵ
(
r̃,φφ − r̃ sin2 θ + r̃,θ sin θ cos θ

)
 .

On a nearly spherical surface, the surface Laplacian ∆s of a scalar quantity is given by

∆s( · ) :=
1

R2

[
( · ),θθ + ( · ),θ cot θ + ( · ),φφ csc2 θ

]
. (16)

Finally, the fundamental membrane unknowns are expanded to first order in the small pa-
rameter ϵ as [cf. Eqs. (12) and (13)]

v1 = ϵ ṽ1 , v2 = Ω + ϵ ṽ2 ,

v = ϵ r̃,t , and λ = λ(0) + ϵ λ̃ ,
(17)
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where in the case of an initially static membrane Ω = 0. In Eq. (17), the normal velocity v
is calculated according to v = x,t · n.

As in the unperturbed case, we relate the membrane velocity components in the differ-
ential geometric and spherical coordinate systems. The membrane velocity v is expanded
as

v = vαaα + vn

= vrer + vθeθ + vφeφ ,
(18)

which upon substitution of Eqs. (15) and (17) and comparison with Eqs. (4) and (6) yields

vr = ϵ
(
r̃,t + r̃,φΩ

)
, vθ = ϵ ṽ1R ,

and vφ = ΩR sin θ + ϵ
(
ṽ2R sin θ + r̃Ω sin θ

)
.

(19)

While Eq. (19) will not be used in our scaling analysis of the dynamics of a spherical mem-
brane, it will be relevant when we subsequently analyze the stability of such systems.

We now substitute the geometric quantities in Eq. (15) and the membrane unknowns in
Eq. (17) into the general governing equations (Chapter VI, §1), and keep only terms involving
a single power of ϵ to obtain the first-order perturbed equations. The continuity equation is
expressed as

R
(
ṽ1,θ + ṽ2,φ + ṽ1 cot θ

)
+ 2

(
r̃,t + r̃,φΩ

)
= 0 , (20)

and involves the perturbed in-plane velocities ṽ1 and ṽ2, the base velocity Ω , and variations of
the vesicle shape in both time and space. Next, the perturbed polar and azimuthal in-plane
equations are given by

ρR2
(
ṽ1,t + ṽ1,φΩ − 2ṽ2Ω sin θ cos θ − r̃,θ

R
Ω2 sin2 θ

)
= ζ

(
ṽ1 + ṽ1,θθ + ṽ1,φφ csc2 θ + ṽ1,θ cot θ − 2ṽ2,φ cot θ − ṽ1 cot2 θ

)
+ λ̃,θ ,

(21)

and

ρR2
(
ṽ2,t +

2r̃,tΩ

R
+ ṽφ,φΩ + 2ṽ1Ω cot θ +

r̃,φ
R

Ω2
)

= ζ
(
ṽ2,θθ + ṽ2,φφ csc2 θ + 2ṽ1,φ cot θ csc2 θ + 3ṽ2,θ cot θ

)
+ λ̃,φ csc2 θ ,

(22)

respectively. Equations (21) and (22) are both comprised of inertial, viscous, and tensile
forces. Finally, the perturbed shape equation is written as

ρR2
(
r̃,tt − 2ṽφΩR sin2 θ + Ω2

[
r̃,θ sin θ cos θ + r̃,φφ − r̃ sin2 θ

]
+ r̃,tφΩ

)
(23)

= −2Rλ̃ + λ(0)

(
2r̃ + R2∆s r̃

)
− kb

2

(
R2∆2

s r̃ + 2∆s r̃
)

+ 2ζΩ
(
r̃,θφ cos θ

[
csc θ − sin θ

]
− r̃,φ cos

2 θ cot2 θ
)
.

We now non-dimensionalize both the unperturbed (7)–(10) and perturbed (20)–(23) govern-
ing equations for the initially static and rotating base states.
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3. The dynamics about an initially static vesicle
For a spherical vesicle initially at rest, Ω = 0 in Eq. (12). In this case, the unperturbed con-
tinuity equation (7) is automatically satisfied, and the equations of motion (8)–(10) simplify
to

λ(0),θ = 0 , λ(0),φ = 0 , and λ(0) =
JpKR
2

. (24)

The unperturbed solution is then given by

v1(0) = 0 , v2(0) = 0 , v(0) = 0 , and λ(0) = λ0 :=
JpKR
2

. (25)

The base state sets the length scale R, as well as the surface tension scale Λ, with the
latter provided in Eq. (11). We now seek to determine the velocity and time scales via non-
dimensionalization of the perturbed equations, as these quantities are not set in the base
state.

Substituting the unperturbed solution (25) into the perturbed equations (20)–(23) yields

ṽ1,θ + ṽ2,φ + cot θ ṽ1 +
2

R
r̃,t = 0 , (26)

ρR2 ṽ1,t = ζ
(
ṽ1 + ṽ1,θθ + csc2 θ ṽ1,φφ + cot θ ṽ1,θ − 2 cot θ ṽ2,φ − cot2 θ ṽ1

)
+ λ̃,θ , (27)

ρR2 ṽ2,t = ζ
(
ṽ2,θθ + csc2 θ ṽ2,φφ + 2 cot θ csc2 θ ṽ1,φ + 3 cot θ ṽ2,θ

)
+ csc2 θ λ̃,φ , (28)

and
ρR2 r̃,tt = −2Rλ̃ + λ0

(
2r̃ + R2∆sr̃

)
− kb

2

(
R2∆2

s r̃ + 2∆sr̃
)
. (29)

As in the flat case, viscous terms do not appear in the perturbed shape equation of an
initially static spherical vesicle (29). Therefore, in this case, we will not obtain the Scriven–
Love number SL upon non-dimensionalization.

At this point, we provide characteristic scales for all unknown quantities. We assume
the perturbed velocities ṽ1 and ṽ2 are of the same order, which we denote Ω . Recalling
that ϵ captures the smallness of all perturbed quantities, we recognize that the perturbed
surface tension λ̃ is of order Λ, as defined in Eq. (11). Finally, we assume the radial shape
perturbations r̃, which are of characteristic size R, vary over a time scale τ . This leads to
the following dimensionless quantities:

θ∗ := θ , φ∗ := φ , r̃∗ :=
r̃

R
, ṽ1∗ :=

ṽ1

Ω
,

ṽ2∗ :=
ṽ2

Ω
, λ̃∗ :=

λ̃

Λ
, and t∗ :=

t

τ
,

(30)

which are all O(1) by construction. Substituting Eq. (30) into the perturbed continuity
equation (26), we obtain

ṽ1∗,θ∗ + ṽ2∗,φ∗ + cot θ∗ ṽ1∗ +
2

τΩ
r̃∗,t∗ = 0 . (31)
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As in-plane flows are required to balance shape changes to the membrane, we find the angular
velocity scale Ω is given by

Ω =
1

τ
. (32)

Next, the in-plane equations are considered. Substituting Eqs. (30) and (32) into the
perturbed in-plane equations (27, 28) and rearranging terms yields

Re ṽ1∗,t∗ = ṽ1∗ + ṽ1∗,θ∗θ∗ + csc2 θ∗ ṽ1∗,φ∗φ∗ + cot θ∗ ṽ1∗,θ∗ − 2 cot θ∗ ṽ2∗,φ∗ − cot2 θ∗ ṽ1∗ +
Λ

ζΩ
λ̃∗,θ∗

(33)
and

Re ṽ2∗,t∗ = ṽ2∗,θ∗θ∗ + csc2 θ∗ ṽ2∗,φ∗φ∗ + 2 cot θ∗ csc2 θ∗ ṽ1∗,φ∗ + 3 cot θ∗ ṽ2∗,θ∗ +
Λ

ζΩ
csc2 θ∗ λ̃∗,φ∗ ,

(34)

where for spherical vesicles the Reynolds number Re is given by

Re :=
ρΩR2

ζ
. (35)

Assuming viscous forces are of the same order as surface tension forces in the perturbed
in-plane equations, one obtains

Ω =
Λ

ζ
, with τ =

ζ

Λ
, (36)

such that the base state surface tension sets the scale of angular velocities and also the time
scale over which radial perturbations change. In this case, over the range of experiments
considered in this work, O(Re) ≤ 10−4 and inertial terms are indeed negligible.

Finally, substituting Eqs. (30), (32), and (36) into the perturbed shape equation (29), we
obtain

ReΓ r̃∗,t∗t∗ = Γ
(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
− 1

2

(
∆∗2

s r̃
∗ + 2∆∗

s r̃
∗
)
, (37)

where the Föppl–von Kármán number Γ is defined as

Γ :=
ΛR2

kb
(38)

and the dimensionless surface Laplacian is given by ∆∗
s( · ) := R2∆s( · ) [cf. Eq. (16)]. As the

inertial terms on the left-hand side of Eq. (37) contains a factor of ReΓ and Re ≪ 1, inertial
terms are always negligible compared to surface tension terms. However, we note that in
cases where Γ is large, inertial terms can be comparable to bending terms. Regardless of the
value of Γ , inertial forces do not significantly affect the out-of-plane membrane dynamics.
The dimensionless perturbed equations governing initially static spherical vesicles are then
given by

ṽ1∗,θ∗ + ṽ2∗,φ∗ + cot θ∗ ṽ1∗ + 2r̃∗,t∗ = 0 , (39)
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ṽ1∗ + ṽ1∗,θ∗θ∗ + csc2 θ∗ ṽ1∗,φ∗φ∗ + cot θ∗ ṽ1∗,θ∗ − 2 cot θ∗ ṽ2∗,φ∗ − cot2 θ∗ ṽ1∗ + λ̃∗,θ∗ = 0 , (40)

ṽ2∗,θ∗θ∗ + csc2 θ∗ ṽφ∗,φ∗φ∗ + 2 cot θ∗ csc2 θ∗ ṽ1∗,φ∗ + 3 cot θ∗ ṽ2∗,θ∗ + csc2 θ∗ λ̃∗,φ∗ = 0 , (41)
and

Γ
(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
− 1

2

(
∆∗2

s r̃
∗ + 2∆∗

s r̃
∗
)

= 0 . (42)

While Eqs. (39)–(42) contain more terms than their flat counterparts [Chapter VII, Eqs.
(22), (28), and (35)], their fundamental structure is similar. The continuity equation (39)
connects in-plane flows with out-of-plane shape deformations, while Eqs. (40) and (41) relate
angular velocities and their derivatives to surface tension gradients. Interestingly, no viscous
forces appear in the perturbed shape equation of an initially static vesicle (42), as was the
case for an initially static flat patch [Chapter VII, Eq. (35)]—despite the geometries being
different. The first term in parenthesis in Eq. (42) arises from the out-of-plane surface
tension force 2λH, sometimes referred to as the Laplace pressure, while the second term
arises from the bending-induced forces −2kbH(H2 − K) − kb∆sH. We once again see the
Föppl–von Kármán number capturing the relative importance of bending and tension terms
in governing the membrane’s dynamical response to a perturbation. For example, in GUVs
we have characteristic values Λ ∼ 10−4 pN/nm and R ∼ 10 μm ‡, while in small membrane
vesicles surrounding retrovirus particles R ∼ 50 nm †. Assuming Λ ∼ 10−3 pN/nm in the
latter, Γ ranges from 10−2 to 102—such that the dynamical response of large vesicles is
tension-dominated while that of small vesicles is bending-dominated. However, as discussed
previously, the base state surface tension can span a wide range of values at any radius to
enforce areal incompressibility, and Γ can span an even wider range of values than those
presented here.

4. The dynamics about an initially rotating vesicle
When a spherical lipid membrane is placed in a bulk shear flow, the velocity gradient in
the surrounding fluid imparts a torque on the membrane and can cause it to rotate about a
fixed axis with a nonzero angular velocity v2(0) = Ω ̸= 0. In experimental systems, when the
inner and outer fluids have the same viscosity, rotating GUVs are observed in shear flows
with shear rates γ̇ up to 10−4 μs−1. ∗, §, ♯, ∥ Moreover, in large blood vessels in the human
body, shear rates can be as high as γ̇ ∼ 10−3 μs−1. ∀ For a spherical lipid membrane vesicle

‡Pécréaux et al., “Refined contour analysis of giant unilamellar vesicles”.
†F. Förster et al. “Retrovirus envelope protein complex structure in situ studied by cryo-electron tomog-

raphy”. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 4729–4734.
∗Haas et al., “Deformation of giant lipid bilayer vesicles in shear flow”.
§Kantsler and Steinberg, “Orientation and dynamics of a vesicle in tank-treading motion in shear flow”.
♯Deschamps, Kantsler, and Steinberg, “Phase diagram of single vesicle dynamical states in shear flow”.
∥S. Ota, S. Yoshizawa, and S. Takeuchi. “Microfluidic formation of monodisperse, cell-sized, and unil-

amellar vesicles”. Angew. Chem. Int. Edit. 48 (2009), 6533–6537.
∀H.H. Lipowsky, S. Usami, and S. Chien. “In vivo measurements of “apparent viscosity” and microvessel

hematocrit in the mesentery of the cat”. Microvasc. Res. 19 (1980), 297–319.

https://doi.org/10.1073/pnas.0409178102
https://doi.org/10.1073/pnas.0409178102
https://doi.org/10.1002/anie.200902182
https://doi.org/10.1002/anie.200902182
https://doi.org/10.1016/0026-2862(80)90050-3
https://doi.org/10.1016/0026-2862(80)90050-3
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in a shear flow, we assume the angular velocity

Ω = γ̇ (43)

in the base state, and in our non-dimensionalization set the scale of ṽ1 and ṽ2 to be Ω . We
are thus in a similar situation to the case of a planar membrane with a base flow: here, the
base state sets the length scale R, surface tension scale Λ [cf. Eq. (11)], and angular velocity
scale Ω—for which viscous forces and tension forces may not balance in the perturbed in-
plane equations. Consequently, the introduction of a flow of lipids in the base state leads to
a new length scale over which in-plane quantities vary, while the perturbed membrane shape
r̃ continues to vary over a length R. The emergence of a new length scale in the perturbed
equations implies care must be taken when predicting the magnitude of perturbed in-plane
and out-of-plane forces.

(a). The unperturbed equations
We begin by revisiting the unperturbed equations, where we now suppose a base flow velocity
v(0) given by [cf. Eq. (4)]

v(0) = ΩR sin θeφ , for which v1(0) = 0 and v2(0) = Ω . (44)

Substituting Eq. (44) into the unperturbed equations (7)–(10) reveals the continuity equa-
tions is automatically satisfied; the remaining equations simplify to

λ(0),θ = ρR2Ω2 sin θ cos θ , (45)

λ(0),φ = 0 , (46)
and

λ(0) =
1

2

( JpKR + ρR2Ω2 sin2 θ
)
. (47)

For a constant pressure drop JpK across the membrane surface, the base tension λ(0) obtained
in Eq. (47) satisfies the in-plane equations. The state of the unperturbed vesicle is then fully
characterized by the in-plane velocity components in Eq. (44) and surface tension in Eq.
(47).

At this point, we recognize that for the spherical vesicles under consideration [see §4 (c)],
ρ ∼ 10−8 pg/nm2, R ∼ 102–104 nm, Ω ≤ 10−3 μsec−1, and λ(0) ∼ 10−4–10−1 pN/nm. In
this case, O(ρR2Ω2) ∼ 10−12–10−6 pN/nm, and inertial forces are negligible relative to their
tensile counterparts. Equations (45)–(47) then simplify to

λ(0),θ = 0 , λ(0),φ = 0 , and λ(0) =
JpKR
2

, (48)

such that the unperturbed solution is given by

v1(0) = 0 , v2(0) = Ω , v(0) = 0 , and λ(0) = Λ :=
JpKR
2

. (49)
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In this case, the characteristic scales

Ω := γ̇ and Λ =
JpKR
2

(50)

are set by the base state—which, as we will now show, leads to the fundamental membrane
unknowns varying over different length scales in the perturbed dynamics.

(b). The perturbed equations
In the base state, quantities are expected to vary over O(1) changes in the angles θ and
φ, or equivalently over O(R) lengths on the membrane surface. As in the planar case, the
introduction of an angular velocity scale Ω in the base state allows for the possibility of a
new length scale ℓ—or equivalently, a new angular scale Φ = ℓ/R—over which quantities
can vary in the perturbed system. As the governing equations are written in terms of
angular derivatives, we will predominantly use the new angular scale Φ in our analysis here.
Following the developments in the planar case, we first demonstrate why a new angular scale
is needed, as we expect to recover the static vesicle results in the limit where Ω goes to zero.
We then show why all quantities cannot vary over the new angular scale, and determine
which quantities vary over Φ. Note that due to the geometry of the system, Φ ≤ 1.

Scaling Attempt #1: Variations over radius R (incorrect)
First, assume all perturbed quantities vary over O(1) changes in θ and φ, such that θ∗ = θ
and φ∗ = φ. In this case, all perturbed quantities are scaled according to Eq. (30), where
the angular velocity scale Ω and surface tension scale Λ are set by the base state (50). The
perturbed continuity equation (20) is non-dimensionalized as

ṽ1∗,θ∗ + ṽ2∗,φ∗ + cot θ∗ ṽ1∗ + 2r̃∗,φ∗ +
2

τΩ
r̃∗,t∗ = 0 , (51)

for which we choose the time scale τ to given by τ = 1/Ω such that in-plane and out-of-plane
quantities are of the same order. Equation (51) then simplifies to

ṽ1∗,θ∗ + ṽ2∗,φ∗ + cot θ∗ ṽ1∗ + 2 r̃∗,φ∗ + 2 r̃∗,t∗ = 0 . (52)

Next, Eq. (30) is substituted into the in-plane equations (21, 22). Neglecting inertial terms
for the simplicity of our argument, we obtain

ṽ1∗ + ṽ1∗,θ∗θ∗ + csc2 θ∗ ṽ1∗,φ∗φ∗ + cot θ∗ ṽ1∗,θ∗ − 2 cot θ∗ ṽ2∗,φ∗ − cot2 θ∗ ṽ1∗ +
Λ

ζΩ
λ̃∗,θ∗ = 0 (53)

and
ṽ2∗,θ∗θ∗ + csc2 θ∗ ṽ2∗,φ∗φ∗ + 2 cot θ∗ csc2 θ∗ ṽ1∗,φ∗ + 3 cot θ∗ ṽ2∗,θ∗ +

Λ

ζΩ
csc2 θ∗ λ̃∗,φ∗ = 0 . (54)

Recalling that Ω and Λ are set by the base state (50), we find that in the limit of vanishing
Ω , i.e. when Ω tends to zero, the in-plane equations (53, 54) imply λ̃∗ = constant. However,
in the limit of vanishing base velocity, we expect to recover the initially static shape equation
(42), in which the perturbed surface tension varies over the patch in reaction to the perturbed
membrane shape. This is not the case, and thus our assumption that all quantities vary over
O(1) changes in θ and φ is unphysical.
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Scaling Attempt #2: Variations over new length scale (incorrect)
Next, we attempt to find a consistent scaling result by introducing a new angular scale Φ
over which all perturbed quantities vary. In this case, we define the new quantities

θ′ :=
θ

Φ
, φ′ :=

φ

Φ
and ∆′

s( · ) := Φ2R2∆s( · ) , (55)

such that all angular derivatives are non-dimensionalized with θ′ and φ′ rather than θ∗ and
φ∗. All other perturbed quantities are non-dimensionalized as in Eq. (30). The dimensionless
continuity equation is obtained by substituting Eqs. (30) and (55) into Eq. (20), and is found
to be

ṽ1∗,θ′ + ṽ2∗,φ′ + Φ cot θ∗ ṽ1∗ + 2r̃∗,φ′ +
2Φ

τΩ
r̃∗,t∗ = 0 . (56)

As Φ ≤ 1 due to geometric constraints, and it is possible that Φ ≪ 1, Eq. (56) requires the
time scale τ to be given by

τ =
Φ

Ω
(57)

such that in-plane and out-of-plane motions are of the same order. Accordingly, Eq. (56)
simplifies to

ṽ1∗,θ′ + ṽ2∗,φ′ + Φ cot θ∗ ṽ1∗ + 2r̃∗,φ′ + 2r̃∗,t∗ = 0 . (58)
Neglecting inertial terms to simplify our argument, we express the in-plane θ and φ equations,
respectively, as [cf. Eqs. (21) and (22)]

Φ2 ṽ1∗ + ṽ1∗,θ′θ′ + csc2 θ′ ṽ1∗,φ′φ′ + Φ cot θ∗ ṽ1∗,θ′ − 2Φ cot θ∗ ṽ2∗,φ′ − Φ2 cot2 θ∗ ṽ1∗ +
ΛΦ

ζΩ
λ̃∗,θ′ = 0

(59)

and

ṽ2∗,θ′θ′ + csc2 θ∗ ṽ2∗,φ′φ′ + 2Φ cot θ∗ csc2 θ∗ ṽ1∗,φ′ + 3Φ cot θ∗ ṽ2∗,θ′ +
ΛΦ

ζΩ
csc2 θ∗ λ̃∗,φ′ = 0 . (60)

To ensure surface tension gradients are of the same order as in-plane viscous forces, even in
the limit of small Ω , we must have

Φ =
ζΩ

Λ
and τ =

ζ

Λ
, (61)

with the latter satisfying Eq. (57). Finally, the shape equation (23) is non-dimensionalized
with Eqs. (30) and (55), and is given by

Φ2Λ
(
2Φ2 r̃∗ + ∆′

s r̃
∗ − 2Φ2λ̃∗

)
− kb

2R2

(
∆′ 2

s r̃
∗ + 2Φ2∆′

s r̃
∗
)

+ 2ζΩΦ2
(
cos θ∗

[
csc θ∗ − sin θ∗

]
r̃∗,θ′φ′ − Φ cos2 θ∗ cot2 θ∗ r̃∗,φ′

)
= 0 .

(62)

Thus, in the limit where Ω tends to zero, for which [see Eq. (61)] Φ tends to zero as well,
Eq. (62) simplifies to

∆′ 2
s r̃

∗ = 0 . (63)
However, one must recover the initially static shape equation (42) when Ω goes to zero. As
this is not the case, our choice of scaling here is again incorrect.
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Scaling Attempt #3: Variations over multiple length scales (correct)

At this point, we recognize that ṽ1, ṽ2, and λ̃ must vary over O(Φ) changes in θ and φ, or
equivalently an O(ℓ) length scale, while r̃ does not. We assume r̃ varies over O(1) changes
in θ and φ, as in the initially static scenario. With this choice, the first-order continuity
equation (20) is non-dimensionalized as

ṽ1∗,θ′ + ṽφ∗,φ′ + Φ
(
cot θ∗ ṽ1∗ + 2r̃∗,φ∗

)
+

2Φ

τΩ
r̃∗,t∗ = 0 , (64)

which once more requires the time and angular velocity scales to be given by Eq. (61). In Eq.
(64), and throughout the rest of this section, spatial derivatives of the perturbed velocities
and surface tensions are with respect to θ′ and φ′, while those of the perturbed radius are
with respect to θ∗ and φ∗. Upon substitution of Eq. (61) into Eq. (64), we obtain the
appropriate scaled continuity equation

ṽ1∗,θ′ + ṽ2∗,φ′ + Φ
(
cot θ∗ ṽ1∗ + 2 r̃∗,φ∗

)
+ 2 r̃∗,t∗ = 0 . (65)

The perturbed in-plane equations are non-dimensionalized in the same manner, for which

ReΦ
(
ṽ1∗,t∗ + ṽ1∗,φ′ − 2Φ sin θ∗ cos θ∗ ṽ2∗ − Φ sin2 θ∗ r̃∗,θ∗

)
= ṽ1∗,θ′θ′ + csc2 θ∗ ṽ1∗,φ′φ′ + Φ cot θ∗

(
ṽ1∗,θ′ − 2 ṽ2∗,φ′

)
+ Φ2 ṽ1∗

(
1− cot2 θ∗

)
+ λ̃∗,θ′

(66)

and

ReΦ
(
ṽ2∗,t∗ + 2 r̃∗,t∗ + ṽ2∗,φ′ + 2Φ cot θ∗ ṽ1∗ + Φ r̃∗,φ∗

)
= ṽ2∗,θ′θ′ + csc2 θ∗ ṽ2∗,φ′φ′ + Φ cot θ∗

(
2 csc2 θ∗ ṽ1∗,φ′ + 3 ṽ2∗,θ′

)
+ csc2 θ∗ λ̃∗,φ′ .

(67)

In Eqs. (66) and (67), the Reynolds number Re is defined in Eq. (35) and the choice of Φ
in Eq. (61) ensures viscous forces and tension forces are the same order. As Re ≪ 1 (to be
shown subsequently) and Φ ≤ 1 by definition, Eqs. (66) and (67) simplify to

ṽ1∗,θ′θ′ + csc2 θ∗ ṽ1∗,φ′φ′ + Φ cot θ∗
(
ṽ1∗,θ′ − 2 ṽ2∗,φ′

)
+ Φ2 ṽ1∗

(
1− cot2 θ∗

)
+ λ̃∗,θ′ = 0 (68)

and
ṽ2∗,θ′θ′ + csc2 θ∗ ṽ2∗,φ′φ′ + Φ cot θ∗

(
2 csc2 θ∗ ṽ1∗,φ′ + 3 ṽ2∗,θ′

)
+ csc2 θ∗ λ̃∗,φ′ = 0 , (69)

which are the properly scaled perturbed in-plane equations governing an initially rotating
vesicle. Finally, the perturbed shape equation (23) is considered. Upon substitution of Eqs.
(55) and (61) into the shape equation and rearranging terms, we obtain

ReΓ
Φ

(
r̃∗,t∗t∗ + Φ r̃∗,t∗φ∗ + Φ2

[
− 2 sin2 θ∗ ṽ2∗ − sin θ∗ r̃∗ + sin θ∗ cos θ∗ r̃∗,θ∗ + r̃∗,φ∗φ∗

])
= 2

ζΩR2

kb

(
cos θ∗

[
csc θ∗ − sin θ∗

]
r̃∗,θ∗φ∗ − cos2 θ∗ cot2 θ∗ r̃∗,φ∗

)
(70)

+ Γ
(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
− 1

2

(
∆∗2

s r̃
∗ + 2∆∗

s r̃
∗
)
.
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As we will see in §4 (c), for the systems under consideration, Re/Φ ≤ 10−3 ≪ 1—such that
inertial forces are always negligible relative to tension forces. Equation (70) shows the ratio
of out-of-plane viscous forces to bending forces gives rise to the Scriven–Love number, here
defined as

SL :=
ζΩR2

kb
. (71)

Substituting Eq. (71) into Eq. (70) and neglecting inertial terms leads to the final form of
the perturbed shape equation, given by

2SL
(
cos θ∗

[
csc θ∗ − sin θ∗

]
r̃∗,θ∗φ∗ − cos2 θ∗ cot2 θ∗ r̃∗,φ∗

)
+Γ

(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
− 1

2

(
∆∗2

s r̃
∗ + 2∆∗

s r̃
∗
)

= 0 .

(72)

The first line in Eq. (72) consists of the out-of-plane viscous forces arising from the rotational
base flow, which were not present in the perturbed shape equation of an initially static
spherical vesicle (29). The second line in Eq. (72) contains the surface tension and bending
forces, which are identical to those found in the static vesicle [cf. Eq. (72)]. We note that
with Eq. (71), the angular scale Φ can be expressed as Φ = Γ−1SL, such that the ratio of the
Scriven–Love and Föppl–von Kármán numbers dictates the relative size of various terms in
the continuity (65) and in-plane (68, 69) equations as well. We also observe that in the limit
where Ω goes to zero, SL goes to zero as well (71) and the shape equation (72) simplifies to
its initially static counterpart, namely Eq. (42).

(c). The analysis of past experimental data
We now present our calculation of the Scriven–Love and Föppl–von Kármán numbers, for
initially rotating spherical vesicles, as the Scriven–Love number does not arise for initially
static spheres. The results of five prior experiments are summarized in Fig. 2, and detailed
in Tables 1–5 below. When values of the bending modulus kb and surface tension scale Λ are
not provided, we assume kb = 100 pN · nm and Λ = 10−3 pN/nm. In all cases, we use ζ = 10
pN · μsec/nm. ‡, † Furthermore, in all experiments considered, the shear rate γ̇ is provided;
we choose Ω = γ̇ and calculate the velocity scale V as

V = γ̇R . (73)

(d). The findings of our scaling analysis
For spherical membranes with a base flow, we find three experimentally relevant regimes; in
each case, we provide the relevant data in Fig. 2 and Tables 1–5. The bending-dominated
regime is characteristic of small membrane vesicles, as in the case of 100 nm vesicles sur-
rounding retrovirus particles, ∗ for which SL ≪ 1 and Γ ≪ 1. In this case, the shape equation

‡P. Cicuta, S.L. Keller, and S.L. Veatch. “Diffusion of liquid domains in lipid bilayer membranes”. J.
Phys. Chem. B 111 (2007), 3328–3331. arXiv: cond-mat/0611492.

†A.R. Honerkamp-Smith et al. “Membrane viscosity determined from shear-driven flow in giant vesicles”.
Phys. Rev. Lett. 111 (2013), 038103. arXiv: 1308.6440.

∗Förster et al., “Retrovirus envelope protein complex structure in situ studied by cryo-electron tomogra-
phy”.

https://doi.org/10.1021/jp0702088
http://arxiv.org/abs/cond-mat/0611492
https://doi.org/10.1103/PhysRevLett.111.038103
http://arxiv.org/abs/1308.6440
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Figure 2: Plot of the Scriven–Love number SL and Föppl–von Kármán number Γ in five
past experiments involving spherical geometries [cf. Chapter VI, Fig. 2]. Each numbered
figure corresponds to a single experiment, which is described in Tables 1–5. Experiments
#1 through #4 have large tensile and viscous forces in the out-of-plane direction, and thus
behave constitutively like a fluid film. Experiment #5, on the other hand, is bending-
dominated.

Experiment #1: GUVs in shear flow

Table 1: Calculations from Figs. 2, 4, and 6 of K.H. de Haas et al. “Deformation of giant
lipid bilayer vesicles in shear flow”. Phys. Rev. E 56 (1997), 7132–7137. Note the bending
modulus kc in this study is related to kb in the present work according to kb = 2kc.

Quantity Value Calculation

V 6 · 10−1 nm/μsec Eq. (73), with γ̇ ∼ 10−5 μsec−1 (Fig. 2)

R 6 · 104 nm Fig. 4

kb 30 pN·nm Fig. 4, text on page 7136

Λ 4 · 10−3 pN/nm Fig. 6

SL 1 · 104 Eq. (71)

Γ 5 · 105 Eq. (38)

https://doi.org/10.1103/PhysRevE.56.7132
https://doi.org/10.1103/PhysRevE.56.7132
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Experiment #2: White blood cells in blood vessel

Table 2: Calculations from Table 1 of H.H. Lipowsky, S. Usami, and S. Chien. “In vivo
measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the
cat”. Microvasc. Res. 19 (1980), 297–319, as well as Fig. 1 of E. Kolaczkowska and P.
Kubes. “Neutrophil recruitment and function in health and inflammation”. Nat. Rev.
Immunol. 13 (2013), 159–175. Both studies investigate white blood cells in a shear flow
within a blood vessel. To calculate the shear rate γ̇ in a blood vessel, we used the result
γ̇ ∼ Q/R3

t for laminar flow in a tube of radius Rt, with flow rate Q.

Quantity Value Calculation

V 3 nm/μsec Eq. (73), with γ̇ ∼ 5 · 10−4 μsec−1 (Lipowsky et al.)

R 6 · 103 nm Estimated from Fig. 1 of Kolaczkowska et al.

SL 2 · 103 Eq. (71)

Γ 4 · 102 Eq. (38)

Experiment #3: GUVs in shear flow

Table 3: Considerations for experimental data of GUVs in a shear flow, from Fig. 2 and
Video 1 of S. Ota, S. Yoshizawa, and S. Takeuchi. “Microfluidic formation of monodisperse,
cell-sized, and unilamellar vesicles”. Angew. Chem. Int. Edit. 48 (2009), 6533–6537. We
approximated the shear rate as γ̇ ∼ Vs/10 μm, where Vs is the free streaming velocity and
10 μm is the height of the post about which the vesicle is formed. From Video 1 of the
Supporting information, we calculate Vs ∼ 1 nm/μsec, such that γ̇ ∼ 10−4 μsec−1.

Quantity Value Calculation

V 6 · 10−1 nm/μsec Eq. (73), with γ̇ ∼ 10−4 μsec−1 (Fig. 2(a), Video 1)

R 6 · 103 nm Fig. 2(d)

SL 4 · 102 Eq. (71)

Γ 4 · 102 Eq. (38)

https://doi.org/10.1016/0026-2862(80)90050-3
https://doi.org/10.1016/0026-2862(80)90050-3
https://doi.org/10.1016/0026-2862(80)90050-3
https://doi.org/10.1038/nri3399
https://doi.org/10.1002/anie.200902182
https://doi.org/10.1002/anie.200902182
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Experiment #4: GUVs in shear flow

Table 4: Investigations of experimental data for GUVs in a shear flow, from line 18 in
Table 1 of M.-A. Mader et al. “Dynamics of viscous vesicles in shear flow”. Eur. Phys. J.
E 19 (2006), 389–397. Note the bending modulus κc in this study is related to kb in the
present work according to kb = 2κc.

Quantity Value Calculation

V 3 · 10−2 nm/μsec Eq. (73), with γ̇ ∼ 2 · 10−6 μsec−1 (Table 1, line 18)

R 1 · 104 nm Table 1, line 18

kb 170 pN·nm Page 394, below Eq. (9)

SL 2 · 101 Eq. (71)

Γ 6 · 102 Eq. (38)

Experiment #5: Retrovirus in blood vessel

Table 5: Calculations involving experimental measurements of retrovirus particles in a
shear flow, within a blood vessel. The data on retrovirus particles is obtained from Fig. 1
of F. Förster et al. “Retrovirus envelope protein complex structure in situ studied by cryo-
electron tomography”. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 4729–4734. The data
describing blood flow is once again obtained from Table 1 of H.H. Lipowsky, S. Usami, and
S. Chien. “In vivo measurements of “apparent viscosity” and microvessel hematocrit in the
mesentery of the cat”. Microvasc. Res. 19 (1980), 297–319. The shear rate calculation is
identical to that of Experiment #2 (see Table 2).

Quantity Value Calculation

V 3 · 10−3 nm/μsec Eq. (73), with γ̇ ∼ 5 · 10−4 μsec−1 (Lipowsky et al.)

R 5 · 101 nm Estimated from Fig. 1 of Förster et al.

SL 1 · 10−1 Eq. (71)

Γ 2 · 10−2 Eq. (38)

https://doi.org/10.1140/epje/i2005-10058-x
https://doi.org/10.1073/pnas.0409178102
https://doi.org/10.1073/pnas.0409178102
https://doi.org/10.1016/0026-2862(80)90050-3
https://doi.org/10.1016/0026-2862(80)90050-3
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(72) simplifies to contain only the bending terms, and is given by

∆∗2
s r̃

∗ + 2∆∗
s r̃

∗ = 0 . (74)

Next, in large GUVs at low shear rates, ‡, † we find Γ ≫ SL and Γ ≫ 1, such that the shape
equation is tension-dominated and simplifies to

2 r̃∗ + ∆∗
s r̃

∗ − 2 λ̃∗ = 0 . (75)

On the other hand, for white blood cells ∗ or GUVs § in flows with high shear rates, SL ∼
Γ ≫ 1 and both viscous and tension forces dominate bending forces. In this case, the shape
equation is given by

2SL
(
cos θ∗

[
csc θ∗ − sin θ∗

]
r̃∗,θ∗φ∗ − cos2 θ∗ cot2 θ∗ r̃∗,φ∗

)
+ Γ

(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
= 0 . (76)

We refer to systems for which Eq. (76) governs the perturbed out-of-plane dynamics as the
‘fluid film’ regime, as in the absence of bending forces the membrane equations are identical
to those governing a two-dimensional Newtonian fluid film. ♯ In such cases, the dynamical
response of an initially spherical, rotating lipid membrane vesicle can be significantly affected
by the viscous forces arising from the intramembrane fluidity. In particular, out-of-plane
viscous forces could lead to non-trivial corrections in many of the theoretical and numerical
studies of membrane-bound vesicles immersed in shearing bulk fluids. ∥, ∀, ♢, $, &, ¶, ‡‡, ††, ∗∗, §§

We reiterate that our analysis does not include effects from the bulk fluid besides the pressure
drop in the base state, and so a comprehensive study involving both the bulk fluid and full
membrane equations is necessary to understand vesicle behavior in such situations.

‡Haas et al., “Deformation of giant lipid bilayer vesicles in shear flow”.
†M.-A. Mader et al. “Dynamics of viscous vesicles in shear flow”. Eur. Phys. J. E 19 (2006), 389–397.
∗E. Kolaczkowska and P. Kubes. “Neutrophil recruitment and function in health and inflammation”.

Nat. Rev. Immunol. 13 (2013), 159–175.
§Ota, Yoshizawa, and Takeuchi, “Microfluidic formation of monodisperse, cell-sized, and unilamellar

vesicles”.
♯L.E. Scriven. “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”. Chem.

Eng. Sci. 12 (1960), 98–108.
∥S.R. Keller and R. Skalak. “Motion of a tank-treading ellipsoidal particle in a shear flow”. J. Fluid

Mech. 120 (1982), 27–47.
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♢U. Seifert. “Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating
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$J. Beaucourt et al. “Steady to unsteady dynamics of a vesicle in a flow”. Phys. Rev. E 69 (2004), 011906.
&V.V. Lebedev, K.S. Turitsyn, and S.S. Vergeles. “Dynamics of nearly spherical vesicles in an external

flow”. Phys. Rev. Lett. 99 (2007), 218101.
¶H. Noguchi and G. Gompper. “Swinging and tumbling of fluid vesicles in shear flow”. Phys. Rev. Lett.

98 (2007), 128103.
‡‡P.M. Vlahovska and R.S. Gracia. “Dynamics of a viscous vesicle in linear flows”. Phys. Rev. E 75

(2007), 016313.
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5. The temporal stability of a static vesicle
Following the general procedure outlined in Chapter VI, §1, we now investigate the stability
of spherical membrane systems. In order to employ a linear stability analysis, we first
decompose all membrane unknowns into normal modes. A complication arises, however,
because the individual components of the perturbed membrane velocity—namely ṽ1, ṽ2,
and ṽ—cannot be decomposed using the well-known scalar spherical harmonics. Rather,
the entire membrane velocity ṽ is decomposed in terms of the vector spherical harmonics,
which we review below. We limit our analysis to situations with no base flow, as we are
unable to express the perturbed equations with a base flow in terms of independent normal
modes—even with the more general decomposition of ṽ. ‡

With an appropriate normal mode decomposition, we express the governing equations
in terms of the normal mode coefficients, and then determine how each mode evolves in
time according to the linear theory. If the base surface tension is positive and the Föppl–
von Kármán number Γ > 0, then all modes are stable. When Γ < 0, on the other hand,
short-wavelength modes remain stable while long-wavelength modes become unstable. The
cutoff between stable and unstable wavelengths is a function of only the Föppl–von Kármán
number, which additionally determines the growth rate of the unstable modes. We note
the results in this section are provided for completeness, as they are not new: the stability
requirements were previously obtained from energetic arguments, †, ∗ and the time evolution
of the normal modes—including the dynamics of both the membrane and the surrounding
fluid—was also determined in a prior effort. §

(a). Mathematical preliminaries
The study of systems with spherical symmetry has a rich history in many disciplines, in-
cluding (for example) fluid mechanics and electrodynamics. Here, we review the well-known
scalar spherical harmonics, which are eigenfunctions of the scalar surface Laplacian on the
unit sphere. We then motivate why the membrane velocity components cannot easily be de-
composed using the scalar spherical harmonics, and proceed to introduce a less well-known
set of functions—namely, the vector spherical harmonics—which are more suitable for our
analysis.

The scalar spherical harmonics

In our study of perturbed spherical membrane vesicles, we will often need to expand quan-
tities in terms of normal modes. For scalar functions, the natural basis for doing so are the
scalar spherical harmonics, which are the eigenfunctions of the scalar Laplacian operator in

‡This difficulty was noted previously. §

†Seifert, “Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating
quasispherical vesicles in shear flow”.

∗L. Miao, M.A. Lomholt, and J. Kleis. “Dynamics of shape fluctuations of quasi-spherical vesicles revis-
ited”. Eur. Phys. J. E 9 (2002), 143–160.

§P.M. Vlahovska. “Dynamics of Membrane-Bound Particles: Capsules and Vesicles”. Fluid–Structure
Interactions in Low-Reynolds-Number Flows. Ed. by C. Duprat and H.A. Stone. RSC Soft Matter Series.
The Royal Society of Chemistry, 2016, pp. 313–346

https://doi.org/10.1140/epje/i2002-10068-2
https://doi.org/10.1140/epje/i2002-10068-2
https://doi.org/10.1039/9781782628491-00313
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spherical coordinates. The properties of these functions are well-known and can be found in
many texts; here, we follow the presentation by J.D. Jackson. ‡

Consider some scalar function Y (θ, φ) defined on a sphere of radius R, which satisfies the
eigenvalue equation R2∆sY = −ℓ(ℓ+ 1)Y , explicitly written as

Y, θθ + Y, θ cot θ + Y,φφ csc2 θ = − ℓ(ℓ+ 1)Y . (77)

In Eq. (77), ℓ(ℓ + 1) is an unknown constant that is to be solved for. Following the usual
method of separation of variables, we assume the function Y (θ, φ) can be decomposed into
polar and azimuthal components as †

Y (θ, φ) = Θ(θ) Φ(φ) . (78)

Upon substituting Eq. (78) into Eq. (77), multiplying by sin2 θ, and rearranging terms, we
obtain

ℓ(ℓ+ 1) sin2 θ +
sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
︸ ︷︷ ︸

=m2

+
1

Φ

d2Φ

dφ2︸ ︷︷ ︸
=−m2

= 0 . (79)

In Eq. (79), the first two terms are only a function of θ, while the second terms is only a
function of φ. Accordingly, both terms must be a constant; the last term is chosen to be
equal to −m2. We easily solve for the azimuthal function Φ, as

d2Φ

dφ2
= −m2Φ , for which Φ = e±imφ . (80)

In order for Φ(φ) to be periodic on the sphere and satisfy Φ(φ + 2π) = Φ(φ), we require
m ∈ Z.

Let us now consider the equation for Θ(θ). By making the change of variables x ≡ cos θ,
we obtain the generalized Legendre equation

d

dx

[ (
1− x2

) dΘ
dx

]
+

[
ℓ(ℓ+ 1) − m2

1− x2

]
Θ = 0 , (81)

whose solutions are the associated Legendre functions. Note that when there is azimuthal
symmetry and m = 0 (equivalently Φ = 1), the above equation simplifies to the Legen-
dre equation, whose solutions are the Legendre polynomials Pℓ(x) which satisfy Rodrigues’
formula

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ

[(
x2 − 1

)ℓ ]
. (82)

The Legendre polynomials form a complete set of orthogonal functions on the domain x ∈
[−1, 1], and satisfy the orthogonality relation∫ +1

−1

Pℓ′(x)Pℓ(x) dx =
2

2ℓ+ 1
δℓ′,ℓ . (83)

‡J.D. Jackson. Classical Electrodynamics. 3rd ed. New York: Wiley, 1999.
†The azimuthal component Φ(φ) is distinct from the angular scale Φ introduced in §4 (b).
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At this point, we recognize that in order for the function Y (θ, φ) to be finite in the polar
angle domain θ ∈ [0, π], or equivalently x ∈ [−1, 1], ℓ must be zero or a positive integer, and
m is restricted to the range −ℓ, −(ℓ − 1), . . . 0, . . . (ℓ − 1), ℓ. The corresponding solutions
to the general equation for Θ(x) are the associated Legendre functions, denoted Pm

ℓ (x) and
given—for both positive and negative m—by

Pℓm(x) :=
(−1)m

2ℓℓ!

(
1− x2

)m/2 dℓ+m

dxℓ+m

[ (
x2 − 1

)ℓ ]
. (84)

Moreover, the associated Legendre functions with negative m are related to those of positive
m by

Pℓ,−m(x) = (−1)m
(ℓ−m)!

(ℓ+m)!
Pℓm(x) , (85)

and we have the orthogonality relation∫ 1

−1

Pℓ′m(x)Pℓm(x) dx =
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓ′,ℓ . (86)

Finally, we recognize that we can form a complete orthonormal set of functions defined on
the unit sphere by combining the functions Θ and Φ. These scalar spherical harmonics are
denoted Yℓm(θ, φ), and are given by

Yℓm(θ, φ) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ . (87)

Additionally, the harmonic functions with a negative value of m are related to those with a
positive value of m by

Yℓ,−m(θ, φ) = (−1)m Y †
ℓm(θ, φ) , (88)

where in this chapter the ‘†’ accent denotes complex conjugation. The spherical harmonics
satisfy the orthogonality relation∫ π

0

sin θ dθ

∫ 2π

0

dφ
[
Yℓm(θ, φ)Y

†
ℓ′m′(θ, φ)

]
= δℓ′,ℓ δm′,m , (89)

where the integral is over the unit sphere.
With the form of the scalar spherical harmonics, we can now understand why these func-

tions are unsuitable for the decomposition of the membrane velocity components. Consider,
for example, the in-plane equations (21, 22)—which contain partial derivatives of the velocity
components with respect to θ and φ. From Eq. (87), we find

Yℓm,θ = m cot θ Yℓm +
√

(ℓ−m)(ℓ+m+ 1) e−iφ Yℓ,m+1 (90)
and

Yℓm,φ = imYℓm , (91)

where a derivative in the polar angle θ couples the modes Yℓm and Yℓ,m+1. Such mode
coupling leads to difficulties when seeking the dynamics of a single mode, and motivates our
use of the vector spherical harmonics.
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The vector spherical harmonics

In listing the properties of the scalar spherical harmonics, we recognized that Yℓm is not an
eigenfunction of the operator ∂/∂θ, implying that care must be taken when decomposing
our fundamental variables into normal modes. As we will see, it is useful to generate a set
of three linearly independent vectorial quantities from each scalar spherical harmonic, with
which to decompose vector quantities. These vector spherical harmonics are given by

Ys
ℓm(θ, φ) = Yℓm(θ, φ) er , (92)

Ye
ℓm(θ, φ) =

R∇sYℓm(θ, φ)√
ℓ(ℓ+ 1)

=
1√

ℓ(ℓ+ 1)

(
Yℓm,θ eθ + Yℓm,φ csc θ eφ

)
, (93)

and

Ym
ℓm(θ, φ) =

er ×R∇sYℓm(θ, φ)√
ℓ(ℓ+ 1)

=
1√

ℓ(ℓ+ 1)

(
− Yℓm,φ csc θ eθ + Yℓm,θ eφ

)
, (94)

where ∇s is the surface gradient operator, for which R∇s( · ) = eθ ( · ),θ + eφ csc θ ( · ),φ. In
Eqs. (92)–(94), the superscripts ‘s,’ ‘e,’ and ‘m’ stand for ‘scalar,’ ‘electric,’ and ‘magnetic,’
respectively—originating from the use of such functions in quantum electrodynamics. The
vector spherical harmonics have a number of useful properties, of which the most relevant
are provided here. First, just as was the case for the scalar spherical harmonics, the vector
spherical harmonics of negative m are related to those of positive m by

Ys
ℓ,−m = (−1)m Ys †

ℓm , Ye
ℓ,−m = (−1)m Ye †

ℓm , and Ym
ℓ,−m = (−1)m Ym †

ℓm . (95)

Next, the vector spherical harmonics are orthogonal at a single point in space r:

Ys
ℓm(r) ·Ye

ℓm(r) = 0 , Ye
ℓm(r) ·Ym

ℓm(r) = 0 , and Ym
ℓm(r) ·Ys

ℓm(r) = 0 . (96)

Finally, denoting dΩ := dφ sin θdθ as the differential area element on the unit sphere, we
express the orthonormality of the vector spherical harmonics over the sphere as∫

Ys
ℓm(θ, φ) ·Y

s †
ℓ′m′(θ, φ) dΩ = δℓ′ℓ δm′m , (97)∫

Ye
ℓm(θ, φ) ·Y

e †
ℓ′m′(θ, φ) dΩ = δℓ′ℓ δm′m , (98)∫

Ym
ℓm(θ, φ) ·Y

m †
ℓ′m′(θ, φ) dΩ = δℓ′ℓ δm′m , (99)∫

Ys
ℓm(θ, φ) ·Y

e †
ℓ′m′(θ, φ) dΩ = 0 , (100)∫

Ye
ℓm(θ, φ) ·Y

m †
ℓ′m′(θ, φ) dΩ = 0 , (101)

and ∫
Ym

ℓm(θ, φ) ·Y
s †
ℓ′m′(θ, φ) dΩ = 0 . (102)
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(b). The governing equations
The dimensionless equations governing an initially static vesicle were obtained in §3, and
presented in terms of our differential geometric description of the membrane surface. In
order to study the stability of such systems, however, it is convenient to express quantities
in terms of the standard orthonormal spherical basis {er, eθ, eφ}. To this end, we decompose
the perturbed membrane velocity as

ṽ = ṽ1a
(0)
1 + ṽ2a

(0)
2 + ṽn(0)

= ṽ1R eθ + ṽ2R sin θ eθ + ṽer

= ṽθeθ + ṽφeφ + ṽrer ,

(103)

from which we immediately obtain the following relationships between velocity components:

ṽθ = ṽ1R , ṽφ = ṽ2R sin θ , and ṽr = ṽ = r̃,t . (104)

In this case, we define the dimensionless velocity in terms of the length scale R and time
scale τ (36) as

ṽ∗ =
τ ṽ

R
=

ζ ṽ

ΛR
, (105)

and express the dimensionless continuity equation (39) as

ṽ∗θ,θ + ṽ∗φ,φ csc θ + ṽ∗θ cot θ + 2ṽ∗r = 0 . (106)

The three components of the linear momentum balance (40)–(42) are similarly expressed as
the single vector equation

0 =

{
ṽ∗θ,θθ + ṽ∗θ,θ cot θ + ṽ∗θ,φφ − 2ṽ∗φ,φ cot θ csc θ + ṽ∗θ (1− cot2 θ) + λ̃∗,θ

}
eθ

+

{
ṽ∗φ,θθ + ṽ∗φ,θ cot θ + ṽ∗φ,φφ csc

2 θ + 2ṽ∗θ,φ cot θ csc θ + ṽ∗φ (1− cot2 θ) + λ̃∗,φ csc θ

}
eφ

+

{
Γ
(
2r̃∗ + ∆∗

s r̃
∗ − 2λ̃∗

)
− 1

2

(
∆∗2

s r̃
∗ + 2∆∗

s r̃
∗
)}

er , (107)

which is more amenable for analysis with the vector spherical harmonics.

(c). The decomposition into normal modes
At this point, we decompose all membrane unknowns into normal modes. The perturbed
surface tension λ̃∗ and out-of-plane displacement r̃∗ are decomposed with the scalar spherical
harmonics as

λ̃∗(θ, φ, t∗) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

λℓm(t
∗)Yℓm(θ, φ) (108)
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and

r̃∗(θ, φ, t∗) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

rℓm(t
∗)Yℓm(θ, φ) , (109)

where we have not yet assumed a time dependence of our fundamental unknowns. The per-
turbed membrane velocity ṽ is similarly expanded in terms of the vector spherical harmonics
as

ṽ∗(θ, φ, t∗) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

[
vsℓm(t

∗)Ys
ℓm(θ, φ) + veℓm(t

∗)Ye
ℓm(θ, φ) + vmℓm(t

∗)Ym
ℓm(θ, φ)

]
.

(110)
By substituting the expansion of the vector spherical harmonics (92)–(94) into Eq. (110) and
rearranging terms, we find the components of the velocity can be expressed as

ṽ∗r(θ, φ, t
∗) =

∞∑
ℓ=0

+ℓ∑
m=−ℓ

vsℓm Yℓm , (111)

ṽ∗θ(θ, φ, t
∗) =

∞∑
ℓ=0

+ℓ∑
m=−ℓ

1√
ℓ(ℓ+ 1)

(
veℓm Yℓm,θ − vmℓm Yℓm,φ csc θ

)
, (112)

and

ṽ∗φ(θ, φ, t
∗) =

∞∑
ℓ=0

+ℓ∑
m=−ℓ

1√
ℓ(ℓ+ 1)

(
veℓm Yℓm,φ csc θ + vmℓm Yℓm,θ

)
. (113)

Additionally, we recognize our kinematic requirement ṽ∗r = r̃∗,t∗ [see Eq. (104)3] dictates

vsℓm =
drℓm
dt∗

. (114)

With the decomposition of all membrane unknowns into normal modes, we now seek to
expand the governing equations in terms of the coefficients λℓm, rℓm, vsℓm, veℓm, and vmℓm. To
this end, we begin by substituting Eqs. (111)–(113) into the continuity equation (106) and
multiplying by

√
ℓ(ℓ+ 1) to obtain(

veℓm Yℓm,θ − vmℓm Yℓm,φ csc θ
)
,θ
+
(
veℓm Yℓm,φ csc θ + vmℓm Yℓm,θ

)
,φ
csc θ

+
(
veℓm Yℓm,θ − vmℓm Yℓm,φ csc θ

)
cot θ + 2

√
ℓ(ℓ+ 1) vsℓm Yℓm = 0 .

(115)

Upon distributing the partial derivatives and rearranging quantities, we find all terms in-
volving vmℓm in Eq. (115) sum to zero—an unsurprising result, since ∇s ·Ym

ℓm = 0. Equation
(115) then simplifies to

2
√
ℓ(ℓ+ 1) vsℓm Yℓm + veℓm

(
Yℓm,θθ + Yℓm,θ cot θ + Yℓm,φφ csc

2 θ
)

= 0 . (116)
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We recognize the quantity in parenthesis in Eq. (116) is the dimensionless surface Laplacian
of Yℓm, for which ∆∗

sYℓm = −ℓ(ℓ + 1)Yℓm [see Eq. (77)]. Moreover, since Yℓm ̸= 0, the
membrane velocity coefficients satisfy

2vsℓm −
√
ℓ(ℓ+ 1) veℓm = 0 , (117)

which is the continuity equation expressed in terms of normal modes.
In a similar manner, we substitute the normal mode decomposition (111)–(113) into the

vector form of the linear momentum balance (107). After much algebra, we find the latter
can be written as

0 =

{
− 2Γ λℓm − (ℓ− 1)(ℓ+ 2)

(
Γ +

ℓ(ℓ+ 1)

2

)
rℓm

}
Ys

ℓm (118)

+

{
− (ℓ− 1)(ℓ+ 2) veℓm +

√
ℓ(ℓ+ 1) Γ λℓm

}
Ye

ℓm +

{
− (ℓ− 1)(ℓ+ 2) vmℓm

}
Ym

ℓm .

As the vector spherical harmonics form an orthonormal basis, each quantity in curly braces
in Eq. (118) is zero. With the contunity equation (117), kinematic constraint (114), and
linear momentum balance (118), we express the four equations governing the four unknown
quantities rℓm, λℓm, veℓm, and vmℓm as

2
drℓm
dt∗

−
√
ℓ(ℓ+ 1) veℓm = 0 , (119)

−(ℓ− 1)(ℓ+ 2) vmℓm = 0 , (120)

−(ℓ− 1)(ℓ+ 2) veℓm +
√
ℓ(ℓ+ 1) Γ λℓm = 0 , (121)

and

−2Γ λℓm − (ℓ− 1)(ℓ+ 2)

(
Γ +

ℓ(ℓ+ 1)

2

)
rℓm = 0 . (122)

(d). The dispersion relation
The dynamical equations governing a perturbed vesicle have now been simplified to a set of
coupled algebraic equations, which include only a single time derivative: drℓm/dt

∗. We now
seek to describe how the perturbed membrane shape evolves in time. However, recall that ℓ
is a non-negative integer, for which equations (119)–(122) have different solutions depending
on whether ℓ = 0, ℓ = 1, or ℓ ≥ 2. In what follows, we discuss these three cases.

Table 6: Scalar and vector spherical harmonics when ℓ = 0 and m = 0.

Y00 =
1√
4π

Ys
00 =

1√
4π

er Ye
00 = 0 Ym

00 = 0
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The solution when ℓ = 0

When ℓ = 0, the only allowed azimuthal index is m = 0. The corresponding scalar and
vector spherical harmonics are provided in Table 6. In this case, the in-plane components of
the linear momentum balance are automatically satisfied. The continuity equation simplifies
to

dr00
dt∗

= 0 , for which r00 = const. (123)

Additionally, the shape equation can be written as

− 2λ00 + 2r00 = 0 , implying λ00(t) = r00(t) . (124)

As expected, we find that a uniform change in the vesicle radius is accompanied by a constant
change in surface tension. As we are considering fluctuations of a membrane vesicle with a
known average radius, we have

r00 = 0 and λ00 = 0 . (125)

Moreover, as we are considering a membrane vesicle with zero base flow, we assume

ve00 = 0 and vm00 = 0 (126)

as well.

The solution when ℓ = 1

In the case where ℓ = 1, the allowed values of m are −1, 0, and +1. The corresponding scalar
and vector spherical harmonics are given in Table 7. As the vector spherical harmonics are
all nonzero, the governing equations simplify to

√
2
dr1m
dt∗

=
√
2 vs1m = ve1m and λ1m = 0 , (127)

Table 7: Scalar and vector spherical harmonics when ℓ = 1 and m = −1, 0, and +1.

Y1,−1 =

√
3

8π
sin θ e−iφ Y10 =

√
3

4π
cos θ Y11 = −

√
3

8π
sin θ eiφ

Ys
1,−1 =

√
3

8π
sin θ e−iφ er Ys

10 =

√
3

4π
cos θ er Ys

11 = −
√

3

8π
sin θ eiφ er

Ye
1,−1 =

√
3

16π

(
cos θ eθ − ieφ

)
e−iφ Ye

10 = −
√

3

8π
sin θ eθ Ye

11 = −
√

3

16π

(
cos θ eθ + ieφ

)
eiφ

Ym
1,−1 =

√
3

16π

(
ieθ + cos θ eφ

)
e−iφ Ym

10 =

√
3

8π
sin θ eφ Ym

11 = −
√

3

16π

(
− ieθ + cos θ eφ

)
eiφ
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with vm1m being free to take any value. We note the ℓ = 1 vector spherical harmonics can be
combined to yield the Cartesian orthonormal basis vectors as

1

2

√
8π

3

(
Ys

1,−1 − Ys
11 +

√
2
(
Ye

1,−1 − Ye
11

))
= ex , (128)

i

2

√
8π

3

(
Ys

1,−1 + Ys
11 +

√
2
(
Ye

1,−1 + Ye
11

))
= ey , (129)

and √
4π

3

(
Ys

10 +
√
2 Ye

10

)
= ez . (130)

Thus, with some algebraic manipulations, we can express the membrane velocity vℓ=1 re-
sulting from only the ℓ = 1 modes as

vℓ=1 =

√
3

4π

{
(vs1,−1 − vs11)

2
√
2

ex −
i(vs1,−1 + vs11)

2
√
2

ey + vs10 ez

}
+

+1∑
m=−1

vm1m Ym
1m . (131)

Accordingly, we find the longitudinal and electric components of the membrane velocity are
rigid translations of the membrane center of mass, and the ℓ = 1 modes are ignored in our
subsequent analysis.

The solution when ℓ ≥ 2

In cases where ℓ ≥ 2, all the vector spherical harmonics are nonzero and all coefficients in the
governing equations are nonzero as well. We begin by considering the magnetic component
of the linear momentum balance (120), which reveals

vmℓm = 0 . (132)

Accordingly,the magnetic component of the membrane velocity is identically zero. With
some algebraic manipulation, Eqs. (119), (121), and (122) can be combined to yield a single
equation for the membrane shape, written as

drℓm
dt∗

= − ℓ(ℓ+ 1)

4

(
Γ +

ℓ(ℓ+ 1)

2

)
rℓm . (133)

At this point, we propose that all fundamental unknowns have a temporal character captured
by e−iω∗ t∗ , where ω∗ ∈ C is the dimensionless, complex angular frequency. In this case, the
radial shape deviation is expressed as

rℓm(t
∗) = r̂ℓme−iω∗ t∗ , (134)

which upon substitution into Eq. (133) yields the dispersion relation

ω∗ = − i
ℓ(ℓ+ 1)

4

(
Γ +

ℓ(ℓ+ 1)

2

)
. (135)
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From Eqs. (133) and (135), we make several observations. First, the stability of the
system depends only on the normal mode degree, ℓ, and Föppl–von Kármán number—and
is independent of the normal mode order, m, and Scriven–Love number. Moreover, if the
base tension is positive (Γ > 0), then the system is stable. On the other hand, if the base
surface tension is negative (Γ < 0), then the ℓ ≥ 2 modes satisfying Γ < −ℓ(ℓ + 1)/2 are
unstable. We thus easily determine the Föppl–von Kármán number at which any radial
mode becomes unstable. For example, the ℓ = 2 modes are unstable when Γ < −3, the
ℓ = 3 modes are unstable when Γ < −6, and the ℓ = 4 modes are unstable when Γ < −10.
Moreover, for any unstable Γ , the long-wavelength (small ℓ) modes are unstable, while the
short-wavelength (large ℓ) modes are stable. We leave the investigation of the long-time
morphologies of unstable vesicles to a future study, and thus conclude our investigation of
spherical membrane geometries.
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Chapter IX

Cylindrical Membrane Tubes

There is one more thing I should like to explain, and that is why I am going to
show experiments at all. You will at once answer, because it would be so dreadfully
dull if I didn’t. Perhaps it would. But that is not the only reason. I would remind
you then that when we want to find out anything that we do not know, there are
two ways of proceeding. We may either ask somebody else who does know, or read
what the most learned people have written about it, which is a very good plan
if anybody happens to be able to answer our question; or else we may adopt the
other plan, and by arranging an experiment, find out for ourselves. An experiment
is a question which we ask of Nature, who is always ready to give a correct answer,
provided we ask properly, that is, provided we arrange a proper experiment. An
experiment is not a conjuring trick, something simply to make you wonder, nor is
it simply shown because it is beautiful, or because it serves to relieve the monotony
of a lecture; if any of the experiments I show are beautiful, or do serve to make
these lectures a little less dull, so much the better; but their chief object is to enable
you to see for yourselves what the true answers are to the questions that I shall
ask.

—CHARLES V. BOYS, 1890 ‡

We close our hydrodynamic stability analysis by considering lipid membrane tubes, which
are ubiquitous in both in vitro and biological systems. Cylindrical membrane tethers are
often pulled from synthetic vesicles † and cells ∗ to measure the bending rigidity kb and the
resting membrane tension λ0, with several prior investigations also extracting dissipative
parameters by changing the tether length over time. § From an experimental perspective,
membrane tubes are used in part because they can be formed in different ways, including

‡C.V. Boys. Soap Bubbles: Their Colors and the Forces Which Mold Them. New York: Dover, 1959.
†E.A. Evans and A. Yeung. “Hidden dynamics in rapid changes of bilayer shape”. Chem. Phys. Lipids

73 (1994), 39–56.
∗Z. Shi et al. “Cell membranes resist flow”. Cell 175 (2018), 1769–1779.
§J.-B. Fournier et al. “Chemically triggered ejection of membrane tubules controlled by intermonolayer

friction”. Phys. Rev. Lett. 102 (2009), 018102.
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with optical tweezers, ‡ osmotic mismatches, † and molecular motors traveling along micro-
tubules. ∗ In biological systems, membrane tubes play an important role in many cellular
processes—including the transport of material between the Golgi complex and endoplasmic
reticulum, § as well as intracellular communication. ♯ Neurons also exhibit cylindrical geome-
tries, as both axons and dendrites can often be approximated as tubes. It is important to
note that a cylindrical membrane geometry can sustain a uniform axial flow of lipids, as
observed in growing axons ∥,∀ and in vitro cylindrical tethers. ♢

Here we investigate the dynamics of lipid membrane tubes using the general procedure
outlined in Chapter VI. First, the equations governing a membrane tube of fixed radius
are obtained. Two base states are considered: one with no movement of lipids, and one
with an axial base lipid flow—as motivated by the aforementioned biological and in vitro
scenarios. In both cases, we determine the linearized equations governing an infinitesimal
disturbance to the system, and subsequently non-dimensionalize these equations. Compared
to the planar and spherical cases, the cylindrical geometry presents a new complexity in that
the base surface tension scale can be set by either bending forces or the jump in the normal
stress across the membrane surface. Moreover, a tube can have an axial length scale which
is much longer than the tube radius, such that quantities can vary over different distances
in the axial and angular directions. The governing equations contain significant differences
in the aforementioned scenarios, and are presented systematically in §3 and §4. In all cases,
the Föppl–von Kármán number Γ captures the relative magnitude of surface tension and
bending forces in governing the perturbed membrane shape. The Scriven–Love number SL
also emerges in all situations, irrespective of whether or not the membrane tube has a base
flow. In contrast, the planar and spherical dynamics only contained the Scriven–Love number
in situations with a base flow of lipids. Such qualitative differences highlight the important
role of geometry in the dynamics of lipid membranes.

Once the linearized dynamical equations are obtained and non-dimensionalized, we pro-
ceed to study the stability of cylindrical membranes. To this end, all membrane unknowns are
decomposed into normal modes, and the dispersion relation is obtained in §6. Interestingly,
the Scriven–Love number captures the frequency of temporal oscillations in the membrane’s
response, while the Föppl–von Kármán number completely determines the stability of the
system. As we will see, tubes are unstable at sufficiently large and sufficiently small (increas-

‡D. Cuvelier et al. “Coalescence of membrane tethers: Experiments, theory, and applications”. Biophys.
J. 88 (2005), 2714–2726.

†Fournier et al., “Chemically triggered ejection of membrane tubules controlled by intermonolayer fric-
tion”.

∗A. Roux et al. “A minimal system allowing tubulation with molecular motors pulling on giant liposomes”.
Proc. Natl. Acad. Sci. U.S.A. 99.8 (2002), 5394–5399.

§C. Lee and L.-B. Chen. “Dynamic behavior of endoplasmic reticulum in living cells”. Cell 54 (1988),
37–46.

♯A. Rustom et al. “Nanotubular highways for intercellular organelle transport”. Science 303 (2004),
1007–1010.

∥J. Dai and M.P. Sheetz. “Mechanical properties of neuronal growth cone membranes studied by tether
formation with laser optical tweezers”. Biophys. J. 68 (1995), 988–996.

∀J. Dai and M.P. Sheetz. “Axon membrane flows from the growth cone to the cell body”. Cell 83 (1995),
693–701.

♢P.G. Dommersnes et al. “Marangoni transport in lipid nanotubes”. Europhys. Lett. 70 (2005), 271–277.

https://doi.org/10.1529/biophysj.104.056473
https://doi.org/10.1073/pnas.082107299
https://doi.org/10.1016/0092-8674(88)90177-8
https://doi.org/10.1126/science.1093133
https://doi.org/10.1016/S0006-3495(95)80274-2
https://doi.org/10.1016/S0006-3495(95)80274-2
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ingly negative) values of the Föppl–von Kármán number—the former leads to axisymmetric
pearling, while the latter yields non-axisymmetric buckling modes reminiscent of those in
a spherical vesicle. Moreover, the structure of the dispersion relation motivates us to con-
sider the response of an unstable membrane tube to local, rather than global, perturbations.
To do so, we introduce the concept of a spatiotemporal stability analysis in §7. We then
demonstrate how local perturbations to unstable membrane tubes yield propagating fronts,
with the Föppl–von Kármán number selecting the pattern in the wake of the front and the
Scriven–Love number capturing the long-time response as seen by a stationary observer.

1. The unperturbed equations
The position of an unperturbed cylindrical membrane tube of radius R and length 2Z is
given by

x(0)(θ, z) = Rer(θ) + zez , (1)

where in terms of our differential geometric formulation

θ1 := θ ∈ [0, 2π) and θ2 := z ∈ [−Z,Z] (2)

are respectively the polar angle and axial position of a standard cylindrical coordinate system
(see Fig. 1b). Relevant geometric quantities are calculated as

a
(0)
1 = Reθ , a

(0)
2 = ez , n(0) = er ,

a
(0)
αβ = diag (R2, 1) , aαβ(0) = diag (R−2, 1) ,

b
(0)
αβ = diag (−R, 0) , H(0) = −1/(2R) ,

K(0) = 0 , and Γ
α (0)
λµ = 0 .

(3)

Furthermore, an unperturbed membrane tube has no velocity component in the normal
direction, so v(0) := v(0) · n(0) = 0 and the membrane velocity v(0) is given by

v(0) = vα(0)a
(0)
α = v1(0)Reθ + v2(0)ez . (4)

From Eq. (4), we observe that v1(0) is an angular velocity with dimensions of inverse time,
while v2(0) is a velocity with dimensions of length per time. In contrast, the velocity can also
be decomposed in the usual cylindrical coordinate basis as

v(0) = v
(0)
θ eθ + v(0)z ez , (5)

where v(0)θ and v
(0)
z have dimensions of length per time. In comparing Eqs. (4) and (5), we

find the velocity components are related by

v
(0)
θ = v1(0)R and v(0)z = v2(0) , (6)

which confirms v1(0) as the angular velocity and v2(0) as the axial velocity.
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z

R

θ

(a) unperturbed: x(0)(θ, z)

δR

(b) perturbed: x(θ, z, t)

Figure 1: Schematic of unperturbed (a) and perturbed (b) cylindrical geometries. The
cylinder has radius R and is characterized by the polar angle θ and axial distance z.
Membrane perturbations are of characteristic size δR, with ϵ := δR/R ≪ 1.

Given the geometric quantities in Eq. (3) and the general governing equations in Chapter
VI, §1, we find the unperturbed continuity, in-plane θ, in-plane z, and shape equations are
respectively given by

v1(0),θ + v2(0),z = 0 , (7)

ρR2
(
v1(0) v

1
(0),θ + v2(0) v

1
(0),z

)
= ζ

(
v1(0),θθ + R2v1(0),zz

)
+ λ(0),θ , (8)

ρR
(
v1(0) v

2
(0),θ + v2(0) v

2
(0),z

)
=

ζ

R

(
v2(0),θθ + R2v2(0),zz

)
+ Rλ(0),z , (9)

and
−ρR2

(
v1(0)
)2

= JpKR − λ(0) +
kb
4R2

+ 2ζv2(0),z . (10)

As before, in Eq. (10) JpK = pin − pout is the jump in normal traction across the membrane
surface, which is generally attributed to the pressure drop. While the continuity (7) and
in-plane (8, 9) equations are similar in structure to those of a flat plane [Chapter VII,
Eqs. (5) and (6)], the cylindrical shape equation (10) differs from its flat and spherical
counterparts in that it balances forces arising from inertia, pressure drops, surface tension,
and the intramembrane viscosity [cf. Chapter VII, Eq. (7) and Chapter VIII, Eq. (10)].

In the subsequent analysis, one could in principle consider base states with an arbitrary
in-plane flow of lipids and spatially varying surface tensions which satisfy Eqs. (7)–(10).
However, we are unaware of such stationary states in biological settings, and instead focus
on a membrane tube with a constant axial flow of lipids. In this case, the components of the
unperturbed velocity are given by

v1(0) = 0 and v2(0) = V , for which v(0) = V ez . (11)

The choice of base flow (11) satisfies the continuity equation (7). By substituting Eq. (11)
into the in-plane equations (8, 9), we find λ(0),θ = 0 and λ(0),z = 0, for which the base surface
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tension λ(0) is uniform along the tube. The shape equation (10) can then be solved for the
base tension, which also sets the surface tension scale Λ—given by

Λ := λ(0) = JpKR +
kb
4R2

. (12)

In Eq. (12), JpK is assumed to be a known constant.

(a). The pull force on a stationary tether
Before proceeding, we would like to comment on the mechanical properties of cylindrical
tethers, which are often pulled from artificial vesicles ‡ and live cells † to probe the membrane
tension. In such experiments, the pull force fpull on the tether is measured—often via optical
tweezers manipulating a bead attached to the membrane (see Fig. 2). Moreover, the bending
modulus kb is often assumed or measured beforehand using a different assay, and so the pull
force is thought to identify the base surface tension λ(0). An implicit assumption in the
many studies reporting membrane tension in this manner is that the pressure drop JpK = 0,
which is often not the case—leading to many incorrect reports of the surface tension. In
what follows, we determine the general expression for the pull force in two different ways,
and comment on its simplified form when JpK = 0, which is ubiquitous in the membrane
biophysics literature.

The determination via membrane stresses
In many experiments, a micron-sized bead is adhered to a portion of the membrane, and
pulled away with an optical tweezer until a tether forms—shown schematically in Fig. 2. As
the interaction between the bead and the tether involves complicated adhesion energies, we
imagine cutting the tether slightly away from the bead, such that our system consists of the
bead and a small portion of the end of the tether (see Fig. 2d). In order for the system to
remain stationary, a force balance requires

fpull + πR2JpK = 2πRFν . (13)
In Eq. (13), fpull is the magnitude of the force exerted by the optical trap on the bead, πR2JpK
accounts for the internal pressure pushing the bead to the left while the net external pressure
pushes the bead to the right, and Fν is the force per length on the cut edge due to internal
membrane tractions. The general form of Fν for an incompressible, viscous membrane was
provided in Eq. (238) of Chapter V, and is reproduced here as

Fν =
kb
4

(
κ2τ − κ2ν

)
− kg ξ

2 + λ + παβνανβ . (14)

In our unperturbed cylindrical system, the in-plane surface tangent τ = ταaα = eθ and the
in-plane surface normal ν = ναaα = ez, for which [cf. Eq. (3)]

τ 1 =
1

R
, τ 2 = 0 , ν1 = 0 , and ν2 = 1 . (15)

‡G. Koster et al. “Membrane tube formation from giant vesicles by dynamic association of motor proteins”.
Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 15583–15588.

†A. Datar et al. “Dynamics of membrane tethers reveal novel aspects of cytoskeleton–membrane interac-
tions in axons”. Biophys. J. 108 (2015), 489–497.

https://doi.org/10.1073/pnas.2531786100
https://doi.org/10.1016/j.bpj.2014.11.3480
https://doi.org/10.1016/j.bpj.2014.11.3480
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fpullFν pin

pout

(a) (b) (c) (d)

Figure 2: Schematic of tether pulling experiments via an optical trap. (a)–(c) Sequence of
events as an inert bead (gray) is (a) brought in contact with the membrane, and then (b)
pulled to the right until (c) a long tether forms, and is held stationary. (d) A virtual cut of
the membrane tether, which shows the different forces acting on the system. The optical
trap exerts a force fpull to the right. The difference in internal and external pressures
also leads to a net force (pin − pout)πR

2 to the right. The internal membrane tractions
exert a force per length Fν , so the total internal membrane force is 2πRFν to the left. At
mechanical equilibrium, all the forces sum to zero, giving rise to Eq. (13).

With Eq. (15) and the curvature tensor bαβ (3), we calculate the curvatures κτ and κν as
well as the twist ξ—which were introduced in §2 (f) of Chapter II—as

κτ = bαβ τ
ατβ = − 1

R
, κν = bαβν

ανβ = 0 , and ξ = bαβν
ατβ = 0 . (16)

Moreover, assuming no in-plane viscous stresses as the tether is stationary, we find

Fν =
kb
4R2

+ λ(0) . (17)

By substituting Eq. (17) into Eq. (13), we determine the general expression for the pull force
as

fpull =
πkb
2R

+ 2πRλ(0) − πR2JpK . (18)

The unperturbed, static shape equation (12) is then substituted into Eq. (18) to yield three
equivalent expressions for the pull force—written as

fpull =
πkb
R

+ πR2JpK
= 4πRλ(0) − 3πR2JpK
= πRλ(0) +

3πkb
4R

.

(19)

In the case where there is no pressure drop, the shape equation (12) simplifies to λ(0) =
kb/(4R

2) and the pull force is given by

f
(p=0)
pull =

πkb
R

= 2π
√
kbλ(0) . (20)
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Thus, if kb is known then one can determine both λ(0) = [fpull/(2π)]
2/kb and R = πkb/fpull

from a single measurement of the pull force. Unfortunately, in experiments the hydrodynamic
pressure jump is not in one’s control, and in almost all instances sufficient data is not reported
to determine whether or not JpK = 0. Accordingly, we often cannot determine whether the
provided values of λ(0) are accurate.

The determination via membrane energetics
Here, we provide an alternate derivation of the pull force based on the energy of the entire
tether and bead system. Though this calculation was presented over a decade ago, ‡ the
general relation between fpull, λ(0), kb, and R remains largely unappreciated in the membrane
biophysics community—which is why we reproduce it here. The total free energy of the
system, for a tether of length Lt, is given by

W = 2πRLt

(
kb
4R2

+ λ(0)

)
− πR2LtJpK − fpullLt , (21)

which consists of three terms. The first term is the product of the tether surface area and the
membrane energy per unit area, which contains bending and surface tension contributions.
Recall that for a cylinder, the Helfrich energy density wH = kbH

2 + kgK = kb/(4R
2) [cf.

Chapter V, §4 (d), Eq. (157)]. The second term in Eq. (21) captures the pressure–volume
work associated with changing the tube length, and the last term is the work done by
the optical tweezer on the bead. At mechanical equilibrium, we require δW/δR = 0 and
δW/δLt = 0, for which

λ(0) =
kb
4R2

+ JpKR and fpull = 2πR

(
kb
4R2

+ λ(0)

)
− πR2JpK , (22)

respectively. The first relation in Eq. (22) is the shape equation of a static tube (12), while
the second relation is the general expression of the pull force (18).

2. The perturbed equations
With the base state described by Eqs. (11) and (12), we introduce a height perturbation in
the normal direction and seek to describe how the systems evolves in time. To this end, the
membrane position is now expressed as

x(θ, z, t) =
[
R + ϵ r̃(θ, z, t)

]
er(θ) + zez . (23)

In this case, the small parameter ϵ is defined as

ϵ :=
δR

R
≪ 1 , (24)

‡S. Monnier et al. “Long-range protein coupling mediated by critical low-energy modes of tubular lipid
membranes”. Phys. Rev. Lett. 105 (2010), 028102.

https://doi.org/10.1103/PhysRevLett.105.028102
https://doi.org/10.1103/PhysRevLett.105.028102
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where as in the spherical scenario δR is the characteristic size of the radial perturbation and
r̃ is O(R), as shown in Fig. 1b. To first order in ϵ, the perturbed geometric quantities are
given by

Γ1
11 =

ϵr̃,θ
R

, a1 =
(
R + ϵ r̃

)
eθ + ϵ r̃,θ er ,

Γ2
11 = −ϵR r̃,z , a2 = ez + ϵ r̃,z er ,

Γ1
12 =

ϵr̃,z
R

, n = er − ϵr̃,θ
R

eθ − ϵr̃,z ez ,

Γ1
21 =

ϵr̃,z
R

, aαβ = diag
(
R2 + 2ϵr̃ R, 1

)
,

K = − ϵr̃,zz
R

, bαβ = − diag
(
R + ϵ r̃, 0

)
− ϵ r̃,αβ ,

and H = − 1

2R2

(
R − ϵ r̃ − ϵR2∆s r̃

)
.

(25)

In Eq. (25) we introduce the surface Laplacian operator, ∆s, which is given by

∆s ( · ) =
1

R2
( · ),θθ + ( · ),zz (26)

when operating on a scalar quantity. The fundamental unknowns are similarly expanded to
first order as

v1 = ϵ ṽ1 , v2 = V + ϵ ṽ2 , v = ϵ r̃,t , and λ = λ(0) + ϵ λ̃ , (27)

where as before quantities with a ‘tilde’ are assumed to be the same order as their unper-
turbed counterparts. By substituting Eqs. (25) and (27) into the general continuity, in-plane,
and shape equations provided in Chapter VI, §1 and then keeping only first-order terms, we
find the first-order perturbed governing equations as

R ṽ1,θ + R ṽ2,z + V r̃,z + r̃,t = 0 , (28)

ρR2
(
ṽ1,t + V ṽ1,z

)
=

ζ

R

(
r̃,tθ + R ṽ1,θθ + R3 ṽ1,zz + V r̃,θz

)
+ λ̃,θ , (29)

ρR
(
ṽ2,t + V ṽ2,z

)
= ζ

(
− r̃,tz +

1

R
ṽ2,θθ + R ṽ2,zz − V r̃,zz

)
+ R λ̃,z , (30)

and

ρR
(
r̃,tt + 2V r̃,tz − V 2 r̃,zz

)
(31)

= 2ζ ṽ2,z − λ̃ +
λ(0)
R

(
r̃ +R2∆sr̃

)
− kb

4R3

(
3r̃ + 4r̃,θθ + R2∆s r̃ + 2R4∆2

s r̃
)
.
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In what follows, we non-dimensionalize Eqs. (28)–(31), which describe tubes which are either
static or have a flow in their base state. We already see from the shape equation (31) that
viscous forces arise in scenarios with and without a base flow. The presence of viscous, tensile,
and bending forces in Eq. (31) lead to the emergence of the Scriven–Love and Föppl–von
Kármán numbers in all the situations we consider.

3. The dynamics about a static tube
For an initially static tube, the base state is given by [cf. Eqs. (11) and (12)]

v1(0) = 0 , v2(0) = 0 , v(0) = 0 , and λ(0) = Λ = JpKR +
kb
4R2

. (32)

When JpK ≫ kb/(4R
3), then Λ ≈ JpKR, while if |pin − pout| ≪ kb/(4R

3) then Λ ≈ kb/(4R
2).

We refer to these two limits as the pressure-dominated and bending-dominated regimes,
respectively. Note that in this work, we only consider cases where JpK ≥ 0, and defer the
analysis of lipid membrane tubes under compression to a future study.

At this point, we introduce the relevant dimensionless quantities. The small parameter
ϵ is defined in Eq. (24), such that r̃ is O(R). We additionally assume a shape perturbation
causes angular gradients over O(1) changes in θ. In a tubular lipid membrane, however, the
distance L over which quantities vary in the axial direction may be much larger than the
cylinder radius R. We therefore define the dimensionless parameter

δ :=
R

L
(33)

to characterize the length scale over which quantities vary in the axial direction, relative to
the cylinder radius. We emphasize that δ is not the aspect ratio of the tube: L is the length
scale over which quantities are expected to vary in the axial direction, and two tubes with the
same aspect ratio can have different values of δ depending on the membrane perturbation and
the phenomena of interest (see Fig. 3). We also denote the currently unknown characteristic
angular velocity scale as Ω and axial velocity scale as V . Finally, we introduce the unknown
time scale τ over which radial perturbations vary, and define the dimensionless quantities

θ∗ := θ , z∗ :=
z

L
, r̃∗ :=

r̃

R
, ṽ1∗ :=

ṽ1

Ω
,

ṽ2∗ :=
ṽ2

V
, λ̃∗ :=

λ̃

Λ
, and t∗ :=

t

τ
.

(34)

We now consider separately the case where δ ∼ 1, which is referred to as a thick tube, and
the case where δ ≪ 1, from now on referred to as a thin tube. With Λ and L known, we
seek to determine Ω , V , and τ through appropriate non-dimensionalization of the perturbed
governing equations (28)–(31) for thick and thin tubes. In both cases, viscous forces enter the
perturbed equations and the Scriven–Love number emerges—unlike the initially static flat
and spherical geometries. We thus find that when membranes with different morphologies
are perturbed, different forces arise in their response—illustrating the connection between
membrane geometry and dynamics.
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L

R

(a) δ ∼ 1

L

R

(b) δ ≪ 1

Figure 3: Schematic showing cylinders of the same aspect ratio, with different values of δ.
(a) When δ ∼ 1, out-of-plane quantities vary over a length scale L ∼ R. (b) When δ ≪ 1,
out-of-plane quantities vary over a length scale L ≫ R. The choice of δ depends on the
membrane behavior under consideration.

(a). The case of a thick tube (L ∼ R)

For thick tubes, the axial length scale over which gradients are expected is equal to the
tube radius, written as L = R, for which δ = 1. We substitute Eq. (34) into the perturbed
continuity equation (28) to obtain

Ω ṽ1∗,θ∗ +
V

R
ṽ2∗,z∗ +

1

τ
r̃∗,t∗ = 0 . (35)

Assuming both axial and angular in-plane velocity gradients account for the changes in
membrane shape, we require

Ω =
V

R
=

1

τ
, (36)

such that Eq. (35) simplifies to

ṽ1∗,θ∗ + ṽ2∗,z∗ + r̃∗,t∗ = 0 . (37)

The continuity equation (37) connects out-of-plane deformations and in-plane flows, and
along with Eq. (36) indicates that the time scale τ over which height perturbations vary is
equal to the time scales 1/Ω and R/V of angular and axial in-plane flows, respectively.

We next substitute Eqs. (34) and (36) into the perturbed in-plane equations (29, 30) and
rearrange terms to obtain

Re ṽ1∗,t∗ = r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + ṽ1∗,z∗z∗ +
ΛR

ζV
λ̃∗,θ∗ (38)

and
Re ṽ2∗,t∗ = −r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + ṽ2∗,z∗z∗ +

ΛR

ζV
λ̃∗,z∗ , (39)

where for cylindrical tubes the Reynolds number Re is defined as

Re :=
ρVR

ζ
. (40)

We choose for the axial velocity scale V to satisfy ζV = ΛR, such that surface tension and
viscous forces balance in the in-plane equations (38, 39). As a result, the time and velocity
scales are found to be

τ =
ζ

Λ
, Ω =

Λ

ζ
, and V =

ΛR

ζ
. (41)
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Equation (41) reveals that the base surface tension sets the time scale, as well as the scale of
in-plane axial and angular velocities. For a lipid membrane tube with a given geometry, those
with larger jumps in the normal stress JpK have a larger base state tension (12), and conse-
quently faster perturbed in-plane flows and more rapid out-of-plane shape rearrangements
as well. With Eq. (41), the Reynolds number (40) can be written as Re = ρΛR2/ζ2, which
ranges from 10−12 to 10−7 over the experiments considered—as described and quantified in
§5. Since Re ≪ 1 in all cases, Eqs. (38) and (39) simplify to

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + ṽ1∗,z∗z∗ + λ̃∗,θ∗ = 0 (42)
and

− r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + ṽ2∗,z∗z∗ + λ̃∗,z∗ = 0 , (43)

which contain only viscous and tensile forces. Equations (42) and (43) are the dimensionless
in-plane equations governing perturbations to a thick, initially static tube.

Finally, we non-dimensionalize the shape equation (31). By substituting Eqs. (34), (36),
and (41) into Eq. (31) and rearranging terms, we obtain

ρΛ2R4

ζ2kb
r̃∗,t∗t∗ = 2

ζVR

kb
ṽ2∗,z∗ +

ΛR2

kb

(
r̃∗ + ∆∗

s r̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

s r̃
∗ + 2∆∗2

s r̃
∗
)
,

(44)
where for thick tubes ∆∗

s ( · ) = R2∆s ( · ). In Eq. (44), the coefficient ζVR/kb compares
viscous and bending forces while the coefficient ΛR2/kb compares tension and viscous forces.
We accordingly define the Scriven–Love and Föppl–von Kármán numbers as

SL =
ζVR

kb
and Γ =

ΛR2

kb
, (45)

for which Eq. (44) can be written as

ReΓ r̃∗,t∗t∗ = 2SL ṽ2∗,z∗ + Γ
(
r̃∗ + ∆∗

s r̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

s r̃
∗ + 2∆∗2

s r̃
∗
)
. (46)

Note that given the relations in Eq. (41), in this scenario SL = Γ . Moreover, as we found
Re ≪ 1 in the biological systems considered, inertial forces are always negligible relative to
tension forces. The shape equation governing an initially static, thick tube is accordingly
found to be

2SL ṽ2∗,z∗ + Γ
(
r̃∗ + ∆∗

s r̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

s r̃
∗ + 2∆∗2

s r̃
∗
)

= 0 . (47)

We now consider the form of the shape equation in the bending-dominated and pressure-
dominated regimes.

When JpK ≪ kb/(4R
3) in the bending-dominated regime, the unperturbed shape equation

(12) indicates Λ ≈ kb/(4R
2). Consequently, SL = Γ = 1

4
and surface tension, bending, and

viscous forces are all balanced in the perturbed shape equation (47)—which simplifies to

2 ṽ2∗,z∗ − 2r̃∗ − λ̃∗ − 4 r̃∗,θ∗θ∗ − 2∆∗2
s r̃

∗ = 0 . (48)

In §5, we discuss several experimental scenarios in this regime.
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When JpK ≫ kb/(4R
3) in the pressure-dominated regime, on the other hand, Eq. (12)

shows the surface tension scales as Λ ≈ JpKR ≫ kb/(4R
2), such that SL = Γ ≫ 1. The

viscous and tension terms then dominate the bending forces in Eq. (47), for which the right-
most quantity in parenthesis is negligible and the shape equation simplifies to

2 ṽ2∗,z∗ + r̃∗ + ∆∗
s r̃

∗ − λ̃∗ = 0 . (49)

Experimentally, we found one study in this regime, where SL = Γ ∼ 7 and bending forces are
small relative to tension and viscous forces (see §5, Experiment #1). In such situations, the
equations governing the dynamics of a membrane tube (37, 42, 43, 49) are identical to those
describing a cylindrical, two-dimensional viscous fluid film—for example, a soap bubble. Such
films, with no bending modulus, are known to undergo a pearling-like instability mediated
by in-plane flows when their length exceeds their circumference. ‡ Therefore, Eqs. (37), (42),
(43), and (49) indicate lipid membrane tubes with a large normal stress jump across their
surface, for which Γ ≫ 1 [see Eq. (12)], are unstable. This conclusion will be expanded on
in our subsequent analysis of the stability of lipid membrane tubes in §6 and §7.

(b). The case of a thin tube (L≫ R)

When the length scale L over which axial gradients are expected to occur is much larger
than the tube radius R, then δ ≪ 1, as portrayed in Fig. 3b. Such tubes can be found, for
example, in the endoplasmic reticulum. †, ∗ To analyze such systems, we begin by substituting
the dimensionless definitions in Eq. (34) into the perturbed continuity equation (28), which
yields

Ω ṽ1∗,θ∗ +
V

L
ṽ2∗,z∗ +

1

τ
r̃∗,t∗ = 0 . (50)

Again assuming both axial and angular in-plane velocity gradients account for the changing
membrane shape, we find

Ω =
V

L
=

1

τ
, (51)

such that Eq. (50) simplifies to

ṽ1∗,θ∗ + ṽ2∗,z∗ + r̃∗,t∗ = 0 . (52)

Equation (52) is identical to the dimensionless continuity equation for a thick tube (37).
Next, the in-plane equations are non-dimensionalized. Substituting Eqs. (33), (34), and

(51) into the in-plane equations (29, 30) and rearranging terms yields

Re δ ṽ1∗,t∗ = r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + δ2 ṽ1∗,z∗z∗ +
ΛL

ζV
λ̃∗,θ∗ (53)

‡A. Sahu et al. “Arbitrary Lagrangian–Eulerian finite element formulation for curved and deforming
surfaces. I. General theory and application to fluid interfaces”. J. Comp. Phys. 407 (2020), 109253. arXiv:
1812.05086.

†M. Terasaki, L.B. Chen, and K. Fujiwara. “Microtubules and the endoplasmic reticulum are highly
interdependent structures”. J. Cell Biol. 103 (1986), 1557–1568.

∗J. Nixon-Abell et al. “Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices
in the peripheral ER”. Science 354 (2016), aaf3928.

https://doi.org/10.1016/j.jcp.2020.109253
https://doi.org/10.1016/j.jcp.2020.109253
http://arxiv.org/abs/1812.05086
https://doi.org/10.1083/jcb.103.4.1557
https://doi.org/10.1083/jcb.103.4.1557
https://doi.org/10.1126/science.aaf3928
https://doi.org/10.1126/science.aaf3928
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and
Re δ ṽ2∗,t∗ = −δ2 r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + δ2 ṽ2∗,z∗z∗ + δ2

ΛL

ζV
λ̃∗,z∗ , (54)

with the Reynolds number Re = ρVR/ζ as defined in Eq. (40). Given Eqs. (53) and (54),
there are now two choices for the velocity scale V : we could choose (i) V = δ2ΛL/ζ, such
that viscous forces and tension gradients balance in the z-direction (54), or (ii) V = ΛL/ζ,
such that viscous and tensile forces balance in the θ-direction (53). We consider both scaling
relations below, ignoring inertial terms as necessary for the clarity of our argument.

Scaling Attempt #1: Balance axial forces (incorrect)
In our first attempt, we balance in-plane axial shear and surface tension forces by choosing

V =
δ2ΛL

ζ
, (55)

in which case the in-plane angular and axial equations can respectively be expressed as

δ2 r̃∗,t∗θ∗ + δ2 ṽ1∗,θ∗θ∗ + δ4 ṽ1∗,z∗z∗ + λ̃∗,θ∗ = 0 (56)
and

−δ2 r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + δ2 ṽ2∗,z∗z∗ + λ̃∗,z∗ = 0 . (57)

Under the assumption that δ ≪ 1, we find all viscous forces are negligible in Eq. (56), which
simplifies to λ̃∗,θ∗ = 0—implying λ̃∗ is independent of θ∗. In the in-plane z-equation (57), on
the other hand, the leading order viscous term balances the surface tension gradient, and we
obtain

ṽ2∗,θ∗θ∗ + λ̃,z∗ = 0 . (58)

As λ̃∗ is independent of θ∗, ṽ2∗,θ∗θ∗ is independent of θ∗ as well, and ṽ2∗ is at most quadratic
in the angle θ∗. However, due to the cylindrical geometry ṽ2∗ must be periodic in θ∗, which
implies ṽ2∗ is not a function of θ∗. As a result, the z-equation simplifies to λ̃∗,z∗ = 0. We thus
find λ̃∗ is independent of both θ∗ and z∗, regardless of how local a perturbation we apply.
As such a result is unphysical, this choice of velocity scaling is incorrect, and we turn to the
second option.

Scaling Attempt #2: Balance angular forces (correct)
In our second attempt, we balance in-plane angular shear and surface tension forces with
the choice

V =
ΛL

ζ
. (59)

The in-plane θ-equation then simplifies to

Re δ ṽ1∗,t∗ = r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + λ̃∗,θ∗ . (60)

However, the product of the Reynolds number and length scale ratio is given by Re δ =
ρΛR2/ζ2, which was previously shown to be much less than unity in the biological systems
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of interest. Accordingly, inertial terms can be neglected, and the in-plane θ-equation can be
written as

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + λ̃∗,θ∗ = 0 . (61)
Given the choice of scaling in Eq. (59), the in-plane z-equation simplifies to

ṽ2∗,θ∗θ∗ = 0 (62)

at leading order. However, since all quantities must be periodic in θ∗, we find ṽ2∗ is indepen-
dent of θ∗ and thus has the functional form ṽ2∗ = ṽ2∗(z∗, t∗). In this case, taking the partial
derivative of the continuity equation (52) with respect to θ∗ yields ṽ1∗,θ∗θ∗ + r̃∗,t∗θ∗ = 0; upon
substitution of this result into Eq. (61) we find

λ̃∗,θ∗ = 0 . (63)

Since λ̃∗ is independent of θ∗, the surface tension also has the functional form λ̃∗ = λ̃∗(z∗, t∗).
Thus, we find that for a thin tube, the choice of velocity scale in Eq. (59) results in both the
axial velocity ṽ2∗ and the surface tension λ̃∗ being axisymmetric—a physically reasonable
result for such a system.

Consequences of the Velocity Scaling
With the choice of velocity scale in Eq. (59) and the scaling results in Eq. (51), we find the
time scale τ and angular velocity scale Ω are given by

τ =
ζ

Λ
and Ω =

Λ

ζ
. (64)

The shape equation (31) is then non-dimensionalized as

ΓRe δ r̃∗,t∗t∗ = 2SL δ ṽ2∗,z∗ + Γ
(
r̃∗ + r̃∗,θ∗θ∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 5r̃∗,θ∗θ∗ + 2r̃∗,θ∗θ∗θ∗θ∗

)
, (65)

where the Scriven–Love and Föppl–von Kármán numbers are identical to those provided in
the case of a thick tube [see Eq. (45)]. To compare the magnitude of the different terms
in Eq. (65), we first recognize that SL δ = Γ given our choice of velocity scale (59). Thus,
even for δ ≪ 1 the viscous terms and tension terms in Eq. (65) are the same order. Next,
we observe that Re δ = ρΛR2/ζ ≪ 1, such that inertial forces are always negligible relative
to tension and viscous forces. Accordingly, the shape equation governing a thin, static tube
can be written as

2SLδ ṽ2∗,z∗ + Γ
(
r̃∗ + r̃∗,θ∗θ∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 5r̃∗,θ∗θ∗ + 2r̃∗,θ∗θ∗θ∗θ∗

)
= 0 . (66)

Equations (52), (61), (62), and (66) are respectively the continuity, in-plane θ, in-plane z,
and shape equations governing a thin, static lipid membrane tube. Interestingly, in Eq.
(66) and its thick tube analog, Eq. (47), we see the emergence of the Scriven–Love number
SL in perturbed, initially static tubes. As the Scriven–Love number did not appear in the
equations governing initially static flat patches or spherical vesicles, the cylindrical equations
demonstrate how geometry plays an important role in the dynamics of lipid membranes.
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We now briefly consider how the shape equation differs in the pressure-dominated and
bending-dominated cases. When JpK ≪ kb/(4R

3) and Λ ≈ kb/(4R
2) in the bending-

dominated limit [cf. Eq. (12)], SL δ = Γ = 1
4

and the shape equation (66) simplifies to

2 ṽ2∗,z∗ − 2 r̃∗ − 4 r̃∗,θ∗θ∗ − λ̃∗ − 2 r̃∗,θ∗θ∗θ∗θ∗ = 0 . (67)

On the other hand, in the pressure-dominated limit where JpK ≫ kb/(4R
3) and Λ ≈ JpKR,

we find SL δ = Γ ≫ 1—for which the shape equation (66) simplifies to

2 ṽ2∗,z∗ + r̃∗ + r̃∗,θ∗θ∗ − λ̃∗ = 0 . (68)

Thus, for both thick and thin initially static tubes, viscous and tension forces always play
an important role in the membrane’s dynamical response to perturbations.

In comparing the thick and thin tube equations, for the same base state surface tension,
we note several important differences. First, the thin tube axial velocity scale is larger than
its thick tube counterpart by a factor of δ−1, despite the angular velocity and time scales
being identical. Second, thin tubes have axisymmetric axial velocities and surface tensions,
while thick tubes in general do not. Despite these differences, however, thick and thin tubes
have identical continuity equations and similar shape equations. Thus, in both cases radial
shape changes lead to axial and in-plane flows, and viscous forces enter the shape equation,
leading to the emergence of the Scriven–Love number.

4. The dynamics about a tube with a base flow
In biological and in vitro systems, lipid membrane tubes often have a base axial flow of
lipids—for example, when tubes shoot suddenly from the endoplasmic reticulum into the
cytoplasm of the cell, ‡ in neuronal flows along the length of the axon, †, ∗ and in tube
pulling experiments with GUVs §, ♯ or live cells. ∥ In biological systems, velocities of up to 10
μm/sec (10−2 nm/μsec) are observed, ∗, ∀ while velocities of ≤ 1 μm/sec (10−3 nm/μsec) are
more common. ♢, $ In such situations, we assume the velocity field in the base state is given
by v(0) = V ez, which introduces the velocity scale V [cf. Eq. (11)]. The unperturbed shape

‡Terasaki, Chen, and Fujiwara, “Microtubules and the endoplasmic reticulum are highly interdependent
structures”.

†Dai and Sheetz, “Mechanical properties of neuronal growth cone membranes studied by tether formation
with laser optical tweezers”.

∗Dai and Sheetz, “Axon membrane flows from the growth cone to the cell body”
§Roux et al., “A minimal system allowing tubulation with molecular motors pulling on giant liposomes”.
♯Dommersnes et al., “Marangoni transport in lipid nanotubes”.
∥A. Upadhyaya and M.P. Sheetz. “Tension in tubulovesicular networks of Golgi and endoplasmic reticulum

membranes”. Biophys. J. 86 (2004), 2923–2928.
∀C. Kaether, P. Skehel, and C.G. Dotti. “Axonal membrane proteins are transported in distinct carriers:

A two-color video microscopy study in cultured hippocampal neurons”. Mol. Biol. Cell 11 (2000), 1213–
1224.

♢C. Leduc et al. “Cooperative extraction of membrane nanotubes by molecular motors”. Proc. Natl.
Acad. Sci. U.S.A. 101 (2004), 17096–17101.

$Shi et al., “Cell membranes resist flow”.

https://doi.org/10.1016/S0006-3495(04)74343-X
https://doi.org/10.1016/S0006-3495(04)74343-X
https://doi.org/10.1091/mbc.11.4.1213
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equation is again given by Eq. (12), and we express the base state as

v1(0) = 0 , v2(0) = V , v(0) = 0 , and λ(0) = Λ = JpKR +
kb
4R2

. (69)

In addition to considering both the bending-dominated and pressure-dominated regimes, we
now also seek to understand how a base flow of lipids affects the magnitude of the different
in-plane and out-of-plane forces that arise when the membrane tube is perturbed. As was
the case for planar and spherical membranes, a nontrivial scaling analysis is required to
non-dimensionalize the first-order perturbed equations governing cylindrical systems. In
what follows, we employ a similar procedure to demonstrate the need for a new length scale
ℓ over which some quantities vary, and then non-dimensionalize the governing equations.
Cylindrical membrane tubes exhibit an additional complexity relative to their planar and
spherical counterparts in that there are now three length scales to consider: the cylinder
radius R, the length scale L governing whether the tube is thick or thin, and the emergent
length scale ℓ caused by the base flow.

Scaling Attempt #1: Variations over length L (incorrect)
When considering the first-order perturbed governing equations, we begin by assuming all
quantities vary over the known length scale L in the axial direction. As before, L = R for
thick tubes and L ≫ R for thin tubes. By substituting the dimensionless quantities in Eq.
(34) into the perturbed continuity equation (28) and rearranging terms, we find

Ω ṽ1∗,θ∗ +
V

L
ṽ2∗,z∗ +

V

L
r̃∗,z∗ +

1

τ
r̃∗,t∗ = 0 . (70)

Given the structure of Eq. (70), we choose Ω = 1/τ = V/L, where here V and L are known
quantities. Next, we non-dimensionalize the in-plane equations (29, 30), and neglect inertial
terms for the sake of argument. With Eq. (34), we express the in-plane equations as

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + δ2 ṽ1∗,z∗z∗ + r̃∗,θ∗z∗ +
ΛL

ζV
λ̃∗,θ∗ = 0 (71)

and

− δ2 r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + δ2 ṽ2∗,z∗z∗ − δ2 r̃∗,z∗z∗ + δ2
ΛL

ζV
λ̃∗,z∗ = 0 . (72)

Due to the base lipid flow setting the velocity scale V , the quantity ΛL/(ζV ) appearing in
Eqs. (71) and (72) is set by the base state. Importantly, as V tends to zero, Eq. (71) requires
λ̃∗,θ∗ = 0, for which λ̃∗ = λ̃∗(z∗, t∗). Thus, our choice of scaling predicts that the perturbed
surface tension is axisymmetric, regardless of whether the tube is thick or thin. However, in
the case where V tends to zero, we expect the surface tension to behave as in the initially
static case—for which it responds to shape perturbations according to Eqs. (42) and (61) in
thick and thin tubes, respectively. Accordingly, our assumption that all quantities vary over
the known length scale L is incorrect.
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Scaling Attempt #2: Variations over new length scale (incorrect)
Next, we assume all quantities vary over some unknown length scale ℓ in the axial direction.
As the base flow is only in the z-direction, we assume angular gradients are unchanged,
i.e. quantities still vary over O(1) changes in the angle θ. The dimensionless form of the
continuity equation (28) is now written as

Ω ṽ1∗,θ∗ +
V

ℓ
ṽ2∗,z′ +

V

ℓ
r̃∗,z′ +

1

τ
r̃∗,t∗ = 0 , (73)

where ℓ is a yet-to-be-determined characteristic length scale. We follow the notation of
Chapters VII and VIII by denoting

z′ :=
z

ℓ
(74)

as a new dimensionless length, and observe Eq. (73) implies Ω = V/ℓ = 1/τ .
With our choice that all axial derivatives vary over the length scale ℓ, we proceed to

non-dimensionalize the in-plane equations (29, 30). With some algebraic manipulations,
and again neglecting inertial terms for simplicity, the dimensionless in-plane equations are
expressed as

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ +
R2

ℓ2
ṽ1∗,z′z′ + r̃∗,θ∗z′ +

Λℓ

ζV
λ̃∗,θ∗ = 0 (75)

and

− R2

ℓ2
r̃∗,t∗z′ + ṽ2∗,θ∗θ∗ +

R2

ℓ2
ṽ2∗,z′z′ −

R2

ℓ2
r̃∗,z′z′ +

R2

ℓ2
Λℓ

ζV
λ̃∗,z′ = 0 . (76)

Equations (75) and (76) indicate there are several choices for the length scale ℓ, depending
on which terms are to balance one another. For example, suppose Λℓ/(ζV ) = 1, for which
ℓ = ζV/Λ. In this case, ℓ is proportional to V , as was also true in the planar and spherical
situations. In the limit where V tends to zero, R/ℓ diverges and the surface Laplacian
operator simplifies to ∆s( · ) = ( · ),z′z′ . The shape equation (31) can then be expressed as
r̃∗,z′z′z′z′ = 0—which disagrees with the corresponding result for an initially static tube. Thus,
our choice of ℓ = ζV/Λ is incorrect.

Another choice for the length scale ℓ is motivated by the in-plane z-equation (76), where
R2Λ/(ζℓV ) = 1 or equivalently ℓ = R2Λ/(ζV ). In this case, ℓ diverges as V tends to zero,
for which the time scale τ = ℓ/V = R2Λ/(ζV 2) diverges as well. Such a result is again
unphysical, and we find there is no choice of ℓ over which both in-plane and out-of-plane
quantities vary.

Scaling Attempt #3: Variations over multiple length scales (correct)
As in the planar and spherical geometries, we obtain a proper scaling for membrane tubes
with a base flow by positing that different quantities vary over different axial distances. In
particular, the in-plane quantities ṽ1, ṽ2, and λ̃ are assumed to vary over O(ℓ) changes in
the axial position, with our earlier analysis motivating the choice

ℓ =
ζV

Λ
. (77)
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The radial out-of-plane shape changes r̃, on the other hand, are assumed to vary over O(L)
distances in the axial direction, with L = R for thick tubes and L≫ R for thin tubes. Given
our choice of scaling, we have (for example) O(ṽ2,z) = V/ℓ while O(r̃,z) = R/L. Moreover,
we assume that all quantities vary over O(1) changes in the polar angle θ—an assumption
that would be reexamined in biological situations with a base angular flow of lipids.

With the aforementioned scaling of in-plane and out-of-plane quantities, we non-dimensionalize
the first-order governing equations. The continuity equation (28) is expressed as

Ω ṽ1∗,θ∗ +
V

ℓ
ṽ2∗,z′ +

V

L
r̃∗,z∗ +

1

τ
r̃∗,t∗ = 0 , (78)

where we now see that the second and third terms have different magnitudes when ℓ ̸= L.
Next, the in-plane θ-equation (29) and z-equation (30) are respectively given by

ρR2Ω

ζ

(
1

τ
ṽ1∗,t∗ +

V

ℓ
ṽ1∗,z′

)
=

1

τ
r̃∗,t∗θ∗ + Ω ṽ1∗,θ∗θ∗ +

ΩR2

ℓ2
ṽ1∗,z′z′ +

V

L
r̃∗,θ∗z∗ +

Λ

ζ
λ̃∗,θ∗ (79)

and

ρVR

ζ

(
1

τ
ṽ2∗,t∗ +

V

ℓ
ṽ2∗,z′

)
= − R

τL
r̃∗,t∗z∗ +

V

R
ṽ2∗,θ∗θ∗ +

VR

ℓ2
ṽ2∗,z′z′ −

VR

L2
r̃∗,z∗z∗ +

ΛR

ζℓ
λ̃∗,z′ , (80)

where in this case we do not yet know the relationship between τ , ℓ, L, and V . Finally, the
shape equation (31) is written as

ρR2

(
1

τ 2
r̃∗,t∗t∗ +

2V

τL
r̃∗,t∗z∗ − V 2

L2
r̃∗,z∗z∗

)
(81)

=
2ζV

ℓ
ṽ2∗,z′ + Λ

(
r̃∗ + ∆∗

sr̃
∗ − λ̃∗

)
− kb

4R2

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

sr̃
∗ + 2∆∗2

s r̃
∗
)
.

At this point, we recognize there are three length scales in the problem: (i) the in-plane
axial length scale ℓ, (ii) the cylinder radius R, and (iii) the out-of-plane axial length scale
L. When non-dimensionalizing Eqs. (78)–(81), we require the relative sizes of ℓ, R, and L.
To this end, we define the dimensionless quantity

ℓ∗ :=
ℓ

R
=

ζV

ΛR
(82)

comparing the sizes of ℓ and R, and note that the ratio R/L is captured by δ [see Eq. (33)]. In
what follows, we simplify Eqs. (78)–(81) for different values of ℓ∗ and δ. As depicted in Fig. 4,
the values of the parameters δ and ℓ∗ lead to four regimes with different governing equations,
which are considered separately in the subsequent sections. However, before discussing each
regime individually, we first highlight their commonalities. We note that ℓ∗ can be thought
of as a dimensionless velocity, as for a fixed tube radius and normal stress jump, changing
V changes ℓ∗. We frequently refer to regimes of different ℓ∗ by corresponding values of the
velocity from here on.

The first commonality across the four regimes is that in all cases, the Scriven–Love and
Föppl–von Kármán numbers are given by Eq. (45), which sets the dimensionless parameter
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ln ℓ∗
0

− ln δ

1
1

Figure 4: Schematic of the cylindrical regimes, which are defined by δ, the ratio of the radius
to the axial length scale (33), and the parameter ℓ∗ (82), which captures the dimensionless
base flow velocity. Note the logarithmic scale on both axes. Regimes I and II correspond to
small (ℓ∗ ≪ 1) and moderate (ℓ∗ ∼ 1) velocities, respectively. For large velocities (ℓ∗ ≫ 1),
the governing equations differ for thin tubes (δ ≪ 1, Regime III) and thick tubes (δ ∼ 1,
Regime IV).

ℓ∗ according to ℓ∗ = Γ−1SL. Furthermore, in all regimes the linearized perturbed shape
equation is given by

2
SL
ℓ∗
ṽ2∗,z′ + Γ

(
r̃∗ + ∆∗

sr̃
∗ − λ̃∗

)
− 1

4

(
3 r̃∗ + 4 r̃∗,θ∗θ∗ + ∆∗

sr̃
∗ + 2∆∗2

s r̃
∗
)

= 0 , (83)

where although SL/ℓ∗ = Γ , we include both numbers to delineate viscous and tension forces.
As before, we consider only cases where the jump in the normal stress JpK ≥ 0, for which
Γ ≥ 1

4
and SL/ℓ∗ ≥ 1

4
—indicating viscous forces in the normal direction are always significant,

irrespective of the speed of the base flow. Additionally, in the pressure-dominated regime
where JpK ≫ kb/(4R

3) [cf. Eq. (69)], the surface tension scales as Λ ≈ JpKR ≫ kb/(4R
2),

such that SL/ℓ∗ = Γ ≫ 1 and bending forces are negligible compared to viscous forces and
tension forces in the normal direction. In the limit of a large normal stress jump in the base
state, the shape equation (83) again reduces to that of a two-dimensional fluid film with a
base flow. We previously found such films could admit time-oscillating solutions, unlike their
initially static counterparts, and also undergo a pearling instability. ‡ The characterization
of the instabilities of lipid membrane tubes, with and without a base flow, is the subject of
§6 and §7. Now that we have discussed the common features of membrane tubes across the
four regimes, we non-dimensionalize the governing equations in each case.

‡Sahu et al., “Arbitrary Lagrangian–Eulerian finite element formulation for curved and deforming surfaces.
I. General theory and application to fluid interfaces”.
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(a). The case where ℓ is less than L

We first consider situations where ℓ ≤ L, for which ℓ∗ ≤ δ−1. The continuity equation (78)
then implies

Ω =
V

ℓ
=

Λ

ζ
=

1

τ
, (84)

and the governing equations (78)–(81) simplify to

ṽ1∗,θ∗ + ṽ2∗,z′ + ℓ∗δ r̃∗,z∗ + r̃∗,t∗ = 0 , (85)

Re
ℓ∗

(
ṽ1∗,t∗ + ṽ1∗,z′

)
= r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ +

1

(ℓ∗)2
ṽ1∗,z′z′ + ℓ∗δ r̃∗,θ∗z∗ + λ̃∗,θ∗ , (86)

Re ℓ∗
(
ṽ2∗,t∗ + ṽ2∗,z′

)
= −ℓ∗δ r̃∗,t∗z∗ + (ℓ∗)2 ṽ2∗,θ∗θ∗ + ṽ2∗,z′z′ − (ℓ∗δ)2 r̃∗,z∗z∗ + λ̃∗,z′ , (87)

and

Re Γ
ℓ∗

(
r̃∗,t∗t∗ + ℓ∗δ r̃∗,t∗z∗ + (ℓ∗δ)2 r̃∗,z∗z∗

)
(88)

= 2
SL
ℓ∗
ṽ2∗,z′ + Γ

(
r̃∗ + ∆∗

sr̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

sr̃
∗ + 2∆∗2

s r̃
∗
)
,

where SL/ℓ∗ = Γ . The governing equations are now analyzed in three different regimes:
small velocities, where ℓ∗ ≪ 1, moderate velocities, where ℓ∗ ∼ 1, and large velocities with
a thin tube, where 1 ≪ ℓ∗ ≪ δ−1. The case of large velocities with a thick tube, i.e. when
1 ≤ δ−1 ≪ ℓ, are analyzed subsequently in §4 (b).

Regime I: The equations when the base flow is slow.
In the first regime, the base velocity V is small relative to the intrinsic velocity scale RΛ/ζ
such that ℓ∗ ≪ 1. Such would be the case, for example, with the following biologically
motivated choices of characteristic values in tether pulling experiments: Λ ∼ 10−2 pN/nm,
R ∼ 100 nm, and V ∼ 10−4 nm/μsec, for which ℓ∗ ∼ 2 · 10−3. As ℓ∗ ≪ 1 and δ ≤ 1 by
construction, ℓ∗δ ≪ 1 as well, and Eqs. (85)–(87) simplify to

ṽ1∗,θ∗ + ṽ2∗,z′ + r̃∗,t∗ = 0 , (89)

ṽ1∗,z′z′ = 0 , (90)
and

ṽ2∗,z′z′ + λ̃∗,z′ = 0 . (91)

The angular velocities are at most linear in z′ (90), and axial surface tension changes are
balanced by two axial derivatives of the z-velocity (91). To simplify the shape equation
(88), we recognize Re/ℓ∗ = ρΛR2/ζ2, which is independent of the velocity scale V and is
negligible. Thus, in this regime, the shape equation is given by Eq. (83).
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Regime II: The equations when the base flow is moderate.
When the base velocity scale V is comparable to the intrinsic velocity scale RΛ/ζ, the length
scale ℓ is comparable to the radius R. In this regime, ℓ∗ ∼ 1, and the tube could be either
thick or thin. A thick tube would satisfy the criterion when, for example, V ∼ 10−3 nm/μsec,
Λ ∼ 10−4 pN/nm, and R = L ∼ 100 nm; corresponding values for a thin tube are V ∼ 10−3

nm/μsec, Λ ∼ 10−3 pN/nm, R ∼ 10 nm, and L ∼ 103 nm. In either case, the governing
equations are easily obtained by substituting ℓ∗ ∼ 1 into Eqs. (85)–(88). The continuity and
in-plane equations are found to be

ṽ1∗,θ∗ + ṽ2∗,z′ + δ r̃∗,z∗ + r̃∗,t∗ = 0 , (92)

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + ṽ1∗,z′z′ + δ r̃∗,θ∗z∗ + λ̃∗,θ∗ = 0 , (93)
and

−δ r̃∗,t∗z∗ + ṽ2∗,θ∗θ∗ + ṽ2∗,z′z′ − δ2 r̃∗,z∗z∗ + λ̃∗,z′ = 0 , (94)

where for long, thin tubes (δ ≪ 1) all terms containing factors of δ are negligible. The shape
equation is once again found to be given by Eq. (83).

Regime III: The equations when the base flow is fast and the tube is thin.
In the third regime, V ≫ ΛR/ζ and δ ≪ 1, such that 1 ≪ ℓ∗ ≪ δ−1. This could be the
case, for example, if V ∼ 10−2 nm/μsec, Λ ∼ 10−3 pN/nm, R ∼ 10 nm, and L ∼ 103 nm,
i.e. if the thin tube example from Regime II had an order of magnitude larger velocity. In
this case, Eqs. (85)–(87) simplify to

ṽ1∗,θ∗ + ṽ2∗,z′ + r̃∗,t∗ = 0 , (95)

r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ + λ̃∗,θ∗ = 0 , (96)
and

ṽ2∗,θ∗θ∗ = 0 . (97)

In this regime, the shape equation is given by Eq. (83). However, following an analogous
procedure to the case of a thin, initially static tube, we can show ṽ2∗ is axisymmetric, thus
implying

λ̃∗,θ∗ = 0 , (98)

such that λ̃∗ is also axisymmetric. Comparing Eqs. (95)–(97) to their counterparts for an
initially static thin tube (52, 61–63), the only difference is the ṽz∗,z′ term in Eq. (95) replaces
ṽz∗,z∗ in Eq. (52).

(b). The case where ℓ is much greater than L

We end by considering thick tubes with a large base flow, for which the emergent length
scale ℓ can become longer than the axial length scale L. As L is at least as large as the
tube radius R, in this regime ℓ ≫ L ≥ R, or equivalently ℓ∗ ≫ δ−1 ≥ 1. Such a case
can arise, for example, when V ∼ 10−2 nm/μsec = 10 μm/sec, Λ ∼ 10−4 pN/nm, and
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R = L ∼ 100 nm. The continuity equation (78) indicates that for out-of-plane shape
changes to be accommodated by in-plane angular and axial flows,

Ω =
V

L
=

1

τ
. (99)

The governing equations (78)–(81) can then be written as

ṽ1∗,θ∗ +
L

ℓ
ṽ2∗,z′ + r̃∗,z∗ + r̃∗,t∗ = 0 , (100)

Re δ
(
ṽ1∗,t∗ +

L

ℓ
ṽ1∗,z′
)

= r̃∗,t∗θ∗ + ṽ1∗,θ∗θ∗ +
1

(ℓ∗)2
ṽ1∗,z′z′ + r̃∗,θ∗z∗ +

L

ℓ
λ̃∗,θ∗ , (101)

Re
δ

(
ṽ2∗,t∗ +

L

ℓ
ṽ2∗,z′
)

= −r̃∗,t∗z∗ +
L2

R2
ṽ2∗,θ∗θ∗ +

L2

ℓ2
ṽ2∗,z′z′ − r̃∗,z∗z∗ +

L2

ℓ2
λ̃∗,z′ , (102)

and

Re Γ δ2ℓ∗
(
r̃∗,t∗t∗ + r̃∗,t∗z∗ + r̃∗,z∗z∗

)
(103)

= 2
SL
ℓ∗
ṽz∗,z′ + Γ

(
r̃∗ + ∆∗

sr̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

sr̃
∗ + 2∆∗2

s r̃
∗
)
,

where the Scriven–Love and Föppl–von Kármán numbers are given by Eq. (45), and the
Reynolds number (40) is at most 10−8 in all cases considered. As Re ≪ 1 and L/ℓ ≪ 1 in
this scenario, Eqs. (100)–(102) can be simplified to

ṽ1∗,θ∗ + r̃∗,z∗ + r̃∗,t∗ = 0 , (104)

−ṽ2∗,z′θ∗ + λ̃∗,θ∗ = 0 , (105)
and

−r̃∗,t∗z∗ +
1

δ2
ṽ2∗,θ∗θ∗ − r̃∗,z∗z∗ = 0 , (106)

where to obtain the θ-equation (105) we take the partial derivative of Eq. (100) with respect
to θ∗, substitute the result into Eq. (101), and simplify. When δ ≪ 1, Eq. (106) simplifies
to ṽ2∗,θ∗θ∗ = 0, again implying ṽ2∗ = ṽ2∗(z′, t∗) and λ̃∗ = λ̃∗(z′, t∗). Despite the differences in
scaling in this regime, the shape equation (103) is once again given by Eq. (83). We refer to
the present case, where ℓ≫ L, as Regime IV [cf. Fig. 4].

With the governing equations in each of the four regimes, we recognize the importance of
a scaling analysis in elucidating the relative magnitude of various in-plane and out-of-plane
forces. Our discussion in this section closes our scaling analysis of lipid membrane tubes,
with and without a base flow. We highlight that in all cases considered, the Scriven–Love
and Föppl–von Kármán numbers are given by Eq. (45). Moreover, in every situation, viscous
and tension forces are found to be significant in describing the dynamics of a perturbed lipid
membrane tube, as also shown in Fig. 5.
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Figure 5: Plot of the Scriven–Love number SL and Föppl–von Kármán number Γ in four
past experiments involving cylindrical geometries [cf. Chapter VI, Fig. 2]. Each numbered
figure corresponds to a single experiment, which is described in Tables 1–4. Experiments
#1 through #3 involve thick tubes with no base flow, with SL = Γ ≥ 1

4 . On the other
hand, in Experiment #4, a membrane tube is pulled at a constant velocity.

5. The analysis of past experimental data
At this point, we provide the calculation of the Scriven–Love and Föppl–von Kármán num-
bers in four experiments involving membrane tubes, with and without a base flow of lipids.
All four experiments are taken from the study by Z. Shi et al., ‡ which—as mentioned
previously—was the only study we found that provided sufficient data to compute both
the tube radius and base surface tension. The first three experiments are concerned with a
static tube. As we will see, for two of these experiments, Γ > 3

4
. We will determine sub-

sequently that such systems are expected to undergo a pearling instability, which involves
shape changes over an axial length scale L = R. We therefore use the results of our scaling
analysis for thick tubes in §3 (a) to quantify the aforementioned experiments.

The fourth experiment considers a tube pulled at a constant rate, such that the base
axial velocity V is constant. In this instance, we determine the Scriven–Love and Föppl–von
Kármán numbers based on the scaling analysis in §4. As we are neglecting hydrodynamic
effects from the surrounding fluid, the pull force is once again given by Eq. (19), which
simplifies to Eq. (20) when there is no pressure drop JpK across the membrane. We note
that in all cases, the value of the intramembrane viscosity ζ is not provided; we assume a
value of ζ = 10 pN · μsec/nm †, ∗ as in the planar and spherical geometries. In addition, the

‡Shi et al., “Cell membranes resist flow”.
†P. Cicuta, S.L. Keller, and S.L. Veatch. “Diffusion of liquid domains in lipid bilayer membranes”. J.

Phys. Chem. B 111 (2007), 3328–3331. arXiv: cond-mat/0611492.
∗A.R. Honerkamp-Smith et al. “Membrane viscosity determined from shear-driven flow in giant vesicles”.

Phys. Rev. Lett. 111 (2013), 038103. arXiv: 1308.6440.

https://doi.org/10.1021/jp0702088
http://arxiv.org/abs/cond-mat/0611492
https://doi.org/10.1103/PhysRevLett.111.038103
http://arxiv.org/abs/1308.6440
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Experiment #1: Tether subject to osmotic forces

Table 1: Data of a membrane tube pulled from a cell bleb and held stationary. A pipette injecting
pure water is brought towards and away from the tether to vary the osmotic pressure drop across
the membrane. To calculate Λ, we note JpK and fpull increase as the pipette moves towards the
tether—in accordance with Eq. (19). Assuming JpK = 0 when the pipette is furthest from the tether,
we find fpull = 11 pN = πkb/R; for the reported value of kb, R = 110 nm. Next, we consider where
the membrane tears. Assuming R does not change, fpull = 79 pN = πkb/R + JpKπR2. Thus,JpKπR2 = 68 pN, and JpK = 1.8 · 10−3 pN/nm2. With R and JpK known, we calculate Λ as Λ ≈ 0.2
pN/nm (19). Finally, V , SL, and Γ are calculated with R and Λ known.

Quantity Value Calculation

V 2 nm/μsec Eq. (41)3

R 1 · 102 nm Eq. (20) at max pipette distance

kb 380 pN ·nm Fig. S2 caption

Λ 2 · 10−1 pN/nm Fig. S2(e), Eq. (19)

SL 7 Eq. (45)1

Γ 7 Eq. (45)2

Experiment #2: Static tether relaxing after being pulled

Table 2: Data of a membrane tether pulled from a cell bleb, and then held stationary as fpull
relaxes. The tube is pulled from t ≈ 18 seconds to t ≈ 22 seconds, and then kept at a fixed length
while fpull decreases over time. The tube radius R is constant during this relaxation (Fig. S2(c),
blue curve); according to Eq. (19)1 the pressure drop JpK also decreases during the relaxation. We
assume JpK ≈ 0 at t ≈ 45 seconds when fpull has relaxed, and seek to calculate JpK at t ≈ 22
seconds when the tube is initially held still. We recognize fpull = 30 pN at t ≈ 45 seconds, and
approximate fpull = 60 pN at t ≈ 22 seconds. Following the same calculations as in Experiment
#1, we find JpK ≈ 6 · 10−3 pN/nm2 and Λ ∼ 0.3 pN/nm, and then calculate all other values.

Quantity Value Calculation

V 1 nm/μsec Eq. (41)3

R 4 · 101 nm Eq. (20) at t = 45 seconds

kb 380 pN ·nm Fig. S2 caption

Λ 3 · 10−1 pN/nm Fig. S2(c), Eq. (19)

SL 1 Eq. (45)1

Γ 1 Eq. (45)2
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Experiment #3: Tether pulled from GUV, subject to pipette aspiration

Table 3: Experimental data in which a lipid membrane tube is pulled from a GUV, and the
membrane tension is altered via pipette aspiration. The data in Fig. S1(d) shows fpull ∼

√
λ(0),

which indicates the pressure drop is negligible and for which Eq. (20) holds. The slope of the curve
in Fig. S1(d) indicates kb = 250 pN · nm. In Fig. S1(b), at t = 100 sec, Λ ≈ 0.15 pN/nm and
fpull ≈ 33 pN, for which R = 20 nm (20).

Quantity Value Calculation

V 4 · 10−1 nm/μsec Eq. (41)3

R 2 · 101 nm Eq. (20)

kb 250 pN · nm Slope of Fig. S1(d), with Eq. (20)

Λ 2 · 10−1 pN/nm Fig. S1(b)

SL 1
4 Eq. (45)1

Γ 1
4 Eq. (45)2

Experiment #4: Tether pulled from cell bleb

Table 4: The same experimental data as was analyzed in Experiment #2, in which a lipid membrane
tether is pulled from a cell bleb, and then held stationary while the pull force relaxes. In this case,
however, we consider the data when the tether is being pulled. As was the case in Experiment
#2, we assume JpK ≈ 0 at time t ≈ 45 seconds, for which R ∼ 40 nm. The velocity scale V can
be calculated from Fig. S2(c) as V ∼ 4 · 10−3 nm/μsec = 4 μm/sec, and kb is reported to be 380
pN ·nm. To approximate the surface tension scale at t ≈ 18 seconds when the tether pulling starts,
we estimate fpull ≈ 100 pN at that time. In this case, Eq. (19) indicates JpK ∼ 1 · 10−2 pN/nm2

and Λ ∼ 0.6 pN/nm.

Quantity Value Calculation

V 4 · 10−3 nm/μsec Fig. S2(c)

R 4 · 101 nm Fig. S2(c), Experiment #2

kb 380 pN ·nm Fig. S2 caption

Λ 6 · 10−1 pN/nm Fig. S2(e), Eq. (19)

SL 4 · 10−3 Eq. (45)1

Γ 2 Eq. (45)2
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bending modulus κ in the study under consideration is related to kb in the present work
according to kb = 2κ.

6. The temporal stability of a membrane tube

With the linearized equations governing perturbations to lipid membrane tubes, as well as an
understanding of the magnitudes of the various forces, we are prepared to investigate the sta-
bility of such systems in response to perturbations along the length of the cylinder—hereafter
referred to as global perturbations. We begin by presenting a different non-dimensionalization
of the governing equations, which can be used in cases both with and without a base flow.
The fundamental membrane unknowns are then decomposed into normal modes, and the
algebraic equations governing the normal mode coefficients are obtained. The dispersion
relation is subsequently calculated, and we close by presenting stability criteria. We find
that axisymmetric perturbations are unstable when Γ > 3

4
and the membrane is under

tension, for which the tube undergoes a pearling instability reminiscent of the well-known
Rayleigh–Plateau instability in fluid columns. ‡, † Experimentally, pearled membrane con-
figurations are observed irrespective of how the system is perturbed—whether it be via
spontaneous thermal fluctuations, ∗ an applied extensional flow, §, ♯ or osmotic shocks. ∥, ∀, ♢

Non-axisymmetric disturbances, on the other hand, are unstable when Γ < −3
4

and the
membrane tube is under compression. In such cases, the system undergoes a buckling insta-
bility, with the angular dependence and growth rate of the most unstable mode set entirely
by the Föppl–von Kármán number.

We note that none of the stability criteria presented in this section are new. In fact,
many prior investigations considered the energetics of a membrane tube subjected to small
perturbations. If the free energy is expanded to quadratic order in terms of the normal
modes, then the system becomes unstable when at least one of the quadratic coefficients
transitions from positive to negative. In this manner, the axisymmetric stability criterion
was determined nearly three decades ago, $ and since that time many works considered the

‡S. Tomotika. “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous
fluid”. Proc. R. Soc. Lond. A 150 (1935), 322–337.

†S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. New York: Dover, 1981.
∗R. Bar-Ziv, T. Tlusty, and E. Moses. “Critical dynamics in the pearling instability of membranes”.

Phys. Rev. Lett. 79 (1997), 1158–1161.
§V. Kantsler, E. Segre, and V. Steinberg. “Critical dynamics of vesicle stretching transition in elongational

flow”. Phys. Rev. Lett. 101 (2008), 048101.
♯J.B. Dahl et al. “Experimental observation of the asymmetric instability of intermediate-reduced-volume

vesicles in extensional flow”. Soft Matter 12 (2016), 3787–3796.
∥P.A. Pullarkat et al. “Osmotically driven shape transformations in axons”. Phys. Rev. Lett. 96 (2006),

048104.
∀M. Yanagisawa, M. Imai, and T. Taniguchi. “Shape deformation of ternary vesicles coupled with phase

separation”. Phys. Rev. Lett. 100 (2008), 148102.
♢J. Sanborn et al. “Transient pearling and vesiculation of membrane tubes under osmotic gradients”.

Faraday Discuss. 161 (2013), 167–176.
$R. Bar-Ziv and E. Moses. “Instability and “pearling” states produced in tubular membranes by compe-

tition of curvature and tension”. Phys. Rev. Lett. 73 (1994), 1392–1395.

https://doi.org/10.1098/rspa.1935.0104
https://doi.org/10.1098/rspa.1935.0104
https://doi.org/10.1103/PhysRevLett.79.1158
https://doi.org/10.1103/PhysRevLett.101.048101
https://doi.org/10.1103/PhysRevLett.101.048101
https://doi.org/10.1039/C5SM03004H
https://doi.org/10.1039/C5SM03004H
https://doi.org/10.1103/PhysRevLett.96.048104
https://doi.org/10.1103/PhysRevLett.100.148102
https://doi.org/10.1103/PhysRevLett.100.148102
https://doi.org/10.1039/C2FD20116J
https://doi.org/10.1103/PhysRevLett.73.1392
https://doi.org/10.1103/PhysRevLett.73.1392
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dynamics of the pearling instability. ‡, †, ∗, §, ♯ The study of non-axisymmetric disturbances
to membrane tubes is less well-established, though was clearly laid out in a recent effort
that incorporated the membrane and fluid viscosities in a description of the membrane
dynamics. ∥ Despite the multitude of studies concerned with the energetics and dynamics of
lipid membrane tubes, our analysis incorporates one often overlooked feature: the base axial
flow of lipids. As we will see, the effect of a base flow on the dynamics of unstable systems
motivates further analysis in §7, where we consider perturbations that are localized in both
space and time.

(a). The governing equations
In our earlier scaling analysis of membrane tubes in §3 and §4, we recognized that differ-
ent quantities could have different characteristic values, depending on the physical situation
under consideration. For example, we obtained different results depending on whether or
not there was a base flow of lipids, and depending on the axial length scale over which
disturbances were expected to vary. In the present analysis, however, we seek a non-
dimensionalization which is valid in all cases, such that by varying dimensionless parameters
we can investigate the different regimes of cylindrical membrane dynamics. To this end, we
define the timescale

τ :=
ζR2

kb
(107)

and introduce the dimensionless quantities

θ∗ := θ , z∗ :=
z

R
, r̃∗ :=

r̃

R
, ṽ1∗ := τ ṽ1 ,

ṽ2∗ :=
τ ṽ2

R
, λ̃∗ :=

λ̃

λ(0)
, and t∗ :=

t

τ
.

(108)

Importantly, Eqs. (107) and (108) provide a non-dimensionalization independent of the speed
of the base flow: ṽ2∗ is defined for both V = 0 and V ̸= 0, unlike that of our earlier analysis
[cf. §3, §4]. We next define the Föppl–von Kármán number Γ and Scriven–Love number SL
as

Γ =
ΛR2

kb
and SL =

ζVR

kb
, (109)

‡P. Nelson, T. Powers, and U. Seifert. “Dynamical theory of the pearling instability in cylindrical vesicles”.
Phys. Rev. Lett. 74 (1995), 3384–3387.

†R. Granek and Z. Olami. “Dynamics of Rayleigh-like instability induced by laser tweezers in tubular
vesicles of self-assembled membranes”. J. Phys. II 5 (1995), 1349–1370.

∗K.L. Gurin, V.V. Lebedev, and A.R. Muratov. “Dynamic instability of a membrane tube”. J. Expl.
Theor. Phys. 83 (1996), 321–326.

§G. Boedec, M. Jaeger, and M. Leonetti. “Pearling instability of a cylindrical vesicle”. J. Fluid Mech.
743 (2014), 262–279.

♯S.C. Al-Izzi et al. “Hydro-osmotic instabilities in active membrane tubes”. Phys. Rev. Lett. 120 (2018),
138102. arXiv: 1709.02703.

∥V. Narsimhan, A.P. Spann, and E.S.G. Shaqfeh. “Pearling, wrinkling, and buckling of vesicles in elon-
gational flows”. J. Fluid Mech. 777 (2015), 1–26.

https://doi.org/10.1103/PhysRevLett.74.3384
https://doi.org/10.1051/jp2:1995187
https://doi.org/10.1051/jp2:1995187
http://www.jetp.ras.ru/cgi-bin/dn/e_083_02_0321.pdf
https://doi.org/10.1017/jfm.2014.34
https://doi.org/10.1103/PhysRevLett.120.138102
http://arxiv.org/abs/1709.02703
https://doi.org/10.1017/jfm.2015.345
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where now SL = 0 in cases without a base flow (V = 0). Given our modified choice of
non-dimensionalization, it is useful to imagine a membrane tube of a given radius R and
bending modulus kb. Equation (109) then implies that Γ and SL can be understood as the
dimensionless base surface tension and axial base flow speed, respectively.

By substituting Eqs. (107)–(109) into Eqs. (28)–(31), recognizing inertial forces are neg-
ligible in all scenarios of interest, and rearranging terms, we obtain the dimensionless per-
turbed governing equations as

ṽ1∗,θ∗ + ṽ2∗,z∗ + r̃∗,t∗ + SL r̃∗,z∗ = 0 , (110)

ṽ1∗,θ∗θ∗ + ṽ1∗,z∗z∗ + r̃∗,t∗θ∗ + SL r̃∗,θ∗z∗ + Γ λ̃∗,θ = 0 , (111)

ṽ2∗,θ∗θ∗ + ṽ2∗,z∗z∗ − r̃∗,t∗z∗ − SL r̃∗,z∗z∗ + Γ λ̃∗,z∗ = 0 , (112)
and

Γ
(
r̃∗ + ∆∗

sr̃
∗ − λ̃∗

)
− 1

4

(
3r̃∗ + 4r̃∗,θ∗θ∗ + ∆∗

s r̃
∗ + 2∆∗2

s r̃
∗
)
+ 2ṽ2∗,z∗ = 0 . (113)

We reiterate here that the above governing equations (110)–(113) differ from the scaling
results of §3 and §4 because we now apply a single non-dimensionalization to all base states.
The present approach has the advantage that the governing equations are applicable in all
scenarios, with the dynamics of a membrane tube completely specified by the values of Γ
and SL. On the other hand, the magnitudes of the various terms in Eqs. (110)–(113) are not
immediately obvious, as a scaling analysis was not employed.

Before proceeding, it is useful to highlight the relationship between the normal stress
jump JpK and the Föppl–von Kármán number. In particular, for the base state described by
Eqs. (11) and (12), the shape equation can be written in dimensionless form as

Γ =
JpKR3

kb
+

1

4
. (114)

Thus, for a tube with a given bending modulus kb and initial radius R, the jump in the
normal stress JpK determines the value of Γ . We define the value

Γ0 :=
1

4
(115)

to be the Föppl–von Kármán number when p = 0. With this definition, if Γ > Γ0 then the
surrounding fluid provides a net force that is radially outwards. If Γ < Γ0, on the other hand,
then the net force from the surrounding fluid is radially inwards and the tube is compressed
by its surroundings. In what follows, we are primarily concerned with membrane tubes for
which Γ ≥ Γ0.

The axisymmetric evolution equation
Lipid membrane tubes which deform axisymmetrically will be relevant in our later investiga-
tions. In the case where the tube is axisymmetric, such that ṽ1 = 0 and no quantities depend
on θ, the four governing equations (110)–(113) can be condensed into a single equation for
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the perturbed membrane shape, r̃∗. To this end, we first integrate Eq.(112) with respect to
z∗, thereby obtaining

− r̃∗,t∗ − SL r̃∗,z∗ + ṽ2∗,z∗ + Γ λ̃∗ = 0 , (116)
where we set the integration constant to zero such that an unperturbed cylinder (r̃∗ = 0) has
a constant, unperturbed tension (λ̃∗ = 0). Next, we substitute Eq. (116) into the linearized
shape equation (113) and obtain

− 3
(
r̃∗,t∗ + SL r̃∗,z∗

)
+ ṽ2∗,z∗ +

(
Γ − 3

4

)
r̃∗ +

(
Γ − Γ0

)
r̃∗,z∗z∗ − 1

2
r̃,z∗z∗z∗z∗ = 0 . (117)

The only term in Eq. (117) not involving the perturbed radius is the axial velocity gradient
ṽ2∗,z∗ . However, we notice from the continuity equation (110) that ṽ2∗,z∗ = −r̃∗,t∗ − SL r̃∗,z∗ .
Substituting this result into Eq. (117) yields

r̃∗,t∗ + SL r̃∗,z∗ =

(
Γ − 3

4

4

)
r̃∗ +

(
Γ − Γ0

4

)
r̃∗,z∗z∗ − 1

8
r̃∗,z∗z∗z∗z∗ . (118)

Equation (118) is a single, linearized evolution equation for lipid membrane tubes involving
only the dimensionless perturbed membrane shape r̃∗.

(b). The analysis in terms of normal modes
The perturbed governing equations (110)–(113) contain four fundamental unknowns, namely
the dimensionless perturbed quantities r̃∗, ṽ1∗, ṽ2∗, and λ̃∗. We use the shorthand Ã

∗ to
denote any of these four unknowns, which are decomposed into normal modes according to
[cf. Chapter VI, Eq. (12)]

Ã
∗
(θ∗, z∗, t∗) =

∑
m,q∗

Â exp
[
i
(
mθ∗ + q∗z∗ − ω∗t∗

)]
, (119)

with the coefficient Â = Âm,q∗ depending on both m and q∗. In Eq. (119), the angular
wavenumber m ∈ Z, the dimensionless axial wavenumber q∗ ∈ R, and the dimensionless
frequency ω∗ = ω∗

(r)+iω∗
(i) ∈ C. Here q∗ and ω∗ are related to their dimensional counterparts

by q∗ = qR and ω∗ = ωτ , with the timescale τ defined in Eq. (107). We note that here and
from now on, the ‘∗’ accent denoting a dimensionless quantity is placed as either a subscript
or a superscript, as is notationally convenient. For the fundamental unknowns with the
functional dependence given in Eq. (119), we have

∂θ∗ = im , ∂z∗ = iq∗ , ∂t∗ = −iω∗ , ∂θ∗θ∗ = −m2 ,

∂z∗z∗ = −q2∗ , and ∆∗
s = −

(
m2 + q2∗

)
.

(120)

Substituting Eqs. (119) and (120) into Eqs. (110)–(113) and recognizing all normal modes
are independent, we obtain the equations governing the normal mode coefficients as

mv̂1 + q∗ v̂2 +
(
SL q∗ − ω∗) r̂ = 0 , (121)

−
(
m2 + q2∗

)
v̂1 +

(
ω∗m − SL q∗m

)
r̂ + imΓ λ̂ = 0 , (122)

−
(
m2 + q2∗

)
v̂2 +

(
SL q2∗ − ω∗q∗

)
r̂ + iq∗Γ λ̂ = 0 , (123)
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and
αr̂ − Γ λ̂ + 2iq v̂2 = 0 , (124)

where we briefly introduce the following notation for convenience:

α := Γ
(
1 − m2 − q2∗

)
− 1

4

[
3 − 5m2 − q2∗ + 2

(
m2 + q2∗

)2]
. (125)

(c). The calculation of the dispersion relation
Equations (121)–(124) consists of four linear, algebraic equations in the four unknowns r̂, v̂1,
v̂2, and λ̂. Various techniques can be used to calculate the dispersion relation ω∗ = ω∗(q∗);
here we use a series of algebraic manipulations. We first recognize the in-plane z-equation
(123) and the shape equation (124) do not involve v̂1, and seek to combine the other two
governing equations (121,122) to eliminate v̂1. To this end, we multiply the continuity
equation (121) by (m2 + q2∗), multiply the in-plane θ-equation by m, and add the two to
obtain

− q2∗
(
ω∗ − SL q∗

)
r̂ + q∗

(
m2 + q2∗

)
v̂2 + iΓm2 λ̂ = 0 . (126)

We next seek to remove the v̂2 dependence from the system of equations. By multiplying
the shape equation (124) by (m2 + q2∗), multiplying Eq. (126) by −2i, and combining the
results, we find[

α
(
m2 + q2∗

)
+ 2iq2∗

(
ω∗ − SL q∗

)]
r̂ + Γ

(
m2 − q2∗

)
λ̂ = 0 , (127)

with α defined in Eq. (125). Similarly, multiplying the in-plane z-equation (123) by q∗ and
adding Eq. (126) yields

− 2q2∗
(
ω∗ − SL q∗

)
r̂ + iΓ

(
m2 + q2∗

)
λ̂ = 0 . (128)

With Eqs. (127) and (128), we simplified our initial set of equations into a system of two
equations and two unknowns.

We now combine Eqs. (127) and (128) to obtain a single equation for the perturbed shape
coefficient r̂. By multiplying Eq. (127) by i(m2 + q2∗), multiplying Eq. (128) by (q2∗ −m2),
and summing the two results, we obtain[

αi
(
m2 + q2∗

)2 − 4q4∗
(
ω∗ − SL q∗

)]
r̂ = 0 . (129)

To obtain a nontrivial solution, i.e. one for which r̂ ̸= 0, we require

αi
(
m2 + q2∗

)2 − 4q4∗
(
ω∗ − SL q∗

)
= 0 . (130)

Solving Eq. (130) for ω∗ and inserting the expression for α (125) yields the dispersion relation

ω∗ = SL q∗ + i
(m2 + q2∗)

2

4q4∗

(
Γ
(
1−m2− q2∗

)
− 1

4

[
3 − 5m2 − q2∗ + 2

(
m2+ q2∗

)2])
. (131)

Given our normal mode decomposition ∼ e−iω∗t∗ = eω∗(i)t∗e−iω∗(r)t∗ in Eq. (119), Eq. (131)
indicates that a nonzero base flow (SL ̸= 0) leads to temporally oscillating solutions while
the base tension (captured by Γ ) dictates the growth rate of the perturbation envelope.
Importantly, our choice of non-dimensionalization in Eqs. (107)–(109) allows for the two
dimensionless numbers SL and Γ to be decoupled in the dispersion relation (131).
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Figure 6: Stable and unstable regimes for angular wavenumbers m = 0 (green, solid),
m = 1 (red, dashed), and m = 2 (blue, dotted), with the unstable regimes being shaded.
Only long wavelength axisymmetric m = 0 modes are unstable when Γ > Γ0 =

1
4 , with the

solid green line being the marginally stable wavenumber q∗ms calculated in Eq. (137). Short
wavelength axisymmetric modes are also unstable when the tube is under compression, and
Γ < Γ0. Non-axisymmetric modes are only unstable when the tube is under compression.
The vertical dashed line at Γ = Γc =

3
4 marks the critical value of the Föppl–von Kármán

number above which membrane tubes can undergo a pearling instability [see Eq. (135)].

(d). The linear stability analysis
With the decomposition into normal modes established in Eq. (119), our system is unstable
when ω∗

(i) > 0. The dispersion relation (131) then indicates a lipid membrane tube is unstable
when

Γ
(
1−m2 − q2∗

)
− 1

4

[
3 − 5m2 − q2∗ + 2

(
m2 + q2∗

)2]
> 0 . (132)

As the angular wavenumber m ∈ Z is discrete, for each value of m we use Eq. (132) to
determine which points in the (Γ , q∗) plane are unstable. The unstable regions for m = 0,
m = 1, and m = 2 are plotted as shaded regions in Fig. 6, from which we immediately
make two observations. First, the amplitude of modes with m ≥ 1 can only grow in time
when the tube is under compression, for which Γ < Γ0. Second, for tubes under tension,
only axisymmetric m = 0 modes are unstable. As the present study is concerned with tubes
under tension, only axisymmetric perturbations are considered from this point onwards.

When m = 0 and all membrane unknowns are axisymmetric, the dispersion relation (131)
simplifies to

ω∗ = SL q∗ +
i

4

(
Γ
(
1 − q2∗

)
− 1

4

[
3 − q2∗ + 2q4∗

])
. (133)

Moreover, the instability criterion (132) simplifies to

Γ
(
1 − q2∗

)
− 1

4

[
3 − q2∗ + 2q4∗

]
> 0 . (134)

Note that Eqs. (133) and (134) can also be obtained directly by substituting the normal mode
decomposition for r̃ (119) into the linearized evolution equation for the perturbed membrane
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Figure 7: Plots of (a) the growth rate ω∗
(i) and (b) the oscillation frequency ω∗

(r) of a
perturbed axisymmetric membrane tube, for different values of the Föppl–von Kármán
number Γ and the Scriven–Love number SL. Note that the growth rate only depends on
Γ , while the oscillation frequency only depends on SL. (a) The growth rate is negative and
the tube is stable when Γ < Γc =

3
4 . When Γ > Γc, the growth rate is positive for modes

q∗ ∈ (0, q∗ms), with the marginally stable wavenumber calculated in Eq. (137). For unstable
tubes, q∗ = 0 is the fastest growing mode. (b) The oscillation frequency is linear in the
wavenumber, with the proportionality constant being the Scriven–Love number SL.

shape (118). The real and imaginary parts of the axisymmetric dispersion relation (133) are
plotted in Fig. 7, from which we make several additional observations. First, a necessary
condition for a membrane tube to be unstable is

Γ > Γc , where Γc :=
3

4
(135)

is the critical value of the Föppl–von Kármán number at which a lipid membrane tube first
becomes unstable. The condition in Eq. (135) is consistent with the m = 0 curve in Fig.
6, with the vertical dashed line located at Γ = Γc. Second, given a membrane tube with
Γ > Γc, q∗ = 0 is the fastest growing mode. ‡ The corresponding growth rate ω∗(i)

max is given
by

ω∗(i)
max =

Γ − Γc
4

, (136)

and is a function of only the Föppl–von Kármán number. We additionally find that when
Γ > Γc, unstable perturbations are limited to a finite range of wavenumbers q∗ ∈ [0, q∗ms],
where q∗ms is the marginally stable wavenumber for which ω∗

(i) = 0. Applying the definition
of q∗ms to Eq. (133), we obtain

q∗ms =

√
−(Γ − Γ0) +

√
(Γ − Γ0)2 + 2(Γ − Γc)

=

√
−Γ + 1

4
+
√
Γ 2 + 3

2
Γ − 23

16
.

(137)

‡The fastest growing mode has a nonzero, finite wavenumber when the dynamics of the surrounding fluid
are included, as described by Narsimhan, Spann, and Shaqfeh, “Pearling, wrinkling, and buckling of vesicles
in elongational flows”.
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The marginally stable wavenumber q∗ms for axisymmetric m = 0 modes is plotted as the solid
green line in Fig. 6 when Γ > Γ0, and also predicts the point where ω∗

(i) crosses zero in Fig.
7a. Moreover, in the limit of Γ → Γ+

c , we find q∗ms ∼ (Γ−Γc)
1/2 → 0 such that only infinitely

long axial perturbations are unstable. Finally, we observe that the Scriven–Love number SL
does not affect the growth rate of the perturbed system, but rather provides an oscillation
frequency to the temporal evolution of axisymmetric modes (see Fig. 7b).

7. The spatiotemporal stability of a membrane tube
In the stability analysis presented thus far, we were primarily concerned with how an axisym-
metric membrane tube under tension responds to a global disturbance of the form ∼ eiq

∗z∗

at time t∗ = 0. While tube stability is governed by the Föppl–von Kármán number, the
real part of the dispersion relation (133) indicates a nonzero base flow (SL ̸= 0) leads to
temporal oscillations in the membrane response. By construction, we considered global dis-
turbances along the entire tube, for which the solution to the linearized dynamics about an
unstable tube is a traveling wave whose amplitude grows in time. However, if we examine
the dimensional form of the left-hand side of the axisymmetric evolution equation (118),
the quantity ∂r̃/∂t + V ∂r̃/∂z looks like a material time derivative—despite us neglecting
all inertial terms in our analysis. The presence of these terms motivates us to consider how
the base flow of lipids could alter the long-time response of an unstable tube, particularly
if the initial perturbation is localized to a small region. Indeed, various studies on other
physical systems such as plasmas, ‡, †, ∗ geophysical flows, §, ♯ open fluid flows such as wakes,
jets and boundary layers, ∥, ∀ cylindrical fluid columns, ♢ and more recently thin films on
substrates $, & have shown the effect of a base flow is best understood by addressing the
following question: How does the unstable system respond to an initially local, rather than
global, perturbation? In what follows, we address this question by extending the techniques
presented thus far to perform a spatiotemporal stability analysis.

‡A. Bers and R.J. Briggs. “Criteria for determining absolute instability and distinguishing between
amplifying and evanescent waves”. Bull. Am. Phys. Soc. 9 (1963), 304.

†R.J. Briggs. Electron-Stream Interactions with Plasmas. MIT Press, 1964.
∗F. Moser. “Convective and absolute instability of the positive column with longitudinal magnetic field”.

Plasma Physics 17 (1975), 821–840.
§L.-O. Merkine. “Convective and absolute instability of baroclinic eddies”. Geophys. Astro. Fluid 9

(1977), 129–157.
♯R.T. Pierrehumbert. “Local and global baroclinic instability of zonally varying flow”. J. Atmos. Sci. 41

(1984), 2141.
∥P. Huerre and P.A. Monkewitz. “Local and global instabilities in spatially developing flows”. Annu.

Rev. Fluid Mech. 22 (1990), 473–537.
∀P. Huerre and M. Rossi. “Hydrodynamic instabilities in open flows”. Hydrodynamics and Nonlinear

Instabilities. Ed. by C. Godrèche and P. Manneville. New York: Cambridge University Press, 1998, pp. 81–
294.

♢T.R. Powers et al. “Propagation of a topological transition: The Rayleigh instability”. Phys. Fluids 10
(1998), 1052–1057. arXiv: cond-mat/9708169.

$C. Duprat et al. “Absolute and convective instabilities of a viscous film flowing down a vertical fiber”.
Phys. Rev. Lett. 98 (2007), 244502.

&B. Scheid, N. Kofman, and W. Rohlfs. “Critical inclination for absolute/convective instability transition
in inverted falling films”. Phys. Fluids 28 (2016), 044107.

https://mitpress.mit.edu/books/electron-stream-interaction-plasmas
https://doi.org/10.1088/0032-1028/17/10/009
https://doi.org/10.1080/03091927708242322
https://doi.org/10.1175/1520-0469(1984)041%3C2141:LAGBIO%3E2.0.CO;2
https://doi.org/10.1146/annurev.fl.22.010190.002353
https://doi.org/10.1017/CBO9780511524608.004
https://doi.org/10.1063/1.869650
http://arxiv.org/abs/cond-mat/9708169
https://doi.org/10.1103/PhysRevLett.98.244502
https://doi.org/10.1063/1.4946827
https://doi.org/10.1063/1.4946827
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Before starting our calculations, we would like to provide additional motivation for the
question posed above. In particular, the justification thus far focused on the form of the
evolution equation, and then highlighted results from other disciplines. It is important to
note, however, that there are many prior experimental efforts involving local perturbations
to membrane tubes. When such tubes are under high tension, an infinitesimal local per-
turbation grows and invades the undisturbed region via propagating fronts. For example,
drug treatments disrupting the internal structure of axons show fronts propagate from the
neuron’s growth cone to its soma, in the direction of lipid flow. ‡ In contrast, when a laser
is aimed at a point on an axon, two fronts propagate outward in different directions. ‡ An
additional complexity is that different patterns can be selected in the front wakes, leading
to distinct morphologies at long times. For example, identical laser ablation experiments
on axons result in a thin, atrophied tube—whose connection to the unperturbed regions
appears pearled in some experiments and monotonic in others. ‡ Despite many experimental
findings, however, the physical mechanisms governing these behaviors, namely (i) the pat-
tern selection in the membrane region connecting thin atrophied tubes to moving fronts and
(ii) the direction of instability propagation, remain poorly understood.

For the remainder of this chapter, we shed light on the aforementioned mechanisms by
applying more sophisticated techniques to the axisymmetric cylindrical membrane equations.
Our presentation largely mirrors that of one of our earlier studies. † We first invoke the
hydrodynamic concept of absolute and convective instabilities ∗, § to understand the long-
time behavior of lipid membrane tubes subjected to initially localized perturbations. We
next investigate the dynamics of how the fronts ensuing from a local perturbation invade the
unperturbed membrane tube. We employ the so-called marginal stability criterion, ♯, ∥ and
corroborate our analytical results with direct numerical simulations and a weakly nonlinear
analysis of the shape evolution of an unstable tube. Importantly, we find both atrophied
and pearled morphologies can result from a local perturbation, with the selected pattern
depending only on the Föppl–von Kármán number Γ .

(a). The complex wavenumber and frequency
We begin by considering a membrane tube with a base flow that is perturbed at one
location—for example, an axon subject to laser ablation or the local administration of spe-
cific drugs. ‡ For any unstable tube with Γ > Γc, the Föppl–von Kármán number dictates
the initial growth rate of the disturbance. However, the base flow speed, as captured by
the Scriven–Love number, determines how initially localized perturbations spatially invade
the system over time. For a fixed observer at a local station along the tube, the fate of

‡A. Datar et al. “The roles of microtubules and membrane tension in axonal beading, retraction, and
atrophy”. Biophys. J. 117 (2019), 880–891

†J. Tchoufag, A. Sahu, and K.K. Mandadapu. “Absolute vs convective instabilities and front propagation
in lipid membrane tubes”. Phys. Rev. Lett. 128 (2022), 068101. arXiv: 2008.13780.

∗Bers and Briggs, “Criteria for determining absolute instability and distinguishing between amplifying
and evanescent waves”.

§Huerre and Rossi, “Hydrodynamic instabilities in open flows”.
♯G.T. Dee and J.S. Langer. “Propagating pattern selection”. Phys. Rev. Lett. 50 (1983), 383–386.
∥W. van Saarloos. “Front propagation into unstable states. II. Linear versus nonlinear marginal stability

and rate of convergence”. Phys. Rev. A 39 (1989), 6367–6390.

https://doi.org/10.1016/j.bpj.2019.07.046
https://doi.org/10.1016/j.bpj.2019.07.046
https://doi.org/10.1103/PhysRevLett.128.068101
https://doi.org/10.1103/PhysRevLett.128.068101
http://arxiv.org/abs/2008.13780
https://doi.org/10.1103/PhysRevLett.50.383
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Figure 8: Space–time plots showing the response of a membrane tube with a base flow to a
localized disturbance at z = 0 and t = 0. Successive snapshots show how the perturbation
grows, and is also convected downstream. Such a situation is referred to as convectively
unstable. A stationary observer (dashed green line) sees a stable system at long times, with
ω(i) < 0. A moving observer (solid red line, †), on the other hand, sees the disturbance
growing in time—for which ω†(i) > 0. To capture the different growth rates, both the
wavenumber q and frequency ω are chosen to be complex: q ∈ C and ω ∈ C, as justified in
the text. The generation of such space–time plots is discussed in §7 (e).

the observed local disturbances will depend on the competition between the amplification
of the instability, characterized by Γ , and its advection downstream, captured by SL. In
particular, for a specific choice of the growth rate (e.g. for a choice of Γ ), larger values of the
Scriven–Love number more quickly advect the growing perturbations downstream. Eventu-
ally the Scriven–Love number SL will become so large that the instability is advected along
the tube faster than it grows, and the instability undergoes a so-called absolute-to-convective
transition. In the case of an absolutely unstable system, the initially localized perturbation
will eventually invade the entire domain. In contrast, for a convectively unstable system,
any stationary observer will eventually see an unperturbed tube at long times—despite the
perturbation continuing to grow over time. For the remainder of this section, we use a spa-
tiotemporal stability analysis to determine under what conditions a lipid membrane tube is
absolutely or convectively unstable.

In searching for the absolute-to-convective transition, we recognize that observers moving
at different speeds will in general see different growth rates, since the initial perturbation is
localized in space. This possibility in fact requires both the wavenumber q and frequency ω
to be complex variables. ‡ To understand why, see Fig. 8, which presents space–time plots of
the perturbed membrane radius, which is evolving according to Eq. (118). We notice that
the base flow is large enough to convect the shape disturbance downstream, such that a
stationary observer situated at the dashed green line sees a decay at long times—for which
ω(i) < 0. On the other hand, if we imagine a moving observer (†) traveling along the solid red
line with speed u, then the axial positions and frequencies of the two observers are related
by z† = z − ut and ω† = ω − uq. Moreover, the moving observer sees the disturbance
growing in time, and thus ω†(i) = ω(i) − uq(i) > 0. Since ω(i) < 0 and ω(i) − uq(i) > 0, we
recognize q(i) ̸= 0 in order for different observers to see different growth rates—for which the

‡J. Eggers and E. Villermaux. “Physics of liquid jets”. Rep. Prog. Phys. 71 (2008), 036601.

https://doi.org/https://doi.org/10.1088/0034-4885/71/3/036601
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wavenumber is complex. In general, a spatiotemporal stability analysis requires both q ∈ C
and ω ∈ C. For the remainder of this section, we follow well-established procedures ‡, †, ∗ to
investigate how membrane tubes with a nonzero base flow respond to an initially localized
shape perturbation.

(b). The saddle points of the dispersion relation
Imagine an unstable membrane tube, with Γ > Γc, subject to a spatially localized disturbance
at one instant in time. As the perturbation grows, we search for the particular disturbances
seen at long times in the laboratory frame—namely, perturbations with zero group velocity.
The so-called absolute wavenumber q∗0 and absolute frequency ω∗

0 corresponding to zero group
velocity disturbances are determined according to

dω∗

dq∗

∣∣∣∣
q∗0

= 0 and ω∗
0 = ω∗(q∗0) . (138)

It is important to reiterate that here and henceforth, ω∗ and q∗ are complex variables. In
addition, the pair (q∗0, ω

∗
0) is referred to as a saddle point due to the nature of ω∗

(r) when it
is plotted as a function of q∗(r) and q∗

(i).
By applying the two saddle point criteria (138) to the dispersion relation (133), we re-

spectively obtain the conditions

SL − i

2

{(
Γ − Γ0

)
q∗0 +

(
q∗0
)3}

= 0 (139)

and
ω∗
0 = SL q∗0 +

i

8

{
2
(
Γ − Γc

)
− 2

(
Γ − Γ0

)(
q∗0
)2 −

(
q∗0
)4}

. (140)

Next, the relations q∗0 = q0
∗(r) + iq0

∗(i) and ω∗
0 = ω0

∗(r) + iω0
∗(i) are substituted into Eqs. (139)

and (140), and the resulting equations are split into real and imaginary components to yield
four conditions, respectively given by

2SL +
(
Γ − Γ0

)
q0
∗(i) + 3

(
q0
∗(r))2q0∗(i) − (

q0
∗(i))3 = 0 , (141)

q0
∗(r)
[(
Γ − Γ0

)
+
(
q0
∗(r))2 − 3

(
q0
∗(i))2] = 0 , (142)

ω0
∗(r) = q0

∗(r)
{

SL +
1

2
q0
∗(i)
[(
Γ − Γ0

)
+
(
q0
∗(r))2 −

(
q0
∗(i))2]} , (143)

and

ω0
∗(i) = SL q0∗(i) +

1

8

{
2
(
Γ − Γc

)
+ 2

(
Γ − Γ0

) [(
q0
∗(i))2 −

(
q0
∗(r))2]

−
(
q0
∗(r))4 + 6

(
q0
∗(r))2(q0∗(i))2 −

(
q0
∗(i))4} .

(144)

‡Huerre and Rossi, “Hydrodynamic instabilities in open flows”.
†Huerre and Monkewitz, “Local and global instabilities in spatially developing flows”.
∗F. Charru. Hydrodynamic Instabilities. New York: Cambridge University Press, 2011.
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We now have four equations (141)–(144) corresponding to the four unknowns q0∗(r), q0∗(i),
ω0
∗(r), and ω0

∗(i), for any values of the parameters SL and Γ .
At this point, we seek to determine the boundary between absolutely and convectively

unstable regimes. We recognize that a stationary observer will see a positive growth rate,
for which ω0

∗(i) > 0, when the tube is absolutely unstable, and a negative growth rate, with
ω0
∗(i) < 0, when the tube is convectively unstable. A necessary condition for the absolute-to-

convective transition is thus given by

ω0
∗(i) = 0 . (145)

With Eq. (145), we now have an additional equation relating SL and Γ . In what follows,
for every unstable tube with Γ > Γc we calculate the saddle point (q∗0, ω

∗
0) and the critical

Scriven–Love number SLac(Γ ) corresponding to the absolute-to-convective transition, for
which Eqs. (141)–(145) are satisfied. Due to Eq. (142), this calculation is split into two
cases, as either

q0
∗(r) = 0 or

(
q0
∗(r))2 = 3

(
q0
∗(i))2 −

(
Γ − Γ0

)
. (146)

We note that Eq. (145) is a necessary but not sufficient condition for the absolute-to-
convective transition—implying our calculation of the saddle point and critical base flow
velocity may not be physical. Consequently, in §7 (c) we investigate whether the calculated
values of q∗0, ω∗

0, and SLac are physical or spurious.

The case with a purely imaginary absolute wavenumber

When q0
∗(r) = 0, Eqs. (141)–(145) simplify to

2SLac +
(
Γ − Γ0

)
q0
∗(i) −

(
q0
∗(i))3 = 0 , (147)

SLac q0
∗(i) +

1

8

{
2
(
Γ − Γc

)
+ 2

(
Γ − Γ0

) (
q0
∗(i))2 −

(
q0
∗(i))4} = 0 , (148)

and
ω0
∗(r) = 0 . (149)

If q0∗(i) = 0 as well, Eqs. (147) and (148) reduce to Γ = Γc and SLac = 0. Since we are
interested in obtaining SLac for all Γ , we assume q0∗(i) ̸= 0. This allows us to multiply Eq.
(147) by −q0∗(i) and add the result to twice Eq. (148), which after some rearrangement yields
the following equation for q0∗(i):

3
(
q0
∗(i))4 − 2

(
Γ − Γ0

)(
q0
∗(i))2 + 2

(
Γ − Γc

)
= 0 . (150)

As q0∗(i) ∈ R, we find Eq. (150) has only real roots when

Γ ∈ ΩA := [Γc,Γ1] ∪ [Γ2,∞) , (151)

where Γ1 and Γ2 are defined as

Γ1 :=
13

4
−

√
6 ≈ 0.801 and Γ2 :=

13

4
+
√
6 ≈ 5.699 . (152)
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Thus, the four solutions of Eq. (150) for q0∗(i) are given by

q0
∗(i) = ± 1√

3

√(
Γ − Γ0

)
±
√(

Γ − Γ0
)2 − 6

(
Γ − Γc

)
, with Γ ∈ ΩA . (153)

At this point, we note that of the four solutions in Eq. (153), two are positive and two
are negative. However, our spatial ansatz ∼ exp(iq∗z∗) = exp(−q∗(i)z∗) exp(iq∗(r)z∗) and the
base flow is in the positive z-direction. As we are interested in the absolute-to-convective
transition, for which a perturbation initially at the origin (z∗ = 0) grows downstream (z∗ >
0), we choose only the negative solutions of q0∗(i) in Eq. (153) such that our spatial ansatz
grows downstream, and find

q0
∗(i)± =

−1√
3

√(
Γ − Γ0

)
±
√(

Γ − Γ0
)2 − 6

(
Γ − Γc

)
=

−1

2
√
3

√
4Γ − 1 ±

√
16Γ 2 − 104Γ + 73 , with Γ ∈ ΩA .

(154)

Substituting Eq. (154) into Eq. (147) yields two solutions for SLac as

SL±
ac =

−1

48
√
3

√
4Γ − 1 ±

√
16Γ 2 − 104Γ + 73

(
− 8Γ + 2 ±

√
16Γ 2 − 104Γ + 73

)
,

(155)
with Γ ∈ ΩA. However, we will show subsequently that only one of these absolute-to-
convective Scriven–Love numbers, namely SL−

ac, is physically meaningful. Before doing so,
we next consider the other possible case from Eq. (146), where q0∗(r) ̸= 0.

The case with nonzero real wavenumber

When q0∗(r) ̸= 0, Eq. (142) requires the real and imaginary parts of the absolute wavenumber
to be related by [see also Eq. (146)2](

q0
∗(r))2 = 3

(
q0
∗(i))2 −

(
Γ − Γ0

)
. (156)

By substituting Eq. (156) into Eqs. (141) and (144), making use of Eq. (145), and rearranging
terms, we obtain two equations for q0∗(i)(Γ ) and SLac(Γ )—given by

SLac + q0
∗(i)
[
4
(
q0
∗(i))2 −

(
Γ − Γ0

)]
= 0 (157)

and
SLac q0

∗(i) +
(
q0
∗(i))4 − Γ − Γ0

2

(
q0
∗(i))2 +

1

8

(
Γ − Γ0

)2
+

1

4

(
Γ − Γc

)
= 0 . (158)

If we assume q0∗(i) = 0, then Eqs. (157) and (158) require SLac = 0 and Γ < Γc: an unphysical
result, since the absolute-to-convective transition is only physically meaningful for unstable
tubes, in which Γ > Γc. Thus q0∗(i) ̸= 0, allowing us to multiply Eq. (157) by −q0∗(i) and add
the result to Eq. (158) to obtain

24
(
q0
∗(i))4 − 4

(
Γ − Γ0

)(
q0
∗(i))2 −

(
Γ − Γ0

)2 − 2
(
Γ − Γc

)
= 0 . (159)
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Solving Eq. (159) for q0∗(i), with the requirements that (i) q0∗(i) ∈ R and (ii) q0∗(i) < 0 such
that the mode grows spatially downstream (z > 0), we find

q0
∗(i) = − 1

4
√
3

√
4Γ − 1 +

√
112Γ 2 + 136Γ − 137 , (160)

for all Γ > Γc. By substituting Eq. (160) into Eq. (156), we obtain the real part of the
absolute wavenumber as

q0
∗(r)± = ± 1

4

√
−12Γ + 3 +

√
112Γ 2 + 136Γ − 137 . (161)

However, as q0∗(r) ∈ R, Eq. (161) is only meaningful when −12Γ+3+
√
112Γ 2 + 136Γ − 137 >

0, which requires
Γ ∈ ΩB := (Γ1,Γ2) , (162)

where Γ1 and Γ2 were defined in Eq. (152). Interestingly, ΩB is complementary to ΩA, such
that ΩA ∩ ΩB = ∅ and ΩA ∪ ΩB = [Γc,∞), the latter being the entire range of Föppl–von
Kármán numbers corresponding to unstable tubes. For Γ ∈ ΩB, we determine the absolute-
to-convective Scriven–Love number SL−

ac via Eq. (157) as

SL−
ac =

1

48
√
3

√
4Γ − 1 +

√
112Γ 2 + 136Γ − 137

(
−8Γ +2 +

√
112Γ 2 + 136Γ − 137

)
.

(163)
Note that when Γ ∈ ΩB, there is only a single value of SLac (163), while for Γ ∈ ΩA

we obtained two values of SLac (155). Finally, we calculate the real part of the absolute
frequency, ω0

∗(r), using Eq. (143), and find

ω0
∗(r)± =

∓1

128
√
3

√
16Γ 2 + 40Γ − 35 − 1

2

(
4Γ − 1

)√
112Γ 2 + 136Γ − 137 × . . .

. . . ×
(
12Γ − 3 −

√
112Γ 2 + 136Γ − 137

)
.

(164)

(c). The absolute-to-convective transition
At this point, we found analytical expressions for the saddle point (q∗0, ω∗

0) and the absolute-
to-convective Scriven–Love number SLac by solving the saddle point and growth rate condi-
tions in Eqs. (141)–(145) simultaneously; all quantities have different expressions depending
on whether Γ ∈ ΩA or Γ ∈ ΩB. However, as mentioned earlier, the condition ω0

∗(i) = 0
(145) is necessary but not sufficient to determine SLac. In this section, we evaluate whether
the previously calculated values of SLac do in fact describe where our cylindrical membrane
system transitions from being absolutely unstable to being convectively unstable. We follow
the approach detailed by A. Bers and R.J. Briggs, ‡, † and subsequently other authors, ∗, §

‡Bers and Briggs, “Criteria for determining absolute instability and distinguishing between amplifying
and evanescent waves”.

†Briggs, Electron-Stream Interactions with Plasmas.
∗K. Kupfer, A. Bers, and A.K. Ram. “The cusp map in the complex-frequency plane for absolute

instabilities”. Phys. Fluids 30 (1987), 3075–3082.
§Huerre and Monkewitz, “Local and global instabilities in spatially developing flows”.

https://doi.org/10.1063/1.866483
https://doi.org/10.1063/1.866483
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in which a geometric criterion was found to determine if a saddle point is associated with
a transition from an absolute to a convective instability. A rigorous explanation of this cri-
terion is outside the scope of our work, and requires long-time asymptotics and an analysis
of pole singularities in the complex plane. ‡ However, in what follows, we describe several
major themes of the criterion and then provide the procedure used to determine if the saddle
points are physical or spurious in nature. The description is drawn almost entirely from the
analysis by P. Huerre and M. Rossi, ‡ who analyze the absolute-to-convective transition
of the well-known Ginzburg–Landau equation. We highly recommend this work to interested
readers, and as a result highlight its relevant sections in the following presentation.

The geometric criterion obtained by Bers and Briggs is largely concerned with the nature
of solutions to the dispersion relation ω∗ = ω∗(q∗) in the vicinity of the saddle point. By
Taylor expanding the dispersion relation about the saddle point and recalling ω′

∗(q
∗
0) = 0

from Eq. (138)1, where here a ‘prime’ denotes differentiation with respect to q∗, one obtains

ω∗ − ω∗
0 ≈ ω′′

∗(q
∗
0)

2
(q∗ − q∗0)

2 , (165)

or equivalently

q∗ − q∗0 ≈ ±
(

2

ω′′
∗(q

∗
0)

)1/2

(ω∗ − ω∗
0)

1/2 . (166)

Note that our dispersion relation (133) is a fourth-order polynomial in q∗, and solving it for
a particular choice of ω∗ ∈ C yields four solutions for q∗ ∈ C. Similarly, a contour in the
complex frequency plane (ω∗

(r), ω∗
(i)) corresponds to four contours in the complex wavenumber

plane (q∗
(r), q∗

(i)), with the latter being referred to as generalized spatial branches. For our
purposes, we choose frequency contours with constant ω∗

(i); such contours are denoted Lω as
in Sec. 3.2.2 of Huerre and Rossi. ‡

For an arbitrary choice of Lω, the spatial branches will in general not intersect one another.
However, when Lω passes through ω∗

0, two spatial branches will pinch, implying the long-
time dynamics are influenced by the behavior of both of those branches. To see how the
branches pinch, we note that along this particular choice of Lω, ω∗ − ω∗

0 = ω∗
(r) − ω0

∗(r). By
additionally defining α+ iβ := (2/ω′′

∗(q
∗
0))

1/2 for notational convenience, with α and β being
real constants, Eq. (166) simplifies to q∗ − q∗0 ≈ ±(α + iβ)(ω∗

(r) − ω0
∗(r))1/2, for which

q∗
(i) − q0

∗(i)

q∗(r) − q0∗(r)
=


±β
α

when ω(r) − ω0
∗(r) > 0

∓α
β

when ω(r) − ω0
∗(r) < 0 .

(167)

Accordingly, q∗(i) − q0
∗(i) ∝ ±(q∗

(r) − q0
∗(r)) in the vicinity of the saddle point, implying two

spatial branches pinch at the saddle point. We therefore seek to characterize the long-time
dynamics of the two spatial branches that pinch at the saddle point. To this end, we apply
the following procedure, as detailed in Sec. 3.2.2 of Huerre and Rossi; ‡ relevant steps are
illustrated in Fig. 9.

‡Huerre and Rossi, “Hydrodynamic instabilities in open flows”
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Figure 9: Solution branches in the complex wavenumber plane (q∗
(r), q∗

(i)), for different
values of ω∗

(i). When Γ ∈ ΩA, two values of SLac are calculated in Eq. (155), corresponding
to the left and center columns. As ω∗

(i) is decreased, pinching between spatial branches
originating from upper and lower half-planes occurs when SL = SL−

ac (left column), but not
when SL = SL+

ac (center column). Accordingly, when Γ ∈ ΩA, only SL−
ac corresponds to a

true absolute-to-convective transition. As shown in the right column, when Γ ∈ ΩB, the
value of SL−

ac in Eq. (163) satisfies the pinching criterion.
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1. Choose a value Γtest of the Föppl–von Kármán number, with Γtest > Γc, to ensure a
temporal instability. In Fig. 9, we chose Γtest = 0.775 ∈ ΩA (left and center columns)
and Γtest = 0.875 ∈ ΩB (right column).

2. Calculate the value of SLac(Γtest) with Eq. (155) if Γtest ∈ ΩA or Eq. (163) if Γtest ∈ ΩB.
In Fig. 9, the left and center columns correspond to the two values of SLac when
Γtest = 0.775 ∈ ΩA, namely SL−

ac = 0.056 and SL+
ac = 0.063, while the right column

corresponds to SL−
ac when Γtest = 0.875 ∈ ΩB.

3. Choose a value of ω∗
(i) > ω

∗(i)
max, such that ω∗

(i) is greater than the largest temporal
growth rate (136). In Fig. 9, we chose ω∗

(i) = 0.05 in all cases (top row).

4. For the choice of ω∗
(i), introduce the contour Lω = ω∗

(r) +ω∗
(i), where ω∗

(r) varies over R.
Solve Eq. (144) for the spatial branches (q∗

(r), q∗
(i)) in the complex wavenumber plane.

Due to the choice of ω∗
(i) in Step 3, no spatial branches can cross the q∗(r) axis, as doing

so would indicate there exists a mode with real q∗ that grows faster than the largest
possible growth rate—a contradiction. Thus, the spatial branches lie entirely above or
below the q∗(r) axis. Since q∗(i) ̸= 0, the normal modes can be written as

exp
[
i
(
q∗z∗−ω∗t∗

)
)
]
= exp

[
− q∗

(i)

(
z∗ − ω∗

(i)

q∗(i)
t∗
)]

︸ ︷︷ ︸
F(z∗ − c∗t∗)

exp
[
i
(
q∗
(r)z∗−ω∗

(r)t∗
) ]

. (168)

As ω(i) > 0, the sign of q∗(i) determines the sign of c∗ = ω∗
(i)/q∗

(i) and thus dictates the
traveling direction of the spatial branch modes: when q∗(i) > 0, the mode moves to the
right, while if q∗(i) < 0 the mode moves to the left. The top row in Fig. 9 shows that in
all cases, two modes are right-moving and two modes are left-moving.

5. Continuously select new contours Lω as the value of ω∗
(i) is steadily decreased, until

ω∗
(i) < 0; for each Lω, solve for the four spatial branches (q∗

(r), q∗
(i)) in the complex

wavenumber plane. Figure 9 shows how the spatial branches evolve as ω∗
(i) is lowered

from +0.05 (top row) to −0.05 (bottom row).

6. Monitor how the four spatial branches evolve as Lω is lowered in Step 5, paying special
attention to the two branches that pinch at ω∗

(i) = 0. As we solved for SLac with
the requirement that ω0

∗(i) = 0, the branch pinching reveals which spatial branches
contribute to the long-time dynamics of the saddle point (q∗0, ω

∗
0). If the pinching

branches belonged to different half-planes q0∗(i) > 0 and q0
∗(i) < 0 for higher ω∗

(i) (such
as in Step 3), then the corresponding modes are moving in different directions and
the system is on the verge of losing its sense of directionality—characteristic of an
absolute instability. In this case, our calculation of SLac(Γtest) indeed corresponds
to an absolute-to-convective transition. Otherwise, both modes are traveling in the
same direction, and the system is not on the verge of losing its sense of directionality;
the saddle point does not represent an absolute-to-convective transition and is thus
unphysical.
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As we show in Fig. 9, when Γ ∈ ΩA, only the saddle point of absolute wavenumber q∗0 =
iq0

∗(i)− (154) satisfies the pinching criterion. Therefore, the absolute-to-convective transition
speed is given by SL−

ac (155). When Γ ∈ ΩB, the two saddle points of wavenumber q∗0 =
q0
∗(r)± + iq0

∗(i) (160) simultaneously satisfy the pinching criterion. In this case, the absolute-
to-convective transition speed is given by Eq. (163), and plotted in Fig. 10. Although the
analytical expressions for SLac(Γ ) differ depending on whether Γ ∈ ΩA or Γ ∈ ΩB, Fig.
10 reveals that the absolute-to-convective transition speed is a smoothly varying function
of the Föppl–von Kármán number. In contrast, the saddle point (q∗0, ω

∗
0) undergoes two

bifurcations as Γ is varied: one at Γ = Γ1 and another at Γ = Γ2, as shown in Fig. 11. We
discuss how the saddle point bifurcations affect the long-time response of a perturbed lipid
membrane tube when we analyze front propagation in §7 (f), and we comment on the nature
of Γ1 and Γ2 in §7 (g). Our calculation of the physically meaningful saddle point and critical
Scriven–Love number, for all Γ > Γc, is also summarized in Table 5.

(d). The limiting behavior of SLac

With the calculated values of the Scriven–Love number corresponding to the absolute-to-
convective transition plotted in Fig. 10, we recognize that for every Γ > Γc the tube is
absolutely unstable when SL = 0. As the Scriven–Love number is increased, the nature of
the instability eventually transitions from absolute to convective when SL = SLac(Γ ), such
that the system is convectively unstable when SL > SLac. We now comment on the limiting
behavior of the absolute-to-convective Scriven–Love number, SLac, in two cases: Γ → ∞ and
Γ → Γ+

c .

The limiting behavior when Γ is large
An infinite Föppl–von Kármán number corresponds to the limiting case of a two-dimensional
fluid film, in which the bending modulus is negligible. For such systems, we take the limit
of the expression for SLac provided in Table 5, when Γ ∈ ΩA, and find

lim
Γ→∞

SLac(Γ ) =
Γ

2
. (169)

Interestingly, although Eq. (169) is only valid asymptotically, the result SLac ∼ Γ/2 is a
reasonable approximation for all Γ > Γ1 ≈ 0.801, as shown in Fig. 10. However, as Γ
approaches the instability threshold value of Γc, the approximation breaks down.

The limiting behavior when Γ approaches Γc

As the Föppl–von Kármán number Γ approaches Γc, the absolute-to-convective Scriven–Love
number can be expanded as the Puiseux series ‡

SLac =

√
2

4

(
Γ − Γc

)1/2 −
√
2

2

(
Γ − Γc

)5/2 − 4
√
2
(
Γ − Γc

)7/2
+ . . . . (170)

‡This series expansion was obtained using Mathematica.
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Figure 10: Stability diagram of lipid membrane tubes in the space of Γ and SL, showing
stable (gray, Γ < Γc =

3
4), absolutely unstable (AU, red), and convectively unstable (CU,

blue) regimes. The critical velocity of the absolute-to-convective transition scales as SLac ∼
Γ/2 at large Γ , but as SLac ∼ (Γ − Γc)

1/2 for Γ → Γ+
c —as highlighted in the plot on

the right. The vertical dotted lines mark the interval (Γ1,Γ2) where fronts invading the
undeformed tube are oscillatory. For unstable tubes with a Föppl–von Kármán number
outside this range, front propagation is monotonic, with no oscillations at the leading edge.
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Figure 11: Real and imaginary components of the absolute wavenumber q∗0 (left) and
real part of the absolute frequency ω∗

0 (right), with ω0
∗(i) = 0. The solid (respectively

dashed) lines correspond to the relevant (respectively spurious) saddle points obtained
when searching for the boundary between absolutely unstable and convectively unstable
membrane tubes. As the Föppl–von Kármán number is increased, the bifurcation at Γ1
signals a transition from steady to oscillatory spatiotemporal dynamics, with the reverse
being true at Γ2.
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Table 5: Calculated values of the saddle point (q∗0, ω∗
0) and absolute-to-convective Scriven–

Love number SLac, for all Γ > Γc. When Γ ∈ ΩA, only one of the previously calculated
solutions is physically meaningful (see Fig. 9).

Γ ∈ ΩA

g(Γ ) := −
√
16Γ 2 − 104Γ + 73

q0
∗(r) = 0

q0
∗(i) =

−1

2
√
3

√
4Γ − 1 + g(Γ )

ω0
∗(r) = 0

ω0
∗(i) = 0

SLac =
8Γ − 2− g(Γ )

48
√
3

√
4Γ − 1 + g(Γ )

Γ ∈ ΩB

g(Γ ) :=
√
112Γ 2 + 136Γ − 137

q0
∗(r)± = ± 1

4

√
−12Γ + 3 + g(Γ )

q0
∗(i) = − 1

4
√
3

√
4Γ − 1 + g(Γ )

ω0
∗(r)± = ∓ 12Γ − 3− g(Γ )

48
√
3

√
16Γ 2 + 40Γ − 35− 1

2

(
4Γ − 1

)
g(Γ )

ω0
∗(i) = 0

SLac =
−8Γ + 2 + g(Γ )

48
√
3

√
4Γ − 1 + g(Γ )

Thus, close to the instability threshold, one may approximate SLac as

SLac ≈
√
2

4

(
Γ − Γc

)1/2 for Γ → Γ+
c . (171)

As shown in Fig. 10, Eq. (171) is a reasonable approximation for Γ between Γc and Γ1.
Over this range, Γ ∈ ΩA, such that q∗0 is purely imaginary and ω∗

0 is identically zero at the
absolute-to-convective transition (see Table 5).

The square root dependence seen in Eq. (171), as well as the relations q0∗(r) = 0 and
ω0
∗(r) = 0, are reminiscent of the well-studied Ginzburg–Landau equation. For a general

scalar field ϕ ∈ R and constant real control parameters u and κ, the linearized Ginzburg–
Landau equation is given by

ϕ,t + uϕ,x = κϕ + ϕ,xx . (172)
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It is well-known that Eq. (172) is unstable when κ > 0, and undergoes an absolute-to-
convective transition for uac = 2κ1/2. ‡ At this point, we recall the linearized evolution
equation for the perturbed membrane radius r̃∗ (118)—which is similar in structure to the
linearized Ginzburg–Landau equation (172). The important difference is the r̃∗,z∗z∗z∗z∗ term
arising from the −kb∆sH term in the shape equation (31). As such, Eq. (118) belongs to the
family of so-called extended Fisher–Kolmogorov equations. †, ∗, § Nonetheless, the similarities
between membrane dynamics for Γ → Γ+

c and the solution of the Ginzburg–Landau equation
(172) motivate us to determine if the fourth-order term in Eq. (118) is indeed negligible in the
limit Γ → Γ+

c —in which case the rich set of behaviors predicted by the Ginzburg–Landau
equation would also be relevant in understanding the dynamics of lipid membrane tubes.

We start by noting the fourth-order term is not the only bending term in Eq. (118):
both −(Γc/4) r̃

∗ and −(Γ0/4) r̃
∗
,z∗z∗ originate from bending forces as well. While r̃∗,z∗z∗z∗z∗

is negligible when Γ → ∞, in this limit the other bending terms are also unimportant,
thus yielding SLac ∼ Γ/2, as discussed previously. In the limit where Γ → Γc, however, the
crucial insight is that the marginally stable wavenumber goes to zero as q∗ms ∼ (Γ−Γc)

1/2 [see
Eq. (137)], such that only long wavelength perturbations are unstable. Since the dominant
wavenumbers are those for which q∗ < q∗ms, the various contributions on the right hand side
of Eq. (118) scale at most as(

Γ − Γc
4

)
r̃∗ ∼

(
Γ − Γc

)
, (173)

(
Γ − Γ0

4

)
r̃∗,z∗z∗ ∼

(
Γc − Γ0

)(
Γ − Γc

)
, (174)

and
− 1

8
r̃∗,z∗z∗z∗z∗ ∼

(
Γ − Γc

)2 (175)

as Γ approaches Γc. In this limit, the r̃∗,z∗z∗z∗z∗ term is negligible relative to the other terms,
and Eq. (118) simplifies to

r̃∗,t∗ + SL r̃∗,z∗ =

(
Γ − Γc

4

)
r̃∗ +

(
Γ − Γ0

4

)
r̃∗,z∗z∗ as Γ → Γ+

c . (176)

Equation (176) can be recast in a similar form to the linearized Ginzburg–Landau equation
(172) with the change of variables x∗ = 2z∗(Γ − Γ0)

−1/2, for which Eq. (176) becomes

r̃∗,t∗ +

(
2SL√
Γ − Γ0

)
r̃∗,x∗ =

(
Γ − Γc

4

)
r̃∗ + r̃∗,x∗x∗ as Γ → Γ+

c . (177)

In the limit of Γ → Γc, our parameters can be related to those in the linearized Ginzburg–
Landau equation (172) by u = 2SL(Γ−Γ0)

−1/2 and κ = (Γ−Γc)/4. As the Ginzburg–Landau
‡Huerre and Rossi, “Hydrodynamic instabilities in open flows”.
†P. Coullet, C. Elphick, and D. Repaux. “Nature of spatial chaos”. Phys. Rev. Lett. 58 (1987), 431–434.
∗G.T. Dee and W. van Saarloos. “Bistable systems with propagating fronts leading to pattern formation”.

Phys. Rev. Lett. 60 (1988), 2641–2644.
§V. Rottschäfer and A. Doelman. “On the transition from the Ginzburg–Landau equation to the extended

Fisher–Kolmogorov equation”. Physica D 118 (1998), 261–292.

https://doi.org/10.1103/PhysRevLett.58.431
https://doi.org/10.1103/PhysRevLett.60.2641
https://doi.org/10.1016/S0167-2789(98)00035-9
https://doi.org/10.1016/S0167-2789(98)00035-9
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equation is unstable when κ > 0 and undergoes an absolute-to-convective transition when
uac = 2κ1/2, we expect our membrane system to be unstable when Γ > Γc and undergo an
absolute-to-convective transition when SLac = 1

2
(Γ − Γ0)

1/2(Γ − Γc)
1/2 ≈

√
2
4
(Γ − Γc)

1/2 as
Γ → Γc. The latter condition agrees with the prediction of the series expansion in Eq. (170).

(e). The numerical solution of the linearized dynamics
We conclude our linear analysis of unstable lipid membrane tubes by presenting results from
numerical simulations, which confirm our theoretical predictions of the absolute-to-convective
transition. We first describe our numerical method to solve for the evolving membrane shape
over time, as predicted by the linear theory, and then show the space–time evolution of an
unstable, axisymmetric tube which is locally perturbed. One such result from our simulations
was already shown in Fig. 8.

An axisymmetric lipid membrane tube is described by three fundamental unknowns,
namely the perturbed shape r̃∗(z∗, t∗), surface tension λ̃∗(z∗, t∗), and in-plane axial velocity
ṽ2∗(z∗, t∗). The three corresponding governing equations can be combined into a single evo-
lution equation for r̃∗, as presented in Eq. (118). Thus, to solve for the membrane shape over
time according to the linearized dynamics, we need only to solve Eq. (118) numerically. To
this end, we observe that as Γ increases, SLac(Γ ) increases as well. Accordingly, when the
Föppl–von Kármán number is large, we are required to simulate systems with a large base
flow to observe the absolute-to-convective transition. In this case, to ensure the disturbance
does not flow past the edge of our computational domain, a large spatial domain is required.
To avoid this numerical inconvenience, we introduce the rescaled variables

T =

(
Γ − Γc

4

)
t∗ and Z =

(
Γ − Γc
Γ − Γ0

)1/2

z∗ , (178)

which are only physically meaningful when Γ > Γc; note that rescaling time by (Γ − Γc)
and space by (Γ − Γc)

1/2 is a common technique when studying universality properties of
the Ginzburg–Landau equation. ‡ By substituting Eq. (178) into the linearized evolution
equation (118) and recognizing the Scriven–Love number is correspondingly rescaled as

SL =
4SL

(Γ − Γc)1/2 (Γ − Γ0)1/2
, (179)

we obtain
r̃∗,T + SL r̃∗,Z = r̃∗ + r̃∗,ZZ

− 1

2

(Γ − Γc)

(Γ − Γ0)2
r̃∗,ZZZZ

. (180)

Importantly, in the absence of spatial variations, Eq. (180) simplifies to r̃∗,T = r̃∗, such that
the growth rate is independent of the Föppl–von Kármán number. Moreover, the rescaled
absolute-to-convective Scriven–Love number SLac is of order unity for all unstable Föppl–von
Kármán numbers Γ . Consequently, we may now use the same spatial and temporal domains
for all simulations.

‡M. Cross and H. Greenside. Pattern Formation and Dynamics in Nonequilibrium Systems. New York:
Cambridge University Press, 2009.

https://doi.org/10.1017/CBO9780511627200
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Figure 12: Space–time plots showing snapshots of the perturbed membrane tube radius
at different instants and for different values of the control parameters. From left to right,
Γ = 0.77, 2, and 6; from top to bottom, SL/SLac = 0, 0.5, 1, 1.5, and 2. The dashed
black lines show the edges of the growing wavepacket and were obtained by determining
the propagation speed of a front invading an unstable tube [see Eq. (187)].
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The results of our numerical simulations, in terms of the rescaled variables Z and T , are
shown in Fig. 12. All simulations were run on the fixed domain Z ∈ [−50, 50] and with the
initial condition r̃∗(Z, 0) = 0.1 exp(−10Z2). We chose three different Föppl–von Kármán
numbers: Γ = 0.77 ∈ [Γc,Γ1], Γ = 2 ∈ (Γ1,Γ2), and Γ = 6 > Γ2. For each choice of Γ ,
simulations were carried out at five values of the Scriven–Love number: SL/SLac = SL/SLac =
0, 0.5, 1, 1.5, and 2, which were chosen such that we sampled (i) absolutely unstable systems,
(ii) convectively unstable systems, and (iii) systems at the transition between the two.
As shown in Fig. 12, our numerical results confirm our theoretical calculation of SLac. In
particular, when SL < SLac, the instability grows to invade the entire domain, while if
SL > SLac then a stationary observer downstream will see a transient growth followed by a
decay at long times. Moreover, our simulations show that as an initial perturbation grows,
its edges propagate outward and invade the unstable tube at a constant velocity (see the
dashed lines in Fig. 12). In all cases, the velocity of the leading edge is positive; however the
velocity of the trailing edge is negative when SL < SLac, zero when SL = SLac, and positive
when SL > SLac. In the following section, we investigate the dynamics of the moving fronts
via linear methods.

(f). The marginal stability criterion and propagating front speed

To determine the speed at which an initially local perturbation invades the neighboring
unperturbed tube, we apply the classical marginal stability criterion ‡, †, ∗—one of the many
well-established techniques for studying front propagation. Consider an initially localized
wavepacket consisting of perturbations of the form ∼ exp[i(q∗z∗ − ω∗t∗)], which is growing
and spreading in an unstable system. If an observer is moving at a speed slightly greater
than the front velocity Vf , they will see an unperturbed tube as they remain ahead of the
growing wavepacket. If, on the other hand, an observer moves slightly slower than the front
velocity, they will then see the tube changing shape: either growing or decaying, based on
the sign of the growth rate in the traveling frame. The marginal stability criterion is based
on the hypothesis that an observer traveling at the front speed Vf would see the system in
its marginal state, i.e. on the verge of being deformed. Thus, the marginal stability criterion
states that in the reference frame of the front connecting the deformed and undeformed
regions of the tube, an observer perceives perturbations of zero growth rate.

In terms of our dimensionless quantities, the front velocity Vf is captured by what we
call the Scriven–Love number of the front, SLf := ζVfR/kb. In the reference frame of the
front, the Doppler-shifted axial position and frequency are denoted with a ‘†’ accent, and
are respectively given by

z∗† = z∗ − SLf t
∗ and ω∗

† = ω∗ − SLf q
∗ . (181)

‡Dee and Langer, “Propagating pattern selection”.
†E. Ben-Jacob et al. “Pattern propagation in nonlinear dissipative systems”. Physica D 14 (1985), 348–

364.
∗van Saarloos, “Front propagation into unstable states. II. Linear versus nonlinear marginal stability and

rate of convergence”.

https://doi.org/10.1016/0167-2789(85)90094-6
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A mode in our wave packet can then be expressed as [cf. Eq. (119)]

exp
{
i
[
q∗z∗ − ω∗t∗

]}
= exp

{
i
[
q∗
(
z∗† + SLf t

∗)− (ω∗
† + SLf q

∗)t∗]}
= exp

{
i
[
q∗z∗† − ω∗

† t
∗]} , (182)

for which the marginal stability criterion is expressed as

ω†
∗(i) = 0 . (183)

We additionally note that in the reference frame of the front, i.e. the frame in which the
front is stationary, the edge of the wavepacket invading the unperturbed tube is traveling at
zero group velocity—for which

dω∗
†

dq∗

∣∣∣∣
q∗f

= 0 , thus requiring Re
{
dω∗

†

dq∗

∣∣∣∣
q∗f

}
= 0 and Im

{
dω∗

†

dq∗

∣∣∣∣
q∗f

}
= 0 .

(184)
In Eq. (184), q∗f is the wavenumber associated with the front, which characterizes spatial
oscillations at the point where the wavepacket invades the unperturbed tube.

With Eq. (183), the two conditions in Eq. (184), and the real and imaginary components
of the dispersion relation ωf

∗† = ω∗(q∗f )−SLf q
∗
f [see Eq. (181)2], we have five equations which

solve for the five unknowns qf∗(r), qf∗(i), ωf
∗†(r), ωf

∗†(i), and SLf in terms of the Föppl–von Kármán
number Γ . Note that when calculating ω∗(q∗f ) via the dispersion relation (133), the Scriven–
Love number SL is in general not equal to the dimensionless front velocity SLf . Interestingly,
the system of equations under consideration is almost identical to those in the absolute
versus convective analysis, in which the saddle point (q∗0, ω

∗
0) is replaced by (q∗f , ω

∗
f )—the

one exception being that before, ω∗
0 = SL q∗0 + i [. . .] while now, ωf

∗† = (SL − SLf) q
∗
f + i [. . .]

[cf. Eqs. (133), (181)]. In this case, the front wavenumber q∗f is nearly identical to the
absolute wavenumber q∗0, with one important difference. In particular, as discussed below
Eq. (153), we limited physically meaningful absolute wavenumbers to those with negative
imaginary components, such that our spatial ansatz grew downstream, in the direction of
the base flow. In this case, however, fronts can propagate in either direction (regardless of
the base flow direction), so we place no restrictions on the sign of qf∗(i). Accordingly, the real
and imaginary components of the front wavenumber are given by (cf. Table 5)

qf
∗(r) = 0

qf
∗(i) =

±1

2
√
3

√
4Γ − 1 + g(Γ )

when Γ ∈ ΩA (185)

and 
qf
∗(r) = ± 1

4

√
−12Γ + 3 + g(Γ )

qf
∗(i) =

±1

4
√
3

√
4Γ − 1 + g(Γ )

when Γ ∈ ΩB , (186)

where g(Γ ) is defined in Table 5. As can be seen from Eq. (141) in the saddle point analysis,
the ‘±’ prefactor of qf∗(i) in Eqs. (185) and (186) leads to the result SL − SLf = ±SLac. The
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leading and trailing dimensionless front velocities, SL+
f and SL−

f , are then respectively given
by

SL+
f = SL + SLac and SL−

f = SL − SLac , (187)

where SLac is provided in Table 5 for all values of Γ > Γc.
Equation (187) presents several useful predictions of the linear theory. First, Eq. (187) is

consistent with our observations from Fig. 12: the velocity of the trailing front determines if
the system is (i) absolutely unstable, with SL−

f < 0, (ii) convectively unstable, with SL−
f > 0,

or (iii) at the absolute-to-convective transition, with SL−
f = 0. Next, Eq. (187) predicts that

SLac(Γ ) is the front propagation speed when there is no base flow, i.e. for which SL = 0.
Additionally, Eqs. (185)–(187) confirm the connection ‡, † between the marginal stability
criterion and absolute-to-convective transition. In particular, the saddle point bifurcations
in Fig. 11 also represent transitions in the dynamics of the propagating fronts. Specifically,
when Γ ∈ [Γc,Γ1] ∪ [Γ2,∞), then qf

∗(r) = 0, ωf
∗(r) = 0, and the front evolves as a steadily

traveling envelope. In contrast, when Γ ∈ (Γ1,Γ2), qf∗(r) ̸= 0 and ωf
∗(r) ̸= 0—for which the

front oscillates in both time and space, and a pattern is selected in the wake of the front.
We thus find the Föppl–von Kármán number governs whether or not a pattern is selected as
the front propagates.

(g). The understanding of Γ1 and Γ2 as Lifshitz points
Results from our application of the marginal stability criterion to unstable membrane tubes
are captured by Eqs. (185)–(187), which highlight the importance of the two particular
values, Γ1 and Γ2, of the Föppl–von Kármán number. The predicted bifurcations in the
wavenumber of the emerging state are reminiscent of the so-called Lifshitz points first intro-
duced in the context of phase transitions, ∗, § at which the lowest-order gradient term in the
free energy vanishes. Lifshitz points also arise in the study of extended Fisher–Kolmogorov
equations—well-studied in the front propagation literature and known to possess several uni-
versal properties. For a scalar field ϕ ∈ R and constant real parameter γ, one such equation
can be written as

ϕ,t = ϕ,xx − γ ϕ,xxxx + ϕ − ϕ3 . (188)

Moreover, a field ϕ evolving according to Eq. (188) is known to undergo steady-to-oscillatory
bifurcations in the front dynamics at the universal value of γ = γc =

1
12

. ♯, ∥ This particular
value of γ can be understood as a Lifshitz point, where the q2 term in the dispersion relation

‡W. van Saarloos. “Front Propagation into Unstable States: Some Recent Developments and Surprises”.
Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. Ed. by F.H. Busse
and L. Kramer. Boston: Springer US, 1990, pp. 499–508.

†J.-M. Chomaz and A. Couairon. “Propagating pattern selection and causality reconsidered”. Phys. Rev.
Lett. 84 (2000), 1910–1913.

∗R.M. Hornreich, M. Luban, and S. Shtrikman. “Critical behavior at the onset of k⃗-instability on the
λ-line”. Phys. Rev. Lett. 35 (1975), 1678–1681.

§L. Kramer et al. “New results on the electrohydrodynamic instability in nematics”. Liq. Cryst. 5 (1989),
699–715.

♯Dee and van Saarloos, “Bistable systems with propagating fronts leading to pattern formation”.
∥M.C. Cross and P.C. Hohenberg. “Pattern formation outside of equilibrium”. Rev. Mod. Phys. 65

(1993), 851–1112.
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https://doi.org/10.1103/PhysRevLett.35.1678
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vanishes at the saddle point, ‡ and for which higher order gradients are required for an
appropriate description of the system. †

In the case of lipid membrane tubes, we investigate the nature of Γ1 and Γ2 by first
recalling that at long times, the dispersion relation in the reference frame of the front can
be approximated by

ω∗
† ≈ ωf

∗† +
1

2

d2ω∗
†

d(q∗f )
2

∣∣∣∣
q∗f

(
q∗ − q∗f

)2
, (189)

where ωf
∗† := ω∗

† (q
∗
f ) and (dω∗

†/dq
∗)|q∗f = 0 from Eq. (184). In what follows, we show that when

Γ = Γ1 and Γ = Γ2, the right hand side of this approximation vanishes—which demonstrates
that Γ1 and Γ2 are Lifshitz points. To this end, recall that by definition, ωf

∗† = ωf
∗†(r) according

to the marginal stability criterion (183), and thus

ωf
∗†(Γ1) = ωf

∗†(Γ2) = 0 . (190)

Next, we recognize that Eq. (181)2 implies d2ω∗
†/dq

2
∗ = d2ω∗/dq2∗; by differentiating the

dispersion relation Eq. (133) twice, we obtain

d2ω∗
†

dq2∗

∣∣∣∣
q∗f

= − i

8

(
4Γ − 1 + 12(q∗f )

2
)
. (191)

To calculate the front wavenumber q∗f , we note that ΩA and ΩB coincide at Γ = Γ1 and
Γ = Γ2, and the front wavenumber coincides at these values of the Föppl–von Kármán
number as well. We find that in ΩA, where g(Γ ) = −

√
16Γ 2 − 104Γ + 73, g(Γ1) = g(Γ2) = 0;

consequently, Eq. (185) simplifies to q∗f = i
√

(4Γ − 1)/12 at Γ1 and Γ2. Substituting this
result into Eq. (191) yields

d2ω∗
†

dq2∗

∣∣∣∣
q∗f

= − i

8

(
4Γ − 1− 12

(
qf
∗(i))2) = 0 at Γ = Γ1 and Γ = Γ2 . (192)

With Eqs. (189), (190), and (192), we find that at Γ = Γ1 and Γ = Γ2, the usual long-time
approximation of the dispersion relation is insufficient. Accordingly, Γ1 and Γ2 are identified
as Lifshitz points, for which the expansion in Eq. (189) needs to be supplemented with higher
order terms for a correct first approximation of the front dynamics. We thus find

ω∗
† ≈ 1

6

d3ω∗
†

dq 3
f

∣∣∣∣
q∗f

(
q∗ − q∗f

)3
= − i

2
q∗f
(
q∗ − q∗f

)3 at Γ = Γ1 and Γ = Γ2 . (193)

Our finding that Γ1 and Γ2 are Lifshitz points is consistent with prior investigations of front
propagation in the extended Fisher–Kolmogorov equation. In particular, we realize the
rescaled membrane evolution equation (180) can be mapped to Eq. (188) by defining

γ(Γ ) =
Γ − Γc

(Γ − Γ0)2
, (194)

‡W. Zimmermann. “Propagating fronts near a Lifshitz point”. Phys. Rev. Lett. 66 (1991), 1546–1546.
†Hornreich, Luban, and Shtrikman, “Critical behavior at the onset of k⃗-instability on the λ-line”.
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for which γ(Γ1) = γ(Γ2) = 1
12

. Accordingly, both Γ1 and Γ2 correspond to the previously
obtained critical value of γc = 1

12
.

To understand how two bifurcation points arise in the dynamics of unstable membrane
tubes, such that fronts are oscillatory when Γ ∈ (Γ1,Γ2) and monotonic otherwise, we inves-
tigate the linearized evolution equation in terms of rescaled variables (180). First, consider
a tube with no base flow (SL = 0) and vanishing bending modulus—such that kb → 0, and
Γ → ∞. In this case, the fourth-order term in Eq. (180) is negligible. The resultant equation
is known as the linearized Fisher–Kolmogorov equation, and has a dispersion relation of the
form ω∗ ∼ i(1− q2∗) for the ansatz r̃∗ ∼ exp[i(q∗Z −ω∗T )]. If we decompose q∗ into real and
imaginary parts, then the ansatz can be expressed as r̃∗ ∼ exp(−q∗(i)Z) exp[i(q∗(r)Z − ω∗T )],
for which q∗

(r) captures spatial oscillations while q∗
(i) describes an exponentially decaying

envelope—for example, that at the leading edge of the front. The dispersion relation is then
given by ω∗ ∼ i[1 + (q∗

(i))2 − (q∗
(r))2] + 2q∗

(r)q∗
(i), from which we see that ω∗

(i) is maximized if
q∗
(r) → 0. Accordingly, in the absence of bending terms, the growth rate is maximal when

there is no spatial modulation, i.e. the front is monotonic.
Since we expect a monotonic front will dominate the long-time dynamics of the linearized

Fisher–Kolmogorov equation when γ(Γ ) = 0, the oscillations in the front dynamics of a
membrane tube must arise from the fourth-order bending term in Eq. (180). One could in
principle see this by once again examining the imaginary component of the frequency, but
a more straightforward approach involves assuming the ansatz r̃∗ ∼ sin(q∗

(r)Z) exp[−q∗(i)Z −
iω∗T ]—which once again involves an exponentially damped sinusoidal function in space, as
we would expect at the leading edge of the front. If we also posit that q∗(r) = q∗

(i) for the
simplicity of our argument, then ∂4r̃∗/∂Z4 ∼ −r̃∗. The linearized evolution equation (180)

0 2 4 6 8 10
0

0.1

0.2

oscillating front

monotonic front

Γ

γ(Γ )

Figure 13: Plot of the coefficient γ, defined in Eq. (194), as a function of the Föppl–von
Kármán number Γ . The rescaled evolution equation (180) shows γ captures the importance
of the fourth-order bending forces. At large Γ , bending forces are dominated by tension
forces, and γ is small. At intermediate Γ , bending forces are more relevant, and γ crosses
the critical value of γc = 1

12 (dashed gray line) above which fronts pearl. While bending
forces continue to be more relevant as Γ → Γ+

c , only the longest wavelength modes are
unstable; the bending forces of these unstable modes decreases. Accordingly, γ decreases
as Γ approaches the instability threshold. Note γ intersects γc at Γ = Γ1 and Γ = Γ2.
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can then be written as ∂r̃∗/∂T ∼ (1+ γ)r̃∗ + ∂2r̃∗/∂Z2, from which we find the fourth-order
derivative in fact tends to favor unstable oscillations in space. This result will be confirmed
in our nonlinear analysis in §8, where spatial oscillations at the leading edge of the front
eventually grow and saturate to yield a pearled morphology.

Returning to our original question of why two bifurcation points arise, let us begin with
a membrane tube with kb ≈ 0, Γ → ∞, and γ ≈ 0. In this case, the fourth-order term
in the evolution equations is negligible, and the front is monotonic. If we imagine steadily
increasing the bending modulus, however, then Γ will decrease and γ will increase (see Fig.
13). As we continue to increase kb and decrease Γ , Γ2 marks the first point where bending
forces are large enough to favor an oscillating front. As the bending modulus is further
increased and Γ approaches Γc, however, the marginally stable wavenumber q∗ms diverges [see
§7 (d)]. In this case, the modes that are unstable have progressively longer wavelengths,
and the bending cost of such modes commensurately decreases. Thus, Γ1 indicates where
the fourth-order bending terms become negligible once again, and we find the competition
between bending forces and long-wavelength oscillations is captured by γ(Γ )—as defined in
Eq. (194) and shown in Fig. 13.

8. The nonlinear dynamics
Thus far, our temporal and spatiotemporal linear stability analysis focused entirely on the
linearized governing equations. Within the linear theory, we found (i) initially localized
perturbations to unstable tubes grow and invade the undeformed region via propagating
fronts (see Fig. 12), (ii) the front speed is captured by the marginal stability criterion, and
(iii) the value of the Föppl–von Kármán number dictates whether or not spatial oscillations
are favored at the leading edge of the front. However, by definition, our linear analysis does
not include nonlinear saturating effects—which, in experimental systems, would eventually
dominate the unstable behavior.

In this section, we investigate the nonlinear dynamics of lipid membrane tubes via sim-
ulations under axisymmetric conditions. Furthermore, to better understand the physical
mechanisms that arise when shape deformations become large and nonlinear effects domi-
nate the dynamics, we develop a weakly nonlinear model for membrane tubes. In particular,
we extend Eq. (180) by starting from the general governing equations, considering only ax-
isymmetric deformations, and retaining some of the nonlinear terms. The resultant nonlinear
evolution equation is useful in that it (i) provides a simplified physical understanding of non-
linearities in the system, and (ii) is straightforward to solve numerically. The robustness
of our weakly nonlinear model is tested by comparing its predictions to results from fully
nonlinear simulations. We find that both the fully and weakly nonlinear simulations predict
the formation of a thin, atrophied tube once the shape change saturates, and both types
of simulations exhibit an absolute-to-convective transition at the base flow speed SLac(Γ )
predicted by the linear theory. Unfortunately, the weakly nonlinear evolution equation is
not able to capture the behavior of the oscillating fronts that arise when Γ ∈ (Γ1,Γ2). The
fully nonlinear simulations, on the other hand, reveal how a pearled morphology emerges
to connect the atrophied and unperturbed cylindrical regions when Γ ∈ (Γ1,Γ2)—while no
pearling occurs when Γ is outside this range.
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(a). The nonlinear axisymmetric governing equations
We now return to the general governing equations presented in Chapter VI, §1. Though it
is possible to develop general numerical methods to solve for the membrane dynamics, ‡, †

such implementations would be computationally expensive given that we are only interested
in axisymmetric disturbances. In what follows, we represent the axisymmetric membrane
surface as a curve in the r–z plane, and then provide two different surface parametrizations.
As we will see subsequently, these surface representations allow us to implement nonlinear
simulations and develop a nonlinear extension of the evolution equation.

The area parametrization
As shown in Fig. 14, we denote the z-axis to be the axis of rotational symmetry, and r to be
the distance from the z-axis. Any axisymmetric surface can then be described as a curve in
the r–z plane. Just as a curve can be parametrized by its arc length, here we parametrize
an axisymmetric membrane surface by its area a—as motivated by prior investigations. ∗, §

With rotational symmetry about the z-axis, we have

da = 2πr
√
dr2 + dz2 , (195)

such that we can define an angle φ satisfying

dr

da
=

cosφ

2πr
and dz

da
=

sinφ

2πr
, (196)

as depicted in Fig. 14b. We parametrize the surface position as

x(θ, a, t) = r(a, t) er(θ) + z(a, t) ez , (197)

and calculate the basis vectors to be given by

a1 = reθ , a2 =
cosφ

2πr
er +

sinφ

2πr
ez , and n = sinφ er − cosφ ez , (198)

where the basis vectors a1 and a2 were chosen such that the unit normal n points outwards.
We next calculate the metric and curvature tensors as

aαβ = diag
(
r2, (2πr)−2

)
and bαβ = − diag

(
r sinφ, φ′/(2πr)

)
. (199)

In Eq. (199) and from now on, we use the notation ( · )′ := ( · ),a to denote partial differentia-
tion with respect to the area coordinate a; as we assume axisymmetry, the partial derivative

‡Sahu et al., “Arbitrary Lagrangian–Eulerian finite element formulation for curved and deforming surfaces.
I. General theory and application to fluid interfaces”.

†A. Torres-Sánchez, D. Millán, and M. Arroyo. “Modelling fluid deformable surfaces with an emphasis
on biological interfaces”. J. Fluid Mech. 872 (2019), 218–271. arXiv: 1812.02837.

∗A. Agrawal and D.J. Steigmann. “Modeling protein-mediated morphology in biomembranes”. Biomech.
Model. Mechan. 8 (2009), 371–379.

§Y.A.D. Omar et al. “Non-axisymmetric shapes of biological membranes from locally induced curvature”.
Biophys. J. 119 (2020), 1065–1077.
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Figure 14: Schematic of an axisymmetric surface of revolution (a), and its representation
as a curve in the r–z plane (b). In both cases, the basis vectors a1, a2, and n are shown.
The angle φ depicted in (b) is introduced for notational and computational convenience.

of any quantity with respect to θ is zero. With the metric and curvature components, we
calculate the mean and Gaussian curvature as

H = − 1

2

(
2πr φ′ +

1

r
sinφ

)
and K = 2π sinφφ′ . (200)

Finally, the nonzero Christoffel symbols are found to be

Γ2
11 = −2πr2 cosφ , Γ1

21 = Γ1
12 =

cosφ

2πr2
, and Γ2

22 = − cosφ

2πr2
. (201)

At this point, we substitute the geometric quantities obtained in Eqs. (195)–(201) into
the general governing equations in Chapter VI, §1. We denote u := v · a2 = v2 to be the
in-plane velocity for notational convenience, and recognize the out-of-plane velocity v = v ·n
is given by

v = sinφ r,t − cosφ z,t . (202)
The continuity, in-plane, and shape equations are then respectively given by

u′ − 2vH = 0 , (203)

ζ sinφ

(
φ′u

πr2
− 2

r
v′
)

+ λ′ = 0 , (204)

and

JpK + 2λH − 2kbH
(
H2 −K

)
− kb

(
4π cosφH ′ + 4π2r2H ′′

)
(205)

+ 2ζ
(
− 4πrvφ′H + φ′ r−1 u cosφ − sinφ cosφ (2πr3)−1 u − 2v

(
2H2 −K

))
= 0 ,

where the continuity equation (203) was used to simplify both the in-plane (204) and shape
(205) equations. By defining the quantity

L := kb 2πr
2H ′ (206)

such that the fourth term in Eq. (205) can be written as −2πL′, and also introducing an
auxiliary variable for the in-plane velocity gradient

w := u′ , (207)
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the three governing equations (203)–(205) can be written as a system of eight first-order
ordinary differential equations, given by ‡

r′ =
cosφ

2πr
, (208)

z′ =
sinφ

2πr
, (209)

φ′ =
−1

2πr

(
2H +

1

r
sinφ

)
, (210)

H ′ =
L

2πr2 kb
, (211)

L′ =
1

2π

(JpK + 2λH − 2kbH
(
H2 −K

)
+ παβ bαβ

)
, (212)

λ′ = ζ sinφ

(
2

r
v′ − φ′u

πr2

)
, (213)

u′ = w , (214)
and

w′ = 2v′H + 2vH ′ , (215)

where the παβbαβ term in Eq. (212) is given by the second line of Eq. (205). We note that
while the additional unknown w is not required to pose the governing equations as a system
of first-order ordinary differential equations, it is useful when solving the system of equations
numerically.

The axial distance parametrization
While the area parametrization can describe axisymmetric surfaces of arbitrary geometry, it
is also useful to consider an axisymmetric parametrization specialized to nearly cylindrical
surfaces, given by

x(θ, z, t) = r(z, t) er(θ) + z ez , (216)

where er and ez are the usual orthonormal basis vectors in a cylindrical coordinate system.
The surface parametrization in Eq. (216) is capable of describing nonlinear deformations
that do not break a one-to-one mapping with the base cylindrical shape, and will be useful
in subsequent analysis when we develop a weakly nonlinear model. Following the differential
geometric surface description provided in Chapter II, we calculate the basis vectors as

a1 = r eθ , a2 = r,z er + ez , and n = (a22)
−1/2

(
er − r,z ez

)
, (217)

where a22 = a2 · a2 = 1+ r2,z is the (z, z) component of the metric tensor, and is introduced
for notational convenience. The metric and curvature tensors are given by

aαβ = diag
(
r2, 1 + r 2

,z

)
and bαβ = (a22)

−1/2 diag
(
− r , r,zz

)
, (218)

‡Omar et al., “Non-axisymmetric shapes of biological membranes from locally induced curvature”.
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with which we calculate the mean and Gaussian curvatures, respectively, as

H =
−1

2r (a22)1/2

(
1 − (a22)

−1 r,zz r
)

and K =
−r,zz
r (a22)2

. (219)

Finally, the nonzero Christoffel symbols are found to be

Γ1
12 = Γ1

21 =
r,z
r
, Γ2

11 = −(a22)
−1 r,z r , and Γ2

22 = (a22)
−1 r,z r,zz . (220)

By substituting Eqs. (217)–(220) into the general governing equations [Chapter VI, Eqs.
(4)–(6)], and after much algebra, we obtain the continuity, in-plane z, and shape equations
respectively as

v2,z + v2 r,z

(
1

r
+

r,zz
1 + r2,z

)
+

r,t

r
(
1 + r2,z

) (1 − r,zz r

1 + r2,z

)
= 0 , (221)

2ζ

r

(
r,t r,z r,zz
1 + r2,z

− r,zz v
2 − r,zt

)
+
(
1 + r2,z

)
λ,z = 0 , (222)

and

JpK + 2λH − 2kbH
(
H2 − K

)
− kb
r (1 + r2,z)

1/2
· ∂

∂z

(
r

(1 + r2,z)
1/2

∂H

∂z

)
(223)

− 2ζ

(
r,t

r2(1 + r2,z)
3/2

+
r,t r,zz

r(1 + r2,z)
5/2

− v2r,z
r2(1 + r2,z)

1/2
+

v2r,zr,zz
r(1 + r2,z)

3/2

)
= 0 .

We note that here, as before, the in-plane velocity component v2 is defined as v2 = v · a2,
where in this case a2 = (r,z er + ez)/(1 + r2,z) [cf. Eqs. (217) and (218)].

(b). The weakly nonlinear analysis
We are now prepared to begin our investigation of nonlinear effects in the dynamics of lipid
membrane tubes. Here we derive a weakly nonlinear model by retaining some, but not all,
nonlinearities of the general governing equations. In particular, we keep nonlinear terms that
are algebraic in the perturbed radius, but neglect terms involving products of derivatives, as
will be described in detail below. With this assumption, we first substitute the geometry and
kinematics of the axisymmetric, axial distance parametrization into the general governing
equations, and then condense the results into a single weakly nonlinear evolution equation
for the membrane shape.

To begin, for an axisymmetric lipid membrane in one-to-one correspondence with an un-
perturbed cylinder and parametrized as in Eq. (216), membrane dynamics are governed by
Eqs. (221)–(223). While the general equations are too complex to be treated analytically,
we now seek a description which both maintains some of the nonlinearities and is also ana-
lytically tractable. To this end, we simplify the problem by assuming the perturbed shape
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is weakly varying, such that derivatives of r are small. Defining ∂ j
z r := ∂ jr/∂zj, we express

our assumption mathematically as

∂ j
z r ∗ ∂k

z r is

{
negligible if j ≥ 1 and k ≥ 1

non-negligible otherwise
. (224)

We additionally assume that spatial gradients of the membrane shape are weakly coupled to
its temporal evolution, for which

r,t ∗ ∂ j
z r is

{
negligible if j ≥ 1

non-negligible otherwise
. (225)

With Eq. (224), our previously calculated expression for a22 = 1+ r2,z in Eq. (218) simplifies
to unity. The mean curvature, Gaussian curvature, and nonzero Christoffel symbols are then
given by [cf. Eqs. (219) and (220)]

H = − 1

2r

(
1 − r r,zz

)
, K = − r,zz

r
,

Γ1
12 = Γ1

21 =
r,z
r
, and Γ2

11 = −rr,z .
(226)

By substituting Eq. (226) into Eqs. (221)–(223) and applying the weakly nonlinear assump-
tions in Eqs. (224) and (225), we obtain the governing equations

rv2,z + r,zv
2 + r,t = 0 , (227)

−2ζ
(
r,zt + v2 r,zz

)
+ rλ,z = 0 , (228)

andJpK + λ

(
r,zz − 1

r

)
+ 2ζ

(
v2,z r,zz − v2 r,z

r2
− r,t

r2

)
− kb

(
−1

4r3
+
r,zz
4r2

+
1

2
r,zzzz

)
= 0 ,

(229)

where the continuity equation (227) was used to simplify the shape equation (229).
While Eqs. (227)–(229) constitute three equations for the three unknowns v2, λ, and r,

we have not yet commented on the magnitude of the in-plane velocity or surface tension. To
this end, we expand both quantities as

v2(z, t) = v2(0) + v2(1)(z, t) and λ(z, t) = λ(0) + λ(1)(z, t) , (230)

where v2(0) and λ(0) are assumed to be constant quantities. In Eq. (230), we do not introduce
the small parameter ϵ, and therefore employ a different notation from that in the linearized
theory in §2. We now make the two additional assumptions that

v2(1) ∗ ∂ j
z r and λ(1) ∗ ∂ j

z r are

{
negligible if j ≥ 1

non-negligible otherwise ,
(231)
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in a manner consistent with our previous assumptions (224, 225). With Eqs. (230) and (231),
the in-plane equation (228) becomes

− 2ζ
(
r,zt + v2(0) r,zz

)
+ r λ(1),z = 0 . (232)

We simplify the second term in Eq. (232) by recognizing

r λ(1),z =
(
r λ(1)

)
,z
− r,z λ(1) ≈

(
r λ(1)

)
,z
, (233)

where Eq. (231) was used in the last step. Equation (232) can then be integrated in z to
yield

− 2ζ
(
r,t + v2(0) r,z

)
+ r λ(1) = c(t) , (234)

for some integration constant c(t). However, we assume perturbed quantities go to zero as
z → ∞, such that c(t) = 0, in which case the perturbed surface tension is given by

λ(1) =
2ζ

r

(
r,t + v2(0) r,z

)
. (235)

According to Eq. (235), the perturbed surface tension can be calculated from the evolution
of the membrane shape over time.

To obtain the perturbed shape equation, we first recognize the membrane equations de-
scribing the base state (12) require JpK = λ(0)/R − kb/(4R

3), where R is once again the
unperturbed cylinder radius. By substituting this expression for the pressure drop, as well
as Eq. (235), into Eq. (229), simplifying with our assumptions in Eqs. (224) and (231), and
rearranging terms, we obtain

ζR

kb
r,t +

ζv2(0)R

kb
r,z

=
R2 λ(0)
4kb

(
r2

R2
− r

R
+
r2 r,zz
R

)
− 1

16

(
r2

R2
− R

r
+ Rr,zz + 2r2Rr,zzzz

)
.

(236)

Equation (236) is a single equation for the membrane shape r, and can easily be non-
dimensionalized with Eqs. (107)–(109) and the additional definition r∗ := r/R, with which
we obtain

r∗,t∗ + SL r∗,z∗ =
Γ

4

(
r2∗ − r∗ + r2∗r

∗
,z∗z∗

)
− 1

16

(
r2∗ − 1

r∗
+ r∗,z∗z∗ + 2r2∗r

∗
,z∗z∗z∗z∗

)
. (237)

At this point, we seek to express algebraic quantities in Eq. (237) in term of (r∗−1), namely
the dimensionless deviation from the base radius. To this end, we substitute r2∗ − r∗ =
(r∗ − 1) + (r∗ − 1)2 and r2∗ − 1/r∗ = 3(r∗ − 1) + (r∗ − 1)2 − (r∗ − 1)2/r∗ into Eq. (237) and
rearrange terms to obtain

r∗,t∗ + SL r∗,z∗ =

(
Γ − Γ0

4

)
r∗,z∗z∗ −

1

8
r∗,z∗z∗z∗z∗ +

(
Γ − Γc

4

)(
r∗ − 1

)
+

(
Γ − Γ0

4

)(
r∗ − 1

)2
+

1

16

(r∗ − 1)2

r∗
+
[
(r∗ − 1)2 + 2(r∗ − 1)

]( Γ

4
r∗,z∗z∗ − 1

8
r∗,z∗z∗z∗z∗

)
. (238)
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Finally, we once again assume the membrane shape is weakly varying, such that (r∗ − 1)j ∗
∂kz∗r

∗ is negligible relative to (r∗ − 1)j for k ≥ 1. In this case, Eq. (238) simplifies to

r∗,t∗ + SL r∗,z∗ =

(
Γ − Γ0

4

)
r∗,z∗z∗ − 1

8
r∗,z∗z∗z∗z∗ +

(
Γ − Γc

4

)(
r∗ − 1

)
+

(
Γ − Γ0

4

)(
r∗ − 1

)2
+

1

16

(r∗ − 1)2

r∗
,

(239)

which is a single equation for the shape evolution of a perturbed membrane tube. As ex-
pected, Eq. (239) simplifies to Eq. (118) when we recognize ϵr̃∗ = r∗−1 and neglect nonlinear
terms.

While Eq. (239) is indeed a single nonlinear equation for the dynamics of a perturbed
lipid membrane tube, solving the equation numerically presents the same difficulties as those
from the linearized case [see discussion in §7 (e)]. We thus make the change of variables in
Eqs. (178) and (179), for which Eq. (239) can be written as

r∗,T + SL r∗,Z = r∗,ZZ
− 1

2

(Γ − Γc)

(Γ − Γ0)2
r∗,ZZZZ

+ f(r∗) , (240)

where the forcing term f(r∗) is given by

f(r∗) =
(
r∗ − 1

)
+

(
Γ − Γ0
Γ − Γc

)(
r∗ − 1

)2
+

(
Γ0

Γ − Γc

)
(r∗ − 1)2

r∗
. (241)

Equation (240) has the structure of an extended Fisher–Kolmogorov equation, with the
forcing term f(r∗) plotted for three values of Γ in Fig. 15. Note that in the absence of
temporal variations (r∗,T = 0) and spatial gradients (r∗,Z = 0), the evolution equation (240)
simplifies to f(r∗) = 0. As shown in Figs. 15a and 15b, the slope of f(r∗) at r∗ = 1 is
positive, implying the base solution is unstable. However, in all cases there exists another
solution of f(r∗) = 0, which we denote the ‘homogeneous radius’ r∗h, that is found to be
given by

r∗h = 1 +
1

8Γ − 2

(
3 − 8Γ +

√
16Γ − 3

)
. (242)

As f ′(r∗h) < 0, a tube of radius r∗h is stable. Figure 15c plots the homogeneous radius as
a function of the Föppl–von Kármán number, and shows 0 < r∗h < 1 for all Γ > Γc. The
evolution equation thus predicts that when fronts are propagating along the z-axis away from
an initially localized perturbation, the thin tube that develops behind the front is of radius
r∗h. Moreover, the homogeneous radius tends to zero in the limit Γ → ∞, i.e. for a fluid film
with no bending modulus: a result consistent with our previous findings. ‡ However, while
the nonlinear extended Fisher–Kolmogorov equation (240) provides a simplified description
of the dynamics of lipid membrane tubes, it includes only weak nonlinearities and is expected
to be quantitatively predictive only in limited regimes of mild tube deformations. We now
proceed to test the validity of Eq. (240) by comparing its shape predictions to results from
simulations of the full nonlinear equations.

‡Sahu et al., “Arbitrary Lagrangian–Eulerian finite element formulation for curved and deforming surfaces.
I. General theory and application to fluid interfaces”.
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Figure 15: (a),(b): Plots of the weakly nonlinear forcing term f(r∗) in Eq. (241), at three
different Föppl–von Kármán numbers: Γ = 0.77, Γ = 2, and Γ = 6. Open circles indicate
stable solutions where f(r∗) = 0. Here, (b) shows a zoom of the forcing term near r∗ = 1.
(c) Plot of the homogeneous radius r∗h, as a function of the Föppl–von Kármán number,
for all unstable Γ > Γc.

(c). The comparison of weakly and fully nonlinear simulations
We now compare numerical simulations of the weakly nonlinear evolution equation (240)
and the fully nonlinear axisymmetric equations (208)–(215). In all simulations, we choose
for the physical dimensions to be set by the initial radius R, the bending modulus kb, and the
intramembrane viscosity ζ; these fundamental parameters are set to unity in our numerical
implementation. In this manner, the only remaining free parameters are the cylinder length
L (expressed in units of R), the base surface tension Λ (expressed in units of kb/R2), and
the base flow velocity [expressed in units of kb/(ζR)]. Given our choice of fundamental
parameters, there is no longer a distinction between dimensional and dimensionless quantities
[cf. Eq. (108)]; we accordingly drop the ‘∗’ accent for the remainder of this section. Moreover,
the base tension is identical to the Föppl–von Kármán number, and the base flow velocity is
identical to the Scriven–Love number. Accordingly, each base state is completely specified
by choosing the three parameters L, Γ , and SL.

Once the base state is chosen, we apply an initial perturbation at time t = 0. For all of
the results presented here, we apply an inward Gaussian disturbance, such that the initial
radius is given by

r(z, t = 0) = R

[
1 − ϵ exp

(
− (z − µ̄)2

2σ2

)]
, (243)

where the Gaussian is centered at z = µ̄ and has half-width σ = 2R. In Eq. (243) and
from now on, ϵ = 10−3 is a small parameter. Additionally, we relate the axial and area
parametrizations of an unperturbed tube via z = a/(2πR), for which a ∈ [0, 2πRL].

Fully nonlinear simulations: Tube with a base flow
The fully nonlinear equations (208)–(215) are solved with an in-house code similar to that
described in our prior work, ‡ which employs the boundary-value problem solver BVP5C in

‡Omar et al., “Non-axisymmetric shapes of biological membranes from locally induced curvature”.
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MATLAB—suitable for a system of first-order ordinary differential equations. The eight cor-
responding boundary conditions for a tube with a base flow are given by

r(0) = R , z(0) = 0 , λ(0) = Λ , H(0) = H0 ,

u(0) = u0 , w(0) = 0 , φ(A) = φ0 , L(A) = 0 ,
(244)

where for notational convenience we introduced the following quantities to correspond to an
unperturbed tube:

H0 :=
−1

2R
, φ0 :=

π

2
, u0 := 2πR SL , and A := 2πRL . (245)

We also centered the initial perturbation at µ̄ = L/4, where L was chosen to be large enough
that the simulation results were not affected by the finite size of the system.

The results of our nonlinear simulations, for a tube with Γ = 6 and SL/SLac = 0.25 and
2, are reported in Fig. 16; see also Movies M1–M3. We observe that a thin, atrophied tube
develops in the wake of the propagating fronts. This tube is connected to the unperturbed
regions via a monotonic shape transition, as predicted by the linear theory for Γ > Γ2.
In addition, Fig. 16 highlights the qualitative difference between absolutely and convec-
tively unstable systems, when we inquire into the long-time response as seen by a stationary
observer—for example, one stationed at the vertical dashed line. In the absolutely unstable
case (SL = 0.25SLac, left column), our observer sees a deformed configuration, while in the
convectively unstable case (SL = 2SLac, right column), the observer sees an undeformed
configuration at long times, even as the disturbance grows while it is swept downstream.

In both cases, the leading and trailing front speeds are calculated numerically and com-
pared to the linear prediction of Eq. (187), as shown in Fig. 17. It is well-known that a front
can be either ‘pulled’ at the leading edge or ‘pushed’ by the growing nonlinearities behind
the front, however one cannot in general anticipate which type of front will emerge from a
local perturbation to invade a given nonlinear system. ‡, † Our numerical simulations reveal
the trailing edge is a pulled front, where the front speed agrees with the marginal stability
criterion, while the leading edge is a pushed front traveling faster than what the marginal
stability criterion predicts (Fig. 17). In the latter case, the front speed agrees with the linear
theory at early times when perturbations are small (Fig. 17 insets).

Fully nonlinear simulations: Tube with no base flow
We now investigate the pattern selection mechanism in the wake of propagating fronts by
simulating membrane tubes without a base flow, at different values of the Föppl–von Kármán
number. Such a tube is symmetric about the center of our Gaussian perturbation (243),
which we choose to be at µ̄ = 0. Accordingly, only half the domain is simulated, for which
the boundary conditions are given by

φ(0) = φ0 , z(0) = 0 , u(0) = 0 , L(0) = 0 ,

φ(A) = φ0 , λ(A) = Λ , w(A) = 0 , L(A) = 0 .
(246)

‡van Saarloos, “Front propagation into unstable states. II. Linear versus nonlinear marginal stability and
rate of convergence”.

†W. van Saarloos. “Front propagation into unstable states”. Phys. Rep. 386 (2003), 29–222. arXiv:
cond-mat/0308540.

https://doi.org/10.1016/j.physrep.2003.08.001
http://arxiv.org/abs/cond-mat/0308540
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Figure 16: Successive snapshots from fully nonlinear simulations of an unstable membrane
tube, with Γ = 6 (see also Movies M1–M3). An initial, local perturbation is applied at
the vertical dashed line at a single instant in time. As the tube is unstable, the initial
disturbance grows, saturates, and eventually forms two fronts that propagate outwards.
In the left column, SL = 0.25SLac and the tube is absolutely unstable, for which every
stationary observer will see a perturbed system at late times. The tube on the right
is convectively unstable, with SL = 2SLac, such that any stationary observer sees and
undeformed tube at long times. Here, flow is in the positive z-direction, the color bar
indicates surface tension, and snapshots are scaled by a factor of 40 in the z-direction. The
front velocities in these two cases are quantified in Fig. 17.
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Figure 17: Plots of the leading (blue circles) and trailing (red crosses) front velocities
over time, where Γ = 6 and SL/SLac = 0.25 and 2 (cf. Fig. 16). Symbols correspond
to simulations and lines are predictions from the marginal stability criterion (187). The
insets show front speeds at early times, and confirm the trailing front moves to the left
for SL < SLac and to the right for SL > SLac; the leading front moves to the right in both
cases. Additionally, the trailing front is a pulled front that travels at the speed predicted
by the linear theory, while the leading front is a pushed front traveling faster than the
linear prediction. However, at early times when deformations are small, both front speeds
agree with the linear theory (see insets).
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The results of our nonlinear simulations at three choices of the Föppl–von Kármán number,
namely Γ = 0.77 ∈ [Γc,Γ1], Γ = 2 ∈ (Γ1,Γ2), and Γ = 6 > Γ2, are shown as solid lines in
Fig. 18; see also Movies M4–M7. We once again see an agreement with the pattern predict
by the marginal stability criterion: when Γ ∈ [Γc,Γ1] ∪ [Γ2,∞), the front evolves with a
steadily trailing envelope (Fig. 18a,c). On the other hand, if Γ ∈ (Γ1,Γ2) then (i) the front
has an oscillatory structure in both space and time, (ii) a pattern is selected in the wake
of the front, and (iii) a pearled morphology develops to connect the thin and unperturbed
cylindrical regions (Fig. 18b). We thus confirm that the value of the Föppl–von Kármán
number governs whether or not a pattern is selected as a front propagates.

As it turns out, the oscillating fronts arising when Γ ∈ (Γ1,Γ2) lead to numerical diffi-
culties: the front sheds oscillatory modes, some of which reflect off the right boundary and
contaminate the computational domain. To prevent such reflections, we follow past numer-
ical developments in open flow systems ‡ and introduce a so-called sponge zone to dampen
would-be reflected waves. In particular, when simulating a tube with area A = 2πRL, we
extend our computational domain to have area 1.5A; in the final third of the domain we also
increase the numerical value of the intramembrane viscosity ζ to dampen reflected oscillatory
modes. Denoting ζsim as the value of the parameter used in numerical simulations, we have

ζsim
ζ

=


1 0 ≤ a ≤ A ,

1 + 2

[
1 + exp

(
δr

a− A
− δr
a+ δr − A

)]−1

A < a ≤ A+ δr

3 a > A+ δr ,

(247)

where δr is the length of the region over which the viscosity ramps up—here set to 0.25A.
We note that the size of the sponge zone, the ramp up length, and the maximum value of
ζsim were varied until oscillatory modes were no longer reflected into the domain, and are
valid only for the specific problem at hand. As a validation test, we applied a sponge zone
to simulations in which Γ > Γ2 and no oscillations were expected; we found the numerical
results were completely unchanged in this case.

Weakly nonlinear simulations
We end our presentation of numerical results by returning to the weakly nonlinear evolution
equation (240). We solve Eq. (240) with the finite element solver FreeFEM++, † with the
fourth-order spatial derivative necessitating the boundary conditions

r(−L) = 1 , r,z(−L) = 0 , r(L) = 1 , and r,z(L) = 0 . (248)

We note that the boundary conditions in Eq. (248) are applied regardless of whether or not
there is a base flow; in all cases, the entire domain is simulated. For ease in comparison
with the fully nonlinear results, the weakly nonlinear shape profiles are plotted in terms
of the unscaled axial position z and time t, rather than their scaled counterparts Z and T
introduced in Eq. (178).

‡J.-M. Chomaz. “Fully nonlinear dynamics of parallel wakes”. J. Fluid Mech. 495 (2003), 57–75.
†F. Hecht. “New development in FreeFem++”. J. Numer. Math. 20 (2012), 251–265.

https://doi.org/10.1017/S0022112003006335
https://freefem.org/
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Figure 18: Plots of propagating fronts over time, with no base flow (SL = 0) and (a)
Γ = 0.77 ∈ [Γc,Γ1], (b) Γ = 2 ∈ (Γ1,Γ2), and (c) Γ = 6 ∈ [Γ2,∞). Solid (respectively
dashed) lines are results from nonlinear simulations (respectively the weakly nonlinear
evolution equation). Snapshots are separated by (a) 1000τ , (b) 10τ , and (c) τ . A portion
of the tube at the final snapshot is shown above each plot (color bars indicate surface
tension); see also Movies M4–M7. When Γ ∈ (Γ1,Γ2) as in (b), the front leaves pearls
in its wake (left inset) and oscillates at the leading edge (right inset), in agreement with
the linear theory. The outward bulges in this case cause the weakly nonlinear evolution
equation (240) to fail.
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Figure 19: Snapshots from simulations of the weakly nonlinear evolution equation (240),
at three different base flow speeds, with Γ = 6. In all cases, the initial perturbation is at
z = 0, snapshots are separated by ≈ 3τ , and the perturbation saturates to form a thin
tube with radius rh(Γ = 6) ≈ 0.23. The leading front travels to the right, while the trailing
front (a) travels to the left when SL < SLac, (b) remains stationary when SL = SLac, and
(c) travels to the right when SL > SLac. The simulations reveal the weakly nonlinear
evolution equation gives rise to pulled fronts, which travel at the speed predicted by the
linear theory.



Ch. IX §8 the nonlinear dynamics 233

Predictions from the weakly nonlinear model (248) and direct numerical simulations of
the nonlinear equations are compared in Fig. 18, from which we make several observations.
First, both sets of dynamics result in a thin, atrophied tube behind the front, with the
weakly nonlinear atrophied radius given by Eq. (242). We also find that for Γ /∈ (Γ1,Γ2),
the evolution equation serves as a good predictor of the front speed and final radius as
Γ → Γ+

c (Fig. 18a), while it only predicts rh at large Γ (Fig. 18c). On the other hand,
when Γ ∈ (Γ1,Γ2), the front oscillates at the leading edge and the quadratic forcing terms in
f(r) amplify outward perturbations (r > 1), such that the weakly nonlinear model predicts
an unphysical, diverging radius at finite times. ‡ Despite the quantitative shortcomings of
the weakly nonlinear evolution equation (240), it still provides (i) a connection to previous
studies of nonlinear dynamics and pattern formation, and (ii) a qualitative understanding
of front propagation. In addition, simulation results for the weakly nonlinear equation, with
and without a base flow, are reported in Figs. 18 and 19. We find a local disturbance gives
rise to pulled fronts that travel at the speed predicted by the linear theory. Importantly, as
the evolution equation (240) agrees with nonlinear simulations when Γ → Γ+

c , we expect
the front velocity of an initially static tube to scale as SLf ∼ SLac ∼ (Γ − Γc)

1/2 near the
instability threshold [cf. Eqs. (171) and (187)].

(d). The analysis of local perturbations in experiments
With the results of the linear and nonlinear stability analysis, we now seek to determine if
our predictions are observed in experiments. In particular, we would first like to see if the
Föppl–von Kármán number indeed governs whether or not a pearled morphology develops
in the wake of the moving fronts. Next, we seek to compare the front speeds observed in
experiments to our calculated values—with the understanding that the pulled front speed
determined by the marginal stability criterion is a lower bound for the speed of the nonlinear,
pushed fronts exhibited by the full membrane equations. Finally, we search for biological
systems with a base flow that are convectively unstable.

In what follows, we compare our results with experimental measurements from two prior
studies: one involving in vitro tethers subject to a localized laser pulse, † and another apply-
ing various disturbances to stationary axons. ∗ Although there are many other experimental
investigations subjecting membrane tubes to localized disturbances, we limit our compari-
son to these two studies because all of our theoretical predictions require knowledge of the
Föppl–von Kármán number—which often cannot be determined from experimental data due
to incomplete measurements of the membrane tension [see discussion in §1 (a)]. Even in the
aforementioned studies that we do consider, there are situations where sufficient data are
not reported for us to test our theories. In such cases, however, we demonstrate that the
data are consistent with our findings. We hope this agreement motivates future experimental
investigations, so as to better test our theoretical understanding of membrane tubes.

‡Tchoufag, Sahu, and Mandadapu, “Absolute vs convective instabilities and front propagation in lipid
membrane tubes”.

†R. Bar-Ziv, E. Moses, and P. Nelson. “Dynamic excitations in membranes induced by optical tweezers”.
Biophys. J. 75 (1998), 294–320.

∗Datar et al., “The roles of microtubules and membrane tension in axonal beading, retraction, and
atrophy”.

https://doi.org/10.1016/S0006-3495(98)77515-0
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Stationary in vitro tethers: Front propagation
We begin by considering the measurements described by Bar-Ziv et al., ‡ in which a localized
laser pulse is applied to artificial membrane tethers. As the tube is held stationary, the
Scriven–Love number SL = 0 in all experiments. In addition, before the laser is applied, the
tether is stable and Γ < Γc. Upon application of the laser at time t = 0, the membrane
tension is rapidly modified along the entire cylinder such that Γ > Γc everywhere; the
laser also disturbs the membrane shape at one location. † Accordingly, the system is well-
characterized as an unstable tube with constant base tension, subject to a localized shape
perturbation.

Interestingly, Bar-Ziv et al. report both the dimensionless tension and the dimensionless
front speed in their study (see Fig. 11 of their manuscript). ‡ However, their characteriza-
tion of the membrane dynamics did not include the intramembrane viscosity ζ, and thus
their front velocity was non-dimensionalized with the shear viscosity µ of the surrounding
fluid—taken to be µ = 10−3 pN · μsec/nm2. To express the presented data in terms of the di-
mensionless numbers employed in the present study, namely the Föppl–von Kármán number
Γ and the Scriven–Love number of the front SLf , we recognize

Γ =
3

4
·
{

presented dimensionless tension
}

(249)

and

SLf =
ζ

2µR
·
{

presented dimensionless velocity
}
, (250)

where both quantities in curly braces refer to the experimentally reported measurements. ‡

For the choice ζ = 10 pN · μsec/nm ∗, § used throughout this work, we reproduce the presented
experimental data in terms of our own dimensionless quantities in Fig. 20. ♯

From Fig. 20, we immediately notice several consistencies between our theory and the
reported experimental data. First, for any choice of Γ , the data lie above the calculated
value of SLac(Γ ) predicted by the linear theory—as we expect for pushed fronts. Next, the
experimental investigation reports that only pearled fronts were observed upon application
of the laser. Since all data (to within experimental uncertainty) lie within the range Γ ∈
(Γ1,Γ2), such a finding is again consistent with our theoretical prediction. Finally, we note
that the nonlinear front speed converges to SLac(Γ ) as Γ → Γ+

c , in which case we expect
SLf = SLac ∼ (Γ − Γc)

1/2 near the instability threshold. Figure 20 indeed exhibits this
power law scaling about Γc, and in this manner we justify the observed front speeds near the
instability threshold—a behavior that was previously unexplained.

‡Bar-Ziv, Moses, and Nelson, “Dynamic excitations in membranes induced by optical tweezers”
†R.E. Goldstein et al. “Front propagation in the pearling instability of tubular vesicles”. J. Phys. II 6

(1996), 767–796.
∗Cicuta, Keller, and Veatch, “Diffusion of liquid domains in lipid bilayer membranes”.
§Honerkamp-Smith et al., “Membrane viscosity determined from shear-driven flow in giant vesicles”.
♯As mentioned previously, the ratio ζ/(µR) is a dimensionless quantity known as the Boussinesq number

Bo, which contributes to the membrane behavior when the dynamics of the surrounding fluid are taken into
account.

https://doi.org/10.1051/jp2:1996210
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Figure 20: The dimensionless front velocity as a function of the dimensionless surface
tension, for tubes of different radii R (see provided symbols), obtained from Fig. 11 of R.
Bar-Ziv, E. Moses, and P. Nelson. “Dynamic excitations in membranes induced by optical
tweezers”. Biophys. J. 75 (1998), 294–320. The experimental data from this study are
represented in terms of Γ and SLf via Eqs. (249) and (250). In all cases, the measured front
speed is larger than the absolute-to-convective transition speed SLac (solid green line)—as
expected. The purple dashed lines delineate the range (Γ1,Γ2) within which fronts are
predicted to pearl—a prediction again consistent with experimental measurements.

Front propagation in stationary axons
We next investigate the experimental study by Datar et al., ‡ which presents data on how
axons respond to a variety of different local perturbations, from which outwardly prop-
agating fronts ensue. Since there is initially no base flow of lipids before the neuron is
disturbed, SL = 0 in these experiments. Moreover, as the study was primarily concerned
with understanding molecular mechanisms, it often did not provide sufficient data for us to
quantitatively calculate Γ and SLf in experiments—especially when the tube was perturbed
by a laser. Nonetheless, in what follows, we show the experimental measurments involving
local drug treatments are consistent with our theoretical predictions.

We analyze experiments involving two different drug treatments: Nocodazole (Noco) and
Latrunculin A (LatA), with all data reproduced from Table S2 of the Supplemental Material
of Datar et al. ‡ At a low Noco concentration, the axons were either stable (Γ < Γc, 16% of
axons), formed fronts without pearls (Γ ∈ [Γc,Γ1], 13% of axons), or formed fronts with pearls
(Γ ∈ (Γ1,Γ2), 71% of axons). We assume the Föppl–von Kármán number of all perturbed
axons were close to one another in this experiment, and thus expect Γ to be closer to Γ1 than
Γ2 in the pearled systems. Our hypothesis is consistent with experimental results where the
Noco concentration was increased, thereby increasing the base tension and shifting the range
of Föppl–von Kármán numbers upwards. In this case, all axons developed fronts (Γ > Γc),
with 5% not pearling (Γ ∈ [Γc,Γ1]) and 95% pearling [Γ ∈ (Γ1,Γ2)]. A similar result was
observed with LatA, with fronts developing in all cases: at low concentrations, only 3%
of axons pearled, while at higher concentrations 19% of axons pearled. Again, increasing

‡Datar et al., “The roles of microtubules and membrane tension in axonal beading, retraction, and
atrophy”

https://doi.org/10.1016/S0006-3495(98)77515-0
https://doi.org/10.1016/S0006-3495(98)77515-0
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the concentration of LatA caused the distribution of Föppl–von Kármán numbers to shift
upwards, such that a higher proportion of axons satisfied Γ > Γ1 and thus formed beads-on-
a-string morphologies. In both cases, the experimental findings of local drug administration
are qualitatively consistent with our theoretical results.

For a more quantitative analysis, we turn to Fig. S4 of the Supplemental Material of
Datar et al. ‡ From part (A) of the figure, we see pearling front speeds vary from 70–200
nm/sec, while in part (B) monotonic fronts retract at speeds ranging from 10–70 nm/sec.
Though sufficient data is not reported for us to calculate either Γ or SLf , we can show the
experimental observations are consistent with our theory. We begin by noting that for a
range of characteristic values for the bending modulus, viscosity, and radius of an axon,
we expect SLf ≪ 1 over all reported front speeds. In this case, we also expect to be close
to the instability threshold, such that Γ − Γc ≪ 1—a result consistent with the above
analysis of Noco and LatA experiments. With this understanding, we recall that for Föppl–
von Kármán numbers near the instability threshold, the fully nonlinear front speed is well-
predicted by SLac(Γ ). Moreover, as we predict a transition from monotonic to pearled fronts
at Γ = Γ1 ≈ 0.805, we expect SLf(Γ1) ≈ SLac(Γ1) ≈ 0.08 to be the dimensionless front speed
at which the front morphology transitions. The corresponding dimensional front speed at
which the transition was observed in experiments is Vf ≈ 70 nm/sec. We posit the following
values of material parameters to be consistent with the observations: R = 600 nm, ζ = 300
pN · μsec/nm, and kb = 150 pN · nm. With this hypothesis, we can then translate the entire
range of observed velocities (10–200 nm/sec) to their dimensionless counterparts, and extract
the corresponding range of Föppl–von Kármán numbers as Γ ∈ (0.75, 1). Thus, despite not
being able to make quantitative predictions based on the available data, our finding of a
monotonic to pearled bifurcation in the front shape is consistent with the experimental
data. However, the nonlinear morphologies observed in experiments (see, e.g. Figs. 1(a) and
3(a) of Datar et al. ‡) are more atrophied than those in our simulations, suggesting additional
phenomena arise in the neuronal environment—which is not surprising, given that neurons
are significantly more complex than the membrane tubes considered in the present work.

(e). Supplemental movies
Here we describe several movies of the fully nonlinear membrane dynamics, as described in
§8 (c). In all cases, the time is provided in units of τ = ζR2/kb (107), the color indicates
the surface tension, and the vertical black arrow indicates the location of an initially local
perturbation. All movies can be found at the following case-sensitive hyperlink:

youtube.com/playlist?list=PLuzng8nroSCu-OpQE-PrhfwzdeSMfUeS6

M1. Local inward perturbation, with Γ = 6 and SL = 0.25SLac. See also Figs. 16 and 17.

M2. Local inward perturbation, with Γ = 6 and SL = SLac.

M3. Local inward perturbation, with Γ = 6 and SL = 2SLac. See also Figs. 16 and 17.
‡Datar et al., “The roles of microtubules and membrane tension in axonal beading, retraction, and

atrophy”

https://www.youtube.com/playlist?list=PLuzng8nroSCu-OpQE-PrhfwzdeSMfUeS6
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M4. Local inward perturbation, with Γ = 0.77 and SL = 0. See also Fig. 18a.

M5. Early-time behavior in response to a local inward perturbation, with Γ = 2 and SL = 0.
The front appears to propagate monotonically. See also Fig. 18b.

M6. Late-time behavior in response to a local inward perturbation, with Γ = 2 and SL = 0.
Oscillations at the leading edge grow and saturate to form a pearled morphology in
the near wake of the front, which connects the atrophied and unperturbed regions. See
also Fig. 18b.

M7. Local inward perturbation, with Γ = 6 and SL = 0. See also Fig. 18c.
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Chapter X

Conclusions and Future Work

To those who do not know mathematics it is difficult to get across a real feeling
as to the beauty, the deepest beauty, of Nature . . . Physicists cannot make a con-
versation to any other language. If you want to learn about Nature, to appreciate
Nature, it is necessary to understand the language that She speaks in. She offers
her information only in one form; we are not so unhumble as to demand that She
change before we pay any attention.

—RICHARD P. FEYNMAN, 1964 ‡

In this thesis, we systematically studied the behavior of arbitrarily curved and deforming
biological membranes. We first obtained the equations governing such materials through the
framework of irreversible thermodynamics—which was applied in a differential geometric
setting. † In particular, the local forms of the balance of mass, linear momentum, angular
momentum, energy, and entropy were obtained, and the internal entropy production was
subsequently determined. Recalling that the in-plane flow of lipids is irreversible, while the
membrane deforms reversibly in the out-of-plane direction, our irreversible thermodynamic
framework provided a natural way to develop constitutive relations for the stresses and
couple-stresses in the material. The resultant equations of motion are identical to those of
earlier studies that proposed constitutive forms of the viscous stresses. ∗, §, ♯

The lipid membrane equations are highly nonlinear, and exhibit intricate couplings be-
tween the in-plane and out-of-plane behavior. To probe this coupling, we determined and
non-dimensionalized the equations governing small perturbations to three commonly occur-
ring membrane geometries: flat patches, spherical vesicles, and cylindrical tubes. ∥ We found
a new dimensionless number, namely the Scriven–Love number SL, comparing out-of-plane

‡R.P. Feynman. The Character of Physical Law. Cambridge: MIT Press, 1967.
†A. Sahu et al. “Irreversible thermodynamics of curved lipid membranes”. Phys. Rev. E 96 (2017),

042409. arXiv: 1701.06495.
∗D. Hu, P. Zhang, and W. E. “Continuum theory of a moving membrane”. Phys. Rev. E 75 (2007),

041605.
§M. Arroyo and A. DeSimone. “Relaxation dynamics of fluid membranes”. Phys. Rev. E 79 (2009),

31915–31931.
♯P. Rangamani et al. “Interaction between surface shape and intra-surface viscous flow on lipid mem-

branes”. Biomech. Model. Mechan. 12 (2012), 833–845.
∥A. Sahu et al. “Geometry and dynamics of lipid membranes: The Scriven–Love number”. Phys. Rev. E

101 (2020), 052401. arXiv: 1910.10693.
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viscous–curvature coupling forces to the well-known bending forces. Moreover, an analysis
of past experiments revealed biologically relevant situations in which SL ≥ 1 in perturbed
spheres and cylinders. In this manner, we demonstrated the in-plane flow of lipids cannot be
ignored when characterizing biological membrane behavior. We hope our findings prompt
future investigators to report characteristic velocities and surface tensions in experimental
systems, as thus far such measurements are often omitted.

Our investigations into the stability of biological membranes motivate several theoreti-
cal extensions and numerical advancements. For example, we found both spherical vesicles
and cylindrical tubes undergo a non-axisymmetric buckling instability when the base sur-
face tension is negative. To determine the long-time response of biological membranes in
such situations, advanced numerical methods are required to solve the membrane equa-
tions. ‡, † Moreover, a linear stability analysis of planar membranes revealed the importance
of including the surrounding fluid, which (i) provides another dissipative mode via the three-
dimensional shear viscosity, and (ii) is especially relevant in the planar case, where to first
order, the in-plane intramembrane viscosity does not affect the height modes. Once the
hydrodynamics of the surrounding fluid are included, the normal stress jump JpK will no
longer be constant: as the membrane deforms and displaces its surroundings, the bulk fluid
stresses will have first-order corrections, which then enter the perturbed equations governing
membrane dynamics. Moreover, when biological membranes undergo large deformations, the
tractions they feel from the surrounding fluid can be significant. We thus expect bulk hy-
drodynamics to affect, for example, the long-time morphology of unstable membrane tubes
subjected to either global or local disturbances—and the speed of the resultant fronts in the
latter case. ∗ Numerical methods that solve for the coupled membrane and fluid behavior are
required to describe such phenomena.
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